
US 20190342450A1
IND IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2019/0342450 A1

Kulkarni et al . (43) Pub . Date : Nov. 7 , 2019

Publication Classification (54) INTERACTIVE VOICE RESPONSE SYSTEM
CRAWLER

(71) Applicant : Cyara Solutions Pty Ltd , Melbourne
(AU)

(72) Inventors : Alok Kulkarni , Glen Iris (AU) ; Geoff
Willshire , Yeronga (AU) ; Ian Ng , New
York , NY (US) ; Thomas Fejes ,
Freshwater (AU)

(21) Appl . No .: 16 / 379,084

(51) Int . Ci .
H04M 3/493 (2006.01)
GIOL 15/22 (2006.01)
H04M 7/12 (2006.01)
H04M 3/24 (2006.01)

(52) U.S. CI .
CPC H04M 3/493 (2013.01) ; GIOL 15/22

(2013.01) ; H04M 3/24 (2013.01) ; H04M
7/1295 (2013.01) ; H04M 3/4938 (2013.01)

(57) ABSTRACT
A system for interactive voice response system crawling ,
comprising an IVR crawler that may be VXML , design
specification , DTMF or ASR / NLSR speech - based in nature
and traverses an IVR menu to discover possible interaction
paths and produces test cases based on those paths , and a
database that stores test cases produced by the IVR crawler
during operation , and a method for using an IVR crawler to
perform a system migration .

(22) Filed : Apr. 9 , 2019

Related U.S. Application Data
(63) Continuation of application No. 15 / 091,556 , filed on

Apr. 5 , 2016 , now Pat . No. 10,291,776 , which is a
continuation - in - part of application No. 14 / 590,972 ,
filed on Jan. 6 , 2015 , now Pat . No. 10,091,356 .

VXML File

572 DTWF IVR

VXML Browser Specification
PSTN or internet

$ 21 .

522a Spaadsheer
Desain 01:39

Speech Apphcation .
Crawler

DTM Crawier ASR Engne ASR Grawer

$ 31)

Generator

Standardized
est Caps Test Executive

Engine

Analyzet

550 zest Results

Patent Application Publication

110

Interfaces

Local
4101

Storage
2102

Processor (s)
1103

Remote Storage

Nov. 7 , 2019 Sheet 1 of 10

106

120

Fig . 1

US 2019/0342450 A1

230

Clients

Inputs

Patent Application Publication

225

Ser Services
s]

260

Outputs

220

OSes

250

Storage

Nov. 7 , 2019 Sheet 2 of 10

210

Processors

240

Memory 200

..

200

Fi
ig
2

US 2019/0342450 A1

320

Servers

Clients

Patent Application Publication

330

Network (s)

360

Sec .

Databases
310

340
350 Config

Nov. 7 , 2019 Sheet 3 of 10

370

Ext Svcs

Fig
3

C30

US 2019/0342450 A1

300

Patent Application Publication

404

406

403

405

Memory

402

CPU

408

Nov. 7 , 2019 Sheet 4 of 10

407

Display

ON

NIC

410

Fig . 4

US 2019/0342450 A1

513

VXML File

]

Patent Application Publication

572

Design . Speciication

VKML Browser

PSTN OF Internet

522a

Spreadsheet Desain CtBWIES

Speech Applications Crawler

OME Crawier

ASS Engine

ASR Crawler
5

??

DTM Generator

522b

Nov. 7 , 2019 Sheet 5 of 10

524

Standardized Test Caps

Call Flow

Test Executive Engine

520

Analyzer

Fig . 5

US 2019/0342450 A1

Test Results

Patent Application Publication Nov. 7 , 2019 Sheet 6 of 10 US 2019/0342450 A1

610

Retrieve URL
of VXML Script

Load Design
Specification

Connect to DTMF
or ASR / NLSR IVR

601 605

611 ? Place Actual
Telephone Call to
Non - VXML IVR

Crawl / Reverse
Engineer VXML

Application

Crawl / Reverse
Engineer Design

Specification

Crawl / Reverse
Engineer DTMF or

ASR / NLSR
IVR Application
Using Audio

602 606 620
612

Add New Test Cases
to Testing Database

Retrieve Application
Test Cases

621

Execute Test Cases
Against Application Platform 622

Analyze Test
Results

623
600

Share Test Results In
Testing Database

624

625 Display Test Results
on Request

Fig . 6

Patent Application Publication Nov. 7 , 2019 Sheet 7 of 10 US 2019/0342450 A1

701

Retrieve URL from
VXML Browser

702

~ 700
Parse Resulting
VXML File

703

Identify All Possible
Branches of Execution

704

For Each Branch , Identify
Input Strings Required to

Traverse the Branch

705

Create Test Case Using
Identified Inputs

706

Save Test Cases to
Testing Database

Fig . 7

Patent Application Publication Nov. 7 , 2019 Sheet 8 of 10 US 2019/0342450 A1

801

Place Call to
Non - VXML IVR

802

Receive Prompt
from IR

803

Interpret Prompt
Using ASR

800
804

Identify Allowable DTMF
Inputs and Place on Stack

805

For Next DTMF Input on
Stack , Send DTMF to IVR

and Proceed to Next Prompt

806

When no More Prompts ,
Generate Test Case for Path

Used and More to Next
Unexercised DTMF Input

806

Send Resulting Test Cases
to Testing Database

Fig . 8

Patent Application Publication Nov. 7 , 2019 Sheet 9 of 10 US 2019/0342450 A1

IVR crawler connects to existing IVR system

902 s IVR crawler traverses NR branches

IVR produces documentation for discovered
IVR paths and branches

904 IVR crawler produces reverse - engineered VXML data

905 VXML data is imported into new IVR system

906 New IVR system produces duplicate set of IVR
pathways and branches from VXML data

IVR crawler traverses new IVR system to check for errors ,
document any changes , produce VXML backup of new system

Fig . 9 ??

www

1013

Patent Application Publication

Account Service

Agent (Upgrade)

1011

2

Prompt

Agent (Billing)

Tech Support

Agent (Outage)

1012

2

1014

WN

Agent (Device) Agent (Provisioning)

Loyalty

Agent (Retentions)

Nov. 7 , 2019 Sheet 10 of 10

wwx

100 1010

Fig . 10

US 2019/0342450 A1

US 2019/0342450 A1 Nov. 7 , 2019
1

SUMMARY OF THE INVENTION INTERACTIVE VOICE RESPONSE SYSTEM
CRAWLER

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser . No. 15 / 091,556 , titled " INTERACTIVE
VOICE RESPONSE SYSTEM CRAWLER ” and filed on
Apr. 5 , 2016 , which is a continuation - in - part of U.S. patent
application Ser . No. 14 / 590,972 , titled “ INTERACTIVE
VOICE RESPONSE SYSTEM CRAWLER ” and filed on
Jan. 6 , 2015 , the entire specification of which is hereby
incorporated by reference in its entirety .

BACKGROUND OF THE INVENTION

Field of the Art

[0002] The disclosure relates to the field of contact center
operations , and more particularly to the field of interactive
voice response systems and applications .

Discussion of the State of the Art

[0003] In the field of interactive voice response (IVR)
systems , documenting systems “ as - is ” , or in their current
state such as to document possible voice responses and
interaction paths a customer might take while navigating a
system , can be very time consuming , sometimes requiring as
much as 3-9 months to completely document a single
system . Consequently , documentation is often out of sync
with production systems due to the time and resources
required , decreasing the effectiveness of the documentation .
Generating documentation scripts manually can also be time
consuming , making it difficult to economize the process . The
result of these factors is that agility is compromised , and
time - to - value can be over a year .
[0004] Additionally , outdated or poorly maintained IVR
software may persist in use due to difficulty migrating to
new systems or performing maintenance manually (for
example , to identify broken paths or outdated options that
need to be fixed or removed) . Companies may have a large
investment in a particular IVR configuration , and may wish
to maintain their existing setup but also to take advantage of
new technologies that may become available . Generally , this
would require manually setting up a new IVR system and
taking care to configure it in a similar manner to the existing
configuration . Manually inspecting or setting up a new IVR
system is time consuming and error - prone , which leads to
outdated systems being kept operational rather than upgrad
ing , due to the investment required . It is also important for
users to be able to perform minor changes without the risk
of causing larger issues , for example to enable users to
correct minor issues as they appear without running the risk
of breaking larger call flows .
[0005] What is needed , is a means to rapidly and reliably
generate documentation of , and test cases for , production
IVR systems to at least accelerate deployment and time - to
value (for example , for existing systems) , as well as to
generate voice extensible markup language (VXML) docu
ments suitable for rapid importation into an IVR system , and
to generate interactive IVR documentation to enable users to
view and modify an IVR in a safe and efficient manner .

[0006] Accordingly , the inventor has conceived and
reduced to practice , in a preferred embodiment of the
invention , various systems and methods for live IVR system
crawling , adapted for use in migrating an IVR configuration
to a new system as an upgrade or replacement .
[0007] According to a preferred embodiment of the inven
tion , a system for IVR crawling comprising a speech crawler
that may be a VXML - based crawler stored and operating on
a network - connected computing device (such as a server or
a desktop workstation) , a dual - tone multi - frequency
(DTMF) or automated speech recognition (ASR) / natural
language speech recognition (NLSR) crawler that may be a
touch - tone or speaker simulation based interaction program ,
a design crawler that may be a spreadsheet - based software
crawler , a call flow database that may store and provide call
flow documentation or records such as those generated by
the crawlers of the invention , a test executive engine that
may perform call flow testing according to known call flow
records , and a test results analyzer that may perform analysis
of the results of performed call flow tests such as to
determine the performance of an IVR or the accuracy of a
call flow documentation record , is disclosed . According to
the embodiment , a speech crawler (SAC) may be a process
that interrogates a target VXML browser , reverse engineers
any discovered call flows by parsing each branch of the
VXML application (such as by providing all possible inputs
at all possible layers) and builds a complete test case library
that may be used by an automated testing solution to
exhaustively test all possible paths through an interrogated
IVR . The input may be the URL of the target VXML
browser and the output may be a file containing the test cases
in XML format , such as for storing in a database or adding
to documentation files .
[0008] A DTMF crawler (DC) may be a process that
interrogates a target touch tone IVR or IVRs that aren't
VXML compliant or who's VXML interface is not directly
accessible by placing actual telephone calls to an IVR from
the crawler platform . The crawler may then , as described
previously , reverse engineer any discovered call flows such
as by parsing each and every branch of the application by
providing all possible DTMF inputs at all possible layers ,
and may then build a complete test case library . This solution
includes use of transcription to convert audio to text for the
test cases , for example by using automated voice recognition
so that the software - based crawler may parse and respond to
heard voice prompts from the IVR via the telephone call .
The input may be a phone number , or multiple numbers
(internal or external , such as for testing internal IVR appli
cations or remotely testing external IVRs from outside the
internal telephone network) , and the output may be a library
of test cases or a diagrammatic representation of the IVR
application structure suitable for adding to documentation or
storing in a database .
[0009] An automated or natural language speech recogni
tion (ASR / NLSR) Crawler (ASC) may be a process that
interrogates a target speech recognition IVR or IVRs that
aren't VXML compliant or who's VXML interface is not
directly accessible by placing actual telephone calls to an
IVR from the crawler platform . The crawler may then , as
described previously , reverse engineer any discovered call
flows such as by parsing each and every branch of the speech
application by providing all possible speech inputs at all
possible layers , and may then build a complete test case

US 2019/0342450 A1 Nov. 7 , 2019
2

review , such as by a human analyst performing tests manu
ally or reviewing the results of prior tests to review opera
tion .
[0019] According to another preferred embodiment of the
invention , a method for interactive voice response system
migration , comprising the steps of : accessing , via an IVR
crawler , an IVR system ; reverse engineering the menu paths
of the IVR system ; producing a plurality of VXML data
corresponding to at least a portion of the menu paths of the
IVR system ; and importing at least a portion of the plurality
of VXML data into an IVR system , is disclosed .

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

library . This solution includes use of transcription to convert
audio to text for the test cases , for example by using
automated voice recognition so that the software - based
crawler may parse and respond to heard voice prompts from
the IVR via the telephone call . The input may be a phone
number , or multiple numbers (internal or external , such as
for testing internal IVR applications or remotely testing
external IVRs from outside the internal telephone network) ,
and the output may be a library of test cases or a diagram
matic representation of the IVR application structure suit
able for adding to documentation or storing in a database .
[0010] A design crawler may be a process that interrogates
any standard speech application design template used com
monly in the art to build a complete library of test cases for
the speech / DTMF application . In such an arrangement , the
crawler may traverse a design document such as a spread
sheet , and as described previously may reverse engineer any
discovered flows from the document and output a test case
library suitable for incorporation into either a database or
IVR documentation , or both .
[0011] It should be appreciated that the system of the
invention may incorporate multiple crawlers and crawler
types such as those described above , interchangeably or
simultaneously as may be desirable for a particular arrange
ment or application .
[0012] Two exemplary use cases for the crawlers
described above are as follows .
[0013] Use Case 1 : Using the Speech Crawler . User
launches the application using the command line interface .

[0014] Input : User enters the URL of the VXML
browser to be reverse engineered and the parent folder
name of the Test Case library and presses ' Enter ' key .

[0015] < application runs >
[0016] Output : XML file with the name of the parent

folder with sub folders and test cases within each folder
as necessary .

[0017] Use Case 2 : Importing the Test Cases XML . As per
normal import procedure however the entire library of the
Test Cases is imported with the directory structure intact .
[0018] According to another preferred embodiment of the
invention , a method for reverse engineering an IVR using a
plurality of IVR crawling software applications such as
those described previously , is disclosed . According to the
embodiment , the method may utilize various IVR crawlers
such as those described in the system of the invention above ,
for example crawlers that may be VXML , DTMF , Speech or
design - based in nature or operation . In an initial step , a
crawler may access IVR information according to its spe
cific nature , such as a VXML - based crawler loading a
VXML script such as from a URL or stored file , or a
DTMF / Speech - based crawler placing a telephone call
directly to an IVR system . In a next step , the crawler may
" crawl ” , or reverse engineer the IVR information , such as by
iteratively or recursively traversing a conversation path , or
by exploring every potential path in data file (such as with
VXML - based crawlers) . In a next step , the crawler may then
add new call test cases to a testing database , and in a next
step stored test cases may be retrieved by a test case
execution engine , which may then execute the test cases in
a next step . In a next step , the results of test case execution
may be analyzed , and these test results may then be stored
in a database for further reference in a next step . In an
optional final step , test results may be presented for manual

[0020] The accompanying drawings illustrate several
embodiments of the invention and , together with the
description , serve to explain the principles of the invention
according to the embodiments . It will be appreciated by one
skilled in the art that the particular embodiments illustrated
in the drawings are merely exemplary , and are not to be
considered as limiting of the scope of the invention or the
claims herein in any way .
[0021] FIG . 1 is a block diagram illustrating an exemplary
hardware architecture of a computing device used in an
embodiment of the invention .
[0022] FIG . 2 is a block diagram illustrating an exemplary
logical architecture for a client device , according to an
embodiment of the invention .
[0023] FIG . 3 is a block diagram showing an exemplary
architectural arrangement of clients , servers , and external
services , according to an embodiment of the invention .
[0024] FIG . 4 is another block diagram illustrating an
exemplary hardware architecture of a computing device
used in various embodiments of the invention .
[0025] FIG . 5 is a block diagram illustrating an exemplary
system architecture for IVR crawling , according to pre
ferred embodiment of the invention .
[0026] FIG . 6 is a method flow diagram illustrating an
overview of an exemplary overview method for IVR crawl
ing , according to a preferred embodiment of the invention .
[0027] FIG . 7 is a method flow diagram illustrating an
exemplary detailed method for reverse engineering a VXML
document using a VXML crawler according to the inven
tion .
[0028] FIG . 8 is a method flow diagram illustrating an
exemplary detailed method for interacting with an IVR
through DTMF or speech - based audio using a suitable
crawler according to the invention .
[0029] FIG . 9 is a method flow diagram illustrating an
exemplary method for using an IVR crawler to perform a
system migration , according to a preferred embodiment of
the invention .
[0030] FIG . 10 is an illustration of an exemplary user
interface for browsing an interactive IVR map , according to
an embodiment of the invention .

DETAILED DESCRIPTION

[0031] The inventor has conceived , and reduced to prac
tice , in a preferred embodiment of the invention , various
systems and methods for live IVR system crawling , such as
to rapidly navigate and document a production IVR system .
[0032] One or more different inventions may be described
in the present application . Further , for one or more of the

US 2019/0342450 A1 Nov. 7. 2019
3

carried out or executed . Some steps may be omitted in some
embodiments or some occurrences , or some steps may be
executed more than once in a given embodiment or occur
rence .

[0036] When a single device or article is described herein ,
it will be readily apparent that more than one device or
article may be used in place of a single device or article .
Similarly , where more than one device or article is described
herein , it will be readily apparent that a single device or
article may be used in place of the more than one device or
article .
[0037] The functionality or the features of a device may be
alternatively embodied by one or more other devices that are
not explicitly described as having such functionality or
features . Thus , other embodiments of one or more of the
inventions need not include the device itself .
[0038] Techniques and mechanisms described or refer
enced herein will sometimes be described in singular form
for clarity . However , it should be appreciated that particular
embodiments may include multiple iterations of a technique
or multiple instantiations of a mechanism unless noted
otherwise . Process descriptions or blocks in figures should
be understood as representing modules , segments , or por
tions of code which include one or more executable instruc
tions for implementing specific logical functions or steps in
the process . Alternate implementations are included within
the scope of embodiments of the present invention in which ,
for example , functions may be executed out of order from
that shown or discussed , including substantially concur
rently or in reverse order , depending on the functionality
involved , as would be understood by those having ordinary
skill in the art .

inventions described herein , numerous alternative embodi
ments may be described ; it should be appreciated that these
are presented for illustrative purposes only and are not
limiting of the inventions contained herein or the claims
presented herein in any way . One or more of the inventions
may be widely applicable to numerous embodiments , as
may be readily apparent from the disclosure . In general ,
embodiments are described in sufficient detail to enable
those skilled in the art to practice one or more of the
inventions , and it should be appreciated that other embodi
ments may be utilized and that structural , logical , software ,
electrical and other changes may be made without departing
from the scope of the particular inventions . Accordingly , one
skilled in the art will recognize that one or more of the
inventions may be practiced with various modifications and
alterations . Particular features of one or more of the inven
tions described herein may be described with reference to
one or more particular embodiments or figures that form a
part of the present disclosure , and in which are shown , by
way of illustration , specific embodiments of one or more of
the inventions . It should be appreciated , however , that such
features are not limited to usage in the one or more particular
embodiments or figures with reference to which they are
described . The present disclosure is neither a literal descrip
tion of all embodiments of one or more of the inventions nor
a listing of features of one or more of the inventions that
must be present in all embodiments .
[0033] Headings of sections provided in this patent appli
cation and the title of this patent application are for conve
nience only , and are not to be taken as limiting the disclosure
in any way .
[0034] Devices that are in communication with each other
need not be in continuous communication with each other ,
unless expressly specified otherwise . In addition , devices
that are in communication with each other may communi
cate directly or indirectly through one or more communica
tion means or intermediaries , logical or physical .
[0035] A description of an embodiment with several com
ponents in communication with each other does not imply
that all such components are required . To the contrary , a
variety of optional components may be described to illus
trate a wide variety of possible embodiments of one or more
of the inventions and in order to more fully illustrate one or
more aspects of the inventions . Similarly , although process
steps , method steps , algorithms or the like may be described
in a sequential order , such processes , methods and algo
rithms may generally be configured to work in alternate
orders , unless specifically stated to the contrary . In other
words , any sequence or order of steps that may be described
in this patent application does not , in and of itself , indicate
a requirement that the steps be performed in that order . The
steps of described processes may be performed in any order
practical . Further , some steps may be performed simultane
ously despite being described or implied as occurring non
simultaneously (e.g. , because one step is described after the
other step) . Moreover , the illustration of a process by its
depiction in a drawing does not imply that the illustrated
process is exclusive of other variations and modifications
thereto , does not imply that the illustrated process or any of
its steps are necessary to one or more of the invention (s) , and
does not imply that the illustrated process is preferred . Also ,
steps are generally described once per embodiment , but this
does not mean they must occur once , or that they may only
occur once each time a process , method , or algorithm is

Hardware Architecture

[0039] Generally , the techniques disclosed herein may be
implemented on hardware or a combination of software and
hardware . For example , they may be implemented in an
operating system kernel , in a separate user process , in a
library package bound into network applications , on spe
cially constructed machine , on an application - specific inte
grated circuit (ASIC) , or on a network interface card .
[0040] Software / hardware hybrid implementations of at
least some of the embodiments disclosed herein may be
implemented on a programmable network - resident machine
(which should be understood to include intermittently con
nected network - aware machines) selectively activated or
reconfigured by a computer program stored in memory . Such
network devices may have multiple network interfaces that
may be configured or designed to utilize different types of
network communication protocols . A general architecture
for some of these machines may be described herein in order
to illustrate one or more exemplary means by which a given
unit of functionality may be implemented . According to
specific embodiments , at least some of the features or
functionalities of the various embodiments disclosed herein
may be implemented on one or more general - purpose com
puters associated with one or more networks , such as for
example an end - user computer system , a client computer , a
network server or other server system , a mobile computing
device (e.g. , tablet computing device , mobile phone , smart
phone , laptop , or other appropriate computing device) , a
consumer electronic device , a music player , or any other
suitable electronic device , router , switch , or other suitable
device , or any combination thereof . In at least some embodi

US 2019/0342450 A1 Nov. 7. 2019
4

ments , at least some of the features or functionalities of the
various embodiments disclosed herein may be implemented
in one or more virtualized computing environments (e.g. ,
network computing clouds , virtual machines hosted on one
or more physical computing machines , or other appropriate
virtual environments) .
[0041] Referring now to FIG . 1 , there is shown a block
diagram depicting an exemplary computing device 100
suitable for implementing at least a portion of the features or
functionalities disclosed herein . Computing device 100 may
be , for example , any one of the computing machines listed
in the previous paragraph , or indeed any other electronic
device capable of executing software- or hardware - based
instructions according to one or more programs stored in
memory . Computing device 100 may be adapted to com
municate with a plurality of other computing devices , such
as clients or servers , over communications networks such as
a wide area network a metropolitan area network , a local
area network , a wireless network , the Internet , or any other
network , using known protocols for such communication ,
whether wireless or wired .
[0042] In one embodiment , computing device 100
includes one or more central processing units (CPU) 102 ,
one or more interfaces 110 , and one or more busses 106
(such as a peripheral component interconnect (PCI) bus) .
When acting under the control of appropriate software or
firmware , CPU 102 may be responsible for implementing
specific functions associated with the functions of a specifi
cally configured computing device or machine . For example ,
in at least one embodiment , a computing device 100 may be
configured or designed to function as a server system
utilizing CPU 102 , local memory 101 and / or remote
memory 120 , and interface (s) 110. In at least one embodi
ment , CPU 102 may be caused to perform one or more of the
different types of functions and / or operations under the
control of software modules or components , which for
example , may include an operating system and any appro
priate applications software , drivers , and the like .
[0043] CPU 102 may include one or more processors 103
such as , for example , a processor from one of the Intel ,
ARM , Qualcomm , and AMD families of microprocessors .
In some embodiments , processors 103 may include specially
designed hardware such as application - specific integrated
circuits (ASICs) , electrically erasable programmable read
only memories (EEPROMs) , field - programmable gate
arrays (FPGAs) , and so forth , for controlling operations of
computing device 100. In a specific embodiment , a local
memory 101 (such as non - volatile random access memory
(RAM) and / or read - only memory (ROM) , including for
example one or more levels of cached memory) may also
form part of CPU 102. However , there are many different
ways in which memory may be coupled to system 100 .
Memory 101 may be used for a variety of purposes such as ,
for example , caching and / or storing data , programming
instructions , and the like . It should be further appreciated
that CPU 102 may be one of a variety of system - on - a - chip
(SOC) type hardware that may include additional hardware
such as memory or graphics processing chips , such as a
Qualcomm SNAPDRAGONTM or Samsung EXYNOSTM
CPU as are becoming increasingly common in the art , such
as for use in mobile devices or integrated devices .
[0044] As used herein , the term “ processor ” is not limited
merely to those integrated circuits referred to in the art as a
processor , a mobile processor , or a microprocessor , but

broadly refers to a microcontroller , a microcomputer , a
programmable logic controller , an application - specific inte
grated circuit , and any other programmable circuit .
[0045] In one embodiment , interfaces 110 are provided as
network interface cards (NICs) . Generally , NICs control the
sending and receiving of data packets over a computer
network ; other types of interfaces 110 may for example
support other peripherals used with computing device 100 .
Among the interfaces that may be provided are Ethernet
interfaces , frame relay interfaces , cable interfaces , DSL
interfaces , token ring interfaces , graphics interfaces , and the
like . In addition , various types of interfaces may be provided
such as , for example , universal serial bus (USB) , Serial ,
Ethernet , FIREWIRETM , THUNDERBOLTTM , PCI , parallel ,
radio frequency (RF) , BLUETOOTHTM , near - field commu
nications (e.g. , using near - field magnetics) , 802.11 (WiFi) ,
frame relay , TCP / IP , ISDN , fast Ethernet interfaces , Gigabit
Ethernet interfaces , Serial ATA (SATA) or external SATA
(ESATA) interfaces , high - definition multimedia interface
(HDMI) , digital visual interface (DVI) , analog or digital
audio interfaces , asynchronous transfer mode (ATM) inter
faces , high - speed serial interface (HSSI) interfaces , Point of
Sale (POS) interfaces , fiber data distributed interfaces (FD
DIs) , and the like . Generally , such interfaces 110 may
include physical ports appropriate for communication with
appropriate media . In some cases , they may also include an
independent processor (such as a dedicated audio or video
processor , as is common in the art for high - fidelity AN
hardware interfaces) and , in some instances , volatile and / or
non - volatile memory (e.g. , RAM) .
[0046] Although the system shown in FIG . 1 illustrates
one specific architecture for a computing device 100 for
implementing one or more of the inventions described
herein , it is by no means the only device architecture on
which at least a portion of the features and techniques
described herein may be implemented . For example , archi
tectures having one or any number of processors 103 may be
used , and such processors 103 may be present in a single
device or distributed among any number of devices . In one
embodiment , a single processor 103 handles communica
tions as well as routing computations , while in other
embodiments a separate dedicated communications proces
sor may be provided . In various embodiments , different
types of features or functionalities may be implemented in a
system according to the invention that includes a client
device (such as a tablet device or smartphone running client
software) and server systems (such as a server system
described in more detail below) .
[0047] Regardless of network device configuration , the
system of the present invention may employ one or more
memories or memory modules (such as , for example , remote
memory block 120 and local memory 101) configured to
store data , program instructions for the general - purpose
network operations , or other information relating to the
functionality of the embodiments described herein (or any
combinations of the above) . Program instructions may con
trol execution of or comprise an operating system and / or one
or more applications , for example . Memory 120 or memo
ries 101 , 120 may also be configured to store data structures ,
configuration data , encryption data , historical system opera
tions information , or any other specific or generic non
program information described herein .
[0048] Because such information and program instruc
tions may be employed to implement one or more systems

US 2019/0342450 A1 Nov. 7 , 2019
5

or methods described herein , at least some network device
embodiments may include nontransitory machine - readable
storage media , which , for example , may be configured or
designed to store program instructions , state information ,
and the like for performing various operations described
herein . Examples of such nontransitory machine - readable
storage media include , but are not limited to , magnetic
media such as hard disks , floppy disks , and magnetic tape ;
optical media such as CD - ROM disks ; magneto - optical
media such as optical disks , and hardware devices that are
specially configured to store and perform program instruc
tions , such as read - only memory devices (ROM) , flash
memory (as is common in mobile devices and integrated
systems) , solid state drives (SSD) and “ hybrid SSD ” storage
drives that may combine physical components of solid state
and hard disk drives in a single hardware device (as are
becoming increasingly common in the art with regard to
personal computers) , memristor memory , random access
memory (RAM) , and the like . It should be appreciated that
such storage means may be integral and non - removable
(such as RAM hardware modules that may be soldered onto
a motherboard or otherwise integrated into an electronic
device) , or they may be removable such as swappable flash
memory modules (such as “ thumb drives ” or other remov
able media designed for rapidly exchanging physical storage
devices) , " hot - swappable ” hard disk drives or solid state
drives , removable optical storage discs , or other such remov
able media , and that such integral and removable storage
media may be utilized interchangeably . Examples of pro
gram instructions include both object code , such as may be
produced by a compiler , machine code , such as may be
produced by an assembler or a linker , byte code , such as may
be generated by for example a JavaTM compiler and may be
executed using a Java virtual machine or equivalent , or files
containing higher level code that may be executed by the
computer using an interpreter (for example , scripts written in
Python , Perl , Ruby , Groovy , or any other scripting lan
guage) .
[0049] In some embodiments , systems according to the
present invention may be implemented on a standalone
computing system . Referring now to FIG . 2 , there is shown
a block diagram depicting a typical exemplary architecture
of one or more embodiments or components thereof on a
standalone computing system . Computing device 200
includes processors 210 that may run software that carry out
one or more functions or applications of embodiments of the
invention , such as for example a client application 230 .
Processors 210 may carry out computing instructions under
control of an operating system 220 such as , for example , a
version of Microsoft's WINDOWSTM operating system ,
Apple's Mac OS X or iOS operating systems , some variety
of the Linux operating system , Google's ANDROIDTM
operating system , or the like . In many cases , one or more
shared services 225 may be operable in system 200 , and may
be useful for providing common services to client applica
tions 230. Services 225 may for example be WINDOWSTM
services , user - space common services in a Linux environ
ment , or any other type of common service architecture used
with operating system 210. Input devices 270 may be of any
type suitable for receiving user input , including for example
a keyboard , touchscreen , microphone (for example , for
voice input) , mouse , touchpad , trackball , or any combination
thereof . Output devices 260 may be of any type suitable for
providing output to one or more users , whether remote or

local to system 200 , and may include for example one or
more screens for visual output , speakers , printers , or any
combination thereof . Memory 240 may be random - access
memory having any structure and architecture known in the
art , for use by processors 210 , for example to run software .
Storage devices 250 may be any magnetic , optical , mechani
cal , memristor , or electrical storage device for storage of
data in digital form (such as those described above , referring
to FIG . 1) . Examples of storage devices 250 include flash
memory , magnetic hard drive , CD - ROM , and / or the like .
[0050] In some embodiments , systems of the present
invention may be implemented on a distributed computing
network , such as one having any number of clients and / or
servers . Referring now to FIG . 3 , there is shown a block
diagram depicting an exemplary architecture 300 for imple
menting at least a portion of a system according to an
embodiment of the invention on a distributed computing
network . According to the embodiment , any number of
clients 330 may be provided . Each client 330 may run
software for implementing client - side portions of the present
invention ; clients may comprise a system 200 such as that
illustrated in FIG . 2. In addition , any number of servers 320
may be provided for handling requests received from one or
more clients 330. Clients 330 and servers 320 may commu
nicate with one another via one or more electronic networks
310 , which may be in various embodiments any of the
Internet , a wide area network , a mobile telephony network
(such as CDMA or GSM cellular networks) , a wireless
network (such as WiFi , Wimax , LTE , and so forth) , or a local
area network (or indeed any network topology known in the
art ; the invention does not prefer any one network topology
over any other) . Networks 310 may be implemented using
any known network protocols , including for example wired
and / or wireless protocols .
[0051] In addition , in some embodiments , servers 320 may
call external services 370 when needed to obtain additional
information , or to refer to additional data concerning a
particular call . Communications with external services 370
may take place , for example , via one or more networks 310 .
In various embodiments , external services 370 may com
prise web - enabled services or functionality related to or
installed on the hardware device itself . For example , in an
embodiment where client applications 230 are implemented
on a smartphone or other electronic device , client applica
tions 230 may obtain information stored in a server system
320 in the cloud or on an external service 370 deployed on
one or more of a particular enterprise's or user's premises .
[0052] In some embodiments of the invention , clients 330
or servers 320 (or both) may make use of one or more
specialized services or appliances that may be deployed
locally or remotely across one or more networks 310. For
example , one or more databases 340 may be used or referred
to by one or more embodiments of the invention . It should
be understood by one having ordinary skill in the art that
databases 340 may be arranged in a wide variety of archi
tectures and using a wide variety of data access and manipu
lation means . For example , in various embodiments one or
more databases 340 may comprise a relational database
system using a structured query language (SQL) , while
others may comprise an alternative data storage technology
such as those referred to in the art as “ NoSQL ” (for example ,
Hadoop Cassandra , Google BigTable , and so forth) . In some
embodiments , variant database architectures such as col
umn - oriented databases , in - memory databases , clustered

US 2019/0342450 A1 Nov. 7 , 2019
6

databases , distributed databases , or even flat file data reposi
tories may be used according to the invention . It will be
appreciated by one having ordinary skill in the art that any
combination of known or future database technologies may
be used as appropriate , unless a specific database technology
or a specific arrangement of components is specified for a
particular embodiment herein . Moreover , it should be appre
ciated that the term “ database ” as used herein may refer to
a physical database machine , a cluster of machines acting as
a single database system , or a logical database within an
overall database management system . Unless a specific
meaning is specified for a given use of the term “ database ” ,
it should be construed to mean any of these senses of the
word , all of which are understood as a plain meaning of the
term “ database ” by those having ordinary skill in the art .
[0053] Similarly , most embodiments of the invention may
make use of one or more security systems 360 and configu
ration systems 350. Security and configuration management
are common information technology (IT) and web functions ,
and some amount of each are generally associated with any
IT or web systems . It should be understood by one having
ordinary skill in the art that any configuration or security
subsystems known in the art now or in the future may be
used in conjunction with embodiments of the invention
without limitation , unless a specific security 360 or configu
ration system 350 or approach is specifically required by the
description of any specific embodiment .
[0054] FIG . 4 shows an exemplary overview of a com
puter system 400 as may be used in any of the various
locations throughout the system . It is exemplary of any
computer that may execute code to process data . Various
modifications and changes may be made to computer system
400 without departing from the broader scope of the system
and method disclosed herein . CPU 401 is connected to bus
402 , to which bus is also connected memory 403 , nonvola
tile memory 404 , display 407 , I / O unit 408 , and network
interface card (NIC) 413. I / O unit 408 may , typically , be
connected to keyboard 409 , pointing device 410 , hard disk
412 , and real - time clock 411. NIC 413 connects to network
414 , which may be the Internet or a local network , which
local network may or may not have connections to the
Internet . Also shown as part of system 400 is power supply
unit 405 connected , in this example , to ac supply 406. Not
shown are batteries that could be present , and many other
devices and modifications that are well known but are not
applicable to the specific novel functions of the current
system and method disclosed herein . It should be appreci
ated that some or all components illustrated may be com
bined , such as in various integrated applications (for
example , Qualcomm or Samsung SOC - based devices) , or
whenever it may be appropriate to combine multiple capa
bilities or functions into a single hardware device (for
instance , in mobile devices such as smartphones , video
game consoles , in - vehicle computer systems such as navi
gation or multimedia systems in automobiles , or other
integrated hardware devices) .
[0055] In various embodiments , functionality for imple
menting systems or methods of the present invention may be
distributed among any number of client and / or server com
ponents . For example , various software modules may be
implemented for performing various functions in connection
with the present invention , and such modules may be
variously implemented to run on server and / or client com
ponents .

Conceptual Architecture
[0056] FIG . 5 is a block diagram of an exemplary system
500 for IVR crawling comprising a speech crawler 521 that
may be a VXML - based crawler stored and operating on a
network - connected computing device (such as a server or a
desktop workstation) , an IVR crawler that may be a dual
tone multifrequency (DTMF) crawler (DC) 522a (for
example , a touch - tone based interaction program or ASR
NLSR speech application crawler (ASC) 5225 that may be
an automatically generated utterance based interaction pro
gram (as may be utilized interchangeably or simultaneously ,
according to the nature of the audio input received or
operation being performed) , a design crawler 520 that may
be a spreadsheet - based software crawler , a call flow data
base 530 that may store and provide call flow documentation
or records such as those generated by the crawlers of the
invention , a test executive engine 540 that may perform call
flow testing according to known call flow records , and a test
results analyzer 545 that may perform analysis of the results
of performed call flow tests such as to determine the
performance of an IVR or the accuracy of a call flow
documentation record , is disclosed . According to the
embodiment , a speech application crawler (SAC) 521 may
be a process that interrogates a target VXML browser 572 ,
may then reverse engineer any discovered call flows (as
described below) by parsing each branch of the VXML
application (such as by providing all possible inputs at all
possible layers) and builds a complete test case library . The
input may be the URL of the target VXML file 511 and the
output may be a file containing the test cases in XML format ,
such as for storing in a database or adding to documentation
files .
[0057] A DTMF crawler (DC) 522a may be a process that
interrogates a target touch tone IVR or IVRs 513 that aren't
VXML compliant (or whose VXML interface is not acces
sible) by placing actual telephone calls to an IVR 513 from
the crawler platform via a telephone network 501 such as a
public switched telephone network (PSTN) or cellular net
work such as a GSM or CDMA radio communications
network . The crawler may then , as described previously ,
reverse engineer any discovered call flows such as by
parsing each and every branch of the application by provid
ing all possible DTMF inputs via a DTMF generator 524
(such as may be utilized to generate DTMF tones to signal
a telephone input without requiring a physical key press , as
is appropriate for software - based applications) at all possible
layers , and may then build a complete test case library . This
solution includes use of transcription to convert audio to text
for the test cases , for example by utilizing an automated
speech recognition (ASR) engine 523 so that the software
based crawler may parse and respond to heard voice prompts
from the IVR via the telephone call . The input may be a
phone number , or multiple numbers (internal or external ,
such as for testing internal IVR applications or remotely
testing external IVRs from outside the internal telephone
network) , and the output may be a library of test cases or a
diagrammatic representation of the IVR application struc
ture suitable for adding to documentation or storing in a
database .
[0058] An ASR / NLSR speech application crawler (ASC)
522b may be a process that interrogates a target ASR / NLSR
speech - based IVR or IVRs 513 that aren't VXML compliant
(or who's VXML interface is not accessible) by placing
actual telephone calls to an IVR 513 from the crawler

US 2019/0342450 A1 Nov. 7 , 2019
7

platform via a telephone network 501 such as a public
switched telephone network (PSTN) or cellular network
such as a GSM or CDMA radio communications network .
The crawler may then , as described previously , reverse
engineer any discovered call flows such as by parsing each
and every branch of the application by providing all possible
DTMF inputs via a speech utterance (Text to speech) gen
erator 524 (such as may be utilized to generate simulated
customer spoken utterances without requiring a live human
speaker , as is appropriate for software - based applications) at
all possible layers , and may then build a complete test case
library . This solution includes use of transcription to convert
audio to text for the test cases , for example by utilizing an
automated speech recognition engine 523 so that the soft
ware - based crawler may parse and respond to heard voice
prompts from the IVR via the telephone call . The input may
be a phone number , or multiple numbers (internal or exter
nal , such as for testing internal IVR applications or remotely
testing external IVRs from outside the internal telephone
network) , and the output may be a library of test cases
suitable for adding to documentation or storing in a data
base .

[0059] A design crawler 520 may be a process that inter
rogates a standard speech application design template 510
used commonly in the art to build a complete library of test
cases for the speech / DTMF application . In such an arrange
ment , the crawler may traverse a design document 510 such
as a spreadsheet , and as described previously may reverse
engineer any discovered flows from the document and
output a test case library suitable for incorporation into
either a database or IVR documentation , or both .
[0060] According to the embodiment , a crawler may per
form reverse - engineering of call flows discovered during
operation , generally by interacting with an IVR system to
explore available call flow options , identify menu prompts ,
or identify call flow endpoints (for example , when an IVR
directs a caller outside of the IVR system , such as to a
contact center agent or a voice recording system to leave a
message) . For example , a DTMF crawler (as described
above) may place a call to an IVR by dialing an access
number as a customer would . Upon reaching the IVR , the
crawler may record a menu prompt , and identify available
options such as through integration with ASR engine 523 to
infer choices for input (for example , " for department A ,
press 1 ”) . The crawler may then provide input corresponding
to a menu choice , for example by producing the audio tones
appropriate to simulate a numerical key press on a telephone
handset . This operation may continue throughout a call flow
by listening to a menu prompt , identifying available choices ,
inputting a choice , and listening to a new prompt as the
crawler progresses through an IVR system . When an end
point is reached , such as when a call is routed to an agent or
other system external to the IVR , the crawler may conclude
that particular call flow , document it appropriately (such as
by producing VXML data , human - readable documentation
describing the call flow , or providing data for use in a test
case as described below) , and may then optionally call back
to the IVR and continue traversing the call flows by selecting
new input choices . For example , an entire IVR system may
be traversed in this manner by iteratively selecting the next
available choice for each menu prompt , starting with the last
menu (as may be identified from a previous call flow , by
recognizing when the call flow ended and the call was
routed , and identifying the menu prompt immediately prior

to that as the “ last ” one) . In this manner , some or all of an
IVR system may be reverse - engineered efficiently and auto
matically . Another exemplary arrangement for reverse - en
gineering using VXML data is described below , referring to
FIG . 7 .
[0061] As illustrated , a test executive engine 540 may
execute test cases based at least in part on stored or received
input from the various IVR crawlers of the invention , and
may present the results of test execution to a test results
analyzer 545 for analysis . The resulting analyzed test results
550 may then be presented for review such as by a human
analyst , or for storage in a database for further review at a
later time or for future incorporation into addition analysis
operations .
[0062] It should be appreciated that the system of the
invention may incorporate multiple crawlers and crawler
types such as those described above , interchangeably or
simultaneously as may be desirable for a particular arrange
ment or application .
[0063] For example , a contact center with a number of
IVR applications already in place may need to document
their call flows and introduce test cases to audit operation . In
such an arrangement , one or more types of IVR crawlers
may be utilized to traverse and document an existing IVR
setup from scratch , generating new documentation and test
cases during operation . Similar approaches may be used to
add documentation or test cases where previously there were
none , allowing the documentation and testing of “ in - place ”
or production systems , with no prior documentation needed .
[0064] In another exemplary arrangement , a contact center
may wish to migrate to a new IVR system , for example
during a change of ownership or locale , or a system upgrade .
In such an arrangement , the contact center may utilize one
or more types of IVR crawlers to traverse and document an
existing IVR configuration , so that they may use this docu
mentation as a starting point for rebuilding after the migra
tion . Additionally , a crawler may be used to produce a
plurality of VXML data describing the existing configura
tion , and suitable for importation into an IVR system .
During the migration operation , this VXML data may then
be imported into the new IVR system , effectively cloning the
previous configuration in the new system and greatly expe
diting the overall migration process . Optionally , the new
system may be audited using test cases or documentation
produced prior to migration , ensuring the migration did not
introduce any errors or corrupt data .
[0065] In another exemplary arrangement , a number of
IVR crawlers may be used by a contact center in a continu
ous operation to continually or periodically traverse an IVR
system , producing documentation for any changes as they
are found . In such an arrangement , crawlers may keep IVR
documentation current with regard to the state of an IVR
configuration , for example to reflect changes made to menu
prompts that might affect call flows . Additionally , test cases
may be kept up - to - date as well , ensuring that changes made
to call flows do not break testing operations unexpectedly , as
well as ensuring that test cases may be used to audit any new
changes .

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

[0066] FIG . 6 is a method flow diagram illustrating an
exemplary overview method 600 for reverse engineering an
IVR using a plurality of IVR crawling software applications

US 2019/0342450 A1 Nov. 7 , 2019
8

such as those described previously , is disclosed . According
to the embodiment , the method may utilize various IVR
crawlers such as those described in the system of the
invention above , for example crawlers that may be VXML ,
DTMF , or design - based in nature or operation . In an initial
step , a crawler may access IVR information according to its
specific nature , such as a VXML - based crawler loading a
VXML script such as from a URL or stored file 601 , a
speech application crawler 521 loading a design specifica
tion 605 , or a DTMF or ASR / NLSR Speech - based crawler
connecting to an IVR 610 and placing a telephone call
directly to an IVR system 611. In a next step , the crawler
may crawl , or traverse , the IVR information according to its
specific nature in order to reverse engineer an IVR applica
tion , such as by reverse engineering a VXML document 602 ,
a design specification 606 , or by using DTMF or spoken
utterance (such as actual live or recorded human speech or
automatically - generated artificial speech such as from a
text - to - speech generator utilizing a script) audio to traverse
the conversation paths of an IVR 612. In a next step 620 , the
crawler may then add new call test cases to a testing
database , and in a next step 621 stored test cases may be
retrieved by a test case execution engine , which may then
execute the test cases in a next step 622. In a next step 623 ,
the results of test case execution may be analyzed , and these
test results may then be stored in a database for further
reference in a next step 624. In an optional final step 625 , test
results may be presented for manual review , such as by a
human analyst performing tests manually or reviewing the
results of prior tests to review operation .
[0067] FIG . 7 is a method flow diagram illustrating an
exemplary detailed method 700 for reverse engineering a
VXML document using a VXML crawler according to the
invention . In an initial step 701 , a crawler may retrieve a
URL linking to a VXML file from a VXML browser , and in
a next step 702 may parse the linked VXML file after
retrieval . In a next step 703 , the crawler may proceed to
identify all possible branches of execution , such as by
parsing the VXML file to identify points at which the IVR
would present a choice , wherein a variety of inputs may be
received from a customer (or other caller to the IVR system)
and each input corresponds to a different possible choice
leading down a conversation path through the IVR menu . In
a next step 704 , the crawler may identify what input strings
may be required to traverse the branches found . In a next
step 705 , the crawler may now create a test case using the
identified inputs , such that execution of the test case would
effectively navigate a particular path through the IVR menu
such as by waiting for an input prompt indicating a branch ,
then supplying the required input to traverse the branch
down one path and so on until the end of execution when
there are no more branches and the end of the IVR menu has
been reached (such as would generally result in a caller
being connected with a contact center agent or given further
instructions for assistance outside of the IVR , for example a
specific number or web address to pursue further help) . In a
final step 706 , the resulting test cases may be stored in a
database for future reference .
[0068] FIG . 8 is a method flow diagram illustrating an
exemplary detailed method 800 for interacting with an IVR
through DTMF or speech - based audio using a DTMF or
ASR / NLSR Speech crawler according to the invention . In
an initial step 801 , a crawler may place a telephone call to
an IVR system , such as via a PSTN or Internet - based

connection such as any of a number of voice over IP (VOIP)
services supporting DTMF tone - based or spoken utterance
input . In a next step 802 , the crawler may receive a prompt
for input from the IVR , such as a caller would normally hear
a voice prompt instructing them of a choice to continue
navigating the IVR menu (such as “ press 1 for technical
support , or press 2 for account services ” , or for a speech
application “ for technical support say support for account
services say accounts ” for example) . In a next step 803 , the
crawler may process this prompt using automated speech
recognition (ASR) , such as to identify what is being spoken
by the IVR menu prompt in order to process it . In a next step
804 , the crawler may identify allowable DTMF or speech
utterance inputs , such as (continuing the previous example)
identifying that the key presses “ 1 ” and “ 2 ” (or for speech ,
“ support ” or “ accounts ” , for example) are possible input
choices for this particular prompt . The crawler may then add
these input choices to a processing stack , such that possible
inputs may be stored along with their corresponding prompts
in the order in which they were encountered , to facilitate
orderly traversal of the IVR menu system during operation .
In a next step 805 , the crawler may retrieve the next DTMF
or speech utterance input on the stack (such as , in the case
of this example , the tone corresponding to the key press “ 1 ”
or say “ support ”) , and supply the corresponding DTMF tone
input to the IVR system such as to trigger the menu prompt
and continue traversing the menu path . While additional
prompts are encountered , operation may continue in a loop
ing or iterative fashion from a previous step 802 , such that
the crawlers may continue to receive and process audio
prompts from the IVR , identify appropriate DTMF or
speech utterance inputs and place them on the stack , and
supply the next input to proceed through the IVR menu
prompts encountered . When no more prompts are encoun
tered (such as when the crawler reaches the end of an IVR
menu path) , in a next step 806 the crawler may generate a
test case for the path used based at least in part on the
prompts encountered and inputs supplied , and may then
proceed to the next DTMF or speech utterance input on the
stack and continue down a new menu path through the IVR .
In a final step 806 , the crawler may send resulting test cases
to a database for storage and future reference . It should be
appreciated that test cases may be sent individually as they
are completed (such as while the crawler is still traversing
additional IVR paths for new cases) , or they may be sent all
at once in a bulk operation once all possible IVR paths have
been exhausted and operation is complete .
[0069] FIG . 9 is a method flow diagram illustrating an
exemplary method 900 for using an IVR crawler to perform
a system migration , according to a preferred embodiment of
the invention . In an initial step 901 , an IVR crawler may
connect to an existing IVR system . Connection may vary
according to a particular arrangement or use , such as using
a DTMF crawler to dial a number and interact with an IVR
system via tone - based dialing . In a next step 902 , the IVR
crawler may traverse available IVR branches and dialogue
options , for example in a DTMF arrangement , a crawler may
listen to a voice prompt , then provide input corresponding to
a number pressed on a telephone keypad , progressing
through an IVR system in a manner similar to an actual
caller . In a next step 903 , the IVR crawler may produce
documentation of discovered IVR details , for example pro
ducing human - readable text documentation describing voice
prompts heard (such as using speech - to - text translation , for

US 2019/0342450 A1 Nov. 7. 2019
9

example) , or generating an interactive graphical map of an
IVR system (as ids described below , referring to FIG . 10) .
In a next step 904 , the crawler may produce a plurality of
reverse - engineered VXML data describing a traversed IVR
system , generally suitable for use in importing into an IVR
system , for example to migrate existing IVR data to a new
system (for example , when upgrading to a new IVR system)
or for use as an IVR backup (for example , in case it is
necessary to restore a copy of an IVR system , such as to
recover from a failure or to deploy additional instances of
duplicate IVR systems) . In a next step 905 , produced VXML
data may be imported into a new IVR system , optionally
overriding any pre - existing data (for example , to clear an
unwanted IVR configuration and setup a new system as a
copy of a previously - crawled system) . This may be used to
deploy additional instances of duplicate IVR systems , such
as for an IVR content provider delivering pre - existing
configurations for clients to rapidly deploy IVR systems , or
for use in migrating an existing IVR configuration to a new
system as an upgrade or replacement . In a next step 906 , a
new IVR system may parse imported VXML data and
produce a duplicate set of IVR branches , dialogue trees , and
other configuration , creating a functional duplicate of a
previously crawled IVR system . At this point a new IVR
system may be ready for deployment and fully functional ,
having similar configuration to a previously crawled system ,
or in an additional optional step 907 an IVR crawler may
then be used to traverse the new IVR for example to
document any changes , check for errors , or produce new
VXML such as for backup purposes .
[0070] In this manner an existing IVR system may be
crawled and parsed , producing not only documentation and
test cases as described previously , but also a functional set
of VXML data that may be suitable for use in duplicating or
restoring an IVR system in full or in part . VXML data may
be used to store backup copies of an IVR system , for
example to maintain historical snapshots of an IVR in case
of failure (for example , if a change is made that breaks a
dialogue tree or causes other operational issues , a backup
may be restored to rapidly repair function while the issue is
diagnosed) . VXML data may also be suitable for importing
into an IVR system , generally for use in duplicating some or
all of an IVR configuration such as to migrate to an upgraded
system or to overwrite one IVR with another . For example ,
a company may wish to upgrade to an improved IVR
system , and rather than manually configure an IVR and try
to match a known desirable configuration , an existing IVR
may be cloned or duplicated and loaded into the new system
according to the embodiment . Another example may be a
testing arrangement , wherein multiple IVR configurations
may be deployed simultaneously and monitored . After deter
mining a suitable or “ most desirable ” configuration based on
measured performance results , VXML data created from
crawling the desirable configuration may be used to over
write and replace other configurations that were used in
testing , such that only the desirable configuration remains in
operation .
[0071] FIG . 10 is an illustration of an exemplary user
interface 1000 for browsing an interactive IVR map 1010 ,
according to an embodiment of the invention . According to
the embodiment , an IVR crawler may produce a map 1010
to document an IVR system , for example so that a user may
easily view dialogue trees and options in an easily - under
stood format , and may visually identify areas for improve

ment such as incomplete trees or outdated or incorrect
options . A graphic may be displayed to identify a main
prompt 1011 or root - level dialogue , for example generally
the first prompt that is heard when dialing into an IVR , and
a plurality of available options 1012 for a user to select may
be displayed , for example in a nested manner inside a
graphic for a main prompt 1011. It should be appreciated
that the specific visual nature or arrangement of menu
prompts and selection choices may vary according to the
embodiment , and the arrangements described and illustrated
are exemplary and intended to provide adequate clarity . A
plurality of additional menu prompts 1013 may be indicated ,
and may be arranged to indicate their respective position in
a dialogue tree relative to preceding prompts (for example ,
in a left - to - right or top - to - bottom fashion) . Each menu
prompt may be displayed with a plurality of particular
selection choices 1012 that may correspond to choices
available to a caller after listening to the prompt , such that
a visual arrangement may indicate relationships between
menu prompt and their corresponding selection choices , and
between selection choices and the following prompts they
may lead to if chosen . A plurality of endpoints 1014 may be
displayed , indicating termination of a dialogue tree when a
caller reaches that level in the IVR . For example , after
making a number of selections to indicate a call's purpose ,
a caller may be connected with a contact center agent to
resolve their issue , as may be indicated by an endpoint
according to the embodiment . Further according to the
embodiment , it may be possible for a number of prompts ,
selection choices , or dialogue endpoints to be indicated
along with a text - based description or summary of their
corresponding audio content (as may be presented to a caller
during interaction with an IVR system) , generally so that a
user viewing a map 1010 may readily understand what a
caller might hear at any particular point in a tree during
interaction with an IVR , as well as may notice dialogue
errors such as outdated description or mistakes in vocabu
lary or grammar . Additionally , it may be possible for dis
played prompts , selections , or endpoints to be presented
with visual indicia indicating connections , for example to
indicate “ when a caller presses the number 1 , it leads them
to this specific menu prompt ” and other direct correlations to
indicate a dialogue flow . In this manner , a user may readily
see how a call into an IVR may progress through a dialogue
path , as well as be made aware of any problems with a call
flow such as selection options that lead to an endless loop ,
or options that result in a call being dropped rather than
properly routed , or any other such routing issues that may
arise in an IVR system .
[0072] According to the embodiment , an IVR map 1010
may be interactive , enabling a user viewing map 1010 to
browse in a manner suited to their individual preference or
purpose (such as increasing or decreasing a level of detail in
information presented , or to view specific areas of a map to
inspect particular dialogue options or pathways , for
example) immediately take action based on the information
presented . For example , if a mistake in a dialogue prompt
(such as an outdated description or incorrect vocabulary) is
seen , a user may correct the issue through direct interaction
with map 1010. An IVR crawler producing a map 1010 to
document an IVR system may also produce a plurality of
VXML data corresponding to the information being pre
sented in map 1010 , and a live or real - time correlation
between the two may be enforced by an IVR system such

US 2019/0342450 A1 Nov. 7 , 2019
10

produced based at least in part on the identified
available IVR menu options , to progress through the
menu ; and

that a change via an interactive map may be processed ,
corresponding VXML may be updated to match the change ,
and the modified VXML may be imported into an IVR
system (as described previously , referring to FIG . 9) to enact
the change in an operational IVR system . In this manner ,
users may be empowered to maintain or modify an IVR
system without the need for specialized training or any level
of familiarity with an IVR system , and any changes may be
seen in an easily understood graphical context , making the
results of a change apparent to prevent unpredicted compli
cations .
[0073] According to the embodiments described above ,
referring to FIGS . 7-10 , the particular operation or configu
ration of an IVR crawler or a particular crawling operation
may be made interactive or configurable by a human user , in
addition to an interactive map after a crawling operation is
completed (as described in FIG . 10) . For example , a soft
ware interface may be provided , such as via a web interface
accessible using a web browser software application on a
user's device , that may provide a variety of configuration or
interaction options so that a user may direct an IVR crawling
operation or configure general operation for an IVR crawler .
Exemplary configuration options may include selecting a
particular crawler type (such as DTMF or ASR) or a
particular crawling operation mode (such as “ document
only " , or " document and test ” , for example to select what
forms of reverse - engineering , output , or IVR traversal
should be performed) , setting a dialing number (for
example , a number used to dial in and reach an IVR system
for crawling) , selecting a language (for example , to improve
ASR operation) , or setting a phone number for a crawler to
emulate , for example when interacting with an IVR that
ordinarily would expect a phone number to be provided
from a caller's device . A user may also configure keyword
or phrase - based substitution rules , such as replacing the
acronym DTMF with a phonetic pronunciation " dee - tee - em
eff ” , for example to aid ASR operations . Notifications may
be configured , for example by setting an email address or
other contact information , so that a user may be notified
when a crawling operation is completed or if an error occurs .
Additionally , a crawl depth may be configurable , to config
ure how many levels of menu options a crawler should
examine before terminating an operation , for example to
ensure that a crawler only tests a main menu prompt to test
a recent change to the main prompt without spending extra
time or resources testing further menu prompts that have not
been changed .
[0074] The skilled person will be aware of a range of
possible modifications of the various embodiments
described above . Accordingly , the present invention is
defined by the claims and their equivalents .
What is claimed is :
1. A system for interactive voice response (IVR) system

crawling , comprising :
an IVR crawler comprising at least a plurality of pro

gramming instructions stored in a memory and oper
ating on a processor of a network - connected computing
device , and configured to :
connect to an IVR system via a network ;
traverse an IVR menu path by identifying a plurality of

available IVR menu options as they are provided
audibly by the IVR system and providing a plurality
of input choices to the IVR system , the input choices

produce documentation of the IVR paths and branches
discovered during the traversal of the IVR menu
path .

2. The system of claim 1 , wherein the IVR crawler is a
VXML - based crawler .

3. The system of claim 2 , further comprising a VXML
browser comprising a plurality of programming instructions
stored in a memory and operating on a processor of a
network - connected computing device , and configured to
provide a plurality of VXML data to a VXML - based crawler
via a network .

4. The system of claim 3 , wherein the VXML - based
crawler receives a plurality of VXML data from the VXML
browser , and traverses an IVR menu path based in least in
part on the received VXML data .
5. The system of claim 1 , wherein the IVR crawler is a

design - based crawler .
6. The system of claim 5 , wherein the design - based

crawler processes a design specification for an IVR .
7. The system of claim 1 , wherein the IVR crawler is a

dual - tone multi - frequency (DTMF) based crawler .
8. The system of claim 7 , wherein the DTMF - based

crawler connects to an IVR system by placing a telephone
call via a telephony - based network .

9. The system of claim 8 , wherein the DTMF - based
crawler provides an input choice to the IVR system by
generating a DTMF audio tone .

10. The system of claim 1 , wherein the IVR crawler is an
automated speech recognition (ASR) / natural language
speech recognition (NLSR) speech - based crawler .

11. The system of claim 7 , wherein the ASR / NLSR
speech - based crawler connects to an IVR system by placing
a telephone call via a telephony - based network .

12. The system of claim 8 , wherein the ASR / NLSR
speech - based crawler provides an input choice to the IVR
system by generating a plurality of speech utterance audio
data .

13. The system of claim 9 , further comprising an auto
matic speech recognition engine comprising a plurality of
programming instructions stored in a memory and operating
on a processor of a network - connected computing device ,
and configured to interpret menu prompts comprising audio
data , and to provide interpretation result data to a DTMF or
ASR / NLSR speech - based crawler .

14. The system of claim 1 , further comprising a test case
execution engine comprising a plurality of programming
instructions stored on a memory and operating on a proces
sor of a network - connected computing device , and config
ured to execute a test case produced by the IVR crawler .

15. The system of claim 11 , wherein the test cases are
received directly from the IVR crawler as they are produced .

16. The system of claim 11 , further comprising a test
results analyzer comprising a plurality of programming
instructions stored in a memory and operating on a processor
of a network - connected computing device , and configured to
analyze the results of test case execution from the test
execution engine .

17. A method for interactive voice response (IVR) system
crawling , comprising :

connecting to an IVR system via a network using an IVR
crawler comprising at least a plurality of programming

US 2019/0342450 A1 Nov. 7 , 2019
11

instructions stored in a memory and operating on a
processor of a network - connected computing device ;

traversing an IVR menu path using the IVR crawler by
identifying a plurality of available IVR menu options as
they are provided audibly by the IVR system and
providing a plurality of input choices to the IVR
system , the input choices produced based at least in part
on the identified available IVR menu options , to prog
ress through the menu ; and

producing documentation of the IVR paths and branches
discovered during the traversal of the IVR menu path .

18. The method of claim 17 , further comprising the steps
of :

configuring a test case based on the documentation pro
duced by the IVR crawler ;

executing the test case using a test execution engine
comprising at least a plurality of programming instruc
tions stored in a memory and operating on a processor
of a network - connected computing device ;

analyzing the results of test case execution from the test
execution engine ; and

displaying the analysis results .

