(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AlJ 2004286660 B2

(54) Title

Policy-based management of a

(51)2 International Patent Classification(s)
GO6F 17/30
GO6F 17730 1BMEP

PCT US2004-035633

Application No: 2004286660

WIPO No! wops.043323

Priority Data

Number
60,514,766

Date
2003 .10 .27

(32)

Publication Date : 2005 05 .12

Applicant(s)

Archivas, Inc

Inventor(s)

Bernhard, Benjamin K. D..

Agent/Attorney

Davies Colliscon Cave,

Related Art

wo 20037102762 A2

redundant

(2006.01) 20060101AFI2007072

Orenstein,

1 Nicholson Street,

array of independent nodes

(22) Application Date: 2pp4 10 27

(33) Country

s

Jack A.. Shaw, David M., Rodriguez, Andres

Melbourne, VIC, 3000

S|
<
)
ol
m

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATE

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Dale
12 May 2005 (12.05.2005)

T COOPERATION TREATY (PCT)

Y0 00O

(10) International Publication Number

WO 2005/043323 A2

(25) Filing Language:
(26) Publication Langnage:

(71) Applicant (for all

(51) International Patent Classification”: GO6F
(21) International Application Nwober:
PCT/US2004/035633

(22) International Filing Date: 27 Oclober 2004 (27.10.2004)

English
Dnglish

(30) Priority Data:

60/314,766 27 October 2003 (27.10.2003) US

designated States except US):
ARCHIVAS, INC. |US/US[; 200 WesL Streel, Waltham,
MA 02451-1121 (US).

{72) Inventors: RODRIGUEZ, Andres; 12 Balcarres Road,

Newton, MA 02465 (US). ORENSTEIN, Juck, A.; 120
Whitman Road, Needham, MA 02492 (US). SIIAW,
David, M.; 16 Farina Road, Newlon, MA 02459 (US).
BERNHARD, Benjamin, K., D.; 30 Fusiis Street, Ar-
lington, MA 02476 (US).

(74) Agenl: JUDSON, David, H.; Law Officc o[David H. Jud-

son, 15455 Dallas Parkway, Suite 600, Addison, TX 75001
(US).

(81) Designated States (unless otherwise indicated, for every

(84)

kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FL
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, 1P, KE,
KG, KP, KR, K7, 1.C, LK, IR, 1.5, I.T, LU, IV, MA, MDD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, U7, VC, VN, YU, 7ZA, 7M,
ZW.

Designated States (unless otherwise indicated, jor every
kind of regional protection available): ARIPO (BW, GH.
GM, KE, LS, MW, MZ, NA, 8D, SL, SZ, TZ, UG, ZM.
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU,1J, TM),
Eurupean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, K1,
FR, GB, GR.IIU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BE, BJ, CK, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, 8N, TD, TG).

Declarations under Rule 4.17:

as to the identity of the wventor (Rule 4.17(i)) for the fol-
lowing designations AE, AG, AL, AM, AT, AU, AZ, BA, BB,
BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE,
DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM,

[Continued on next page]

(54) Title: POLICY-BASED MANAGEMENT OF A REDUNDANT ARRAY OF INDEPENDENT NODES

ItJ

Archivas Cluster
Holorogenzous Harivare

(57) Abstract: An archive cluster application runs in a distributed manner across a redundant array of independent nodes. Each
node preferably runs a complete archive cluster application instance. A given nodes provides a data repository, which stores up to a

~f large amount (e.g., a terabyte) of data, while also acting as a portal that enables access to archive files. Bach symmetric node has a set
& of software processes, ¢.2., a request manager, a storage manager, a metadata manager, and a pelicy manager. The request manager
1) manages requests to the node for data (i.c., file data), the storage manager manages data read/write functions from a disk associated
@ with the node, and the metadata manager facilitates metadata transactions and recovery across the distributed database. The policy
&> manager implements one or more policics, which arc operations that determine the behavior of an "archive object” within the clus-
) ter. The archive cluster application pravides object-based storage. Preferably, the application permanently associates metadata and

policics with the raw archived data, which together comprisc an archive object. Object policics govern the objeet’s behavior in the
archive. As a result, the archive manages itself independently of client applications, acting automatically to ensurc that all object
policics arc valid.

WO 2005/043323 A2

il

HR, HUj, ID, 1T, IN, 1S, IT, KF, KG, KF, KR, K7, I.C, I.K,
LR, LS, LT, LU, LV, MA, MD. MG, MK, MN, MW, MX, M7.
NA, NI, NO, N7, OM, PG, PI1, PL, PT, RO, Rl/, SC, SD, SE,
SG, SK, SI. SY, TI. TM. TN, TR, TT, T7, UA, UIGi, U7, VC,
VN, YU, 7A, 7M, ZW, ARIPO patent (BW, GII, GM, KT,
LS, MW, M7, NA, SD, SL, 87, TZ, UG, ZM, ZW), kurasian
patent (AM, A7, BY, KG, K7, MD, Rl T1, TM). Furopean
patent (AT, BE, BG, CI1, CY, C7, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, 1T, LU, MC, N1, PL, P1, RO, SE, S, K,
TR), OAPI patenr (BF, BJ, CF. CG, CI, CM, GA, GN, GQ.
GW, ML, MR, NE, SN, TD, TG)

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BR, BG, BR, BW, BY, BZ,
CA, CIF, CN, CO, CR, CU, C7, DE, DK, DM, D7, EC, FE,
EG, ES, FI, GB, GD, GE, GII, GM, IIR, I1U, ID, IL, IN, IS,
JE KE, KG, KR KR KZ LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, M7, NA, NI, N, NZ, OM,
PG, Pil, PL, PT, RO, RU, SC, SD. SE, 5G, SK. SL, SY. TJ,
TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
7W, ARIPO patent (BW, Gil, GM, KF, LS, MW, M7, NA,
SD, SL, SZ. TZ, UG, ZM, ZW), Eurasiun patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
BG, CIL CY, CZ, DE, DK, EE, ES, FI, FR, GB. GR, I1U, IE,

IT. LU, MC, NI, PI, PT, RO, SF, SI. SK, TR), OAPI patent
(B B, CF, CG, CI, CM, GA, GN, GQ. GW. ML, MR, NT.,
SN, TD, TG)

— as i the applicanr’s entitlement 1o claim the priovity of the
earlier application (Rule 4.17(iii)) for the following desig-
nations A, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW,
RY. B7, CA, CH. CN, €0, CR, ClJ, C7, DF, DK, DM, 17,
EC, EE, EG, ES, FI, GB, GD, GE, GIi, GM, [IR, 11U/, ID),
11, IN, IS, IP, KE, KG, KP, KR, K7, LC, LK, LR, IS, L1, LU,
1V, MA, MD, MG, MK, MN, MW, MX, M7, NA, NI, NO, N7,
OM, PG, PII, PL, PT, RO, RU, SC, SD, SE, 5G, SK, SL, SY,
TLTM, TN, TR, TT, T7, UA, UG, UZ, VC, VN, YU, 7ZA, 7M,
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA,
SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ,
BY. KG, K7, MD, RU, TI. TM), European patent (AT, BE,
BG, ClL. CY, CZ. DE, DK, EE, ES, FI, FR, GB, GR, 11U, IE,
IT, LU, MC, NL, PL, PT, RO, SE, S, SK, TR), OAPI patent
(BF, BI, CF, CG, CI, CM, GA, GN, GQ, GW, MI, MR, NF,
SN, TD, TG)

Published:
— without international search report and to be republished
upon receipt of thut report

For two-letier codes and other abbreviations, refer 1o the "Guid-
ance Notes on Codes and Abbreviations” appearing al the begin-
ning of each regular issue of the PCT Guzette.

30 May 2011

2004286660

38-85-"11 14:16 FROM-Davies Collison Cave +61332542770 T-@38 POBOS/0E2S F-0@66

20

25

30

CANIFORBIOCCWAMI666723_1.D0C.30/052001

-1-

POLICY-BASED MANAGEMENT OF A REDUNDANT
ARRAY OF INDEFENDENT NODES

This application is based on and claims priority from Serial No. 60/514,766, filed October
27, 2003.

Field of Invention

The present invention relates to, in a redundant array of independent nodes, wherein each
node comprises given hardware on which a given operating system executes, the given
hardware including a local file system; and a system comprising a redundant amray of
independent nodes. For example, the present invention relates generally to techniques for

highly available, reliable, and persistent data storage in a distributed computer network.,

Background of Invention

A need has developed for the archival storage of "fixed content” in a highly available,
reliable and persistent manner that replaces or supplements traditional tape and optical
storage solutions. The term “fixed content" typically refers to any type of digital
information that is expected to be retained without change for reference or other purposcs.
Examples of such fixed content include, among many others, e-mail, documents,
diagnostic images, check images, voice recordings, film and video, and the like. The
traditional Redundant Array of Independent Nodes (RAIN) storage approach has emerged
as the architecture of choice for creating large online archives for the storage of such fixed
content information assets. By allowing nodes to join and exit from a cluster as needed,
RAIN architectures insulate a storage cluster from the failure of one or more nodes. By
replicating data on multiple nodes, RAIN-type archives can automatically compensate for
node failure or removal. Typically, RAIN systems are largely delivered as hardware

appliances designed from identical components within a closed system.

Managing technological obsolescence of an archive infrastructure is a key problem in

preserving digital content. Given the fast pace of technological change, it is questionable

COMS ID No: ARCS-322977 Received by IP Australia: Time (H:m) 14:24 Date (Y-M-d) 2011-05-30

30 May 2011

2004286660

38-85-"11 14:16 FROM-Davies Collison Cave +61332542770 T-@38 POBES/BE2S F-0@66

10

15

20

30

CANRPANbADCCUXMUSEETSS_),DOC-3/052011

_a-

whether the devices that are available today for reading tape or optical disk will still be
around in ten years time. Obsolescence ocours at many levels including, without limitation,
the file's original format, the application that wrote the file, and the media on which the
content was recorded. At first glance, building a large scale archive that keeps pace with
the latest technology while also offering online access at a reasonable cost would appear to
be impossible. The problem is exacerbated because the archive must handle the complete
life cyele of the data it stores. An archive that supports very long retention periods can
accumulate a great deal of data over time, Archive systems must therefore be able to grow
smoothly, e.g., from a few terabytes to several petabytes, and they must provide high
availability, avoid data loss, and be easy to manage,

Prior art techniques do not adequately address these concerns. In particular, it is well-
known that setting up large archive systems is error-prone. Databases, networking,
operating systems, storage management systems and Web servers all require teams of
experts with a myriad of skills to get them running together. In addition, storage systerns,
databases, Web servers and operating systems all have a vast range of tunable parameters
that enable an administrator to optimize performance. Further, serious problems with large-
scale infrastructure can take weeks to diagnose and fix. Because archive systems must be
continuously available, administrators myst be able to remove and replace a faulty device
without interrupting ongoing service. Finally, despite the existence of various security
mechanisms, administrators are mostly on their own to decide how to protect an archive

from malicious attacks or inadvertent damage.

These and other problems are addressed by the present invention.

It is generally desirable to overcome or ameliorate one or more of the above described

difficulties, or to at least provide a useful alternative.

Summary of the Invention

COMS ID No: ARCS-322977 Received by IP Australia: Time (H:m) 14:24 Date (Y-M-d) 2011-05-30

30 May 2011

2004286660

38-85-"11 14:16 FROM-Davies Collison Cave +61332542770 T-@38 POD10/0E2S F-066

10

20

25

30

CANRFORBPROCCW AMUIEEETI_] BOC-3N0572011

_3-

According to the present invention, there is provided, in a redundant array of independent
nodes, wherein each node comprises given hardware on which a given operating system
executes, the given hardware including a local file system, the improvement comprising:

a sct of data objects, wherein a given data object is associated with given fixed
content data that has been written to the local file system of the node, the given data object
encapsulating the given fixed content data together with metadata that includes policy data;
and

an application ingtance execwting on the given hardware on the given node,
comprising:

file system code that provides access to data objects stored in the local file
system of the given node;

request manager code that processes requests associated with a given data
object;

storage manager code that stores the data objects in the local file system of
the node;

metadata manager code that manages the data objects across a set of
cooperating nodes including the given node; and

policy manager code that enforces a set of one or more policies against the

policy data in the data object's metadata during a life cycle of the archive object.

According to the present invention, there is also provided a system comprising a redundant
array of independent nodes, wherein each node comprises given hardware on which a
given operating system executes, the given hardware including a local file system,
comprising:

a set of data objects, wherein a given data object is associated with given fixed
content data that has been written to the local file system of the node, the given data object
encapsulating the given fixed content data together with metadata that includes policy data;
and

an application instance execuling on the given hardware on the given node,

comprising:

COMS ID No: ARCS-322977 Received by IP Australia: Time (H:m) 14:24 Date (Y-M-d) 2011-05-30

30 May 2011

2004286660

38-85-"11 14:16 FROM-Davies Collison Cave +61332542770

20

25

30

CANRForBADCCW XMATAG72)_1.00C-30K152011

-4-

file system code that provides aceess to data objects stored in the local file
system of the given node;

request manager code that processes requests associated with a given data
object;

storage manager code that stores the data objects in the local file system of
the node;

metadata manager code that manages the data objects across a set of
cooperating nodes including the given node; and

policy manager code that enforces a set of one or more policies against the

policy data in the data object's metadata during a life cycle of the data object.

The present invention preferably provides a low-cost scalable disk based archive storage
management system based on the RAIN model. With the present invention, enterprises and
organizations can create permanent storage for fixed content information. The system is
designed to reduce the complexity of creating and maintaining very large digital archives.
It provides for autonomous administration in that the administrator can set and forget
policies for day-to-day operations. A rich metadata management layer and a flexible policy
processor enable policy-driven administration. By specifying policy rules, archive
administrators dictate the behavior of the system and how it manages files, Thus, for
example, users can define processes that perform metadata extraction, data encryption,
compression, and replication necessary for long-term preservation of valuable data while

staying compliant with domain-specific policies,

In one embodiment, the present invention is preferably implemented as a redundant array
of independent nodes, which are preferably Linux-based servers. There is no requirement
that each machine have the same hardware, however. The nodes support a network-based
application that manages archive objects. The system is managed autonomously, i.e., in a
manner that is substantially self-controlling and functionally independent of manual
intervention. According to a feature of the invention, the system preferably configures
itself automatically (or substantially automatically) as specified by high-level policies. This

is highly advantageous in the content of long-term management of digital assets because

COMS ID No: ARCS-322977 Received by IP Australia: Time (H:m) 14:24 Date (Y-M-d) 2011-05-30

T-830 P@@11/0029 F-066

30 May 2011

2004286660

38-05-"11 14:17 FROM-Davies Collison Cave +61332542770 T-@38 PO01Z/0029 F-066

20

235

30

CANRPObRDCOKXMIGG6723, 1. DOC-10051201]

-5-

self-configuration, self-healing, and self-optimization are vital to a system that can evolve

with new technology.

According to preferred embodiments of the invention, an archive cluster application runs
in a distributed manner across the redundant array of independent nodes. The application
enables the archive database to be distributed and replicated across multiple nodes. In the
illustrative embodiment, each node preferably runs a complete archive cluster application
instance. Each node thus provides a data repository, which stores up to a large amount
{e.g., a terabyte) of data, while also acting as a portal that enables access to archive files.
Because runtime operations and physical storage of data (and metadata) are distributed
among cluster nodes, a high level of reliability and performance are insured even as
capacity grows, If a node fails, the cluster adapts by simply redirecting processing to other

nodes, so archived data is always available to the archive cluster application.

According 1o a more specific feature, each node has a same set of software processes, e.g.,
a request manager, a storage manager, a metadata manager, and a policy manager. Thus,
with respect to the archive cluster application itself, ecach node may be considered
symmetric. The request manager manages requests to the node for data (i.e., file data), the
storage manager manages data read/write functions from a disk associated with the node,
and the metadata manager facilitates metadata transactions and recovery across the
distributed database, The policy manager implements one or more policies, which are
operations that determine the behavior within the cluster of an "archive object.," According
to preferred embodiments of the invention, the archive cluster application provides object-
based storage. Preferably, the application permanently associates metadata and policies
with the raw archived data, which together comprise an archive object. Object policies
govern the object’s behavior in the archive. As a result, the archive manages itself
independently of client applications, acting automatically to ensure that all object policies

are valid.

In a representative embodiment, fixed content file data is defined atomically when the

application writes a source file to a fixed content file system (FCFS). After the file is

COMS ID No: ARCS-322977 Received by IP Australia: Time (H:m) 14:24 Date (Y-M-d) 2011-05-30

30 May 2011

2004286660

38-05-"11 14:17 FROM-Davies Collison Cave +61332542770 T-@38 POO13/0029 F-066

20

25

30

CANRPAbNDCCUOMOIESE223_| DOC-300S701 |

- 5a-

archived, preferably it cannot be modified. Preferably, the file also cannot be deleted
before its retention period expires. Metadata is information that identifies an archive
object, such as its author and creation date. According to preferred embodiments of the
invention, metadata also includes policy settings, such as retention period and file
protection, that serve as parameiers for the archive object's policies, Policies are operations
performed by a given policy manager and that determine the archive object's behavior
during its life ¢ycle within the archive. Preferably, policies obtain their parameters from
the object's metadata. Because each archive object encapsulates its own policies, it ig
responsible for its own behavior with the archive, e.g., determining whether its content is

authentic, or whether its retention peried is still in force.

The foregoing has outlined some of the more pertinent features of the invention. These
features should be construed to be merely illustrative. Many other beneficial results can be
attained by applying the disclosed invention in a different manner or by modifying the

invention as will be described.

Brief Description of the Drawings

Preferred embodiments of the present invention are hersafter described, by way of non-

limiting example only, with reference to the accompanying drawings, in which:

Figure 1 is a simplified block diagram of a fixed content storage archive in which preferred
embodiments of the present invention may be implemented;

Figure 2 is a simplified representation of a redundant array of independent nodes each of
which is symmetric and supports an archive cluster (ArC) application according to
preferred embodiments of the present invention;

Figure 3 is a high level representation of the various components of the archive cluster
application executing on a given node;

Figure 4 is a simplified representation of haw a given file enters the archive from an
external application;

Figure 5 is a simplified representation of how the cluster is rebalanced when a given node

fails; and

COMS ID No: ARCS-322977 Received by IP Australia: Time (H:m) 14:24 Date (Y-M-d) 2011-05-30

30 May 2011

2004286660

38-05-"11 14:17 FROM-Davies Collison Cave +61332542770 T-@38 POB14/0029 F-066

20

25

30

CnRPONDADCCRXMI66723_) DOC-30105120]1

-5h-

Figure 6 illustrates a representation archive cluster page available from the administration

console on a given node,

Detailed Desceription of Preferred Embodiments of the Invention

The present invention preferably is implemented in a salable disk-based atchival storage
management system, preferably a system architecture based on a redundant array of
independent nodes. The nodes may comprise different hardware and thus may be
considered "heterogeneous.” In contrast, the archive cluster application (and, optionaily,
the underlying operating system on which that application executes) that is supported on
cach node is the same. Thus, the software stack (which may include the operating system)
on each node is symmetric, whereas the hardware may be heterogenecous. Using the present
invention, as illustrated in Figure 1, enterprises can create permanent storage for many
different types of fixed content information such as documents, e-mail, satellite images,
diagnostic images, check images, voice recordings, video, and the like, among othets.
These types are merely illustrative, of course. High levels of reliability are achieved by
replicating data on independent servers, or so-valled storage nodes, Preferably, each node
is symmetric with its peers. Thus, because preferably any given node can perform all

functions, the failure of any one node has little impact on the archive's availability,

In a representative embodiment, the invention is implemented in a distributed software
application that is sometimes referred to as an archive cluster (ArC) application. The
application captures, preserves, manages, and retrieves digital assefs. In an illustrated
embodiment of Figure 2, a physical boundary of an individual archive is referred to herein
as a cluster. Typically, a cluster is not a single device, but rather a collection of devices.
As noted above, devices may be homogeneous or heterogeneous. A typical device is a
computer or machine rurning an operating system such as Linux. Clusters of Linux-based
systerns hosted on commodity hardware provide an archive that can be scaled from a few
storage node servers to many nodes that store thousands of terabytes of data. This
architecture ensures that storage capacity can always keep pace with an organization's
increasing archive requirements. Preferably, data is replicated across the cluster so that the

archive is always protected from device failure. If a disk or node fails, the cluster

COMS ID No: ARCS-322977 Received by IP Australia: Time (H:m) 14:24 Date (Y-M-d) 2011-05-30

-10-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

automatically fails over to other nodes in the cluster that maintain replicas of the same
data.

An illustrative cluster preferably comprises the following general categories of
components: nocles 202, a pair of network switches 204, powér distribution units (PDUs)
206, and uninterruptible power supplies (UPSs) 208. A node 202 typically comprises one
or more commodity servers and contains a CPU (e.g,, Intel x86, suitable random access
memory (RAM), one or more hard drives (e.g., standard IDE/SATA, SCSI, or the like),
and two or more network interface (NIC) cards. A typical node is a 2U rack mounted unit
with a 2.4 GHz chip, 512MB RAM, and six (6) 200 GB hard drives. This isnota
limitation, however. The network switches 204 typically comprise an internal switch 205
that enables peer-to-peer communication between nodes, and an external switch 207 that
allows extra-cluster access to each node. Each switch requires enough ports to handle all
potential nodes in a cluster. Ethernet or GigE switches may be used for this purpose.
PDUs 206 are used to power all nodes and switches, and the UPSs 208 are used that
protect all nodes and switches. Although not meant to be limiting, typically a cluster is
connectable to a network, such as the public Internet, an enterprise intranet, or other wide
area or local area network. In an illusirative embodiment, the cluster is implémented
within an enterprise environment. It may be reached, for example, by navigating through
a site’s corporate domain name system (DNS) name server. Thus, for example, the
cluster's domain may be a new sub-domain of an existing domain. In a representative
implementation, the sub-domain is delegated in the corporate DNS server to the name
servers in the cluster itself. End users access the cluster using any conventional interface
or access tool. Thus, for example, access to the cluster may be carried out over any IP-
based protocol (HHTTP, FTP, NFS, AFS, SMB, a Web service, or the like), via an APL, or
through any other known or later-developed access method, service, program or Lool.

As will be scen below, client applications access the cluster through one or more
types of external gateways such as standard UNIX file protocols, or HTTP APIs.
Preferably, gateways can be enabled or disabled independently via an administrative
console. The archive preferably is exposed through a virtual file system that can
optionally sit under any standard UNIX file protocol-oriented facility. These include:
NFES, FTP, SMB/CIFS, or the like. Once properly pointed at the archive via a standard

11-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

TCP/IP address, file protocols behave as they do on any standard UNIX operating system,
with “/” being the root directory of the cluster.

In a preferred embodiment, the archive cluster application runs on a redundant array
of independent nodes (H-RAIN) that are networked together (e.g., via Ethernet) as a cluster.
The hardware of given nodes may be heterogeneous. For maximum reliability, however,
preferably eachnode runs a full instance 300 of the distributed application, which is
comprised of several runtime components as now illustrated in Figure 3. Thus, while
hardware may be heterogeneous, the software stack on the nodes (at least as it relates to the
present invention) is the same. These software components comprise a gateway protocol
layer 302, an access layer 304, a file transaction and administration layer 306, and a core
components layer 308. The “layer” designation is provided for explanatory purposes, as one
of ordinary skill will appreciate that the functions may be characterized in other meaningful

ways. One or more of the layers (or the components therein) may be integrated or otherwise.

Some components may be shared across layers.

The gateway protocols in the gateway protocol layer 302 provide transparency to
existing applications. In particular, the gateways provide native file services such as NFS
310 and SMB/CIFS 312, as well as a Web services API to build custom applications. HITP
support 314 is also provided. The access layer 304 provides access to the archive. In
particular, according to the invention, a Fixed Content File System (FCFS) 316 emulates a
native file system to provide full access to archive objects. FCFS gives applications direct
access to the archive contents as if they were ordinary files. Preferably, archived content is
rendered in its original format, while metadata is represented as XML files. FCFS 316
provides conventional views of directories and permissions and routine file-level calls, so
that administrators can provision fixed-content data in a way that is familiar to them. File
access calls preferably are intercepted by a user-space daemon and rouled to the appropriate
core component (in layer 308), which dynamically creates the appropriate view to the calling
application. As will be described, FCFES calls preferably are constrained by archive policies
to facilitate autonomous archive management according to the present invention. Thus, in
one example, an administrator or application cannot delete an archive object whose retention

period (a given policy) is still in force.

-12-

10

15

25

30

WO 2005/043323 PCT/US2004/035633

The access layer 304 preferably also includes a Web user interface (UT) 318 and an
SNMP gateway 320. The Web user interface 318 preferably is implemented as an
administrator console that provides interactive access to an administration engine 322 in the
file transaction and administration layer 306. The administrative console 318 preferably is a
password-protected, Web-based GUI that provides a dynamic view of the archive, including
archive objects and individual nodes. The SNMP gateway 320 offers storage management
applications easy access to the administration engine 322, enabling them to securely monitor
and control cluster activity. The administration engine monitors cluster activity, including
system and policy events. The file transaction and administration layer 306 also includes a
request manager process 324. The request manager 324 orchestrates all requests from the
external world (through the access layer 304), as well as intemal requests from a policy
manager 326 in the core components layer 308. The operation of the policy manager 326
will be described in more detail below.

In addition to the policy manager 326, the core components also include a metadata
manager 328, and one or more instances of a storage manager 330. A metadata manager
328 preferably is installed on each node. Collectively, the metadata managers in a cluster act
as a distributed database, managing all archive objects. On a given node, the metadata
manager 328 manages a subset of archive objects, where preferably each object maps
between an external file (“EF,” the data that entered the archive for storage) and a set of
internal files (each an “IF”") where the archive data is physically located. The same metadata
manager 328 also manages a set of archive objects replicated from other nodes. Thus, the
current state of every external file is always available to multiple metadata managers on
several nodes. In the event of node failure, the metadata managers on other nodes continue
to provide access to the data previously managed by the failed node. The storage manager
330 provides a file system layer available to all other components in the distributed
application. Preferably, it stores the data objects in a node’s local file system. Each drive in
a given node preferably has its own storage manager. This allows the node to remove
individual drives and to optimize throughput. The storage manager 330 also provides system
information, integrity checks on the data, and the ability to traverse local directly structures.

As illustrated in Figure 3, the cluster manages internal and external comxmunication

through a commitnications middleware layer 332 and a DNS manager 334. The

13-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

infrastructure 332 is an efficient and reliable message-based nﬁddleware layer that enables
communication among archive components. In an illustrated smbodiment, the layer supports
multicast and point-to-point communications. The DNS manager 334 runs distributed name
services that connect all nodes to the enterprise server. The DNS manager preferably load
balances requests across all nodes to ensure maximum cluster throughput and availability.

In an illustrated embodiment, the ArC application instance executes on a bass
operating system 336, such as Red Hat Linux 9.0. The communications middleware may be
based on Spread group communications or any other distributed communication mechanism.
As is well-known, Spread is a toolkit that provides a high performance messaging service
that is resilient to faulls across exiernal or internal networks. Spread functions as a unified
inessage bus for distributed applications, and it provides highly tuned application—lével
multicast and group communication support. Other components may include FUSE
{Filesystem in USErspace), which may be used for the Fixed Content File System (FCES)
316. TheNFS gateway 310 may be implemented by Unfsd, which is a user space
implementation of the standard nfsd Linux Kernel NFS driver. The database in each node
may be implemented, for example, PostgreSQL, which is an object-relational database
management system (ORDBMS). The node may include a Web server, such as Jetty, which
is a Java HTTP server and servlet container. Of course, the above mechanisms are merely
illustrative.

The storage manager 330 on a given node is responsible for managing the physical
storage devices. Preferably, each storage manager instance is responsible for a single root
directory into which all files are placed according to its placement algorithm. Multiple
storage manager instances can be running on a node at the same time, and each usually
represents a different physical disk in the system. The storage manager abstracts the drive
and interface technology being used from the rest of the system. When the storage manager
instance is asked to write a file it generates a full path and file name for the representation for
which it will be responsible. In a representative embodiment, each object to be stored on a
storage manager is received as raw data to be stored, with the storage manager then adding
its own metadata to the file as it stores it to keep track of different types of information, By
way of example, this metadata includes: EF length (length of external file in bytes), [F

Segment size (size of this piece of the Internal File), EF Protection representation (EF

-14-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

prétection mode), IF protection role (representation of this internal file), EF Creation
timestamp (external file timestamp), Hash (hash of the internal file at the time of the write
(PUT), including ahash type) and EF Filename (external file filename). Storing thi§
additional metadata with the internal file data provides for additional levels of protection. In
particular, scavenging can create external file records in the database from the metadata
stored in the internal files. Other policies can validate internal file hash against the internal
file to validate thét the internal file remains intact. Optimizations can be made by avoiding
database lookup for basic parent type information.

As noted above, internal files preferably are the "chunks" of data representing a
portion of the original "file" in the archive object, and preferably they are placed on different
disks to achieve striping and protection blocks. Typically, one extemal file eniry is present
ina metédata manager for each archive object, while there may be many internal file entries
for each external file entry. Typically, internal file layout depends on the system. In a given
implementation, the actual physical format of this data on disk is stored in a series of variable
length records.

When it store files, the storage manager 330 guarantees that the files were written to
the media. The storage manager also responds to requests for various services from the rest
of the system, These services and their behavior include: Exists - checks if an internal file
exists; Delete — delete an internal file; Wipe — delete and write over an internal file (secure
delete); Metadata — get storage manager metadata from an internal file; Hash - return hash of
Internal File for an internal file (includes internal file metadata); Listall - return a list of all
the Internal Files for this storage manager; and Deleteall — delete all Internal Files on this
storage manager.

The request manager 324 is responsible for executing the set of operations needed to
perform archive actions by interacting with other components within the system. The request
manager supports many simultaneous actions of different types, is able to roll-back any failed
fransactions, and supports transactions that can take a long time to execute. The request
manager also ensures that read/write operations in the archive are handled properly and
guarantees all requests are in a known state at all times. It also provides transaction control

for coordinating multiple read/write operations across nodes to satisfy a given client request.

-10-

-15-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

In addition, the request manager caches metadata managér entries for recently used files and
provides buffering for sessions as well as data blocks.)

A cluster’s primary responsibility is to store an unlimited number of files on disk
reliably.” A given cluster may be thought of as being “unreliable,” in the sense that it may be
unreachable or otherwise unavailable for any reason. A goal of the present invention is to
make a collection of such potentially unreliable nodes collaborate to create reliable and
highly available storage. Generally, there are two types of information that need to be stored:
the files themselves and the metadata about the files. »

Figure 4 shows how files enter the system. At step 1, files along with a unique key
enter the archive through one of several supported gateways. To protect files, one of several
possible schemes may be used as illustrated at step 2: file mirroring, RAID-5 like schemes
that spread the f{ile contents across multiple nodes using a recovery stripe to recreate any
missiﬁg stripes, variations on RAID-5 schemes (such as Rabin information dispersal
algorithm or IDA) that use multiple recovery stripes to ensure that simultaneous node failures
do not lead to overall system failure. Key value information and other system metadata are
writen to the metadata manager, as indicated at step 3. The metadata manager then updates
its distributed databases as illustrated in step 4. This completes the process.

A highly reliable architecture can serve other purposes. When it is time to upgrade a
storage node, the same metadata manager that locates redundant files on other nodes can also
be used to populate a new node. This is illustrated generally in Figure 5, which shows a set
of four nodes 502, 504, 506 and 508. As shown in Figure 5, the metadata manager provides
all the information required to rebalance the cluster after Node 2 fails. When new Node 510
is added, the cluster will use this capacity as part of the rebalancing process. A process for
determining how and when rebalancing takes place is provided by a rules-driven policy
manager. In this scenario, as shown in Figure 5, the system performs the following steps.
The existing node 504 is taken offline. The new node 510 is identified as ils replacement.
The appropriate metadata manager then identifies files 512 to copy and the location of those
files. The request manager then directs files to be copied to the new Node 510. The
metadata manager is then updated with the location information.

In general, there may be any given number of metadata managers associated with a

given node depending on the amount of metadata and the degree of concurrency required.

-11-

-16-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

Each metadata manager is responsible for a subset of the metadata. Preferably, metadata (in
the form of metadata objects) are distributed among the metadata managers in the cluster
through the use of hashing. Bach metadata manager is responsible for one or more ranges
A12a-n of hash values. Preferably, each metadata object has a name, and the metadata
manager responsible for the object is determined by hashing the name into a given bash
value. When a given application needs to create, retrieve or update a metadata object, the
application hashes the name to determine a hash value, and then the application sends a
request to the metadata manager responsible for the range 412 containing the metadata
object’s hash value. High availability is obtained through the management of metadata
updates in a way that permits one metadata manager to rapidly take over responsibility for
z;nother's region. When a metadata object is updated, the update is sent to the respoﬁsible
metadata manager, which applies the update to its local database. Before committing the
update, the update is sent to a randomly selected set of other metadata managers. When 4
metadata manager is unavailable for any reason, another metadata manager can assume
control of the affected region and use the Backup copies of metadata, scattered throughout the
cluster, to handle requests to the region.

An advantage of the RAIN architecture of the present invention is that each node
(from & system perspective) need not be identical. Nodes can vary significantly in
performance, capacity, and expected reliability. The design of the H-RAIN system presumes
a large number of nodes that use commodity hardware. Figure 1 illustrates an H-RAIN
cluster built with heterogeneous hardware components 100a-100n. Implementation of a
given system typically involves several potential strategies. Storage capacity can be
increased by adding nodes with the same configuration. It is likely that over time these new
nodes will cost less. The average per-gigabyte cost of the archive overall thus diminishes
over time. Archive capacity and cost are predictably associated. Storage capacity,
performance and reliability can be increased by extending the cluster with new nodes that use
superior hardware. The system exploits these new nodes to enhance the archive’s
performance. For example, new nodes with higher-performance CPUs might be used for
CPU-intensive filtering operations. A relatively small amount of new hardware might
thereby measurably improve “put” performance. Both strategies allow users to upgrade their

technical infrastructure while transparently migrating archive content to more up-to-date

-12-

17-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

nodes. Improvements can be made incrementally, leaving the initial iﬁstallaxion intact. If
hardware prices fall, users can enhance their archive’s performance with the best price
performance storage nodes then available. An architecture built on heterogeneous hodes
facilitates all of these options. Figure 5 shows only one scenario for upgrading nodes; other
upgrade scenarios are also possible and envisioned by the present invention.

Preferably, adding new nodes preferably is automatic. The system is designed to
automate administrative tasks such as upgrading system capacity. For example, after a user
adds a new node server to the cluster, the application immediately integrates that node into
the overall workflow, without manual intervention. In a representative embodiment, a cluster
can contain up to several hundred nodes, although this is not a limitation. By adding nodes
to the system, a cluster can eventually scale up to thousands of terabytes.

The application provides protection from data loss. If any node goes out of service,
the request manager automatically redirects storage operations to another node. The
distributed application always replicates a given node’s data elsewhere in the cluster. The
archive’s failover capabilities ensure a transparent transition from the failed node to another
one, so that the failed node’s data is always available. As noted above, preferably all files
stored in the system are protected by a data protection scheme, which automatically recreates
any lost files.

Digital archives present a special kind of data management challenge because they
are very large and long-lived. Special attention must be given to the long-term cost of
managing these systemis. To the degree that archive systems manage themselves and
minimize manual intervention, they can yield significant savings. The present invention
achieves these goals by having each archive object encapsulate its own policies, which
determine the object’s behavior during its life cycle in the archive. Thus, each archive object
is responsible for its own behavior with the archive. With respect to a given archive object,
the archive cluster application supports enforcement of one or more of the following policies:
protection, authentication, retention, cluster balance, garbage collection, scavenging, and
duplicate elimination. A protection policy protects the integrity of data objects; thus, e.g.,
initiating repairs afier any hardware failure. An authentication policy ensures that the content
of a file matches its digital signature. The policy preferably is set to the specific hash
algorithm that is used to generate a digital signature. A retention policy prevents deletion of

-13-

18-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

a file before its retention petriod expires. After the retention period, the data object can be
purged either automatically by the application, or explicitly by an archive administrator, A
cluster balance policy ensures that data objects are evenly distributed among all nodes in the
cluster. A garbage collection policy reclaims disk space by purging files that are left behind
by incomplete tranisactions. It also checks the integrity of system metadata. Preferably, this
policy is set to a pick-up time, which specifies how long data must be marked for deletion
before it is removed. A scavenging policy ensures against loss of metadata. Internally, the
archive’s storage manager maintains and manages a data file’s content in internal storage
files, which also contain the data file’s metadata. Internal storage files provide a layer of
redundancy that is accessible to the archive’s scavenging policy, if necessary. A duplicate
elimination policy increases effective cluster capacity by discovering data objects that are the
same, and eliminating exira copies.

According to the present itivention, a cluster is subject to one or more types of
automnated policy management: protection, authentication, retention, cluster balance,
garbage collection, scavenging, duplicate elimination, and the like. Each of these types is
now described in detail. A policy manager executes on each node in the system for this
purpose.

Internally, the archive cluster application supports one or more data protection
schemes. A representative scheme is a RAID-1 (simple mirroring) protection scheme.
Another representative scheme is an information dispersal algorithm, From an
administrator’s perspective, this support preferably is exposed as a single tunable protection
parameter for the entire cluster. This is not a limitation of the invention, however. Thus, in a
representative embodiment, rather than having to worry about particular protection schemes
and their associated. pararmeters, administrators can simply determine the number of
tolerable-points-of-failure (TPOF) they wish to support for files. The archive cluster
application may support TPOF at a node level, although the application may also be aware of
each disk within each node and automatically adjust for both node and disk failures. Given a
particular TPOF, the application then takes advantage of the best protection scheme possible
(out of those available) given the number of nodes currently within the cluster. Where only
RAID-1 data protection is available, even in the simplest case of 2-way mirroring, disk

utilization is only 50%. As the number of mirrors increase, the TPOF increases, but disk

-14.-

-19-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

utilization decreases. For example: 3-way mirroring provides 33% disk utilization, whereas
A-way mirroring provides 25% disk utilization. Preferably, a protection policy is set at the
cluster level and cannot be overridden at the file level.

In a more specific embodiment, a protection policy is set at the cluster level and
cannot be overridden at the file level. The cluster level default can change but is only applied
to new files stored in the cluster. In an example, the default TPOF at the cluster level is 1.
The protection policy run frequency is configurable. A default run frequency is petiodic,
such as every 24 hours. In this embodiment, the protection policy on all nodes is
automatically initiated if a disk or a node fails anywhere in the cluster.

The policy manager on a given node supports protection as follows. Ii iterates
through all external files (EF) owned by the node it runs on, For each external file, the policy
manager iterates through all internal files (IF). It validates that the file an IF poinis to is
reachable and initiates repair as required.

Authentication prevents data corruption and/or sabo(age; Thus, the archive cluster
application supports an authentication policy where a file being inserted into th;a cluster is
assigned a digital signature. Preferably, the signature is generated from the actual contents of
the file, or a portion of the actual contents. The archive periodically checks the authenticity
of the stored file's content, for example, by regenerating this signature from the stored
content and comparing it to the original signature. The signatures must match to verify data
authenticity; otherwise, the archive returns an authentication violation exception to the
archive administrator. In an illustrative embodiment, authentication digital signatures are
calculated using the M35 algorithm, although any convenient cryptographic function (e.g.,
SHA-1, MD4, or the like) may be used. In this illustrated embodiment, a file’s MDS5 content
hash is calculated when it is inserted into the archive. For client applications to verify the
content stored in the application is identical to the original, a MDS5 hash key can be
calculated outside of the cluster and compared with the hash key the cluster maintains. The
authentication policy run frequency can be configured. A default run frequency (e.g., every 7
days) is then enforced.

The policy manager on a given node supports authentication as follows. It iterates
through all external files (EF) owned by the node it runs on. For each EF, it calculates the
MDS5 hash key of its content on disk and compares it against the MDS hash key for the

-15-

-20-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

external file stored at initial write time. For cach internal file (IF), the policy manager
validates the content by comparing an MD3 hash for that internal file stored at initial write
time and initial repairs as required. As noted above, the EF hash proferably is derived from
the original content. Preferably, the IF hash is derived from the original content together
with any scavenging information.

For many data files, corporate and regulatory standards can require retention of data
files for varying periods of time. The archive cluster application provides an optional
retention period attribute for data files to prevent accidental or malicious deletion of files
before their retention periods expire. For example, if a file is stored on 1/1/2004 and has a
retention period of 2 months, attempts to delete that file before 3/1/2004 return an error. On
or after 3/1/2004, the file is flagged as open for deletion. The file remains in the cluster until
explicitly deleted by the archive administrator,

Preferably, retention periods are stored as number of milliseconds. Files can also be
marked as never being able to be deleted, e.g., by setting a retention period of -1. For the
retention policy, preferably defaults can only be set at the individual directory level but can
optionally be overridden for each inserted file when using the HTTP gateway. Once a
retention period has been specified for a file, it can be changed (via any of the available
gateways), but it can only be increased, not decreased. A default file retention setting for an
file is “0” indicating that the file can be deleted at any time. In a representative embodiment,
the request manager (RM) on a given node monitors the retention policy. Thisisnota
requirement, however.

Over time, individual nodes within a cluster may become unbalanced in terms of their
storage utilization. The archive cluster application monitors this capacity utilization, for
example, whenever a new node is added to the cluster, and it relocates files as required to
bring the cluster back into a balanced state. Preferably, cluster balance is a cluster level
policy that does not have anyy tunable parameters, although this is not a requirement. While
cluster balance is a proactive algorithun to bring a cluster’s capacity utilization back into
balance, preferably the request manager with a given node attempts to maintain this balance
on every write via an intelligent selection of nodes on which to place the data

Garbage collection is required for the physical deletion of all files marked as logically

deleted in the metadata manager. These entries might occur due to a failure during a file

-16 -

21-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

write where partially committed components are not automatically cleaned up by the failed
Write process. Preferably, garbage collection is a cluster level policy that does not have any
tunable parameters, although this isnota requirement. The garbage collection policy run
frequency is configurable. By way of example, the default run frequency is every 24 hours.

The policy manager in a given node supports garbage collection as follows. It iterates
through all metadata owned by the node it runs on. For each extemal file, the policy
manager validates it has all of the associated internal files. The policy manager then cleans
up any remnants from failed inserts to these internal files.

Scavenging is a safety net for potential catastrophic loss of metadata. As noted
above, each physical file that is stored (by a storage manager) also contains its metadata
(normally managed by the metadata manager). The scavenging policy preferably traverses
all files to ensure their metadata is intact. If metadata is found to be missing, it will be
recreated as required. Preferably, scavenging is a cluster level policy that does not have any
tunable parameters, although this is not a requirement. The scavenging policy run frequency
is conﬁgurabie‘ A default run frequency is every 24 hours.

The policy manager in a given nodes supports scavenging as follows. It iterates
through all files owned by storage managers running on the node the policy manager runs on.
For each file, the policy manager validates that the cluster has valid metadata for that file. It
initiates metadata repair as required.

As noted above, preferably every node in the archive supports an administration
console, which exports a display interface such as shown in Figure 6. In this example, the
archive cluster summary page 600 is shown. This page includes an indicator 602 that
indicates that the cluster is fully operational as of a given date and time. This indicator
may change color (e.g., from green to yellow to red) depending on current operating
conditions. A Policy Status and Recent Events table 604 preferably includes a Policy tab
606 and an Events tab 608. The Current Policy Status for each of the set of supported
policies (in this example) is shown. A Node List table 610 identifies each Node by its ID,
Status and Node IP Address. A set of Controls are provided to facilitate the management
operations. In particular, preferably the administration console exposes a set of
cluster/node component controls including: controls for node startup, node shutdown,

node restart, cluster startup, cluster shutdown, and cluster restart. One or more cluster

17 -

22-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

met.ric graphs 612 and 614 are also provided to show (in this example) the Cluster Volume
and Total Files supported in the cluster. The administration console may expose aty
desired cluster metric, of course. By selecting various display tabs, the administrator can
also view and set other details, The display tabs include a Cluster Nodes page 616, a
Gateways page 618, a System Settings page 620 and a Cluster Log page 622. The Cluster
Node pige 616 provides settable properties for each Node in the cluster. The Gateway tab
618 displays information sbout each gateway that is supported. Each gateway has one or
more settable properties along with the ability to enable or disable the gateway. The page
618 lists these gateways and thesir various attributes. }

Of course, the displey layout in Figure 6 is merely representative. As noted above,
preferably the administration console is a Web based application that resides on evéry
node. As with all other external requests entering the cluster via a gateway, adnﬁnistration
console requests are processed on a DNS load balancer-selected node.

The present invention facilitates the provision of an archive management solution
that is designed to capture, preserve, manage, and reirieve digital assets. The design
addresses numerous requiremen.ts: unlimited storage, high reliability, self-management,
regulatory compliance, hardware independence, and ease of integration with existing
applications.

Clusters of commodity hardware running Linux (for example) according to the
present invention provide a robuist platform and a virtually unlimited archive. The system
can scale, e.g., from a few storage node servers to many nodes that store thousands of
terabytes of data. The unique architecture ensures that storage capacity can always keep
pace with an organization’s increasing archive requirements. The system is designed
never to lose a file. Itrcplicates data across the cluster so that the archive is always
protected from dovice failure, I a disk or node fails, the cluster automatically fails over to
other nodes in the cluster that maintain replicas of the same data. The present invention
reduces the cost of archive stora ge through autonomous processing. For example, as nodes
join or leave the clustered archive, the system automatically adjusts the cluster’s load
balance and optimizes performazice by redistributing files across member nodes.

The present invention can help cnterprise with government and industry

regulations or the long-term retention of records such as financial documents and medical

-18-

-23-

10

15

20

25

30

WO 2005/043323 PCT/US2004/035633

data. This a(iVantage is provided by implementing write-once-read-many (WORM)
guarantees, as well as thﬁe-stamnpixlg, which facilitates compliance with customer-defined
retention policies.

The present invention eliminates hardware dependencies by deploying on an open
platform. As the cost gap between commodity platforms and proprietary storage devices
grows, information technology (IT) buyers no longer want to be locked into relationships
with high-cost appliance vendors. Because a given node typically runs on commodity
hardware and preferably open source (e.g., Linux) operating system software, preferably
buyers can shop among many hardware options for the best solution.

The present invention offers industry-standard interfaces such as NFS, HTTP,
FTP, and CIFS to store and retrieve files. This ensures that the system can éasily interface
to most standard content management systems, search systems, storage management tools
(such as HSM and backup systems), as well as customized archive applications.

By relying on RAIN-based architecture, the system can guarantee reliability to the
degree specified by its replication policies. The system is self-healing as files on a failed
disk or on a given node are automatically relocated elsewhere. Archives that start small
can be easily expanded simply by adding nodes. The highly symmetric design enables the
system to distribute processing power and storage capacity across a cluster of many nodes,
with little impact on performance.

Creating a large archive typically entails two initial costs: the devices on which the
archive runs, and the software that is bundled with it. Both are typically proprietary. The
present invention lowers this cost in several ways. The system is designed to work on
commodity operating systems and hardware, specifically on clusters of Linux systems in
the preferred embodiment. Any compufer that runs on supported versions of Linux can
act as a system node. By using a hardware-agnostic platform customers are free to seek
the best storage cluster components to suit their individual needs. The system is designed
to work with a broad array of applications and supports the most popular file level
interfaces including, without limitation, NFS, HTTP and FTP. This means that the system
can easily be made to work with a broad range of applications.

The present invention provides numerous advantages. As described above, setting up

large archive systems is error-prone. Databases, networking, operating systems, storage

-19-

-24-

30 May 2011

2004286660

38-85-"11 14:18 FROM-Davies Collison Cave +61332542770 T-@38 POE15/0029 F-066

20

25

30

CANRFQABNICCUXMUEEE723_).DOC-10052011

-20-

management systems and Web servers alf require teams of experts with a myriad of skills
to get them running together. The present invention addresses this problem through an
antonomous system that simplifies installation and integration, e. g. , by seiting system
configuration through high-level policies. In addition, it is also known that storage
systems, databases, Web servers and operating systems all have a vast range of tunable
parameters that enable an administrator 1o optimize performance. The autonomous system
of the present invention performs functions such as load balancing automatically as it
monitors its ¢wn operation. In the prior art, problems with large-scale infrastructure can
take weeks 1o diagnose and fix. Because archive systems must be continuously available,
administrators must be able to remove and replace a faulty device without interrupting
ongoing service. An autonomous system such as provided by the present invention
automatically detects processes, nodes or other devices that are malfunctioning and safely
detaches them from the archive. Finally, despite the existence of various security
mechanisms, administrators are mostly on their own to decide how to protect an archive
from malicious attacks or inadvertent damage. According to the present invention, in
contrast, protection policies that enforce document retention, authentication, and file

replication combine to protect an archive from loss of valuable digital assets.

While the present invention has been described in the context of a methed or process, the
present invention also relates to apparatus for performing the operations herein. This
apparatus may be specially constructed for the required purposes, or it may comprise a
general-purpose computer selectively activated or reconfigured by a computer program
stored in the computer. Such a computer program may be stored in a computer readable
storage medium, such as, but is not limited to, any type of disk including optical disks,
CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access
memories (RAMSs), magnetic or optical cards, or any type of media suitable for storing

electronic instractions, and each coupled to a computer system bus,

While given components of the system have been described separately, one of ordinary
skill will appreciate that some of the functions may be combined or shared in given

instructions, program sequences, code portions, and the like.

COMS ID No: ARCS-322977 Received by IP Australia: Time (H:m) 14:24 Date (Y-M-d) 2011-05-30

-25-

30 May 2011

2004286660

38-85-"11 14:18 FROM-Davies Collison Cave +61332542770 T-@38 POB16/0029 F-@66

10

CANRPORBADCCUXMIG66723_].DOC-2005201)

-21-

Throughout this specification and the claims which follow, unless the context requires
otherwise, the word “comprise”, and variations such as “comprises” and “comprising”,
will be understood to imply the inclusion of a stated integer or step or group of integers or

steps but not the exclusion of any other integer or step ar group of integers or steps.

The reference in this specification 1o any prior publication (or information derived from it),
or to any matter which is known, i5 not, and should not be taken as an acknowledgment or
admission or any form of suggestion that that prior publication (or information derived
from it) or known matter forms part of the common general knowledge in the field of

endeavour to which this specification relates.

COMS ID No: ARCS-322977 Received by IP Australia: Time (H:m) 14:24 Date (Y-M-d) 2011-05-30

-26-

30 May 2011

2004286660

38-85-"11 14:18 FROM-Davies Collison Cave +61332542770 T-@38 POB17/0029 F-066

25

30

CANRFOrBABTCHXMUG6E73_LBOCI00S2MI

.22

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. In a redundant array of independent nodes, wherein each node comprises given
hardware on which a given operating system executes, the given hardware including a
local file system, the improvement comprising:

a set of data objects, wherein & given data object is associated with given fixed
content data that has been wiitten to the local file system of the node, the given data object
encapsulating the given fixed content data together with metadata that includes policy data;
and

an application instance executing on the given hardware on the given node,
comprising:

file system code that provides access to data objects stored in the local file
system of the given node;

request manager code that processes requests associated with a given data
object;

storage manager ¢ode that stores the data objects in the local file system of
the node;

metadata manager code that manages the data objects across a set of
cooperating nodes including the given node; and

policy manager code that enforces a set of one or more policies against the

policy data in the data object's metadata during a life cycle of the archive object,

2. A system comprising a redundant array of independent nodes, wherein each node
comprises given hardware on which a given operating system executes, the given hardware
including a local file system, comprising:

a set of data objects, wherein a given data object is associated with given fixed
content data that has been written 10 the local file system of the node, the given data object
encapsulating the given fixed content data together with metadata that ineludes policy data;
and

an application instance executing on the piven hardware on the given node,

comprising:

COMS ID No: ARCS-322977 Received by IP Australia: Time (H:m) 14:24 Date (Y-M-d) 2011-05-30

27-

30 May 2011

2004286660

38-85-"11 14:19 FROM-Davies Collison Cave +61332542770 T-@38 POO18/0029 F-066

20

30

CANRPABADCCNK XM 72S_] ROC-I00SR0N)

-23.

file system code that provides access to data objects stored in the local file
system of the given node;

request manager code that processes requests associated with a given data
object;

storage manager code that stores the data objects in the local file system of
the node;

metadata manager code that manages the data objects across a set of
cooperating nodes including the given nede; and

policy manager code that enforces a set of one or more policies against the
policy data in the data object's metadata during a life cycle of the data object.

3. The system as described in claim 2 wherein the given hardware on first and second

nodes is heterogeneous.

4, The system as described in claim 2 wherein the application instance further

includes an administration interface through an entity manages the given node.

3. The system as described in ¢laim 2 wherein the set of one or more policies includes

a data protection policy.

0. The system as described in ¢laim 2 wherein the set of one or more policies includes

an authentication policy.

7. The system as desctibed in claim 2 wherein the set of one or more policies includes

aretention policy.

8. The system as described in claim 2 wherein the set of one or more policies includes

a cluster balance policy.

9. The system as described in claim 2 wherein the set of one or more policies includes

a garbage collection policy.

COMS ID No: ARCS-322977 Received by IP Australia: Time (H:m) 14:24 Date (Y-M-d) 2011-05-30

-28-

30 May 2011

2004286660

38-85-"11 14:19 FROM-Davies Collison Cave +61332542770 T-@38 POE19/0029 F-066

10

CANRPGNBADCOWXHIG6E72S_). ROC-r3 |

_24

10. The system as described in claim 2 wherein the set of one or more policies includes

a scavenging policy.

11. The system as deseribed in claim 2 wherein the set of one or more policies includes

a duplication elimination policy.
12, The system as described in claim 2 wherein the application instance executing on
any given node is the same application instance executing on all other nodes, and wherein

given hardware on first and second of the given nodes is heterogeneous.

13. A file system substantially as hercinbefore described, with reference to the

accompanying drawings.

14. A system comprising a redundant array of independent nodes substantially as

hereinbefore described, with reference to the accompanying drawings.

COMS ID No: ARCS-322977 Received by IP Australia: Time (H:m) 14:24 Date (Y-M-d) 2011-05-30

-29-

WO 2005/043323 PCT/US2004/035633

Emall Archive

Archivas Cluster
Heteropengous Hardware

Figure 1

VESMRL Recundant array of i fart aodes Faeo, matustes

Figure 2

1/4

-30-

WO 2005/043323 PCT/US2004/035633

29% Gateway protocols
/1’

320

3‘,4 ‘Adesis layer

Figure 3

2/4

-31-

WO 2005/043323

Any Node

Node X files
copled from
other nodes.

~

3/4

-32-

04

PCT/US2004/035633

)

@/4/2/»

A~

Hash

Hash
Region 1 Region 2 Region 3

Hash

WO 2005/043323

ARCHIVAS

arsting

PCT/US2004/035633

Wehive Clustar ls fuly operafionsl,
Thu Jut 2214:27:41 EDT 2004

Cluster Velime ivGE (fast 30 drys iF

17590
1500
1250]
1080

Pk
H 721
i ‘otal storage capatity (1,767,575 6B)

1 # uysed storage volume (0.002 GE)

W raw flle volume (0.000 G&Y

niz

Total Flles (Tast 35 days 1

bob, — e s
+{ Currant Policy Status
A7 | gats Timeate, FalloyName
bod "Completed | 4:43 FX 771917004 ¢
Vialting 227 B 712202004 ClusterBalance
~Completed | 10:13AM 772202004 Garkags Colleclion
Gompleled | T0:07 A 72212004 [Ponfertion
[Ongolng | 2:27 PM 11222004 Tefention
Corjsleted -] 1001 A 7/22/2004 5 0
Sls | Time/Date I
[ngetigt, - R I
{Oontrals [NovelD . | Status Nods: I Address
HOBG (1 [Ruoning | 182.103.104.93
A7 (@988 5 {Riming 1931531048
Lie LA ! g ,.192.198.10485
® 182.153.104 98
Y 1631861047
& 192.136.10488
X Rumning | 142,163.104.99
K] Running | 8.104.100
& & Funning 168.104.101

7720 7rel
B Nle counl (53 es}

Corttrols

Nodo 1D | Stalus,

Noda 1P Addigss ALQ{

 Last updaled: 12:61 PM 71222004

b

/5/‘{

Figure 6

444

-33-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

