
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0042389 A1

Bradley et al.

US 20120042389A1

(43) Pub. Date: Feb. 16, 2012

(54)

(75)

(73)

(21)

(22)

(60)

(60)

INTEROPERABLE SYSTEMS AND METHODS
FOR PEER-TO-PEER SERVICE
ORCHESTRATION

Inventors: William Bradley, Newark, DE
(US); David Maher, Livermore,
CA (US); Gilles Boccon-Gibod,
Los Altos, CA (US)

Assignee: Intertrust Technologies Corp.

Appl. No.: 13/283,245

Filed: Oct. 27, 2011

Related U.S. Application Data

Division of application No. 1 1/829,837, filed on Jul.
27, 2007, which is a continuation of application No.
1 1/804,667, filed on May 17, 2007, which is a continu
ation of application No. 10/863.551, filed on Jun. 7,
2004.

Provisional application No. 60/476,357, filed on Jun.
5, 2003, provisional application No. 60/504,524, filed
on Sep. 15, 2003.

Publication Classification

(51) Int. Cl.
G06F2L/00 (2006.01)

(52) U.S. Cl. .. 726/26

(57) ABSTRACT

Systems and methods are described for performing policy
managed, peer-to-peer service orchestration in a manner that
Supports the formation of self-organizing service networks
that enable rich media experiences. In one embodiment, Ser
vices are distributed across peer-to-peer communicating
nodes, and each node provides message routing and orches
tration using a message pump and workflow collator. Distrib
uted policy management of service interfaces helps to provide
trust and security, Supporting commercial exchange of value.
Peer-to-peer messaging and workflow collation allow ser
vices to be dynamically created from a heterogeneous set of
primitive services. The shared resources are services of many
different types, using different service interface bindings
beyond those typically supported in a web service deploy
ments built on UDDI, SOAP and WSDL. In a preferred
embodiment, a media services framework is provided that
enables nodes to find one another, interact, exchange value,
and cooperate across tiers of networks from WANs to PANs.

O

CONSUMER
SCCKER

4.

PCSOFWARE
50 WIDEOPLAYER

PORTABLE MUSIC
PLAYER

2

WEE MUSIC
RELER

59 30

TARGHS
LICENSESERVICE

ENERTAINMENT
OE AEWAY

Patent Application Publication Feb. 16, 2012 Sheet 1 of 34 US 2012/0042389 A1

CONSER
ASCCKER

PCSOFWARE
s WoOPLE

PORTABEMUS
FAR

A REGIS
LiceNSESERVICE

o

WEEASIC
RELER

30

RANNEN
HOMEGAEWAY

F.G. 1

Patent Application Publication

NEMO Host

NEMO Host

210

NEMO Host

Feb. 16, 2012 Sheet 2 of 34

22O

NEMO Host

NEMO Host

3"Party web Service

US 2012/0042389 A1

N
NEMO Host

Tethered Node

FIG. 2A

Tethered Node

US 2012/0042389 A1 Feb. 16, 2012 Sheet 3 of 34 Patent Application Publication

eolaues qeða Áued „º?SOH OWEN?SOH OWEN

Patent Application Publication Feb. 16, 2012 Sheet 4 of 34 US 2012/0042389 A1

220

NEMO Host

28O ethered Node Tethered Node

FIG. 2C

Patent Application Publication Feb. 16, 2012 Sheet 5 of 34 US 2012/0042389 A1

NEMO Host 3' Party web Service

NEMO Host with Gateway Service

Tethered Node

285

Tethered Node

FIG. 2D

Patent Application Publication Feb. 16, 2012 Sheet 6 of 34 US 2012/0042389 A1

NEMO Host NEMO Host NEMO Proxy NEMO Host

Appears as a NEMO peer (via ar
Tethered Node

FIG. 2E

Patent Application Publication Feb. 16, 2012 Sheet 7 of 34 US 2012/0042389 A1

- Sch N
NEMO HOSt NEMO Host NEMO Host

Tethered Node

FIG. 2F

Patent Application Publication Feb. 16, 2012 Sheet 8 of 34 US 2012/0042389 A1

CONTENT PROVIDER SERVER
310

HOST APPLICATION WEB SERVICES

B. PACKAGER

f

OST APPLICATION WEB SERVICES

DRMENGINE SERVICES

HOST APPLICATION WEB SERVICES

RMENGINE SERVICES

PLAYER

330

PORABLEOEVICE

ORMENGINE SERVICES

34

FIG. 3

Patent Application Publication Feb. 16, 2012 Sheet 9 of 34 US 2012/0042389 A1

MUSIC
SERVICE

SBSCRBERS

DEWECE
MANFCURER

PORTABLE
DEVICE

FIG. 4

Patent Application Publication Feb. 16, 2012 Sheet 10 of 34 US 2012/0042389 A1

WORKFLOW
COLLATOR

F.G. 5A

Patent Application Publication Feb. 16, 2012 Sheet 11 of 34 US 2012/0042389 A1

ressessities assassifies assassistiaassessessesses

SERVICE ACCESS POINT 530

a.''''". Car Sr. as a swansocessessesses accesso

NATIVE SERVICES API m
510

F.G. 5B

Patent Application Publication Feb. 16, 2012 Sheet 12 of 34 US 2012/0042389 A1

NEMO Peer (participating as a Service User)

Service access Point (SAP)
Exposed interfaces

(XML Message-based Native Functions)

SAP Interface to NEMO Trust
SOAP Mapping Management

Processing -1)

SOAP Service Proxies or
Dynamic Invocaction Support

SOAP Message
Processing Hooks

NEMO Peer (participating as a Service Provider)

Service Adaptation Layer (SAL)

- Web Services Layer

SOAP Message
Processing Hooks

SOAP Service Skeleton

NEMO Trust
Management
Processing

Native Service
Implementation NEMO Worklow

Collator (Service
Orchestration)

FIG. 6A

Patent Application Publication

682

Trust
Engine

(Interceptor)

Web Services Layer

ervice Business
Logic

(may include
Authorization logic

Layer SOAP :
Message XML N Processing | | | Signature
Hooks Support :

EXMLN }| || Processing Encryption | | |
Support Support | | || || |

pp N N || ||

Feb. 16, 2012

ra Service Adaptation
s Layer (SAL)
-
a

Authorizatio
n Engine

(Interceptor)

XML Security

Sheet 13 of 34

Exposure via Native
Client API or Direct

Trust
Engine

(Interceptor)

SOAP
Message
Processing
Hooks

Embedding in Client

Service ACCeSS

US 2012/0042389 A1

684

Point (SAP)

XML security
Layer

Transport WSDL
Processing

Stack Support Encryption
Support

Communication Link
(USP, WiFi, Biuetooth,

Ethernet)

Patent Application Publication Feb. 16, 2012 Sheet 14 of 34 US 2012/0042389 A1

ARGETSERVICEBNONGS

SERVICE
ACCESSPONT

RESPONSE MESSAGES 750
so Maxwww.oxoov wroscosoxia

REQUEST MESSAGES A.

F.G. 7A

SERVICE

TO ACCESSFOINT
18O CL. NATIVE NATWEPROTOCOL

FIG. 7B

Patent Application Publication Feb. 16, 2012 Sheet 15 of 34 US 2012/0042389 A1

SERVICE
PROVIDING :
NODE

SERVICE
1me. Pic

NODE

72 SERVICE
ACCESS
POINT

725

SERVICE .
PROVIDENG

NODE

F.G. 7)

SERVICE
PROVIDING NODE 5

735

Patent Application Publication Feb. 16, 2012 Sheet 16 of 34 US 2012/0042389 A1

Service Adaptation Layer

Services interface Bindings (Entry Points)

Message Processing Layer

l Message Pump

XMLData Binding Support

Native Service AP

Native Services implementation

FIG. 8

Patent Application Publication

said

NEMO-ENABLED
APPLICATION

942

940

NEMO-ENABLE
APPLICATION

942

NRMO

SERVICE
ACCESS POINT

912

-vae- PROVIDER.X.

94.

Feb. 16, 2012 Sheet 17 of 34 US 2012/0042389 A1

90

NEMO
NEMO

SERVICE
PROWDER

styn SERVICE

WORKELOW
COLLATOR

FIG. 9A

950

90

NEMO

SERVICE
PROWDERX

A.

WORK FOW
COLLATOR

FIG. 9B

Patent Application Publication Feb. 16, 2012 Sheet 18 of 34 US 2012/0042389 A1

960
NEMO NOE

n
STORAE AND REREA OF

MESSAGE

US 2012/0042389 A1 Feb. 16, 2012 Sheet 19 of 34 Patent Application Publication

ORCHESTRATION
DESCRIPTION 4 i

[96

YO LYTTOO YIOLOYIXTHOMA HS HWSSBN

NOIIV?LSHHORO\ 016

(16

| NOSSROOHä

Patent Application Publication Feb. 16, 2012 Sheet 20 of 34 US 2012/0042389 A1

SERENERFACE 004

HOST APPLICATION

OC

SERVICES

F.G. 10

Patent Application Publication Feb. 16, 2012 Sheet 21 of 34 US 2012/0042389 A1

11
30 HOST APPLICATION

100
ORMENGINE

CONTROL, WM

102 106

CODE
MOULES

MEMORY

FIG. 11

Patent Application Publication Feb. 16, 2012 Sheet 22 of 34 US 2012/0042389 A1

FG, 12A

23S

g 23

25 ORM CS MEDIA
PACKAGENG resvos FORMAT
ENGINE SERVICES

FIG. 12B

US 2012/0042389 A1 Feb. 16, 2012 Sheet 23 of 34 Patent Application Publication

danois – O

W LVCI
Å?>? CIAL? A HONGI

ºzei zági
· · · *TOHINOO , !

(a)

Patent Application Publication Feb. 16, 2012 Sheet 24 of 34 US 2012/0042389 A1

14OOA
-1400B

NODE NODE

ATTRIBUTES (NODE TYPE, ETC)

CONTENT PROTECTION
SYMMETRIC KEY

CONTENT PROTECTION PRIVATE
KEY

CONTENT PROTECTION PUBLC
KEY

OBJECT CONFIDENTALITY
PROTECTION PRIVATE KEY

OBJECT CONFIDENTIALITY
PROTECTION PUBLIC KEY

142O

1422 FROM" iTO’ 1424
NODE REF NODE REF

1426
KEY DERVATION INFO

FIG. 14

Patent Application Publication Feb. 16, 2012 Sheet 25 of 34

1505B

1515B

1525B

ENCRYPTE) WH
KA) OR Kub

OBANED BY
PERSONALTY LINK

A-B.

OBTANED FROM
PERSONALITY

NODEA

FIG. 15

OBTANED BY
PROCESSING

US 2012/0042389 A1

-1500C

1505C

1515C

1525C

ENCRYPTED
WITHKB), OR
KpubB)

LINKB-C

Kpriv C

US 2012/0042389 A1 Feb. 16, 2012 Sheet 26 of 34 Patent Application Publication

ZICION {DNICHIAOY?d {{OIAYHOEIS

Patent Application Publication Feb. 16, 2012 Sheet 27 of 34 US 2012/0042389 A1

NOFICATION
PROCESSING

NODE
S

NOTFICATION
12 AWARE,.

NTERESTED
NODE

NOTIFICATIONANOLER
SERVICESCOVERY 170

NCIFICATION
PROCESSING

FIG. 17A NODE

| NOTIFICATION
ORIGINATING,
PROCESSING

NODE

NOTIFICATION
AWARE,

INTERESTED
NODE

NOTFICATION
ORIGINATING

NODE

NOTIFICATION
PROCESSING

NODE

FIG. 17B

Patent Application Publication Feb. 16, 2012 Sheet 28 of 34 US 2012/0042389 A1

1810A REQUESTING
NoDE

FIG. 18A

NODE DESCRIPTION

PEERREGISTRATION REQUEST

Y 1853

PEERREGISTRATION RESPONSE

RESPONSE
ACENOWLEDGMENT

FIG. 18B

180B
SERVICE

PROVIDING
NOXE

NortFICATION
AWARE,

NTERESTED
NODE

NODE STATUS CHANGENOTIFICATION,
SERVICE AWAABLY CHANGE

NOIFICATION
NOTECATION

81C ORIGINATING
NOE

FIG. 18C

Patent Application Publication Feb. 16, 2012 Sheet 29 of 34 US 2012/0042389 A1

EXCHANGE, USNG SERVICE BINDING

WITH IMPLICITY TRUSTED CHANNELA
SERVICE
ROWONG
NODE

REQUEST WITHTRUST CREDENTIAL
ATRIBES

RESPONSE WITH TRUST CREDENTIAL
ATRIBUTES

SERVICE
PROVIDING
NOE

F.G. 19B

CREDENTAL SEARCH
CRERA.

SERVICE
FROWONG

NODE

1910C REQUESTING

CREDENTIALDATA

F.G. 19C

US 2012/0042389 A1 Feb. 16, 2012 Sheet 30 of 34 Patent Application Publication

0907

{{CION ?NIZ?OHLOV
º*****

{{CION

{{CION £)NICHIAO Hà

US 2012/0042389 A1 Feb. 16, 2012 Sheet 31 of 34 Patent Application Publication

Patent Application Publication Feb. 16, 2012 Sheet 32 of 34 US 2012/0042389 A1

pkDS

Data Segment Image

pkCS

Code Segment Image ! 2200

pkEX

Number of Entries N (32 bits)

Each entry:

nameSize 98 bit)

FIG. 22

US 2012/0042389 A1 Feb. 16, 2012 Sheet 33 of 34 Patent Application Publication

„ 000€

SNOISN'HIXH HTI?O, WHOI

0.18%

US 2012/0042389 A1

INTEROPERABLE SYSTEMS AND METHODS
FOR PEER-TO-PEER SERVICE

ORCHESTRATION

RELATED APPLICATIONS

0001. This application is a divisional of U.S. application
Ser. No. 1 1/829,837, filed Jul. 27, 2007, which is a continu
ation of U.S. application Ser. No. 1 1/804,667, filed May 17,
2007, which is a continuation of U.S. application Ser. No.
10/863,551, filed Jun. 7, 2004, which claims the benefit of
U.S. Provisional Application Nos. 60/476,357, filed Jun. 5,
2003, entitled Systems and Methods for Peer-To-Peer Service
Orchestration, and 60/504,524, filed Sep. 15, 2003, entitled
Digital Rights Management Engine Systems and Methods,
all of which are incorporated herein by reference.

COPYRIGHT AUTHORIZATION

0002. A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile repro
duction by anyone of the patent document or the patent dis
closure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND

0003 Networks such as the Internet have become the pre
dominant medium for the delivery of digital content and
media related services. The emergence of standard web ser
vices protocols promises to accelerate this trend, enabling
companies to provide services that can interoperate across
multiple Software platforms and Support cooperation between
business services and consumers via standardized mecha
nisms.
0004 Yet, significant barriers exist to the goal of an
interoperable and secure world of media-related services. For
example, multiple, overlapping defacto and formal standards
can actually inhibit straightforward interoperability by forc
ing different implementations to choose between marginally
standard, but otherwise incompatible, alternative technical
approaches to addressing the same basic interoperability or
interconnection problems. In some cases these incompatibili
ties are due to problems that arise from trying to integrate
different generations oftechnologies, while in other cases the
problems are due to market choices made by different parties
operating at the same time but in different locales and with
different requirements. Thus, despite standardization, it is
often difficult to locate, connect to, and interact with devices
that provide needed services. And there are frequently incom
patibility issues between different trust and protection mod
els.
0005 While emerging web service standards such as
WSDL (Web Services Description Language) are beginning
to address some of these issues for Internet-facing systems,
Such approaches are incomplete. They fail to address these
issues across multiple network tiers spanning personal and
local area networks; home, enterprise, and department gate
ways; and wide area networks. Nor do they adequately
address the need for interoperability based on dynamic
orchestration of both simple and complex services using a
variety of service interface bindings (e.g., CORBA, WS-I,
Java RMI, DCOM, C function invocation, .Net, etc.), thus
limiting the ability to integrate many legacy applications. The

Feb. 16, 2012

advent of widely deployed and adopted peer-to-peer (P2P)
applications and networks further compounds the challenges
of creating interoperable media-related services, due in part
to the fact that there is no unified notion of how to represent
and enforce usage rights on digital content.

SUMMARY

0006 Embodiments of the systems and methods
described herein can be used to address some or all of the
foregoing problems. In one embodiment, a services frame
work is provided that enables multiple types of stakeholders
in the consumer or enterprise media space (e.g., consumers,
content providers, device manufacturers, service providers)
to find each other, establish a trusted relationship, and
exchange value in rich and dynamic ways through exposed
service interfaces. Embodiments of this framework—which
will be referred to generally as the Network Environment for
Media Orchestration (NEMO)—can provide a platform for
enabling interoperable, secure, media-related e-commerce in
a world of heterogeneous consumer devices, media formats,
communication protocols, and security mechanisms. Distrib
uted policy management of the service interfaces can be used
to help provide trust and security, thereby facilitating com
mercial exchange of value.
0007 While emerging web service standards are begin
ning to address interoperability issues for Internet-facing Ser
vices, embodiments of NEMO can be used to address interop
erability across multiple network tiers spanning personal and
local area networks; home, enterprise, and department gate
ways; and wide area networks. For example, NEMO can
provide interoperability in one interconnected system using
cellphones, game platforms, PDAs, PCs, web-based content
services, discovery services, notification services, and update
services. Embodiments of NEMO can further be used to
provide dynamic, peer-to-peer orchestration of both simple
and complex services using a variety of local and remote
interface bindings (e.g. WS-I1, Java RMI, DCOM, C, .Net,
etc.), thereby enabling the integration of legacy applications.
0008. In the media world, the systems and interfaces
required or favored by the major sets of Stakeholders (e.g.,
content publishers, distributors, retail services, consumer
device providers, and consumers) often differ widely. Thus, it
is desirable to unite the capabilities provided by these entities
into integrated services that can rapidly evolve into optimal
configurations meeting the needs of the participating entities.
0009 For example, diverse service discovery protocols
and registries, such as Bluetooth, UPnP, Rendezvous, JINI,
UDDI, and LDAP (among others) can coexist within the same
service, enabling each node to use the discovery service(s)
most appropriate for the device that hosts that node. Another
service might support IP-based as well as wireless SMS noti
fication, or various media formats (MP4, WMF, etc.).
00.10 Embodiments of NEMO satisfy these goals using
peer-to-peer (P2P) service orchestration. While the advan
tages of P2P frameworks have been seen for such things as
music and video distribution, P2P technology can be used
much more extensively.
0011 Most activity in web services has focused on
machine-to-machine interaction with relatively static net
work configuration and client service interactions. NEMO is
also capable of handling situations in which a person carries
parts of their personal area network (PAN), moves into the
proximity of a LAN or another PAN, and wants to reconfigure

US 2012/0042389 A1

service access immediately, as well as connect to many addi
tional services on a peer basis.
0012 Opportunities also exist in media and various other
enterprise services, and especially in the interactions between
two or more enterprises. While enterprises are most often
organized hierarchically, and their information systems often
reflect that organization, people from different enterprises
will often interact more effectively through peer interfaces.
For example, a receiving person/service in company A can
solve problems or get useful information more directly by
talking to the shipping person in company B. Traversing
hierarchies or unnecessary interfaces generally is not useful.
Shipping companies (such as FedEx and UPS) realize this
and allow direct visibility into their processes, allowing
events to be directly monitored by customers. Companies and
municipalities are organizing their services through enter
prise portals, allowing crude forms of self-service.
0013 However, existing peer-to-peer frameworks do not
allow one enterprise to expose its various service interfaces to
its customers and Suppliers in Such a way as to allow those
entities to interact at natural peering levels, enabling those
entities to orchestrate the enterprise's services in ways that
best suit them. This would entail, for example, some form of
trust management of those peer interfaces. Preferred embodi
ments of the present invention can be used to not only permit,
but facilitate, this P2P exposure of service interfaces.
0014. In the context of particular applications such as
DRM (Digital Rights Management), embodiments of NEMO
can be used to provide a service-oriented architecture
designed to address the deficiencies and limitations of closed,
homogeneous DRM systems. Preferred embodiments can be
used to provide interoperable, secure, media-related com
merce and operations for disparate consumer devices, media
formats, and security mechanisms.
0015. In contrast to many conventional DRM systems,
which require relatively sophisticated and heavyweight cli
ent-side engines to handle protected content, preferred
embodiments of the present invention enable client-side
DRM engines to be relatively simple, enforcing the gover
nance policies set by richer policy management systems oper
ating at the service level. Preferred embodiments of the
present invention can also provide increased flexibility in the
choice of media formats and cryptographic protocols, and can
facilitate interoperability between DRM systems.
0016 A simple, open, and flexible client-side DRM
engine can be used to build powerful DRM-enabled applica
tions. In one embodiment, the DRM engine is designed to
integrate easily into a web services environment, and into
virtually any host environment or software architecture.
0017 Service orchestration is used to overcome interop
erability barriers. For example, when there is a query for
content, the various services (e.g., discovery, search, match
ing, update, rights exchange, and notification) can be coordi
nated in order to fulfill the request. Preferred embodiments of
the orchestration capability allow a user to view all home and
Internet-based content caches from any device at any point in
a dynamic, multi-tiered network. This capability can be
extended to promote sharing of streams and playlists, making
impromptu broadcasts and narrowcasts easy to discover and
connect to, using many different devices, while ensuring that
rights are respected. Preferred embodiments of NEMO pro
vide an end-to-end interoperable media distribution system
that does not rely on a single set of standards for media
format, rights management, and fulfillment protocols.

Feb. 16, 2012

0018. In the value chain that includes content originators,
distributors, retailers, service providers, device manufactur
ers, and consumers, there are often a number of localized
needs in each segment. This is especially true in the case of
rights management, where content originators may express
rights of use that apply differently in various contexts to
different downstream value chain elements. A consumer gate
way typically has a much more narrow set of concerns, and an
end user device may have a yet simpler set of concerns,
namely just playing the content. With a Sufficiently auto
mated system of dynamically self-configuring distribution
services, content originators can produce and package con
tent, express rights, and confidently rely on value added by
other service providers to rapidly provide the content to inter
ested consumers, regardless of where they are or what kind of
device they are using.
(0019 Preferredembodiments of NEMO fulfill this goal by
providing means for multiple service providers to innovate
and introduce new services that benefit both consumers and
service providers without having to wait for or depend on a
monolithic set of end-to-end standards. Policy management
can limit the extent to which pirates can leverage those legiti
mate services. NEMO allows the network effect to encourage
the evolution of a very rich set of legitimate services provid
ing better value than pirates can provide.
0020 Some “best practice” techniques common to many
of the NEMO embodiments discussed below include the fol
lowing:

0021 Separation of complex device-oriented and ser
Vice-oriented policies

0022 Composition of sophisticated services from sim
pler services

0023 Dynamic configuration and advertisement of ser
vices

0024 Dynamic discovery and invocation of various ser
vices in a heterogeneous environment

0.025 Utilization of gateway services from simple
devices

0026. A novel DRM engine and architecture is also pre
sented that can be used with the NEMO framework. This
DRM system can be used to achieve some or all of the fol
lowing goals:
0027 Simplicity. In one embodiment, a DRM engine is
provided that uses a minimalist stack-based Virtual Machine
(VM) to execute control programs (e.g., programs that
enforce governance policies). For example, the VM might
consist of only a few pages of code.
0028 Modularity. In one embodiment, the DRM engine is
designed to function as a single module integrated into a
larger DRM-enabled application. Many of the functions that
were once performed by monolithic DRM kernels (such as
cryptography services) can be requested from the host envi
ronment, which may provide these services to other code
modules. This allows designers to incorporate standard or
proprietary technologies with relative ease.
0029 Flexibility. Because of its modular design, preferred
embodiments of the DRM engine can be used in a wide
variety of software environments, from embedded devices to
general-purpose PCs.
0030 Open. Embodiments of the DRM engine are suit
able for use as reference software, so that code modules and
APIs can be implemented by users in virtually any program
ming language and in Systems that they control completely. In

US 2012/0042389 A1

one embodiment, the system does not force users to adopt
particular content formats or restrict content encoding.
0031. Semantically Agnostic. In one embodiment, the
DRM engine is based on a simple graph-based model that
turns authorization requests into queries about the structure of
the graph. The vertices in the graph represent entities in the
system, and directed edges represent relationships between
these entities. However, the DRM engine does not need to be
aware of what these vertices and edges represent in any par
ticular application.
0032 Seamless Integration with Web Services. The DRM
client engine can use web services in several ways. For
example, Vertices and edges in the graph can be dynamically
discovered through services. Content and content licenses
may also be discovered and delivered to the DRM engine
through Sophisticated web services. Although one embodi
ment of the DRM engine can be configured to leverage web
services in many places, its architecture is independent of
web services, and can be used as a stand-alone client-side
DRM kernel.
0033 Simplified Key Management. In one embodiment,
the graph topology can be reused to simplify the derivation of
content protection keys without requiring cryptographic
retargeting. The key derivation method is an optional but
powerful feature of the DRM engine—the system can also, or
alternatively, be capable of integrating with other key man
agement Systems.
0034 Separation of Governance, Encryption, and Con

tent. In one embodiment, the controls that govern content are
logically distinct from the cryptographic information used to
enforce the governance. Similarly, the controls and crypto
graphic information are logically distinct from content and
content formats. Each of these elements can be delivered
separately or in a unified package, thus allowing a high degree
of flexibility in designing a content delivery system.
0035 Embodiments of the NEMO framework, its appli
cations, and its component parts are described herein. It
should be understood that the framework itself is novel, as are
many of its components and applications. It should also be
appreciated that the present inventions can be implemented in
numerous ways, including as processes, apparatuses, sys
tems, devices, methods, computer readable media, or a com
bination thereof. These and other features and advantages
will be presented in more detail in the following detailed
description and the accompanying drawings which illustrate
by way of example the principles of the inventive body of
work.

BRIEF DESCRIPTION OF THE DRAWINGS

0036) Embodiments of the inventive body of work will be
readily understood by referring to the following detailed
description in conjunction with the accompanying drawings,
wherein like reference numerals designate like structural ele
ments, and in which:
0037 FIG. 1 illustrates a sample embodiment of the sys
tem framework.
0038 FIG. 2a illustrates a conceptual network of system
nodes.
0039 FIG.2b illustrates system nodes in a P2P network.
0040 FIG. 2c illustrates system nodes operating across
the Internet.
0041 FIG. 2d illustrates a system gateway node.
0042 FIG.2e illustrates a system proxy node.
0043 FIG.2f illustrates a system device adapter node.

Feb. 16, 2012

0044
devices.
0045 FIG. 4 illustrates a conceptual DRM node authori
Zation graph.
0046 FIG. 5a illustrates a conceptual view of the archi
tecture of a system node.
0047 FIG. 5b illustrates multiple service interface bind
ings Supported by the service adaptation layer of a system
node.
0048 FIG. 6a illustrates basic interaction between a ser
Vice-providing system node and a service-consuming system
node.
0049 FIG. 6b is another example of an interaction
between a service-providing system node and a service-con
Suming system node.
0050 FIG. 7a illustrates a service access point involved in
a client-side WSDL interaction.
0051 FIG.7b illustrates a service access point involved in
a client-side native interaction.
0.052 FIG. 7c illustrates a service access point involved in
a service-side point-to-point interaction pattern.
0053 FIG. 7d illustrates a service access point involved in
a service-side point-to-multiple point interaction pattern.
0054 FIG. 7e illustrates a service access point involved in
a service-side point-to-intermediary interaction pattern.
0055 FIG. 8 illustrates an embodiment of the architecture
of the service adaptation layer.
0056 FIG. 9a illustrates an interaction pattern of a work
flow collator relying upon external service providers.
0057 FIG.9b illustrates an interaction pattern of a work
flow collator involved in direct multi-phase communications
with a client node.
0.058 FIG.9c illustrates a basic intra-node interaction pat
tern of a workflow collator.
0059 FIG. 9d illustrates a relatively complex interaction
pattern of a workflow collator.

FIG. 3 illustrates a conceptual network of DRM

0060 FIG. 10 illustrates the system integration of a DRM
engine.
0061 FIG. 11 illustrates an embodiment of the architec
ture of a DRM engine.
0062 FIG.12a illustrates a DRM engine and related ele
ments within a client-side system node.
0063 FIG. 12b illustrates a DRM engine and related ele
ments within a service-side system node.
0064 FIG. 13 illustrates an embodiment of content pro
tection and governance DRM objects.
0065 FIG. 14 illustrates an embodiment of node and link
DRM objects.
0066 FIG. 15 illustrates an embodiment of DRM crypto
graphic key elements.
0067 FIG. 16 illustrates a basic interaction pattern
between client and service-providing system nodes.
0068 FIG. 17a illustrates a set of notification processing
nodes discovering a node that Supports a notification handler
service.
0069 FIG. 17b illustrates the process of notification deliv
ery.

0070 FIG. 18a illustrates a client-driven service discov
ery scenario in which a requesting node makes a service
discovery request to a targeted service providing node.
0071 FIG. 18b illustrates a peer registration service dis
covery scenario in which a requesting node seeks to register
its description with a service providing node.

US 2012/0042389 A1

0072 FIG. 18c illustrates an event-based service discov
ery scenario in which an interested node receives a notifica
tion of a change in service availability (e.g., the existence of
a service within a service-providing node).
0073 FIG. 19a illustrates the process of establishing trust
using a service binding with an implicitly trusted channel.
0074 FIG. 19b illustrates the process of establishing trust
based on a request/response model.
0075 FIG. 19C illustrates the process of establishing trust
based on an explicit exchange of security credentials.
0076 FIG. 20 illustrates policy-managed access to a ser
vice.
0077 FIG. 21 illustrates a sample DRM node graph with
membership and key access links.
0078 FIG.22 illustrates an embodiment of the format of a
DRM VM code module.
0079 FIG. 23 illustrates a system function profile hierar
chy.
0080 FIG. 24 illustrates DRM music player application
scenarios.

DETAILED DESCRIPTION

0081. A detailed description of the inventive body of work
is provided below. While this description is provided in con
junction with several embodiments, it should be understood
that the inventive body of work is not limited to any one
embodiment, but instead encompasses numerous alterna
tives, modifications, and equivalents. For example, while
Some embodiments are described in the context of consumer
oriented content and applications, those skilled in the art will
recognize that the disclosed systems and methods are readily
adaptable for broader application. For example, without limi
tation, these embodiments could be readily adapted and
applied to the context of enterprise content and applications.
In addition, while numerous specific details are set forth in the
following description in order to provide a thorough under
standing of the inventive body of work, some embodiments
may be practiced without some or all of these details. More
over, for the purpose of clarity, certain technical material that
is known in the art has not been described in detail in order to
avoid unnecessarily obscuring the inventive body of work.

1. Concepts

0082) 1.1. Web Services
I0083. The Web Services Architecture (WSA) is a specific
instance of a Service Oriented Architecture (SOA). An SOA
is itself a type of distributed system consisting of loosely
coupled, cooperating Software agents. The agents in an SOA
may provide a service, request (consume) a service, or do
both. A service can be seen as a well-defined, self-contained
set of operations managed by an agent acting in a service
provider role. The operations are invoked over the network at
Some network-addressable location, called an endpoint, using
standard protocols and data formats. By self-contained, it is
meant that the service does not depend directly on the state or
context of another service or encompassing application.
0084 Examples of established technologies that support
the concepts of an SOA include CORBA, DCOM, and J2EE.
WSA is attractive because it is not tied to a specific platform,
programming language, application protocol stack, or data
format convention. WSA uses standard formats based on
XML for describing services and exchanging messages
which promotes loose coupling and interoperability between

Feb. 16, 2012

providers and consumers, and Supports multiple standard
Internet protocols (notably HTTP), which facilitates deploy
ment and participation in a potentially globally distributed
system.
I0085. An emerging trend is to view an SOA in the context
of a “plug-and-play service bus. The service bus approach
provides for orchestration of services by leveraging descrip
tion, messaging, and transport standards. The infrastructure
may also incorporate standards for discovery, transformation,
security, and perhaps others as well. Through the intrinsic
qualities of the ubiquitous standards incorporated into the
WSA, it is flexible, extensible, and scalable, and therefore
provides the appropriate foundation for constructing an
orchestrated service bus model. In this model, the fundamen
tal unit of work (the service) is called a web service.
0086. There are a wide number of definitions for a web
service. The following definition comes from the World Wide
Web Consortium (W3C) Web Services Architecture working
draft (Aug. 8, 2003—see www.w3.org/TR/ws-arch):

0087. A Web service is a software system designed to
Support interoperable machine-to-machine interaction
over a network. It has an interface described in a
machine-processable format (specifically WSDL).
Other systems interact with the Web service in a manner
prescribed by its description using SOAP-messages,
typically conveyed using HTTP with an XML serializa
tion in conjunction with other Web-related standards.

While the W3C definition provides a useful starting point, it
should be understood that the term “web services” is used
herein in a broader sense, without limitation, for example, to
the use of specific standards, formats, and protocols (e.g.,
WSDL, SOAP, XML, HTTP, etc.).
I0088 A particular web service can be described as an
abstract interface for a logically coherent set of operations
that provides a basis for a (possibly transient) relationship
between a service provider and a service requester.
I0089. Of course, actual web services have concrete imple
mentations. The provider's concrete implementation is some
times referred to as the service (as distinguished from web
service). The software that actually implements the function
ality for the service provider is the provider agent and for the
service requester, the requester agent. The person or organi
Zation that owns the agent is referred to as the provider entity,
or requester entity, as appropriate. When used by itself.
requester or provider may refer to either the respective entity
or agent depending on context.
0090 A web service exists to fulfill a purpose, and how
this is achieved is specified by the mechanics and semantics
of the particular web service message exchange. The mechan
ics refers to the precise machine-processable technical speci
fications that allow the message exchange to occur over a
network. While the mechanics are precisely defined, the
semantics might not be. The semantics refers to the explicitor
implicit “contract in whatever form it exists, governing the
understanding and overall expectations between the requester
and provider entities for the web service.
0091 Web services are often modeled in terms of the
interactions of three roles: (i) Service Provider; (ii) Service
Requester; and (iii) Service Registry. In this model, a service
provider “publishes the information describing its web ser
vice to a service registry. A service requester “finds' this
information via Some discovery mechanism, and then uses
this information to “bind to the service provider to utilize the
service. Binding simply means that the requester will invoke

US 2012/0042389 A1

the operations made available by the provider using the mes
sage formatting, data mapping, and transport protocol con
ventions specified by the provider in the published service
description. The XML-based language used to describe this
information is called Web Services Description Language
(WSDL).
0092. A service provider offers access to some set of
operations for a particular purpose described by a WSDL
service description; this service description is published to a
registry by any of a number of means so that the service may
be discovered. A registry may be public or private within a
specific domain.
0093. A service registry is software that responds to ser
Vice search requests by returning a previously published ser
Vice description. A service requester is Software that invokes
various operations offered by a provider according to the
binding information specified in the WSDL obtained from a
registry.
0094. The service registry may exist only conceptually or
may in fact exist as real Software providing a database of
service descriptions used to query, locate, and bind to a par
ticular service. But whether a requester actually conducts an
active search for a service or whether a service description is
statically or dynamically provided, the registry is a logically
distinct aspect of the web services model. It is interesting to
note that in a real world implementation, a service registry
may be a part of the service requester platform, the service
provider platform, or may reside at another location entirely
identified by some well-known address oran address supplied
by Some other means.
0095. The WSDL service description supports loose cou
pling, often a central theme behind an SOA. While ultimately
a service requester will understand the semantics of the inter
face of the service it is consuming for the purpose of achiev
ing some desired result, the service description isolates a
service interface from specific service binding information
and Supports a highly dynamic web services model.
0096. A service-oriented architecture can be built on top of
many possible technology layers. As currently practiced, web
services typically incorporate or involve aspects of the fol
lowing technologies:
0097 HTTP a standard application protocol for most
web services communications. Although web services can be
deployed over various network protocols (e.g., SMTP, FTP,
etc), HTTP is the most ubiquitous, firewall-friendly transport
in use. For certain applications, especially within an intranet,
other network protocols may make sense depending on
requirements; nevertheless, HTTP is a part of almost any web
services platform built today.
0098 XML a standard for formatting and accessing the
content (and information about the content) of structured
information. XML is a text-based standard for communicat
ing information between web services agents. Note that the
use of XML does not mean that message payloads for web
services may not contain any binary data; but it does mean
that this data will be formatted according to XML conven
tions. Most web services architectures do not necessarily
dictate that messages and data be serialized to a character
stream—they may just as likely be serialized to a binary
stream where that makes sense but if XML is being used,
these streams will represent XML documents. That is, above
the level of the transport mechanism, web service messaging
will often be conducted using XML documents.

Feb. 16, 2012

0099 Two XML subset technologies that are particularly
important to many web services are XML Namespaces and
XML Schema. XML-Namespaces are used to resolve naming
conflicts and assert specific meanings to elements contained
with XML documents. XML-Schema are used to define and
constrain various information items contained within an
XML document. Although it is possible (and optional) to
accomplish these objectives by other means, the use of XML
is probably the most common technique used today. The
XML document format descriptions for web service docu
ments themselves are defined using XML-Schema, and most
real world web services operations and messages themselves
will be further defined incorporating XML-Schema.
0100 SOAP an XML-based standard for encapsulating
instructions and information into a specially formatted pack
age for transmission to and handling by other receivers.
SOAP (Simple Object Access Protocol) is a standard mecha
nism for packaging web services messages for transmission
between agents. Somewhat of a misnomer, its legacy is as a
means of invoking distributed objects and in that respect it is
indeed “simpler than other alternatives; but the recent trend
is to consider SOAP as an XML-based wire protocol for
purposes that have transcended the original meaning of the
acronym.
0101 SOAP defines a relatively lightweight convention
for structuring messages and providing information about
content. Each SOAP document contains an envelope that is
divided into a header and a body. Although structurally simi
lar, the header is generally used for meta-information or
instructions for receivers related to the handling of the content
contained in the body.
0102 SOAP also specifies a means of identifying features
and the processing needed to fulfill the features’ obligations.
A Message Exchange Pattern (MEP) is a feature that defines
a pattern for how messages are exchanged between nodes. A
common MEP is request-response, which establishes a
single, complete message transaction between a requesting
and a responding node (see http://www.w3.org/TR/2003/
REC-soap 12-part2-20030624/isoapsupmep.).
(0103 WSDL an XML-based standard for describing
how to use a web service. From a WSDL perspective, a
service is related to a set of messages exchanged between
service requesters and providers. Messages are described in
an abstract manner that can be mapped to specific protocols.
The exchange of messages that invokes some functionality is
called an operation. A specific set of operations defines an
interface. An interface is tied to a concrete message format
and protocol by a named binding. The binding (the mapping
ofan interface to a concrete protocol) is associated with a URI
appropriate to the protocol, resulting in an endpoint. A col
lection of one or more related endpoints (mapping an inter
face to concrete protocols at specific URIs) comprises a ser
W1C.

0104. These definitions map to specific WSDL elements:

Types container element for type definitions
Message an abstract definition of the type of data

being sent
Operation an abstract description of an action

based on a combination of input, output,
and fault messages

portType an abstract set of operations - an
interface

US 2012/0042389 A1

-continued

binding specification of a concrete protocol and
data format for an interface (portType)

port the combination of a binding and an
actual network address - an endpoint

service a collection of related ports (endpoints)

0105 WSDL defines a common binding mechanism and
then defines specific binding extensions for SOAP, HTTP
GET/POST, and MIME. Thus, binding does not necessarily
mean binding to a transport protocol directly, but to a specific
wire format. The most common binding for web services is
SOAP, although actual SOAP message exchanges generally
occur over HTTP on port 80 (via an http://URI). However, an
interface can be directly bound to HTTP; alternatively, for
example, a binding for SOAP can use SMTP (via a mailto://
URI). An implementation can even define its own wire format
and use a custom binding extension.
0106 WSDL encourages maintainability and reusability
by providing Support for an <import element. Using import,
a WSDL document can be divided into separate pieces in
ways that make sense to an organization. For a cohesive web
services environment desiring some degree of separation
between an interface definition and an implementation defi
nition, the following separation into three documents is rea
sonable:

A schema (.XSd) document - the root node is <schema and the
namespace is "http://www.w3.org/2001/XMLSchema.

A service interface description containing what is considered the
reusable portion
<message->
<portType
<binding

A service implementation definition containing the specific service
endpoint
<service>

0107 WSDL interfaces are not exactly like Java (or IDL,
or some other programming language) interfaces. For
example, a Java interface declaration specifies a set of meth
ods that must match at least a Subset of the methods of a class
claiming to implement that interface. More than one class can
implement an interface, and each implementation can be dif
ferent; but the method signatures (method name and any input
or output types) generally must be identical. This is mandated
by the language and enforced at compile time, runtime, or
both.

0108. A WSDL interface is different, and more like an
actual abstract class that alone is not fully useful. Various
WSDL interfaces, or portTypes, of a single web service are
logically related in the sense that the set of operation names
should be identical—as if the portType did, in fact, implement
a specific contract defined somewhere else—but no such ele
ment actually exists and there is no mechanism for enforcing
portType symmetry. Each portType is generally named to
identify the type of binding it supports—even though a port
Type alone does not create a binding. The portType opera
tions for related portTypes are named the same, but the input,
output, and fault messages (if present) are mapped to specific
messages that contain named parts also necessary for Sup
porting a specific binding. This raises the point that messages

Feb. 16, 2012

themselves are not completely abstract. A web service may
and often does need to define similar but distinct messages for
the various bindings required.
0109 As will be illustrated below, by leveraging emerging
web service and related Standards, a system architecture can
be developed that facilitates the creation of networked
interoperable media-related services that utilize a variety of
different protocols and interfaces across a wide range ofhard
ware and Software platforms and operating environments.
0110 1.2. Roles
0111 Preferred embodiments of the present invention
seek to enable, promote, and/or actively support a peer-to
peer environment in which peers can spontaneously offer a
variety of functionality by exposing services. One embodi
ment of the framework discourages viewing peers as having a
fixed set of capabilities; and instead encourages a model
where a peer at any point in time is aparticipant in one or more
roles.

0112 A role can be defined by a set of services that a given
peer exposes in combination with a specific behavior pattern.
At any given moment a NEMO-enabled node may act in
multiple roles based on a variety of factors: its actual imple
mentation footprint providing the functionality for Support
ing a given set of services, administrative configuration,
information declaring the service(s) the peer is capable of
exposing, and load and runtime policy on service interfaces.
0113. An explicit set of roles could be defined based on
various different types of services. Over time, as common
patterns of participation are determined and as new services
are introduced, a more formal role categorization scheme
could be defined. A preliminary set of roles that may be
formalized over time could include the following:
0114 Client—a relatively simple role in which no services
are exposed, and the peer simply uses services of other
peers.

0115 Authorizer this role denotes a peer acting as a
Policy Decision Point (PDP), determining if a requesting
principal has access to a specified resource with a given set
of pre-conditions and post-conditions.

0116 Gateway in certain situations a peer may not be
able to directly discover or interact with other service pro
viders, for reasons including: transport protocol incompat
ibility, inability to negotiate a trusted context, or lack of the
processing capability to create and process the necessary
messages associated with a given service. A gateway is a
peer acting as a bridge to another peer in order to allow the
peer to interact with a service provider. From the perspec
tive of identity and establishing an authorized and trusted
context for operation, the requesting peer may actually
delegate to the gateway peer its identity and allow that peer
to negotiate and make decisions on its behalf. Alterna
tively, the gateway peer may act as a simple relay point,
forwarding or routing requests and responses.

0117 Orchestrator in situations where interaction with a
set of service providers involves nontrivial coordination of
services (possibly including transactions, distributed State
management, etc.), it may be beyond a peer's capability to
participate. An orchestrator is a specialization of the gate
way role. A peer may request an orchestrator to act on its
behalf, intervening to provide one or more services. The
orchestrating peer may use certain additional NEMO com
ponents, such as an appropriately configured Workflow
Collator in order to satisfy the orchestration requirements.

US 2012/0042389 A1

0118. Given the goal of “providing instant gratification by
satisfying a request for any media, in any format, from any
Source, at any place, at any time, on any device complying
with any agreeable set of usage rules, the following informal
model illustrates how this goal can beachieved using embodi
ments of the NEMO framework. It will become apparent from
the highest level of the model (without enumerating every
aspect of how NEMO enables all of the media services that
one can imagine) how NEMO enables lower-level services
from different tiers in the model to be assembled into richer
end-to-end media services.

0119. In one embodiment of this model there are four tiers
of service components: 1) Content Authoring, Assembly, and
Packaging services, 2) Web-based Content Aggregation and
Distribution services, 3) Home Gateway services, and 4)
Consumer Electronics devices.
0120 Each of these four tiers typically has different
requirements for security, rights management, service dis
covery, service orchestration, user interface complexity, and
other service attributes. The first two tiers fit very roughly into
the models that we see for “traditional web services, while
the last two tiers fit more into what we might call a personal
logical network model, with certain services of the home
gateway being at the nexus between the two types of models.
However, services for CE devices could occasionally appear
in any of the tiers.
0121 One dilemma lies in the desire to specialize parts of
the framework for efficiency of implementation, while being
general enough to encompass an end-to-end Solution. For
example, a UDDI directory and discovery approach may
work well for relatively static and centralized web services,
but for a more dynamic transient merging of personal net
works, discovery models such as those found in UPnP and
Rendezvous may be more appropriate. Thus, in some
embodiments multiple discovery standards are accommo
dated within the framework
0122 Similarly, when rights management is applied to
media distribution through wholesale, aggregator, and retail
distribution sub-tiers, there can be many different types of
complex rights and obligations that need to be expressed and
tracked, Suggesting the need for a highly expressive and com
plex rights language, Sophisticated content governance and
clearing services, and a global trust model. However, rights
management and content governance for the home gateway
and CE device tiers may entail a different trust model that
emphasizes fair use rights that are relatively straightforward
from the consumer's point of view. Peer devices in a personal
logical network may want to interact using the relatively
simple trust model of that network, and with the ability to
interact with peers across a wide area network using a global
trust model, perhaps through proxy gateway services. At the
consumer end, complexity arises from automated manage
ment of content availability across devices, some of which are
mobile and intermittently intersect multiple networks. Thus,
an effective approach to rights management, while enabling
end-to-end distribution, might also be heterogeneous, Sup
porting a variety of rights management services, including
services that interpret expressions of distribution rights and
translate them, in context, to individual consumer use rights
in a transaction that is orchestrated with a sales transaction, or
perhaps another event where a Subscription right is exercised.
(0123 1.3. Logical Model
0.124. In one embodiment, the system framework consists
of a logically connected set of nodes that interact in a peer

Feb. 16, 2012

to-peer (P2P) fashion. Peer-to-peer computing is often
defined as the sharing of resources (such as hard drives and
processing cycles) among computers and other intelligent
devices. See http://www.intel.com/cure/peer.htm. Here, P2P
may be viewed as a communication model allowing network
nodes to symmetrically consume and provide services of all
sorts. P2P messaging and workflow collation allow rich ser
vices to be dynamically created from a heterogeneous set of
more primitive services. This enables examination of the
possibilities of P2P computing when the shared resources are
services of many different types, even using different service
bindings.
0.125. Different embodiments can provide a media ser
vices framework enabling stakeholders (e.g., consumers,
content providers, device manufacturers, and service provid
ers) to find one another, to interact, exchange value, and to
cooperate in rich and dynamic ways. These different types of
services range from the basic (discovery, notification, search,
and file sharing) to more complex higher level services (such
as lockers, licensing, matching, authorization, payment trans
action, and update), and combinations of any or all of these.
0.126 Services can be distributed across peer-to-peer com
municating nodes, each providing message routing and
orchestration using a message pump and workflow collator
(described in greater detail below) designed for this frame
work.
I0127 Nodes interact by making service invocation
requests and receiving responses. The format and payload of
the request and response messages are preferably defined in a
standard XML schema-based web service description lan
guage (e.g., WSDL) that embodies an extensible set of data
types enabling the description and composition of services
and their associated interface bindings. Many of the object
types in WSDL are polymorphic and can be extended to
Support new functionality. The system framework Supports
the construction of diverse communication patterns, ranging
from direct interaction with a single service provider to a
complex aggregation of a choreographed set of services from
multiple service providers. In one embodiment, the frame
work Supports the basic mechanisms for using existing Ser
vice choreography standards (WSCI, BPEL, etc.), and also
allows service providers to use their own conventions.
I0128. The syntax of messages associated with service
invocation are preferably described in a relatively flexible and
portable manner, as are the core data types used within the
system framework. In one embodiment, this is accomplished
using WSDL to provide relatively simple ways for referenc
ing semantic descriptions associated with described services.
I0129. A service interface may have one or more service
bindings. In such an embodiment, a node may invoke the
interface of another node as long as that node's interface
binding can be expressed in, e.g., WSDL, and as long as the
requesting node can Support the conventions and protocols
associated with the binding. For example, if a node Supports
a web service interface, a requesting node may be required to
support SOAP, HTTP, WS-Security, etc.
0.130. Any service interface may be controlled (e.g., rights
managed) in a standardized fashion directly providing
aspects of rights management. Interactions between nodes
can be viewed as governed operations.
I0131 Virtually any type of device (physical or virtual) can
be viewed as potentially NEMO-enabled, and able to imple
ment key aspects of the NEMO framework. Device types
include, for example, consumer electronics equipment, net

US 2012/0042389 A1

worked services, and software clients. In a preferred embodi
ment, a NEMO-enabled device (node) typically includes
Some or all of the following logical modules (discussed in
greater detail below):
0132 Native Services API the set of one or more ser
vices that the device implements. There is no requirement
that a NEMO node expose any service directly or indirectly
in the NEMO framework.

0.133 Native Service Implementation the correspond
ing set of implementations for the native services API.

0134 Service Adaptation Layer the logical layer
through which an exposed subset of an entity's native ser
vices is accessed using one or more discoverable bindings
described in, e.g., WSDL.

0135 Framework Support Library—components that pro
vide support functionality for working with the NEMO
Framework including Support for invoking service inter
laces, message processing, service orchestration, etc.

0.136 1.4. Terminology
0.137 In one embodiment, a basic WSDL profile defines a
minimum “core set of data types and messages for Support
ing interaction patterns and infrastructural functionality.
Users may either directly, in an ad-hoc manner, or through
Some form of standardization process, define other profiles
built on top of this core, adding new data and service types and
extending existing ones. In one embodiment, this core profile
includes definitions for some or all of the following major
basic data types: Node—a representation of a participant in
the system framework. A node may act in multiple roles
including that of a service consumer and/or a service pro
vider. Nodes may be implemented in a variety of forms
including consumer electronic devices, Software agents such
as media players, or virtual service providers such as content
search engines, DRM license providers, or content lockers.
0.138. Device—encapsulates the representation of a vir
tual or physical device.

0.139. User—encapsulates the representation of a client
USC.

0140 Request—encapsulates a request for a service to a
set of targeted Nodes.

0141 Request Input—encapsulates the input for a
Request.

0142. Response—encapsulates a Response associated
with a Request.

0143 Request Result—encapsulates the Results within a
Response associated with some Request.

0144. Service—encapsulates the representation of a set of
well-defined functionality exposed or offered by a provider
Node. This could be, for example, low-level functionality
offered within a device such as a cell phone (e.g. a voice
recognition service), or multi-faceted functionality offered
over the world-wide web (e.g. a shopping service). Ser
vices could cover a wide variety of applications, including
DRM-related services such as client personalization and
license acquisition.

0145 Service Provider—an entity (e.g., a Node or Device)
that exposes some set of Services. Potential Service Pro
viders include consumer electronics devices, such as cell
phones, PDAs, portable media players and homegateways,
as well as network operators (such as cable head-ends),
cellular network providers, web-based retailers and con
tent license providers.

0146 Service Interface—a well-defined way of interact
ing with one or more Services.

Feb. 16, 2012

0147 Service Binding encapsulates a specific way to
communicate with a Service, including the conventions
and protocols used to invoke a Service Interface. These
may be represented in a variety of well-defined ways, such
as the WS-I standard XML protocol, RPC based on the
WSDL definition, or a function invocation from a DLL.

0148 Service Access Point (SAP)—encapsulates the
functionality necessary for allowing a Node to make a
Service Invocation Request to a targeted set of Service
Providing Nodes, and receive a set of Responses.

0149 Workflow Collator (WFC)—a Service Orchestra
tion mechanism that provides a common interface allowing
a Node to manage and process collections of Requests and
Responses related to Service invocations. This interface
provides the basic building blocks to orchestrate Services
through management of the Messages associated with the
Services.

0150. In the context of a particular application, such as
digital rights management (DRM), a typical profile might
include various DRM-related services (described below) for
the following set of content protection and governance
objects, which represent entities in the system, protect con
tent, associate usage rules with the content, and determine if
access can be granted when requested:
0151 Content Reference—encapsulates the representa
tion of a reference or pointer to a content item. Such a
reference will typically leverage other standardized ways
of describing content format, location, etc.

0152 DRM Reference—encapsulates the representation
of a reference or pointer to a description of a digital rights
management format.

0153. Link links between entities (e.g., Nodes).
0154 Content represents media or other content.
0155 Content Key—represents encryption keys used to
encrypt Content.

0156 Control—represents usage or other rules that gov
ern interaction with Content.

0157 Controller represent associations between Con
trol and ContentKey objects

0158 Projector represent associations between Content
and ContentKey objects

0159. In one embodiment, a core profile includes defini
tions for some or all of the following basic Services:
0160 Authorization—a request or response to authorize
Some participant to access a Service.

0.161 Governance The process of exercising authorita
tive or dominating influence over Some item (e.g., a music
file, a document, or a Service operation). Such as the ability
to download and install a software upgrade. Governance
typically interacts with Services providing functionality
Such as trust management, policy management, and con
tent protection.

0162 Message Routing a Request or Response to pro
vide message routing functionality, including the ability to
have the Service Providing Node forward the message or
collect and assemble messages.

0163 Node Registration—a Request or Response to per
form registration operations for a Node, thereby allowing
the Node to be discovered through an Intermediate Node.

0164. Node Discovery (Query)—a Request or Response
related to the discovery of Nodes.

0.165. Notification—a Request or Response to send or
deliver targeted Notification messages to a given set of
Nodes.

US 2012/0042389 A1

0166 Security Credential Exchange—a Request or
Response related to allowing Nodes to exchange security
related information, Such as key pairs, certificates, or the
like.

0167 Service Discovery (Query)—a Request or Response
related to the discovery of Services provided by some set of
one or more Nodes.

0168 Service Orchestration. The assembly and coordi
nation of Services into manageable, coarser-grained Ser
vices, reusable components, or full applications that adhere
to rules specified by a service provider. Examples include
rules based on provider identity, type of Service, method by
which Services are accessed, order in which Services are
composed, etc.

0169 Trust Management provides a common set of con
ventions and protocols for creating authorized and trusted
contexts for interactions between Nodes. In some embodi
ments, NEMO Trust Management may leverage and/or
extend existing security specifications and mechanisms,
including WS-Security and WS-Policy in the web services
domain.

0170 Upgrade—represents a Request or Response related
to receiving a functionality upgrade. In one embodiment,
this service is purely abstract, with other profiles providing
concrete representations.

(0171 1.5. Illustrative Interaction Between Nodes
0172. As will be discussed in greater detail below, the
basic logical interaction between two system nodes, a service
requester and a service provider, typically includes the fol
lowing sequence of events. From the perspective of the Ser
Vice requesting node:
0173 The service requesting node makes a service discov
ery request to locate any NEMO-enabled nodes that can pro
vide the necessary service using the specified service bind
ings. Anode may choose to cache information about
discovered services. The interface/mechanism for service
discovery between nodes can be just another service that a
NEMO node chooses to implement.
0.174. Once candidate service providing nodes are found,
the requesting node may choose to dispatcha request to one or
more of the service providing nodes based on a specific Ser
Vice binding.
0175. In one embodiment, two nodes that wish to commu
nicate securely with each other will establish a trusted rela
tionship for the purpose of exchanging WSDL messages. For
example, they may negotiate a set of compatible trust creden
tials (e.g., X.500 certificates, device keys, etc.) that may be
used in determining identity, Verifying authorization, estab
lishing a secure channel, etc. In some cases, the negotiation of
these credentials may be an implicit property of the service
interface binding (e.g., WS-Security if WS-IXML Protocol is
used, or an SSL request between two well-known nodes). In
other cases, the negotiation of trust credentials may be an
explicitly separate step. In one embodiment, it is up to a given
node to determine which credentials are sufficient for inter
acting with another node, and to make the decision that it can
trust a given node.
0176 The requesting node creates the appropriate WSDL
request message(s) that correspond to the requested service.
0177. Once the messages are created, they are dispatched
to the targeted service providing node(s). The communication
style of the request may, for example, be synchronous or
asynchronous RPC style, or message-oriented based on the
service binding. Dispatching of service requests and receiv

Feb. 16, 2012

ing of responses may be done directly by the device or
through the NEMO Service Proxy. The service proxy (de
scribed below) provides an abstraction and interface for send
ing messages to other participants, and may hide certain
service binding issues. Such as compatible message formats,
transport mechanisms, message routing issues, etc.
0.178 After dispatching a request, the requesting node will
typically receive one or more responses. Depending on the
specifics of the service interface binding and the requesting
node's preferences, the response(s) may be returned in a
variety of ways, including, for example, an RPC-style
response or a notification message. The response, en-route to
the targeted node(s), may pass through other intermediate
nodes that may provide a number of relevant services, includ
ing, e.g., routing, trust negotiation, collation and correlation
functions, etc.
0179 The requesting node validates the response(s) to
ensure it adheres to the negotiated trust semantics between it
and the service providing node.
0180 Appropriate processing is then applied based on the
message payload type and contents.
0181. From the perspective of the service providing node,
the sequence of events typically would include the following:
0182 Determine if the requested service is supported. In
one embodiment, the NEMO framework does not mandate
the style or granularity of how a service interface maps as an
entry point to a service. In the simplest case, a service inter
face may map unambiguously to a given service and the act of
binding to and invoking it may constitute Support for the
service. However, in Some embodiments a single service
interface may handle multiple types of requests; and a given
service type may contain additional attributes that need to be
examined before a determination can be made that the node
Supports the specifically desired functionality.
0183 In some cases it may be necessary for the service
provider to determine if it trusts the requesting node and to
negotiate a set of compatible trust credentials. In one embodi
ment, regardless of whether the service provider determines
trust, any policy associated with the service interface will still
apply.
0.184 The service provider determines and dispatches
authorization request(s) to those node(s) responsible for
authorizing access to the interface in order to determine if the
requesting node has access in many situations, the authoriz
ing node and the service providing node will be the same
entity, and the dispatching and processing of the authorization
request will be local operations invoked through a lightweight
service interface binding Such as a C function entry point.
0185. Upon receiving the authorization response, if the
requesting node is authorized, the service provider will fulfill
the request. If not, an appropriate response message might be
generated.
0186 The response message is returned based on the ser
Vice interface binding and requesting node's preferences. En
route to the requesting node, the message may pass through
other intermediate nodes that may provide necessary or
“value added services. For example an intermediate node
might provide routing, trust negotiation, or delivery to a noti
fication processing node that can deliver the message in a way
acceptable to the requesting node. An example of a “value

US 2012/0042389 A1

added service is a coupon service that appends coupons to
the message if it knows of the requesting node's interests.

2. System Architecture
0187 Consider a sample embodiment of the NEMO sys
tem framework, as illustrated in FIG.1, implementing a DRM
application.
0188 As noted above, NEMO nodes may interact by mak
ing service invocation requests and receiving responses. The
NEMO framework supports the construction of diverse and
rich communication patterns ranging from a simple point to
point interaction with a single service provider to a complex
aggregation of a choreographed set of services from multiple
service providers.
(0189 In the context of FIG. 1, the NEMO nodes interact
with one another to provide a variety of services that, in the
aggregate, implement a music licensing system. Music stored
in Consumer Music Locker 110 can be extracted by Web
Music Retailer 120 and provided to end users at their homes
via their Entertainment Home Gateway 130. Music from
Consumer Music Locker 110 may include rules that govern
the conditions under which Such music may be provided to
Web Music Retailer 120, and subsequently to others for fur
ther use and distribution. Entertainment Home Gateway 130
is the vehicle by which such music (as well as video and other
content) can be played, for example, on a user's home PC
(e.g., via PC Software Video Player 140) or on a user's por
table playback device (e.g., Portable Music Player 150). A
user might travel, for example, with Portable Music Player
150 and obtain, via a wireless Internet connection (e.g., to
Digital Rights License Service 160), a license to purchase
additional Songs or replay existing Songs additional times, or
even add new features to Portable Music Player 150 via
Software Upgrade Service 170.
0190. NEMO nodes can interact with one another, and
with other devices, in a variety of different ways. A NEMO
host, as illustrated in FIG. 2a, is some type of machine or
device hosting at least one NEMO node. A host may reside
within a personal area network 210 or at a remote location 220
accessible via the Internet. A host could, for example, be a
server 230, a desktop PC 240, a laptop 250, or a personal
digital assistant 260.
0191) A NEMO node is a software agent that can provide
services to other nodes (such as host 235 providing a 3" party
web service) as well as invoke other nodes services within
the NEMO-managed framework. Some nodes 270 are teth
ered to another host via a dedicated communication channel,
such as Bluetooth. These hosts 240 and 250 are equipped with
network connectivity and Sufficient processing power to
present a virtual node to other participating NEMO nodes.
(0192. As illustrated in FIG.2b, a NEMO node can be a full
peer within the local or personal area network 210. Nodes
share the symmetric capability of exposing and invoking
services; however, each node generally does not offer identi
cal sets of services. Nodes may advertise and/or be specifi
cally queried about the services they perform.
0193 Ifan Internet connection is present, as shown in FIG.
2c, then local NEMO nodes (e.g., within personal area net
work 210) can also access the services of remote nodes 220.
Depending on local network configuration and policy, it is
also possible for local and remote nodes (e.g., Internet-ca
pable NEMO hosts 280) to interoperate as NEMO peers.
(0194 As illustrated in FIG. 2d, not all NEMO nodes may
be on hosts capable of communicating with other hosts,

Feb. 16, 2012

whether local or remote. A NEMO host 280 can provide a
gateway service through which one node can invoke the Ser
vices of another, such as tethered node 285 or nodes in per
sonal area network 210.
(0195 As illustrated in FIG. 2e, a node 295 on a tethered
device may access the services of other nodes via a gateway,
as discussed above. It may also be accessed by other nodes via
a proxy service on another host 290. The proxy service creates
a virtual node running on the NEMO host. These proxy nodes
can be full NEMO peers.
(0196. As illustrated in FIG.2f a NEMO host may provide
dedicated support for tethered devices via NEMO node adapt
ers. A private communication channel 296 is used between
host/NEMO device adapter 297 and tethered node 298 using
any suitable protocol. Tethered node 298 does not see, nor is
it visible to, other NEMO peer nodes.
0.197 We next consider exemplary digital rights manage
ment (DRM) functionality that can be provided by NEMO
enabled devices in certain embodiments, or that can be used
outside the NEMO context. As previously described, one of
the primary goals of a preferred embodiment of the NEMO
system framework is to Support the development of secure,
interoperable interconnections between media-related ser
vices spanning both commercial and consumer-oriented net
work tiers. In addition to service connectivity, interoperabil
ity between media-related services will often require
coordinated management of usage rights as applied to the
content available through those services. NEMO services and
the exemplary DRM engine described herein can be used in
combination to achieve interoperability that allows devices
based on the NEMO framework to provide consumers with
the perception of a seamless rendering and usage experience,
even in the face of a heterogeneous DRM and media format
infrastructure.
0.198. In the context of a DRM application, as illustrated in
FIG. 3, a network of NEMO-enabled DRM devices may
include content provider/server 310, which packages content
for other DRM devices, as well as consumer PC player 330
and consumer PC packager/player 320, which can not only
play protected content, but can also package content for deliv
ery to portable device 340.
(0199. Within each DRM device, the DRM engine per
forms specific DRM functions (e.g., enforcing license terms,
delivering keys to the host application, etc.), and relies on the
host application for those services which can be most effec
tively provided by the host, such as encryption, decryption,
and file management.
0200. As will be discussed in greater detail below, in one
embodiment the DRM engine includes a virtual machine
(VM) designed to determine whether certain actions on pro
tected content are permissible. This Control VM can be
implemented as a simple stack-based machine with a minimal
set of instructions. In one embodiment, it is capable of per
forming logical and arithmetic calculations, as well as que
rying state information from the host environment to check
parameters such as System time, counter state, and so forth.
0201 In one embodiment, the DRM engine utilizes a
graph-based algorithm to Verify relationships between enti
ties in a DRM value chain. FIG. 4 illustrates a conceptual
embodiment of Such a graph. The graph comprises a collec
tion of nodes or vertices, connected by links. Each entity in
the system can be represented by a vertex object. Only entities
that need to be referenced by link objects, or be the recipient
of cryptographically targeted information, need to have cor

US 2012/0042389 A1

responding vertex objects. In one embodiment, a vertex typi
cally represents a user, a device, or a group. Vertex objects
also have associated attributes that represent certain proper
ties of the entity associated with the vertex.
0202 For example, FIG. 4 shows two users (Xan and
Knox), two devices (the Mac and a portable device), and
several entities representing groups (members of the Carey
family, members of the public library, subscribers to a par
ticular music service, RIAA-approved devices, and devices
manufactured by a specific company). Each of these has a
vertex object associated with it.
0203 The semantics of the links may vary in an applica
tion-specific manner. For example, the directed edge from the
Mac vertex to the Knox vertex may mean that Knox is the
owner of the Mac. The edge from Knox to Public Library may
indicate that Knox is a member of the Public Library. In one
embodiment the DRM engine does not impose or interpret
these semantics—it simply ascertains the existence or non
existence of paths within the graph. This graph of vertices can
be considered an “authorization' graph in that the existence
of a path or relationship (direct or indirect) between two
Vertices may be interpreted as an authorization for one vertex
to access another vertex.
0204 For example, because Knox is linked to the Carey
family and the Carey family is linked to the Music Service,
there is a path between Knox and the Music Service. The
Music Service vertex is considered reachable from another
vertex when there is a path from that vertex to the Music
Service. This allows a control to be written that allows per
mission to access protected content based on the condition
that the Music Service be reachable from the portable device
in which the application that requests access (e.g., a DRM
client host application) is executing.
0205 For example, a content owner may create a control
program to be interpreted by the Control VM that allows a
particular piece of music to be played if the consuming device
is owned by a member of the Public Library and is RIAA
approved. When the ControlVM running on the device evalu
ates this control program, the DRM engine determines
whether links exist between Portable Device and Public
Library, and between Portable Device and RIM Approved.
The edges and Vertices of the graph may be static and built
into devices, or may be dynamic and discovered through
services communicating with the host application.
0206 By not imposing semantics on the vertices and links,
the DRM engine can enable great flexibility. The system can
be adapted to many usage models, from traditional delega
tion-based policy systems to authorized domains and per
Sonal area networks.
0207. In one embodiment, the DRM client can also reuse
the authorization graph for content protection key derivation.
System designers may chose to allow the existence of a link to
also indicate the sharing of certain cryptographic informa
tion. In Such cases, the authorization graph can be used to
derive content keys without explicit cryptographic retarget
ing to consuming devices.

3. Node Architecture

0208 3.1. Overview
0209 Any type of device (physical or virtual), including
consumer electronics equipment, networked services, or soft
ware clients, can potentially be NEMO-enabled, which
means that the device's functionality may be extended in such
a way as to enable participation in the NEMO system. In one

Feb. 16, 2012

embodiment, a NEMO-enabled device (node) is conceptually
comprised of certain standard modules, as illustrated in FIG.
5.

0210 Native Services API510 represents the logical set of
one or more services that the device implements. There is no
requirement that a NEMO node expose any service directly or
indirectly. Native Service Implementation 520 represents the
corresponding set of implementations for the native services
API.

0211 Service Access Point 530 provides support for
invoking exposed service interfaces. It encapsulates the func
tionality necessary for allowing a NEMO node to make a
service invocation request to a targeted set of service-provid
ing NEMO nodes and to receive a set of responses. NEMO
enabled nodes may use diverse discovery, name resolution,
and transport protocols, necessitating the creation of a flex
ible and extensible communication API. The Service Access
Point can be realized in a variety of ways tailored to a par
ticular execution environment and application framework
style. One common generic model for its interface will be an
interface capable of receiving XML messages in Some form
and returning XML messages. Other models with more native
interfaces can also be supported.
0212 NEMO Service Adaptation Layer 540 represents an
optional layer through which an exposed Subset of an entity's
native services are accessed using one or more discoverable
bindings. It provides a level of abstraction above the native
services API, enabling a service provider to more easily Sup
port multiple types of service interface bindings. In situations
where a service adaptation layer is not present, it may still be
possible to interact with the service directly through the Ser
vice Access Point 530 if it supports the necessary communi
cation protocols.
0213. The Service Adaptation Layer 540 provides a com
mon way for service providers to expose services, process
requests and responses, and orchestrate services in the
NEMO framework. It is the logical point at which services are
published, and provides a foundation on which to implement
other specific service interface bindings.
0214. In addition to providing a common way of exposing
a service provider's native services to other NEMO-enabled
nodes, Service Adaptation Layer 540 also provides a natural
place on which to layer components for Supporting additional
service interface bindings 560, as illustrated in FIG. 5b. By
Supporting additional service interface bindings, a service
provider increases the likelihood that a compatible binding
will be able to be negotiated and used either by a Service
Access Point or through some other native API.
0215 Referring back to FIG.5a, Workflow Collator 550
provides Supporting management of service messages and
service orchestration. It provides a common interface allow
ing a node to manage and process collections of request and
response messages. This interface in turn provides the basic
building blocks to orchestrate services through management
of the messages associated with those services. This interface
typically is implemented by a node that Supports message
routing functionality as well as the intermediate queuing and
collating of messages.
0216. In some embodiments, the NEMO framework
includes a collection of optional Support services that facili
tate an entity's participation in the network. Such services can
be classified according to various types of functionality, as
well as the types of entities requiring Such services (e.g.,

US 2012/0042389 A1

services Supporting client applications, as opposed to those
needed by service providers). Typical Supporting services
include the following:
0217 WSDL Formatting and Manipulation Routines—
provide functionality for the creation and manipulation of
WSDL-based service messages.

0218 Service Cache provides a common interface
allowing a node to manage a collection of mappings
between discovered nodes and the services they support.

0219. Notification Processor Interface provides a com
mon service provider interface for extending a NEMO
node that Supports notification processing to Some well
defined notification processing engine.

0220 Miscellaneous Support Functionality including
routines for generating message IDs, timestamps, etc.

0221 3.2. Basic Node Interaction
0222 Before examining the individual architectural ele
ments of NEMO nodes in greater detail, it is helpful to under
stand the manner by which Such nodes interact and commu
nicate with one another. Diverse communication styles are
Supported, ranging from Synchronous and asynchronous
RPC-style communication, to one-way interface invocations
and client callbacks.
0223) Asynchronous RPC Delivery Style—this model is
particularly appropriate if there is an expectation that fulfill
ing the request will take an extended period of time and the
client does not want to wait. The client submits a request with
the expectation that it will be processed in an asynchronous
manner by any service-providing nodes. In this case, the
service-providing endpoint may respond indicating that it
does not support this model, or, if the service-providing node
does support this model, it will return a response that will
carry a ticket that can be submitted to the given service
providing node in Subsequent requests to determine if it has a
response to the client's request.
0224. In one embodiment, any service-providing endpoint
that does Support this model is obligated to cache responses to
pending client requests based on an internal policy. If a client
attempts to redeem a ticket associated with Such a request and
no response is available, or the response has been thrown
away by the service-providing node, then an appropriate error
response is returned. In this embodiment, it is up to the client
to determine when it will make such follow-on requests in
attempting to redeem the ticket for responses.
0225 Synchronous RPC Delivery Style the client sub
mits a request and then waits for one or more responses to be
returned. A service-providing NEMO-enabled endpoint may
respond indicating that it does not Support this model.
0226 Message-Based Delivery Style—the client submits
a request indicating that it wants to receive any responses via
a message notification associated with one or more of its
notification handling service interfaces. A service-providing
NEMO-enabled endpoint may respond indicating that it does
not support this model.
0227. From the client application's perspective, none of
the interaction patterns above necessitates an architecture that
must block and wait for responses, or must explicitly poll. It
is possible to use threading or other platform-specific mecha
nisms to model both blocking and non-blocking semantics
with the above delivery style mechanisms. Also, none of the
above styles is intended to directly address issues associated
with the latency of a given communication channel—only
potential latency associated with the actual fulfillment of a
request. Mechanisms to deal with the issues associated with

Feb. 16, 2012

communication channel latency should be addressed in the
specific implementation of a component Such as the Service
Access Point, or within the client's implementation directly.
0228. 3.3. Service Access Point
0229. As noted above, a Service Access Point (SAP) can
be used as a common, reusable API for service invocation. It
can encapsulate the negotiation and use of a transport chan
nel. For example, some transport channels may require SSL
session setup over TCP/IP, while some channels may only
support relatively unreliable communication over UDP/IP.
and still others may not be IP-based at all.
0230 ASAP can encapsulate the discovery of an initial set
of NEMO nodes for message routing. For example, a cable
set-top box may have a dedicated connection to the network
and mandate that all messages flow through a specific route
and intermediary. A portable media player in a home network
may use UPnP discovery to find multiple nodes that are
directly accessible. Clients may not be able, or may choose
not, to converse directly with other NEMO nodes by exchang
ing XML messages. In this case, a version of the SAP may be
used that exposes and uses whatever native interface is Sup
ported.
0231. In a preferred embodiment, the SAP pattern Sup
ports the following two common communication models (al
though combinations of the two, as well as others, may be
Supported): (i) Message Based (as discussed above)—where
the SAP forms XML request messages and directly
exchanges NEMO messages with the service provider via
some interface binding; or (ii) Native—where the SAP may
interact with the service provider through some native com
munication protocol. The SAP may internally translate
to/from XML messages defined elsewhere within the frame
work.
0232 A sample interaction between two NEMO peer
nodes is illustrated in FIG. 6a. Client node 610 interacts with
service-providing node 660 using NEMO service access
point (SAP) 620. In this example, Web service protocols and
standards are used both for exposing services and for trans
port. Service-providing node 660 uses its web services layer
670 (using, e.g., WSDL and SOAP-based messaging) to
expose its services to clients such as node 610. Web services
layer 630 of client node 610 creates and interprets SOAP
messages, with help from mapping layer. 640 (which maps
SOAP messages to and from SAP interface 620) and trust
management processing layer 650 (which could, for example,
leverage WS-Security using credentials conveyed within
SOAP headers).
0233. Another example interaction between NEMO nodes

is illustrated in FIG. 6b. Service-providing node 682 interacts
with client node 684 using SAP 686. In this example, service
providing node 682 includes a different but interoperable
trust management layer than client 684. In particular, service
providing node 682 includes both a trust engine 688 and an
authorization engine 690. In this example, trust engine 688
might be generally responsible for performing encryption and
decryption of SOAP messages, for verifying digital certifi
cates, and for performing other basic cryptographic opera
tions, while authorization engine 690 might be responsible
for making higher-level policy decisions. In the example
shown in FIG. 6b, client node 684 includes a trust engine 692,
but not an authorization engine. Thus, in this example, client
node 684 might be capable of performing basic cryptographic
operations and enforcing relatively simple policies (e.g., poli
cies related to the level of message authenticity, confidenti

US 2012/0042389 A1

ality, or the like), but might rely on service providing node
682 to evaluate and enforce higher order policies governing
the client's use of, and interaction with, the services and/or
content provided by service providing node 682. It should be
appreciated that FIG. 6b is provided for purposes of illustra
tion and not limitation, and that in other embodiments client
node 684 might also include an authorization engine, as might
be the case if the client needed to adhere to a set of obligations
related to a specified policy. Thus, it can be seen that different
NEMO peers can contain different parts of the trust manage
ment framework depending on their requirements. FIG. 6b
also illustrates that the communication link between nodes
can be transport agnostic. Even in the context of a SOAP
processing model, any suitable encoding of data and/or pro
cessing rules can be used. For example, the XML Security
model could be replaced with another security model that
Supported a different encoding scheme.
0234. A Service Access Point may be implemented in a
variety of forms, such as within the boundaries of a client (in
the form of a shared library) or outside the boundaries of the
client (in the form of an agent running in a different process).
The exact form of the Service Access Point implementation
can be tailored to the needs of a specific type of platform or
client. From a client's perspective, use of the Service Access
Point may be optional, although in general it provides signifi
cant utility, as illustrated below.
0235. The Service Access Point may be implemented as a
static component Supporting only a fixed set of service pro
tocol bindings, or it may be able to support new bindings
dynamically.
0236 Interactions involving the Service Access Point can
be characterized from at least two perspectives—a client-side
which the requesting participant uses, and a service-side
which interacts with other NEMO-enabled endpoints
(nodes).
0237. In one client-side embodiment, illustrated in FIG.
7a, Service Access Point 710 directly exchanges XML mes
sages with client 720. Client 720 forms request messages 740
directly and submits them to Service Access Point 710, which
generates and sends one or more response messages 750 to
client 720, where they are collected, parsed and processed.
Client 720 may also submit (when making requests) explicit
set(s) of service bindings 730 to use in targeting the delivery
of the request. These service bindings may have been
obtained in a variety of ways. For example, client 720 can
perform service-discovery operations and then select which
service bindings are applicable, or it can use information
obtained from previous responses.
0238. In another client-side embodiment, illustrated in
FIG.7b, Service Access Point 760 directly supports a native
protocol 770 of client 780. Service Access Point 760 will
translate messages internally between XML and that native
protocol 770, thereby enabling client 780 to participate within
the NEMO system. To effect such support, native protocol
770 (or a combination of native protocol 770 and the execu
tion environment) must provide any needed information in
some form to Service Access Point 760, which generates an
appropriate request and, if necessary, determines a suitable
target service binding.
0239. On the service-side, multiple patterns of interaction
between a client's Service Access Point and service-provid
ing NEMO-enabled endpoints can be supported. As with the
client-side, the interaction patterns can be tailored and may
vary based on a variety of criteria, including the nature of the

Feb. 16, 2012

request, the underlying communication network, and the
nature of the application and/or transport protocols associated
with any targeted service bindings.
0240 A relatively simple type of service-side interaction
pattern is illustrated in FIG. 7c, in which Service Access Point
711 communicates directly with the desired service-provid
ing node 712 in a point-to-point manner.
0241 Turning to FIG. 7d. Service Access Point 721 may
initiate communication directly with (and may receive
responses directly from) multiple potential service providers
725. This type of interaction pattern may be implemented by
relaying multiple service bindings from the client for use by
Service Access Point 721; or abroadcast or multicast network
could be utilized by Service Access Point 721 to relay mes
sages. Based on preferences specified in the request, Service
Access Point 721 may choose to collect and collate responses,
or simply return the first acceptable response.
0242. In FIG. 7e, Service Access Point 731 doesn’t
directly communicate with any targeted service-providing
endpoints 735. Instead, requests are routed through an inter
mediate node 733 which relays the request, receives any
responses, and relays them back to Service Access Point 731.
0243 Such a pattern of interaction may be desirable if
Service Access Point 731 is unable or unwilling to support
directly any of the service bindings associated with service
providing endpoints 735, but can establish a relationship with
intermediate node 733, which is willing to act as a gateway.
Alternatively, the client may not be able to discover or other
wise determine the service bindings for any suitable service
providing nodes, but may be willing to allow intermediate
node 733 to attempt to discover any suitable service provid
ers. Finally, Service Access Point 731 may want to take
advantage of intermediate node 733 because it supports more
robust collection and collating functionality, which in turn
permits more flexible communication patterns between Ser
vice Access Point 731 and service providers such as endpoint
nodes 735.

0244. In addition to the above basic service-side interac
tion patterns, combinations of Such patterns or new patterns
can be implemented within the Service Access Point.
Although the Service Access Point is intended to provide a
common interface, its implementation will typically be
strongly tied to the characteristics of the communication
models and associated protocols employed by given NEMO
enabled endpoints.
0245. In practice, the Service Access Point can be used to
encapsulate the logic for handling the marshalling and un
marshaling of I/O related data, Such as serializing objects to
appropriate representations, such as an XML representation
(with a format expressed in WSDL), or one that envelopes
XML-encoded objects in the proper format.
0246. In a preferred embodiment, the SAP also encapsu
lates logic for communication via one or more Supported
application, session, and/or transport protocols, such as Ser
vice invocation over HTTP using SOAP enveloping.
0247 Finally, in some embodiments, the SAP may encap
Sulate logic for providing message integrity and confidenti
ality, such as support for establishing SSL/TLS sessions and/
or signing/verifying data via standards such as XML
Signature and XML-Encryption. When the specific address
ofa service interface is unknown or unspecified (for example,
when invoking a service across multiple nodes based on some
search criteria), the SAP may encapsulate the logic for estab

US 2012/0042389 A1

lishing an initial connection to a default/initial set of NEMO
nodes where services can be discovered or resolved.
0248. The following is an example, non-limiting embodi
ment of a high-level API description exported by one SAP
embodiment:
0249 ServiceAccessPoint::Create(Environment)->Ser
vice AccessPoint—this is a singleton interface that returns
an initialized instance of a SAP. The SAP can be initialized
based on an optional set of environmental parameters.

(0250) ServiceAccessPoint:InvokeService(Service
Request Message, Boolean)->Service Response Mes
Sage—a synchronous service invocation API is Supported
where the client (using WSDL) forms an XML service
request message, and receives an XML message in
response. The API also accept a Boolean flag indicating
whether or not the client should wait for a response. Nor
mally, the flag will be true, except in the case of messages
with no associated response, or messages to which
responses will be delivered back asynchronously via
another channel (such as via notification). The resulting
message may also convey some resulting error condition.

0251 ServiceAccessPoint::Apply Integrity Protection
(Boolean, Desc)->Boolean This API allows the caller
to specify whether integrity protection should be applied,
and to which elements in a message it should be applied.

0252 ServiceAccessPoint::ApplyConfidentiality(Bool
ean, Desc)->Boolean This API allows the caller to
specify whether confidentiality should be applied and to
which objects in a message it should be applied.

ServiceAccessPoint::SetKeyCallbacks(SigningKeyCallback,
SignatureVerificationKeyCaliback,
EncryptionKeyCallback,
DecryptionKeyCallback) -> Boolean

As indicated in the previous APIs, when a message is sent or
received it may contain objects which require integrity pro
tection or confidentiality. This API allows the client to set up
any necessary hooks between itself and the SAP to allow the
SAP to obtain keys associated with a particular type of trust
management operation. In one embodiment, the interface is
based on callbacks Supporting integrity protection through
digital signing and Verification, and confidentiality through
encryption and decryption. In one embodiment, each of the
callbacks is of the form:

KeyCallback(KeyDesc)->Key

where KeyDesc is an optional object describing the key(s)
required and a list of appropriate keys is returned. Signatures
are validated as part of receiving response services messages
when using the InvokeService(...) API. If a message element
fails verification, an XML message can be returned from
InvokeService(...) indicating this state and the elements that
failed verification.
0253 3.4. Service Adaptation Layer
0254 As noted above, the Service Adaptation Layer pro
vides a common way for service providers to expose their
services, process requests and generate responses for ser
vices, and orchestrate services in the NEMO framework. It
also provides a foundation on which other specific service
interface bindings can be implemented. In one embodiment,
WSDL is used to describe a service's interface within the
system.

Feb. 16, 2012

0255 Such a service description might, in addition to
defining how to bind to a service on aparticular interface, also
include a list of one or more authorization service providers
that will be responsible for authorizing access to the service,
a pointerto a semantic description of the purpose and usage of
the service, and a description of the necessary orchestration
for composite services resulting from the choreographed
execution of one or more other services.
0256 In addition to serving as the logical point at which
services are exposed, the Service Adaptation Layer also pref
erably encapsulates the concrete representations of the
NEMO data types and objects specified in NEMO service
profiles for platforms that are Supported by a given partici
pant. It also contains a mechanism for mapping service-re
lated messages to the appropriate native service implementa
tion.
0257. In one embodiment, the NEMO framework does not
mandate how the Service Adaptation Layer for a given plat
form or participant is realized. In situations where a service
providing node does not require translation of its native Ser
Vice protocols—i.e., exposing its services only to client nodes
that can communicate via that native protocol then that
service-providing node need not contain a Service Adaptation
Layer.
0258 Otherwise, its Service Adaptation Layer will typi
cally contain the following elements, as illustrated in FIG. 8:
0259 Entry Points—a layer encapsulating the service
interface entry points 810 and associated WSDL bindings.
Through these access points, other nodes invoke services,
pass parameter data, and collect results.

0260 Message Processing Logic—a layer 820 that corre
sponds to the logic for message processing, typically con
taining a message pump 825 that drives the processing of
messages, some type of XML data binding Support 826,
and low level XML parser and data representation support
827.

0261 Native Services—a layer representing the native
services available (onto which the corresponding service
messages are mapped), including a native services API 830
and corresponding implementation 840.

0262. 3.5. Workflow Collator
0263. In a preferred embodiment, a Workflow Collator
(WFC) helps fulfill most nontrivial NEMO service requests
by coordinating the flow of events of a request, managing any
associated data including transient and intermediate results,
and enforcing the rules associated with fulfillment. Examples
of this type of functionality can be seen in the form of trans
action coordinators ranging from simple transaction monitors
in relational databases to more generalized monitors as seen
in Microsoft MTS/COM+.
0264. In one embodiment, the Workflow Collator is a pro
grammable mechanism through which NEMO nodes orches
trate the processing and fulfillment of service invocations.
The WFC can be tailored toward a specific NEMO node's
characteristics and requirements, and can be designed to Sup
port a variety of functionality ranging from traditional mes
sage queues to more Sophisticated distributed transaction
coordinators. A relatively simple WFC might provide an
interface for storage and retrieval of arbitrary service-related
messages. By building on this, it is possible to support a wide
variety of functionality including (i) collection of service
requests for more effective processing; (ii) simple aggrega
tion of service responses into a composite response; (iii)
manual orchestration of multiple service requests and service

US 2012/0042389 A1

responses in order to create a composite service; and (iv)
automated orchestration of multiple service requests and Ser
Vice responses in order to create a composite service.
0265 A basic service interaction pattern begins with a
service request arriving at some NEMO node via the node's
Service Adaptation Layer. The message is handed off to the
WSDL Message Pump that initially will drive and in turn be
driven by the WFC to fulfill the request and return a response.
In even more complex scenarios, the fulfillment of a service
request might require multiple messages and responses and
the participation of multiple nodes in a coordinated fashion.
The rules for processing requests may be expressed in the
system's service description language or using other service
orchestration description standards such as BPEL.
0266. When a message is given to the WFC, the WFC
determines the correct rules for processing this request.
Depending upon the implementation of the WFC, the service
description logic may be represented in the form of a fixed
state machine for a set of services that the node exposes or it
may be represented in ways that Support the processing of a
more free form expression of the service processing logic.
0267. In a preferred embodiment the WFC architecture is
modular and extensible, Supporting plug-ins. In addition to
interpreting service composition and processing rules, the
WFC may need to determine whether to use NEMO messages
in the context of initiating a service fulfillment processing
lifecycle, or as input in the chain of an ongoing transaction. In
one embodiment, NEMO messages include IDs and metadata
that are used to make these types of determinations. NEMO
messages also can be extended to include additional informa
tion that may be service transaction specific, facilitating the
processing of messages.
0268 As discussed in greater detail below, notification
services are directly supported by various embodiments of the
NEMO system. A notification represents a message targeted
at interested NEMO-enabled nodes received on a designated
service interface for processing. Notifications may carry a
diverse set of payload types for conveying information and
the criteria used to determine if a node is interested in a
notification is extensible, including identity-based as well as
event-based criteria.

0269. In one embodiment, illustrated in FIG.9a, a service
providing NEMO node 910 provides a service that requires an
orchestration process by its Workflow Collator 914 (e.g., the
collection and processing of results from two other service
providers) to fulfill a request for that service from client node
940.

(0270. When NEMO-enabled application 942 on client
node 940 initiates a request to invoke the service provided by
service provider 910, Workflow Collator 914 in turn gener
ates messages to initiate its own requests (on behalf of appli
cation 942), respectively, to Service Provider “Y” 922 on
node 920 and Service Provider “Z” 932 on node 930. Work
flow Collator 914 then collates and processes the results from
these two other service-providing nodes in order to fulfill the
original request from client node 940.
0271 Alternatively, a requested service might not require
the services of multiple service-providing nodes; but might
instead require multiple rounds or phases of communication
between the service-providing node and the requesting client
node. As illustrated in FIG.9b, when NEMO-enabled appli
cation 942 on client node 940 initiates a request to invoke the
service provided by service provider 910, Workflow Collator
914 in turn engages in multiple phases of communication 950

Feb. 16, 2012

with client node 940 in order to fulfill the original request. For
example, Workflow Collator 914 may generate and send mes
sages to client node 940 (via Access Point 944), receive and
process the responses, and then generate additional messages
(and receive additional responses) during Subsequent phases
of communication, ultimately fulfilling the original request
from client node 940.

(0272. In this scenario, Workflow Collator 914 is used by
service provider 910 to keep track (perhaps based on a ser
Vice-specific session ID or transaction ID as part of the Ser
vice request) of which phase of the operation it is in with the
client for correct processing. As noted above, a state machine
or similar mechanism or technique could be employed to
process these multiple phases of communication 950.
(0273 FIG. 9c illustrates one embodiment of a relatively
basic interaction, within service-providing node 960,
between Workflow Collator 914 and Message Pump 965
(within the node's Service Adaptation Layer, not shown). As
noted above, Workflow Collator 914 processes one or more
service requests 962 and generates responses 964, employing
a storage and retrieval mechanism 966 to maintain the state of
this orchestration process. In this simple example, Workflow
Collator 914 is able to process multiple service requests and
responses, which could be implemented with a fairly simple
state machine.

0274 For more complex processing, however, FIG. 9d
illustrates a node architecture that can both drive or be driven
in performing service orchestration. Such functionality
includes the collection of multiple service requests, aggrega
tion of responses into a composite response, and either
manual or automated orchestration of multiple service
requests and responses in order to create a composite service.
0275 A variety of scenarios can be supported by the archi
tecture surrounding Workflow Collator 914 in FIG. 9d. For
example, by having a NEMO node combine its functionality
with that of an external coordinator 970 that understands the
semantics of process orchestration (Such as a Business Pro
cess Language engine driven by a high level description of the
business processes associated with services) or resource
usage semantics (Such as a Resource Description Framework
engine which can be driven by the semantic meaning of
resources in relationship to each other), it is possible to create
more powerful services on top of simplerones. Custom Exter
nal BPL 972 and/or RDF973 processors may leverage exter
nal message pump 975 to execute process descriptions via a
manual orchestration process 966, i.e., one involving human
intervention.

0276. In addition to relying on a manually driven process
that relies on an external coordinator working in conjunction
with a NEMO node's message pump, it is also possible to
create an architecture where modules may be integrated
directly with Workflow Collator 914 to support an automated
form of service coordination and orchestration 968. For
example, for regular types of service orchestration patterns,
such as those represented in BPEL and EBXML and commu
nicated in the web service bindings associated with a service
interface, Workflow Collator 914 can be driven directly by a
description and collection of request and response messages
967 that arrive over time. In this scenario, a composite
response message is pushed to Message Pump 965 only when
the state machine associated with the given orchestration
processor plug-in (e.g., BPEL 982 or EBXML983) has deter
mined that it is appropriate.

US 2012/0042389 A1

0277. Following is an embodiment of a relatively high
level API description exported by an embodiment of a NEMO
Workflow Collator:
(0278 WorkflowCollator:Create(Environment)
->Workflow Collator this is a singleton interface that
returns an initialized instance of a WFC. The WFC can be
initialized based on an optional set of environmental
parameters.

(0279 WorkflowCollator:Store(Key), XML Message)
->Boolean—this API allows the caller to store a service
message within the WFC via a set of specified keys.

0280 WorkflowCollator: RetrieveByKey(Key), XML
Message)->XML Message—this API allows the callerto
retrieve a set of messages via a set of specified keys. The
returned messages are no longer contained within the
WFC.

(0281 WorkflowCollator: PeekByKey(Key), XML Mes
sage)->XML Message—this API allows the caller to
retrieve a set of messages via a set of specified keys. The
returned messages are still contained within the WFC.

0282 WorkflowCollator:Clear()->Boolean this API
allows the caller to clear any messages stored within the
WFC.

(0283. As an alternative to the relatively rigid BPEL
orchestration standard, another embodiment could permit a
more ad hoc XML-based orchestration description—e.g., for
a more dynamic application, Such as a distributed search.
Consider the following description that could be interpreted
by a NEMO Workflow Collator (and could possibly even
replace an entire service given a sufficiently rich language):

<WSDL>
<NEMO Orchestration Descriptors

<Control Flow- e.g., EXECUTE Service A:
if result = Yes then
Service B;
Else Service C

e.g., Device State
e.g., State, Rollback, etc
Note that Trust not necessarily

<Shared State? Context
<Transactions
<Trust Authorization

transitive

0284 3.6. Exemplary DRM Engine Architecture
0285. In the context of the various embodiments of the
NEMO node architecture described above, FIG.10 illustrates
the integration of a modular embodiment of a DRM Engine
1000 into a NEMO content consumption device, thereby
facilitating its integration into many different devices and
Software environments.
0286 Host application 1002 typically receives a request to
access a particular piece of content through its user interface
1004. Host application 1002 then sends the request, along
with relevant DRM engine objects (preferably opaque to the
host application), to DRM engine 1000. DRM engine 1000
may make requests for additional information and crypto
graphic services to host services module 1008 through well
defined interfaces. For example, DRM engine 1000 may ask
host services 1008 whether a particular link is trusted, or may
ask that certain objects be decrypted. Some of the requisite
information may be remote, in which case host services 1008
can request the information from networked services through
a service access point 1014.
(0287. Once DRM engine 1000 has determined that a par
ticular operation is permitted, it indicates this and returns any

Feb. 16, 2012

required cryptographic keys to host services 1008 which,
under the direction of host application 1002, relies on content
services 1016 to obtain the desired content and manage its
use. Host services 1008 might then initiate the process of
media rendering 1010 (e.g., playing the content through
speakers, displaying the content on a screen, etc.), coordi
nated with cryptography services 1012 as needed.
0288 The system architecture illustrated in FIG. 10 is a
relatively simple example of how the DRM engine can be
used in applications, but it is only one of many possibilities.
For example, in other embodiments, the DRM engine can be
integrated into packaging applications under the governance
of relatively Sophisticated policy management systems. Both
client (content consumption) and server (content packaging)
applications of the DRM engine, including descriptions of the
different types of DRM-related objects relied upon by such
applications, will be discussed below, following a description
of one embodiment of the internal architecture of the DRM
engine itself.
(0289. DRM Engine 1100, illustrated in FIG. 11, relies on
a virtual machine, control VM 1110, for internal DRM pro
cessing (e.g., executing control programs that govern access
to content) within a broad range of host platforms, utilizing
host environment 1120 (described above, and in greater detail
below) to interact with the node's host application 1130 and,
ultimately, other nodes within, e.g., the NEMO or other sys
tem.

0290. In one embodiment, control VM 1110 is a virtual
machine used by an embodiment of DRM Engine 1100 to
execute control programs that govern access to content. Fol
lowing is a description of the integration of control VM1110
into the architecture of DRM engine 1100, as well as some of
the basic elements of the control VM, including details about
its instruction set, memory model, code modules, and inter
action with host environment 1120 via system calls 1106.
0291. In one embodiment, control VM1110 is a relatively
Small-footprint virtual machine that is designed to be easy to
implement using various programming languages. It is based
on a stack-oriented instruction set that is designed to be mini
malistin nature, without much concern for execution speed or
code density. However, it will be appreciated that, if execution
speed and/or code density were issues in a given application,
conventional techniques (e.g., data compression) could be
used to improve performance.
0292 Control VM 1100 is suitable as a target for low or
high level programming languages, and Supports languages
such as assembler, C, and FORTH. Compilers for other lan
guages, such as Java or custom languages, could also be
implemented with relative ease.
0293 Control VM 1110 is designed to be hosted within
DRM Engine 1100, including host environment 1120, as
opposed to being run directly on a processor or in silicon.
Control VM 1110 runs programs by executing instructions
stored in Code Modules 1102. Some of these instructions can
make calls to functions implemented outside of the program
itself by making one or more System Calls 1106, which are
either implemented by Control VM 1110 itself, or delegated
to Host Environment 1120.

0294 Execution Model
0295 Control VM 1110 executes instructions stored in
code modules 1102 as a stream of byte code loaded in
memory 1104. Control VM1110 maintains a virtual register
called the program counter (PC) that is incremented as
instructions are executed. The VM executes each instruction,

US 2012/0042389 A1

in sequence, until the OP STOP instruction is encountered,
an OP RET instruction is encountered with an empty call
stack, or an exception occurs. Jumps are specified either as a
relative jump (specified as a byte offset from the current value
of PC), or as an absolute address.
0296 Memory Model
0297. In one embodiment, control VM 1110 has a rela

tively simple memory model. VM memory 1104 is separated
into a data segment (DS) and a code segment (CS). The data
segment is a single, flat, contiguous memory space, starting at
address 0. The data segment is typically an array of bytes
allocated within the heap memory of host application 1130 or
host environment 1120. For a given VM implementation, the
size of the memory space is preferably fixed to a maximum;
and attempts to access memory outside of that space will
cause faults and terminate program execution. The data seg
ment is potentially shared between several code modules
1102 concurrently loaded by the VM. The memory in the data
segment can be accessed by memory-access instructions,
which can be either 32-bit or 8-bit accesses. 32-bit memory
accesses are accomplished using the big-endian byte order.
No assumptions are made with regard to alignment between
the VM-visible memory and the host-managed memory (host
CPU virtual or physical memory).
0298. In one embodiment, the code segment is a flat, con
tiguous memory space, starting at address 0. The code seg
ment is typically an array of bytes allocated within the heap
memory of host application 1130 or host environment 1120.
0299 Control VM 1110 may load several code modules,
and all of the code modules may share the same data segment
(each module's data is preferably loaded at a different
address), but each has its own code segment (e.g., it is pref
erably not possible for a jump instruction from one code
module 1102 to cause a jump directly to code in another code
module 1102).
0300 Data Stack
0301 In a preferred embodiment, the VM has a notion of
a data stack, which represents 32-bit data cells stored in the
data segment. The VM maintains a virtual register called the
stack pointer (SP). After reset, SP points to the end of the data
segment, and the Stackgrows downward (when data is pushed
onto the data stack, the SP registers are decremented). The
32-bit values on the stack are interpreted either as 32-bit
addressed, or 32-bit signed, integers, depending on the
instruction referencing the stack data.
0302 Call Stack
0303. In one embodiment, control VM 1110 manages a
call stack for making nested Subroutine calls. The values
pushed onto this stack cannot be read or written directly by
the memory-access instructions, but are used indirectly by the
VM when executing OP JSR and OP RET instructions. For
a given VM profile, the size of this return address stack is
preferably fixed to a maximum, which will allow a certain
number of nested calls that cannot be exceeded.

0304
0305. In one embodiment, control VM 1110 uses a rela

tively simple instruction set. Even with a limited number of
instructions; however, it is still possible to express simple
programs. The instruction set is stack-based: except for the
OP PUSH instruction, none of the instructions have direct
operands. Operands are read from the data Stack, and results
are pushed onto the data stack. The VM is a 32-bit VM: all the
instructions in this illustrative embodiment operate on 32-bit

Instruction Set

Feb. 16, 2012

stack operands, representing either memory addresses or
signed integers. Signed integers are represented using a 2 S
complement binary encoding.
0306 An illustrative instruction set used in one embodi
ment is shown below:

Oper
OP CODE Name ands Description

OP PUSH Push N Push a constant on the stack
Constant (direct)

OP DROP Drop Remove top of stack
OP DUP Duplicate Duplicate top of stack
OP SWAP Swap Swap top two stack elements
OP ADD Add A, B Push the sum of A and B

(A+B)
OP MUL Multiply A, B Push the product of A and B

(A*B)
OP SUB Subtract A, B Push the difference between A

and B (A - B)
OP DIV Divide A, B Push the division of A by B

(A/B)
OP MOD Modulo A, B Push A modulo B (A% B)
OP NEG Negate A. Push the 2s complement

negation of A (-A)
OP CMP Compare A Push -1 if A negative, 0 if

A is 0, and 1 is a positive
OP AND And A, B Push bit-wise AND of A and B

(A & B)
OP OR Or A, B Push the bit-wise OR of A and B

(A|B)
OP XOR Exclusive A, B Push the bit-wise eXclusive OR

Or of A and B (A B)
OP NOT Logical A. Push the logical negation of A (1

Negate if A is 0, and 0 if A is not O)
OP SEHL Shift A, B Push A logically shifted left

Left by B bits (A< B)
OP SEHR Shift A, B Push A logically shifted right

Right by B bits (A >> B)
OP JSR ump to A. ump to Subroutine at absolute

Subroutine address A
OP JSRR ump to A. ump to subroutine at PC + A

Subroutine
(Relative)

OP RET Return Return from Subroutine
Ol

Subroutine
OP BRA Branch A. ump to PC + A

Always
OP BRP Branch if A, B ump to PC + A if B > 0

Positive
OP BRN Branch if A, B ump to PC + A if B < 0

Negative
OP BRZ. Branch if A, B ump to PC + A if B is 0

Zero
OP JMP ump A. ump to A
OP PEEK Peek A. Push the 32-bit value at

address A
OP POKE Poke A, B Store the 32-bit value Bat

address A
OP PEEKB Peek Byte A Push the 8-bit value at address A
OP POKEB Poke Byte A, B Store the least significant bits of

Bat address A
OP PUSHSP Push Push the value of SP

Stack
Pointer

OP POPSP Pop Stack A Set the value of SP to A
Pointer

OP CALL System A. Perform System Call with index
Call A.

OP STOP Stop Terminate Execution

0307 Module Format
0308. In one embodiment, code modules 1102 are stored
in an atom-based format that is essentially equivalent to the

US 2012/0042389 A1

atom structure used in the MPEG-4 file format. An atom
consists of 32 bits, stored as 4-Octets in big-endian byte order,
followed by a 4-octet type (usually octets that correspond to
ASCII values of letters of the alphabet), followed by the
payload of the atom (size-8 octets).
0309 3.7. DRM Client-Server Architecture: Content Con
Sumption and Packaging
0310. As noted above, DRM client-side consuming appli
cations (e.g., media players) consume DRM content (e.g.,
play a song, display a movie, etc.). DRM Service-side pack
aging applications (typically residing on a server) package
content (e.g., associate with the content relevant usage and
distribution rights, cryptographic keys, etc.) targeted to DRM
clients.
0311 FIG. 12a illustrates one embodiment of the main
architectural elements of a DRM client. Host application
1200 interfaces with a device user (e.g., the owner of a music
player) through user interface 1210. The user might, for
example, request access to protected content and receive
metadata along with the content (e.g., text displaying the
name of the artist and Song title, along with the audio for the
Song itself).
0312 Host application 1200, in addition to interacting
with user interface 1210, also performs various functions
necessary to implement the user's request, which may include
managing interaction with the other DRM client modules to
which it delegates certain functionality. For example, host
application 1200 may manage interaction with the file system
to extract the requested content. Host application also pref
erably recognizes the protected content object format and
issues a request to the DRM engine 1220 to evaluate the DRM
objects that make up the license (e.g., by running the relevant
control program) to determine whether permission to access
the protected content should be granted.
0313 If permission is granted, Host Application 1200
might also need to verify required signatures and delegate to
crypto services 1230 any other general purpose cryptographic
functions required by DRM engine 1220. DRM Engine 1220
is responsible for evaluating the DRM objects, confirming or
denying permission, and providing the keys to host applica
tion 1200 to decrypt the content.
0314 Host services 1240 provides DRM Engine 1220
with access to data managed by (as well as certain library
functions implemented by) host application 1200. Host appli
cation 1200 interacts with content services 1250 to access the
protected content, passing to DRM engine 1220 only that
portion of the content requiring processing. Content services
1250 acquires the content from external media servers and
stores and manages the content, relying on the client's per
sistent storage mechanisms.
0315. Once the content is cleared for access, host applica
tion 1200 interacts with media rendering engine 1260 (e.g.,
by delivering keys) to decrypt and render the content via the
client's AV output facilities. Some of the information needed
by DRM Engine 1220 may be available in-band with the
content, and can be acquired and managed via content Ser
vices 1250, while other information may need to be obtained
through external NEMO DRM services or some other source.
0316. In a preferred embodiment, all of the cryptographic
operations (encryption, signature verification, etc.) are
handled by crypto services 1230, which interacts indirectly
with DRM engine 1220 via host services 1240, which for
wards requests. Crypto services 1230 can also be used by
media rendering engine 1260 to perform content decryption.

Feb. 16, 2012

0317 Turning to the service side, FIG. 12b illustrates an
embodiment of the main architectural elements of an exem
plary DRM service-side packaging node. Host application
1200 interfaces with a content packager (e.g., an owner or
distributor of music content) through user interface 1210. The
packager might, for example, provide content and licensing
information to host application 1200 so that the content can be
protected (e.g., encrypted and associated with limited access
rights) and distributed to various end user and intermediate
content providing nodes.
0318 Host application 1200, in addition to interacting
with user interface 1210, can also perform various functions
necessary to implement the packager's request, including, for
example, managing interaction with the other DRM packag
ing modules to which it delegates certain functionality. For
example, it may manage interaction with general crypto Ser
vices 1235 to encrypt the content. It may also create a content
object that contains or references the content and contains or
references a license (e.g., after DRM packaging engine 1225
creates the DRM objects that make up the license). Metadata
can be associated with the license that explains what the
license is about in a human-readable way (e.g., for potential
client users to view).
0319. As noted above, host application 1200 interacts with
the user via user interface 1210. It is responsible for getting
information such as a content reference and the action(s) the
packager wants to perform (e.g., who to bind the content to).
It can also display information about the packaging process
Such as the text of the license issued and, if a failure occurs,
the reason for this failure. Some information needed by host
application 1200 may require the use of NEMO Services
1270 (e.g., to leverage services Such as authentication or
authorization as well as membership).
0320 In one embodiment, host application 1200 delegates
to media format services 1255 responsibility for managing all
media format operations, such as transcoding and packaging.
General crypto services 1235 is responsible for issuing and
Verifying signatures, as well as encrypting and decrypting
certain data. The request for Such operations could be issued
externally or from DRM packaging engine 1225 via host
services 1240.
0321. In one embodiment, content crypto services 1237 is
logically separated from general crypto services 1235
because it is unaware of host application 1200. It is driven by
media format services 1255 at content packaging time with a
set of keys previously issued by DRM packaging engine 1225
(all of which is coordinated by host application 1200).
0322 3.8. DRM Content Protection and Governance
Objects
0323. In an illustrative scenario, a content provider uses a
host application that relies on a DRM packager engine to
create a set of objects that protect the content and govern its
use, including conveying the information necessary for
obtaining the content encryption keys. The term, license, is
used to encompass this set of objects.
0324. In a preferred embodiment, the content and its
license are logically separate, but are bound together by inter
nal references using object IDs. The content and license are
usually stored together, but could be stored separately if nec
essary or desirable. A license can apply to more than one item
of content, and more than one license can apply to any single
item of content.

0325 FIG. 13 illustrates an embodiment of such a license,
including the relationships among the set of objects discussed

US 2012/0042389 A1

below. Note that control object 1320 and controller object
1330 are both signed objects in this embodiment, so that the
DRM client engine can verify that the control information
comes from a trusted Source prior to providing the host appli
cation with permission to access the protected content. In this
embodiment, all of these objects, with the exception of con
tent object 1300, are created by the DRM client engine.
0326 Content object—Content object 1300 represents the
encrypted content 1304, using a unique ID 1302 to facilitate
the binding between the content and its associated key. Con
tent object 1300 is an “external' object. The format and
storage of encrypted content 1304 (e.g., MP4 movie file, MP3
music track, etc.) is determined by the host application (or
delegated to a service), based in part upon the type of content.
The format of the content also provides Support for associat
ing ID 1302 with encrypted content 1304. The packager's
host application encrypts the content in a format-dependent
manner, and manages content object 1300, using any avail
able cryptosystem (e.g., using a symmetric cipher, Such as
AES).
0327 ContentKey object ContentKey object 1310 rep
resents the encrypted key data 1314 (including a unique
encryption key(s), optionally stored internally within the
object), and also has a corresponding unique ID 1312. Pref
erably, this key data, if contained within ContentKey object
1310, is itself encrypted so that it can only be identified by
those authorized to decrypt the content. ContentKey object
1310 also specifies which cryptosystem was used to encrypt
this key data. This cryptosystem, an embodiment of which is
discussed in greater detail below, is referred to as the “key
distribution system.”
0328 Control object—Control object 1320 includes and
protects the control program (e.g., control byte code 1324)
that represents the rules that govern the use of the keys used to
encrypt and decrypt the content. It also includes ID 1322 so
that it can be bound to the corresponding ContentKey object.
As noted above, control object 1320 is signed so that the
DRM client engine can verify the validity of the binding
between the Contentkey 1310 and control 1320, as well as the
binding between the ContentKey ID 1312 and the encrypted
key data 1314. The validity of control byte code 1324 can
optionally be derived by Verifying a secure hash (e.g., control
hash 1338, if available) contained in controller object 1330.
0329 Controller object Controller object 1330 repre
sents the binding between the keys and the rules governing
their control, using IDs 1312 and 1322, respectively, to bind
the ContentKey 1310 and control 1320 objects. Controller
object 1330 governs the use of protected content by control
ling application of the rules to that content—i.e., by deter
mining which control governs the use of which ContentKey
object 1310. Controller object 1330 also containsahash 1336
value for each of the ContentKey objects 1310 that it refer
ences, in order to prevent tampering with the binding between
each ContentKey object 1310 and its corresponding
encrypted key data 1314. As noted above, controller objects
1330 are preferably signed (e.g., by a packager application
that has a certificate allowing it to sign controller objects,
using public key or symmetric key signatures, as discussed
below) to enable verification of the validity of the binding
between the ContentKey 1310 and control 1320 objects, as
well as the binding between the ContentKey ID 1312 and the
encrypted key data 1314. As also noted above, controller
object 1330 also optionally contains control hash 1338, which

Feb. 16, 2012

allows the validity of control object 1320 to be derived with
out having to separately verify its signature.
0330 Symmetric Key Signature. In a preferred embodi
ment, a symmetric key signature is the most common type of
signature for controller objects 1330. In one embodiment, this
type of signature is implemented by computing a MAC (Mes
sage Authentication Code) of the controller object 1330,
keyed with the same key as the key represented by the Con
tentKey object 1310.
0331 Public Key Signature—In a preferred embodiment,
this type of signature is used when the identity of the signer of
the controller object 1330 needs to be asserted uniquely. This
type of signature is implemented with a public key signature
algorithm, signing with the private key of the principal who is
asserting the validity of this object. When using this type of
signature, the ContentKey binding information carried in the
controller object 1330 preferably contains a hash 1336 of the
key contained in the ContentKey object 1310, concatenated
with a fingerprint of the signing private key (typically a hash
of the private key). This binding ensures that the signer of the
object has knowledge of the key used to protect the content.
0332 Protector object Protector object 1340 provides
protected access to content by controlling the use of keys used
to encrypt and decrypt that content. Protector object 1340
binds content object 1300 to ContentKey object 1310 in order
to associate protected content with its corresponding key(s).
To accomplish this binding, it includes references 1342 and
1344, respectively, to the IDs 1302 and 1312 of content 1300
and ContentKey 1310. In one embodiment, protector object
1340 contains information not only as to which key was used
to encrypt one or more content items, but also as to which
encryption algorithm was employed. In one embodiment, if
content reference 1342 references more than one content
object 1300, ContentKey reference 1344 may still reference
only one ContentKey object 1310, indicating that all of those
contentitems were encrypted using the same encryption algo
rithm and the same key.
0333 3.9. DRM Node and Link Objects
0334) While FIG. 13 illustrates the content protection and
governance objects created by DRM engines to control access
to protected content, FIG. 14 illustrates the DRM objects that
represent entities in the system (e.g., users, devices or
groups), as well as the relationships among those entities.
0335 While FIG.4, discussed above, illustrates a concep
tual embodiment of a node or authorization graph depicting
these entities and their relationships, FIG. 14 illustrates two
types of objects that implement an embodiment of this con
ceptual graph: vertex (or “node') objects (1400a and 1400b).
which represent entities and their attributes, and link objects
(1420), which represent the relationships among node
objects. In one embodiment, the DRM engine, by executing
control programs, instigates one or more usage patterns
involving these objects—e.g., encrypting a song and associ
ating it with a license that restricts its distribution to particular
individuals. Yet, the DRM engine in this embodiment does
not specify, implicitly or explicitly, the semantics attached to
these objects (e.g., to which individuals the song may be
distributed).
0336. In one embodiment this semantic context, referred
to as a DRM profile, is defined within the attributes of the
node objects themselves. A DRM profile may include
descriptions of these entities and the various roles and iden
tities they represent, typically expressed using node attributes
(1401a and 1401b). As discussed above, a link 1420 between

US 2012/0042389 A1

two nodes 1400a and 1400b could represent various types of
semantic relationships. For example, if one node was a “user
and the other was a “device then link 1420 might represent
“ownership. If the other node was a “user group' instead of
a “device, then link 1420 might represent “membership.”
Link 1420 might be unidirectional in one scenario and bidi
rectional in another (e.g., representing two links between the
same two nodes).
0337 Node objects 1400a and 1400b also typically have
object confidentiality protection asymmetric key pairs (e.g.,
private key 1405a and public key 1406a of node 1400a, and
private key 1405b and public key 1406b of node 1400b) to
limit confidential information to authorized portions of the
node. Confidential information targeted at a node will be
encrypted with that node's confidentiality protection public
key. Optionally, a content protection asymmetric key pair
(e.g., private key 1403a and public key 1403b of node 1400a,
and private key 1403b and public key 1403b of node 1400b)
can be used in conjunction with link objects when the system
uses a ContentKey derivation system for ContentKey distri
bution, as discussed in greater detail below. Content items
themselves may be protected with content protection sym
metric keys, such as symmetric key 1402a of node 1400a and
key 1402b of node 1400b.
0338. As noted above, in one embodiment link objects
(e.g., link 1420) represent relationships between nodes. The
semantics of these relationships can be stored in node
attributes (e.g., 1401a of node 1400a and 1401b of node
1400b), referenced from within the link objects (e.g., node
reference 1422 to node 1400a and node reference 1424 to
node 1400b). Link objects can also optionally contain cryp
tographic data (e.g., key derivation info 1426) that enables the
link object to be used for ContentKey derivations, as dis
cussed below.
0339. In one embodiment the link object itself is a signed
object, represented by a directed edge in a graph, such as in
FIG. 4 above. When there exists such a directed edge from
one node (e.g., node X) to another (e.g., node Y), this "path’
from node X to node Y indicates that node Y is “reachable'
from node X. The existence of a path can be used by other
DRM objects, e.g., as a condition of performing a particular
function. A control object might check to determine whether
a target node is reachable before it allows a certain action to be
performed on its associated content object.
0340 For example, if node D represents a device that
wants to perform the “play action on a content object, a
control that governs this content object might test whether a
certain node U representing a certain user is reachable from
node D (e.g., whether that user is the "owner of that device),
and only allow the “play' action to be performed if that
condition is satisfied. To determine if node U is reachable, the
DRM engine can run a control program to determine whether
there exists a set of link objects that can establish a path (e.g.,
a director indirect relationship) between node D and node U.
As noted above, in one embodiment the DRM engine is
unaware of the semantics of the relationship; it simply deter
mines the existence of a path, enabling the host application,
for example, to interpret this path as a conditional authoriza
tion, permitting access to protected content.
0341. In one embodiment the DRM engine verifies link
objects before allowing them to be used to determine the
existence of paths in the system node graph. The validity of a
link object at any given time may depend upon the particular
features of the certificate system (discussed below) used to

20
Feb. 16, 2012

sign link objects. For example, they may have limited “life
times” or be revoked or revalidated from time to time based on
various conditions.
0342. Also, in one embodiment the policies that govern
which entities can sign link objects, which link objects can be
created, and the lifetime of link objects are not directly
handled by the DRM engine. Instead, they may leverage the
node attributes information. To facilitate the task of enforcing
certain policies, the system may provide a way to extend
standard certificate formats with additional constraint check
ing. These extensions make it possible to express validity
constraints on certificates for keys that sign links, such that
constraints (e.g., the type of nodes connected by the link, as
well as other attributes), can be checked before a link is
considered valid.
0343 Finally, in one embodiment the link object may con
tain cryptographic data that provides the user with the nodes
content protection keys for key distribution. That crypto
graphic data may, for example, contain, in addition to meta
data, the private and/or symmetric content protection keys of
the “from node, encrypted with the content protection public
key and/or the content protection symmetric key of the “to
node. For example, an entity that has been granted the ability
to create link objects that link device nodes and user nodes
under a certain policy may check to ensure that it only creates
links between node objects that have attributes indicating
they are indeed representing a device, and nodes that have
attributes indicating that they represent a user.
(0344 3.10. DRM Cryptographic Keys
0345 An example embodiment of a DRM key distribution
system is illustrated in FIG. 15. The basic principle behind the
key distribution system shown in FIG. 15 is to use link objects
to distribute keys in addition to their primary purpose of
establishing relationships between node objects.
0346. As noted above, a control object may contain a
control program that determines whether a requested opera
tion should be permitted. That control program may check to
determine whether a specific node is reachable via a collec
tion of link objects. The key distribution system shown in
FIG. 15 leverages that search through a collection of link
objects to facilitate the distribution of a key such that it is
available to the DRM engine that is executing the control
program.
0347 In one embodiment, each node object that uses the
key distribution system has one or more keys. These keys are
used to encrypt content keys and other nodes key distribution
keys. Link objects created for use in the same deployment
contain some cryptographic data payload that allows key
information do be derived when chains of links are processed
by the DRM engine.
0348 With nodes and links carrying keys this way, given a
collection of links (e.g., from a node A to a node B . . . to a
node Z), any entity that has access to the private keys of node
A also has access to the private keys of node Z. Having access
to node Z's private keys gives the entity access to any content
key encrypted with those keys.
0349 Node objects that participate in a key distribution
system contain keys as part of their data. As illustrated in FIG.
15, in one embodiment each node (1500a, 1500b, and 1500c)
has three keys:
0350 Public Key KpubN- This is the public part of a
pair of public/private keys for the public key cipher. In one
embodiment this key (1505a, 1505b and 1505c, respec
tively, in nodes 1500a, 1500b and 1500c) comes with a

US 2012/0042389 A1

certificate (discussed below) so that its credentials can be
verified by entities that want to bind confidential informa
tion to it cryptographically.

0351) Private Key KprivN This is the private part of the
public/private key pair. The entity that manages the node is
responsible for ensuring that this private key (keys 1515a,
1515b and 1515c, respectively, in nodes 1500a, 1500b and
1500c) is kept secret. For that reason, in one embodiment
this private key is stored and transported separately from
the rest of the node information.

0352 Symmetric Key KSN) This key is used with a
symmetric cipher (discussed below). Because this private
key (keys 1525a, 1525b and 1525c, respectively, in nodes
1500a, 1500b and 1500c) is confidential, the entity that
manages the node is responsible for keeping it secret.

0353. The key distribution system illustrated in FIG. 15
can be implemented using different cryptographic algo
rithms, though the participatingentities will generally need to
agree on a set of supported algorithms. In one embodiment, at
least one public key cipher (such as RSA) and one symmetric
key cipher (Such as AES) are Supported.
0354. The following notation refers to cryptographic func

tions:
0355 Ep(KpubN, M) means “the message Mencrypted
with the public key Kpub of node N, using a public key
cipher

0356. Dp(KprivN. M) means “the message M decrypted
with the private key Kpriv of node N using a public key
cipher”

0357 Es(KSN), M) means “the message M encrypted
with the symmetric key KS of node N using a symmetric
key cipher

0358 Ds(KSN, M) means “the message M decrypted
with the symmetric key KS of node N using a symmetric
key cipher

0359 Targeting a “ContentKey’ to a node means making
that key available to the entities that have access to the private
keys of that node. In one embodiment binding is done by
encrypting the key using one or both of the following meth
ods:
0360 Public Binding: Create a ContentKey object that
contains Ep(KpubN. CK)

0361 Symmetric Binding: Create a ContentKey object
that contains Es(KSN, CK)

0362. In this embodiment, symmetric binding is prefer
ably used whenever possible, as it uses a less computationally
intensive algorithm that is less onerous on the receiving
entity. However, the entity (e.g., a content packager) that
creates the ContentKey object may not always have access to
KSN. In that case, public binding can be used, as KpubN
should be available, as it is not confidential information.
KpubN will usually be made available to entities that need
to target ContentKeys, accompanied by a certificate that can
be inspected by the entity to decide whether KpubN is
indeed the key of a node that can be trusted to handle the
ContentKey in accordance with some agreed-upon policy.
0363 To allow entities to have access to the distribution
keys of all reachable nodes, in one embodiment link objects
contain a "payload.” That payload allows any entity that has
access to the private keys of the link’s “from node' to also
have access to the private keys of the link’s “to node.” In this
manner, an entity can decrypt any ContentKey targeted to a
node that is reachable from its node.

21
Feb. 16, 2012

0364 Thus, returning to FIG. 15, link 1530a, which links
node 1500a to node 1500b, contains a payload that is created
by encrypting the private keys 1515b and 1525b of node
1500b with either the symmetrickey 1515a of node 1500a or,
ifunavailable (e.g., due to its confidentiality), with the public
key 1525a of node 1500a. Similarly, link 1530b, which links
node 1500b to node 1500c, contains a payload that is created
by encrypting the private keys 1515c and 1525c of node
1500c with either the symmetrickey 1515b of node 1500b or,
ifunavailable, with the public key 1525b of node 1500b.
0365. When a DRM engine processes link objects, it pro
cesses the payload of each link to update an internal chain
1550 of keys to which it has access. In one embodiment the
payload of a link from node A to node B consists of either:
0366 Public derivation information
0367 Ep(KpubA), KsB.KprivB})
0368 or
0369 Symmetric derivation information
0370 Es(Ks|A), KsB.KprivB})
Where KsB.KprivB} is a data structure containing KsB
and KprivB.
0371. The public derivation information is used to convey
the private keys of node B, KsB and KprivB, to any entity
that has access to the private key of node A, Kprival. The
symmetric derivation information is used to convey the pri
vate keys of node B, Ks B and KprivB, to any entity that
has access to the symmetric key of node A, Kprival.
0372. Thus, with reference to key chain 1550, an entity
that has access to the private keys of node 1500a (private key
1515a and symmetric key 1525a) enables the DRM engine to
utilize these private keys 1560 as a “first link’ in(and starting
point in generating the rest of) key chain 1550. Scuba keys
1560 are used to decrypt 1555a the ContentKey object within
link 1530a (using private key 1515a for public derivation if
public binding via public key 1505a was used, or symmetric
key 1525a for symmetric derivation if symmetric binding via
symmetric key 1525a was used), resulting in the next link
1570 in key chain 1550 i.e., the confidential keys of node
1500b (private key 1515b and symmetric key 1525b). The
DRM engine uses these keys 1570 in turn to decrypt 1555b
the ContentKey object within link 1530.b (using private key
1515b for public derivation if public binding via public key
1505b was used, or symmetric key 1525b for symmetric
derivation if symmetric binding via symmetrickey 1525b was
used), resulting in the final link 1580 in key chain 1550 i.e.,
the confidential keys of node 1500c (private key 1515c and
symmetric key 1525c).
0373 Since, in one embodiment, the DRM engine can
process links in any order, it may not be able to perform a key
derivation at the time a link is processed (e.g., because the
keys of the “from node of that link have not yet been
derived). In that case, the link is remembered, and processed
again when such information becomes available (e.g., when a
link is processed in which that node is the “to node).
0374 3.11. DRM Certificates
0375. As noted above, in one embodiment certificates are
used to check the credentials associated with cryptographic
keys before making decisions based on the digital signature
created with those keys. In one embodiment, multiple certifi
cate technologies can be supported, leveraging existing infor
mation typically available as standard elements of certifi
cates, such as validity periods, names, etc. In addition to these
standard elements, additional constraints can be encoded to
limit potential usage of a certified key.

US 2012/0042389 A1

0376. In one embodiment this is accomplished by using
key-usage extensions as part of the certificate-encoding pro
cess. The information encoded in Such extensions can be used
to enable the DRM engine to determine whether the key that
has signed a specific object was authorized to be used for that
purpose. For example, a certain key may have a certificate that
allows it to sign only those link objects in which the link is
from a node with a specific attribute, and/or to a node with
another specific attribute.
0377 The base technology used to express the certificate
typically is not capable of expressing Such a constraint, as its
semantics may be unaware of elements such as links and
nodes. In one embodiment Such specific constraints are there
fore conveyed as key usage extensions of the basic certificate,
including a “usage category' and a corresponding "constraint
program.”
0378. The usage category specifies which type of objects a
key is authorized to sign. The constraint program can express
dynamic conditions based on context.
0379. In one embodiment a verifier that is being asked to
verify the validity of such a certificate is required to under
stand the relevant Semantics, though the evaluation of the key
usage extension expression is delegated to the DRM engine.
The certificate is considered valid only if the execution of that
program generates a Successful result.
0380. In one embodiment, the role of a constraint program

is to return a boolean value—e.g., “true’ indicating that the
constraint conditions are met, and “false' indicating that they
are not met. The control program may also have access to
Some context information that can be used to reach a decision.
The available context information may depend upon the type
of decision being made by the DRM engine when it requests
the verification of the certificate. For example, before using
the information in a link object, a DRM engine may verify
that the certificate of the key that signed the object allows that
key to be used for that purpose. When executing the constraint
program, the environment of the DRM engine is populated
with information regarding the link's attributes, as well as the
attributes of the nodes referenced by that link.
0381. The constraint program embedded in the key usage
extension is encoded, in one embodiment, as a code module
(described above). This code module preferably exports at
least one entry point named, for example, "EngineName.
Certificate.<Category>.Check', where Category is a name
indicating which category of certificates need to be checked.
Parameters to the verification program will be pushed onto
the stack before calling the entry point. The number and types
of parameters passed onto the stack depends on the category
of certificate extension being evaluated.

4. System Operation

0382 4.1. Basic Node Interaction
0383 Having examined various embodiments of the prin
cipal architectural elements of the NEMO system, including
embodiments in the context of DRM applications, we now
turn to the NEMO system in operation i.e., the sequence of
events within and among NEMO nodes that establish the
foundation upon which application-specific functionality can
be layered.
0384. In one embodiment, before NEMO nodes invoke
application-specific functionality, they go through a process
of initialization and authorization. Nodes initially seek to
discover desired services (via requests, registration, notifica
tion, etc.), and then obtain authorization to use those services

22
Feb. 16, 2012

(e.g., by establishing that they are trustworthy and that they
satisfy any relevant service provider policies).
0385. This process is illustrated in FIG.16, which outlines
a basic interaction between a Service Provider 1600 (in this
embodiment, with functionality shared between a Service
Providing Node 1610 and an Authorizing Node 1620) and a
Service Requester 1630 (e.g., a client consumer of services).
Note that this interaction need not be direct. Any number of
Intermediary Nodes 1625 may lie in the path between the
Service Requester 1630 and the Service Provider 1600. The
basic steps in this process, which will be described in greater
detail below, are discussed from the perspectives of both the
client Service Requester 1630 and Service Provider 1600.
(0386 From the perspective of the Service Requester 1630,
the logical flow of events shown in FIG. 16 is as follows:
0387 Service Discovery—In one embodiment, Service
Requester 1630 initiates a service discovery request to
locate any NEMO-enabled nodes that provide the desired
service, and obtain information regarding which service
bindings are supported for accessing the relevant service
interfaces. Service Requester 1630 may choose to cache
information about discovered services. It should be noted
that the interface/mechanism for Service Discovery
between NEMO Nodes is just another service a NEMO
Node chooses to implement and expose. The Service Dis
covery process is described in greater detail below, includ
ing other forms of communication, such as notification by
Service Providers to registered Service Requesters.

0388 Service Binding Selection. Once candidate ser
Vice-providing Nodes are found, the requesting Node can
choose to target (dispatch a request to) one or more of the
service-providing Nodes based on a specific service bind
ing.

0389 Negotiation of Acceptable Trusted Relationship
with Service Provider—In one embodiment, before two
Nodes can communicate in a secure fashion, they must be
able to establish a trusted relationship for this purpose. This
may include an exchange of compatible trust credentials
(e.g. X.500 certificates, tokens, etc.) in Some integrity
protected envelope that may be used to determine identity:
and/or it may include establishing a secure channel. Such as
an SSL channel, based on certificates both parties trust. In
Some cases, the exchange and negotiation of these creden
tials may be an implicit property of the service interface
binding (e.g. WS-Security if the WS-I XML Protocol is
used when the interface is exposed as a web service, or an
SSL request between two well-known nodes). In other
cases, the exchange and negotiation of trust credentials
may be an explicitly separate step. NEMO provides a stan
dard and flexible framework allowing Nodes to establish
trusted channels for communication. It is up to a given
Node, based on the characteristics of the Node and on the
characteristics of the service involved in the interaction, to
determine which credentials are sufficient for interacting
with another. NEMO Node, and to make the decision
whether it trusts a given Node. In one embodiment the
NEMO framework leverages existing and emerging stan
dards, especially in the area of security-related data types
and protocols. For example, in one embodiment the frame
work will support using SAML to describe both credentials
(evidence) given by service requestors to service providers
when they want to invoke a service, as well as using SAML
as a way of expressing authorization queries and authori
Zation responses.

US 2012/0042389 A1

0390 Creation of Request Message The next step is for
Requesting Node 1630 to create the appropriate request
message(s) corresponding to the desired service. This
operation may be hidden by the Service Access Point. As
noted above, the Service Access Point provides an abstrac
tion and interface for interacting with service providers in
the NEMO framework, and may hide certain service invo
cation issues, such as native interfaces to service message
mappings, object serialization/de-serialization, negotia
tion of compatible message formats, transport mechanisms
or message routing issues, etc.

0391 Dispatching of Request Once the request message
is created, it is dispatched to the targeted service-providing
Node(s)—e.g., Node 1610. The communication style of
the request can be synchronous/asynchronous RPC style or
message-oriented, based on the service binding and/or
preferences of the requesting client. Interacting with a ser
vice can be done directly by the transmission and process
ing of service messages or done through more native inter
faces through the NEMO Service Access Point.

0392 Receiving Response Message(s)—After dispatch
ing the request, Requesting Node 1610 receives one or
more responses in reply. Depending on the specifics of the
service interface binding and the preferences of Request
ing Node 1610, the reply(s) can be returned in various
ways, including an RPC-style response or notification
message. As noted above, requests and replies can be
routed to their targeted Node via other Intermediary Node
(s) 1625, which may themselves provide a number of ser
vices, including: routing, trust negotiation, collation and
correlation functions, etc. All services in this embodiment
are “standard NEMO services described, discovered,
authorized, bound to, and interacted with within the same
consistent framework. The Service Access Point may hide
message-level abstractions from the Node. For example
from the Node's perspective, invocation of a service may
seem like a standard function invocation with a set of
simple fixed parameters.

0393 Validation of Responsere Negotiated Trust Seman
tics—In one embodiment, Requesting Node 1630 vali
dates the response message to ensure that it adheres to the
negotiated trust semantics between it and the Service Pro
viding Node 1610. This logic typically is completely
encapsulated within the Service Access Point.

0394 Processing of Message Payload Finally, any
appropriate processing is then applied based on the (appli
cation specific) message payload type and contents.

0395. Following are the (somewhat similar) logical flow
of events from the perspective of the Service Provider 1600:
0396 Service Support Determination—A determination

is first made as to whether the requested service is Sup
ported. In one embodiment, the NEMO framework doesn't
mandate the style or granularity of how a service interface
maps as an entry point to a service. In the simplest case, a
service interface maps unambiguously to a given service,
and the act of binding to and invoking that interface con
stitutes support for the service. However, it may be the case
that a single service interface handles multiple types of
requests, or that a given service type contains additional
attributes which need to be sampled before a determination
can be made as to whether the Node really supports the
specifically desired functionality.

0397 Negotiation of Acceptable Trusted Relationship
with Service Requester—In some cases, it may be neces

23
Feb. 16, 2012

sary for Service Provider 1600 to determine whether it
trusts Requesting Node 1630, and establish a trusted com
munication channel. This process is explained in detail
above.

0398 Dispatch Authorization Request to Nodes Authoriz
ing Access to Service Interface Service Providing Node
1610 then determines whether Requesting Node 1630 is
authorized or entitled to have access to the service, and, if
So, under what conditions. This may be a decision based on
local information, or on a natively supported authorization
decision mechanism. If not supported locally, Service Pro
viding Node 1610 may dispatch an authorization request(s)
to a known NEMO authorization service provider (e.g.,
Authorizing Node 1620) that governs its services, in order
to determine if the Requesting Node 1610 is authorized to
have access to the requested services. In many situations,
Authorizing Node 1620 and Service Providing Node 1610
will be the same entity, in which case the dispatching and
processing of the authorizing request will be local opera
tions invoked through a lightweight service interface bind
ing Such as a C function entry point. Once again, however,
since this mechanism is itself just a NEMO service, it is
possible to have a fully distributed implementation. Autho
rization requests can reference identification information
and/or attributes associated with the NEMONode itself, or
information associated with users and/or devices associ
ated with the Node.

0399 Message Processing Upon Receipt of Authorization
Response—Upon receiving the authorization response, if
Requesting Node 1630 is authorized, Service Provider
1600 performs the necessary processing to fulfill the
request. Otherwise, if Requesting Node 1630 is not autho
rized, an appropriate “authorization denied’ response mes
Sage can be generated.

0400 Return Response Message. The response is then
returned based on the service interface binding and the
preferences of Requesting Node 1630, using one of several
communication methods, including an RPC-style response
or notification message. Once again, as noted above,
requests and replies can be routed to their targeted Node via
other Intermediary Node(s) 1625, which may themselves
provide a number of services, including routing, trust nego
tiation, collation and correlation functions, etc. An
example of a necessary service provided by an Intermedi
ary Node 1625 might be delivery to a notification process
ing Node that can deliver the message in a manner known
to Requesting Node 1630. An example of a “value added
service might be, for example, a coupon service which
associates coupons to the response if it knows of the inter
ests of Requesting Node 1630.

04.01 4.2. Notification
0402. As noted above, in addition to both asynchronous
and synchronous RPC-like communication patterns, where
the client specifically initiates a request and then either waits
for responses or periodically checks for responses through
redemption of a ticket, some NEMO embodiments also sup
port a pure messaging type of communication pattern based
on the notion of notification. The following elements consti
tute data and message types Supporting this concept of noti
fication in one embodiment:
0403. Notification—a message containing a specified type
of payload targeted at interested endpoint Nodes.

04.04. Notification Interest—criteria used to determine
whether a given Node will accept a given notification.

US 2012/0042389 A1

Notification interests may include interests based on spe
cific types of identity (e.g., NodeID, userID, etc.), events
(e.g., Node discovery, service discovery, etc.), affinity
groups (e.g., new jazz club content), or general categories
(e.g., advertisements).

0405. Notification Payload the typed contents of a noti
fication. Payload types may range from simple text mes
Sages to more complex objects.

0406 Notification Handler Service Interface the type of
service provider interface on which notifications may be
received. The service provider also describes the notifica
tion interests associated with the interface, as well as the
acceptable payload types. A Node supporting this interface
may be the final destination for the notification oran inter
mediary processing endpoint.

0407. Notification Processor Service-a service that is
capable of matching notifications to interested Nodes,
delivering the notifications based on some policy.

0408. Notification Originator a Node that sends out a
notification targeted to a set of interested Nodes and/or an
intermediary set of notification processing Nodes.

04.09. The notification, notification interest, and notifica
tion payload are preferably extensible. Additionally, the noti
fication handler service interface is preferably subject to the
same authorization process as any other NEMO service inter
face. Thus, even though a given notification may match in
terms of interest and acceptable payload, a Node may refuse
to accept a notification based on some associated interface
policy related to the intermediary sender or originating source
of the notification.
0410 FIG. 17a depicts a set of notification processing
Nodes 1710 discovering 1715 a Node 1720 that supports the
notification handler service. As part of its service description,
node 1720 designates its notification interests, as well as
which notification payload types are acceptable.
0411 FIG. 17b depicts how notifications can be delivered.
Any Node could be the originating source as well as processor
of the notification, and could be responsible for delivering the
notification to Node 1720, which supports the notification
handler service. Thus, Node 1710a could be the originating
notification processing Node; or such functionality might be
split between Node 1710c (originating source of notification)
and Node 1710.b (processor of notification). Still another
Node (not shown) might be responsible for delivery of the
notification. Notification processors that choose to handle
notifications from foreign notification-originating Nodes
may integrate with a commercial notification-processing
engine such as Microsoft Notification Services in order to
improve efficiency.
0412 4.3. Service Discovery
0413. In order to use NEMO services, NEMO Nodes will
need to first know about them. One embodiment of NEMO
Supports three dynamic discovery mechanisms, illustrated in
FIGS. 18q-C.

0414) Client Driven a NEMO Node 1810a (in FIG.18a)
explicitly sends out a request to some set of targeted Nodes
(e.g., 1820a) that support a "Service Query” service inter
face 1815a, the request asking whether the targeted Nodes
Support a specified set of services. If requesting Node
1810a is authorized, Service Providing Node 1820a will
send a response indicating whether it supports the
requested interfaces and the associated service interface
bindings. This is one of the more common interfaces that
Nodes will support if they expose any services.

24
Feb. 16, 2012

0415 Node Registration a NEMO Node 1810b (in FIG.
18b) can register its description, including its supported
services, with other Nodes, such as Service Providing
Node 1820b. If a Node supports this interface 1815b, it is
willing to accept requests from other Nodes and then cache
those descriptions based on some policy. These Node
descriptions are then available directly for use by the
receiving Node or by other Nodes that perform service
queries targeted to Nodes that have cached descriptions. As
an alternative to P2P registration, a Node could also utilize
a public registry, such as a UDDI (Universal Discovery,
Description and Integration) standard registry for locating
services.

0416) Event-Based Nodes (such as Node 1810c in FIG.
18c) send out notifications 1815c to Interested Nodes
1820c (that are "notification aware” and previously indi
cated their interest), indicating a change in state (e.g., Node
active/available), or a Node advertises that it supports some
specific service. The notification 1815c can contain a full
description of the node and its services, or just the ID of the
node associated with the event. Interested nodes may then
choose to accept and process the notification.

0417 4.4. Service Authorization and the Establishment of
Trust

0418. As noted above, in one embodiment, before a
NEMO Node allows access to a requested service, it first
determines whether, and under which conditions, the request
ing Node is permitted access to that service. Access permis
Sion is based on a trust context for interactions between ser
Vice requestor and service provider. As will be discussed
below, even if a Node establishes that it can be trusted, a
service providing Node may also require that it satisfy a
specified policy before permitting access to a particular ser
vice or set of services.
0419. In one embodiment NEMO does not mandate the
specific requirements, criteria, or decision-making logic
employed by an arbitrary set of Nodes in determining whether
to trust each other. Trust semantics may vary radically from
Node to Node. Instead, NEMO provides a standard set of
facilities that allow Nodes to negotiate a mutually acceptable
trusted relationship. In the determination and establishment
of trust between Nodes, NEMO supports the exchange of
credentials (and/or related information) between Nodes,
which can be used for establishing a trusted context. Such
trust-related credentials may be exchanged using a variety of
different models, including the following:
0420 Service-Binding Properties—a model where trust
credentials are exchanged implicitly as part of the service
interface binding. For example, if a Node 1920a (in FIG.
19a) exposes a service in the form of an HTTP Post over
SSL, orasaWeb Service that requires a WS-Security XML
Signature, then the actual properties of this service binding
may communicate all necessary trust-related credentials
1915a with a Requesting Node 1910a.

0421 Request/Response Attributes—a model where trust
credentials are exchanged through WSDL request and
response messages (see FIG. 19b) between a Requesting
Node 1910b and a Service Providing Node 1920b, option
ally including the credentials as attributes of the messages
1915b. For example, digital certificates could be attached
to, and flow along with, request and response messages,
and could be used for forming a trusted relationship.

0422 Explicit Exchange—a model where trust creden
tials are exchanged explicitly through a service-provider

US 2012/0042389 A1

interface (1915c in FIG. 19.c) that allows querying of infor
mation related to the trust credentials that a given node
contains. This is generally the most involved model, typi
cally requiring a separate roundtrip session in order to
exchange credentials between a Requesting Node 1910c
and a Service Providing Node 1920c. The service interface
binding itself provides a mutually acceptable trusted chan
nel for explicit exchange of credentials.

0423. In addition to these basic models, NEMO can also
support combinations of these different approaches. For
example, the communication channel associated with a semi
trusted service binding may be used to bootstrap the exchange
of other security-related credentials more directly, or
exchanging security-related credentials (which may have
Some type of inherent integrity) directly and using them to
establish a secure communication channel associated with
Some service interface binding.
0424. As noted above, trust model semantics and the pro
cesses of establishing trust may vary from entity to entity. In
Some situations, mutual trust between nodes may not be
required. This type of dynamic heterogeneous environment
calls for a flexible model that provides a common set of
facilities that allow different entities to negotiate context
sensitive trust semantics.
0425 4.5. Policy-Managed Access
0426 In one embodiment (as noted above), a service pro
viding Node, in addition to requiring the establishment of a
trusted context before it allows a requesting Node to access a
resource, may also require that the requesting Node satisfy a
policy associated with that resource. The policy decision
mechanism used for this purpose may be local and/or private.
In one embodiment, NEMO provides a consistent, flexible
mechanism for Supporting this functionality.
0427 As part of the service description, one can designate
specific NEMO Nodes as “authorization” service providers.
In one embodiment an authorization service providing Node
implements a standard service for handling and responding to
authorization query requests. Before access is allowed to a
service interface, the targeted service provider dispatches an
'Authorization’ query request to any authorizing Nodes for
its service, and access will be allowed only if one or more
such Nodes (or a pre-specified combination thereof) respond
indicating that access is permitted.
0428. As illustrated in FIG. 20, a Requesting Node 2010
exchanges messages 2015 with a Service Providing Node
2020, including an initial request for a particular service.
Service Providing Node 2020 then determines whether
Requesting Node 2010 is authorized to invoke that service,
and thus exchanges authorization messages 2025 with the
authorizing Nodes 2025 that manage access to the requested
service, including an initial authorization request to these
Nodes 2030. Based on the responses it receives, Service Pro
viding Node 2020 then either processes and returns the appli
cable service response, or returns a response indicating that
access was denied.

0429 Thus, the Authorization service allows a NEMO
Node to participate in the role of policy decision point (PDP).
In a preferred embodiment, NEMO is policy management
system neutral; it does not mandate how an authorizing Node
reaches decisions about authorizations based on an authori
zation query. Yet, for interoperability, it is preferable that
authorization requests and responses adhere to Some stan
dard, and be sufficiently extensible to carry a flexible payload
so that they can accommodate different types of authorization

25
Feb. 16, 2012

query requests in the context of different policy management
systems. In one embodiment, Support is provided for at least
two authorization formats: (1) a simple format providing a
very simple envelope using some least common denominator
criteria, Such as input, a simple requestor ID, resource ID.
and/or action ID, and (2) the standard “Security Assertion
Markup Language' (SAML) format to envelope an authori
Zation query.
0430. In one embodiment, an authorizing Node must rec
ognize and Support at least a predefined 'simple' format and
be able to map it to whatever native policy expression format
exists on the authorizing Node. For other formats, the autho
rizing Node returns an appropriate error response if it does not
handle or understand the payload of an Authorization’ query
request. Extensions may include the ability for Nodes to
negotiate over acceptable formats of an authorization query,
and for Nodes to query to determine which formats are Sup
ported by a given authorizing service provider Node.
0431 4.6. Basic DRM Node Interaction
0432 Returning to the specific NEMO instance of a DRM
application, FIG. 21 is a DRM Node (or Vertex) Graph that
can serve to illustrate the interaction among DRM Nodes, as
well as their relationships. Consider the following scenario in
which portable device 2110 is a content playback device (e.g.,
an iPod 1). Nip1 is the Node that represents this device. Kip1
is the content encryption key associated with Nip1. “User' is
the owner of the portable device, and Ng is the Node that
represents the user. Kg is the content encryption key associ
ated with Ng.
0433) Publib is a Public Library. Npl represents the mem
bers of this library, and Kpl is the content encryption key
associated with Npl. ACME represents all the ACME-manu
factured Music Players. Namp represents that class of
devices, and Kamp is the content encryption key associated
with this group.
0434 L1 is a link from Nip1 to Ng, which means that the
portable device belongs to the user (and has access to the
user's keys). L2 is a link from Ng to Npl, which means that the
user is a member of the Public Library (and has access to its
keys). L3 is a link from Nip1 to Namp, which means that the
portable device is an ACME device (mere membership, as the
company has no keys). L4 is a link from Npl to Napl, which
is the Node representing all public libraries (and has access to
the groupwide keys).
0435 C1 is a movie file that the Public Library makes
available to its members. Kc1 is a key used to encrypt C1.
GBC1 (not shown) is the governance information for C1
(e.g., rules and associated information used for governing
access to the content). E(a,b) means “b encrypted with key
a

0436 For purposes of illustration, assume that it is desired
to set a rule that a device can play the content C1 as longas (a)
the device belongs to someone who is a member of the library
and (b) the device is manufactured by ACME.
0437. The content C1 is encrypted with Kc1. The rules
program is created, as well as the encrypted content key
RKC1=E(Kamp, E(Kpl. Kc1)). Both the rules program and
RKC1 can be included in the governance block for the
content, GBC1.
0438. The portable device receives C1 and GBC1. For
example, both might be packaged in the same file, or received
separately. The portable device received L1 when the user
first installed his device after buying it. The portable device
received L2 when the user paid his subscription fee to the

US 2012/0042389 A1

Public Library. The portable device received L3 when it was
manufactured (e.g., L3 was built in).
0439 From L1, L2 and L3, the portable device is able to
check that Nip1 has a graph path to Ng (L1), Npl (L1+L2),
and Namp (L3). The portable device wants to play C1. The
portable device runs the rule found in GBC1. The rule can
check that Nip1 is indeed an ACME device (path to Namp)
and belongs to a member of the public library (path to Npl).
Thus, the rule returns “yes”, and the ordered list (Namp, Npl).
0440 The portable device uses L1 to compute Kg, and
then L2 to compute Kpl from Kg. The portable device also
uses L3 to compute Kamp. The portable device applies Kpl
and Kamp to RKC1, found in GBC1, and computes Kc1.
It then uses Kc1 to decrypt and play C1.
0441 When Node keys are symmetric keys, as in the pre
vious examples, the content packager needs to have access to
the keys of the Nodes to which it wishes to “bind the content.
This can be achieved by creating a Node that represents the
packager, and a link between that Node and the Nodes to
which it wishes to bind rules. This can also be achieved “out
of band' through a service, for instance. But in some situa
tions, it may not be possible, or practical to use symmetric
keys. In that case, it is possible to assign a key pair to the
Nodes to which a binding is needed without shared knowl
edge. In that case, the packager would bind a content key to a
Node by encrypting the content key with the target Node's
public key. To obtain the key for decryption, the client would
have access to the Node's private key via a link to that Node.
0442. In the most general case, the Nodes used for the
rules and the Nodes used for computing content encryption
keys need not be the same. It is natural to use the same Nodes,
since there is a strong relationship between a rule that governs
content and the key used to encrypt it, but it is not necessary.
In some systems, some Nodes may be used for content pro
tection keys that are not used for expressing membership
conditions, and vice versa, and in some situations, two dif
ferent graphs of Nodes can be used, one for the rules and one
for content protection. For example, a rule could say that all
members of group Npl can have access to content C1, but the
content key Kc1 may not be protected by Kpl, but may instead
by protected by the node key Kapl of node Napl, which
represents all public libraries, not just Npl. Or a rule could say
that you need to be a member of Namp, but the content
encryption key could be bound only to Npl.
0443 4.7. Operation of DRM Virtual Machine (VM)
0444 The discussion with respect to FIG. 21 above
described the operation of a DRM system at a high (Node and
Link) level, including the formation and enforcement of con
tent governance policies. FIG. 22 depicts an exemplary code
module 2200 of a DRM engine's VM that implements the
formation and enforcement of Such content governance poli
C1GS.

0445 Four main elements of illustrative Code Module
2200, shown in FIG. 22, include:
0446 pkCMAtom: The pkCMAtom 2210 is the top-level
Code Module Atom. It contains a sequence of Sub-atoms.

0447 pkDS Atom: The pkDS Atom 2220 contains a
memory image that can be loaded into the Data Segment.
The payload of the Atom is a raw sequence of octet values.

0448 pkCS Atom: The pkCS Atom 2230 contains a
memory image that can be loaded into the Code Segment.
The payload of the Atom is a raw sequence of octet values.

0449 pkEXAtom: The pkEXAtom 2240 contains a list of
export entries. Each export entry consists of a name,

26
Feb. 16, 2012

encoded as an 8-bit name size, followed by the characters
of the name, including a terminating 0, followed by a 32-bit
integer representing the byte offset of the named entry
point (this is an offset from the start of the data stored in the
pkCS Atom).

0450 4.7.1. Module Loader
0451. In one embodiment, the Control VM is responsible
for loading Code Modules. When a Code Module is loaded,
the memory image encoded in pkDS Atom 2220 is loaded at
a memory address in the Data Segment. That address is cho
sen by the VM Loader, and is stored in the DS pseudo-register.
The memory image encoded in the pkCS Atom 2230 is loaded
at a memory address in the Code Segment. That address is
chosen by the VM Loader, and is stored in the CS pseudo
register.
0452 4.7.2. System Calls
0453. In one embodiment, Control VM Programs can call
functions implemented outside of their Code Module's Code
Segment. This is done through the use of the OP CALL
instruction, that takes an integer stack operand specifying the
System Call Number to call. Depending on the System Call,
the implementation can be a Control VMByte Code routine in
a different Code Module (for instance, a library of utility
functions), directly by the VM in the VM's native implemen
tation format, or delegated to an external Software module,
such as the VM's Host Environment.

0454. In one embodiment, several System Call Numbers
are specified:
0455 SYS NOP=0: This call is a no-operation call. It just
returns (does nothing else). It is used primarily for testing
the VM.

0456 SYS DEBUG PRINT=1: Prints a string of text to a
debug output. This call expects a single stack argument,
specifying the address of the memory location containing
the null-terminated String to print.

0457 SYS FIND SYSCALL BY NAME=2: Deter
mines whether the VM implements a named System Call.
If it does, the System Call Number is returned on the stack;
otherwise the value -1 is returned. This call expects a
single stack argument, specifying the address of the
memory location containing the null-terminated System
Call name that is being requested.

0458 4.7.3. System Call Numbers Allocation
0459. In one embodiment, the Control VM reserves Sys
tem Call Numbers 0 to 1023 for mandatory System Calls
(System Calls that have to be implemented by all profiles of
the VM).
0460 System Call Numbers 16384 to 32767 are available
for the VM to assign dynamically (for example, the System
Call Numbers returned by SYS FIND SYSCALL BY
NAME can be allocated dynamically by the VM, and do not
have to be the same numbers on all VM implementations).
0461 4.7.4. Standard System Calls
0462. In one embodiment, several standard System Calls
are provided to facilitate writing Control Programs. Such
standard system calls may include a call to obtain a time
stamp from the host, a call to determine if a node is Reach
able, and/or the like. System calls preferably have dynami
cally determined numbers (e.g., their System Call Number
can be retrieved by calling the SYS FIND SYSCALL BY
NAME System Call with their name passed as the argument).

US 2012/0042389 A1

0463 4.8. Interfaces Between DRM Engine Interface and
Host Application
0464 Following are some exemplary high level descrip
tions of the types of interfaces provided by an illustrative
DRM (client consumption) engine to a Host Application:
0465 SystemName::CreateSession(hostContextObject)
->Session

Creates a session given a Host Application Context. The
context object is used by the DRM engine to make callbacks
into the application.
0466 Session::ProcessObject(drmObject)
This function should be called by the Host Application when
it encounters certain types of objects in the media files that
can be identified as belonging to the DRM subsystem. Such
objects include content control programs, membership
tokens, etc. The syntax and semantics of those objects is
opaque to the Host Application.
0467 Session::OpenContent(contentReference)->Con
tent

The host application calls this function when it needs to
interact with a multimedia content file. The DRM engine
returns a Content object that can be used Subsequently for
retrieving DRM information about the content, and interact
ing with Such information.
0468 Content::GetDrm Info()
Returns DRM metadata about the content that is otherwise
not available in the regular metadata for the file.
0469 Content::CreateAction(actionlnfo)->Action
The Host Application calls this function when it wants to
interact with a Content object. The actionlnfo parameter
specifies what type of action the application needs to perform
(e.g., Play), as well as any associated parameters, if necessary.
The function returns an Action object that can then be used to
perform the action and retrieve the content key.
0470 Action::GetKeyInfo()
Returns information that is necessary for the decryption sub
system to decrypt the content.
0471 Action:Check()
Checks whether the DRM subsystem will authorize the per
formance of this action (i.e., whether Action::Perform()
would succeed).
0472 Action::Perform()
Performs the action, and carries out any consequences (with
their side effects) as specified by the rule(s) that governs this
action.
0473. Following are some exemplary high level descrip
tions of the type of interface provided by an illustrative Host
Application to a DRM (client consumption) engine:
0474 HostContext::GetFileSystem(type)->FileSystem
Returns a virtual FileSystem object to which the DRM sub
system has exclusive access. This virtual FileSystem will be
used to store DRM state information. The data within this
FileSystem is readable and writeable only by the DRM sub
system.
0475 HostContext:GetCurrentTime()
Returns the current date/time as maintained by the host sys
tem.

0476) HostContext::GetIdentity()
Returns the unique ID of this host.
0477 HostContext:ProcessObject(dataObject)
Gives back to the host services a data object that may have
been embedded inside a DRM object, but that the DRM
Subsystem has identified as being managed by the host (e.g.,
certificates).

27
Feb. 16, 2012

0478 HostContext:VerifySignature(signatureInfo)
Checks the validity of a digital signature to a data object.
Preferably, the signatureInfo object contains information
equivalent to the information found in an XMLSig element.
The Host Services are responsible for managing the keys and
key certificates necessary to validate the signature.
0479. HostContext::CreateCipher(cipherType, keyInfo)
->Cipher

Creates a Cipher object that the DRM subsystem can use to
encrypt and decrypt data. A minimal set of cipher types will
preferably be defined, and for each a format for describing the
key info required by the cipher implementation.
0480. Cipher:Encrypt(data)
The Cipher object referred to above, used to encrypt data.
0481 Cipher: Decrypt(data)
The Cipher object referred to above, used to decrypt data.
0482 HostContext::CreateDigester(digesterType)->Di
gester

Creates a Digester object that the DRM subsystem can use to
compute a secure hash over some data. A minimal set of
digest types will be defined.
0483 Digester::Update(data)
The Digester object referred to above, used to compute the
secure hash.
0484 Digester::GetDigest()
The Digester object referred to above, used to obtain the
secure hash computed by the DRM subsystem.
0485 Following are some exemplary high level descrip
tions of the type of interface provided by an illustrative DRM
(service-side packaging) engine to a Host Application:
0486 SystemName::CreateSession(hostContextObject)
->Session

Creates a session given a Host Application Context. The
context object is used by the DRM Packaging engine to make
callbacks into the application.
0487. Session:Create(Content(contentReferences)
->Content

The Host Application will call this function in order to create
a Content object that will be associated with license objects in
Subsequent steps. Having more than one content reference in
the contentReferences array implies that these are bound
together in a bundle (one audio and one video track for
example), and that the license issued should be targeted to
these as one indivisible group.
0488 Content:SetDrmInfo(drmInfo)
The drmInfo parameter specifies the metadata of the license
that will be issued. The structure will be read and will act as a
guideline to compute the license into bytecode for the VM.
0489 Content::GetDRMObjects(format)->drmObjects
This function is called when the Host Application is ready to
get the drmObjects that the DRM Packaging engine created.
The format parameter will indicate the format expected for
these objects (e.g., XML or binary atoms).
0490 Content::GetKeys()->keys
This function is called by the Host Application when it needs
the keys in order to encrypt the content. In one embodiment
there will be one key per content reference.
0491 Following are some exemplary high level descrip
tions of the type of interface provided by an illustrative Host
Application to a DRM (service-side packaging) engine:
0492 HostContext:GetFileSystem (type)->FileSystem
Returns a virtual FileSystem object to which the DRM sub
system has exclusive access. This virtual FileSystem would

US 2012/0042389 A1

be used to store DRM state information. The data within this
FileSystem should only be readable and writeable by the
DRM subsystem.
0493 HostContext::GetCurrentTime()->Time
Returns the current date/time as maintainted by the host sys
tem.
0494) HostContext:GetIdentity()->ID
Returns the unique ID of this host.
0495 HostContext::Perform Signature(signatureInfo,
data)

Some DRM objects created by the DRM Packaging engine
will have to be trusted. This service, provided by the host, will
be used to sign the specified object.
0496 HostContext::CreateCipher(cipherType,
->Cipher

Creates a Cipher object that the DRM Packaging engine can
use to encrypt and decrypt data. This is used to encrypt the
content key data in the ContentKey object.
0497 Cipher:Encrypt(data)
The Cipher object referred to above, used to encrypt data.
0498 Cipher::Decrypt(data)
The Cipher object referred to above, used to decrypt data.
0499 HostContext::CreateDigester(digesterType)->Di
gester

Creates a Digester object that the DRM Packaging engine can
use to compute a secure hash over Some data.
(0500 Digester::Update(data)
The Digester object referred to above, used to compute the
secure hash.
0501 Digester::GetDigest()
The Digester object referred to above, used to obtain the
secure hash computed by the DRM subsystem.
0502. HostContext::GenerateRandomNumber()
Generates a random number that can be used for generating a
key.

key Info)

5. Services

0503) 5.1. Overview
0504 Having described the NEMO/DRM system from
both an architectural and operational perspective, we now
turn our attention to an illustrative collection of services, data
types, and related objects (“profiles') that can be used to
implement the functionality of the system.
0505. As noted above, a preferred embodiment of the
NEMO architecture employs a flexible and portable way of
describing the syntax of requests and responses associated
with service invocation, data types used within the frame
work, message enveloping, and data values exposed by and
used within the NEMO framework. WSDL 1.1 and above
provides sufficient flexibility to describe and represent a vari
ety of types of service interface and invocation patterns, and
has sufficient abstraction to accommodate bindings to a vari
ety of different endpoint Nodes via diverse communication
protocols.
0506. In one embodiment, we define a profile to be a set of
thematically related data types and interfaces defined in
WSDL. NEMO distinguishes a “Core” profile (which
includes the foundational set of data types and service mes
sages necessary to support fundamental NEMO Node inter
action patterns and infrastructural functionality) from an
application-specific profile, such as a DRM Profile (which
describes the Digital Rights Management services that can be
realized with NEMO), both of which are discussed below.

28
Feb. 16, 2012

0507. It will be appreciated that many of the data types and
services defined in these profiles are abstract, and should be
specialized before they are used. Other profiles are built on
top of the Core profile.
0508 5.2. NEMO Profile Hierarchy
0509. In one embodiment, the definition of service inter
faces and related data types is structured as a set of mandatory
and optional profiles that build on one another and may be
extended. The difference between a profile and a profile
extension is a relatively subtle one. In general, profile exten
sions don’t add new data types or service type definitions.
They just extend existing abstract and concrete types.
0510 FIG. 23 illustrates an exemplary profile hierarchy
for NEMO and DRM functionality. The main elements of this
profile hierarchy include:
0511 Core Profile At the base of this profile hierarchy
lies Core Profile 2300, which preferably shares both
NEMO and DRM functionality. This is the profile on
which all other profiles are based. It includes a basic set of
generic types (discussed below) that serve as the basis for
creating more complex types in the framework. Many of
the types in the Core Profile are abstract and will need to be
specialized before use.

0512 Core Profile Extensions—Immediately above Core
Profile 2300 are the Core Profile Extensions 2320, which
are the primary specializations of the types in Core Profile
2300, resulting in concrete representations.

0513 Core Services Profile Also immediately above
Core Profile 2300, the Core Services Profile 2310 defines a
set of general infrastructure services, also discussed below.
In this profile, the service definitions are abstract and will
need to be specialized before use.

0514 Core Services Profile Extensions—Building upon
both Core Profile Extensions 2320 and Core Services Pro
file 2310 are the Core Services Profile Extensions 2330,
which are the primary specializations of the services
defined in Core Services Profile 2310, resulting in concrete
representations.

0515 DRM Profile Immediately above Core Profile
2300 lies DRM Profile 2340, upon which other DRM
related profiles are based. DRM Profile 2340 includes a
basic set of generic types (discussed below) that serve as
the basis for creating more complex DRM-specific types.
Many of the types in DRM Profile 2340 are abstract and
will need to be specialized before use.

0516 DRM Profile Extensions Building upon DRM
Profile 2340 are the DRM Profile Extensions 2350, which
are the primary specializations of the types in DRM Profile
2340, resulting in concrete representations.

0517 DRM Services Profile–Also building upon DRM
Profile 2340 is DRM Services Profile 2360, which defines
a set of general DRM services (discussed below). In this
profile, the service definitions are abstract and need to be
specialized before use.

0518 Specific DRM Profile Building upon both DRM
Profile Extensions 2350 and DRM Services Profile 2360 is
the Specific DRM Profile 2370, which is a further special
ization of the DRM Services defined in DRM Services
Profile 2360. This profile also introduces some new types
and further extends certain types specified in Core Profile
Extensions 2320.

US 2012/0042389 A1

0519 5.3. NEMO Services and Service Specifications
0520. Within this profile hierarchy lies, in one embodi
ment, the following main service constructs (as described in
more detail above):
0521 Peer Discovery the ability to have peers in the
system discover one another.

0522 Service Discovery the ability to discover and
obtain information about services offered by different
peers.

0523 Authorization—the ability to determine if a given
peer (e.g., a Node) is authorized to access a given resource
(such as a service).

0524 Notification services related to the delivery of tar
geted messages, based on specified criteria, to a given set of
peers (e.g., Nodes).

Following are definitions (also discussed above) of some of
the main DRM constructs within this example profile hierar
chy:
0525 Personalization—services to obtain the credentials,
policy, and other objects needed for a DRM-related end
point (such as a CE device, music player, DRM license
server, etc.) to establish a valid identity in the context of a
specific DRM system.

0526 Licensing Acquisition—services to obtain new
DRM licenses.

0527. Licensing Translation—services to exchange one
new DRM license format for another.

0528 Membership—services to obtain various types of
objects that establish membership within some designated
domain.

0529. The NEMO/DRM profile hierarchy can be
described, in one embodiment, as a set of Generic Interface
Specifications (describing an abstract set of services, com
munication patterns, and operations). Type Specifications
(containing the data types defined in the NEMO profiles), and
Concrete Specifications (mapping abstract service interfaces
to concrete ones including bindings to specific protocols).
One embodiment of these specifications, in the form of Ser
vice Definitions and Profile Schemas, is set forth in Appendix
1 hereto.

6. ADDITIONAL APPLICATION SCENARIOS

0530 FIG. 24 illustrates a relatively simple example of an
embodiment of NEMO in operation in the context of a con
Sumer using a new music player to play a DRM-protected
Song. As shown below, however, even this simple example
illustrates many different potential related application sce
narios. This example demonstrates the bridging of discovery
services—using universal plug and play (UPnP) based ser
vice discovery as a mechanism to find and link to a UDDI
based directory service. It also details service interactions
between Personal Area Network (PAN) and Wide Area Net
work (WAN) services, negotiation of a trusted context for
service use, and provisioning of a new device and DRM
service.
0531 Referring to FIG. 24, a consumer, having bought a
new music player 2400, desires to play a DRM-protected
song. Player 2400 can support this DRM system, but needs to
be personalized. In other words, Player 2400, although it
includes certain elements (not shown) that render it both
NEMO-enabled and DRM-capable, must first perform a per
Sonalization process to become part of this system.
0532 Typically, a NEMO client would include certain
basic elements illustrated in FIGS. 5a and 6 above, such as a

29
Feb. 16, 2012

Service Access Point to invoke other Node's services, Trust
Management Processing to demonstrate that it is a trusted
resource for playing certain protected content, as well as a
Web Services layer to support service invocations and the
creation and receipt of messages. As discussed below, how
ever, not all of these elements are necessary to enable a Node
to participate in a NEMO system.
0533. In some embodiments, client nodes may also
include certain basic DRM-related elements, as illustrated in
FIGS.12a and 13-15 above, such as a DRM client engine and
cryptographic services (and related objects and cryptographic
keys) to enable processing of protected content, including
decrypting protected Songs, as well as a media rendering
engine to play those songs. Here, too. Some such elements
need not be present. For example, had Player 2400 been a
music player that was only capable of playing unprotected
content, it might not require the core cryptographic elements
present in other music players.
0534 More specifically, in the example shown in FIG. 24,
Player 2400 is wireless, supports the UPnP and Bluetooth
protocols, and has a set of X.509 certificates it can use to
validate signatures and sign messages. Player 2400 is
NEMO-enabled in that it can form and process a limited
number of NEMO service messages, but it does not contain a
NEMO Service Access Point due to resource constraints.
0535 Player 2400, however, is able to participate in a
Personal Area Network (PAN)2410 in the user's home, which
includes a NEMO-enabled, Internet-connected, Home Gate
way Device 2420 with Bluetooth and a NEMO SAP 2430.
The UPnP stacks of both Player 2400 and Gateway 2420 have
been extended to support a new service profile type for a
“NEMO-enabled Gateway” service, discussed below.
0536 When the user downloads a song and tries to play it,
Player 2400 determines that it needs to be personalized, and
initiates the process. For example, Player 2400 may initiate a
UPnP service request for a NEMO gateway on PAN 2410. It
locates a NEMO gateway service, and Gateway 2420 returns
the necessary information to allow Player 2400 to connect to
that service.

0537 Player 2400 then forms a NEMO Personalization
request message and sends it to the gateway service. The
request includes an X.509 certificate associated with Player
2400's device identity. Gateway 2420, upon receiving the
request, determines that it cannot fulfill the request locally,
but has the ability to discover other potential service provid
ers. However, Gateway 2420 has a policy that all messages it
receives must be digitally signed, and thus it rejects the
request and returns an authorization failure stating the policy
associated with processing this type of request.
0538 Player 2400, upon receiving this rejection, notes the
reason for the denial of service and then digitally signs (e.g.,
as discussed above in connection with FIG. 15) and re-sub
mits the request to Gateway 2420, which then accepts the
message. As previously mentioned, Gateway 2420 cannot
fulfill this request locally, but can perform service discovery.
Gateway 2420 is unaware of the specific discovery protocols
its SAP 2430 implementation supports, and thus composes a
general attribute-based service discovery request based on the
type of service desired (personalization), and dispatches the
request via SAP 2430.
0539 SAP 2430, configured with the necessary informa
tion to talk to UDDI registries, such as Internet-Based UDDI
Registry 2440, converts the request into a native UDDI query
of the appropriate form and sends the query. UDDI Registry

US 2012/0042389 A1

2440 knows of a service provider that supports DRM person
alization and returns the query results. SAP 2430 receives
these results and returns an appropriate response, with the
necessary service provider information, in the proper format,
to Gateway 2420.
0540 Gateway 2420 extracts the service provider infor
mation from the service discovery response and composes a
new request for Personalization based on the initial request on
behalf of Player 2400. This request is submitted to SAP 2430.
The service provider information (in particular, the service
interface description of Personalization Service 2450) reveals
how SAP 2430 must communicate with a personalization
service that exposes its service through a web service
described in WSDL. SAP 2430, adhering to these require
ments, invokes Personalization Service 2450 and receives the
response.
0541 Gateway 2420 then returns the response to Player
2400, which can use the payload of the response to personal
ize its DRM engine. At this point, Player 2400 is provisioned,
and can fully participate in a variety of local and global
consumer oriented services. These can provide full visibility
into and access to a variety of local and remote content Ser
vices, lookup, matching and licensing services, and addi
tional automated provisioning services, all cooperating in the
service of the consumer. As explained above, various decryp
tion keys may be necessary to access certain protected con
tent, assuming the consumer and Player 2400 satisfy what
ever policies are imposed by the content provider.
0542. Thus, a consumer using a personal media player at
home can enjoy the simplicity of a CE device, but leverage the
services provided by both gateway and peer devices. When
the consumer travels to another venue, the device can redis
cover and use most or all of the services available at home,
and, through new gateway services, be logically connected to
the home network, while enjoying the services available at the
new venue that are permitted according to the various policies
associated with those services. Conversely, the consumer's
device can provide services to peers found at the new venue.
0543 Clearly, utilizing some or all of these same con
structs (NEMO Nodes, SAPs, Service Adaptation Layers,
various standards such as XML, WSDL, SOAP, UDDI, etc.),
many other scenarios are possible, even within the realm of
this DRM music player example. For example, Player 2400
might have contained its own SAP, perhaps eliminating the
need for Gateway 2420. UDDI Registry 2440 might have
been used for other purposes. Such as locating and/or licens
ing music content. Moreover, many other DRM applications
could be constructed, e.g., involving a licensing scheme
imposing complex usage and distribution policies for many
different types of audio and video, for a variety of different
categories of users. Also, outside of the DRM context, virtu
ally any other service-based applications could be con
structed using the NEMO framework.
0544. As another example, consider the application of
NEMO in a business peer-to-peer environment. Techniques
for business application development and integration are
quickly evolving beyond the limits of traditional tools and
software development lifecycles as practiced in most IT
departments. This includes the development of word process
ing documents, graphic presentations, and spreadsheets.
While some would debate whether these documents in their
simplest form represent true applications, consider that many
forms of these documents have well defined and complex
object models that are formally described. Such documents or

30
Feb. 16, 2012

other objects might include, for example, State information
that can be inspected and updated during the lifecycle of the
object, the ability for multiple users to work on the objects
concurrently, and/or additional arbitrary functionality. In
more complicated Scenarios, document-based information
objects can be programmatically assembled to behave like
full-fledged applications.
0545. Just as with traditional software development, these
types of objects can also benefit from Source control and
accountability. There are many systems today that Support
document management, and many applications directly Sup
port some form of document control. However most of these
systems in the context of distributed processing environments
exhibit limitations, including a centralized approach to Ver
sion management with explicit check-in and checkout mod
els, and inflexible (very weak or very rigid) coherence poli
cies that are tied to client rendering applications or formats
particularly within the context of a particular application
(e.g., a document).
0546 Preferred embodiments of NEMO can be used to
address these limitation by means of a P2P policy architecture
that stresses capability discovery and format negotiation. It is
possible to structure the creation of an application (e.g., a
document) in richer ways, providing multiple advantages.
Rich policy can be applied to the objects and to the structure
of the application. For example, a policy might specify some
or all of the following:

0547 Only certain modules can be modified.
(0548. Only object interfaces can be extended or imple

mentations changed.
0549. Deletions only allowed but not extensions.
0550 How updates are to be applied, including func
tionality Such as automatic merging of non-conflicting
updates, and application of updates before a given peer
can send any of its updates to other peers.

0551 Policy-based notification such that all peers can
be notified of updates if they choose, in order to partici
pate in direct synchronization via the most appropriate
mechanisms.

0552 Support updates from different types of clients
based on their capabilities.

0553. In order to achieve this functionality, the authoring
application used by each participant can be a NEMO-enabled
peer. For the document that is created, a template can be used
that describes the policy, including who is authorized and
what can be done to each part of the document (in addition to
the document's normal formatting rules). As long as the
policy engine used by the NEMO peer can interpret and
enforce policy rules consistent with their semantics, and as
long as the operations Supported by the peer interfaces
allowed in the creation of the document can be mapped to a
given peer's environment via the Service Adaptation Layer,
then any peer can participate, but may internally represent the
document differently.
0554 Consider the case of a system consisting of different
NEMO peers using services built on the NEMO framework
for collaboration involving a presentation document. In this
example, a wireless PDA application is running an applica
tion written in Java, which it uses for processing and render
ing the document as text. A different implementation running
under Microsoft Windows.(R) on a desktop workstation pro
cesses the same document using the Microsoft Word(R) for
mat. Both the PDA and the workstation are able to commu
nicate, for example, by connection over a local area network,

US 2012/0042389 A1

thus enabling the user of the PDA and the user of the work
station to collaborate on the same document application. In
this example:

0555 NEMO peers involved in the collaboration can
discover each other, their current status, and their capa
bilities.

0556. Each NEMO peer submits for each committable
change, its identity, the change, and the operation (e.g.,
deletion, extension, etc.).

0557 All changes are propagated to each NEMO peer.
This is possible because each NEMO peer can discover
the profile and capabilities of another peer if advertised.
At this point the notifying peer can have the content
change encoding in a form acceptable by the notified
peer if it is incapable of doing so. Alternatively the
accepting peer may represent the change in any format it
sees fit upon receipt at its interface.

0558 Before accepting a change the peer verifies that it
is from an authorized NEMO participant.

0559 The change is applied based on the document
policy.

0560. As another example, consider the case of a portable
wireless consumer electronics (CE) device that is a NEMO
enabled node (X), and that supports DRM format A, but wants
to play content in DRM format B. X announces its desire to
render the content as well as a description of its characteristics
(e.g., what its identity is, what OS it supports, its renewability
profile, payment methods it supports, and/or the like) and
waits for responses back from other NEMO peers providing
potential solutions. In response to its query, X receives three
responses:

0561 (1) Peer 1 can provide a low quality download
able version of content in clear MP3 form for a fee of
S2.00.

0562 (2) Peer 2 can provide high quality pay-per-play
streams of content over a secure channel for S0.50 per
play.

0563 (3) Peer 3 can provide a software update to X that
will permit rendering of content in DRM format B for a
fee of S10.00.

0564. After reviewing the offers, X determines that option
one is the best choice. It submits a request for content via offer
number one. The request includes an assertion for a delega
tion that allows Peer 1 to deduct $2.00 from X's payment
account via another NEMO service. Once X has been
charged, then X is given back in a response from Peer 1 a
token that allows it to download the MP3 file.
0565. If instead, X were to decide that option three was the
best solution, a somewhat more complicated business trans
action might ensue. For example, option three may need to be
represented as a transactional business process described
using a NEMO Orchestration Descriptor (NOD) imple
mented by the NEMO Workflow Collator (WFC) elements
contained in the participating NEMO enabled peers. In order
to accomplish the necessary software update to X, the follow
ing actions could be executed using the NEMO framework:

0566 X obtains permission from its wireless service
provider (B) that it is allowed to receive the update.

0567 Wireless service provider B directly validates
peer three's credentials in order to establish its identity.

0568 X downloads from B a mandatory update that
allows it to install 3rd party updates, their is no policy
restriction on this, but this scenario is the first triggering
event to cause this action.

Feb. 16, 2012

0569
vides.

0570 X downloads the update from peer three.
0571. In this business process some actions may be able to
be carried out concurrently by the WFC elements, while other
activities may need to authorized and executed in a specific
Sequence.
0572. Yet another example of a potential application of the
NEMO framework is in the context of online gaming. Many
popular multiplayer gaming environment networks are struc
tured as centralized, closed portals that allow online gamers
to create and participate in gaming sessions.
0573. One of the limitations of these environments is that
the users generally must have a tight relationship with the
gaming network and must have an account (usually associ
ated with a particular game title) in order to use the service.
The typical gamer must usually manage several game
accounts across multiple titles across multiple gaming net
works and interact with game-provider-specific client appli
cations in order to organize multiple player games and par
ticipate within the networks. This is often inconvenient, and
discourages online use.
0574 Embodiments of the NEMO framework can be used
to enhance the online gaming experience by creating an envi
ronment that Supports a more federated distributed gaming
experience, making transparent to the user and the service
provider the details of specific online game networks. This
not only provides a better user experience, thereby encourag
ing adoption and use of these services, but can also reduce the
administrative burden on game network providers.
0575. In order to achieve these benefits, gaming clients
can be personalized with NEMO modules so that they can
participate as NEMO peers. Moreover, gaming networks can
be personalized with NEMO modules so that they can expose
their administrative interfaces in standardized ways. Finally,
NEMO trust management can be used to ensure that only
authorized peers interact in intended ways.
0576 For example, assume there are three gaming net
work providers A, B, and C, and two users XandY. User X has
an account with A, and User Y has an account with B. X and
Y both acquire a new title that works with C and want to play
each other. Using the NEMO framework, X’s gaming peer
can automatically discover online gaming provider C. X's
account information can be transmitted to C from A, after A
confirms that C is a legitimate gaming network. X is now
registered with C, and can be provisioned with correct tokens
to interact with C. User Y goes through the same process to
gain access to Cusing its credentials from B. Once both Xand
Y are registered they can now discover each other and create
an online gaming session.
0577. This simple registration example can be further
expanded to deal with other services that online gaming envi
ronments might provide, including, e.g., game token storage
(e.g., in lockers), account payment, and shared State informa
tion Such as historical score boards.
0578 While several examples were presented in the con
text of enterprise document management, online gaming, and
media content consumption, it will be appreciated that the
NEMO framework and the DRM system described hereincan
be used in any Suitable context, and are not limited to these
specific examples.

X is charged for the update that peer three pro

What is claimed is:
1. A method performed by a computer system, the com

puter system comprising a computer-readable medium Stor

US 2012/0042389 A1

ing software for processing content encoded in a first digital
rights management format, the method comprising:

performing a service discovery process to locate a service
that is capable of enabling the computer system to access
a piece of content encoded in a second digital rights
management format;

sending a request for the piece of content to a first service
provider, the first service provider providing a service
that is capable of enabling the computer system to access
the piece of content, the first service provider having
been identified by the step of performing a service dis
covery process; and

receiving the piece of content in a format that can be
processed by the computer system.

2. The method of claim 1, further comprising:
receiving a token from the first service provider, the token

being configured to enable the computer system to
download the piece of content in a format that can be
processed by the computer system.

3. The method of claim 1, in which the computer system
further comprises a workflow collator, the method further
comprising using the workflow collator to coordinate perfor
mance of a plurality of steps, the steps including:

obtaining permission from a second service provider to
receive a piece of Software for processing content
encoded in the second digital rights management for
mat; and

downloading the piece of software from a third service
provider.

4. The method of claim 1, further comprising:
obtaining a piece of Software for processing content

encoded in the second digital rights management for
mat.

5. The method of claim 4, further comprising:
obtaining permission to receive the piece of Software for

processing content encoded in the second digital rights
management format.

6. The method of claim 1, further comprising:
receiving information from the first service provider

regarding service bindings for accessing the service that
is capable of enabling the computer system to access the
piece of content.

7. The method of claim 6, in which the computer system
further comprises a service access point for creating the
request, the service access point being configured to auto
matically formulate the requestina manner that adheres to the
service bindings for accessing the service.

8. The method of claim 1, further comprising:
negotiating a trusted relationship with the first service pro

vider.
9. The method of claim 8, in which negotiating a trusted

relationship with the first service provider includes exchang
ing trust credentials with the first service provider.

10. A computer system comprising:
a computer-readable medium storing digital rights man

agement Software, the digital rights management soft
ware being configured to process content encoded in a
first digital rights management format;

means for performing a service discovery process to locate
a service that is capable of enabling the computer system
to access a piece of content encoded in a second digital
rights management format;

means for sending a request for the piece of content to a
first service provider, the first service provider providing

32
Feb. 16, 2012

a service that is capable of enabling the computer system
to access the piece of content; and

means for receiving the piece of contentina format that can
be processed by the computer system.

11. The system of claim 10, further comprising:
means for obtaining a token from the first service provider,

the token being configured to enable the computer sys
tem to download the piece of contentina format that can
be processed by the computer system.

12. The system of claim 10, further comprising a workflow
collator for coordinating performance of a plurality of opera
tions, including:

obtaining permission from a second service provider to
receive a piece of Software for processing content
encoded in the second digital rights management for
mat; and

downloading the piece of software from a third service
provider.

13. The system of claim 10, further comprising:
means for obtaining a piece of Software for processing

content encoded in the second digital rights manage
ment format.

14. The system of claim 10, further comprising:
means for obtaining permission to receive the piece of

Software for processing content encoded in the second
digital rights management format.

15. The system of claim 10, further comprising:
means for receiving information from the first service pro

vider regarding service bindings for accessing the ser
vice that is capable of enabling the computer system to
access the piece of content.

16. The system of claim 15, further comprising a service
access point for creating the request, the service access point
being configured to automatically formulate the request in a
manner that adheres to the service bindings.

17. The system of claim 10, further comprising:
means for negotiating a trusted relationship with the first

service provider.
18. The system of claim 17, in which the means for nego

tiating a trusted relationship with the first service provider
includes means for exchanging trust credentials with the first
service provider.

19. A computer-readable medium comprising program
code, the program code being operable, when executed by a
computer system, to cause the computer system to perform
steps comprising:

performing a service discovery process to locate a service
that is capable of enabling the computer system to access
a piece of content encoded in a first digital rights man
agement format, the first digital rights management for
mat being different from a second digital rights manage
ment format that digital rights management Software
stored on the computer-readable medium is capable of
processing:

sending a request for the piece of content to a first service
provider, the first service provider providing a service
that is capable of enabling the computer system to access
the piece of content; and

receiving the piece of content in a format that can be
processed by the computer system.

20. The computer-readable medium of claim 19, further
including program code that is operable, when executed by
the computer system, to cause the computer system to per
form the step of:

US 2012/0042389 A1

receiving a token from the first service provider, the token
being configured to enable the computer system to
download the piece of content in a format that can be
processed by the computer system.

21. The computer-readable medium of claim 19, further
including program code that is operable, when executed by
the computer system, to cause the computer system to per
form steps comprising:

obtaining permission from a second service provider to
receive a piece of Software for processing content
encoded in the first digital rights management format;
and

downloading the piece of software from a third service
provider.

22. The computer-readable medium of claim 19, further
including program code that is operable, when executed by
the computer system, to cause the computer system to per
form the step of:

obtaining a piece of Software for processing content
encoded in the first digital rights management format.

23. The computer-readable medium of claim 22, further
including program code that is operable, when executed by
the computer system, to cause the computer system to per
form the step of:

Feb. 16, 2012

obtaining permission to receive the piece of Software for
processing content encoded in the first digital rights
management format.

24. The computer-readable medium of claim 19, further
including program code that is operable, when executed by
the computer system, to cause the computer system to per
form the step of:

receiving information from the first service provider
regarding service bindings for accessing the service that
is capable of enabling the computer system to access the
piece of content.

25. The computer-readable medium of claim 24, further
including program code that is operable, when executed by
the computer system, to cause the computer system to per
form the step of automatically formulating the request in a
manner that adheres to the service bindings.

26. The computer-readable medium of claim 19, further
including program code that is operable, when executed by
the computer system, to cause the computer system to per
form the step of:

negotiating a trusted relationship with the first service
provider.

