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METHODS AND SYSTEMS FOR CIRCADIAN PHYSIOLOGY
PREDICTIONS

Related Applications
[0001] This application claims the benefit of the priority of US application No.
60/932,102 filed 29 May 2007 which is hereby incorporated herein by reference.

Technical Field
[0002] The invention relates to systems and methods for tracking the state of a

subject's circadian physiology. Particular embodiments provide state estimation
systems and methods which combine mathematical models of circadian physiology,
measurements of incident light, and measurements of physiological parameters to

generate statistical estimates of circadian states.

Background
[0003] The word “circadian" is derived from the Latin words circa, meaning about,

and dies, or day and refers to processes with 24 hour rhythms. Circadian physiological
rhythms are present in organisms across the animal and plant kingdoms. Circadian
rhythms are thought to be driven by an internal pacemaker which maintains a
self-regulating oscillation with a 24 hour period. Recent research has revealed the
molecular structures which form the core of the human circadian pacemaker. The
pacemaker serves as a central timing mechanism which synchronizes the rhythms of a

wide array of physiological systems.

Circadian Pacemaker Mechanism

[0004] Daily fluctuations in human physiology, such as sleeping and body
temperature changes, have long been observed; however, it was not until the 1970s
that strong experimental evidence of the existence in humans of an endogenous
circadian pacemaker emerged. Subsequently, in the 1990s the molecular basis of a
central human circadian pacemaker was identified. More specifically, research
indicates that a molecular clock located in the suprachiasmatic nucleus (SCN) in the
hypothalamus region of the brain maintains an approximate 24 hour rhythm. While
evidence of additional peripheral oscillators exists, such as in the liver, the SCN
pacemaker is believed to play the central role in regulating circadian timing signals for
other physiological systems.

[0005] Although the circadian pacemaker has an intrinsic period close to 24 hours,
precise synchronization to the external environment is maintained by external stimuli
referred to as "zeitgebers" (from German zeit (time) and geber (giver)). For most

organisms, including humans, the strongest known zeitgeber is light. The daily
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transitions between light and dark caused by the earth's rotation relative to the sun
create a strong environmental stimulus to which organisms naturally synchronize.
[0006] Synchronization of the circadian pacemaker to light occurs through
photoreceptors in the retina which have a neural pathway to the SCN that is distinct
from the neural pathway of the visual system. Signals arriving to the SCN modify
both the phase and amplitude of the pacemaker's oscillations. The duration, intensity,
timing of light exposure relative to circadian phase and the pattern of light exposure
are all factors which have been observed to influence an organism's circadian
pacemaker.

[0007] Studying the effects of circadian rhythms is generally not as straight forward as
considering 24 hour physiological oscillations. Daily patterns of physical activity and
sleep-wake also generally occur on a 24 hour schedule, so it is desirable to distinguish
between behavior-induced rhythms (e.g. body temperature rising during the day
because of walking) and endogenously driven rhythms (e.g. body temperature rising
based on internal circadian thermoregulatory signals).

[0008] Two predominant experimental techniques for isolating circadian effects are
referred to as the "forced desynchrony" and "constant routine" protocols. Both occur
in time isolation laboratories. The forced desynchrony technique forces an individual's
sleep and wake schedules to desynchronize from their internal circadian pacemaker.
The constant routine technique eliminates sleep/wake effects by keeping individuals
awake in a constant environment for more than 24 hours. Based on studies conducted
with these protocols, a number of relationships between the circadian pacemaker and
various physiological systems has been identified. Non-limiting examples of
physiological systems that are, or may be ,effected by, or otherwise related to, the
circadian pacemaker include: core body temperature (CBT), hormonal melatonin
concentration, hormonal cortisol concentration, rate of cell proliferation, the cardiac
regulatory system, chemoreceptive respiratory feedback system and cognitive

performance (alertness).

Indirect Measurement of Circadian State

[0009] Since the human central circadian pacemaker mechanism is inaccessibly
located in the brain, its state cannot be measured directly. Some researchers have
attempted to indirectly measure a subject's circadian state by inferring the subject's
circadian state from measurements of downstream physiological systems. A
complication arising out of such indirect inference is that systems with an observable

circadian modulation, such as CBT and melatonin secretion for example, are also
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responsive to other physiological systems and/or environmental stimulus. From the
perspective of attempting to infer a subject's circadian state, such physiological
systems and/or environmental stimulus are considered to mask the circadian
contribution to the observed physiological system. Accordingly, most indirect
measurements of a subject's circadian state require methods to "demask" the circadian
signal components of an observable system from the other, non-circadian components.
Two demasking approaches which have been used in the past involve: physical
elimination of time-varying exogenous stimulus; and extraction of exogenous factors
using signal processing techniques. Laboratory protocols associated with holding all
exogenous stimuli constant may be referred to as"constant routine" techniques. Signal
processing methods for extracting exogenous factors may be referred to as

"purification" techniques.

The Constant Routine Technique

[0010] CBT and hormonal melatonin levels are two physiological systems that tend to
exhibit consistent and observable circadian rhythms. However, CBT also responds to
physical activity, posture, ambient temperature, and sleep and melatonin secretion is
also responsive to ambient light exposure. A constant routine demasking procedure
developed by Czeisler (Czeisler, C., J. Allan, S. Strogatz, E. Ronda, R. Sanchez, C.
Rios, G. Freitag, G. Richardson, and R. Kronauer, Bright light resets the human
circadian pacemaker independent of the timing of the sleep-wake cycle. Science
233:4764, 667-671; 1986 (Czeisler 1986)) attempts to minimize such confounding
effects on CBT and melatonin levels, by placing subjects in a strictly controlled
laboratory environment. To reduce the effects of sleep-wake transitions and posture
changes, the Czeisler technique typically involves: keeping subjects awake for long
periods of time (e.g. up to 40 hours) in a semi-recumbent position; setting light
exposure to a low level (e.g. to 10 lux); introducing meals at regular intervals (e.g. one
hour intervals); and limiting physical activity.

[0011] During the constant routine technique, CBT may be measured continuously
and the circadian contribution to the CBT (a roughly sinusoidal oscillation with an
amplitude of approximately 2°C) may be monitored. The timing of the minimum of
this approximately sinusoidal CBT oscillation typically occurs between 4:00 AM and
5:00 AM and is may be used as an indicator of the circadian state of a subject. The
natural circadian melatonin cycle includes an onset in secretion approximately at one's
typical sleep time. The timing of this onset is driven by the circadian pacemaker;

however, melatonin secretion is also affected by exposure to ambient light. The dim
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light conditions of the constant routine technique facilitate measurement of the Dim
Light Melatonin Onset (DLMO) time.

[0012] The constant routine technique is currently accepted as a state of the art
method for experimentally assessing the circadian state of a subject and is the primary
method by which data have been collected about the circadian-phase-shifting effects
of light. Despite the success of the constant routine technique, its application is
limited to laboratory environments and often involves subject discomfort (e.g. having

to be awake for 40 hours).

The Purification Technique

[0013] The "purification" demasking approach is another method of circadian state
estimation which attempts to use signal analysis techniques to remove masking
contributions from observed physiological phenomena (i.e. to extract the circadian
contribution from the observed physiological phenomena). Typically, purification
techniques attempt to avoid the restrictive physical constraints of the constant routine
technique. Physical activity and sleep represent two well known masking factors
associated with the observable phenomena of CBT. Consequently, prior art
purification methods have focused on the separation of the effects physical activity
and sleep contributions to CBT from the circadian component contribution to CBT. In
contrast to the constant routine technique, participants in purification studies have
been allowed to follow regular sleep/wake schedules with free ambulatory movement
during waking periods.

[0014] Waterhouse has developed statistical methods of purification utilizing data
from activity sensors. One method involves categorizing activity during waking and
sleep periods and then calculating an associated temperature effect from each activity
category (Waterhouse, J., D. Weinert, D. Minors, S. Folkard, D. Owens, G. Atkinson,
D. Macdonald, N. Sytnik, P. Tucker, and T. Reilly, A comparison of some different
methods for purifying core temperature data from humans. Chronobiology
International 17:4, 539-566; 2000 (Waterhouse 2000A)). A second method uses a
linear regression based on direct mean scores from activity sensors
(Waterhouse2000a). Recent developments in purification-based methods have
introduced some basic thermoregulatory models (Weinert, D., A. Nevill, R.
Weinandy, and J. Waterhouse, The development of new purification methods to assess
the circadian rhythm of body temperature in mongolian gerbils. Chronobiology
International 20:2, 249-270; 2003).
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[0015] While results using purification techniques have been shown to be comparable
to constant routine techniques in some cases (Waterhouse, J., S. Kao, D. Weinert, B.
Edwards, G. Atkinson, and T. Reilly, Measuring phase shifts in humans following a
simulated time-zone transition: Agreement between constant routine and purification
methods. Chronobiology International 22(5), 829-858; 2005), there remains
contention among experts about the accuracy of purification approaches relative to
constant routine techniques. A significant limitation of the statistical purification
approach is that during periods of significant desynchrony between sleep-wake times
and circadian phase, linear methods to separate the two effects from CBT data are

inherently unreliable.

Actigraphy

[0016] Another approach to indirectly measuring the circadian state of an individual is
referred to as actigraphy and is based on the assumption that there is a direct
correlation between an individual's rest-activity rhythm and their sleep-wake rhythm
and thus their circadian state. Actigraphy involves recording of rest-activity patterns
using sensors which record gross physical movement. Typically, actigraphs are
implemented using wrist-worn accelerometers.

[0017] Actigraphy has been used to indirectly measure the circadian state of cancer
patients for timing the delivery of chronomodulated chemotherapy drugs. The type of
circadian variation present in actigraph measurements has also been shown to provide
an indicator of 'health status' of cancer patients. Actigraphy appears attractive for use
in field applications, since it is portable and generally non-invasive. However, studies
to date have yet to produce strong evidence demonstrating the link between actigraphy
and more direct physiological systems known to be correlated to circadian state (e.g.
CBT or melatonin). Actigraphy-based techniques have been applied only to
individual's following a regular diurnal schedule. As such, confounding factors such
as inter-individual variations in circadian phase, differences in behavioral patterns,
and irregular schedules, such as arise with shift-work or the like, limit the accuracy

and precision of actigraphy-based techniques.

Modeling and Predicting Circadian Dynamics

[0018] An alternative to measurement of observable physiological phenomena and
using such physiological measurements to estimate an individual's circadian state
involve the use of predictive models of circadian pacemaker physiology.

Mathematical models describing the dynamic response of the circadian pacemaker
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have been used to predict the behavior of the circadian pacemaker under specific light

exposure scenarios.

Mathematical Models of Circadian State
[0019] The most widely accepted model of the circadian pacemaker was developed by
Kronauer et al in 1987 based on observations of dose-response relationships between
light exposure and circadian phase shifts. Kronauer inferred from experimental data
that the model should have both a self-regulating oscillator component representing
the internal circadian pacemaker, and a light input response component representing
the pathway from light in the eye to a synchronizing input on the oscillator.
Subsequent discovery of the molecular functionality of the circadian pacemaker has
supported the general physiological basis of the Kronauer model. A refined version of
the Kronauer model (the Kronauer-Jewett model) was published in 1999 (Jewett, M.,
D. Forger, and R. Kronauer, Revised limit cycle oscillator model of human circadian
pacemaker. Journal of Biological Rhythms 14:6, 493-499; 1999 (Jewett 1999b)).
[0020] Figure 1 represents a schematic, block-diagram depiction of the Kronauer-
Jewett model 10, which comprises a dynamic model including a circadian pacemaker
component 12 and a physiological marker component 14 for comparison to a
measurable physiological parameter. In the prior art Kronauer-Jewett model 10 of
Figure 1, the measurable physiological parameter is the subject's CBT. Circadian
pacemaker component 12 of the Kronauer-Jewett model 10 receives a light input /
together with a set of initial conditions x,,, x, ., and n,,, corresponding to its state
variables x, x, and » and uses this information together with its model equations to
generate output state variables x, x,. Typical profiles of output state variables x, x, are
shown in Figure 2. It may be observed that output state variables x, x, are
approximately sinusoidal in shape with a period of approximately 24 hours and that
output state variables x, x, are approximately 90° out of phase with one another.
[0021] Physiological marker component 14 of the Kronauer-Jewett model 10
incorporates a minimizer component 16. Minimizer component 16 receives the output
state variable x and returns a time at which output state variable x is a minimum x,,,.
As shown in Figure 2, the minimum x,,, (also referred to as a nadir of the state
variable x) occurs once every period of output state variable x or approximately once
every 24 hours. The time at which output state variable x is a minimum x,,,, is referred
to Figures 1 and 2 as ¢, {x}.

[0022] The Kronauer-Jewett model 10 also incorporates the experimentally
determined observation that the time ¢,,,{x} that the state variable x is a minimum x,,

n
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is correlated to the time of the CBT minimum CBT,,,,. The time that physiological
marker component 14 predicts to be the time of CBT,,, is referred to in Figure 1 as
@,..{CBT}. As can be seen by observation of summing junction 18, the Kronauer-
Jewett model 10 incorporates the experimentally determined relationship that the time
@,...{ CBT} typically occurs 0.8 hours after the time ¢,,,,{x}. Physiological marker
component 14 of the Kronauer-Jewett model 10 outputs the time ¢, {CBT} of the
CBT minimum CBT,,, which in turn permits comparison of the Kronauer-Jewett

model 10 to measured CBT values. Since the time ¢, {x} that the state variable x is a

minimum Xx,,, is only output once every approximately 24 hours, it follows that

physiological marker component 14 only outputs the time ¢, {CBT} of the CBT

min

minimum CBT,,, once every approximately 24 hours.

[0023] The Kronauer-Jewett circadian pacemaker model 10 has been used with
differential-equation-solving algorithms to generate simulations predicting the phase
shift of the circadian pacemaker, starting from known initial conditions

(Xiier X, imirs Pimir)» 1N TESPONSE tO A given light exposure pattern (/). This predictive
capability has been successfully used to design of experimental protocols and confirm
experimental observations of circadian phase shifts in a laboratory context. Despite
the apparent usefulness of the Kronauer-Jewett model 10, it has not actually been
widely applied in broader contexts — e.g. outside of an experimental laboratory
environment.

[0024] A number of drawbacks have tended to limit widespread adoption of the prior
art Kronauer-Jewett model 10 as a general modeling framework. By way of non-
limiting example, such limitations include: (i) the circadian phase of the subject is not
presented as a continuous variable which can be monitored (e.g. as an output of model
10) or updated (e.g. as an initial condition of model 10); (ii) the correlation between
the circadian phase and physiological marker 14 is not defined in a statistical manner
(i.e. Kronauer-Jewett model 10 does not incorporate statistical uncertainties); and (iii)
the Kronauer-Jewett model 10 only specifies a correlation to CBT and not to other

physiologically observable phenomena.

Alertness Models

[0025] One use of circadian physiology models is in the field of human alertness
modeling and prediction. Human alertness may also be referred to as human
performance. Current models of human alertness incorporate both a sleep-related
component and a circadian component; however, most of the widely used human-

alertness models assume a fixed circadian phase — e.g. a series of sinusoidal
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harmonics with a predetermined and constant phase. With such constant phase
assumption, scenarios in which the actual circadian phase of a subject may be
non-stationary, e.g. shift work or transmeridian travel, cannot be accurately modeled.
Some human-alertness models incorporate the potential for changing circadian phase.
One such human-alertness model uses a version of the Kronauer model for
accommodating variations in the circadian phase (Jewett, M. and R. Kronauer (1999).
Interactive mathematical models of subjective alertness and cognitive throughput in
humans. Journal of Biological Rhythms 14:6, 588—597; 1999 (Jewett 1999a)).
Another such human-alertness model uses a “rule of thumb” for shifting the circadian
phase in response to time-zone changes — e.g. a constant rate of change of the
circadian phase until the subject is entrained to the new time zone (Akerstedt, T., S.
Folkard, and C. Portin, Predictions from the three process model of alertness.
AVIATION SPACE AND ENVIRONMENTAL MEDICINE March 75:3, Suppl.,
AT75-A83; 2004).The lack of dynamic circadian modeling has been identified as a
general need in the context of human alertness prediction.

[0026] One of the challenges in applying a human-alertness model incorporating a
detailed dynamic circadian pacemaker model to real world scenarios is that current
simulation methods require precise specification of initial conditions and complete
knowledge of light levels during the course of the simulation. In uncontrolled
environments, such as in an actual workplace or in almost any scenario outside of a
laboratory, it is difficult to assess both the circadian phase and ambient light levels for
a specific individual. It may be this reason that the Kronauer-Jewett model 10 has
found application in simulating laboratory environment scenarios, where circadian
phase and light levels can be controlled, but has not been widely used in operational
scenarios. This inability to apply circadian predictions to real world environments may
be partially responsible for the fact that despite a well-established model of the
circadian pacemaker, it remains difficult for scientists to provide definitive advice
concerning specific circadian adjustment countermeasures.

[0027] There is a general desire for systems and methods for predicting a belief in or
probability of the circadian state of a subject which may overcome or ameliorate some

of the aforementioned issues with the prior art.

Brief Description of the Drawings
[0028] In drawings which depict non-limiting embodiments of the invention:

Figure 1 schematically depicts the prior art Kronauer-Jewett model for

circadian phase estimation in response to changes in light exposure;
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Figure 2 depicts typical curves of the state variables (x, x_.) of the
Figure 1 Kronauer-Jewett model;

Figure 3 is a schematic illustration of a system for estimating a belief
in a circadian phase according to a particular embodiment of the invention;

Figure 4 schematically illustrates a system model which incorporates a
modified version of the Figure 1 Kronauer-Jewett model and which is suitable
for use in the Figure 3 circadian phase estimation system;

Figure 5 is a graphical relationship between the state variables (x, x_) of
the Figure 1 Kronauer-Jewett model and the state variables (4, ¢) of the
Figure 4 modified Kronauer-Jewett model;

Figures 6A and 6B respectively depict plots showing the phase angle 6
and the phase offset ¢ for the cases of a constant phase offset ¢ and for the
case of a shift in phase offset ¢;

Figures 7A and 7B respectively depict plots showing how the
continuous phase offset estimates compare to the Kronauer-Jewett nadir-
reference phase offset estimates for the case where the phase offset is
relatively constant (i.e. where a subject has entrained to particular pattern of
sleep and light exposure) and for the case of a shift in phase offset;

Figure 8 a schematic depiction of the operation of the physiological
phase estimator of the Figure 1 system according to a particular embodiment
of the invention;

Figure 9 schematically depicts a method 200 of Bayesian filtering
according to a particular embodiment of the invention;

Figure 10 is a more detailed schematic depiction of the Figure 1
estimation system;

Figure 11 schematically depicts a particle filtering method according to
a particular embodiment of the invention;

Figures 12A, 12B, 12C and 12D respectively represent pseudocode
procedures for implementing the prediction update, IMPORTANCE
WEIGHT, RESAMPLE and MOVE blocks of the Figure 11 particle filtering
method;

Figures 13A, 13B and 13C schematically depict an example of a
Gaussian kernel replacement to reconstruct a continuous PDF from a particle
distribution according to a particular embodiment of the invention;

Figure 14 shows a number of plots of simulated data relating to state

variables in a first simulation scenario with a 24 point particle filter;
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Figure 15 shows phase PDFs generated by a second simulation
scenario with no noise;

Figure 16 shows phase PDFs generated by the second simulation
scenario with process noise;

Figure 17 shows phase PDFs generated by the second simulation
scenario with process noise and light input noise;

Figure 18 schematically depicts the light pattern used for third and
fourth simulation scenarios;

Figure 19 shows phase PDFs generated by a third simulation scenario;

Figure 20 shows phase PDFs generated by a fourth simulation
scenario;

Figure 21 is schematic illustration of an experimental phase prediction
system according to a particular embodiment;

Figure 22A shows phase PDFs generated by the Figure 21 system for a
human subject without incorporation of prior sleep history information;

Figures 23 A, 23B and 23C respectively show the evolution of the
phase PDFs of a human subject experiment in the cases of a Bayesian particle
filter estimation without physiological measurement information (Figure 23A),
a CBT measurement only (Figure 23B) and a Bayesian particle filter
estimation with CBT measurement information (23C);

Figure 24 shows the Figure 23 phase PDFs at the conclusion of the
human subject experiment; and

Figure 25 shows melatonin and cortisol measurements taken from an
individual subject and shows the results of a Fourier curve-fitting technique
used to obtain physiological feature PDFs according to a particular

embodiment of the invention.

Detailed Description

[0029] Throughout the following description, specific details are set forth in order to
provide a more thorough understanding of the invention. However, the invention may
be practised without these particulars. In other instances, well known elements have
not been shown or described in detail to avoid unnecessarily obscuring the invention.
Accordingly, the specification and drawings are to be regarded in an illustrative, rather
than a restrictive, sense.

[0030] Systems and methods are provided for predicting a circadian state of an

individual. The methods comprise: providing a state-space model representative of the
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response of the circadian state to light stimulus, the model comprising at least one
state variable representative of a probability distribution function (PDF) of a phase
offset of the circadian state of the individual; and using the model to estimate an
updated PDF of the phase offset, wherein using the model to estimate the updated
PDF of the phase offset comprises performing a Bayesian estimation process
commencing with an initial PDF of the phase offset and iterating toward the updated
PDF of the phase offset. Systems may comprise processors suitably configured for
carrying out the methods of the invention.

[0031] Figure 3 schematically depicts a circadian phase estimation system 100
according to a particular embodiment of the invention. System 100 estimates the
circadian phase ¢ of an individual subject (not shown). In particular embodiments, the
circadian phase ¢ estimates output by system 100 may comprise statistical
information relating to the circadian phase ¢ - e.g. a probability distribution function
(PDF) relating to the circadian phase ¢. Such statistical information may express a
belief or confidence interval in the circadian phase ¢ estimate.

[0032] In the illustrated embodiment, estimation system 100 receives light input
information 102 which relates to the amount of light experienced by the individual
subject. Light information 102 input to system 100 may be measured and/or
controlled. System 100 may also receive one or more optional physiological inputs
104A ... 1047 (collectively, physiological inputs 104). Physiological inputs 104 may
be related to measurable physiological parameters. Physiological inputs 104 may
comprise statistical information relating to the measurable physiological parameters —
e.g. PDFs relating to the physiological parameters. In the illustrated embodiment,
system 100 also receives one or more optional initial conditions 106A ... 106n
(collectively, initial conditions 106). Initial conditions 106 may be estimated or
measured. Initial conditions 106 may relate to state variables of a system model (not
shown) used by estimation system 100. In addition to the circadian phase ¢,
estimation system may also output one or more optional other output(s) 110. Such
other outputs 110 may be related to the state variables of the system model used by
estimation system 100.

[0033] In the illustrated embodiment, estimation system 100 comprises a number of
components, which include a system model 112, a physiological phase estimator 114,
a prediction updator 116 and a measurement updator 118. For simplicity of the
schematic illustration, system model 112, physiological phase estimator 114,
prediction updator 116 and measurement updator 118 are shown as separate
components. However, it will be appreciated by those skilled in the art that these
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components of estimation system 100 may overlap one another in whole or in part.
System model 112, physiological phase estimator 114, prediction updator 116 and
measurement updator 118 are explained in more detail below.

[0034] Estimation system 100 may be implemented at least in part by one or more
suitably configured controllers. In general, the type of controller used to implement
system 100 may comprise or may otherwise be embodied by a wide variety of
components. For example, such a controller may comprise one or more programmable
processor(s) which may include, without limitation, embedded microprocessors,
dedicated computers, groups of data processors or the like. Some functions of such a
controller may be implemented in software, while others may be implemented with
one or more hardware devices. The operation of such a controller may be governed by
appropriate firmware/code residing and/or executing therein, as is well known in the
art. Such a controller may comprise memory or have access to external memory.
[0035] The invention may also comprise methods of operating estimation system 100

to generate estimates of the circadian phase ¢.

Modified Kronauer-Jewett Model

[0036] Model 112 of estimation system 100 (Figure 3) may be implemented using a
modified version of the Kronauer-Jewett model 10.

[0037] As discussed above, the prior art Kronauer-Jewett model 10 (Figure 1)
involves predicting the impact of light exposure 7 on the circadian parameters of an
individual. The Kronauer-Jewett model 10 incorporates a modified Van der Pol
oscillator which maintains a steady state oscillation with a stable amplitude and period
and models the self-sustaining rhythm of circadian pacemaker 12. A light input term
(B) may be incorporated into the oscillator to describe how light intensity 7 observed
in the subject's retina causes changes in the circadian parameters (e.g. phase and/or
amplitude). In particular embodiments, the modified Van der Pol oscillator of
Kronauer-Jewett model 10 may be described by a pair of interacting state variables

(x, x.) described by the following non-linear equations:

i= xc+y(lx+ix3—@x7j+3 (1)
12 3 3 105

. T A2 Y
e _12{qu‘ {(rx(0.99729)) +kB}x} 2)

where pp=0.13, ¢ =1/3, ,=24.2, k= 0.55, and B is a driving input due to light input
I (Jewett1999b). As shown in Figure 2, the Kronauer-Jewett state variables x and X,
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typically follow trajectories which have shapes that are approximately sinusoidal with
phases that differ by 90°.

[0038] In the Kronauer-Jewett model 10, the response (o) of the human eye to light
may be modeled first by a logarithmic function:

where [ is the ambient light intensity in units of lux, &, = 0.05 and p=0.5
(Jewett1999Db).

[0039] A second component of the Kronauer-Jewett model 10 is a dynamic filter
which relates the parameter « to the driving light-input variable (B) used in state
variable equations (1) and (2). In accordance with the Kronauer-Jewett model 10, this

dynamic filter may be provided by:
n= 60[a(1 -n)— ﬂn] “4)

B=Ga(l-n)1-mx)(1-mx,) (5)

where =0.0075 and G=19.875 (Jewett1999b). Equation (4) models a filter (n) acting
upon (o) and equation (5) models the modulation of the light-input variable (B) by the
current state (x, x,) of the circadian pacemaker and the filter (n).

[0040] The Kronauer-Jewett model 10 also comprises a physiological circadian phase
{CBT} of

the subject's minimum core body temperature CBT, .. In accordance with the

marker 14 which, as discussed above, provides an estimate of the time ¢,,,
Kronauer-Jewett model 10, the estimated time ¢,,,,/CBT} of the subject's minimum
core body temperature CBT,,, is based on the corresponding time ¢ . {x} of the
minimum (nadir) x,,,, of the state variable x. More particularly, as shown by summing
junction 16 in Figure 1, the estimated time ¢,,,,fCBT} of the subject's minimum core
body temperature CBT,,,, is obtained from the corresponding time ¢, {x} of the state

variable minimum x,,, according to:
@...{CBT} = ¢_._{x}+ 08hours (6)

[0041] System model 112 of estimation system 100 (Figure 3) may be implemented
using the modified version of the prior art Kronauer-Jewett model 10. Figure 4
schematically depicts a modified Kronauer-Jewett model 112A which may be used to
implement system model 112 (Figure 3) in particular embodiments. In particular
embodiments, modified Kronauer-Jewett model 112A (Figure 4) involves modifying
the prior art Kronauer-Jewett model 10 (Figure 1) by: applying non-linear state

transformation to circadian pacemaker 12 of the prior art Kronauer-Jewett model 10
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(Figure 1); modifying physiological marker 14 of the prior art Kronauer-Jewett model
10 to provide a physiological phase estimator 114 (Figure 3) capable of
accommodating probability distributions (rather than point estimates) and capable of
optionally relating the output of model 112 to multiple physiological inputs 104 which
may include physiological inputs other than CBT. Modified Kronauer-Jewett model

112A is explained in more detail below.

Parameter Transformation of Circadian Pacemaker Model

[0042] The Kronauer-Jewett model 10 is a widely accepted characterization of a
subject's circadian state and the responsiveness of the circadian state to light inputs.
The Kronauer-Jewett model 10 suffers from the fact that phase and amplitude of the
subject's circadian state are not accessible as state variables. Instead, the Kronauer-
Jewett model 10 requires that the circadian amplitude be defined as a nonlinear
function of the state variables (x, x.) and the circadian phase be defined by
physiological marker component 14 in relation to the nadir x,,,, of the state variable x.
of the state

variable x provides the reference point for connecting the circadian phase predicted by

As a consequence of these definitions, the location of the nadir x,,
the Kronauer-Jewett model 10 to the circadian phase observable from measurement of
the subject's CBT as described above in equation (6).

[0043] In accordance with particular embodiments of the invention, this limitation of
the prior art Kronauer-Jewett model 10 may be overcome by providing modified
Kronauer-Jewett model 112A (Figure 4) with a state transformation 7 which maps the
Kronauer-Jewett state variables (x, x,) into directly useful states (¢, 4). Modified
Kronauer-Jewett model 112A of Figure 4 may be more fully understood by examining
the properties of the Kronauer-Jewett state variables (x, x,) and deriving the

transformation 7 and its inverse transformation 7*/.

Characteristics of Kronauer-Jewett state variables (x, x,)

[0044] The differential equations (1), (2), (4) used in the Kronauer-Jewett model 10
comprise three states (x, x,, #). As discussed above, the state variables (x, x,) interact
to create a modified Van der Pol oscillator which self-oscillates at a period of
approximately 24 hours. Both x and x, follow nearly sinusoidal trajectories, in which
the phase of the state variable x, lags the phase of the state variable x by
approximately 90°. The state variable # is part of a light input system.

[0045] In an approximately 24 hour period of the state variables (x, x,), the prior art

Kronauer-Jewett model 10 uses a single reference point (i.e. the time ¢, {x} of the

m
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nadir x,,,, of the state variable x) to define the phase of the circadian pacemaker. For
example, for an individual with sleep occurring regularly between 12:00am and
8:00am, simulations of the Kronauer-Jewett model 10 will tend to show that the nadir
X ., Of the state variable x occurs at a time ¢,,,,{x} around 4.3h (4:22am), and in real
experiments subjects will have a CBT minimum CBT,,, occurring at a time ¢, {CBT}
of approximately 5.1h (5:06am) as described above in equation (6). Based on a variety
of experiments with different light exposure settings, the Kronauer-Jewett model 10
has been refined so that the time ¢,,,.{x} of the nadir x_, maintains a constant time
shift (0.8 hours) relative to the time ¢,,,,{CBT} observed for the CBT nadir CBT,,,.
[0046] This nadir-phase-reference method of the Kronauer-Jewett model 10 presents
a number of limitations in the context of a circadian estimation system 100 (Figure 3).
Firstly, the Kronauer-Jewett model 10 only outputs one phase prediction every
approximately 24 hours — i.e. one time ¢,,,,{x} in the Figure 1 illustration
corresponding to each nadir x,,, of the state variable x. This single phase prediction
permits only one physiological marker output (i.e. one time ¢,,,,{CBT} in the Figure 1
illustration) every approximately 24 hours. A second limitation of the Kronauer-
Jewett nadir-phase-reference method relates to the lack of an inverse relationship from
which the system's state variables (x, x,, n) can be updated to match a given circadian
phase and amplitude. Typically, in prior art applications, the initial conditions for
Kronauer-Jewett simulations are assigned on the basis of a look-up table of values for
typical situations (e.g. for a habitual schedule of 8h sleep and 16h awake in 160 lux
the initial conditions at the onset of sleep time may be set to x = -0.17, x,=-1.22, and
n=0.50 (Jewett1999b)).

Parameter transformation to new state variables (¢, A)

[0047] In particular embodiments of the invention, the modified Kronauer-Jewett
model 112A (Figure 4) comprises a transformation 7 for creating new phase and
amplitude states (¢, 4) based on Kronauer-Jewett states (x, x,). Since Kronauer-Jewett
states (x, x,,) are continuously updated (e.g. once every time step in a discrete-time
context), the transformed phase and amplitude states (¢, 4) of modified Kronauer-
Jewett model 112A are similarly continuously updated. Transformation 7' may be
based on an understanding of the Kronauer-Jewett state variables (x, x,). As shown in
Figure 1, the Kronauer-Jewett state variables (x, x,) typically follow near-sinusoidal
trajectories with a relatively constant phase difference. If the Kronauer-Jewett state
variables (x, x,) are considered to be (x, y) coordinates on a Cartesian plane, then they

describe a near-circular locus. Figure 5 shows the Figure 2 data points transposed into
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(x, y) coordinates. The near-circular (x, y) plot shown in Figure 5 may be described in
a polar coordinate system using amplitude 4 and phase angle 0, where the amplitude
A is the distance of the vector from the origin to the point (x, x,) and the angle 6 is
measured from the horizontal axis as shown in Figure 5. The Kronauer-Jewett state
variables (x, x.) may be transformed to provide the amplitude 4 and the phase angle 0

according to:

A=\x*+x] @)

0 ifx, > 0 and x > 0 (quadrant I),
6 = tan“l(—x—J +47 if x, <0 (quadrant II or IIT), 8)
g 27 if x, >0 and x <0 (quadrant V),

[+

With these definitions, as time increases the point (x, x_) follows a near-circular
trajectory with a period of 24 hours and the angle 0 increases from 0 to 27 radians.
Together, equations (7) and (8) may be defined to be a transform 7. The inverse

transform T/ may be accomplished according to:

x = Asin(0) Q)

x, = Acos(6) (10)

[0048] In practice, it is most meaningful to describe the circadian system in terms of a
phase offset ¢ which reflects the phase shift relative to a defined reference phase,
rather than in terms of a phase angle 8 which reflects the continually moving angle
from 0 to 27t. The following relationship may be used to define the phase offset ¢ (in
units of hours) based on the phase angle 0:

0 =a)(t+to)—¢%g— (11a)

or

=22 (0(+1)-0) (11b)
2

where w represents a baseline frequency, t, is a baseline offset parameter measured in
hours from midnight (i.e. midnight=0 hours) and ¢ represents the current time
measured in hours from midnight. Since the baseline frequency w corresponds to a

constant 24 hour day (i.e. w=21/24), equation (11) can be rewritten as:

p=t+1,-22g (12)
2n
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In accordance with the definition of the phase offset ¢b in equation (11) and (12), the
phase offset ¢ represents the difference between the phase angle term 240/27 and
time variable 7 in units of hours.

[0049] Referring to equation (12), if an individual follows a consistent 24 light
exposure schedule, then the time ¢ will vary between 0 hours and 24 hours and the
phase angle 6 will vary between 0 and 271 over the same period. This situation is
depicted in the plots of Figure 6A. Because of the corresponding changes in time ¢ and

phase angle 6 over a period, the term 524—0 will increase at the same rate as ¢, so the
(3

difference t—-22—40 will be relatively constant. This constant phase offset ¢ is shown in
(3

the lower plot of Figure 6A. Alternatively, if an individual experiences a shift in light
exposure (as is shown in the plots of Figure 6B), then the phase angle 8 will vary by a

different amount over a 24 hour period — i.e. an amount different than 0 to 2.

Consequently, the term§—49 of equation (12) will increase or decrease relative to the
n

time 7 and a change in the phase offset ¢ will occur. In the circumstance shown in the
lower plot of Figure 6B, the phase offset ¢ is increasing.

[0050] The equation (12) baseline offset term ¢, may be treated as a calibration
constant, as it shifts the mean value of the phase offset ¢. In particular embodiments,
to determine the appropriate calibration value #,, a comparison is made between the
phase offset ¢ estimated using equation (12) and the transformation T (Figure 4 and
equations (7) and (8)) to the phase offset ¢ estimated using the Kronauer-Jewett
nadir-reference method described above. For consistency, the phase offset ¢ of the
modified model (i.e. estimated using equation (12)) may be calibrated to match the
phase offset ¢ estimated using the Kronauer-Jewett nadir-reference method. Since the
Kronauer-Jewett nadir-phase-reference method provides only a single reference point
every approximately 24 hours (i.e. at the nadir x,,,, of the state variable x) and the
phase offset ¢ estimated using equation (12) provides continuous values, a variety of
calibration methods may be used to select the baseline offset term #,.

[0051] In one particular embodiment, calibration involves adjusting the baseline
offset term 7,, such that the 24 hour mean of the equation (12) phase offset estimate ¢
matches the phase estimate ¢ at the time of x,,,, predicted using the Kronauer-Jewett
nadir-reference method — i.e. if the time of x,,,, occurs at 4:00h, then #, is chosen such
that the 24 hour mean of the equation (12) phase offset estimate ¢p will equal 4:00h. In

an alternative embodiment, calibration involves adjusting the baseline offset term tyof
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the equation (12) phase offset estimate ¢ such that the values of the equation (12)
phase offset estimate ¢ exactly match the phase estimates ¢ predicted by the
Kronauer-Jewett nadir-reference method at the reference points corresponding to the
nadir x,,,, of the state variable x. In the description that follows, unless otherwise
stated, it is assumed that the calibration technique of matching the mean of the
equation (12) phase estimate ¢ is used to obtain the baseline offset term 1,

[0052] Using the 24 hour mean of the equation (12) phase offset ¢, a specific
calibration value for the baseline offset term #, was determined from a simulation of
modified Kronauer-Jewett model 112A (Figure 4) under conditions which are
considered to involve a standard sleep schedule and light exposure scenario. More
particularly, the simulation involved repeated days comprising an eight hour sleep
episode (at a light level of 0 Lux) followed by a sixteen hour awake episode (at a
constant light level of 150 Lux) until modified Kronauer-Jewett model 112A achieved
steady state conditions. In accordance with this simulation, the value of 7, which
causes the mean of the equation (12) phase offset estimate ¢ to match the phase offset
estimates ¢ predicted using the Kronauer-Jewett nadir-reference method was
determined to be 7,=17.1 hours. Accordingly, the resulting calibrated version of

equation (12) may be rewritten as:

=r+171 ﬁ@ (13)
=1+ Y

where 0 is given by equation (8). Phase offset estimates ¢ based on equation (12)
and/or equation (13) may be referred to herein as phase offset estimates ¢ obtained
using continuous phase estimation in contrast to phase offset estimates ¢ obtained
using the Kronauer-Jewett nadir-reference method. In addition, unless specifically
stated otherwise, references in the remainder of this description to phase should be
understood to refer to phase offset ¢ —i.e. the word offset may be dropped without
loss of generality.

[0053] Figures 7A and 7B respectively depict plots showing how the continuous
phase estimates compare to the Kronauer-Jewett nadir-reference phase estimates for
the case where the phase is relatively constant (i.e. where a subject has entrained to
particular pattern of sleep and light exposure) and for the case of a phase shift. In each
of Figures 7A and 7B: the upper plots represent the state variable x and the circled
points in the upper plots represent the nadirs x,,,, of the state variable x; the middle
plots represent the continuous phase estimates ¢ and the circled points in the middle
plots represent the phase estimates ¢ obtained using Kronauer-Jewett nadir-reference

method at the nadirs x,,,, of the state variable x; and the lower plots represent a
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difference A between the continuous phase estimates ¢ and the circled points in the
middle plots represent the phase estimates ¢ obtained using Kronauer-Jewett nadir-
reference method.

[0054] Figure 7A shows that A fluctuates within each 24 hour period (due to the fact
that the Van der Pol equations (1) and (2) are not perfectly sinusoidal) but that A is
less than about +£0.5 hours for the case of entrained phase offset. The amplitude of this
fluctuation is considered sufficiently small to obtain reasonably accurate phase
estimates as explained in more detail below. In the plots of Figure 7B, the individual's
sleep pattern is delayed by six hours from the entrained rhythm. This results in a six
hour shift in the circadian phase ¢ as shown in the middle Figure 7B plot. The lower
Figure 7B plot shows that A exhibits a small positive bias during phase transition, but
that this bias disappears once the phase ¢ entrains to its new value. This bias is a
transient effect which does not significantly impact phase estimates.

[0055] Referring back to modified Kronauer-Jewett model 112A of Figure 4, it may
be observed that modified Kronauer-Jewett model 112A incorporates a transform
component T which transforms the Kronauer-Jewett state variables (x, x_) into
transformed state variables (4, ¢). In the above-described embodiment, transform
component 7'may be implemented using equation (9) and one of equations (12) or
(13). Modified Kronauer-Jewett model 112A also comprises an inverse transform
component 7*’ which transforms initial conditions (4,,, ¢,,,) into Kronauer-Jewett
initial conditions (x,,, X.,,,)- In the above-described embodiment, inverse transform

component 7/ may be implemented using equations (9) and (10).

State-space Model

[0056] It is convenient for the purposes of the Bayesian estimation methods described
below to re-cast the modified Kronauer-Jewett model 112A into a state-space form.
State-space models are defined by a state vector x that contains the time varying
properties of the system, a state transition function (also referred to as a state
propagation function) that describes how the state vector evolves in time, and an
output function that describes how the states can be observed. We may define a state
vector x which includes the three state variables of the modified Kronauer-Jewett
model 112A:

A
x=|¢ (14)

n
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where A4 is circadian amplitude, ¢ is circadian phase, and 7 is the light filter state. For
the case of a discrete-time system, the state vector x and its states evolve at
incremental time intervals (also referred to as time steps) with sampling period 7. This

discrete-time formulation may be described according to:
x, =x(r) wheret=1,+kT, keN - (15)

[0057] In addition to the state vector X, state-space models comprise a state transition
function and an output function. For discrete-time systems, the general state transition

function may be written:
Xpa1 :f(xka“kavk) (16)

where x, is the current state vector at time step £, u, is a measured input, v, is an
unmeasured input, and x,, is the predicted state vector at the future time step k+1.
The unmeasured input v, is often referred to as process noise and may be modeled as a
random variable. To cast the modified Kronauer-Jewett model 112A in the form of
equation (16), it may be observed from Figure 4 that model 112A describes a state
transition function x,,, = f(x,, 1,) where 7 is the light input and x, is given by equation
(14). The Figure 4 model 112A does not contain a process noise term v,, as a
state-space formulation of modified Kronauer-Jewett model 112A has not previously
been developed. Particular embodiments of the invention involve the assumption that
the process noise v, is an additive Gaussian noise. In other embodiments, other forms
of PDFs (e.g. uniform probability PDFs) may be used to model the process noise v,.
With the assumption that the process noise v, is an additive Gaussian noise, the state-
space transition equation for the modified Kronauer-Jewett model 112A may be

expressed in the following form:
Xpm1 = f(xk 9Ik)+ Vi

A h (xk,Ik) vl

¢ = fz(xk,lk) +|v2

P f3(xk,lk) v3

17)

[0058] The general form of the discrete-time state-space output function is:
z, =h,(x,.w,) (18)

where w is a random variable referred to as the measurement noise. An output
function for the modified Kronauer-Jewett model 112A may be chosen based on the

states to which measurement information could potentially be correlated. Of the three
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states, 4, ¢, and n, the phase ¢ may be observed using physiological markers as
described above. Accordingly, in particular embodiments, the phase ¢ may be chosen
as the single output of interest. In such embodiments, the phase ¢ may be extracted
using the following linear output function:
z=h, (xk ’wk)
=Hx, +w,

A
=[010] ¢ |+w,

n

= [¢]+ W,

(19)

In particular embodiments, the measurement noise w, may be selected to be an
independent random Gaussian variable with variance R. In other embodiments, the
measurement noise w, may be assumed to have other PDFs. It will be appreciated that
the output function (19) could be modified if other quantities (e.g. circadian amplitude

A) were of interest.

Incorporating Inputs with Probability Distributions

[0059] Particular embodiments of the invention provide the ability to measure one or
more physiological systems of the subject to provide physiological inputs 104 (Figure
3). Such physiological inputs 104 may include CBT, but may additionally or
alternatively include other physiological inputs, such as, by way of non-limiting
example: hormonal melatonin concentration, hormonal cortisol concentration, rate of
cell proliferation, the cardiac regulatory system, chemoreceptive respiratory feedback
system and cognitive performance (alertness). Physiological phase estimator 114
(Figure 3) may receive physiological inputs 104 and may use such inputs 104 to
provide physiological markers of the circadian phase ¢ as described in more detail
below. It is desirable to integrate these physiological inputs 104 into to a common
circadian phase domain. In the illustrated embodiment of phase estimating system 100
(Figure 3), physiological phase estimator 14 uses measured physiological inputs 104
to generate corresponding statistical PDFs relating to the phase marker(s) in the

circadian phase domain.
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[0060] Figure 8 is a schematic depiction of the operation of physiological phase
estimator 114 according to a particular embodiment of the invention. In the illustrated
embodiment of Figure 8, several sensors 1204, ... 120n (collectively, sensors 120) are
configured to sense physiological phenomena of subject 122. Such physiological
phenomena may include, by way of non-limiting example, CBT, hormonal melatonin
concentration, hormonal cortisol concentration, rate of cell proliferation, the cardiac
regulatory system, chemoreceptive respiratory feedback system and cognitive
performance (alertness). In the illustrated embodiment, sensor 120A senses the CBT
of subject 122 and at least one other sensor 120 is provided to detect another
physiological phenomena of subject 122. The outputs of sensors 120 are the
physiological inputs 104 (see also Figure 3). In the illustrated embodiment of Figure
8, sensor 120A outputs a physiological input 104 A representative of the CBT of
subject 122 and sensor 120» outputs a physiological input 1047 representative of
another physiological phenomena of subject 122.

[0061] Physiological inputs 104 are provided to physiological phase estimator 114.
For each of physiological inputs 104, physiological phase estimator 114 comprises a
component phase estimator 124A, ... 124n (collectively, component phase estimators
124). Component phase estimators 124 comprise marker components 126A, ... 126n
(collectively, marker components 126) and marker-to-phase converter components
128A, ...128n (collectively, marker-to-phase converter components 128). Marker
components 126 perform the function of extracting features from their physiological
inputs 104. The features extracted by marker components 126 comprise physiological
markers indicative of the circadian phase of subject 122. While the features extracted
by marker components 126 may generally comprise any discernable features of inputs
104, non-limiting examples of features which may be extracted by marker
components comprise: local minima or maxima of inputs 104, the presence of inputs
104 above and/or below a threshold, frequencies of inputs 104, rates of change (i.e.
time derivatives) of inputs 104, time integrals of inputs 104 and/or any similar
features of the rate of change or time integral of inputs 104. In particular
embodiments, marker components 126 may also extract the time associated with any
extracted features.

[0062] The features extracted by marker components 126 are preferably associated
with PDFs representing the uncertainty present in the accuracy of the feature
extraction. In particular embodiments, such physiological feature PDFs may comprise
Gaussian PDFs characterized by a mean value and a standard deviation. In other

embodiments, the physiological feature PDFs may comprise other distributions
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characterized by other parameters. In the case of CBT, the feature extracted by marker
component 126A is the CBT minimum (CBT,,,) and marker component 126A may
also extract the corresponding time associated with CBT, . In the above discussion
(see Figure 1), the time associated with CBT,,,, is referred to as ¢,,,{CBT}. A PDF
{CBT} at which CBT

m

associated with the time ¢ :» OCCurs may be obtained in

accordance with the procedure outlined by E. Brown and C. Czeisler, The statistical
analysis of circadian phase and amplitude in constant-routine core-temperature data,
Journal of Biological Rhythms, 7:3, 177-202; 1992.

[0063] Marker components 126 may also determine physiological feature PDFs from
physiological inputs 104# using Fourier series curve-fitting techniques. A suitable
second or third order Fourier series curve fitting technique is shown in Figure 25 in
relation to melatonin and cortisol samples taken from an individual during a
laboratory study. The phase marker for the melatonin and cortisol examples can be
extracted by identifying the time at which the maxima of the fitted curve occurs. A
PDF time at which the maxima occurs may be generated and used as the phase PDF.
Algorthims such as the procedure outlined by Wang (Y. Wang and M. Brown, A
flexible model for human circadian rhythms, Biometrics 52, 588-596; 1996) may be
applied.

[0064] In the illustrated embodiment, marker-to-phase converter components 128
perform the function of converting the features extracted by marker components 126
and/or their corresponding times into information relating to the circadian phase ¢ of
subject 122. For example, in the case of CBT, it has been experimentally determined
(as discussed above) that the time ¢,,, {CBT} associated with the feature CBT

m min

can be
related to the calibrated circadian phase ¢ (equation (13)) of subject 122 via a 0.8
hour time/phase shift (note that when phase is described as phase offset ¢, its units are
units of time and therefore a time shift and a phase shift are equivalent).

[0065] While particular embodiments of marker-to-phase converter components 128
may implement time/phase shifting functions (as is the case for CBT converter
component 128A), this is not necessary. In other embodiments, marker-to-phase
converter components 128 may involve other conversion functions. For example, in
the case where a feature extracted by a marker component 126 is not a time/phase
quantity, the corresponding marker-to-phase converter component 128 may use the
extracted feature as the basis of a function or a transformation or the like to convert
the extracted feature into time/phase information relating to the circadian phase ¢.
[0066] The information relating to circadian phase ¢ that is output by marker-to-

phase converter components 128 does not necessarily suggest internal physical
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mechanisms in subject 122, but rather this information provides descriptors of
observable physiological behavior. The information relating to circadian phase ¢ that
is output by marker-to-phase converter components 128 sets the foundation for
implementing a recursive state estimation algorithm, which may simultaneously make

use of one or more physiological inputs 104 and central state transition updates.

Particle Filter Phase Estimator

[0067] The above-described modeling framework describes the dynamics of circadian
physiology in a state-space model and optionally integrates multiple physiological
inputs 104. In particular embodiments, phase estimator 100 (Figure 3) uses a particle
filter to estimate the circadian state within this modeling framework. In general, it is
desired to provide a phase estimation solution that can incorporate statistical process
noise (as opposed to an algebraic solution), incremental or on-line processing of
information at every time step (as opposed to batch data analysis) and statistical
distributions of measurements and parameter estimates (e.g. physiological inputs 104
and the information about circadian phase ¢ extracted from physiological inputs by
phase estimator 114). Particular embodiments of phase estimator 100 (Figure 3)
involve the use of recursive filtering methods which in turn make use of Bayesian
statistics. Such techniques may be referred to Bayesian filtering or Bayesian
estimation techniques. A feature of Bayesian estimation is the integration of
prediction updates (which may be implemented by prediction updator 116 (Figure 3))
and measurement updates (which may be implemented by measurement updator 118
(Figure 1)) using inferential statistics. In particular embodiments, phase estimator 100
(Figure 3) uses a particle filter as a method for resolving the Bayesian estimation

problem.

Overview of Recursive Bayesian Estimation

[0068] Bayesian statistics provides an approach to on-line estimation (i.e. estimation
at each time step) in which the probability, or belief, of a system's property is updated
based on an initial belief, new measurements, and predictions of the system's internal
dynamics. A statistical probability is associated with each operation which allows for
natural expression of the uncertainty that is inherent in most real systems and allows
for analysis of noisy or otherwise imperfect measurements. Applied to discrete-time
state-space models, the values of a state vector are estimated starting from a prior
probability distribution and sequentially updated with predictions from a state
transition equation and adjustments from a measurement equation.

[0069] Consider a discrete-time state-space model with a state vector x that is

evaluated at times 1, = iT, where 7T is the sampling period. Denoting measurements at
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time ¢, as z;, the set of all measurements up to time £ may be defined as Z, 2z,

=1, ..., k. The state-space model consists of a state transition equation:
x, =f (Xk—l’uk—l ’Vk—l) (20)

which describes the evolution of states from a prior state x,, to a future state x, with

measured inputs u,_, and noise v,_; and a measurement or output equation:
z, =h,(x,.w,) @1

which describes the relationship between an observed measurement z, and the
system's internal state x, and the measurement noise w,.

[0070] To apply Bayesian statistical logic, both the state transition and measurement
equations (20) and (21) are extended to include probability distributions. Assuming a
known probability distribution of the states at time ¢, is p(x, ,|Z,_,), then the
probability distribution of states at a future time step p(x,|Z,_,) is defined by the

Chapman—Kolmogorov equation (also referred to as the prediction update equation):
p(XkIZk-l)z Eop(xk|xk—l )p(xkf] le—l }ixk—l (22)

The term p(x,|x, ) expresses the probability distribution of the state vector x at time 7,
given a state vector x, , at time #, , and is related to the state transition equation (20).
Prediction update equation (22), which may be implemented by prediction updator
116 (Figure 1), therefore allows the belief in the system state vector to evolve in time
based on predictions from state transition equation (20). A probabilistic update of

states based on measurements is provided by Bayes theorem which states that:
) P(Zk|xk ) p(xk ’Zk—l)

Z, )= 23
plx,|z, ez, ) (23)

where p(x,|Z, ) represents the prior knowledge of the states at time #, given all
measurements up to time 7, ;; p(z,lx,) is the likelihood from the current observed data
point at time #,; and p(x,|Z,) is the posterior probability of the state variables. The
denominator p(z,/Z, ,) is a normalization constant. Consequently, equation (23) may

be expressed as:
pl,j2,)= Colefx, Jplx,[2,.,) (24)

where C is a normalization constant. Equation (24) may be referred to as the
measurement update equation. The measurement update equation (24), which may be
implemented by measurement updator 118 (Figure 1), allows an update of the
system's state vector based on new measurements.

[0071] Figure 9 schematically depicts a method 200 of Bayesian filtering according to

a particular embodiment of the invention. Given an initialization of the prior
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probability distributions of the states p(x,) obtained in block 202, prediction update
equation (22) may be applied in block 204 to obtain a belief (probability distribution)
P(X,|Z, ;) in the system state vector. Method 200 then proceeds to block 206 which
involves an inquiry into whether there measurement information is available in the
current time step. If no measurement information is available (block 206 NO output),
then Bayesian filtering method 200 returns to prediction update block 202 for another
iteration. If measurement information is available (block 206 YES output), then
method 200 proceeds to block 208 where measurement update equation (24) is used to
incorporate the measurement information z, and to generate an updated belief p(x,|Z,)
in the system state vector. Method 200 then loops back to prediction update block
204. While method 200 of Figure 9 represents a general sequence of operations for
Bayesian filtering, specific implementation of the block 204 prediction update and the
block 208 measurement update vary widely however based on the characteristics of

the system of interest and on design criteria.

Solving the Circadian State-Spaced Bayesian Filtering Problem
[0072] Particular embodiments of the invention provide methods for solving Bayesian
estimation problems applied to the modified Kronauer-Jewett model 112A to generate
estimated probabilities/beliefs of the circadian phase ¢. Figure 10 schematically
depicts an estimation system 100 which integrates the modified Kronauer-Jewett
model 112A, multiple optional physiological inputs 104, initial conditions 106,
physiological phase estimator 114, prediction updator component 116 and
measurement updator component 118. In the schematic illustration of Figure 10,
modified Kronauer-Jewett model 112A may be incorporated into state transition
component 130 (f(x, 7)) of prediction updator component 116 and possibly into output
component 132 (h(x)) of measurement updator 118.
[0073] Estimation system 100 may comprise methods for implementing prediction
updator 116 and measurement updator 118. Such methods may be based on the
properties of the modified Kronauer-Jewett model 112A (e.g. the degree and types of
nonlinearities) and the properties of the measurement noise w, and/or process noise
Vi For clarity, measurement noise w, and/or process noise v, are not explicitly shown
in the schematic illustration of Figure 10. Observation of the modified Kronauer-
Jewett model 112A highlights three features which may be used to implement
methods for implementing prediction updator 116 and measurement updator 118:

. the phase state ¢ has a nonlinear parameter space;

. the state transition equation (20) is nonlinear in a way that may lead to

bimodal probability densities; and
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. the unknown variability of light input 7 should be treated
parametrically rather than as an additive, independent Gaussian random
variable.

[0074] A typical assumption for many systems is that the state vector exists in
independent linear parameter spaces of continuous real numbers such that xeR". This
assumption is not the case for the state vector x of the modified Kronauer-Jewett
model 112A (equation (14)). The amplitude state variable 4 and light response state
variable n have typical parameter spaces; however, the phase offset state variable ¢ is
an exception. By its definition, ¢ indicates a phase point within a twenty-four hour
day, which like the hour hand of a clock is constrained to the range 0 < ¢ <24 and is
in a circular parameter space where the time of 0h00 is equivalent to 24h00. The
parameter space of the phase state variable ¢ can be thus defined using the modulo
operator as ¢ € (R mod 24 ).

[0075] A second observable feature of modified Kronauer-Jewett model 112A is that
the state transition equations (20) are nonlinear. The Van de Pol oscillator equations
(1), (2) contain high order terms of x and x, and the light input equations (3), (5)
contain exponential and multiplicative terms. While these equations may be linearized
through approximations (C. Mott, M. Huzmezan, D. Mollicone, and M. van Wollen,
Modifying the human circadian pacemaker using model-based predictive control, in
Proceedings of the 2003 American Control Conference, June 2003, 453-458), such
linearizing approximations sacrifice accuracy. One nonlinear property of the circadian
system that has been qualitatively established in the prior art is that the timing of light
applied around the minima of the CBT (CB7,,,), or equivalently around the calibrated
phase ¢=4:00h, may lead to a divergence of phase shift directions. More particularly,
if light is introduced slightly before CBT

min®

it will cause a delay shift, and if light is
introduced slightly after CBT,,,,, then it will cause an advance shift. It may be inferred
that this divergence behavior could lead to bi-modal probability distributions.

[0076] A third observable nonlinearity associated with the modified Kronauer-Jewett
model 112A is that variability in light input / may not be accurately modeled by a
simple additive Gaussian random variable in the form of = I + v. Two factors
relating to the light exposure experienced by a subject are the timing of light exposure
changes relative to sleep and wake transitions and light levels which may be related to
subject location (e.g. sunlight, dim room, bright room). In particular embodiments, an
assumption may be made that light input may be specified as a function of a light
timing parameter and light level parameter. It then follows that uncertainty should be
introduced as random variability to the light timing and light level parameter values.
While not wishing to be bound by any theory or method of operation, it is believed
that this assumption (i.e. that light exposure should be characterized by a light timing
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parameter and a light level parameter) would be more representative of typical
scenarios than using a simple additive noise, as light timing and light level parameters
would more closely model human behavioral characteristics. According to this
assumption, estimation system 100 (Figure 10) may be provided with the general
capacity to model nonlinear light input variability.

[0077] Implementing a recursive Bayesian filter for a given system requires
developing solutions to prediction update equation (22) and measurement update
equation (24). For linear systems with Gaussian noise, analytical solutions may exist
resulting in the classical Kalman filter. However, approximation methods and
approximate solutions are usually used in cases with nonlinearities. In particular
embodiments, particle-filter-based methods are used to implement prediction updator
116 and measurement updator 118. In general, particle filters represent probability
distributions using a number of point masses (also referred to as particles). A particle
representation is an approximation wherein the approximation accuracy tends to

increase with the number of particles.

Particle Filter Design

[0078] Particular embodiments of the invention involve particle filtering methods
which may be referred to as Sequential Importance Resampling with a Markov chain
Monte Carlo move step. |

[0079] Particle filters according to particular embodiments of the invention may
comprise a sequence of operations that propagate a set of particles through a recursive
Bayesian filter operation of the form of Bayesian estimation method 200 (Figure 9).
Particle filters according to particular embodiments of the invention may comprise
one or more additional steps (i.e. in addition to those in the general Bayesian
estimation method 200) to improve stability and/or optimize performance of the
particle filter. These additional steps may be performed within the functional blocks
of Bayesian estimation method 200 (e.g. as a part of prediction update block 204
and/or as part of measurement update block 208) or in additional functional blocks
that may be added to Bayesian estimation method 200. Such additional steps may be
configured to avoid altering the probability distributions promulgated by prediction
update block 204 and measurement update block 208, but may alter various
mathematical properties to improve stability and/or optimize performance of the
particle filter.

[0080] Figure 11 schematically depicts a particle filtering method 220 according to a
particular embodiment of the invention. As discussed above, particle filtering method
220 follows the general procedure of Bayesian estimation method 200 (Figure 9). The

Figure 11 illustration shows prediction update block 204 and measurement update
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block 208 in more particular detail and also shows a schematic illustration of a
number of particles as they propagate through one iteration of method 220. The Figure
11 illustration begins with a particle distribution A which represents the state vector's
prior PDF at time step k-1 (i.e. p(x';|Z,,;)). Referring to Figure 9, the particle
distribution A may arise from any of the three paths leading to prediction update block
204. In particle filtering method 220 illustrated in Figure 11, prediction update block
204 serves to propagate the particles of particle distribution A based on the state
transition model of modified Kronauer-Jewett model 112A. The output of prediction
update block 204 is the particle distribution B which represents the PDF of the state
vector at the time step & (i.e. p(x',JZ,_))). Referring to Bayesian estimation method 200
(Figure 9), particle distribution B represents the output of prediction update block
204. Figure 12A shows a pseudocode procedure for implementing prediction update
block 204 of method 220 according to a particular embodiment of the invention.
[0081] Particle distribution B is then received at measurement update block 208. In
the illustrated particle filtering method 220 of Figure 11, measurement update block
208 comprises an IMPORTANCE WEIGHT block 222. IMPORTANCE WEIGHT
block 222 assigns a weight to each particle in particle distribution B based on the
likelihood function from the current observed data point at time ¢, (i.e. p(z/x',)). In the
illustration of Figure 11, the likelihood function p(z,|x',) is schematically depicted as a
horizontally extending curve. In applying weights to particles based on likelihood
function p(z/x',), IMPORTANCE WEIGHT block 222 performs the function of
measurement update equation (24) and measurement update block 208 of Bayesian
estimation method 200 (Figure 9) and the output of IMPORTANCE WEIGHT block
222 is a distribution C of weighted particles which represents the posterior probability
density p(x',|Z,). In the schematic illustration of Figure 11, the sizes of the colored
particles in particle distribution C are representative of their weights. Figure 12B
shows a pseudocode procedure for implementing MEASUREMENT WEIGHT block
222 of method 220 according to a particular embodiment of the invention.

[0082] Particle distribution C is then provided to RESAMPLE block 224.
RESAMPLE block 224 performs a thresholding process to discard particles in areas
of low probability (i.e. particles with relatively low weights in distribution C).
RESAMPLE block 224 also multiplies the particles in area of high probability (i.e.
particles with relatively high weights in distribution C). The result of RESAMPLE
block 224 is particle distribution D shown in Figure 11. Preferably, RESAMPLE
block 224 does not significantly impact the PDF of the particles — i.e. the PDF of
particle distribution D is at least approximately equivalent to the PDF of particle
distribution C. That is, particle distribution D still represents the posterior probability

density p(x'|Z,). Figure 12C shows a pseudocode procedure for implementing
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RESAMPLE block 224 of method 220 according to a particular embodiment of the
invention.

[0083] While particle distribution D now represents the desired posterior probability
density p(x'JZ,), a practical issue is that RESAMPLING block 224 reduces the
diversity of the particle locations. If left in the form of particle distribution D, the
particles would eventually (i.e. after a sufficient number of iterations) collapse to a
single point. Accordingly, particle filtering method 220 comprises a MOVE block 226
which receives particle distribution D and redistributes the particles to output particle
distribution E. Preferably, MOVE block 226 maintains (at least approximately) the
statistical distribution characteristics of particle distribution D. In particular
embodiments, MOVE block 226 comprises a Markov chain Monte Carlo (MCMC)
procedure, which may be implemented using a Metropolis-Hastings technique. Figure
12D shows a pseudocode procedure for implementing MOVE block 226 of method
220 according to a particular embodiment of the invention.

[0084] After MOVE block 226, the particles in distribution E are fed back to
prediction update block 204 for another iteration.

Probability Density Reconstruction

[0085] While particle distributions represent probability distributions sufficiently well
for use in particle filtering Bayesian estimation methods, particle distributions may be
difficult to use for drawing conclusions about belief in the state variables (e.g.
circadian phase ¢) that they represent. Continuous PDFs may be better suited for
extracting and communicating information. The invention may optionally comprise
methods for reconstructing continuous PDFs from particle distributions.

[0086] In one particular embodiment of the invention, a kernel density based method
is used to reconstruct continuous PDFs from particle distributions. The kernel density
method involves replacing each particle with a continuous "kernel" function. Given a
set of particles:

N
> 8(x,) (25)
i=1

and a kernel function w(x), an approximation of the continuous PDF is given by:

plx)= iw(x,-) 26)

i=l

The kernel function w(x) may be selected to be a Gaussian PDF (although other PDFs

kernel functions may be used). An example of a Gaussian kernel replacement is
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shown in Figures 13A, 13B and 13C, where Figure 13A shows the individual particles
(6(x,), Figure 13B shows the individual kernel functions (w(x,)) used to replace the
particles (6(x,)) and Figure 13C shows the superposition of the kernel functions (w(x,))
according to equation (26).

[0087] Achieving accurate PDF reconstructions using kernel based techniques
involves selecting two interrelated parameters: the shape of the kernel function; and
the number of particles. The primary shape parameter of a kernel is its bandwidth
(also referred to as its width). For Gaussian kernel functions, the standard deviation is
considered the corresponding bandwidth parameter. Based on observations from
known test case(s), it is known that the accuracy of a kernel based PDF reconstruction
technique always increases with the number of particles. Accordingly, more particles
are desirable subject to limits on computational resources. However, it may be shown
that PDF reconstruction can diverge if the bandwith is selected to be too high or too
low.

[0088] To address this challenge a class of optimization solutions referred to as
Kernel Density Estimators (KDEs) have been developed for selecting kernel
bandwidths based on minimization of the mean integrated squared error (MISE) for a
given set of particles. In particular embodiments, a KDE method based on a dual-tree
algorithm (A. Gray and Moore, “Very fast multivariate kernel density estimation using
via computational geometry,” in Proceedings of Joint Stat. Meeting, 2003.) and
selected from a Matlab KDE toolbox (A. Ihler, “Kemel density estimation toolbox for
MATLAB,” http://www.ics.uci.edu/ ihler/code/kde.shtml, 2003) may be used here to
implement KDE and to select the standard deviation of the Gaussian kernel functions.
This KDE-based bandwidth selection technique is well described in the art and is not

reproduced here.

Simulation Examples

[0089] The particle filter approach to circadian phase estimation (e.g. methods 200
and 220) in conjunction with the modified Kronauer-Jewett model 112A provide the
capability for real-time tracking of a subject's circadian phase ¢ with Bayesian
probability distributions. To explore the theoretical capabilities and limitations of this
approach and to determine appropriate tuning parameters for the particle filter, the
inventors have performed simulations for a series of scenarios with different particle

filter parameter choices, light input assumptions, and noise models.

Simulation Scenario 1
[0090] A preliminary simulation scenario was designed to explore the tuning

parameter selection of the number of particles and the level of process noise. A typical
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light input scenario was used to test the performance of the particle filter with various
combinations of the tuning parameters. As a typical scenario, the light input was set to
a pattern representative of an individual consistently following a standard sleep
schedule for seven days. Lights were turned off at midnight for an eight hour sleep
episode and then turned on at 8:00 AM This simulation scenario also assumes a
consistent light intensity of 600 Lux throughout the day.

[0091] Particle filter based Bayesian estimation method 200, 220 was tested by using
a uniformly distributed initial particle distribution and observing the convergence after
multiple simulation days. This test implies a case in which no a priori information is
known about the individual's circadian phase ¢ and it is desired to estimate a PDF
which indicates a degree of belief in the location of the circadian phase ¢ after a
period of time. The time period of the simulation was selected to be one week. The
expected result is that an entrainment effect will occur and the PDF representation of
the phase ¢ will converge with a mean of ¢=4.

[0092] This simulation was run seven times with different numbers of particles and,
in a first case, the simulation was run without process noise. The settings for
simulation scenario 1 are shown in Table 3.

Table 3. Simulation 1 with no process noise Parameter Values

Parameter Value
No. Particles 12 24 48 72 240 480 960
Initial distribution Uniform over [0,24]

Process Noise, Q, (negligible)

Light levels
Dark 0 Lux
Bright 600 Lux
Measurements (none)

A second set of simulations was run, repeating the choice of particle numbers from
the first case, but this time with the phase state process noise set to a non-negligible
value of Q=3x10". Since there was no quantitative data from which a process noise
level can be selected, this value was chosen based on qualitative physical assumptions
about variability inherent in the circadian pacemaker system. The settings for the

second set of simulations are shown in Table 4.
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Table 4. Simulation 1 with process noise Parameter Values

Parameter Value
No. Particles 12 24 48 72 240 480 960
Initial distribution Uniform over [0,24]
Process Noise, Q4 3x10*
Light levels
Dark 0 Lux
Bright 600 Lux
Measurements (none)

[0093] These two sets of simulations yield results from 14 different trials. Figure 14
illustrates the state variables 4, ¢, n for a single simulation with 24 particles and no
process noise. With only twenty-four particles and negligible process noise, the
second plot of Figure 14 illustrates the precise path of each phase particle during the
simulation. It may be observed from the second Figure 14 plot, that the phase of the
particles becomes further entrained to the timing of the sleep/wake schedule after
each light exposure period and have a mean of approximately 4:00 AM as expected.
[0094] The scenario 1 simulation results were used to select a number of particles by
examining the phase PDF of each simulation after the seven day period. The selection
of an appropriate number of particles may be based on the number of particles above
which increasing numbers of particles still converges to substantially the same
distribution. Based on the scenario 1 simulations with process noise, it was observed
that the phase PDFs using 240, 480 and 960 particles were substantially similar to one
another. Accordingly, for a process noise of Q=3x10%, it is desirable to select a
number of particles N>=240 to achieve convergence to an accurate phase PDF. In the
other simulations described herein, a default value of N=240 will was used to
minimize computational complexity. The optimal number of particles may vary for
different simulation scenarios (e.g. different levels of process noise). Choosing a high
number of particles may improve accuracy of the results with no penalty except for

computational resources.

Simulation Scenario 2

[0095] This simulation scenario further examines the predictions of entrainment to a
fixed schedule and tests different noise models. This scenario simulated the case of an
individual following a consistently timed eight hour sleep regimen (between 12:00AM
and 8:00AM) for a duration of three weeks. The waking light levels were chosen to be

typical of indoor bright light of 380 Lux. In a case in which no a priori information is
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known about the individual's circadian phase ¢, the final phase PDF indicates a
degree of belief in the location of the circadian phase ¢ after the three weeks on this
schedule. This analysis has a significant connection to a clinical scenario since a
three-week monitoring period is typically used to ensure that subjects have a well
entrained circadian phase prior to entering a laboratory study. The distribution of the
final phase PDF will give an indication as to the strength of that assumption.

[0096] To illustrate the effects of noise parameters, three different simulations were
conducted using the same baseline schedule. In the first case, no noise sources were
included, in the second case, process noise was added to the phase state and in the
third case, a further random variability was introduced to the light input. The light
variability was introduced as a first Gaussian random variation in the timing of each
light to dark transition with variance Q,, and a second Gaussian random variation in
the light level with variance Q,. The parameters for each of the three simulations are
set out in Table 5.

Table 5. Simulation 2 Parameter Values

Parameter Value
Case 2A

No. Particles 240 240 240
Initial distribution Uniform over [0,24]
Process Noise, Q, 1x10° 3x10™ 3x10*
Light levels

Dark 0 Lux

Bright 380 Lux
Light Noise

Q, 0 0 2

Q. 0 0 50
Measurements (none)

[0097] Figure 15 shows the phase PDF predicted over the course of the 21 day period
for the simulation with no noise. At day 21, the maximum likelihood of the phase ¢
occurs around 4:00AM, which corresponds to the expected result for an individual
synchronized to a regular sleep-wake cycle. When process noise is introduced in the
second simulation of scenario 2, there is a broadening of the probability distribution
which can be seen in Figure 16. Figure 17 shows the phase PDF for the third
simulation of scenario 2, with additional variability in the light input. This third case
shows a further widening of the phase PDF which represents additional uncertainty in

the location of the circadian phase.
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[0098] Another interesting observation can be made by comparing Figures 15, 16 and
17. With the introduction of process noise (i.e. Figure 16), the peak probability was
reduced, but the mean was substantially unchanged. However, the introduction of
light variability (Figure 17) had the interesting effect of skewing the mean of the
phase PDF forward.

Simulation Scenario 3

[0099] A third simulation scenario was conducted to explore phase shifting properties
of the circadian pacemaker model in response to a scenario where an individual makes
an abrupt eight hour advance in their sleep/wake schedule, as can happen with
transmeridian airplane travel for example. As shown experimentally (D. Boivin and F.
James, Phase-dependent effect of room light exposure in a 5-h advance of the
sleep-wake cycle: Implications for jet lag, Journal of Biological Rhythms, vol. 17:3,
266-267, June 2002.), and predicted by the Kronauer-Jewett model, the introduction
of strong light pulses at appropriate circadian phases will increase the rate of
adjustment to a shifted schedule. The greatest effect is achieved by introducing light
near the nadir of the circadian phase (i.e. around ¢=4:00h) when the light response is
most sensitive, however the phase nadir is also the critical point at which phase shifts
may occur in opposite directions on either side of the phase nadir. Therefore, by
introducing light near the phase nadir there is a risk of causing a shift in the opposite
direction to the one desired. With the Bayesian estimation particle filter methods 200,
220 we can test the probabilistic outcomes of phase shift direction. The light and
sleep/wake patterns for the scenario 3 simulations are shown in Figure 18. A bright
light pulse was chosen with a duration of five hours, starting at time 3:00 as shown in
Figure 18. The simulation parameters for the scenario 3 simulation (shown in Table 6)
are identical to those of the second case of simulation scenario 2, except that the
initial condition is set to a known prior distribution that represents an individual well

entrained to the initial schedule.
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Table 6. Simulation 3 Parameter Values

Parameter Value
No. Particles 240
Initial distribution Gaussian N(4.38, 1.3)
Process Noise, Q4 3x10*
Light levels

Dark 0 Lux

Typical 380 Lux

Bright 10000 Lux
Measurements : (none)

[0100] Figure 19 shows the phase PDFs for simulation scenario 3. It may be observed
from Figure 19 that there is a split in the probability distribution after the first
introduction of the light pulse. The optimal adjustment to the new schedule occurs on
the phase trajectory which decreases to zero and then “wraps around” the 0h/24h
boundary to stabilize at 22h by day twelve (ten days after the shift). The other phase
trajectory, in which the phase increases from 4h toward 22h doesn't entrain to the new
schedule until about day 23 (twenty-one days after the shift), which is twice as long.
While the divergent shift behavior has been captured in the prior art Kronauer-Jewett
model 112, the capability to analyze probabilistic scenarios in this manner has not

been possible previously.

Simulation Scenario 4

[0101] Simulation scenario 4 incorporates physiological measurement feedback. The
sleep/wake and light pattern used in simulation scenario 4 were the same as those
applied in simulation scenario 3 (Figure 18) where the simulation predicted a bimodal
phase PDF resulting from the introduction of bright light stimulus around the
circadian phase nadir (i.e. around ¢=4:00h). It will be appreciated that the bimodal
phase PDF of simulation scenario 3 could lead to difficulty making phase prediction
decisions, because the two phase PDF trajectories lead to two possible scenarios
which are diametrically opposed in their physiological circadian effects. It was
expected that incorporating physiological measurements into the simulation in
simulation scenario 4 would enhance the phase prediction ability of the system, as a
small set of measurements could resolve the ambiguity between two possible
trajectories. Simulation scenario 4 involved selecting the phase trajectory in which
phase of the individual advances (i.e. on the lower “wrap-around” trajectory of Figure

19). This selection was accomplished by adding two phase measurements at day 6 and
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day 8 and using the assumption that the phase measurements have accurate means but
relatively low measurement precision 6°=3. The parameters of simulation scenario 4
are shown in Table 7.

Table 7. Simulation 4 Parameter Values

Parameter Value
No. Particles 240
Initial distribution Gaussian N(4.38, 1.3)
Process Noise, Q, 3x10%
Light levels

Dark 0 Lux

Typical 380 Lux

Bright 10000 Lux
Measurements 0(6d) = 1+3

0(8d) = 22+3

[0102] The phase PDF results of simulation scenario 4 are shown in Figure 20.
Comparing the phase PDF trajectories of Figure 20 (simulation scenario 4) to those of
Figure 19 (simulation scenario 3), it is apparent that the measurement information
incorporated into scenario 4 has provided sufficient information to determine that the
individual has a high probability of being on the lower (“wrap around) trajectory.
Considering real world applications in ambulatory, non-laboratory settings, sensors
will not have the same degree of precision as in controlled, laboratory environments.
For such applications, the capability to integrate multiple somewhat noisy

measurements in the manner of simulation scenario 4 will be advantageous.

Human Subject Example

[0103] The modified Kronauer-Jewett model 112A of the Bayesian particle filtering
methods 200, 220 does not have any customized tuning parameters so it remains a
fixed component. However, different types of optional physiological inputs 104 may
be provided to the estimation system 100. As discussed above, physiological inputs
104 typically require physiological sensors (e.g. sensors 120 of Figure 8). Such
sensors may be invasive or non-invasive and may be ambulatory (i.. allowing the
subject freedom of movement) or non-ambulatory (restricting subject movement).
Examples of invasively measurable physiological parameters include, without
limitation, CBT (which may be measured rectally), salivary melatonin assays and
salivary cortisol assays. Examples of non-invasively measurable physiological

parameters include, without limitation, body temperature (which may be measured by

SUBSTITUTE SHEET (RULE 26)



WO 2008/144908 PCT/CA2008/001007

10

15

20

25

30

35

-38 -

a cerebral temperature sensor) and heart rate (which may be measured by ECG in a
Lifeshirt™, for example).

[0104] As discussed above, circadian phase markers for the temperatures and
hormone levels may be determined (e.g. in phase estimators 124 of Figure 8) with
direct application of a Fourier fit combined with feature detection (e.g. maxima or
minima detection) location and suitable marker-to-phase conversion (e.g. time shift).
As discussed above, measured temperature markers may be determined with a
second-order or third-order Fourier fit using a minimum point feature and may be
appropriately converted (e.g. by 0.8h time shift) to correlate to circadian phase ¢.
With melatonin and cortisol, a second and/or third order Fourier fit using a maximum
point feature may be selected. However, there are a variety of different phase analysis
options which may be selected to convert melatonin and cortisol markers to correlate
to circadian phase ¢ (E. Klerman, H. Gershengorn, J. Duffy, and R. Kronauer,
Comparisons of the variability of three markers of the human circadian

pacemaker, Journal of Biological Rhythms, 17: 2, 181-193, 2002). It has been shown
that the melatonin maxima occurs approximately 2.3 hours before CBT minima.
Consequently, conversion of melatonin markers (maxima) to circadian phase ¢ may
involve a time shift of T, =2.3h-0.8h=1.5h. The cortisol maxima occurs
approximately 2.2 hours after CBT minima and may therefore be converted to
circadian phase ¢ by a time shift of T.oz;=-2.2h-0.8h=-3.0h.

[0105] These physiological measurements were incorporated into an experimental
phase prediction system 300. A schematic illustration of this experimental phase
prediction system 300 is shown in Figure 21. A motivating objective involves
determination of phase estimates based on non-invasive and ambulatory
measurements, so a comparison was made between the invasive and noninvasive
physiological measurements. In this experiment, the available information for the
subject which can be applied to the phase estimation system includes the sleep history
prior to the subject entering the lab, the known light exposure during the experiment
and noninvasive physiological data collected when the subject is ambulatory.

[0106] A first data set was generated based only on the light exposure during the
experiment — i.e. where the subject's circadian phase prior to the experiment was
considered completely unknown. The resulting phase PDFs are shown in Figure 22A.
A second data set was generated by adding knowledge of the subject's sleep history
which was kept in a log prior to the experiment. A number of assumptions are made in
this sleep history analysis since the exact light levels were not known and uncertainty
surrounding the accuracy of the sleep log was unknown. Light was assumed to be
constant at 380 Lux for the duration of waking. The resulting phase PDFs for the
second data set are shown in Figure 23A. As can be seen by comparing Figures 22A
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and 23A, the second data set which incorporates sleep history, results in narrower
phase PDFs, reflecting the additional information.

[0107] After 59 hours, a constant routine scenario was used in a laboratory setting.
Monitoring from all ambulatory sensors was maintained through the constant routine
with the addition of the cerebral temperature sensor, melatonin assay and cortisol
assay. After the deriving the phase markers of the various physiological inputs, the
PDFs of the phase markers were converted to the calibrated phase domain. It was
observed that the temperature and melatonin markers predict relatively consistent
phase information, but that the cortisol phase prediction was slightly different than
that predicted by the other physiological markers. The PDF of the core body
temperature phase marker is calculated at the end of the constant routine and
corresponds to estimate of circadian phase at a particular point in time as shown in
Figure 23B.

[0108] Figure 24 shows the phase PDFs generated using CBT measurement alone
(without Bayesian particle filter estimation), the final phase PDF (i.e. at the
conclusion of the experiment) generated using model predictions alone (without CBT
phase measurement), and the final phase PDF generated using the combination of
model predictions and the CBT phase estimate. The combined estimate provides a

narrower PDF than either the prediction or measurement alone.

Applications

[0109] The methods and systems described herein find useful applications in a variety
of settings. Two general areas include monitoring circadian physiology for alertness
and safety in workplace settings and monitoring circadian physiology to assist
chronotherapeutic treatments. Circadian rhythms significantly affect human health and
safety, and there are a number of applications where knowledge of an individual's
circadian phase would prove useful in mitigating risks or delivering therapeutic

treatment.

Alertness and Safety

[0110] Individuals required to perform critical tasks when their circadian pacemaker
is coordinating the body's metabolic and endocrine systems for sleep experience
significant impairments in performance which increases the risk of accidents. Many
industrial workplace scenarios involve tasks demanding a high degree of alertness and
reliability in addition to requiring workers to operate on irregular or shifting
schedules. As a result of schedule variations, individuals experience reduced levels of
alertness and cognitive performance due to both sleep loss and circadian rhythm

desynchrony. The associated risk of accidents is a concern in operational settings,
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such as, by way of non-limiting example, transportation, health care delivery and
emergency response. Accidents at the Chernobyl and Three Mile Island nuclear power
plants, the NASA Challenger disaster, and the Exxon oil spill in Valdez, Alaska may
all be partially attributable to decrements in performance due to the effects of
circadian phase and length of time awake.

[0111] Strategies to mitigate the adverse effects of circadian phase desynchrony and
sleep loss in shift work environments include education programs, the design of shift
work rotation schedules, and the use of light exposure to shift the endogenous
circadian pacemaker. Strategies to reduce the effects of jet lag travel also include the
specific timing of light exposure to accelerate adaptation to a new time zone.
Implementing reliable means to shift an individual's circadian pacemaker however
requires accurate knowledge of the individual's circadian phase, which is not currently

possible outside of the laboratory.

Medical Treatment

[0112] The traditional medical concept of "homeostasis", that the human body
maintains a constant internal state, is giving way to the recognition of continuous
time-varying fluctuations. Applying this information, medical treatments are being
developed to deliver treatment at not only the right location but at the right time. For
instance, the cycles present in human circadian physiological systems bring about
predictable changes in the body's tolerance to anticancer agents and a tumor's
responsiveness to them. Indeed, it has been shown that the tolerability and the efficacy
of chemotherapeutic drugs can vary by 50% or more as a function of dosing time in
mice or rats. Circadian-modulation of continuous drug delivery systems for
chemotherapy patients has been demonstrated in randomized, multi-centre trials to
have enhanced tumor response and increased survival rates.

[0113] When administering chronomodulated therapy, it is desirable to synchronize
treatment timing to the endogenous circadian phase of the individual being treated. In
recent trials, physical activity patterns measured with wrist worn accelerometers, have
been used to infer sleep/wake schedules and thus circadian phase. While the activity
measures can lead to a general estimate of circadian phase if an individual has
maintained a consistent schedule, there are known variabilities between individuals
and considerable uncertainty in the method. Enhanced methods of accurately
monitoring circadian phase translate to increased efficacy of chronotherapies.

[0114] Certain implementations of the invention comprise computer processors which
execute software instructions which cause the processors to perform methods of the
invention. For example, one or more processors in a phase estimation system may

implement data processing steps in the methods described herein by executing
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software instructions retrieved from a program memory accessible to the processors.

The invention may also be provided in the form of a program product. The program

product may comprise any medium which carries a set of computer-readable

instructions which, when executed by a data processor, cause the data processor to
execute a method of the invention. Program products according to the invention may
be in any of a wide variety of forms. The program product may comprise, for
example, physical media such as magnetic data storage media including floppy
diskettes, hard disk drives, optical data storage media including CD ROMs and

DVDs, electronic data storage media including ROMs, flash RAM, or the like. The

instructions may be present on the program product in encrypted and/or compressed

formats.

[0115] Where a component (e.g. a software module, processor, assembly, device,

circuit, etc.) is referred to above, unless otherwise indicated, reference to that

component (including a reference to a "means") should be interpreted as including as
equivalents of that component any component which performs the function of the
described component (i.e. that is functionally equivalent), including components
which are not structurally equivalent to the disclosed structure which performs the
function in the illustrated exemplary embodiments of the invention.

[0116] As will be apparent to those skilled in the art in the light of the foregoing

disclosure, many alterations and modifications are possible in the practice of this

invention without departing from the spirit or scope thereof. For example:

. One or more measured circadian phase estimate inputs ¢ may be received
from external systems, rather than being calculated from a physiological input
104.

. Phase estimate outputs of the circadian state estimation system may be made
in real-time, may be predicted into the future, or may be calculated for
historical periods.

. Light input 102 may be measured directly from light sensor, or may be
estimated based on other known or assumed environmental conditions. As a
non limiting example light input could be estimated from actigraphy sensors
from which sleep (dark) and wake (bright) periods are inferred.

. Multiple methods for implementing Bayesian equations in the prediction
updator 116 and the measurement updator 118 may be used, and may include
alternate particle filter operations, or other non particle filter methods.

. Sensors 102, physiological phase estimators 114, and the prediction updator
116 and measurement updator 118 may be physically separate. As a

nonlimiting example, remote sensors may be distributed on individuals and
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sensor information transmitted to a physiological phase estimators, and

prediction and measurement updators on a computational system.
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CLAIMS
WHAT IS CLAIMED IS:
5 1. A method for predicting a circadian state of an individual, the method
comprising:

providing a state-space model representative of the response of the
circadian state to light stimulus, the model comprising at least one state
variable representative of a probability distribution function (PDF) of a phase
10 offset of the circadian state of the individual; and
using the model to estimate an updated PDF of the phase offset,
wherein using the model to estimate the updated PDF of the phase offset
comprises performing a Bayesian estimation process commencing with an
initial PDF of the phase offset and iterating toward the updated PDF of the
15 phase offset.

2. A method according to claim 1 wherein performing the Bayesian estimation
processing comprises:
converting the initial PDF into an initial set of discrete particles
20 representative of the initial PDF, each of the initial particles comprising a
point;
iteratively propagating the initial set of discrete particles through the
Bayesian estimation process to obtain an updated set of discrete particles; and
converting the updated set of discrete particles into the updated PDF of
25 the phase offset.

3. A method according to claim 2 wherein iteratively propagating the initial set
of discrete particles through the Bayesian estimation process comprises, for
each iteration:

30 obtaining a first set of discrete particles, the first set of discrete particle
comprising one of: the initial set of discrete particles or an output set of
discrete particles from a previous iteration;

performing a prediction update operation on the first set of discrete
particles, the prediction update operation based on application of a state

35 transition equation of the state-space model to the first set of discrete particles
and the prediction update operation outputting a second set of discrete

particles.
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A method according to claim 3 wherein interatively propagating the initial set
of discrete particles through the Bayesian estimation process comprises, for
each iteration in which there is a new measurement: performing measurement
update operation on the second set of discrete particles, the measurement
update operation based on application of a measurement PDF that expresses
the likelihood of the new measurement to the second set of discrete particles to
obtain a third set of discrete particles; and outputting the third set of discrete
particles.

A method according to claim 3 wherein iteratively propagating the initial set
of discrete particles through the Bayesian estimation process comprises, for
each iteration in which there is a new measurement:

performing an importance weight operation on the second set of
discrete particles, the importance weight operation based on application of a
measurement PDF that expresses the likelihood of the new measurement to the
second set of discrete particles to obtain a third set of discrete particles,
wherein the third set of discrete particles are each assigned a weight based at
least in part on the measurement PDF;

performing a resampling operation on the third set of discrete particles
to obtain a fourth set of particles, the resampling operation comprising:

removing individual ones of the third set of discrete particles if
the weights of the individual ones of the third set of discrete particles
are below a first threshold; and
dividing individual ones of the third set of discrete particles

into multiple particles if the individual ones of the third set of discrete

particles are above a second threshold;

performing a move operation on the fourth set of particles to obtain a
fifth set of discrete particles, the move operation redistributing the fourth set of
particles; and

outputting the fifth set of discrete particles.

A method according to claim 5 wherein performing the resampling operation
comprises ensuring that the fourth set of particles incorporates at least
approximately the same statistical information as the third set of discrete
particles.

A method according to any one of claims 5 to 6 wherein performing the move

operation comprises ensuring that the fifth set of discrete particles incorporates
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at least approximately the same statistical information as the fourth set of

particles.

A method according to any one of claims 5 to 7 wherein performing the move

operation comprises Markov chain Monte Carlo (MCMC) procedure.

A method according to claim 8 wherein the Markov chain Monte Carlo

(MCMC) procedure comprises using a Metropolis-Hastings technique.

A method according to any one of claims 1 to 9 comprising obtaining one or
more physiological inputs related to the phase offset of the circadian state of
the individual and using the one or more physiological inputs in the Bayesian

estimation process to refine the updated PDF of the phase offset.

A method according to claim 10 wherein obtaining the one or more
physiological inputs comprises measuring the physiological inputs using one

or more corresponding sensors.

A method according to any one of claims 10 to 11 wherein the one or more

physiological inputs comprise core body temperature (CBT).

A method according to any one of claims 10 to 12 wherein the one or more
physiological inputs comprise one or more of: cortisol level and melatonin

level.

A method according to any one of claims 10 to 13 wherein the one or more
physiological inputs comprise one or more of: a rate of cell proliferation, an
input related to a cardiac regulatory system of the individual, an input related
to the chemoreceptive respiratory feedback system of the individual and an

input related to the cognitive performance of the individual.

A method according to any one of claims 10 to 14 wherein using the one or
more physiological inputs in the Bayesian estimation process to refine the
updated PDF of the phase offset comprises, for each physiological input:

identifying a feature within the physiological input, the identified
feature related to the phase offset;

obtaining a physiological feature PDF representing the likelihood of
the identified feature; and
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converting the physiological feature PDF into a phase offset domain.

A method according to claim 15 wherein, for each physiological input,
identifying the feature within the physiological input comprises fitting a curve
to measured input data and identifying the feature in the fitted curve.

A method according to claim 16 wherein the fitted curve comprises a Fourier

series.

A method according to any one of claims 16 and 17 wherein the identified
feature comprises one or more of: a minimum of the fitted curve; a maximum
of the fitted curve; a point where the curve crosses a threshold; and a region

where the curve is located on one side of a threshold.

A method according to any one of claims 16 to 18 wherein, for each
physiological input, the physiological feature PDF reflects a degree of
certainty in the fitted curve.

A method according to any one of claims 16 to 19 wherein, for each
physiological input, the physiological feature PDF reflects a degree of
certainty in the identified feature.

A method according to any one of claims 15 to 20 wherein converting the
physiological feature PDF into the phase offset domain comprises:
identifying a feature time at which the identified feature occurs; and

shifting the feature time within the time domain.

A method according to any one of claims 15 to 21 wherein converting the
physiological feature PDF into the phase offset domain comprises:

identifying a feature-time PDF which reflects a degree of confidence as
to the time at which the identified feature occurs; and

shifting the feature-time PDF within the time domain.
A method according to any one of claims 1 to 22 wherein performing the

Bayesian estimation process comprises incorporating process noise into the

state-space model.
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A method according to claim 23 wherein the process noise is additive, such

that it may be added to a state transition equation of the state-space model.

A method according to any one of claims 23 and 24 wherein the process noise

comprises at least one of: a Gaussian PDF and a uniform PDF.

A method according to any one of claims 1 to 25 wherein performing the
Bayesian estimation process comprises incorporating measurement noise into

the state-space model.

A method according to claim 26 wherein the measurement noise is additive,

such that it may be added to a measurement equation of the state-space model.

A method according to any one of claims 26 and 27 wherein the measurement

noise comprises at least one of: a Gaussian PDF and a uniform PDF.

A method according to any one of claims 1 to 28 wherein the providing the
state-space model representative of the response of the circadian state to light
stimulus comprises providing a model which accommodates statistical

uncertainty in the light stimulus.

A method according to claim 29 wherein providing the model which
accommodates statistical uncertainty in the light stimulus comprises modeling
one or more times corresponding to changes in light stimulus using one or

more corresponding light-time PDFs representative of the one or more times.

A method according to claim 30 wherein the one or more corresponding light-

time PDFs comprise at least one of: a Gaussian PDF and a uniform PDF.

A method according to any one of claims 29 to 31 wherein providing the
model which accommodates statistical uncertainty in the light stimulus
comprises modeling one or more levels of light stimulus intensity using one or

more corresponding light-level PDFs representative of the one or more levels.

A method according to claim 32 wherein the one or more corresponding light-
level PDFs comprise at least one of: a Gaussian PDF and a uniform PDF.
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A system for predicting a circadian state of an individual, the system
comprising a processor configured to: provide a state-space model
representative of the response of the circadian state to light stimulus, the
model comprising at least one state variable representative of a probability
distribution function (PDF) of a phase offset of the circadian state of the
individual; and use the model to estimate an updated PDF of the phase offset,
wherein using the model to estimate the updated PDF of the phase offset
comprises performing a Bayesian estimation process commencing with an
initial PDF of the phase offset and iterating toward the updated PDF of the
phase offset.

A system according to claim 34 comprising any of the features of claims 1 to
33.

A system according to claim 34 comprising components configured to perform

operations incorporating any of the features of claims 1 to 33.

A system according to claim 34 wherein the processor is configured to

perform operations incorporating any of the features of claims 1 to 33.

A computer program product comprising computer-readable instructions,
which when executed by a suitably configured processor, cause the processor

to perform any of the methods of claims 1 to 33.

Methods incorporating any one or more features, combinations of feature or

subcombinations of feature described herein.

Systems incorporating any one or more features, combinations of features or

subcombinations of features described herein.

Computer program products comprising computer-readable instructions,
which when executed by a suitably configured processor, cause the processor
to perform a method incorporating any one or more features, combinations of

feature or subcombinations of feature described herein.
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PREDICTION UPDATE PROCEDURE (BLOCK 204)

Algorithm 2 Prediction Update

1: procedure [x;] = INCREMENT(x}_,, ur—1, 2k, Qk, Ry)
2:  H=Vh(x,)

3 S=HQ.H +R.

4 D =Qir - Q:H'STIHQ:

5 fori=1:N do

G >:ci =f (x}c:l_ , Up—1) p» prediction update
7: %y = (X}, ue—1)

8 * =%+ EH'R;iMODMINUS(zk, 7L _,,24) > measurement update
9: Draw x}, ~ U(%j, diag¥) b draw x}, from p().ckl)-c};_l \BE)
10: x5 (2) = mod(xj.(2), 24) > keep phase within [0, 24)

1L end for
12: end procedure

FIGURE 12A

IMPORTANCE WEIGHT PROCEDURE (BLOCK 222)

Algorithm 3 Measurement Update

1: procedure [wil= IMPORTANCEWEIGHT(x},,zk, Qr, Ri)
2: S =HQ:H' + R

3 fori=1:Ndo

4 zi = h(x},ur)

5 dy = MODMINUS(z, 2, 24) > phase difference using madulo
6: wi, =N (dg;0,5(2,2)) & set particle weight to p(zi}x})
T and for

8: fori=1:Ndo

9: wi = wi/EN wi b normalize the weights

10: end for
11: end procedure

FIGURE 12B
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RESAMPLE PROCEDURE (BLOCK 224)
Algorithm 4 Systematic Resampling
1: procedure [x}, wi] = RESAMPLE(x}, wi)

2: j=1
3: C=N"1
4 CSW =20
5: whileC<1do
6 if CSW > Cthen
7: C=C+N1
8: else
9: select i randomly from [7, N]
10: CSW = CSW +wi b increment cumulative sum of weights
11: X}, = x}, > swap new particle
12: j=i+1
13: end if
14 end while
15: fori=1:N do .
16: wi =N-1 > set weights to uniform values

17: end for
18: end procedure .

FIGURE 12C

MARKOV CHAIN MONTE CARLO MOVE (BLOCK 226)
Algorithm 5 Markov chain Monte Carlo Move

1: procedure [xj] = MCMC-MOVE(xL, ux, Qr, Ri)
2: S=HQ.H' + R,

3 fori=1:Ndo

4: zZ= h(x};,-u.k)

5 dg = MODMINUS(z, 25, 24)

6 L! = N(d;;0,S) > likelihood of current particle p(z|x: )

7: draw i'c;~ ~UEGEE_, u), Qr) b generate a new random proposal

: Z= h(i}:,'uk)

9: ds = MODMINUS(z, 25, 24)
10: Li = N (dg;0,8) > likelihood of proposed particle p(z.|%% )
1 P, = min(1,L{/L}) b probability of acceptance of new particle
12: draw r ~ [0,1] > random number firom 0 to 1
13: if P, > r then
14: xi =% > replace T with new proposal
15: end if

16: end for
17: end procedure

FIGURE 12D
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“E” earlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive
filing date step when the document is taken alone
“L” document which may throw doubts on priorig claim(s) or which is “Y”  document of particular relevance; the claimed invention cannot be
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document referring to an oral disclosure, use, exhibition or other means
“&”  document member of the same patent family
“p” document published prior to the international filing date but later than
the priority date claime
Date of the actual completion of the international search Date of mailing of the international search report
30 September. 2008 (30-09-2008) 2 October 2008 (02-10-2008)
Name and mailing address of the ISA/CA Authorized officer
Canadian Intellectual Property Office
Place du Portage I, C114 - 1st Floor, Box PCT Karen Oprea 819- 934-2668
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 001-819-953-2476




INTERNATIONAL SEARCH REPORT International application No.
PCT/CA2008/001007

Box No. 11 Observations where certain claims were found unsearchable (Continuation of item 2 of the first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following

reasons !

1. [X] Claim Nos. :  39-41
because they relate to subject matter not required to be searched by this Authority, namely :
claims 39-41 are directed to appaatus and methods having any new useful and inventive features, combination of features or sub-
combination of features as described herein. Such claims are considered to be omnibus claims and thereby no opinion is required
by this Authority.

2. | ] Claim Nos. :
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent
that no meaningful international search can be carried out, specifically :

3. [ ] Claim Nos. :
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. IIT Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows :

As all required additional search fees were timely paid by the applicant, this international search report covers all

searchable claims.

As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite
payment of additional fees.

As only some of the required additional search fees were timely paid by the applicant, this international search report
covers only those claims for which fees were paid, specifically claim Nos. :

No required additional search fees were timely paid by the applicant. Consequently, this international search report is

restricted to the invention first mentioned in the claims; it is covered by claim Nos. :

Remark on Protest | | The additional search fees were accompanied by the applicant’s protest and, where applicable,

the payment of a protest fee.

[ ] The additional search fees were accompanied by the applicant's protest but the applicable protest

fee was not paid within the time limit specified in the invitation.

[ ] No protest accompanied the payment of additional search fees.
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