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METHODS FOR AUTOMATED DETECTION OF CERVICAL PRE-CANCERS
WITH A LOW-COST, POINT-OF-CARE, POCKET COLPOSCOPE

RELATED APPLICATIONS
This application claims priority to U.S. Provisional Application No. 62/741,342, filed

" October 4, 2018, the disclosure of which is hereby incorporated by reference herein in its

entirety.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH
This work was supported in part by the U.S. National Institutes of Health under grant
1R01CA195500, the U.S. National Geospatial-Intelligence Agency under grant
HMO04761610001, the U.S. National Geospatial-Intelligence Agency under grant HM0177-
13-1-0007, the U.S. Army Research Office under grant W911NF-16-1-0088, the U.S.
National Science Foundation under grant NSF-CCF-13-18168, and the Allen Institute for

Brain Sciences. The Government has certain rights in this invention.

BACKGROUND

This work describes development of algorithms or methods to extract simple, yet
powerful color and texture features from colposcopy images for VIA, VILI and GIVI
confrasts.
Features are used to train and validate a classifier for the individual contrast agents as well as
for different combinations of the contrasts to assess improvement in performance. Towards
this we hypothesize VIA algorithms developed can enable diagnostic accuracy on par with
expert physicians (+/- 5%). Including additional sources of contrast increases diagnostic
accuracy on par with gold standard pathology (~80%). |

In the United States and other high-income countries, cervical cancer incidence and
mortality have decreased by 70% over the last 70 years; however, women living in low and
middle-income countries (LMICs) still experience a disproportionately high burden of
cervical cancer. In fact, about 85% of the global burden of cervical cancer occurs in LMICs,:
with 87% of cervical cancer related deaths occurring in these regions. In 2012, over 500,000
women were diagnosed with cervical cancer, and approximately 50% of them died from this
disease. If status quo is maintained, the numbers are expected to rise to over 750,000 new

cases and 400,000 deaths per year by 2035.
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In high-resource settings, screening for cervical cancer is performed using a multi-
tiered paradigm which begins with the Papanicolaou (Pap) smear with human papillomavirus
(HPV) co-testing, followed by colposcopy guided biopsy and treatment if needed.
Colposcopy uses a low-power microscope to visualize cervix changes that are highlighted
with the application of exogenous contrast agents, such as acetic acid and in some cases
Lugol’s iodine. Acetic acid (3% or 5%) application to the cervix causes a reversible
coagulation in nuclear proteins and cytokeratin, which primarily affect lesion areas due to
high nuclear proteins content. This causes whitening and mosaic textured features in
abnormal regions, whereas normal cervix regions remain a light pink color. Normal areas of
the cervix are glycogen rich and take up Lugol’s iodine, which turns normal cells dark brown,
while abnormal areas are glycogen deficient and do not uptake the glycophilic Lugol’s iodine
solution and hence, appear pale/mustard yellow. Suspicious areas are biopsied for pathology
confirmation of cervical abnormalities. Women with pre-cancer are treated via excision of a
portion of the cervix using Loop Electrosurgical Excision Procedure (LEEP). Women with
cancer are referred to a combination of local and/or systemic therapy depending on the stage
of invasive disease. The screening model is not practical to implement in LMICs due to the
resources that are required to procure and implement well-established solutions.

In low resource settings, HPV testing has been recommended as an alternative to the
Pap smear. However, HPV testing is not widely available in LMICs, and if available, requires
a secondary test that provides specificity in order to prevent large numbers of women from
being unnecessarily referred for confirmatory testing or treatment. Visual inspection with
acetic acid (VIA) using the naked eye is a low-tech version of colposcopy that serves to either
add specificity to HPV testing (when available) or serves as the primary screening tool.
However, VIA is not scalable for a number of reasons. Specifically, the lack of image capture
results in poor quality control due to lack of documentation, and lack of magnification
diminishes sensitivity to microscopic disease.

Our group has developed a low-cost, portable, point-of-care digital colposcope, called
the Pocket Colposcope, to replace VIA with high-quality colposcopy, which is the established
standard-of-care for triage in high-resource settings. An international study conducted by our
group found high concordance between the Pocket Colposcope and standard-of-care clinical
colposcopes. The Pocket Colposcope can overcome the limitations of VIA in settings where
traditional colposcopes are too cumbersome and/or expensive to use. This will not only
provide enhanced visualization and magnification compared to traditional VIA but will also

provide much needed documentation and feedback to ensure quality control in healthcare
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provider performance. However, the limited availability of expert colposcopists in low
resource settings represents yet another bottleneck. Therefore, our goal is to develop image
processing and machine learning-based approaches for images obtained with the Pocket
Colposcope to potentially recapitulate the expertise of an experienced colpbscopist in settings
where there is a shortage of experts available to screen large populations.

Several groups working on algorithms for automated computer-aided colposcopy
have shown proof-of-concept image analysis and classification to automatically interpret
acetowhitening for cervical cancer detection. These methods have been predominantly
applied to VIA cervigrams only, which do not fully capture all sources of contrast described
in the modified Reid’s Colposcopic Index (mRCI). Additionally, most of these methods
require pre-selection of suspicious regions (semi-automated), use physician labels for ground
truth rather than gold-standard pathology, and have not been demonstrated to be scalable,
particularly since these methods still rely on subjective user interpretation. Visual.inspection
with Lugol’s iodine (VILI), which provides another important source of contrast for the
visualization of cervical abnormalities, has not been evaluated previously. Studies with
physicians providing diagnosis based on both contrasts have shown that VILI has the
potential to bolster the performance of algorithms based on VIA alone. However, other
studies have found that while the parallel combination of VIA and VILI bolsters sensitivity, it
reduces specificity. '

Recently, deep learning methods have been explored for classifying cervigrams and
other cancer imaging applications, such as endoscopy. Xu et al. used a multimodal
convolutional neural network with inputs from a combination of (1) physician interpretation
of 10,000 colposcopy images, and (2) patient clinical records (age and pH value, Pap smear
cells, HPV signal and status) to a provide a cervical pre-cancer/cancer classification model
with 88.91% accuracy, 87.83% sensitivity, and 90% specificity. However, limitations include
the need for a large data set (10,000 images), and the use of Pap and HPV information, which
may not be available, particularly in low-resource settings where incidence and mortality are
highest. Additionally, in most prior studies physician diagnosis was used as ground truth for
training classifier on image interpretation, which introduces human subjectivity present in
colposcopy. In
endoscopy, another internal imaging techhique, deep learning has been used for computer
aided diagnoses in recognizing and identifying polyps and tumors.

Even though deep learning has a huge potential application in medical imaging for

accurate computer-aided diagnosis (and has seen recent successes in FDA cleared
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technologies), its application has yet to scale up due to the lack of large datasets comprised of
accurately annotated images that transfer across acquisition devices and protocols. Though
these barriers listed can be overcome for cervical colposcopy applications, it will require
time, cost, and availability of resources for pathological annotation. Studies have proposed
image data generation methods to overcome the obstacle of large data sets needed for deep
learning. Though these methods have promise for future applications, they are currently not
viable for our application. Finally, domain specific features exploited here are more
explainable than those often obtained from deep-learning, and this is critical both for
adoption by providers and identifying clinical steps following screening.

While some recent tools such as U-NET have demonstrated to be very general for
numerous medical imaging tasks, the goal of this work is not to introduce a powerful, generic
algorithm, but to use domain knowledge to solve a very specific and important challenge:
automatic screening of cervical pre-cancers. We will demonstrate that with a relatively
simple, computationally efficient, and explainable tool we achieve expert-level diagnosis
with limited training data. Some of the lessons learned from the proposed technical
contribution could potentially benefit other medical image segmentation and screening
applications, when properly combined, as done here, with domain knowledge and other more

generic tools.

SUMMARY

Some embodiments of the present invention are directed to a method for automated
detection of cervical pre-cancer. The method includes: providing at least one cervigram; pre-
processing the at least one cervigram; extracting features from the at least one pre-processed
cervigram; and classifying the at least one cervigram as negative or positive for cervical pre-
cancer based on the extracted features.

In some embodiments, the pre-processing step includes applying specular reflection
attenuation to reduce specular reflection in the at least one cervigram.

In some embodiments, the pre-processing step includes cropping the at least one
cervigram to remove clinically insignificant features such as a speculum or vaginal walls.
The cropping step may include automatically cropping the at least one cervigram.

In some embodiments, the pre-processing step for feature extraction includes
automatically segmenting a region from the cervix for further analysis. The automatically
segmenting step may be carried out using a Gabor filter. The segmented region may have the

highest mean Gabor response.
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In some embodiments, the extracting step includes extracting texture based features.
The extracting step may include calculating Haralick’s features including contrast,
correlation, energy, and homogeneity for the segmented region. The extracting step may
include transforming the segmented region to different color spaces and, for each color
channel of each color space, calculating central tendencies of mean, median, mode, and
variance and Otsu threshold level. The at least one cervigram may include a VILI image, and
the extracting step may include determining a pseudo lesion size based on the concentration
of or the percentage of pixels corresponding to the yellow staining from non-uptake of
Lugol’s iodine.

In some embodiments, the at least one cervigram includes corresponding VIA and
VILI images, and the classifying step is carried out using a classification algorithm for VIA
only images and a classification algorithm for VILI only images. The classifying step may be
carried out using a parallel-combined algorithm, and prediction scores for classifying the VIA
and VILI images with their respective algorithms may be input as predictors to generate a
classifier model for a combined classification. The classifying step may be carried out using
a serial-combined algorithm including: applying the classification algorithm for VIA only
images to the VIA image to identify the VIA image as VIA negative or VIA positive;
classifying the corresponding VIA and VILI images as negative if the VIA image is identified
as VIA negative; if the VIA image is identified as VIA positive, applying the classification
algorithm for VILI only images to the VILI image to identify the VILI image as VILI
negative or VILI positive; classifying the corresponding VIA and VILI images as negative if
the VILI image is identified as VILI negative; and classifying the corresponding VIA and
VILI images as positive if the VILI image is identified as VILI positive.

In some embodiments, the at least one cervigram includes corresponding VIA and
GIVI images, and the classifying step is carried out using a classification algorithm for VIA
only images and a classification algorithm for GIVI only images.

In some embodiments, the at least one cervigram includes corresponding VIA, VILI,
and GIVI images, and the classifying step is carried out using a classification algorithm for
VIA only images, a classification algorithm for VILI only images, and a classification
algorithm for GIVI only images.

Some other embodiments of the present invention are directed to a method for
developing an algorithm for automated cervical cancer diagnosis. The method includes:
providing a plurality of cervigrams; pre-processing each cervigram; extracting features from

each pre-processed cervigram; and establishing a classification model based on the extracted
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features for each cervigram. The classification model is configured to classify additional
cervigrams as negative or positive for cervical pre-cancer.

In some embodiments, the pre-processing step includes applying specular reflection
attenuation to reduce specular reflection in each cervigram.

In some embodiments, the pre-processing step includes cropping at least some of the
plurality of cervigrams to remove clinically insignificant features such as a speculum or
vaginal walls. The cropping step may include automatically cropping the at least some of the
plurality of cervigrams.

In some embodiments, the pre-processing step for feature extraction includes
automatically segmenting a region from the cervix for further analysis. The automatically
segmenting step may be carried out using a Gabor filter. The segmented region may have the
highest mean Gabor response.

In some embodiments, the extracting step includes extracting texture based features.
The extracting step may include calculating Haralick’s features including contrast,
correlation, energy, and homogeneity for the segmented region.

In some embodiments, the extracting step includes transforming the segmented region
to different color spaces and, for each color channel of each color space, calculating central
tendencies of mean, median, mode, and variance and Otsu threshold level.

In some embodiments, at least one or some of the plurality of cervigrams includes a
VILI image, and the extracting step includes determining a pseudo lesion size based on the
concentration or percentage of pixels corresponding to the yellow staining from non-uptake
of Lugol’s iodine.

In some embodiments, the establishing step includes selecting an optimal subset of
the extracted features for each cervigram for optimal training and to prevent over fitting of
the classification model. The selecting step may be carried out using forward sequential
feature selection that considers redundancy of feature selection as well as feature interaction.

In some embodiments, the establishing step includes regularization of the extracted
features to prevent overfitting or underfitting.

In some embodiments, the plurality of cervigrams include corresponding VIA and
VILI images, and the establishing step is carried out using a classification algorithm for VIA
only images and a classification algorithm for VILI only images. The establishing step may
be carried out using a parallel-combined algorithm, and prediction scores for classifying the
VIA and VILI images with their respective algorithms may be input as predictors to generate

the classification model for a combined classification. The establishing step may be carried
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out using a serial-combined algorithm including: applying the classification algorithm for
VIA only images to the VIA image to identify the VIA image as VIA negative or VIA
positive; classifying the corresponding VIA and VILI images as negative if the VIA image is
identified as VIA negative; if the VIA image is identified as VIA positive, applying the
classification algorithm for VILI only images to the VILI image to identify the VILI image as
VILI negative or VILI positive; classifying the corresponding VIA and VILI images as |
negative if the VILI image is identified as VILI negative; and classifying the corresponding
VIA and VILI images as positive if the VILI image is identified as VILI positive.

In some embodiments, the plurality of cervigrams include corresponding VIA and
GIVI images, and the establishing step is carried out using a classification algorithm for VIA
only images and a classification algorithm for GIVI only images. The establishing step may
be carried out using a parallel-combined algorithm, and prediction scores for classifying the
VIA and GIVI images with their respective algorithms may be input as predictors to generate
the classification model for a combined classification. The establishing step may be carried
out using a serial-combined algorithm including: applying the classification algorithm for
VIA only images to the VIA image to identify the VIA image as VIA negative or VIA
positive; classifying the corresponding VIA and GIVI images as negative if the VIA image is
identified as VIA negative; if the VIA image is identified as VIA positive, applying the
classification algorithm for GIVI only images to the GIVI image to identify the GIVI image
as GIVI negative or GIVI positive; classifying the corresponding VIA and GIVI images as
negative if the GIVI image is identified as GIVI negative; and classifying the corresponding
VIA and GIVI images as positive if the GIVI image is identified as GIVI positive.

In some embodiments, the plurality of cervigrams include corresponding VIA, VILI,
and GIVI images, and the establishing step is carried out using a classification algorithm for
VIA only images, a classification algorithm for VILI only images, and a classification
algorithm for GIVI only images. The establishing step may be carried out using a parallel-
combined algorithm, and prediction scores for classifying the VIA, VILIL, and GIVI images
with their respective algorithms may be input as predictors to generate the classification
model for a combined classification.

In some embodiments, the establishing step is carried out using a support vector
machine classifier, a logistic regression classifier, or a neural network classifier.

Some other embodiments are directed to a computer program product for automated

detection of cervical pre-cancer. The computer program product includes a non-transitory
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computer readable storage medium having encoded thereon instructions that, when executed
0N a processor, cause the processor to perform the methods as described above.

Further features, advantages and details of the present invention will be appreciated
by those of ordinary skill in the art from a reading of the figures and the detailed description
of the preferred embodiments that follow, such description being merely illustrative of the

present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a flow chart illustrating operations to develop an algorithm for automated
detection of cervical pre-cancers according to some embodiments of the present invention.

Figure 2 illustrates endpoints for feature extraction methods used for VIA and VILI
classification according to some embodiments of the present invention. |

Figures 3A-3F compare results of classification scores for VIA and VILI images
achieved using features selected from the simple filter selection method and the forward
sequential feature selection (FSFS).

Figure 4 illustrates the performance of different classification algorithms.

Figures SA-C includes bar charts for classification performance between the
algorithm, physicians, and pathology.

Figure 5D illustrates representative VIA images and corresponding VILI images
diagnosed by the algorithm.

Figure 6 includes box plots showing time taken (in seconds) to load, pre-process,
process and classify a sample of the images (n=10) as positive or negative for pre-cancer.

Figure 7 is a graph showing results from algorithms using different classifiers for VIA
images only.

Figures 8-10 are graphs showing results from algorithms using different classifiers for
VIA and VILI cervigram pairs.

Figures 11-13 are graphs showing results from algorithms using different classifiers
for VIA and GIVI cervigram pairs.

Figure 14 is a graph showing results from algorithms using different classifiers for

corresponding VIA, VILI, and GIVI cervigrams.

DETAILED DESCRIPTION
One of our goals is to develop a series of feature extraction and machine algorithms

that leverage both VIA and VILI images obtained with Pocket Colposcope for the automated
8
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diagnosis of cervical pre-cancers to recapitulate expert colposcopist performance. By
developing a novel strategy incorporating VILI algorithms, we hypothesize we can achieve
improved sensitivity and specificity performance over VIA alone. Unlike previous
approaches, this method uses pathology gold standard labels for training and does not require
a health provider to pre-select an area of concern, but rather evaluates the entire cervix to
automatically identify regions of interest. The algorithms work by pre-processing images to

reduce specular reflection, automatically segmenting a region of interest from the cervix for

| analysis, extracting color- and texture-based features, and using a support vector machine for

binary classification of VIA and VILI images. Receiver operating characteristics (ROC)
curves are generated from the classifier to determine the area under the curve (AUC), which
indicates how well a model predicts classes. VIA and VILI algorithms were then combined.
With the proposed framework, the best performing model used the combined VIA and VILI
and achieved sensitivity of 81.3%, specificity of 80.0%, and overall AUCs of 0.86, compared
to pathology. As a point of comparison, expert physicians’ interpretation achieved an average
sensitivity of 77% and specificity of 51% for the same dataset.

We have also developed a series of feature extraction and machine algorithms that
leverage VIA, VILI and GIVI (green illumination vascular imaging) images obtained with
Pocket Colposcope for the automated diagnosis of cervical pre-cancers to recapitulate expert
colposcopist performance. By developing a novel strategy incorporating VILI and GIVI
algorithms, we hypothesize we can achieve improved sensitivity and specificity performance
over VIA alone. Unlike previous approaches, this method uses pathology gold standard labels
for training and does not require a health provider to pre-select an area of concern, but rather
evaluates the entire cervix to automatically identify regions of interest. The algorithms pre-
process images to reduce specular reflection, automatically segments a region of interest from
the cervix for analysis, extracts color- and texture-based features, and utilizes a support
vector machine for binary classification of VIA,

VILI and GIVI images. Receiver operating characteristics (ROC) curves are generated from
the classifier to determine the area under the curve (AUC), which indicates how well a model
predicts classes. VIA, VILI and GIVI algorithms are then combined using methods explained
further below. With the proposed framework, we demonstrate that individually, algorithms
perform on par expert physicians’ interpretation but when features are combined, algorithms
could potentially significantly improve diagnostic accuracy.

Our main contributions are summarized in the following three areas and their

complete integration.
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An overall real-time, simple, efficient, and repeatable algorithm which utilizes
established approaches in image processing and machine learning to classify cervical cancer
images. Classification is performed for individual contrasts, and combinations of these
contrasts with high accuracy and speed are compared to expert colposcopists. We develop
algorithms for acetic acid only, Lugol’s iodine only, GIVI only and different combinations of
the two and show a synergistic improvement in performance, compared to using one source
of contrast. To the best of our knowledge, this is the first work extracting and combining
explainable features from acetic acid and Lugol’s iodine images for cervical cancer
classification. The proposed methods for combining contrasts can be potentially applied to
other imaging modalities, specifically, clinical colposcopes that use more than one source of
contrast for diagnosis.

This method is different from other methods for cervical cancer image classification
that require preselection of suspicious regions of the cervix, or use physician interpretation as
ground truth, which introduces subjectivity and human error. In previous published studies, a
region of the cervix is manually selected and then further analyzed for classification. In our
study, we automatically segment a region of interest using Gabor filters and then further
analyze the segmented regions for color and texture. Additionally our classifier is trained
using gold-standard pathology as ground truth rather than physician interpretation.

The Pocket Colposcope used in this study is unique compared to other colposcopes in
its ability to acquire an image an inch away from the cervix, remove a majority of the noise
(speculum, vaginal walls), and consequently decrease the level of image processing
complexity required for cervix segmentation, which has been documented in previous
methods. When combined with the algorithms introduced here, the Pocket Colposcope could
enable widespread scalable screening for cervical cancer. The Pocket Colposcope is
described in more detail in PCT International Publication No. W0/2019/070998 to
Ramanujam et al., later published as U.S. Publication No. ___, the disclosure of which is

incorporated by reference herein in its entirety.

Methods

First, VIA and VILI images from the Pocket Colposcope were cropped to remove
clinically irrelevant features such as the speculum, vaginal walls and specular reflection
automatically attenuated. For both VIA and VILI images, a Gabor filter was applied to
automatically segment regions within the cervix for further analysis based on color and

texture differences. Haralick’s features (contrast, correlation, energy and homogeneity) were
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calculated from these segments. The segments were also transformed to different color spaces
(grayscale, RGB, YCbCr, HSV and CIElab). From each color space central tendencies, mean,
median, mode, variance and Otsu threshold level were calculated for each color channel of
each color space. Additionally, for VILI images the percentage of pixels corresponding to the
yellow staining from non-uptake of Lugol’s iodine by the lesion region was used to determine
a pseudo lesion size. An optimal subset of these features was selected using a wrapper
forward sequential feature sub-selection for the individual VIA and VILI algorithms. These
features were used to train a support vector machine (SVM) classifier using pathology as
ground truth labels, and 5-fold cross validation was used to determine performance and
generate ROC curves for binary classification of images as VIA/VILI positive or negative.
For the parallel-combined algorithm, scores for classifying the VIA and VILI images with
their respective algorithms were input as predictors to generate a classifier for combined
classification. For the serial-combined algorithm, the VIA algorithm with selected features
was first applied to the VIA image data set at a threshold set to enable high sensitivity which
resulted in high positivity rate. VIA negatives were classified as negatives by the algorithm
while VIA positives were further analyzed with the VILI algorithm. Corresponding VILI
images of the VIA positives were analyzed with the VILI algorithm (which has higher
specificity) for binary classification as negative or positive. Results for VIA only, VILI only
and the combined methods were compared to each other and to the performance of expert
physicians on the same data set. Fig. 1 provides a summary of the steps of the individual VIA
and VILI algorithms described, which is further described below. It is important to note that
the algorithm uses a combination of domain-knowledge inspired features with machine
learning, since unlike other applications which use neural networks, the amount of training
data is limited.

Figure 1 is a flow chart of the individual feature extraction and classification
processes. Image collection: A low-cost, Pocket Colposcope for cervix imaging was used to
obtain 134 image pairs of acetic acid (VIA) and Lugol’s iodine contrasts (VILI). Pre-
processing: These images were preprocessed by applying a specular reflection attenuation
algorithm to remove bright white speckles. Custom Gabor filters were applied to the image to
select a region of interest for further processing. The preprocessing and segmentation stages
were the same for both VIA and VILI. Feature extraction: For VIA pre-processed images,
Haralick’s texture features, including contrast, correlation, energy and homogeneity, were
obtained. Images were also transformed into individual channels of different colorspacés,

overall generating 69 features for each VIA image. For VILI images, the same Haralick’s
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texture and color features were extracted, however approximate lesion stain size was also
determined, yielding 70 features. A subset of these features were selected with a wrapper
feature selection method and selected features were used to train and cross-validate a support
vector machine. Finally, the features from VIA and VILI were combined using 2 different
methods: e) Parallel method and f) Serial method. These were validated to determine

improvement of combined classification over using one source of contrast alone.

A. Image Collection

Images and labels were retrospectively obtained from a database of Pocket
Colposcope images acquired in a previous clinical study in which blinded expert physicians
provided a diagnosis for each patient from reviewing randomized digital cervigrams based on
both VIA and VILI images.

To summarize, two hundred patients undergoing colposcopy examination at La Liga
Contra el Cancer Clinic in Lima, Pert were recruited for a clinical study. This study was
approved by Duke University institutional review board and performed with approved
protocol, informed consent process, and data storage system at La Liga Contra el Cancer,
Lima, Peru. For each patient, acetic acid was applied to the cervix and images were captured
with the standard-of-care colposcope followed by the Pocket Colposcope. Lugol’s iodine was
then applied to the cervix and VILI images captured with the standard-of-care colposcope
followed by the Pocket Colposcope. Images, patient demographics, and pathology results
were collected and stored in a HIPAA compliant secured database REDcap. No biopsies were
taken for normal colposcopies as per standard-of-care procedures. Hence the ground truth for
VILI negative images was primarily based on expert physician interpretation. Of biopsies
taken based on positive colposcopy, 6 came back normal, 19 came back as benign conditions
(cervicitis and condilomas) and the remainder were pre-cancers (CIN1, CIN2+) or cancers
(invasive carcinomas). For algorithm binary classification labels, condilomas and cervicitis
were considered pathologically normal. 25 out of 51 (49%) colposcopy-negatives were
pathology-confirmed negative and 26 out of 51 (51%) were negative based on interpretation
by the lead colposcopist at the clinic. VIA/VILI image pairs which were deemed interpretable
by an expert physician were randomized and sent out to three expert colposcopists for
cervical pre-cancer diagnosis. Physician interpretation was based on both VIA and VILI

features and were classified as either VILI/VIA positive or negative.
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B. Cervix pre-processing

Cervix cropping. Cervigrams typically contain clinically superfluous features such as
the vaginal sidewalls and the speculum. These artifacts can affect feature extraction and
diagnostic accuracy of an automated algorithm and therefore were removed to enable
accurate analysis and classification of features pertaining to the cervix. Due to image
positioning diversity which for each cervigram, the cervix region of interest (ROI) was
cropped using a minimum bounding box around the cervix region identified by an expert
colposcopist. With standardized images in which the cervix took up about 90% of the image,
no cropping was necessary.

Specular reflection attenuation. Specular reflections appear as bright white spots on
the cervigram where there is saturation of light exceeding the camera’s linear detection range
for a set exposure. Specular reflections from Pocket Colposcope images were primarily
caused by moisture, the uneven surface of the cervix, excess light illumination, and for the
VILI images light reflecting off the dark VILI stains. Specular reflection affects subsequent
processing methods, which are primarily color-based, hence the need to attenuate their effect.
We employed the well-established specular reflection attenuation method described by A.
Das, Avijit Kar, and Debasis Bhattacharyya, "Elimination of specular reflection and
identification of ROI: The first step in automated detection of Cervical Cancer using Digital
Colposcopy," Imaging Systems and Techniques (IST), 201 1 IEEE International Conference
on. IEEE, 2011. In summary, the raw RGB image was separated into the R, G, and B
channels. Specular reflection was identified by finding pixels above a threshold (220 for an 8-
bit image) from each channel and logically AND-ing them. In the binary image, the outlines
of reflection were dilated, and the borders of dilated outlines were identified on the original
image. A Laplacian infill method using values from these borders was used to smoothly
interpolate inward from the border pixels, providing an output image with reduced specular
reflection.

Gabor segmentation. A Gabor algorithm combined with k-means clustering was
applied to the grayscale of the raw RGB image to select a region within the cervix for further
analysis. Gabor filters look for specified frequency content in an image in specified regions
and directions, similar to the human visual system. Our hypothesis was that the Gabor filter
would have a high frequency response within the acetowhite/texturized regions in VIA
positive and yellow lesion regions in VILI positives. K-means clustering, an unsupervised
learning method which splits unlabeled data into k number of clusters, was then used to

segment the Gabor filtered image into two clusters, and the cluster with the higher Gabor
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mean selected for further analysis. For VIA/VILI negative regions, the assumption was that a
region within the cervix would be selected for further analysis, which would subsequently
indicate negativity. Utilizing this approach overcomes limitation from previous studies where
regions needed to be manually selected for further textural analysis. A multi-scale Gabor
filter was created with different orientations (0, 45, 90, 135 degrees) and different
wavelengths in increasing powers of two starting from 42 up to the hypothenus length of the
input image. The orientations and wavelengths used in this study are well established for
unsupervised texture segmentation. The filter was convolved with each image to obtain the
overall Gabor response. K-means clustering (k=2) was used to segment the cervix into two
regions based on the Gabor response. The region with the highest mean Gabor response was
selected for further analysis. Gabor segmented regions were used to calculate color, and
Haralick’s texture features were used for both VIA and VILI images. Pseudo lesion size was

also calculated for VILI images.

C. Feature Extraction

Haralick’s texture features. Since acetic acid application causes textured mosaicism,
which highlights different vasculature patterns corresponding to different diagnosis, we
calculated Haralick’s texture features to analyze the Gabor-segmented VIA regions. This
method was also applied to VILI images with the assumption that since VILI is applied after
VIA, there may be texturized regions within the VILI segments. In the greyscale image, we
calculated the grey-level co-occurrence matrix (GLCM), a second order statistical method
which characterizes an image by calculating how often a pair of pixels with specific values
and spatial relationship occur in an image. The GLCM was computed for four different pixel
offsets (1, 5, 10 and 15) each in four different directions (0, 45, 90, 135 degrees), for a total
of 16 matrices. Small to medium offset values were used since we expected mosaicism
features to show pixel differences within this range. The different directions were used since
features of interest may be horizontal, vertical or diagonal. From these GLCMs, four
Haralick’s features were calculated: contrast, correlation, energy and homogeneity were
calculated. This yielded 4 texture-based features for each VIA and VILI image.

Color space transformation calculations. According to the mRCI, both VIA and VILI
cervigram classification are primarily based on staining. For VIA, acetowhitened regions
correspond to lesions, while light pink regions correspond to normal epithelium. For VILI,
yellow regions correspond to lesions, while darker brown staining corresponds to normal

epithelium. Based on this biological effect explained in detail in the introduction, color-based
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features were extracted. Each image was transformed to five different color spaces and these
separated into individual color channels, specifically ‘Red(R), Green(G), Blue(B) (RGB)’,
‘grayscale’, ‘Hue(H), Saturation(S), Value(V) (HSV)’, ‘Luminance(Y), blue chroma(Cb) and
Red chroma(Cr) (YCbCr)’, and ‘Lightness(L), red/green(a), and yellow/blue(b) (CIELAB)’.
RGB color space is widely used for digital image acquisition; however, one of its primary
disadvantages is that it is device dependent and sensitive to illumination differences, which
limits the use for color-based image analysis. CIELAB color space extends the RGB color
space from 90% to 100% of all perceivable colors and enables more quantitative applications
since it correlates to perceptual descriptors of color. Additionally, CIELAB and the YCbCr
color spaces separate image luminous intensity from color information, reducing factors
resulting from how an image was taken, such as variations in LED brightness. HSV
rearranges the geometry of RGB color space to make it more intuitive and perceptually
relevant, separating color based of its hue, saturaﬁon and lightness. Gray scale of an RGB
image has luminance information of the image.

For each color channel, we determined summary central tendencies of mean, median,
mode, and variance. Otsu threshold level (two-class classification) was also determined on
color-space transformed images to take advantage of multiple clusters present from the brown
normal regions and yellow abnormal regions. The Otsu threshold is a widely used,
nonparametric, unsupervised method, which automatically selects a threshold to separate an
image into two clusters, maximizing inter-class variance and minimizing intra-class variance.
From each of the thirteen channels of the different color space transforms, the mean, median,
mode, variance, and Otsu’s threshold were extracted as potential classification features.
Overall 65 color-based features were extracted for each VIA and VILI image.

Lesion size determination. A pseudo lesion size detection was performed for VILI
images after Gabor segmentation. Due to the high variation in acetowhitening lesion and
normal epithelium shades, it was not possible to determine lesion size for VIA images based
on acetowhitening alone. Since VILI images provide a higher, more consistent contrast
between dark brown normal epithelium and yellow stained abnormal epithelium, color-based
“pseudo lesion size” was determined using VILI images. VILI images were transformed into
CIElab color space explained previously and the b channel was extracted due to its direct
linearity of yellow shades and high contrast in color transforms. A threshold was determined
via analysis of pixel intensities of ROIs from a subset of images corresponding to lesions and
non-lesion regions. The number of pixels above this threshold was divided by the total

number of pixels in the bounded cervix region to approximate a percent “lesion size”. We call
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it pseudo lesion size because Lugol’s iodine solution may also result in yellowing due to non-
uptake in benign cervical conditions, such as condilomas, cervicitis. Parts of the cervix where
Lugol’s Iodine is not properly applied (such as cervix boundaries) also show non-uptake
yellow features. This resulted in overall a total of 70 features for VILI and 69 features for

VIA images.

D. Feature selection, classifier training and testing

Classifier design. We selected a support vector machine classifier, a widely used and
successful supervised learning method, which outputs an optimal hyperplane for
classification. SVM parameters are as follows:

Predictor standardization: Predictors standardized using their corresponding
weighted means and weighted standard deviations. Kernel function: Gaussian or RBF.

G(xj, xk) = exp(-|lxj - xk[|2) (1)

Kernel Scale: ~1.008 by automatic appropriate scale factor determined using a
heuristic procedure. This heuristic procedure uses subsampling, so estimates can vary from
one call to another.

Solver: ISDA lterative Single Data Algorithm

Kernel offset: 0.1

For standard classifier training, a labeled training data set is input into the classifier
which then builds a model to enable classification of a new data set. For non-linearly
separable data sets, the SVM can transform data points to higher dimensions to linearize them
for optimal separation using higher order kernels. From initial scatter plots demonstrating
non-linearity of the data set, we selected a Radial Basis Function (RBF or Gaussian) kernel
with automatically selected kernel size using cross validation. RBF kernel was selected
because it is most widely used due to flexibility and ability to project data into high (infinite)
dimensionality space to find a linear separation. The features were used as predictors while
the pathology diagnosis (normal and benign vs. CIN+) was used as input labels for binary
classification. While other machine learning tools could potentially be used, SVM was
selected due to the limited data available for training and its excellent performance as
reported below.

Feature selection and validation. In machine learning, classifying data using a
proportionally high number of features compared to sample size can result in classifier failure
due to redundancy and overfitting or overtraining to noise/artifacts. High feature number also

increases storage and computational requirements. Due to a limited sample size (n=134
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VIA/VILI pairs), a small subset of important features for satisfactory classification
performance was selected using forward sequential feature selection (FSFS) with minimum
classification error (MCE). The FSFS is a fast, wrapper feature selection method, in which
feature candidates are sequentially added to an empty set until there is no further
improvement in prediction. For each feature subset, the function performs a 5-fold cross
validation with the classifier. The feature number and combination, which provided the
minimum error for classification is then selected.

Training and testing. The optimal feature subset was used as predictors into the SVM
to generate a classification model which was validated using 5-fold cross validation with
pathology as ground truth (note that pathology is not available even to clinicians doing visual
observation, so this ground truth is a very high standard). Fbr cross validation for VIA and
VILI features, the data set was divided into 5. Training was performed on 4/5 of the data and
testing performed on the remaining 1/5 of the data. This was repeated leaving a different data
set each time and the results averaged. ROCs were generated to determine the AUC, and
sensitivity and specificity of each the algorithm was compared to physician performance for

classifying images as negative or positive.

E. Combining VIA and VILI features
Parallel combination. When the SVM classifier classifies VIA and VILI images as

negative and positive it also assigns a score to each image which describes the probability or
likelihood that the label comes from one of the classes. These probabilities for VIA and VILI
images were used as predictor inputs into the parallel-combined SVM classification model
with binary pathology labels. A classification model was then generated from these to
provide binary classification based on both VIA and VILI inputs.

Serial combination. For serially combining VIA and VILI results, we analyzed the
data from the individual VIA and VILI algorithms to determine where they complemented
each other. Based on this analysis, we first ran the VIA algorithm, using the same feature
subset on all images with a low classification cutoff (-0.25 instead of 0) for binary
classification. This enabled classification of all high grades but also resulted in a high false-
positivity rate. Negatives based on this élassiﬁcation were considered true negatives. The
VILI algorithm was then run on the VIA positive images to increase specificity. An SVM
classifier model was generated for the VIA and then VILI stage and cross-validated with

pathology as ground truth.
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RESULTS
A. Image breakdown

Of the 200 Pocket Colposcope patients, 66 were excluded due to one or more of the
following factors: screen fail (2.5%), missing pathology for ground truth (2%), images not
saved (missing) (6%), blurriness (10%), and device set at the wrong working distance (7%).
Device related issues have been addressed in a newer version of the Pocket Colposcope
design and improved control software. For the purpose of this study, data from a total of 134
patients were used for image analysis. The pathology distribution of patient whose

cervigrams were utilized for the study are outlined in Table I.

TABLE I - Image Pathology Distribution

VIA/VILI classification Pathology Classification # of patients (%)
Negative Normal 51 (38%)
Cervicitis 17 (13%)
Condiloma 2 (0.01%)
Positive CIN1 41 (31%)
CIN2 10 (0.07%)
CIN3 5 (0.04%)
Invasive Cancer 8 (0.06%)

B. Image processing and feature extraction

Specular reflection attenuation. Pre-processing to attenuate specular reflection was

performed prior to feature extraction and classification to prevent inaccuracies due to glare.

Fig. 2 shows results from representative images with specular reflection before and after

specular reflection attenuation. Due to the speckled nature of specular reflection it is difficult

to accurately hand select all glare regions for quantitative comparison and analysis of

reduction. However, upon visual inspection all images had significantly reduced specular

reflection without affecting contrast in the images. This finding is similar to previous work in

this area.

Gabor Filtering. A Gabor filter was applied to pre-processed VIA/VILI images and

the response normalized. Lesion regions for both VIA and VILI Images had higher Gabor

responses than the surrounding epithelium. Images were segmented into two main regions by
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k-means clustering (k=2) and the region with highest mean Gabor response selected. Since
VIA and VILI negative images had no or little acetowhitening/yellowing, regions selected
were likely to be a subsection of the normal epithelium of the cervix, the os or the
transformation zone. From direct observation, the Gabor segments were in approximately the
same regions for both VIA and VILI for 130/134 of the images. The Gabor segmented
enabled the automatic selection of a region of interest for further analysis with the color and
Haralick’s texture features. |

Haralick’s texture features. VIA positive images had significantly high contrast
(p=0.03), not significantly different correlation, significantly lower energy (p=0.013) and
significantly lower homogenity (p=0.02) compared to VIA negative images. This is expected
since “contrast” cotresponds to variations between pixels (0 for a constant image), correlation
looks at a mutual relationship between pixels (range: -1 to 1, with Nan for a constant image),
energy corresponds to uniformity, with higher values for similar pixels (0-1 with 1 for a
constant image) and homogenity reflects closeness in distribution to the diagonal of GLCM
elements (range: 0-1, with 1 for diagonal/constant image), which calculate how often a pair of
pixels with specific values and spatial relationship occur in an image. VILI positive images
had significantly higher contrast (p=0.003), insignificantly different correlation, significantly
lower energy (p=0.024) and significantly lower homogeneity (0.015) compared to VILI
negative images. Fig. 2 shows representative images for Haralick’s texture features.

Color transforms features. Each image was transformed into 5 main color spaces and
the central tendencies and Otsu threshold calculated. Fig. 2 shows representative color
transforms for the VIA (YCbCr-Cb) and VILI (CIElab-b) images. As shown, lesion regions
for VILI tended to have lower values than non-lesion regions in the b channel. In the Cb
channel for VIA, lesion regions tended to have higher values than non-lesion regions.
Different color channels showed distinct trends as well as redundancies. The optimal
combination of features was later addressed using the sequential feature selection method.
Fig. 2 illustrates endpoints for feature extraction methods used for VIA and VILI
classification. From left, the figure shows original VIA negative and positive images, and
VILI negative and positive images. This is followed by specular reflection attenuation results
which demonstrate significantly reduced speckle and convincing infilling. Gabor
segmentation selects a highly texturized region of the image for further processing. The area
around the os is selected and for positive regions in particular, the area around the lesion.
Haralick’s texture output of the image is also shown with low homogeneity in lesion regions

and high homogeneity in non-lesion regions.
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Color transforms of the segments are also performed to take advantage in staining differences
for negative and positive cervix images. Finally, for VILI images, approximate lesion size is
determined.

Pseudo lesion size detection. Pseudo lesion size detection was performed on pre-
processed VILI images since they enabled higher color-based contrast between lesion and
non-lesion regions than VIA. We found that a threshold of 40 in the b channel of CIElab
color space enabled adequate cutoff between the yellow and brown regions of the VILI
images, the percentage of pixels above a threshold of 40 (which corresponds to all shades of
yellow) was divided by the total cervical area to compute lesion size. The mean lesion size
was found to be significantly higher (p=0.0047) in VILI negatives than in VILI positives as

expected.

C. Feature selection

Feature selection was performed to select a subset of features to prevent overfitting.
Rather than use a simple filter method which selects features with the highest p-values, we
used a wrapper forward sequential feature selection (FSFS) method which takes into
consideration feature redundancies and interaction. The list of selected features and their p-

values are in Table II.
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Table II — Features and P-values from Simple Filter Method and

Sequential Feature Sub-selection Method

VIA VILI
Features w/ top p- Sequential selected Features w/ top p- Sequential selected
values values
Feature P- Feature P-value Feature P-value | Feature | P-value
value
Correlation | 0.0009 | A mode 0.07108 CB 0.0001 [ Bmode | 0.0005
median
Blue 0.0016 | B mode 0.2077 CB mean | 0.0001 Red 0.5681
variance variance

L variance | 0.0065 | CRmode | 0.6073 CB mode | 0.0001 CB mean | 0.0001

Y variance | 0.007 | Energy 0.0009 CBlevel |0.000195 | CB level | 0.0002

Grey 0.007 | Correlation | 0.90849 H mean 0.00024 | Red 0.17415
variance mode

Green 0.0147 | CR level 0.5717 B mean 0.00042 | Vmode | 0.3329
variance

Fig. 3 dompares results of classification scores for VIA and VILIL, achieved using
features selected from the simple filter selection method and the forward sequential feature
selection (FSFS). Results from VIA and VILI images show that features selected with the
FSFS method shows expected trends in pre-cancer grades and significantly higher differences
and AUC between normal/benign and CIN+ compared to intuitively selected features from
the simple filter selection method.

Fig. 3 compares classifications scores from using top features by p-value (simple filter
method) and by wrapper FSFS method. a) Box plots of classification scores for VIA
algorithm using the features with the highest p-values, b) Box plots of classification scores
for VIA algorithm using features selected with sequential feature sub-selection method, c)
ROC curves comparing VIA results from features with simple filter method to FSFS method,
d) Box plots of classification scores for VILI algorithm using the features with the highest p-
values, €) Box plots of classification scores for VILI algorithm using features selected with

sequential feature sub-selection method, f) ROC curves comparing VILI results from features
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with simple filter method to FSFS method. *=p<0.05, **=p<0.001, ***=p<0.0001,
*h**=p<(0.00001.

D. SVM Classification

Figs. 4a and 4b show scatterplots of classification scores for the parallel and serial

combination methods. Classification scores are outputs from the SVM classifier indicating
the probability/likelihood of an image belonging to either the negative or positive class.
Scatterplots show similar expected trends for both methods. ROCs were generated to
compare how the different algorithms (VIA, VILI parallel combined and ground truth for
normal/benign vs. CIN+, normal/benign vs. low grade/CIN1 and normal/benign vs. high
grade/CIN2+. Performance of three expert physicians (>15 years’ of colposcopy experience
per person) for the same data set are also indicated on the curve. The physician interpretations
wére collected retrospectively and were based on features from both VIA and VILI image
interpretation. Hence physicians had the same information as the combined VIA and VILI
algorithms. All physician performance points fall within the ROC curve for combined VIA
and VILI algorithms, indicating superior algorithm performance, which is critical considering
experts like the ones used in this study are not widely available and certainly lacking in low
resource areas. Both combined algorithms outperformed the algorithms using the single
contrasts but achieved similar AUCs. Additionally, AUCs for VIA and VILI only AUCs were
also similar.

Fig. 4 illustrates performance of different classification algorithms. a) Scatterplot for
classification scores from parallel combined method, b) Scatterplot for classification scores
from serial combined method, ¢) ROC curves for all algorithms for normal/benign vs CIN+,
d) ROC curves for all algorithms for normal/benign vs low grade/CIN1, €) ROC curves for
all algorithms for normal/benign vs CIN2+. Performance of each expert physician reader
(n=3) is also indicated for each graph. #of images refers to the number of images/ image
number.

Fig. 5 shows algorithm and each individual physician’s sensitivities, specificities and
accuracy as compared to pathology (Figs. 5a and b).

Where sensitivity also known as the true positive rate measures the proportion of
correctly identified positive, specificity also known as true negative rate measures the serially
combined) performed compared to the pathology proportion of correctly identified negative
cases and accuracy measures the overall proportion of correctly identified cases. Overall

accuracy for all algorithms are higher than physician accuracies. Though physician’s
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sensitives are on average on par with algorithms, algorithms achieve higher specificities.
Combined algorithms achieved highest agreement with physicians, particularly with
physicians who had higher performance with pathology. This is predictable since physicians
also used both VIA and VILI images for prediction. Fig. 5¢ shows the percentage of correctly
classified images by pre-cancer grade for one of the combined (serial) algorithms and the best
physician. The algorithm outperforms the best physician across all cervix types but most
notably for benign lesions which tend to be overcalled by physicians. Figs. 5d-k shows
representative VIA/VILI cervigrams of true positive, true negatives, false positives and false
negative images classified by the serially combined algorithm. Figs. 5d-g show VIA images
with their corresponding VILI cervigrams in Figs. 5h-k. True positive images showed
acetowhitening and mosaicism in VIA image (Fig. 5d) and yellow staining in VILI image
(Fig. 5h). True negatives showed little to no visible whitening or mosaicism in VIA positive
image (Fig. 5¢) and showed brown staining from iodine uptake in VILI image (Fig. 5i).. False
positive images classified as negative by pathology but positive by the algorithm were due to
high texture in the VIA image (Fig. 5f) and the non-uptake of Lugol’s iodine in the VILI
image (Fig. 5j). The false negative showed no distinct acetowhitening in the VIA image (Fig.
5g) and very little area of Lugol’s non-uptake in the VILI image (Fig. 5k). This may be a
result of the limitation where biopsies are taken from the endocervical canal which is not
typically visible in the image.

To conclude, these images as well as all the errors of the automatic algorithms “make
sense” and are a result from non-trivial images (recall that we compared with pathology,

which is data not available to the algorithm or to the clinician).

Processing Time Analysis

We ran 10 randomly selected images through the algorithm and measured the
machine time taken for individual steps and the overall time. For each image preprocessing
for specular reflection attenuation and Gabor segmentation took the most time, averaging
27.7 seconds and 21.6 seconds, respectively, while feature extraction and classification took
less than a second. Overall time taken per image averaged 50.3 seconds, and was 2 minutes at
most, demonstrating the feasibility for real time diagnosis of images (Fig. 6).

Fig. 6 includes box plots showing time taken (in seconds) to load, pre-process,
process and classify a sample of the images (n=10) as positive or negative for precancer. All

but one of the images had a processing time of less than 2 minutes.
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IV. DISCUSSION

We introduced in this study algorithms (methods) to process and classify VIA and
VILI cervigrams as negative or positive for cervical pre-cancer and to combine features from
both contrasts to improve overall specificity while maintaining sensitivity.

Algorithms for the individual contrasts were developed to extract color and texture-
based features. A subset of the domain/expertise-motivated features was automatically
selected and used to train a support vector machine to develop models for binary
classification of cervigrams. The individual algorithms were combined both in parallel (both
at the same time, simultaneously with SVM scores) and serially (VIA followed by VILI) to
improve performance. Combined methods performed on par with each other, with the parallel
method achieving a sensitivity, specificity, accuracy and AUC of 79.7%, 80.0%, 80.0%, and
0.86, respectively, and the serially combined algorithm achieving a sensitivity, specificity,
accuracy, and AUC of 81.3%, 78.6%, 80.0%, and 0.86, respectively. This was higher than
average expert physicians, who achieved a sensitivity, specificity and accuracy of 77%, 51%,
and 63%, respectively. The algorithm more accurately classified negatives, benign
conditions, low grades and high-grade conditions than the best performing physician.

This algorithm has been developed with images captured using the Pocket
Colposcope, a low-cost, portable, digital colposcope. The labeled images used for this study
were obtained retrospectively and physicians used both VIA and VILI data, hence we were
not able to directly compare the individual algorithms for VIA and VILI. No previous
algorithms for combining VIA and VILI classification have been developed to which we can
compare our results. There was only one study we found that had proposed a method to
combine VIA and VILI images for diagnoses. However, though preliminary representative
images from color-based segmentation were shown, no quantitative performance of the VILI
algorithm was provided to which we could compare our results. Additionally, there is no
previous algorithm that uses VILI alone for cervical pre-cancer diagnosis. Several groups
have proposed methods towards automatic VIA diagnosis which, include automated cervix
segmentation, specular reflection removal, ‘and cetowhitening detection using color-based and
texture features. However, most of these are only semi-automated, requiring manual ROI
selection and focusing on lesion detection within abnormal VIA images. Manually selected
regions are then classified as a type of cervix tissue using various classifiers. Even though
some groups have started working to enable full automation, the current methods cite device-
and illumination-dependence, and image diversity being cited as a major challenge in
analysis.
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Physician performance in our study is on par to those from previous studies. A
colposcopy study by Qureshi et al with 328 women found a sensitivity of 86.84% and a
speciﬁcity- of 48.931%. A study in Tanzania by Ngoma et al of 10,367 women screened with
VILI found a range of 79.8% - 99.3% for sensitivity and 97.0% - 97.6% for specificity.
Sankaranarayanan et al performed a study with 4,444 women in Kerala, India, and found a
range of 80.6% - 92.0% for sensitivity and 83.6% — 85.8% for specificity. Our physician
performance ranged from 68.3 - 88.9% for sensitivity, 20.0 - 71.4% for specificity, and 52.6 -
70.1% for accuracy. It is interesting to note while the average sensitivity of physicians in this
study was comparable to that reported in previous studies, the average specificity was lower.
We speculate that this may be because physicians who participated in our study were viewing
still images of VIA/VILI without any information on patient history or demographics
compared to previous studies in which images were interpreted in real time. Additionally, the
prevalence of disease is lower at the population level, which was the study population used in
previous studies, compared to the diagnostic population (secondary screening), which was the
study population investigated here. In the diagnostic population, there is a higher number of
borderline benign conditions, which can be easily misinterpreted due to intrinsic properties of
the contrast agents. Future studies may include testing the algorithm in a real time clinical
setting and comparing its performance to pathology and expert physician interpretation in the
field.

Overall, the algorithm for automated cervical cancer diagnosis performed
significantly better than average diagnosis of expert physicians..The proposed algorithm
requires very little training data, computational space and run time compared to other
machine learning frameworks. Even though this algorithm is developed using images
captured with the Pocket Colposcope, the method can potentially be applied to cervigrams
from other colposcopes. Overall, this method has potential to enable colposcopy diagnosis in
the absence of an expert physician or to complement his/her judgment. Combining VIA and
VILI classification outperforms physicians, thus allowing accurate referral colposcopy to be
more accessible at the primary care/community level setting. In some embodiments, the
algorithms and classification models described herein can be implemented on mobile or
portable devices such as laptops, smartphones, and tablet computers. Additionally in the
processing steps, regularization can be applied in place of the feature selection step or in
addition to the feature selection step, to prevent overfitting or underfitting. Finally even
though we focus on support vector machine classifiers, other classifiers such as logistic

regression and neural networks can be applied to this method. Using the hand-crafted features
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method described above, similar step’s can be taken with other classifiers, by switching out
the SVM for a different classifier. For deep learning methods such as neural networks, the
idea would be to input a combination of VIA, VILI and GIVI images (pairwise or all three)
into the model as inputs, or to input individual images and combine output classification

scores for combined classification.

V. EXTRAPOLATING METHODS USED TO ADDITIONAL DATASETS
OBTAINED FOR VIA ONLY, VILI ONLY, AND VIA+VILI+GIVI
Methods '

Images, pathology and physician labels were retrospectively obtained from a database
of Pocket Colposcope images acquired in previous clinical studies. As part of the studies,
blinded expert physicians provided a diagnosis for each patient from reviewing randomized
digital cervigrams based on both VIA and VILI images.

Images were obtained from different clinical study sites: Duke University Medical
Center, Durham, USA; La Liga Contra el Cancer, Lima, Peru; Kilimanjaro Christian Medical
Center, Moshi, Tanzania; and University Teaching Hospital, Lusaka, Zambia. For each site,
different contrasts were used. However as VIA is the base standard of care for visual
inspection of the cervix, VIA images were obtained from all sites. We looked at different
combinations: VIA only, VILI only, GIVI only, VIA+VILI, VIA+GIVI, and
VIA+VILI+GIVI. Due to the differences in data collected we also compared combinations to
their individual contrast to determine improvements, independent of differences in data sets.
A table summarizing the different sites and images collected as well as their divisions as

normal, low-grade or high grade is shown in Table III below.

Table III — Summary of different sites and images collected with subsets of normal, low-

grade, or high-grade diagnosis indicated

VIA VIA+VILI VIA+GIVI VIA+VILI+GIVI
Normal | Low | High | Normal | Low | High | Normal | Low | High | Normal | Low | High
Grade | Grade Grade | Grade Grade | Grade Grade | Grade
DUMC | 35 23 54 5 12 12 22 19 34 5 12 12

LLCC |51 41 |23 |51 41 |23 |N/A |N/A|NA |NA |NA |NA

KCMC | 2 6 10 |2 6 10 |2 6 8 2 6 8

UTH |3 3 33 |N/A | N/A [N/A |2 3 32 |N/A |N/A |N/A

Total | 91 73 120 |58 59 145 |26 28 |74 |7 18 |20
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To summarize clinical study procedures, patients undergoing colposcopy examination
at clinical study sites were recruited. These studies were approved by Duke University
Institutional Review Board (Pro00052865) and performed with approved protocol, informed
consent process, and data storage system for each international clinical study site. For each
patient, acetic acid was applied to the cervix. Visual inspection was performed via standard of
care (inspection with the naked eye, with magnification, colposcopy or cervicography),
followed by imaging with the Pocket Colposcope using white light illumination.

For sites which performed GIVI, white light illumination image capture was followed
by green light illumination image capture to highlight vasculature features on the cervix. For
sites which performed VILI, Lugol’s iodine was then applied to the cervix and VILI features
wetre observed per standard of care visual inspection methods, followed by the Pocket
Colposcope. Images, patient demographics, and pathology results were collected and stored
in a HIPAA compliant secured database, REDcap. No biopsies were taken for cervices,
which appeared normal during visual inspection as per standard-of-care procedures.
However, some biopsies of cervices which appeared abnormal by visual inspection were at
times determined to be normal by pathology.

Based on feedback from previous study, for algorithm binary classification labels,
normal and CIN1s were grouped under “normal/benign”. This is because most CIN1 cases
are non-malignant and regress on their own, while CIN2+ cases are typically treated. Images,

pathology and physician labels were retrospectively obtained from a database of Pocket

" Colposcope images acquired in previous clinical studies. As part of the studies, blinded

expert physicians provided a diagnosis for each patient from reviewing randomized digital
cervigrams based on both VIA and VILI images.

Additional images obtained with the pocket colposcope from other clinical studies
were obtained. Depending on standard of care processes for each clinical site, contrasts
contained were either VIA only, VILI only, GIVI only, VIA and GIVI, VIA and VILI, or all
three. Using the methods described in detail above, pre-processing was performed to crop the
cervix to remove any clinically irrelevant information such as the vaginal walls and speculum
and specular reflection attenuation was applied to reduce the specular reflection in each
image. After pre-processing, images were passed through the Gabor segmentation algorithm
to segment a region of interest within the cervix for further analysis. From this region of
interest, Haralick’s texture features of contrast, correlation, homogeneity and energy, as

previously described were extracted. The region of interest was also transformed into
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different color channels of color spaces and summary statistics obtained. These features were
passed through the forward sequential feature selection (FSFS) algorithm to select a subset of
optimal features for each contrast. Feature subsets were used to train 3 and cross-validate (10-
fold) different classifiers: Support vector machine used previously, K-nearest neighbor
classifier (KNN) and a generalized linear regression classifier to compare results.

From previous studies with VIA and VILI images from LLCC, Peru, combination
methods for parallel combination was found to be slightly better than serial combination.
Additionally, parallel combination enables simpler, and less subjective combination for
contrast combinations than serial method, hence parallel combination methods was used to
combine VIA+VILI, VIA+GIVI and VIA+VILI+GIVI images. Results were compared for:
VIA only, VILI only, GIVI only, VIA+VILI, VIA+GIVI, and VIA+VILI+GIVL

Results

VIA only
VIA cervigrams were obtained from all study sites with 284 total images obtained. Of

the 284 images, 91 were normal, 73 were CIN1 and 120 were CIN2+. Results are shown in
Fig. 7 for 10-fold cross validation of selected features using SVM, KNN and Log classifiers.
Of the three, the Log classifier performed best, obtaining an AUC of 0.76, this was followed
by the SVM then KNN methods. Unlike the initial feasibility study with Peru data set, which
was analyzed as normal vs CIN+, this data was analyzed as normal/CIN1 vs CIN+. Thus,
different features were selected, and a different classifier model used. ROC curves for all
individual classifiers as well as for combined classifiers are also shown. Results demonstrate

a performance on par with initial algorithm using Peru data.

VIA and VILI

VIA and VILI Cervigram pairs were obtained from patients from LLCC, UTH, and a
subset of DUMC patients. This yielded a total of 162 image pairs, of which 58 were normal,
59 were CIN1 and 45 were CIN2+. As per previous methods, normal/CIN1 were binned in
the normal category for algorithm classification, while CIN2+ was binned in the abnormal
category. Since data was heavily skewed within the binned normal category, a randomly
selected subset of data (n=50) was selected from the Normal/CIN1 for training and cross
validating the algorithm. Results are shown in Figs. 8-10 for VIA only for this subset of data,
VILI only and VIA+VILI combinations using the parallel combination methods. ROC curves
for VIA only, VILI only and VIA+ VILI are shown. Scatter plots for the best performing
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classifier, Log for VIA, VILI and VIA+VILI are also shown. Results demonstrate that
combining VIA and VILI algorithms using the with 133 entire data set, outperforms
physicians interpretation from initial study, and VIA is improved, though only marginally by
addition of VILI contrast. Discrepancies in results between the two data sets may be from

additional data set and from the classification of normal/CIN1 as abnormal and CIN2+. '

VIA and GIVI

VIA and GIVI cervigram pairs were obtained from patients from KCMC, UTH and a
subset of DUMC patients. This yielded a total of 128 image pairs with 26 normal, 28 low-
grade and 74 high grades, with normal/CIN1 in normal category and CIN2+ in abnormal
category. Figs. 11-13 show results for VIA only, GIVI only for this particular data set and
VIA+GIVI combination of the individual classification scores. ROC curves for VIA only,
GIVI only and VIA+ GIVI are shown. Results demonstrate that combining VIA and GIVI
algorithms out performs VIA only or GIVI only.

VIA, VILI, and GIVI
Of all the data collected, only a small subset of DUMC images and a subset of KCMC

images had all three sources of contrast. This yielded a total of 45 image trios with 7 normal,
18 CIN1 and 20 CIN2+. Fig. 14 shows results for VIA, VILL, GIVI, VIA+VILI, VIA+GIVI
and VIA+VILI+GIVI for this particular data set. Combinations of algorithms are done using
the parallel combination method. A chart showing AUC scores for individual algorithms as
well as all the different combinations are also shown. Log out performs both SVM and KNN
in this case also. We also see that addition of an additional contrast improves over VIA only
while, combining all three contrasts provides the best results. Since this is a small data set,
results may be overly optimistic, seeing as the performance is higher than the algorithms
performance on larger data sets. However, the trend in improvement with contrast addition is

still relevant for VIA+VILI+GIVI sets.

Results

We developed algorithms to improve diagnostic accuracy for colposcopy images
captured with the pocket colposcope and reduce inter-physician variability. The algorithms
also promote task-shifting to community health workers since it reduces uncertainty with
diagnostics and amount of training needed. For the algorithms we also demonstrate

improvement in accuracy with additional sources of contrast. Initial proof-of-concept
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algorithms were developed on a data set from La Liga Contra el Cancer in Peru which had
both VIA and VILI image pers. Image processing algorithms were developed to pre-process
images, extract color and texture features,

and classify images based on a selected subset of the features. Individual algorithms
demonstrated performance on par with expert physicians reading of the same data set, while
combined VIA and VILI algorithms significantly improved over the expert physicians. Based
on these results algorithms were developed and tested on additional images reflecting
additional sources of contrast. On a larger VIA data set algorithm performed on par with
physician performance as demonstrated before. VIA+VILI and VIA+GIVI algorithms both
demonstrated improvements over VIA only, while VIA+VILI+GIVI demonstrated the best

performance of all of the algorithms.

The various operations and steps described herein may be carried out automatically
and/or programmatically. The algorithms and classification models described herein were
developed using MATLAB. However, other programming languages, such as C or Python,
may be used. As used herein, the term “automatically” means that the operation is
substantially, and may be entirely, carried out without human or manual control, direction
and/or input, and can be programmatically directed or carried out. As used herein, the term
“programmatically” refers to operations directed and/or primarily carried out electronically
by computer program modules, code and/or instructions.

The foregoing is illustrative of the present invention and is not to be construed as
limiting thereof. Although a few exemplary embodiments of this invention have been
described, those skilled in the art will readily appreciate that many modifications are possibfe
in the exemplary embodiments without materially departing from the novel teachings and
advantages of this invention. Accordingly, all such modifications are intended to be included
within the scope of this invention. Therefore, it is to be understood that the foregoing is
illustrative of the present invention and is not to be construed as limited to the specific
embodiments disclosed, and that modifications to the disclosed embodiments, as well as other

embodiments, are intended to be included within the scope of the invention.
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What is claimed is:

1. A method for automated detection of cervical pre-cancer, the method
comprising:

providing at least one cervigram;

pre-processing the at least one cervigram;

extracting features from the at least one pre-processed cervigram; and

classifying the at least one cervigram as negative or positive for cervical pre-cancer

based on the extracted features.

2. The method of claim 1 wherein the pre-processing step comprises applying

specular reflection attenuation to reduce specular reflection in the at least one cervigram.

3. The method of claim 1 or 2 wherein the pre-processing step comprises
cropping the at least one cervigram to remove clinically insignificant features such as a

speculum or vaginal walls.

4. The method of claim 3 wherein the cropping step comprises automatically

cropping the at least one cervigram.

5. The method of any one of claims 1 to 4 wherein the pre-processing step for
feature extraction comprises automatically segmenting a region from the cervix for further

analysis.

6. The method of claim 5 wherein the automatically segmenting step is carried

out using a Gabor filter.

7. The method of claim 6 wherein the segmented region has the highest mean

Gabor response.

8. The method of any one of claims 1 to 7 wherein the extracting step comprises

extracting texture based features.
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9. The method of claim 8 wherein the extracting step comprises calculating
Haralick’s features including contrast, correlation, energy, and homogeneity for the

segmented region.

10.  The method of any one of claims 5 to 9 wherein the extracting step comprises
transforming the segmented region to different color spaces and, for each color channel of
each color space, calculating central tendencies of mean, median, mode, and variance and

Otsu threshold level.

11. The method of any one of claims 5 to 10 wherein the at least one cervigram
comprises a VILI image, and wherein the extracting step comprises determining a pseudo
lesion size based on the percentage of pixels corresponding to the yellow staining from non-

uptake of Lugol’s iodine.

12.  The method of any preceding claim wherein the at least one cervigram
comprises corresponding VIA and VILI images, and wherein the classifying step is carried
out using a classification algorithm for VIA only images and a classification algorithm for

VILI only images.

13. The method of claim 12 wherein the classifying step is carried out using a
parallel-combined algorithm, and wherein prediction scores for classifying the VIA and VILI
images with their respective algorithms are input as predictors to generate a classifier model

for a combined classification.

14.  The method of claim 12 wherein the classifying step is carried out using a
serial-combined algorithm including:

applying the classification algorithm for VIA only images to the VIA image to
identify the VIA image as VIA negative or VIA positive;

classifying the corresponding VIA and VILI images as negative if the VIA image is
identified as VIA negative;

if the VIA image is identified as VIA positive, applying the classification algorithm
for VILI only images to the VILI image to identify the VILI image as VILI negative or VILI

positive;
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classifying the corresponding VIA and VILI images as negative if the VILI image is
identified as VILI negative; and

classifying the corresponding VIA and VILI images as positive if the VILI image is
identified as VILI positive.

15.  The method of any one of claims 1 to 10 wherein the at least one cervigram
comprises corresponding VIA and GIVI images, and wherein the classifying step is carried
out using a classification algorithm for VIA only images and a classification algorithm for

GIVI only images.

16.  The method of any one of claims 1 to 10 wherein the at least one cervigram
comprises corresponding VIA, VILI, and GIVI images, and wherein the classifying step is
carried out using a classification algorithm for VIA only images, a classification algorithm

for VILI only images, and a classification algorithm for GIVI only images.

17. A method for developing an algorithm for automated cervical cancer
diagnosis, the method comprising:

providing a plurality of cervigrams;

pre-processing each cervigram;

extracting features from each pre-processed cervigram; and

establishing a classification model based on the extracted features for each cervigram,

wherein the classification model is configured to classify additional cervigrams as

negative or positive for cervical pre-cancer.

18.  The method of claim 17 wherein the pre-processing step comprises applying

specular reflection attenuation to reduce specular reflection in each cervigram.
19.  The method of claim 17 or 18 wherein the pre-processing step comprises
cropping at least some of the plurality of cervigrams to remove clinically insignificant

features such as a speculum or vaginal walls.

20.  The method of claim 19 wherein the cropping step comprises automatically

cropping the at least some of the plurality of cervigrams.
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21.  The method of any one of claims 17 to 20 wherein the pre-processing step for
feature extraction comprises automatically segmenting a region from the cervix for further

analysis.

22, The method of claim 21 wherein the automatically segmenting step is carried

out using a Gabor filter.

23. The method of claim 22 wherein the segmented region has the highest mean

Gabor response.

24.  The method of any one of claims 17 to 23 wherein the extracting step

comprises extracting texture based features.

25.  The method of claim 24 wherein the extracting step comprises calculating
Haralick’s features including contrast, correlation, energy, and homogeneity for the

segmented region.

26.  The method of any one of claims 21 to 25 wherein the extracting step
comprises transforming the segmented region to different color spaces and, for each color
channel of each color space, calculating central tendencies of mean, median, mode, and

variance and Otsu threshold level.

27.  The method of any one of claims 21 to 26 wherein at least one of the plurality
of cervigrams comprises a VILI image, and wherein the extracting step comprises
determining a pseudo lesion size based on the percentage of pixels corresponding to the

yellow staining from non-uptake of Lugol’s iodine.

28.  The method of any one of claims 17 to 27 wherein the establishing step
comprises selecting an optimal subset of the extracted features for each cervigram for optimal

training and to prevent over fitting of the classification model.

29.  The method of claim 28 wherein the selecting step is carried out using forward
sequential feature selection that considers redundancy of feature selection as well as feature
interaction.
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30.  The method of any one of claims 17 to 29 wherein the establishing step

comprises regularization of the extracted features to prevent overfitting or underfitting.

31.  The method of any one of claims 17 to 30 wherein the plurality of cervigrams
comprise corresponding VIA and VILI images, and wherein the establishing step is carried
out using a classification algorithm for VIA only images and a classification algorithm for

VILI only images.

32.  The method of claim 31 wherein the establishing step is carried out using a
parallel-combined algorithm, and wherein prediction scores for classifying the VIA and VILI
images with their respective algorithms are input as predictors to generate the classification

model for a combined classification.

33.  The method of claim 31 wherein the establishing step is carried out using a
serial-combined algorithm including:

applying the classification algorithm for VIA only images to the VIA image to
identify the VIA image as VIA negative or VIA positive;

classifying the corresponding VIA and VILI images as negative if the VIA image is
identified as VIA negative;

if the VIA image is identified as VIA positive, applying the classification algorithm
for VILI only images to the VILI image to identify the VILI image as VILI negative or VILI
positive;

classifying the corresponding VIA and VILI images as negative if the VILI image is
identified as VILI negative; and

classifying the corresponding VIA and VILI images as positive if the VILI image is
identified as VILI positive.

34.  The method of any one of claims 17 to 30 wherein the plurality of cervigrams
comprise corresponding VIA and GIVI images, and wherein the establishing step is carried
out using a classification algorithm for VIA only images and a classification algorithm for

GIVI only images.
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35.  The method of claim 34 wherein the establishing step is carried out using a
parallel-combined algorithm, and wherein prediction scores for classifying the VIA and GIVI
images with their respective algorithms are input as predictors to generate the classification

~ model for a combined classification.

36.  The method of claim 34 wherein the establishing step is carried out using a
serial-combined algorithm including:

applying the classification algorithm for VIA only images to the VIA image to
identify the VIA image as VIA negative or VIA positive;

classifying the corresponding VIA and GIVI images as negative if the VIA image is
identified as VIA negative,

if the VIA image is identified as VIA positive, applying the classification algorithm
for GIVI only images to the GIVI image to identify the GIVI image as GIVI negative or
GIVI positive;

classifying the corresponding VIA and GIVI images as negative if the GIVI image is
identified as GIVI negative; and |

classifying the corresponding VIA and GIVI images as positive if the GIVI image is
identified as GIVI positive.

37.  The method of any one of claims 17 to 30 wherein the plurality of cervigrams
comprise corresponding VIA, VILI, and GIVI images, and wherein the establishing step is
carried out using a classification algorithm for VIA only images, a classification algorithm

for VILI only images, and a classification algorithm for GIVI only images.

38.  The method of claim 37 wherein the establishing step is carried out using a
parallel-combined algorithm, and wherein prediction scores for classifying the VIA, VILI,
and GIVI images with their respective algorithms are input as predictors to generate the

classification model for a combined classification.
39.  The method of claim 17 wherein the establishing step is carried out using a

support vector machine classifier, a logistic regression classifier, or a neural network

classifier.
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40. A computer program product for automated detection of cervical pre-cancer,
the computer program product comprising a non-transitory computer readable storage
medium having encoded thereon instructions that, when executed on a processor, cause the

processor to perform the method of any preceding claim.
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