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Description

MULTIPLE-PROBE DIAGNOSTIC SENSOR

Technical Field of the Invention

The present invention relates to a diagnostic
sensor device for assaying nonspecific protein adsorp-
tion from a bioclogical fluid. The device is used for
purposes of medical or veterinary diagnosis and for
analysis of biological fluids. The device may also be
used for chemical analysis of an analyte in a biological
fluid. The invention utilizes an array of surfaces with
different surface characteristics that adsorb proteins
and other molecules in a partially selective fashion.
The signal output from the array is analyzed by multi-
variate statistical analysis. The analyzed data is
related to a data matrix to determine a disease state, a
physiological condition, or a quantity of analyte.

Background of the Invention

The field of biosensors is an active research
area. A sensor probe can be dipped into a biclogical
fluid to measure the presence and/or concentration of an
analyte, such as protein, a particular molecule, or a
group of molecules. Biosensors generally have two
principal components, a molecular-recognition element
and a transducing or signal-generating element. Two
common problems associated with biomedical sensing
technolegy are the need for high specificity and the
susceptibility of the sensing devices to fouling.
Moreover, many of the current sensing devices are
designed to detect only one or a small number of
analytes or physiological conditions.

The molecular-recognition element is often not
specific enough for the particular molecule or grouﬁ of
molecules (analytes) of interest and the molecular-
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recognition element can often cross-react with other
molecules, causing a detection error.

Biofouling is the nonspecific adsorption and
adhesion of biomolecules to a surface. When a biosensor
is contacted with a biological fluid, biofouling is
inevitable. In some sensing configurations, the
biofouling is severe enough to render the device
inoperable. Therefore, there is a need in the art for a
signal-generating surface that, rather than trying to
prevent biofouling, takes a reading based on the amount
of nonspecific biomolecule adsorption, such as protein
adsorption.

Biosensors have used a variety of detection
devices in an attempt to quantitate the signal produced
from the signal-generating system and the molecular-
recognition element.

A common molecular-recognition element is an
antibody, preferably a monoclonal antibody. In
principle, antibodies are ideal candidates to use as
molecular-recognition elements in biosensor design.
Antibodies have the ability to bind antigens quite
selectively and with binding constants (which indicate
the ability of an antigen to interact with an antibody)
that are neither too high nor too low. Antibodies can
now be raised to react and bind specifically to numerous
biomolecules, drugs, viruses, and cellular materials.
However, because of the relatively high molecular weight
of antibodies as compared with antigens, it 1is often
difficult to couple an antibody-antigen binding reaction
to a transducer in such a manner that the observed
signal reflects an antibody-antigen interaction in a
quantitative manner. Much of the biosensor art involves
optimizing the union of the molecular recognition
elements with the transducing or signal-generating
elements.

One approach has been to coat piezoelectric

crystals with antibodies to make biosensors for gaseous
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pollutants, such as the pesticide parathion. In the
case of parathion, anti-parathion antibodies are coated
on quartz piezoelectric crystals using bovine serum
albumin/glutaraldehyde for immobilization. When mounted
on a suitable apparatus, the piezoelectric crystals
undergo changes in frequency if exposed to the antigen
parathion. Such a biosensor may be sensitive in the
parts-per-billion range.

It is also possible to use? a fiber optic
immunosensor with antibodies coating a .ber optic cable
and detection by means of internal reflection
spectroscopy. The interaction of the antibody coated on
the fiber optic cable with its antigen can be monitored
optically‘on a microscale. Such a biosensor has been
used to measure concentrations of the drug methotrexate.

Immunoreaction biosensors have been coupled to
electrochemical transducers. The antibodies are
immobilized on a cellulose acetate membrane, and
potential changes occur when the antigen-positive serum
is added to the sample.

Piezoelectric systems are based upon a
variation in the propagation speed of acoustic waves at
the surface or in the bulk of a piezoelectric material,
such as a quartz crystal. The variation is due to mass
changes in the biomolecules bound to the coated layer.
Immunological systems based upon a monoclonal IgG system
have used a SAW (surface acoustic wave) technique.
Results have been obtained with a detection limit as low
as 1 ng. However, such measurements have suffered from
buffer influence, drift, and calibration difficulties.

Another type of sensor measures the changes in
capacitance due to changes in the dielectric constant
caused by antibody-antigen interaction. Aan example of a
biosensor consists of interdigitated copper electrodes
on a glass surface, and insulated by a layer of
parylene, and covered by a silicon monoxide film. An
aminosilane allows a hapten to be fixed on the surface



WO 91/02975 ' PCT/US90/04737

10

15

20

25

30

35

of the silicon monoxide. The addition of a solution
containing antibodies induces a decrease in the
capacitance. This is because of the variation of the
dielectric «constant under the membrane due to the
binding of antibodies to the surface-bound antigen
(hapten). Thus, the binding of the antigen or the
antibody induces a variation of the heterostructure
capacitance. Any variation of the surface potential
leads to a shift in the capacitance-versus-voltage curve
in the inversion range. The increase in the thickness
of the dielectric layer induces a capacitance decrease
in the accumulation range, which can be directly related
to the size of the immobilized biomolecules and to the
quantity of the titrated antigen.

Outside the field of biosensors, specific
chemical sensors have been used to detect specific
chemicals using pattern-recognition analysis of data
from a sensor array. A chemical sensor array has
sensors coated with different absorptive chemicals. The
sensitivity and specificity of each of the absorption
surfaces may vary. The data are collected in several
channels of unique information provided by the array.
The pattern recognition results recognize groups of
chemicals through uniqueness of the patterns. Pattern
recognition, as applied to a chemical sensor, requires:
1) that the analyte and the instrument’s response are
related; 2) that the analyte can be adequately
represented as a set of sensor responses; 3) that a
relationship can be discovered between various analytes
and their responses by applying pattern-recognition
methods; and 4) that the relationship can be
extrapolated to other analytes in similar classes.
There is a need in the art to use pattern recognition
techniques in the field of biosensors, and especially
for biosensors that have non-specific interactions.

In summary, the field of biosensors has

focused on the ability to increase the specificity of
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the sensor and its sensitivity to the analyte. Both
goals are difficult to achieve in a biological fluid.
Accordingly, there is a need in the art for a sensor-
type device which tries not to achieve selectivity or
sensitivity, but instead can identify a variety of
nonspecific molecules or physiological conditions while
not requiring high specificity.

Summary of the Invention

The present invention is based upon the theory
that, in a disease state or a particular physiological
condition, the composition and behavior of proteins in a
patient’s biological fluid will be altered. Evidence
for the theory comes from the fact that the quantity and
character of immunoglobulins change during disease
states or physiological conditions and that some
specific proteins may only be present or present in
larger or smaller concentrations in a particular disease

state (e.g., elevated IgE in allergic disease), or a
physiological condition (e.g., human chorionic
gonadotropin (HCG) in pregnancy). By characterizing

protein b-havior, one correlates data obtained from a
protein-sensing mode to that disease state or
physiological condition by multivariate statistical
techniques. By obtaining data sets or matrices from
many disease states, the sensor is calibrated, through
the statistical program, to recognize a large number of
physiological conditions or disease states. This
database or matrix is used as a correlation model for
patient diagnosis. Therefore, a multiple probe
diagnostic sensor has the ability to detect a wide
variety of disease states or physiological conditions
with a single set of measurements.

Instead of pursuing the traditional means of
biosensor development by attempting to increase the
specificity of a biosensor array and the sensitivity of

a biosensor array to certain analytes, the present
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invention applies pattern recognition to measurements of
nonspecific interactions between biclogical molecules
and an array of biosensors.

The diagnostic sensor device comprises a
plurality of sensor probes, a detection device, and a
means for analyzing the signals generated from each
sensor probe. Each sensor probe has a partially
selective surface that binds proteins. The diagnostic
sensor device further comprises a means for generating a
signal (i.e., one or a plurality of signal~-generating
devices), wherein the signal interacts with each sensor
probe at the partially selective surface/protein
interface, and a signal-collection device (detection
device) or means for collecting the signals after
interaction with the sensor probe. The specific signal
used and the mode of signal interaction depend upon the
specific means for interface analysis employed. Each
sensor  probe comprises a substrate that allows
transmission of a signal and a partially selective
surface, wherein the partially selective surface binds
proteins from a biological fluid by multiple noncovalent
interactions. The plurality of sensor probes have
different partially selective surfaces on each sensor
probe. The signal-generating device communicates with
the partially selective surface of each sensor probe and
generates a signal for each surface or probe.

The partially selective surface can be
produced by a variety of techniques for altering the
substrate surface. Examples of such techniques include
methods for radio frequency plasma-polymerized £film
deposition, plasma-etching, spin casting, and metal-
sputtering.

A radio frequency plasma polymerized film is
produced by subjecting a feed material (monomer) to an
electrical field oscillating at radio frequencies.
Examples of plasma polymerized films include plasma-

polymerized film from monomers, such as
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2-Mercaptoethanol, allylamine, allyl alcohol, acrylic
acid, methane, benzene, tetrafluorocethylene, methanol,

acetone, chloroform, carbon tetrachloride, hexamethyl-

disilane, ethyl sulfide, ethyl chloroformate,
1,1,1,3,3,3-Hexamethyldisilazane, acrylonitrile,
pyridine, trimethyldiborane, tetramethylgermanium,

2-Chloropropane, formic acid, ethylene oxide, hexa-
methyldisiloxane, ferrocene, diphenyl selenide,
butanone, bromobenzene, trimethyl borate, tetrahydro~
furan, chlorotrimethylsilane, hydroxyethylmethacrylate,
vinyltrimethylsilane, dimethyl sulfoxide, hexafluoro-
benzene, perfluoropropane, allene, other fluorocarbons,
other chlorohydrocarbons, chlorofluorohydrocarbons and
combinations thereof. The fluorocarbons,
chlorohydrocarbons and chlorofluorohydrocarbons should
be in the gaseous or liquid state and have carbon chain
lengths no longer than twelve carbon atoms.

A plasma-etched surface can be produced by the
radio frequency discharge in an atmosphere of, for
example, air, argon, neon, nitrogen, diborane,
phosphine, oxygen, fluorine, iodine, krypton, silicon
(IV) chloride, sulfur dioxide and helium.

It is also possible to have a blend of an
etchant and polymerizable species to incorporate the
etchant gas or liquid into the polymeric film surface.
Examples of etchant/polymerizable species blends,

include, for example, oxygen/1,1,1,3,3,
3-Hexamethyldisilazane, nitrogen/ethyl sulfide,
diborane/methane, phosphine/methane, diborane/tetra-
fluorethylene, oxygen/acetone, air/2-Chloropropane,
iodine/diphenyl selenide, and silicon (IV)
chloride/methane.

Spin-cast surfaces can be produced by
dissolving a solid polymer in a solvent and pipetting
the solution on a substrate while the substrate is
revolving at high speed on a turntable. The solvent
then evaporates, leaving a polymer film on the surface.
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Examples of spinscast films are poly (styrene), poly
(urethane), and poly (ethyl methacrylate). An example
of a solvent used for spin casting is 1,1,1,3,3,3-
Hexafluoroisopropanol.

A metal-sputtered surface can be produced, for
example, in a DC argon discharge with a metal target as
thé cathode. The substrate is placed in the vicinity of
the discharge and becomes coated with a film of the
target material. Examples of metal-sputtered surfaces
are silver, gold and gold/palladium.

The substrate can comprise a variety of
materials that allow transmission of the signal from the
partially selective surface/biological fluid interface
to the detection device. An example of a substrate
material is a fiber optic cable.

It is important that the array of sensor
devices each have sensor probes with different surface
characteristics. The choice of surfaces for the array
should allow for a wide range of surface
characteristics, for example hydrophobic, hydrophilic,
fluorinated, metallic, acidic, basic, anionic, cationic,
phosphorous containing, silicon containing and
combinations thereof. It is not necessary that each
surface characteristic be represented in the array.

The detection device comprises a signal-
collection device and can read any change in any
characteristic of the partially selective
surface/biological fluid interface. The detection
device may send and receive signals, for example, via
near-infrared spectroscopy, mid-infrared spectroscopy,
visible spectroscopy, ultraviolet spectroscopy, surface
acoustic wave (SAW) devices, bulk acoustic wave devices
(commonly known as piezoelectric crystals), capacitance
measurements, radioimmunoassay, fluorescence chemilumi-
nescence, nuclear magnetic resonance, chemiresistors,
electrochemical sensors, and enzyme-linked immunosorbent

assay. The spectroscopy of varying wavelengths and
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fluorescence requires light sources for the

signal—-generating device.

Brief Description of the Drawings

Figure 1 illustrates a schematic of a plasma
reactor system.

Figure 2 illustrates a schematic diagram of
one embodiment of the inventive diagnostic sensor
device. The signal-generating devices are labeled as
01, 02, and 03 and comprise oscillator boards to induce
crystal oscillation of the piezoelectric crystals
attached to each oscillator board. Each sensor probe is
a piezoelectric crystal with a different partially
selective surface. Each piezoelectric crystal
oscillates at a characteristic frequency, which is
perturbed by protein absorption when the partially

' selective surface is in contact with a biological fluid.

Each of the plurality of sensor probes communicates with
a frequency counter that measures and displays the new
(perturbed) oscillation frequency of each crystal. A
computer receives the output over time of the frequency
counter and collects and stores the data. After a
sampling period (e.g., 10 minutes), the data is analyzed
by multivariate statistical techniques.

Figure 3 illustrates the relationship between
PRESS (Predictive Residual Error Sum of Squares) for the
27 test solution calibration set of sensor probe
responses and protein concentrations when divided into
the three test sets. The test solution data are
explained in Example 2 herein.

Figure 4a shows the relationship between the
first 1latent veariable of the X-block and the first
latent variable of the Y-block according to the data in
Example 2 and the calculations in Example 3. Fiqure 4a
shows that the first latent variables describe a linear
relationship between the R and P data sets. Figure 4b
shows the relationship between the second latent
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variable of the X-block and the second latent variable
of the Y-block. Figure 4b shows that the second latent
variables describe a linear relationship between the R
and P data sets.

Figure 5 illustrates the Y-block weights for
the first latent variable according to the data in
Example 2 and the calculations in Example 3. The weight
of each original Y variable (Fb is fibrinogen, Ab is
albumin, and Hb is hemoglobin) for Example 2 is a
measure of how important that variable is in
constructing a latent variable up . In other words,
Figure 5 shows that Fb had a strong contribution to the
predictive ability of the first latent variable.

Figure 6 illustrates the X-block loadings for
the fist 1latent variable according to the data in
Example 2 and the calculations of Example 3. The
X-block loadings for the first latent variable indicate
the relative importance of each original X variable
toward contributing to the predictive ability of the
latent variable. These data show that for the first
latent variable, the loadings for the untreated sensor
probe (UN), the acetone plasma-deposited film sensor
probe (ACE), the methane plasma-deposited film sensor
probe (MTH) , and the tetrafluoroethylene plasma-
deposited film sensor probe (TFE) were almost identical,
while the allylamine plasma-deposited film sensor probe
(ALAM) was loaded less strongly.

Figure 7 illustrates two dimensional
projections of the test solutions of Example 2 on the
first two principal components of Example 5. The axes
are the principal components (PC #1 or #2) and the
coordinates of the test solutions are the scores.
Figure 7 shows a clustering of test solutions based on
their concentrations of fibrinogen.

Figures 8 and 9 illustrate two dimensional
projections of the test solutions of Example 2 on the
first two principal components to determine if the test
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solutions cluster according to their concentration of
hemoglobin. Figure 8 illustrates that PCA (Principal
Component Analysis) was successful at classifying the
test solutions based on the amount of hemoglobin they
contained. Figure 9 is an expansion of the lower right
hand portion of Figure 8.

Figure 10 shows the X-block loadings for the
second latent variable according to the data in Example
2. Figure 10 shows that the responses from the UN, ACE,
and MTH sensor probes were loaded nearly equally, while
the ALAM and TFE sensor probe loadings were different.
This indicates that redundant or nearly redundant
information is being contributed by the UN, ACE, and MTH
sensor probes to the first two latent variables. Thus,
the X-block consists of only three significantly
different sensor probes when using the first two latent
variables.

Figure 11 is a three dimension plot of the
loadings for the five sensor probes of Example 2 using
the first three latent variables as axes. The origin
has been shifted based on the variance of the piotted
data, but the spatial relationship of the points is
unchanged. The UN and MTH sensor probes appear close
together, suggesting redundancy in the information these
sensor probes supplied to the calibration and prediction
PLS modeling process, € ~n when three latent variables
were used. The ACE, ALAM, and TFE sensor probes are
more separate in space, suggesting that these sensor
probes supply non-redundant information to the
calibration and prediction PLS modeling process.

Figures 12-18 illustrate various
configurations of plurality of sensor probes using
various detection devices. Figures 12-18 are described

in Examples 7-14.
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Detailed Description of the Invention
In a disease state or in certain physiological

condition for humans or animals, the composition and
behavior of protein in a biological fluid, such as,
whole blood, plasma, serum, tears, urine, saliva, sweat,
semen, and bile, will be altered. The present invention
characterizes the protein mixture and properties in
biological fluid and then correlates the data obtained
from the altered protein profile with a database or
matrix obtained from the same protein sensing mode.
This permits the protein profile to be related to a
particular disease state or physiological condition.
Unlike biosensors used to determine the concentration or
presence of a particular analyte, the present invention
senses the presence and behavior of proteins in a
biological fluid and then statistically correlates this
protein presence and behavior matrix to its database of
protein presence and behaviors in specific disease
states or physiological conditions. By obtaining data
from many disease states or physiological conditions,
the sensor is calibrated to recognize many different
types of disease states or physiological conditions.
This database is then used for diagnostic purposes.
Therefore, the inventive multiple probe diagnostic
sensor, coupled with a database of a plurality of
disease states and physiological conditions, has the
ability to detect a wide variety of disease states and
physiological conditions with a single set of
measurements.

The alteration of the composition and/or
behavior of proteins is a known characteristic of many
disease states and physiological conditions. The
inventive device can diagnose disease states that have
known altered protein concentrations such as an IgE
elevation in allergic diseases. The inventive device
can further function to diagnose diseases not

characterized by an alteration of the concentration of a
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particular protein or directly causing the production of
new proteins, such as diabetes. In the case of
diabetes, the accompanying glucose concentration
elevation will be manifested by altered protein
adsorption dat- thereby allowing the inventive device
to make a diag...sis.

Other diseases cause ionic imbalances which
will also be manifest by altered protein adsorption. As
an illustration, the choice of saline buffer can affect
protein adsorption in controlled laboratory experiments.
Other examples of disease states having changed protein
concentration and behavior include alpha lipoprotein
often being decreased in chronic 1liver disease, and
nephrosié often being characterized by increased levels
of alpha-2-macroglobulin, pB-lipoprotein and polymeric
forms of haptoglobin. .

The inventive device is further able to
determine the concentration of an analyte in a biologi-
cal fluid, for example, glucose. This is done by
correlating the database with a specific component in
the biological fluid when the specific component is, for
example, glucose. The array of sensors can analyze the
level of glucose in the biological fluid by correlating
glucose levels with the protein adsorption profile.

The ability to correlate the data obtained
from a specific measurement set with the database is
accomplished by multivariate statistical techniques.
Multivariate statistics are a collection of methods that
can be applied to analyses when more than one
measurement has been taken for each sample. Here, the
diagnostic sensor device comprises a plurality of sensor
probes which achieve a plurality of measurement
parameters for each sample. Even the data obtained from
a single sensor probe can provide many data points for

multivariate statistical analysis. For example, an

“infrared (IR) spectrometer, as one example of a

detection device, produces a spectrum that contains
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hundreds or thousands of data points, each of which
contain information that may be of use. Multivariate
statistical analysis will extract the useful information
from even the subtle features of the spectrum which
would ordinarily Dbe overlooked. Equipped with
commercially available software (e.g., ARTHUR™ from
Infometrix, Seattle or Parvus™ from Elsevier), a
computer can be taught to recognize the important
features of complicated patterns, such a set of IR
spectra. Once this calibration set has been established
(i.e., the database 1is achieved), the multivariate
statistical model can be used to predict the composition
of unknown samples from its IR spectrum. For example,
Haaland, "guantitative Infrared Analysis For
Borophosphosilicate Films Using Multivariate Statistical
Methods," Anal. Chem. 60:1208-17 (1988), refers to a
method to predict the boron and phosphorous content of
borophosphosilicate glass.

Multivariate statistics include a variety of
methods that can be loosely divided into two general
groups: (1) pattern recognition, and (2) calibration
and prediction. Each group contains a variety of
different techniques. Both methods involve extraction
of information from data sets having more than one
measurement parameter for each sample. Pattern
recognition is often used to classify (group) samples.
However, pattern recognition does not calculate a
numerical prediction for analyte concentrations. For
example, one can classify shards of glass on the basis
of which are "most alike" based on their elemental
composition (i.e., boron-containing shards versus shards
containing no boron). Discriminant analysis and
principal component analysis are examples of pattern
recognition techniques.

Calibration and prediction techniques are more
quantitative. Using a data set of IR spectra from many

samples, one can use <calibration and prediction
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techniques to calculate "how much" boron the glass
shards contain, and not only whether the shards contain

any boron. This approach is described in Haaland,
infra. Examples of «calibration and prediction

techniques include multiple 1linear regression and
partial least squares.

The present invention wuses multivariate
statistical analysis to model protein adsorption
behavior on a variety of different partially selective
surfaces on a plurality of sensor probes. The present
invention relies on the fact that protein adsorption to
different partially selective surfaces varies markedly
due to the different surface characteristics. This
allows the construction of a diagnostic sensor device
comprising a plurality of sensor probes wherein each
sensor probe comprises a substrate that allows
transmission of a signal and a partially selective
surface, with the proviso that the partially selective
surface of each sensor probe in the diagnostic sensor
device is different. Therefore, the diagnostic sensor
device, in essence, has each partially selective surface
of each sensor probe partitioning protein solutions in a
different fashion. Using multivariate statistical
analysis the model is built based upon a particular
array o. sensor probes whe ein none of the specific
sensor probes need to be selective for any given analyte
or any specific protein. The detection from each sensor
probe is based upon semiquantitative measurements, such
as an IR spectrum of the surface. The correlation
between the detection device signal and the
concentration of particular analyte in a biological
sample need not be linear. Further, it is not necessary
to know, a priori, the correlation between the detection
device signal and the particular analyte concentration
or physiological condition.

It is important that the partially selective
surface be able to adsorb proteins. It is not necessary
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that the protein adsorption be specific for certain
proteins only that each surface produce reproducible
results given the same or similar protein mixtures in
the sample of biological fluid. For example, various
factors such as surface tension, surface roughness,
surface chemistry, and the ionic character of the
sﬁrface are important parameters affecting a protein
response to a given material. Preferably, radio
frequency plasma deposition using different starting
materials as monomers produces different surface
chemistries in a convenient and reproducible manner.
Radio frequency plasma deposition is a process
by which thin films (angstroms to microns in thickness)
of gaseous or liquid feed materials are deposited on a
substrate. The process 1is carried out in an evacuated
reactor chamber, such as a Pyrex cylinder. An example
of a typical plasma reactor is shown in Figure 1. The
feed materials (monomers) are bled into the reactor and
subjected to an electrical field which is oscillating at
radio frequencies. The starting material is broken
apart into molecular fragments which deposit onto the
surface of a substrate material placed in the reactor,
forming a plasma polymerized film. Examples of monomers
for radio frequency discharge polymers include methane,
acetone, allylamine, acrylic acid, tetrafluoroethylene,
2-Mercaptoethanol, allyl alcohol, benzene, chloroform,
other fluorocarbons up to twelve carbons in length,
other chlorohydrocarbons up to twelve carbons in length
and combinations thereof. Other monomers usable for
plasma deposition include hexamethyldisilane, ethyl
sulfide, ethyl chloroformate, 1,1,1,3,3,3,-Hexamethyl-
disilazane, acrylonitrile, pyridine, trimethyldiborane,
acrylonitrile, pyridine, 2-Chloropropane, formic acid,
ethylene oxide, ferrocene, diphenyl selenide, butanone,
bromobenzene, trimethylborate, tetrahydrofuran,
chlorotrimethylsilane, hydroxyethylmethacrylate, vinyl-
trimethylsilane, dimethyl sulfoxide, hexafluorobenzene,
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perfluoropropane, allene, other organometallics (e.qg.,
tetramethylgermanium) and combinations thereof.

Examples of the plasma polymerized monomers
that are used for a plurality of partially selective
surfaces include methane for a hydrocarbon surface,
acetone for a polar surface, allylamine for a nitrogen-
rich surface, tetrafluoroethylene for a fluorine-rich
surface, hexamethyldisilane for a Si-containing surface,
ethyl sulfide for a sulfur-containing surface,
2-Chloropropane for a Cl-containing surface, ethyl-
chloroformate for a Cl/0-containing surface, and
1,1,1,3,3,3-Hexamethyldisilazane for a Si/N-containing
surface.

Plasma polymerization is an effective method
for modifying substrate surfaces. Table 1, below, lists
the surface elemental composition of polystyrene before
and after modification with plasma films of methane,
allylamine, acetone and tetrafluoroethylene. Elemental
analysis was carried out by electron spectroscopy for
Chemical analysis (ESCA), a sensitive analytical tool to
detect the presence and quantity of all surface elements
except hydrogen or helium. Thus, Table 1 cannot 1list
the hydrogen content of the surfaces.

TABLE 1
Surface Composition of Untreated Poly (styrene) and Poly (styrene) Coated
with Various Radio Frequency Plasma Polymerized Films

Monomer Number of Elemental Composition. %
Samples
C O N E N Total
Untreated 8 97.25:1.03 2.75t1.03  0.00 0.00 0.00 100.00
Methane 8 96.75:0.54 3.27:0.54 0.00 0.00 0.00 100.00
Acetone 9 89.21x1.48 10.79:1.48 0.00 0.00 0.00 100.00

Allylamine 9 77.32+0.96 5.1410.68 17.08:+1.28 0.00 0.46:0.40 100.00
TFE 7 42024133 0.96:031 0.46+0.47 56.55+1.51 0.00 100.00
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Plasma etching is another method to produce
partially selective surfaces. Some feed materials are
non-polymerizable and will not form plasma-deposited
films. The non~-polymerizable materials, when subject to
the reactor conditions, will form a cloud of energetic
particles that impinge upon the substrate. The cloud of
enérgetic particles will change the substrate’s surface
properties, including the affinity for proteins but will
not deposit a film. This is known as a plasma-etched
surface. For example, poly (ethylene) exposed to a
plasma cloud of fluorine, Fy, will evidence fluorine
incorporation upon spectral analysis but no film will be
present. Other etching gases include, for example,
argon, neon, helium, nitrogen, diborane, phosphine,
oxygen, fluorine, iodine, krypton, silicon (IV)
chloride, sulfur dioxide and air.

Etching and polymerizing gases can be combined
to achieve other plasma modifications. For example,
non-polymerizing gases can be incorporated into a
plasma-deposited film by this method if presented
together with a polymerizable gas. For example, poly
(ethylene) exposed to a plasma consisting of a mixture
of acetone (polymerizable) and nitrogen (etchant, non-
polymerizable) will be covered with a deposited film
after the reaction. However, the film will consist not
only of carbon, hydrogen, and oxygen from the acetone,
but will also contain nitrogen. Other examples of
etchant/polymerizable species blends include
oxygen/1,1,1,3,3,3-Hexamethyldisilazane, oxygen/acetone,
ethyl sulfide/nitrogen, diborane/methane, phosphine/
methane, diborane/tetrafluoroethylene, air/
2-Chloropropane, iodine/diphenyl selenide, and silicon
(IV) chloride/methane mixtures.

Spin-cast polymer surfaces can be produced by
dissolving a solid polymer in a solvent and placing the
solution on a substrate while the substrate is revolving

at high speed on a turntable. This spreads the liquid

¥
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polymer out evenly over the surface of the substrate.
The solvent then evaporates, leaving a polymer film on

the surface. Examples of spin-cast films are poly
(styrene), poly (urethane), and poly (ethyl
methacrylate). An example of a solvent used for spin-

casting is 1,1,1,3,3,3-Hexaf1uoroisopropanol.

A metal-sputtered surface can be produced in a
DC argon discharge with a metal target as the cathode.
This discharge can be produced in an evacuated chamber
into which argon has been introduced. The substrate
material is also placed in the Chamber. Argon is an
etching gas, and impinges upon the metal target, knock-
ing fragments from the metal surface. Fragments are
transferfed to the substrate material where they collect

to form a thin film. Examples of metal-sputtered
surfaces include substrates coated with a thin film of
silver, gold, and gold/palladium. The elemental

composition of the surface of a glass disk before and
after gold-sputtering as measured by ESCA is given in
Table 2, below. As before, the hydrogen content of the
surfaces is not included.

TABLE 2

Surface Composition of Untreated and Gold-Sputtered Glass Disks

Sample Elemental Composition. %
C Q Si Na Ti Au  Total
Glass Disk 13.96 56.43 26.34 292 0.34 0.00 100.00

Gold-Sputtered 3534 000 0.00 0.00 0.00 64.66 100.00
Glass Disk

A preferred embodiment of the inventive
diagnostic device uses a thin film wavéguide as a
substrate, and a near-infrared spectrometer for signal
generation. The partially selective surfaces are plasma
films deposited in strips lengthwise on a base. Here,
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the substrate material (thin film waveguide) also forms
the partially selective surface. The base (such as
quartz) does not transmit signal. Electromagnetic
radiation from the signal-generating device is coupled
into a first prism using a single fiber optic cable.
The signal detection device is a lead sulfide detector.
Near-infrared radiation emitting from the second prism
impinges upon the lead sulfide detector. The measured
intensity at each wavelength is transferred to a
computer (e.g., IBM 386 or clone thereof) and stored for
subsequent data analysis.

The partially selective surfaces and
substrates are plasma polymerized films <from the
following monomers: allylamine, methane, acetone,
tetrafluorethylene, hexamethyldisilane, ethyl sulfide
and ethyl chloroformate. The computer uses multivariate
statistical software using partial least squares (PLS)
and principal component analysis (PCA). Two software
programs are available including PCA Modeling Program
version 1.0 ©1989, The Center for Process Analytical
Chemistry, Department of Chemistry BG-10, University of
Washington, Seattle, Washington 98195, and PLS 2-Block
Modeling version 3.1 ©1988, The Center for Process
Analytical Chemistry, Dept. of Chemistry BG-10,
University of Washington, Seattle, Washington 98195.

The plurality of sensor probes is contacted
with a patient sample. NIR (near-infrared), electro-
magnetic radiation of increasing wavelengths is coupled
from the prism into the first partially selective
surface, surface A (allyamine plasma film) at time
t = 1. The entire range of wavelengths is scanned,
producing a spectrum of NIR radiation that has been
perturbed by propagating through partially selective
surface A and interacting with the proteins binding to
partially selective surface A via multiple noncovalent
interactions. At time t = 2, NIR electromagnetic
radiation of increasing wavelengths is coupled from the

»
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prism into partially selective surface B (methane plasma
film). The entire range of wavelengths is again
scanned. The procedure is repeated for each remaining,
partially selective surface. At the completion of a
scan for all surfaces, the cycle is repeated, because
protein adsorption is a dynamic phenomenon (i.e., the
adsorbed layer changes with time). The cycle is
repeated approximately 10 times. The resulting data set
is the intensity at each NIR wavelength for each
partially selective surface for each cycle. This is an
information-rich data set.

Any detection device that can generate a data
point or data points from each sensor probe is
appropriate to the present invention, so long as some of
the data points generated reflect nonspecific protein
adsorption at the partially selective surface/~rotein
interface. Examples of appropriate detection devices
and detection techniques include: infrared spectroscopy
(near, mid, and far), surface acoustic wave devices,
bulk acoustic wave devices, capacitance, radioimmuno-
assay, chemiluminescence, immunoassay, nuclear magnetic
resonance, chemiresistor measurements, electrochemical
sensors, Lamb-wave devices, fluorescence immunoassay,
and enzyme-linked immunosorbent assay.

More particularly, chemiluminescence immuno-
assay uses an antibody or antigen bound to a chemilumi-
nescent agent. That agent will emit light that can be
measured by luminometry as the signal-collection device.
The set of measurements will be luminescence produced
versus time for each sensor probe.

It should be noted that many of the immuno-
assay technic es that use light-emitting sources, such
as fluorescence and chemn .uminescence, can be utilized
with a fiber optic cable as a substrate that connects to
the detection device. The substrate allows transmission

of the signal to the detection device. The detection
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device determines the photon count from the partially
selective surface/protein interface.

Piezoelectric crystals can be used as sensing
devices with the present invention. A different
partially selective surface is deposited on the surface
of each piezoelectric crystal of an array forming a
plﬁrality of sensor probes. The resonant frequency of
each crystal changes with time as proteins are adsorbed
to the partially selective surface coating of each
sensor probe. This matrix of frequency versus time
measurements for each surface provides the data for
analysis. A reference device is used to correct for
system drift and variations due to temperature changes.

Similarly, surface acoustic wave (SAW) devices
can measure a change in frequency versus time of a
surface-propagating wave. Again, each SAW device has a
different partially selective surface.

In another example, the capacitance measure-
ments are determined when a partially selective surface
coating is deposited directly on a capacitor surface.
In this case, the capacitor becomes the substrate. As
proteins are adsorbed to the surface, the capacitance
changes with time. The matrix of capacitance changes
with time for each surface becomes the data set for
analysis by multivariate statistics.

In these and other modes, the time domain is
an information-rich variable set that is exploited by
the present invention. In many analytical techniques,
the time data space is not efficiently utilized.

Near infrared spectroscopy (NIR), as a
detection device, 1is an information-rich detection
method and is the preferred detection device. Light of
various wavelengths from an NIR spectrometer
(signal-generating device) is coupled 1into ©plasma
treated planar waveguides. When the partially selective
surfaces on the substrate are contacted with a patient’s

sample of biological fluid, such as a blood sample,
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proteins will adsorb ifferently to each partially
selective surface. ° guiding 1light of various
wavelengths into the p.anar waveguide, a near-infrared
spectrum of the protein layer adsorbing to each
partially selective surface is obtained. This method
produces a large volume of data for the intensity as a
fuﬁction of time for each wavelength for each sensor
probe. It is also possible to take the visible and
ultraviolet spectrum of the protein depositing on the
partially selective surface using different input
wavelengths. The large volume of data will then be
analyzed by multivariate statistical analysis.

The following examples are set forth for
illustration purposes and are not designed to limit the
broad aspects of the present invention.

EXAMPIE 1

This example illustrates a schematic of an
inventive diagnostic sensor device comprising three
piezoelectric crystals with different, partially
selective surfaces. Each pie&oelectric crystal with a
partially selective surface is a sensor probe that is
connected to an individual signal-generating device
comprising an oscillator board that induces crystal
oscillation. The piezoelectric crystal sensor probes
oscillate at a characteristic frequency. The frequency
of oscillation is perturbed by protein adsorption which
occurs when the sensor probe is immersed in a biological
fluid. Each sensor probe signal communicates by wire
with a frequency counter, which is part of the signal-
collection and processing system (i.e., signal-
collecting device). The frequency counter measures and
displays the new or perturbed oscillation frequency of
each crystal or sensor probe. The data over time from
the frequency counter is collected and stored in a

microprocessor control device, such as a computer.
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After a sampling period of approximately 10 minutes, the

data is analyzed by multivariate statistical techniques.

EXAMPIE 2

This example illustrates a diagnostic sensor
device using an enzyme-linked immunosorbent assay
(ELISA) as the detection technique. The plurality of
sensor probes comprised a substrate material, poly
(styrene) as a series of microtitre wells with
different, partially selective surfaces. Four of the
partially selective surfaces were plasma-deposited
polymer films from the plasma-polymerized monomers
methane (MTH), acetone (ACE), allylamine (ALAM), and
tetrafluoroethylene (TFE). The chemical compositions of
these plasma-deposited films are shown in Table 1
herein, including the untreated surface.

The untreated well was also suitable for use
as a partially selective surface. The signal-generating
device comprised an instrument that generated light of
various wavelengths and projected the light through the
test solutions that contacted the sensor probes. A
built-in signal-collection device collected the
transmitted light energy and measured its intensity.

The sensing device was used to analyze test
solutions containing fibrinogen (Fb), albumin (Ab), and
hemoglobin (Hb) in varying amounts in a
citrate-phosphate buffer. Fibrinogen, albumin, and
hemoglobin are physiologically important proteins. The
plurality of sensor probes (i.e., microtitre wells with
plasma-deposited polymer films or untreated) was
contacted with the test solutions (i.e., biological
fluid) for a total of two hours at approximately 35°C.
The test solutions were removed by aspiration and the
sensor probes were washed thoroughly with a surfactant
solution containing 0.5% Tween 20 in a citrate-phosphate
buffer. The amount of fibrinogen in the test solutions
varied from 1.0 pg/ml to 25 pg/ml. This range of
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concentrations was divided into three categories: low
concentrations (less than 8 pg/ml), intermediate
concentrations (8 ug/ml to 16 pug/ml) and high
concentrations (greater than 16 pug/ml). The amount of
hemoglobin in test solutions varied from 10 gg/ml to
1000 ug/ml. This range of concentrations was divided
into three categories: low concentrations (less than
300 pg/ml), intermediate concentrations (300 pg/ml to 600
pg/ml) , and high concentrations (greater than 600 pg/ml).
Albumin was present at a concentration varying from 20
£g/ml to 2000 pg/ml, with less than 600 pg/ml being low
concentration, 600-1200 kg/ml being middle
concentrations, and 1200-2000 pg/ml albumin being high
concentrations.

A solution containing anti-fibrinogen, an
antibocy which has strong affinity for fibrinogen, was
contacted with the sensor probes so the antibody could
react with any fibrinogen noncovalently bound to the
sensor probes. This particular antibody had been
previously conjugated with the enzyme, horseradish
peroxidase. The antibody was incubated with the sensor
probes for two hours at approximately 35°cC.

After the incubation the antibody solution was
removed and the sensor probes were thoroughly washed
with the surfactant solution. Next, the sensor probes
were contacted with a solution containing the
chromogenic horseradish peroxidase enzyme substrate, 3,
37,5,5'-tetramethylbenzidine and the oxidizing agent
urea peroxide. The horseradish peroxidase enzyme
catalyzes the reaction of the substrate to produce a
colored product. The enzyme-substrate reaction was
stopped after an incubation period of 35 minutes by the
addition of 4N sulfuric acid. The amount of colored
reaction product was qualitatively determined by
measuring the amount of light transmitted through .the

solution in the microtitre well.
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Forty test solutions of different compositions
comprising fibrinogen, albumin, and hemoglobin were
used. Each test solution contained all three proteins
in wvarying amounts. The test solutions simulated
alterations in the composition of the protein pool
induced by a disease state as exemplified by the change
in fibrinogen, albumin, and hemoglobin concentration
amongst the differing test solutions. Table 3 below
illustrates a portion of the test solution data.

TABLE 3

Sample Sensor Probe Response

Solution Sensor Probe Responses
UN ACE MTH ALAM IEE
1 0.257 0.504 0.120 0.654 0.890
2 0.116 0.433 0.072 0.019 0.386
3 0.308 0.952 0.185 0.622 1.025
4 0.997 1.298 1.068 0.536 1.163
5 0.068 0.232 0.053 0.799 0.703

The compositions of these test solutions were expressed
as a forty-row by three-column (40 x 3) data matrix.
The .forty rows correspond to the number of unique test
solutions, and the three columns contained the concen-
trations of fibrinogen, albumin, and hemoglobin in each
test solution. The responses from the plurality of
sensor probes were expressed by a forty-row by five-
column (40 x 5) data matrix. The forty rows corre-
sponded to the number of test solutions and the five
columns contain measurements of the light transmitted
through the substrate solution present in each partially
selective sensor probe after the series of chemical
reactions as described herein. Analysis of the
multidimensional data set was optimized by utilizing
multivariate statistical analysis.
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We' conducted a sample analysis of the data
blocks to illustrate the effectiveness of multivariate
statistical methods as a means to classify protein
solutions and to predict analyte concentrations. The
multivariate statistical methods are based on
measurements of the noncovalent interactions of proteins
with partially selective surfaces. The data were
analyzed using the partial least squares algorithm
(PLS), which is primarily a calibration and prediction
technique, and by principal component analysis (PCA),
which is primarily a pattern recognition technique. The
ineffectiveness of traditional, univariate methods was
shown by comparing the results given by the PLS
algorithm to the results given by simple linear
regression (SLR). These data demonstrate that the
present invention has the potential to perform
successfully in many clinical situations.

EXAMPLE 3

This example illustrates the calibration and
prediction using partial least squares from the data
achieved in Example 2. There were two steps in the
partial least squares (PLS) modeling process. The first
step (calibration) involved building the PLS model using
known compositions of 27 of the 40 test solutions and
the 27 sets of responses of the plurality of sensor
probes to these test solutions. The 27 test solution
compositions and sensor probe responses were termed the
"calibration set". The known compositions were
contained in a 27 x 3 (ixj) matrix "P" and the sensor
probe responses were contained in a 27 x 5 (ixk) matrix
WR", The second step (prediction) involved using the
resulting PLS model to predict the concentrations of
fibrinogen, albumin, and hemoglobin in the remaining 13
test solutions using the 13 sets of sensor probe
responses to the 13 test solutions. The 13 test

solutions and sensor probe responses were termed the
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"prediction set." The matrix of protein concentrations
were considered to be the dependent data block (also
called the Y-block) for computational purposes, and the
matrix of sensor probe responses was considered to be
the independent data block (also called the X-block).

Using partial least squares (PLS), the
original data blocks, P and R, were re-expressed as
latent variables. The latent variables were used to
describe the variance of the original data blocks in a
more concise fashion. Each column of the original
matrix of sensor probe responses, R, was an axis in five
dimensional space. Each row was a set of coordinates in
five dimensional space defining the location of the
sensor probe responses to each test solution. Using
latent variables, this data set was re-expressed by
defining a new set of axes, which are fewer in number
than the original axes, to describe the variance that
was relevant to changes in the compositions of the test
solutions. The latent variables were mutually
orthogonal, meaning that each latent variable was
orthogonal to all the other latent variables.

often, only the first few 1latent variables
contained information relevant to calibration and
prediction. Real data invariably contains noise and
other information that is not relevant for representing
the relationship between signal and analyte. PLS
compresses the relevant information into the first few
latent variables. Nonpredictive information is usually
relegated to the later latent variables. Because a
model can be built with only the first few 1latent
variables, PLS provided an opportunity to largely rid
the data of noise and variance not relevant to changes
in protein concentration and construct smaller matrices
for efficient prediction.

The PLS model consisted of a set of

"mathematical relationships between latent variables that

described the variance in R and the 1latent variables
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that described the variance in P. The PLS algorithm
iteratively uses information from the Y-block, the P
matrix, when determini.g the latent variables of the X-
block, the R matrix. The PLS algorithm iteratively uses
information from the X-block, the R matrix, when
determining the latent variables of the Y-block, the P
matrix. In this way, the predictive ability of the

model is optimized. The expressions used were:

R =TD + E Eq. 1
and
P =UQ + G Eqg. 2

where T was an ixh matrix containing the coordinates of
the test solutions in a new space defined by the A
latent variables associated with the matrix R. The
maximum number of latent variables is equal to the
number of columns in R, which is five. Thus, the
maximum value of h is five. The ixh matrix U contained
the coordinates of the test solutions in the new space
defined by the 4 latent variables associated with the
matrix P. The element of T and U were called the scores
of R and P, respectively. The elements of hxk matrix D
and hxj matrix Q were called the loadings, which
described the relevance of the original variables (axes)
in determining the latent variables (rotated axes). The
h rows of D were the sensor probe response loadings
vectors and the /s rows of Q were the protein
conce -ation loading vectors. The variance not modeled
by PLS was contained in matrices E and G.

The latent variables in T were not optimal for
descriting the variance in the columns of R, but were
rotat. to also describe some of the variance in the
columns of P. The latent variables in U were not
optimal for describing the variance of the columns of P,
but were rotated to also describe some of the variance
in the columns of R. Each column of T (each X-block
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latent variable) was related to the corresponding column
of U (each Y-block latent variable) by the following

relationship:

where b, were regression coefficients for the regression
of R scores vector ty on P scores vector u, and the ¢
is the residual error. These expressions and the
subsequent expressions where the subscript "h" is used
are valid for each latent variable. For example, the
value of "h" is one when the expression pertains to the
first latent variable. The value of "h" is two when the
expression pertains to the second latent variable and so
on. The full relationship was:

U="TB+3 Eq. 4

where B was an Axh diagonal matrix.

The latent variables were calculated one at a
time in an iterative fashion. First, an estimate for
the Y-block scores vector, u, an ix1 column vector, was
made. It was estimated to be equal to the first column
of the Y-block, py:

uh = pl Eq. 5
The X-block weights vector, th (a I xk row

vector, proportional to the I x k row loadings vector
th), was then calculated:

w T = u TR/u, Tuy Eg. 6
The weights vector so obtained was then

normalized to give it a length of one, resulting in a

scaled Ixk weights vector wy .T:
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wh,sT = th/”th" "~ Eq. 7

where ”th” was the norm of th. To calculate the norm
of th, the individual elements of th were squared and
then added together. The norm was the square root of
this sum.

The X-block scores vector ty, an ix 1 column
vector, was then calculated:

th = Rwh,s/wh’sTwh’s Eq- 8

The estimate for the Y-block scores vector uy
was then‘revised. First, the loadings vector th, a lxj
row vector, was calculated and scaled, resulting in the
scaled loadings vector qh'ST:

apT = £, TR/t ey Eq. 9
h,sT = th/”th" Eq. 10

The new estimate for the Y-block scores vector
u, was:

Uy = POy o/, sTqh o Eq. 11

If the length of the new estimate for uy, was
more than one part per million different than the length
of the previous estimate for Uy, the new estimate for uy
was returned to Eq. 6 and the series of computations was
repeated. This continued until the length of the new
estimate for u, was less than one part per million
different than the length of the estimate for u, from
the r ‘evious iteration. The X-block loadings vector for
this iatent variable, 4, T, was then determined:

T - ¢ T T
4, T = £, TR/e, Tey Eq. 12
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The X-block loadings and scores vectors &,T
and thT, and the weights vector, th, were normalized to
give scaled vectors dh,sT' th,sT' and 'wh,sT and were
saved for use in the prediction step.

The regression coefficient, by, , for the
relationship between the latent variables ty and u,, was

calculated:
- T T
by = uy th,s/th,s th,s Eg. 13

To insure that subsequent 1latent variable
would be orthogonal to latent variable 4, the variance
described by latent variable h was subtracted from the R

and P matrices:
- - T
Rn = ®p-1 ~ ®n,s%,s Eq. 14
Ph = Ph_l - uhqh’sT Eq- 15

In this manner, all of the latent variables,
equal to the number of columns in R, were calculated.

To optimize prediction using PLS, the optimum
number of /i latent variables was determined. The method
used to do this was to look at the relationship between
the number of latent variables and value of PRESS
(Predictive Residual Error Sum of Squares).

PRESS was calculated by further dividing the
27 test solutions and associated sensor probe responses
in matrices R and P of calibration data into two
portions, a model-building set and a test set. The PLS
model was initially built using the model-building set
and one latent variable. The model was then used to
predict the dependent values (protein concentrations) of
the test set, for which the actual values were known.
The value of PRESS, defined as the sum of the squared
deviations of the predicted concentrations from the

actual concentrations, was determined. A model using
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two latent variables was then constructed and used to
predict the dependent values for the test set. The
corresponding value of PRESS was calculated. This
process was repeated for PLS models containing three,
four, and five latent variables. Often, PRESS reached a
minimum for a model containing less than the full number
of possible 1latent variables. These later 1latent
variables contained mostly variance not relevant to the
prediction of test solution composition and noise. By
leaving these latent variables out of the final model,
the noise and nonrelevant variance was eliminated.

Figure 3 shows the results of PRESS
calculations for a 27 test solution calibration set of
sensor probe responses and protein concentrations which
was split into three parts. Three models were
constructed with two thirds of the data being used to
predict the other third. This procedure wws done three
times, so that each test solution ended up as part of
the test set at least once. A rule of thumb was that
maximum predictive ability was attained for the model
with the number of latent variables # corresponding to
the minimum PRESS value.

After the /i latent variables that best modeled
the system had been chosen, the prediction of the set of
13 x 3 (nxj) protein concentrations (dependent variable
block) was done using an 13 x 5 (nx k) matrix of sensor
probe responses R, (independent variable block), where n
was the number of test solutions for which predictions
had to be made. The subscript "u" was used to designate
that the responses in this block of independent
variables were associated with test solutions whose

compositions were "unknown" and? had to be predicted by

the model. The independent variable block R, was
decomposed step by step, while the dependent variable
block Pp' containing the predicted protein

concentrations (thus the subscript "p") was built up.
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First, a nx !l scores vector t, for the first
latent variable was calculated using the independent
block R, and the scaled weights and loadings from the
calibration step. (In the following equations, the

subscript "s" was omitted for simplicity):

tu,h = Ruy,n-1%n Eg. 16

where k x I column vector W, was the weights vector
(similar to the k x I loadings vector d,) for Ilatent
variable h. The variance described by the A4 latent
variable was then subtracted from the independent block:

= - T
Ry,n = Ry, n-1"%4,n% Eq. 17

An estimate for the scores vector of the
predicted protein concentrations was then obtained:

Wy, p = ty,pby Eq. 18

The contribution of this latent variable to
the prediction of the dependent block was:

where th was the loadings vector (a jxI row vector) for
the latent variable h. The above procedure was repeated
for each of the h latent variables which had been
retained in the model.

The entire predicted 13 x 3 Pp matrix was the

sum of all Pp h for the /i latent variables retained in
the model:

=IP,p=F + P + P ...Eq. 20

Pp p,1 T Pp,2t Py 3

Before PLS was performed, the data in the
independent and dependent blocks were preprocessed by
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mean centering and then variance scaling. This required
subtracting the column means from each column of R and
then dividing the result by the standard deviation of
that column. This was repeated for P.

The optimum number of latent variables was
chosen based on the minimum in PRESS and by looking at
plots of the latent variables. The PLS algorithm
assumes a linear relationship between the scores
contained in the X-block latent variables ty, and the
Scores contained in the Y-block latent variables Uy, .
When an actual scores vs. scores plot of a certain
latent variable reveals that this linear relationship is
no longer true, then that part of the data consists
mainly of other information not relevant to the modeling
process or noise.

Figu "2 4a shows the relationship between the
first latent variable of the X~-block and the first
latent variable of the Y-block. The X~block scores (ty)
and Y- lock scores (uh) are shown along with the
regression line between the two ‘latent variables, as
determined by the PLS model. The slope of this line is
by, which was calculated during the calibration step of
the PLS modeling. For example, the x-coordinate of test
solution 12 on Figure 4a is the twelfth element of the
latent variable t,, which is the first column of the X-
block scores matrix T. It is evident from this plot
that the first 1latent variable described a 1linear
relationship between the R and P data sets.

Figure 4b shows the relationship between the
second latent variable of the X-block and the second
latent variable of the Y-block. The X-block scores (ty)
and Y-block scores (uy) are shown along with the
regression line between the two latent variables, as
determined by the PLS model. The slope of this line is
b,, which was calculated during the calibration step of
the PLS modeling. It is evident from this plot that the
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second latent variable also described a linear
relationship between the R and P data sets. '

The Y-block weights for the first latent
variable are shown in Figure 5. The weighting of each
original Y variable (in this embodiment, the
concentrations of fibrinogen, albumin, and hemoglobin)
is a measure of how important that original variable was
in construction a latent variable u,. It is indicative
of the 9original variable’s contribution to the
predictive ability of the latent variable. A high
positive or high negative weight for an original Y
variable shows that the original Y variable was
important in contributing to the variance described by
the latent variable. A weight near zero indicates a
specific Y variable was unimportant in contributing to
the variance described by the latent variable. This is
important qualitative information. Fibrinogen was most
strongly weighted in latent variable 1, while hemoglobin
and albumin had lower weights. Albumin was the least
important Y variable for determining the first Y-block
latent variable.

The X-block 1loadings for the first latent
variable are shown in Figure 6. The interpretation of
these 1loadings is similar to the interpretation of
Y-block weights. The loading of each original X
variable is a measure of how important that original
variable was in contributing to the predictive ability
of the 1latent variable. This also 1is important
qualitative information. For the first latent variable,
the loadings for the untreated sensor probe (UN), the
acetone plasma-deposited film sensor probe, (ACE), the
methane plasma-deposited £film sensor probe (MTH), and
the tetrafluoroethylene plasma-deposited film sensor
probe (TFE) were almost identical, while the allylamine
plasma-deposited film sensor probe (ALAM) was loaded
less strongly.
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PLS models using either two or three latent
variables were used to construct a model for predicting
a 13 x 13 matrix Pp of protein concentrations using as
input the 13 x 5 matrix R, of sensor probe responses.
The range of concentrations used for each protein and
the PLS standard error of prediction (SEP) in predicting
these concentrations using two latent variables is shown
in Table 4. The SEP was calculated by:

SEP = (PRESS / d.f.)* Eq. 21
where d.f., the degrees of freedom, was equal to the
nuaber of test solutions for which predictions were

being made. For this PLS model, there were 13 degrees
of freedom.

TABLE 4

Standard Error of Prediction (SEP) of PLS Model Used to Simultaneously
Predict the Concentrations of Fb, Ab, and Hb

Protein Conc. Range in Test Solns. (ug/ml) SEP (ug/ml)

Fibrinogen 1.0-25.0 22

Albumin 20.0 - 2000.0 843.3

Hemoglobin 10.0 - 1000.0 264.7
The concentrations of fibrinogen were

predicted quite accurately. The SEP was 2.3 pgg/ml. The
concentrations of hemoglobin were predicted less
accurately; the SEP was 264.7 pg/ml (note: the concen-
tration range was much larger). The concentrations of
albumin could not be reliably predicted by this model.
Though PLS can be used to simultaneously
predict the value of more than one Y variable, separate
models «can be built for the prediction of each
individual Y wvariable. In each separate model, the
latent variables are constructed to optimize the
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prediction ability of the model for that one Y variable.
Increases in predictive power are sometimes realized by
this practice. For example, information relevant to the
prediction of fibrinogen concentrations may not be
relevant for the prediction of hemoglobin concentra-
tions. This nonrelevant information may actually
interfere with the accuracy of hemoglobin predictions if
the latent variables are constructed for the purpose of
predicting the concentrations of both proteins. By
building a model for the prediction of hemoglobin
concentrations only, the 1latent variables can be
optimized to <contain information relevant to the
prediction of hemoglobin concentrations. In a clinical
situations, this would not increase the complexity of
test solution analysis, for a computer can easily store
various sets of model parameters. . A user of the sensing
device can select, perhaps from a screen menu, which set
of parameters to use.

To build each model, the same matrix of 27 x 5
independent R values was used. The dependent block
consisted of a 27 x 1 p vector containing the
concentrations for only a single protein. The optimum
number of latent variables was chosen. The resulting
PLS model was used to predict a 13 x 1 pp vector using a
13 x 5 matrix of sensor probe responses R;. This
procedure was repeated so the concentration of each
protein could be predicted by a separate PLS model. The
SEP of the PLS predictions of the protein concentrations
using these individual models is shown in Table 5. For
these test solutions and sensor probe responses, the
accuracy of the hemoglobin prediction was markedly
improved by this procedure. This showed that forcing
the PLS model to simultaneously predict the
concentrations of fibrinogen, albumin, and hemoglobin
interfered with the prediction of the hemoglobin

concentrations.
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TABLE S

Standard Error of Prediction (SEP) of PLS Models Used to Individually Predict
the Concentrations of Fb, Ab, and Hb

Protein Conc. Range in Test Solns. (ug/m}) SEP (pg/ml)
Fibrinogen 1.0-25.0 23
Albumin 20.0 - 2000.0 844.7
Hemoglobin 10.0 - 1000.0 194.2

By conventional, univariate means, even the
reliable quantitation of a single analyte using ELISA
can be difficult. Accordingly, the performance of this
plurality of sensor probes was clearly superior to the
conventional means of analysis, for it was able to
accurately predict fibrinogen concentrations and also

had some predictive ability for hemoglobin
concentrations.
EXAMPIE 4

This example illustrates a comparison of
multivariate versus univariate data analysis of the data
from Example 2. The results obtained from PLS were
compared to the results obtained using simple linear
regression (SLR). SIR is a technique commonly employed
in the calibration and prediction of immunoassay data.
using SLR, a relaticnship between only one independent
(x) variable (a single row of R) and only one dependent
(y) variable (a single row of P) can be found. Thus,
SLR is a univariate (one variable) technique. The model
pr-duced by SLR is a straight line, described by the
e. ression y =mx + b, where m is the slope of the line
and b is the y value at which the line intercepts the y
axis.

Using SLR, a model was built to describe the
relationship between the 27 sensor probe responses from
the UN sensor probe and the 27 fibrinogen concentrations
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in the test solution calibration set used in the
calibration step of the PLS modeling process. After the
values of m and b had been determined, the model was
used to predict the fibrinogen concentrations in the 13
test solutions from the prediction step of the PLS
modeling process using the 13 corresponding responses
from the UN sensor probe. Then, a SLR model was built
to describe the relationship between the 27 sensor probe
responses obtained from the UN sensor probe and the 27
hemoglobin concentrations in the test solution calibra-
tion set wused in the calibration step of the PLS
modeling process. After the values of m and b had been
determined, the model was used to predict the hemoglobin
concentrations in the 13 test solutions from the
prediction step of the PLS modeling process using the 13
corresponding responses from the UN sensor probe. For
this model and all SLR models, the 27 samples used to
build the SLR model were the same ones used to build the
PLS model in Example 3. The 13 samples used to test the
predictive ability of the SLR model were the same as
those used to build the PLS model.

Additional SLR models were built to describe
the relationship between the 27 sensor probe responses
from the ACE sensor probe and the 27 fibrinogen concen-
trations in the test solution calibration set and to
describe to relationship between the 27 sensor probe
responses from the ACE sensor probe and the 27
hemoglobin concentrations in the test solution calibra-
tion set. These models were then used to predict the
concentrations of fibrinogen and hemoglobin in the 13
test solutions in the prediction set.

The procedure was repeated for the MTH, ALAM,
and TFE sensor probes. Two SLR models were built from
each set of sensor probe responses, one for the predic-
tion of fibrinogen concentrations, and one for the

prediction of hemoglobin concentrations.
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The SEP for each of these SLR models is given
in Table 6, along with the model parameters m and b. It
can be seen that none of the individual sensor probes,
used alone for prediction with SLR, performed as well as
the plurality of sensor probes, modeled in tandem using
PLS. Using PLS, the best SEP for the prediction of
fibrinogen concentrations was 2.2 pg/mL (Table 4).
Using PLS, the best SEP for prediction of hemoglobin
concentrations was 194.2 ug/mL (Table 5).

TABLE 6

Prediction Accuracy Of SLR Models; Model Parameters m and b

Sensor Probe Protein m b SEP
UN fibrinogen 14.3. 6.0 9.0
hemoglobin -758.7 505.5 258.0
ACE fibrinogen 12.6 2.8 8.0
hemoglobin -715.6 699.9 271.9
MTH fibrinogen 17.2 9.3 9.3
hemoglobin -779.5 475.1 269.8
ALAM fibrinogen 275 -0.6 4.5
hemoglobin 612.0 127.3 308.0
TFE fibrinogen 19.5 -3.2 5.0
hemoglobin 4744 643.4 258.6

Based on the SEP of the two methods, we
concluded that the PLS model performed better than SLR
for the prediction of fibrinogen and hemoglobin concen-
trations. However, there was a possibility that the two
SEPs given by the two methods were not different in a
statist al sense, in which case that conclusion would
be unfounded. To test the probability that our
conclusion was unfounded, an F-test was conducted. The
F-test used as input the F statistic and the degrees of

" freedom (d.£.) in the SLR and PLS data sets. In this

case, the degrees of freedom was equal to 13, the number
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of test solutions for which dependent values were being

predicted. The F statistic was calculated as follows:

F = [SEP2(SLR)/d.f.(SLR)]/
[SEP2 (PLS)/d.£f. (PLS) ] Eq. 22

By convention, the larger SEP is placed in the
numerator when calculating the F statistic. The output
of the F-test was the alpha probability (a), the
probability that the SEPs given by the two methods were
not statistically different and that our conclusion was
unfounded. For the prediction of fibrinogen using the
ALAM sensor probe, which had the best SEP using SLR,
@ = 0.0074, meaning that there is only 0.74% chance that
PLS did not perform better than SIR. For the prediction
of hemoglobin using the UN sensor probe, which had the
best SEP using SILR, a = 0.1590. Thus, we can be 84%
(100% - 15.9%) sure that PLS performed better than the
best SLR case for hemoglobin concentration prediction.
It should be noted that some of the SIR results were
much worse than those used in the above analysis. Using
the worst SLR results, @ = 3.50 x 10~% for fibrinogen
prediction (MTH sensor probe) and a = 0.054 for
hemoglobin prediction (ALAM sensor probe). In the
likely event that the prediction errors are positively
correlated between the PLS and SLR prediction methods,
the calculated a would be conservative (Haaland, et al.
Anal. Chem. 60:1193), and should actually be smaller.
In this case, the chance that PLS performed better than
SLR is actually greater than the probability determined
by the F-test.

In many <clinical situations, an actual
numerical prediction for an analyte level 1is unneces-
sary. Diagnoses can often be made on the basis of
whether the amounts of certain indicator species are
below normal, in the normal range, or elevated above Ithe‘

normal range. This is a form of pattern recognition.
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The diagnostic sensor probe of Example 2 was tested in
this capacity. ’

Using the Example 2 sensor probe responses for
the forty test solutions, a cross-validation PLS
procedure was done. This was a different type of
modeling than that previously done with PLS. The cross-
validation modeling procedure involved building forty
different PLS models. Each time, 39 of the test
solutions were used to build a model that was then used
to predict the concentration of either fibrinogen or
hemoglobin in the remaining test solution from the
sensor responses to that test solution.

The amount of fibrinogen in the test solutions
varied from 1 pg/ml to 25 pg/ml. This range of concen-

trations was divided into three categories: low
concentrations (greater than 8 jpg/ml), intermediate
concentrations (8 pg/ml to 16 pg/ml), and high
concentrations (greater than 16 4g/ml) . The known

concentrations in the forty test solutions were compared
with the predicted concentrations from the PLS models.
A perfect set of models would have placed all 40 of the
predicted values in the same category as the actual
known values. The present models placed 37 of the
predicted values in the same category.

The amount of hemoglobin in the test solutions

varied from 10 ug/ml to 1000 pg/ml. This range of
concentrations was divided into three categories: low
concentrations (less than 300 kg/ml), intermediate
concentrations (300 gpg/ml to 600 pg/ml), and high
concentrations (greater than 600 Hg/ml). The known

concentrations in t - forty test solutions were compared
with the predicted oncentrations from the PLS models.
A perfect set of models would have placed all 40 of the
predicted values in the same category as the actual
known values. The present models placed 35 of the
predicted values in the same category.
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Accordingly, the fact that reliable
information about hemoglobin concentrations can be
obtained from an anti-fibrinogen assay demonstrates the
usefulness of the present approach and illustrates how a
plurality of sensor probes can extract knowledge from
measurements of nonspecific protein interactions with
partially selective surfaces. This represents a
significant achievement in the art.

The superior performance of the diagnostic
sensor probe of Example 2 over the previous attempts in
the art to construct such a device was confirmed by
comparing the PLS cross-validated models to correctly
categorize test solutions to the ability of SLR cross-
validated models to correctly categorize test solutions.
Because of the inherent 1limitations of univariate
techniques such as SLR, the responses from only a single
sensor probe could be used to predict the concentration
of only a single protein. Using the sensor probe
responses for the forty test solutions, a cross-valida-
tion SIR procedure was done. This was different type of
modeling than that previously done with SILR. The cross-
validation modeling procedure involved building forty
different SLR models. Each time, 39 of the test
solutions were used to build a model that was then used
to predict the concentration of either fibrinogen or
hemoglobin in the remaining test solution from the
sensor response to that test solution.

Using SLR, a cross-validated model was built
to describe the relationship between the sensor probe
responses obtained from the UN sensor probe and the
fibrinogen concentrations in the 40 test solutions.
This involved building forty different SLR models. Each
time, 39 of the test solutions were used to build a
model that was then used to predict the concentration of
fibrinogen in the remaining test solution from the UN
sensor response to that test solution. The SEP for the

set of 40 predicted values was calculated as in Eq. 21,
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except that in this case there. were 40 degrees of
freedom. A cross-validated SLR model was then built to
describe the relationship between the sensor probe
responses obtained from the UN sensor probe and the
hemoglobin concentrations in the 40 test solutions.
This involved building forty different SLR models. Each
time, 39 of the test solutions were used to build a
model that was then used to predict the concentration of
hemoglobin in the remaining test solution from the UN
sensor response to that test solution. The SEP was
calculated.

Cross-validated SLR models were also built
using the responses from the ACE, MTH, ALAM, and TFE
sensor probes to predict the concentrations of
fibrinogen and then the concentrations of hemoglobin in
the test solutions. The cross-validated model using the
responses from the ALAM sensor probe resulted in the
lowest SEP (4.60 pug/ml) for the prediction of the
fibrinogen concentrations in the test solutions.
Thirty-two of the 40 test solutions were categorized
correctly by these most accurate SIR models according to
the concentration of fibrinogen they contained. The PLS
models were able to correctly categorize 37 of the 40
test solutions using the cross-validation method.

The cross-validated model using the responses
from the ACE sensor probe resulted in the lowest SEP
(324.7 pg/ml) for the prediction of the hemoglobin
concentrations in the test solutions. Only 18 of the 40
test solutions were categorized correctly by the models
according to the concentration of hemoglobin they
contained. In contrast, the PLS models were able to
correctly categorize 35 of the 40 test solutions.

EXAMPLE 5
This example illustrates a pattern recognition
approach using principal component analysis using the
data of Example 2. Principal component analysis (PCA)
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is a pattern recognition technique used to classify a
set of analyzed samples. PCA defines axes in space that

describe the major sources of variance in measurements

taken on the samples, contained in a matrix of
independent variables R. The new axes are called the
principal components (PCs). The coordinates of the

samples in the rotated space are called the scores. The
spatial orientation of the analyzed samples can be
examined visually using scores vs. scores plots in the
two dimensional planes defined by the PCs. In these
projections, clusters of samples often appear, indicat-
ing that these samples had a similar covariance for the
measured variables and may be inherently similar in a
chemical, physical, etc., sense.

Principal component analysis is a method that
considers the independent variable block, the X-block,
only. Information contained in the dependent variable
block, the Y-block, is not considered. The independent
variable block was the 40 x 5 (i x k) matrix R containing
the responses of the plurality of sensor probes to the
40 test solutions containing varying amounts of
fibrinogen, albumin, and hemoglobin. Before PCA was
performed on the matrix R, the data in R was
preprocessed by mean centering and then variance
scaling. This required subtracting the column means
from each column of R and then dividing the result by
the standard deviation of that column.

The principal components were linear combina-
tions of the original measured variables. The first
principal component was the direction in the column
space of R that described the maximum variation in
sensor probe responses to the test solutions. The
subsequent principal components described decreasing
amount of the original variation in the test solutions.

The expression used was:

R =AZ + E Eq. 23
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where A was an /xc matrix containing the coordinates of
the test solutions in the new space defined by the ¢
principal components. The elements of A were called the
scores of R. The elements of the c x k matrix 2 were
called the 1loadings, which described the relevance of
the original variables (axes) in determining the
principal components (rotated axes). The ¢ rows of 2
were the sensor probe response loadings vectors. The
variance not modeled by PCA was contained in the ¢ x k
matrix E.

The principal components were calculated one
at a time in an iterative fashion. First, an estimate
for the X-block scores vector, a. (an I x I column
vector), was made. It was estimated to be equal to the
first column of the X-block, ry:

a, = Eg. 24

The X-block loadings vector, ch, a Ixk row
vector, was then calculated:

T = T T
2ot = ag R/ac a. Egq. 25

The loadings vector so obtained was then
normalized to give it a length of one, resulting in the
scaled Ixk weights vector z_, _T:

14

2o st = 2.1/]z.T| Eqg. 26
where [z T| was the norm of z.T. To calculate the norm
of z. T, the individual elements of z.T were squared and
then added together. The norm was the square root of
this sum.
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The new estimate for the X-block scores vector

(an ix1 column vector) a_ was then obtained:

C

a, = Rz o/%c, 7% 5 Eq. 27
If the length of the new estimate for a, was
more than one part per million different than the length

of the previous estimate for a,, the new estimate for a

c’ c
was returned to Eq. 25 and the series of computations
was repeated. This continued until the length of the

estimate for a_. was less than one part per million

c
different than the length of the estimate of a, from the
previous iteration.

To ensure that subsequent principal components
would be orthogonal to principal component ¢, the
variance described by principal component ¢ was

subtracted from the R matrix:

Rp= Rp_1~ 2 gZh, T Eq. 28

In this manner, lall of the principal
components, equal to the number of columns in R, were
calculated.

The amount of fibrinogen in the test solutions
varied from 1 pug/ml to 25 pg/ml. Test solutions were
assigned to categories based on their fibrinogen
content: low concentrations (less than 8 pg/ml),
intermediate concentrations (8 pg/ml to 16 pgg/ml), and
high concentrations (greater than 16 pg/ml). PCA was
performed on the 40 x 5 data matrix R containing the
responses from the plurality of sensor probes to each of
the test solutions. Two dimensional projections of
sensor probe responses to the test solutions on various
principal components were examined to see if the test
solutions were clustered according to the amount of

fibrinogen they contained. 1In these plots, the axes are
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the principal components and the coordinates of the test
solutions are the scores.

Figure 7 illustrates a scores vs. scores plot
for the first two principal components. It can be
clearly seen that there was a -clustering of test
solutions based on their concentration of fibrinogen.
PCA defined regions in this two dimensional space in
which test solutions containing low, intermediate, or
high concentrations of fibrinogen were exclusively
located. Other test solutions, when projected onto this
two dimensional plane (the procedure for this will be
described shortly), should fall into one of these three
regions, determined by their fibrinogen content.

The amount of hemoglobin in the test solutions

varied from 10 pg/ml to 1000 ig/ml. This range of
concentrations was divided into three categories: low
concentrations (less than 300 ig/ml), intermediate
concentrations (300 ug/ml to 600 kg/ml), and high
concentrations (greater than 600 dg/ml) . PCA was

performed on the 40 x 5 matrix R containing the
responses from the plurality of sensor probes to each of
the test solutions. Two dimensional projections of
sensor probe responses to the test solutions on various
principal components were examined to see if the test
solutions were clustered according to the amount of
hemoglobin they contained. 1In these plots, the axes are
the principal components and the coordinates of the test
solutions are the scores. PCA was successful at
classifying the test solutions hbased on amount of
hemoglobin they contained, as shown in Figure 8. The
Clusters were less discrete than those for fibrinogen,
but became more apparent when the lowe - right hand
portion of Figure 8 was expanded, as shown in Figure 9.
The fact that test solutions could be classified
according to their hemoglobin concentrations using data
from an anti-fibrinogen assay represents a significant
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improvement over the current art and illustrates the
power and significance of the present invention.

Test solutions could not be successfully
classified according to their albumin concentrations, at
least by looking at two dimensional scores projection
plots. Plotting the scores 1in three dimensions may
provide resolution of test solutions based on their
albumin concentrations and increased cluster separation
for test solutions based on their hemoglobin
concentrations.

The implications for clinical analysis are
clear. Using a set of calibration test solutions and
the responses from the plurality of sensor probes to
these calibration test solutions, PCA defines regions in
space that correspond to physiological conditions such
as diabetes, pregnancy, or AIDS. Clinical test
solutions are then analyzed by the plurality of sensor
probes. The nxk matrix R* containing test solutions and
sensor probe responses, where n is the number of test
solutions and k is the number of sensor probes in the
plurality of sensor probes, is projected onto the axes
defined by the PCA model:

A* = RrR*z Eg. 29

where 2 is a k x ¢ matrix of column loadings vectors
determined in the calibration step and A* is the nxc
matrix of newly calculated scores. Only these principal
components which have been found to have the ability to
classify samples are retained in the 2 matrix. The
newly calculated scores for each clinical test solution
are plotted in two dimensional scores vs. scores plots
like Figure 7. For example, a test solution falling in
the region of space previously determined to correspond

to diabetes allows a diagnosis of diabetes to be made.
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EXAMPIE 6

This example illustrates the selection of
optimal partially selective surfaces using PLS model
parameters with the data from Example 2. The above
analysis in Examples 3-5 showed that a plurality of
sensor  probes linked with multivariate analysis
represented a significant improvement over the current
art. It 1is desirable to increase the prediction
accuracy of the model for hemoglobin and albumin. The
X-block loadings given by the PLS model suggested one
method for further optimizing the plurality of sensor
probes. It was previously demonstrated that for the
first latent variable, the loadings for the untreated
sensor probe (UN), the acetone pPlasma-deposited film
sensor probe (ACE), the methane plasma-deposited film
sensor probe (MTH), and the tetrafluoroethylene plasma-
deposited film sensor probe (TFE) were almost identical,
while the allylamine plasma-deposited film sensor probe
(ALAM) was loaded less s<rongly.

Figure 10 shows the X-block loadings for the
second latent wvariable. It can be seen that the
responses from the UN, ACE, and MTH sensor probes were
again loaded nearly equally, while the ALAM and TFE
loadings were much different. Thus, for the first two
latent variables, the UN, ACE, and MTH loadings were
almost the same. This indicated that redundant or
nearly redundant inf-rmation was being contributed by
these three sensor probes to the latent variables. In
effect, the X~-block consisted of only three
significantly different sensor probes when using the
first two latent variables.

Figure 11 is a three dimension plot of the
loadings for the first sensor probes, using the first
three latent variables as axes. The origin has been
shifted based on the variance of the plotted data, but
the spatial relationship of the points is unchanged.
The UN and MTH sensor probes appear close together,
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suggesting redundancy in the information these sensor
probes supplied to the calibration and prediction PLS
modeling process even when three latent variables were
used. The ACE, ALAM, and TFE sensor probes are more
separate in space, suggesting that these sensor probes
supplied nonredundant information to the calibration and
prediction PLS modeling process.

After the loading plots suggested rédundancy
in the data from the UN and MTH sensor probes, the
sensor probe responses from the plurality of sensor
probes were further analyzed. Table 7 shows that the
PLS model had pointed out a subtle characteristic of the
actual data. Each column of Table 7 represents the
average change in sensor probe response for the various
sensor probes resulting from an incremental change in
the concentration of the given protein, keeping constant
the concentrations of the other two proteins. The step
change in the fibrinogen concentrations was a 5x
increase, while the step changes for albumin and

hemoglobin were 10x increases.
TABLE 7

Pertubation of Sensor Response Resulting from an Increase in the
Concentration of One Protein

Sensor Probe Protein Increased and Amount of Change (%)

Eb (5x) Ab (10x) Hb (10x)
UN 2185 38.7 67.6
MTH 2104 44.5 66.5
ACE 167.9 24.0 55.7
TFE 149.8 8.5 31.9
ALAM 264.8 16.4 119.0

It can be seen that the information from the
UN and MTH sensor probes was indeed redundant. This was
not apparent by merely looking at the data sets, for the
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numerical responses from these two sensor probes were
significantly different. However, the relative changes
in the sensor probe responses caused by alterations in
the test solutions were nearly identical. The ACE
sensor probe gave similar, but definitely different
responses. The TFE and ALAM sensor probes were shown to
be the most different in their responses.

Thus, the data set forth in the examples
demonstrate that multivariate analysis clearly provided
a powerful means of analyzing the sensor probe responses
from the plurality of sensor probes. In addition,
multivariate analysis provided information useful to the
selection of appropriate partially selective surfaces
for the construction and selection of surfaces for a
more optimal plurality of sensor probes. Based on
Figure 11, the predictive ability of the PLS models
built from sensor responses from the plurality of sensor
probes can be enhanced by replacing either the UN or MTH
sensor probes with a sensor probe that would provide
unique information to the calibration and prediction
process.  Sensor probes with plasma-deposited films of
plasma polymerized monomers containing phosphorous
(i.e., PH,/methane), chlorine (i.e., 1-Cholorbutane),
silicon, or organometallics are good candidates to
replace either the UN or the MTH sensor probes or use in
addition to the existing sensor probes.

EXAMPIE 7

This example illustrates a plurality of sensor
probes constructed with bulk acoustic wave devices. A
schematic drawing of this embodiment is shown in Figure
12 (Figures 12a, 12b, and 12c). Each bulk acoustic wave
device comprises a substrate material that allows
transmission of a voltage signal and a partially
selective surface. Each substrate is an 0.5 inch
diameter AT-cut quartz crystal wafer.
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When voltage is applied across each quartz
crystal wafer, the quartz crystal wafer oscillates at a
characteristic frequency of 10 MHz.

The partially selective surfaces are comprised
of vapor-deposited metal (similar to metal sputtering)
electrodes of different metals deposited on opposite
sides of the quartz crystal wafers. Some of the vapor
deposited metal electrodes are covered with a plasma-
deposited film produced by the plasma polymerization of
various monomers.

The signal-generating device is a series of
circuit boards that supplies each sensor probe with a
voltage that causes the sensor probe to oscillate at its
characteristic frequency of 10 MHz. The signal
collection device is a frequency counter. The frequency
counter 1is connected to a computer to which the
frequency information is transferred, stored, and
analyzed.

The plurality of sensor probes is contacted
with a biological fluid containing proteins which bind
to the partially selective surfaces Via multiple
noncovalent interactions. Each of the sensor probes
adsorbs a unique protein layer as a result of its unique
partially selective surface by multiple noncovalent
interactions. The characteristic oscillation frequency
of each sensor probe is perturbed uniquely by the
proteins binding to the partially selective surface on
each sensor probe. The changing oscillation frequency
of each sensor probe is collected by the frequency
counter as protein adsorption occurs. The resulting
data set is the change in oscillation frequency for each
sensor probe in the plurality of sensor probes for each
time point at which the oscillation frequency of each
sensor probe is recorded. These data form 2
multivariate data set which can be fully analyzed only

by using multivariate statistics.
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The sensing device is used as a biomedical
analyte sensor, using multivariate statistics, to relate
variations in the multivariate data set to the concen-
trations of certain biomedical analytes of interest,
such as albumin, glucose, and potassium ions. The
sensing device can also be used as a diagnostic sensor
device, using multivariate statistics to relate
variations in the multivariate data set to physiological
conditions of interest, such as diabetes, pregnancy, or
AIDS.

EXAMPLE 8

This example illustrates a plurality of sensor
probes constructed using surface acoustic wave (SAW)
devices. Figures 13a and 13b illustrate the embodiment
of this multiple-probe sensor. Each sensor probe is
comprised of a substrate, a ST-cut quartz wafer, with
two sets of interdigitated transducers on top of the
wafer. The interdigitated transducers, as shown in a
close-up in Figure 13, are overlapping fingers of
layered metal (a layer of gold on top of a layer of
chromium) . The spacing between each finger is 16
microns and the width of each finger is 16 microns.
There are 50 finger pairs in each set of interdigitated
transducers. The first set of chromium/gold
interdigitated transducers is at one edge of the guaartz
wafer, and the second set of chromium/gold
interdigitated transducers is at the other edge of the
quartz wafer.

The partially selective surfaces are plasma-
deposited films from the plasma polymerization of
various monomers deposited on top of the quartz wafers
and chromium/gold interdigitated transducers.
Additional partially selective surfaces comprise spin-
cast polymers deposited on top of the quartz wafers and
chromium/gold interdigitated transducers.
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The signal-generating device 1is a power
generator operating at radio frequencies that supplies
voltage to the first set of chromium/gold interdigitated
transducers. This voltage travels across the quartz
wafer in the form of a wave of quartz molecules
oscillating at a characteristic frequency of
approximately 159 MHz. The wave is received at the
second set of chromium/gold interdigitated transducers
which transmits the signal carried by the wave to a
signal-collection device. The signal-collection device
is a frequency counter. The frequency counter is
connected to a computer wherein the frequency
information is transferred, stored, and analyzed.

The plurality of sensor probes is contacted
with a biological fluid containing proteins which bind
to the partially selective surfaces via multiple
noncovalent interactions. Each of the sensor probes
adsorbs a unique protein layer by multiple noncovalent
interactions. The oscillation frequency of each sensor
probe is perturbed uniquely by the proteins binding to
the partially selective surface on the sensor probe.
The changing oscillation frequency of each sensor probe
is collected by the frequency counter as the protein
adsorption occurs. The resulting data set is the change
in oscillation frequency for each sensor in the
plurality of sensor probes for each time point at which
the oscillation frequency of each sensor probe is
recorded. This is a multivariate data set which can be
fully analyzed only by using multivariate statistics.

The sensing device can also be used as a
biomedical analyte sensor which uses multivariate

statistics as is described in Example 7 herein.

EXAMPLE 9

This example illustrates a multiple-probe

sensor device constructed using prism coupling of

near-infrared radiation into thin films of partially
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selective surfaces. This embodiment is illustrated in
the side view (14a) and top view (14c) of Figure 14.
The partially selective surfaces are plasma deposited
films from plasma polymerizable monomers deposited in
strips lengthwise on a quartz plate base. Here, the
substrate material forms the partially selective
surface. The quartz base does not transmit signal and
is not part of the substrate. Each sensor probe
comprises a lengthwise strip of the quartz plate and a
distinct region on the surface of this strip having a
unique plasma-deposited film.

After the partially selective surfaces are
deposited on each region of the quartz plate base, two
SF 6 glass prisms are attached to the quartz plate base.
One prism is at each end of the quartz plate base. The
signal-generating device is a near-infrared spectrometer
generating near-infrared radiation of various
wavelengths in the near-infrared region of the
electromagnetic spectrum.

The range of wavelengths in the near-infrared
region of the electromagnetic spectrum is 0.7 to 2.4
microns. The signal-generating device scans through the
near-infrared region of the electromagnetic spectrum,
starting at the shorter wavelengths of the near-infrared
region and generating successively longer wavelengths.
The radiation is transmitted into the first prism, then
is coupled from the prism into the distinct regions of
the partially selective surfaces deposited on the
surface of the quartz plate base. The near-infrared
radiation travels across the partially selective
surfaces deposited of the quartz plate base, propagating
only in the partially selective surfaces. At the far
end of the quartz plate, the r:ar-infrared radiation
leaves the partially selective surfaces as it is coupled
into the second prism, which directs the near-infrared
radiation to a signal-collection device. The signal-
collection device is a photosensitive lead sulfide
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detector which detects the intensity of the collected
near-infrared radiation at each wavelength. The lead
sulfide detector is connected to a computer to which the
intensity information is transferred and stored.

The plurality of sensor probes is contacted
with a biological fluid containing proteins which bind
to the partially selective surfaces via multiple
noncovalent  interactions. As the near-infrared
radiation of increasing wavelengths travels through each
partially selective surface, it interacts with a protein
layer that is binding to the partially selective
surface. Each of the sensor probes adsorbs a unique
protein layer by multiple noncovalent interactions. The
near-infrared radiation traveling through each partially
selective surface is perturbed uniquely by the proteins
binding to the partially selective surface on each
sensor probe. The perturbed near-infrared radiation
leaving each sensor probe 1is collected by the 1lead
sulfide detector (one detector is enough for all of the
probes) as the protein absorptipn occurs. The resulting
data set is the intensity of the near-infrared radiation
at each wavelength for each sensor in the plurality of
sensor probes for each time period in which the
near-infrared radiation was collected.

Similar sensing devices are constructed using
a signal-generating device that generates far-infrared
radiation at increasing wavelengths and a signal-
collection device that is sensitive to far-infrared
radiation, but is otherwise similar to the device
described herein using near-infrared radiation. The
range of wavelengths in the far-infrared region of the
electromagnetic spectrum is 14.3 to 50 microns. Other
sensing devices are constructed using a
signal-generating device that generates mid-infrared
radiation at increasing wavelengths and a signal-
collection device that 1is sensitive to mid-infrared

radiation, but is otherwise similar to the near-infrared
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device or the far-infrared device described herein. The
range of wavelengths in the mid-infrared region of the
electromagnetic spectrum is 2.4 to 14.3 microns. Still
further sensing devices are constructed using a
signal-generating device that generates visible
radiation at increasing wavelengths and a signal-
collection device that is sensitive to visible
radiation, but is otherwise similar to the device

described herein. The range of wavelengths in the

_visible region of the electromagnetic spectrum is 0.4 to

0.7 microns. Sensing devices are constructed using a
single generating device that generates ultraviolet
radiation and a signal collection device sensitive to
ultraviolet radiation, but is otherwise similar to the
device described herein. The range of wavelengths in
the ultraviolet region of the electromagnetic spectrum
is 0.2 to 0.4 microns. All of the near-infrared, mid-
infrared, visible, and ultraviolet sensing devices
operate much like the device described in this example.

EXAMPIE 10

This example illustrates a thin film waveguide
with a polystyrene film as a waveguide. The plurality
of sensor probes is constructed using prism coupling of
near-~infrared radiation into a film of spin-cast
polystyrene upon which a series of partially selective
surfaces has been deposited. This embodiment is
illustrated in Figure 14b and the spin-cast polystyrene
coats the quartz plate.

The near-infrared radiation travels across the
surface of the polystyrene-coated quartz plate,
propagating in the spin-cast polystyrene film. At the
far end of the polystyrene-coated quartz plate, the
near-infrared radiation is coupled from the spin-cast
polystyrene film into the second prism, which directs
the near-infrared radiation to a signal-collection

device. The signal-collection device is a photosensi-
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tive lead sulfide detector which detects the intensity
of the collected near-infrared radiation at each
wavelength. The lead sulfide detector is connected to a
computer in which the intensity information is
transferred, stored, and analyzed.

As the near-infrared radiation travels through
the‘spin-cast polystyrene £film, it interacts with the
partially selective surfaces and protein layer that is
binding to the partially selective surfaces. Each of
the sensor probes adsorbs a unique protein layer by
multiple noncovalent interactions. The near-infrared
radiation traveling through the spin-cast polystyrene
£ilm Dbeneath each partially selective surface is
perturbed uniquely by the partially selective surface
and the proteins binding to the partially selective
surface. The near-infrared radiation emanating from
each sensor probe is collected by a lead sulfide
detector as the protein adsorption occurs. The
resulting data set is the intensity of the near-infrared
radiation at each wavelength for each sensor in the
plurality of sensor probes for each time period in which
the near-infrared radiation was collected.

Similar sensing devices can also be
constructed using signal-generating devices that
generate far-infrared radiation at increasing
wavelengths, mid-infrared radiation, visible radiation,
and ultraviolet radiation, and corresponding signal

collection devices.

EXAMPLE 11
This example illustrates a plurality of sensor
probes constructed using a plurality of Lamb-wave
devices as shown in Figures 15a and 15b. Each sensor
probe comprises a substrate material that allows the
transmission of a voltage signal and a partially
selective surface. Each substrate is a silicon nitride

wafer with two sets of aluminum interdigitated
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transducers on the wafer. . The interdigitated
transducers are overlapping fingers of aluminum. The
spacing between each finger pair is 100 microns. There
are 25 finger pairs in each set of interdigitated
transducers. Between the silicon nitride and the metal
interdigitated transducers is a thin layer of aluminum
and a thin layer of zinc oxide. The first set of
aluminum interdigitated transducers is at one edge of
the silicon nitride wafer, and the second set of
aluminum interdigitated transducers is at the other edge
of the silicon nitride wafer.

The partially selective surfaces comprise
spin-cast polymers deposited on the silicon nitride
wafers. The signal-generating device is a power source
operating at radio frequencies that supplies a voltage
to the first set of aluminum interdigitated transducers,
causing the propagation of a Lamb wave at a
characteristic oscillation frequency in the silicon
nitride wafer. The wave is received at the second set
of aluminum interdigitated trapsducers, which transmits
the signal carried by the wave to a signal~collection
device. The signal-collection device is a frequency
counter which is connected to a computer to which the
frequency information is transferred and stored.

A schematic diagram of this device is
illustrated in Figure 15. When the plurality of sensor
probes, comprising the Lamb-wave devices with aluminum
interdigitated transducers, is contacted with a
biological fluid containing proteins which bind to the
partially selective surfaces via multiple noncovalent
interactions, the oscillation frequency of each sensor
probe is perturbed uniquely by the proteins binding to
the partially selective surface on the sensor probe.
The changing oscillatic- frequency of each sensor probe
is collected as protein adsorption occurs by the
frequency counter. The resulting data set is the change
in oscillation frequency for each sensor in the
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plurality of the sensor probes for each time point at
which the oscillation frequency of each sensor probe is

recorded. This is a multivariate data set.

EXAMPIE 12

, This example illustrates a plurality of sensor
probes constructed using a plurality of chemiresistor
devices as is illustrated in Figures 1l6a and 16b. Each
substrate is a ST-cut quartz wafer with one set of metal
interdigitated transducers on top of the wafer. The
interdigitated transducers are overlapping fingers of
gold. The spacing between each finger is 15 microns,
and the width of each finger is 15 microns. There are
50 finger pairs in the set of interdigitated
transducers. The partially selective surfaces comprise
films of semiconducting spin-cast polymers deposited on
top of the interdigitated transducers. The signal-
generating device is a power source that supplies a
small bias voltage to the interdigitated transducers,
causing a current to pass through the sensor probe. The
signal-collection device is an amperometer which is
connected to a computer to which the current information
is transferred and stored.

The plurality of sensor probes is contacted
with a biological fluid containing proteins which bind
to the partially selective surfaces via multiple
noncovalent interactions. Each of the sensor probes
adsorbs a unique protein layer by multiple noncovalent
interactions. The current flowing through each sensor
probe is perturbed uniquely by the protein layer binding
to the partially selective surface on the sensor probe.
The change in current in each sensor probe is collected
as protein adsorption occurs by the amperometer. The
resulting data set is the change in current for each
sensor in the plurality of the sensor probes for each

time point at which the current of each sensor probe is
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recorded. This is a multivariate data set. The sensing
device can also be used as a biomedical analyte sensor.

EXAMPIE 13

This example illustrates the multiple probe
sensor using fluorescence as the detection technique.
Fiuorescence is the emission of electromagnetic
radiation by an emitting body caused by the influx of
electromagnetic radiation into the emitting body. There
is a range of wavelengths in the influx of
electromagnetic radiation that will cause fluorescence
to occur. The emitted radiation can also be of various
wavelengths, but the maximum emitted energy intensity
occurs at a certain characteristic wavelength.
Fluorescent labels are often attached to biological
molecules for measurement purposes as a substitute for
radioactive labels. A common fluorescent label used in
biological sy.tems is fluorescein isothiocyanate (FITC).
When excited by electromagnetic radiation with a
wavelength of 492 nm, an FITC label emits
electromagnetic radiation with a maximum at a wavelength
of approximately 520 nm.

The plurality of sensor probes is constructed
using a plurality of fiber optic cables as the
substrate. This embodiment is shown in Figures 17a and
17b. Each fiber optic cable has a fused silica core 200

microns in diameter. The fused silica core is
surrounded by a layer of silicone rubber cladding that
is 100 microns thick. The silicone rubber cladding

layer is surrounded by a protective jacket of nylon that
is 100 microns thick. The substrate of each sensor
probe is a fiber optic cable from which a length of the
jacket and cladding sections have been removed using
sulfuric acid, leaving exposed the glass core. The
partially selective surfaces are different plasma-
deposited films from the plasma polymerization of
various monomers deposited on each fiber optic cable,
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especially in the region from which the jacket and
cladding sections have been removed. At the end of each
fiber optic cable is a dab of black wax. Each sensor
probe comprises a different fiber optic cable with a
different partially selective surface. The
signal-generating device is an argon ion laser that has
been tuned to produce light at a wavelength of 492 nm.
The signal-collection device is a photomultiplier tube
which is connected to a signal-processing device and a
computer.

Before the sample of biological fluid to be
tested is contacted with the plurality of sensor probes,
a volume of fibrinogen labeled with FITC is added to the
sample of biological fluid. The plurality of sensor
probes is then dipped intc the biological fluid and
radiation from the signal-generating device is projected
into the plurality of sensor probes. The sample of
biological fluid contains proteins which bind to the

partially selective surfaces via multiple noncovalent

interactions. Each of the sensor probes adsorbs a
unique protein layer by multiple noncovalent
interactions. A unique fraction of fibrinogen labeled

with FITC, which also adsorbs to the partially selective
surfaces via multiple noncovalent interactions, will be
present in each unique protein layer. The composition
and structure of the adsorbed protein layers change with
time as some adsorbed proteins rearrange and other
adsorbed proteins are displaced from the partially
selective surface and replaced by other proteins. The
unique fraction of fibrinogen labeled with FITC in each
unique protein layer will vary with time on each
partially selective surface.

As the radiation from the signal-generating
device impinges upon the fibrinogen with the FITC label,
electromagnetic radiation with a maximum wavelength of
520 nm is emitted by the label. This emitted radiation
is transmitted by the plurality of sensor probes and is
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then collected by the photomultiplier tube which
measures the intensity of the radiation emitted from the
unique protein layer adsorbed to the partially selective
surface on each sensor probe as the protein adsorption
occurs. The black wax at the end of each sensor probe
absorbs the radiation from the signal-generating device
that might otherwise be reflected back to the signal-
collection device. The resulting data set is the
intensity of the emitted radiation for each sensor in
the plurality of the sensor probes for each time point
at which the emitted radiation is collected. This is a
multivariate data set. The sensing device can also be
used a biomedical analyte sensor as described herein.

EXAMPLE 14
This example illustrates a plurality of sensor

probes constructed using a plurality of glass slides
upon which have been deposited plasma polymerized films
from the plasma polymerization of various monomers.
Each glass slide has a unique plasma polymerized film.
The substrate of each sensor probe is the glass slide
and the partially selective surface is the plasma
polymerized film. The sensor probes are attached one at
a time to a Wilhelmy balance. The Wilhelmy balance
(CAHN) is a microbalance specially designed to record
dynamic contact angles.

The main components of this example are
illustrated in Figure 18. The sensor probe 1is clipped
to the sensor probe holder, which is connected by wire
to a force measurement device (the signal-collection
device). The force measurement device is connected to a
computer to which the force information is transferred
and stored. When the sensor probe is dipped into a
biological fluid, the force measurement device measures
the force that develops at the sensor probe/fluid/air
interface. The sample of biological fluid is in a vial
that is situated on a platform of adjustable height.
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This platform is the signal-generating device. As the
platform moves up and down, the immersion depth of the
sensor probe is altered, changing the force developed at
the sensor probe/fluid/air interface. The data set
collected is the force at each immersion depth measured
as the immersion depth is increasing and the force at
each immersion depth as the immersion depth 1is
decreasing. After the data have been collected for one
of the sensor probes, the sensor probe is removed from
the sensor probe holder and a new sensor probe,
possessing a unique partially selective surface, is
attached. The data collection is repeated for this
sensor probe and for the remainder of the plurality of
sensor probes.

The resulting data set is the force at each
sensor probe/fluid/air interface at each immersion depth
as the immersion depth is increasing and the force at
each immersion depth at the sensor probe/fluid/air
interface when the immersion depth is decreasing for
each sensor probe in the plurality of sensor probes for
each immersion depth at which the force is recorded.
This is a multivariate data set. The sensing device can
also be used as a biomedical analyte sensor as described
herein.

Although the foregoing invention has been
described, in part, by way of illustration and example
for the purposes of clarity and understanding, it will
be apparent that certain changes or modifications may be
practiced without deviating from the spirit and scope of

the invention.
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Claims
We claim:

1. A diagnostic sensor device comprising:

a plurality of sensor probes and one or a
plurality of signal-generating devices that generates a
signal to the sensor probes, wherein each sensor probe
comprises a substrate that allows transmission of the signal
and a partially selective surface, wherein the partially
selective surface binds proteins within a biological fluid
through multiple, noncovalent interactions, and wherein the
partially selective surface of each sensor probe in the
diagnostic sensor device is different;

a detection means communicating with the plurality
of sensor probes and detecting the signals after interaction
with each partially selective surface: and

a means for analyzing the signals from each
partially selective surface by multivariate analysis and
communicating with the detection device.

2. The diagnostic sensor device of claim 1
wherein the means for analyzing the signals received from
each partially selective surface is a computer with
multivariate statistical analysis software.

3. The diagnostic sensor device of claim 1
wherein the partially selectiv: surface is produced by a
plasma-polymerized film, a spin-coated polymer, a plasma-
etched surface, or a metal-sputtered surface.

4. The diagnostic sensor device of claim 1
wherein the partially selective surface is a plasma-polymer-
ized film, wherein the polymerized monomer is selected from
the group consisting of 2-Mercaptoethanol, allylamine, allyl
alcohol, acrylic acid, methane, benzene, tetrafluoroethane,
methanol, acetone, chloroform, carbon tetrachloride,
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hexamethyldisilane, ethyl sulfide, ethyl chloroformate,
1,1,1,3,3,3,-Hexamethyldisilazane, acrylonitrile,
trimethyldiborane, pyridine, tetramethylgermanium,
2-Chloropropane, formic acid, ethylene oxide, ferrocene,
diphenyl selenide, butanone, bromobenzene, trimethyl borate,
tetrahydrofuran, chlorotrimethylsilane,
hydroxyethylmethacrylate, vinyltrimethylsilane, dimethyl
sulfoxide, hexafluorobenzene, perfluoropropane, allene,

organometallics, and combinations thereof.

5. The diagnostic sensor device of claim 3
wherein the partially selective surface is a plasma-etched
surface and wherein the plasma-etching gas is selected from
the group consisting of argon, neon, nitrogen, air, helium,

and combinations thereof.

6. The diagnostic sensor device of claim 1
wherein the sensor probe further comprises a base, wherein
the substrate and the partially selective surface are the
same, and wherein the substrate is supported by the base.

7. The diagnostic sensor device of claim 6
wherein the substrates and the partially selective surfaces

are a thin film waveguide.

8. The diagnostic sensor means of claim 1
wherein the detection means 1is selected from the group
consisting of infrared spectroscopy, UV spectroscopy,

visible spectroscopy, surface acoustic wave devices, bulk

acoustic wave devices, capacitance, radioimmunoassay,
chemiluminescence, Lamb-wave, fluorescence, Wilhelmy
balance, chemiresistor measurements, electrochemical

sensors, and enzyme-linked immunosorbent assay.

9. An array of diagnostic sensor probes wherein

each sensor probe comprises:
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a substrate that allows transmission of a signal,
and having a partially selective surface wherein the
partially selective surface binds proteins from a biological
fluid by multiple, nonco .lent interactions, and with the
proviso that the partially selective surfaces of each sensor
probe .of the array of the diagnostic sensor probes are
different.

10. The array of diagnostic sensor probes of
claim 9 wherein the partially selective surface is produced
by a plasma-polymerized film, a spin-coated polymer, a
bPlasma-etched surface, or a metal-sputtered surface.

11. The array of diagnostic sensor probes of
claim 9 wherein the partially selective surface is a plasma-
polymerized film, wherein the polymerized monomer is
selected from the group consisting of 2-Mercaptoethanol,
allylamine, allyl alcohol, acrylic acid, methane, benzene,
tetrafluoroethane, methanol, acetone, chloroform, carbon
tetrachloride, hexamethyldisilane, ethyl sulfide, ethyl
chloroformate, 1,1,1,3,3,3,-Hexamethyldisilazane, acrylo-
nitrile, pyridine, trimethyldiborane, tetramethylgermanium,
2-Chloropropane, formic acid, ethylene oxide, ferrocene,
diphenyl selenide, butanone, bromobenzene, trimethyl borate,
tetrahydrofuran, chlorotrimethylsilane, hydroxyethyl-
methacrylate, vinyltrimethylsilane, dimethyl sulfoxide,
hexafluorobenzene, perfluoropropane, allene, organo-
metallics, and combinations thereof.

12. The array of diagnostic sensor probes of
claim 9 wherein the partially selective surface is a plasma-
etched surface wherein the pl: “ma-etching gas is selected
from the group consisting of ~-rgon, neon, nitrogen, air,
helium, oxygen, fluorine, iodine, diborine, phosphine,
krypton, sulfur dioxide, silicon (IV) chloride, .and
combinations thereof.
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13. The array of diagnostic sensor probes of
claim 9 wherein each sensor probe further comprises a base,
wherein the substrate and partially selective surfaces are
the same, and wherein the substrate is supported by the

base.

14. The array of diagnostic sensor probes of
claim 13 wherein the substrates and the partially selective

surfaces are a thin film waveguide.

15. A method for diagnosing disease states or
physiological conditions in animals characterized by altered
protein presence and behavior in a biological fluid,
comprising:

contacting the biological fluid with a diagnostic
sensor device wherein the diagnostic sensor device comprises
a plurality of sensor probes, a signal-generating device or
a plurality of signal-generating devices, a detection means,
and a means for analyzing signals, wherein the
signal-generating device or the plurality of signal-
generating devices generate a signal to each sensor probe,
wherein each sensor probe comprises a substrate that allows
for transmission of the signal and a partially selective
surface, wherein the partially selective surface binds
proteins from the biological fluid by multiple, noncovalent
interactions, and with the proviso that the partially
selective surface of each sensor probe in the diagnostic
sensor device be different;

detecting the plurality of signals from the array
of sensor probes by the detection means; and

analyzing the plurality of signals by multivariate
analysis.

16. The method of claim 15 wherein the detection
means comprises a signal-collection device and wherein the
signal-collection device communicates by signal transmission

with each partially selective surface.
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17. The method of claim 15 wherein the means for
analyzing the plurality of signals from the array of sensor
probes by multivariate analysis is with a computer with
multivariate statistical analysis software.

18. The method of claim 15 wherein the biological
fluid is selected from the group consisting of whole blood,
E’2sma, serum, urine, saliva, sweat, tears, bile, semen, and
¢ brospinal fluid.

19. The method of claim 15 wherein the partially
selective surface is produced by a plasma-polymerized film,
a spin-coated polymer, a plasma-etched surface, or a metal-
sputtered surface.

20. The method of claim 19 wherein the partially
selective surface is a plasma-polymerized film wherein the
polymerized monomer is selected from the group consisting of
2-Mercaptoethanol, allylamine, allyl alcohol, acrylic acid,
methane, benzene, tetrafluoroethane, methanol, acetone,
chloroform, carbon tetrachloride, hexamethyldisilane, ethyl
sulfide, ethyl chloroformate, 1,1,1,3,3,3,-Hexamethyl-
disilazane, trimethyldiborane, acrylonitrile, pyridine,
tetramethylgermanium, 2-Chloropropane, formic acid, ethylene
oxide, ferrocene, diphenyl selenide, butanone, bromobenzene,
trimethyl borate, tetrahydrofuran, chlorotrimethylsilane,
hydroxyethylmethacrylate, vinyltrimethylsilane, dimethyl
sulfoxide, hexafluorobenzene, perfluoropropane, allene,
organometallics, and combinations thereof.

21. The method of claim 19 wherein the partially
selective surface is a plasma-etched surface, wherein the
pPlasma-etching gas is selected from the group consisting of
argon, neon, air, oxygen, fluorine, iodine, nitrogen,
diborine, phosphine, krypton, silicon (IV) chloride, sulfur
dioxide, helium and combinations thereof.
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22. The method of claim 19 wherein the substrate
and the partially selective surface are the same and are

supported by a base.

) 23. The method of claim 22 wherein the substrate
is a thin film waveguide forming the partially selective

surface.

24. The method of claim 15 wherein the detection
means is selected from the group consisting of infrared
spectroscopy, uv spectroscopy, visible spectroscopy,
surface acoustic wave devices, bulk acoustic wave devices,
capacitance, radioimmunoassays, chemiluminescence, Lamb-
wave, fluorescence, Wilhelmy balance, and enzyme-linked

immunosorbent assays.

25. An analyte-measuring device for measuring an
analyte or analytes in a biological fluid, comprising:

a plurality of sensor probes and one or a
plurality of signal-generating devices that generate a
signal to the sensor probes, wherein each sensor probe
comprises a substrate that allows transmission of the signal
and a partially selective surface, wherein the partially
selective surface binds proteins within a biological fluid
through multiple, noncovalent interactions and with the
proviso that the partially selective surface of each sensor
probe in the diagnostic sensor device is different;

a detection means communicating with the plurality
of sensor probes and detecting the signals after signal
interaction with each partially selective surface; and

a means for analyzing the signals received from
each partially selective surface by multivariate analysis

and communicating with the detection means.

26. The analyte-measuring device of claim 25

wherein the means for analyzing the signals received from
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each partially selective surface is ' a computer with
multivariate statistical analysis software.

27. The analyte-measur ng device of claim 25
wherein the partially selective surface is produced by a
plasma-polymerized film, a spin-coated polymer, a plasma-
etched surface, or a metal-sputtered surface.

28. The analyte-measuring device of claim 25
wherein the partially selective surface is a plasma-polymer-
ized film, wherein the polymerized monomer is selected from
the group consisting of 2-Mercaptoethanol, allylamine, allyl
alcohol, acrylic acid, methane, benzene, tetrafluoroethane,

methanol, acetone, chloroform, carbon tetrachloride,
hexamethyldisilane, ethyl sulfide, ethyl chloroformate,
1,1,1,3,3,3,-Hexamethyldisilazane, trimethyldiborane,
acrylonitrile, pyridine, tetramethylgermanium,

2-Chloropropane, formic acid, ethylene oxide, ferrocene,
diphenyl selenide, butanone, bromobenzene, trimethyl borate,

tetrahydrofuran, chlorotrimethylsilane,
hydroxyethylmethacrylate, vinyltrimethylsilane, dimethyl
sulfoxide, hexafluorobenzene, perfluoropropane, allene,

organometallics, and combinations thereof.

29. The analyte-measuring device of claim 28
wherein the partially selective surface is a plasma-etched
surface wherein the plasma-etchir; gas is selected from the
group consisting of argon, neon, nitrogen, air, heliunm,
oxygen, fluorine, iodine, diborine, phosphine, Kkrypton,
sulfur dioxide, silicon (IV) chloride and combinations
thereof.

30. The analyte-measuring device of claim 25
wherein the sensor probe further comprises a base wherein
the substrates and the partially selective surfaces are the

same, and wherein the substrate is supported on the base.
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31. The analyte-measuring device of claim 30

wherein the substrate is a thin film waveguide.

32. The analyte-measuring device of claim 25
wherein the detection means is selected from the group
consisting of infrared spectroscopy, UV spectroscopy,

visible spectroscopy, surface acoustic wave devices, bulk

acoustic wave devices, capacitance, radioimmunoassay,
chemiluminescence, Lamb-wave, fluorescence, Wilhelmy
balance, chemiresistor measurements, electrochemical

sensors, and enzyme-linked immunosorbent assay.
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