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(57) Abstract: Provided are methods and systems of encoding and decoding speech from a subject using articulatory physiology.
Methods of the present disclosure include receiving a physiological feature signal associated with a spatiotemporal movement of a
vocal tract articulator, generating a speech pattern signal in response to the physiological feature signal, and outputting speech that is
based on the speech pattern signal. Methods of the present disclosure further include acquiring one or more of a linguistic signal and an
acoustic signal; associating a physiological feature with the linguistic or acoustic signal, generating a speech pattern signal in response
to the physiological feature; and outputting speech that is based on the speech pattern signal. Speech decoding systems and devices
using articulatory physiology for practicing the subject methods are also provided. Various steps and aspects of the methods will now
be described in greater detail below.
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METHODS OF GENERATING SPEECH USING ARTICULATORY PHYSIOLOGY
AND SYSTEMS FOR PRACTICING THE SAME

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of United States Provisional Patent
Application Serial No. 62/837,096 filed April 22, 2019 and United States Provisional Patent
Application Serial No. 62/879,948 filed July 29, 2019; the disclosures of which are herein

incorporated by reference in their entirety.

INTRODUCTION

[0002] The speech signal is the result of respiratory, phonatory and articulatory
processes that generate the perceivable acoustic resonances to encode an intended linguistic
message. Mimicking the human system closely has remained computationally elusive and
may be attributed to the lack of an imaging modality that comprehensively assays all aspects
of vocal tract physiology during continuous speech making it impossible to computationally
model the underlying generative processes. The strength of generative models comes from
their ability to explain observed variance at its causal source. Such task specialized
generative models have several useful properties such as: i) generating human like behavior;
ii) reducing the reliance on endless amounts of data; iii) interpretable and swappable model
components and iv) graceful degradation in unseen conditions.

[0003] There is a need for biocompatible solutions for assistive spoken communication
and an opportunity in biologically inspired cognitive models for improving robustness of

current speech technologies.

SUMMARY
[0004] Provided are methods and systems of encoding and decoding speech from a subject
using articulatory physiology. Methods according to certain embodiments include acquiring
one or more of a phonological or acoustic signal, associating a speech pattern signal in
response to the physiological feature with the phonological or acoustic signal and outputting
speech that is based on the speech pattern signal. Methods according to certain embodiments
include acquiring one or more of a linguistic signal and an acoustic signal; associating a

physiological feature with the linguistic or acoustic signal; generating a speech pattern signal
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in response to the physiological feature; and outputting speech that is based on the speech
pattern signal. Speech decoding systems and devices using articulatory physiology for

practicing the subject methods are also provided.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The invention may be best understood from the following detailed description
when read in conjunction with the accompanying drawings. Included in the drawings are the
following figures:

[0006] FIGs. 1A-1B illustrate the Midsagittal section of the vocal tract showing select
locations for EMA sensor pellets. FIG. 1B shows the graphical model of the speech
production process according to certain embodiments.

[0007] FIG. 2 shows initialized physiological features for an example sentence “I’'m
terrible with gadgets™.

[0008] FIG. 3 illustrates an encoder-decoder network to embed physiological
representation according to certain embodiments.

[0009] FIGs. 4A-4D show encoding of an unseen utterance according to certain
embodiments. FIG. 4A shows a spectrogram of the speaker’s original utterance. FIG. 4B
shows reconstructed spectrogram after propagating through the trained stacked network.
FIG. 4C shows encoded embedding of dimensions that were apriori set to be manner
features. FIG. 4D shows encoded embedding of dimensions that were set to be EMA
trajectories, predictions are in the solid lines and the ground truth trajectories for the
utterance are also shown in dotted lines.

[0010] FIG. 5 shows a correlation across articulators on unseen utterances’ EMA
kinetics as depicted in Table 1.

[0011] FIG. 6 shows a comparison of two methods of speech synthesis: with and
without physiological modelling, performance shown under 2 conditions of data size
according to certain embodiments.

[0012] Fig. 7A-7C shows inferred Articulator Kinematics according to certain
embodiments. (A) Approximate sensor locations for each articulator during EMA
recordings. Midsagittal movements represented as Cartesian x and y coordinates. (B)
Midsagittal articulator movements inferred from both acoustic and phonetic features (in
color). The trace of each reference sensor coordinate is also shown (in black). The larynx
was approximated by fundamental frequency (f0) modulated by whether the segment of

speech was voiced. (C) Recorded articulator movements (EMA) representing consonants and
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vowels projected into a low-dimensional (LDA) space. Inferred articulator movements
projected into the same space were highly correlated with the original EMA. Correlations
were pairwise distances between phonemes (consonants, r = 0.97, p < 0.001; vowels, r =
0.90, p < 0.001).

[0013] FIG. 8A-8E. Neural Encoding of Articulatory Kinematic Trajectories according
to certain embodiments. (A)Magnetic resonance imaging (MRI) reconstruction of single
participant’s brain where an example electrode is shown in the ventral sensorimotor cortex
(vSMCQ). (B) Inferred articulator movements during the production of the phrase
“‘stimulating discussions.”” Movement directions are differentiated by color (positive x and y
directions, purple; negative x and y directions, green), as shown in FIG. 7A. (C)
Spatiotemporal filter resulting from fitting articulator movements to explain high gamma
activity for an example electrode. Time O represents the alignment to the predicted sample of
neural activity. (D) Convolving the spatiotemporal filter with articulator kinematics explains
high gamma activity as shown by an example electrode. High gamma from 10 trials of
speaking ‘‘stimulation discussions’’ was dynamically time warped based on the recorded
acoustics and averaged together to emphasize peak high gamma activity throughout the
course of a spoken phrase. (E) Example electrode-encoded filter weights projected onto a
midsagittal view of the vocal tract exhibits speech-relevant articulatory kinematic trajectories
(AKTs). Time course of trajectories is represented by thin-to-thick lines. Larynx (pitch
modulated by voicing) is one dimensional along the y axis, with the x axis showing time
course.

[0014] FIG. 9A-9C. Clustered Articulatory Kinematic Trajectories and Phonetic
Outcomes according to certain embodiments. (A) Hierarchical clustering of encoded
articulatory kinematic trajectories (AKTs) for all 108 electrodes across 5 participants. Each
column represents one electrode. The kinematics of AKTs were described as a seven-
dimensional vector by the points of maximal displacement along the principal movement
axis of each articulator. Electrodes were hierarchically clustered by their kinematic
descriptions resulting in four primary clusters. (B) A phoneme-encoding model was fit for
each electrode. Kinematically clustered electrodes also encoded four clusters of encoded
phonemes differentiated by place of articulation (alveolar, bilabial, velar, and vowels). (C)
Average AKTs across all electrodes in a cluster. Four distinct vocal tract configurations
encompassed coronal, labial, and dorsal constrictions in addition to vocalic control.

[0015] FIG. 10 shows Spatial Organization of Vocal Tract Gestures according to certain

embodiments. Electrodes from five participants (two left and three right hemisphere) colored
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by kinematic cluster warped to the vSMC location on common MRI-reconstructed brain.
Opacity of electrode varies with Pearson’s correlation coefficient from the kinematic
trajectory encoding model

[0016] FIG. 11A-11C. Damped Oscillatory Dynamics of Kinematic Trajectories
according to certain embodiments. (A) Articulator trajectories from encoded AKTs along the
principal movement axes for example electrodes from each kinematic cluster. Positive values
indicate a combination of upward and frontward movements. (B) Articulator trajectories for
all 108 encoded kinematic trajectories across 5 participants. (C) Linear relationship between
peak velocity and articulator displacement (r = 0.85, 0.77. 0.83, 0.69, 0.79, and 0.83 in
respective order; p < 0.001). Each point represents the peak velocity and associated
displacement of an articulator from the AKT for an electrode

[0017] FIG. 12A-12]. Neural Representation of Coarticulated Kinematics according to
certain embodiments. (A) Example of different degrees of anticipatory coarticulation for the
lower incisor. Average traces for the lower incisor (y direction) are shown for /&z/ and /p/
aligned to the acoustic onset of /&/. (B) Electrode 120 is crucially involved in the production
of /&/ with a vocalic AKT (jaw opening and laryngeal control)and has a high phonetic
selectivity index for /&/. (C) Average high gamma activity for electrode 120 during the
productions of /@&z/ and /&p/. Median high gamma during 50 ms centered at the electrode’s
point of peak phoneme discriminability (gray box) is significantly higher for /ep/ than /z/
(p < 0.05, Wilcoxon signed-rank tests). (D) Average predicted high gamma activity
predicted by AKT in (B). Median predicted high gamma is significantly higher for /p/ than
lez/ (p < 0.001, Wilcoxon signed-rank tests). (E) Mixed-effect model shows relationship of
high gamma with kinematic variability due to anticipatory coarticulatory effects of following
phonemes for all electrodes and phonemes (b = 0.30, SE = 0.04, c2(1) = 38.96, p = 4e-10).
Each line shows the relationship between high gamma and coarticulated kinematic
variability for a given phoneme and electrode in all following phonetic contexts with at least
25 instances. Relationships from (C) and (D) for /2z/ (red) and /2p/ (yellow) are shown as
points. Electrodes in all participants were used to construct the model. (F) Example of
different degrees of carryover coarticulation for the lower incisor. Average traces for the
lower incisor (y direction) are shown for /&z/ and /iz/ aligned to the acoustic onset of /z/. (G)
Electrode 122 is crucially involved in the production of /z/ with a coronal AKT and has a
high phonetic selectivity index for /z/. (H) Average high gamma activity for electrode 122
during the productions of /@z/ and /iz/. Median high gamma is significantly higher for /ez/

than /iz/ (p < 0.05, Wilcoxon signed-rank tests). (I) Average predicted high gamma activity
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predicted by AKT in (G). Median predicted high gamma is significantly higher for /@&z/ than
fiz/ (p < 0.001, Wilcoxon signed-rank tests). (J) Mixed-effect model shows relationship of
high gamma with kinematic variability due to carryover coarticulatory effects of preceding
phonemes for all electrodes (in all participants) and phonemes (b = 0.32, SE = 0.04, c2(1) =
42.58, p = 6e-11). Relationships from (H) and (I) for /=z/ (green) and /iz/ (blue) are shown
as points.

[0018] FIG. 13A-13C. Neural-Encoding Model Evaluation (A) Comparison of AKT
encoding performance across electrodes in different anatomical regions. Anatomical regions
compared: electrodes in study (EIS), superior temporal gyrus (STG), precentral gyrus*
(preCG*), postcentral gyrus* (postCG*), middle temporal gyrus (MTG), supramarginal
gyrus (SMGQG), pars opercularis (POP), pars triangularis (PTRI), pars orbitalis (PORB), and
middle frontal gyrus (MFG). Electrodes in study were speech selective electrodes from pre-
and post-central gyri while preCG* and postCG* only included electrodes hat were not
speech selective. EIS encoding performance was significantly higher than all other regions
(p < le-15, Wilcoxon signed-rank test). (B) Comparison of AKT- and formant-encoding
models for electrodes in the study. Using F1, F2, and F3, the formant-encoding model was
fit in the same manner as the AKT model. Each point represents the performance of both
models for one electrode. (C) Comparison of AKT- and phonemic-encoding models. The
phonemic model was fit in the same manner as the AKT model, except that phonemes were
described as one hot vector. The best single phoneme predicting electrode activity was said
to be the encoded phoneme of that particular electrode, and that r value was reported along
with the r value of the AKT model. Pearson’s r was computed on held-out data from training
for all models. In both comparisons, the AKT performed significantly better (p < 1e-20,
Wilcoxon signed-rank test). Error bars represent SEM.

[0019] FIG. 14A-14B Decoded Articulator Movements from vSMC Activity according
to certain embodiments.(A) Original (black) and predicted (colored) x and y coordinates of
articulator movements during the production of an example held-out sentence. Pearson’s
correlation coefficient (r) for each articulator trace. (B) Average performance (correlation)
for each articulator for 100 sentences held out from training set. Error bars represent SEM.

[0020] FIG. 15A-15G: Speech Synthesis from neurally decoded spoken sentences. FIG.
15A, The neural decoding process begins by extracting high-gamma amplitude (70-200Hz)
and low frequency (1-30Hz) ECoG activity. FIG. 15B, A 3-layer bi-directional long short
term memory (bLSTM) neural network learns to decode kinematic representations of

articulation from filtered ECoG signals. FIG. 15C, An additional 3-layer bLSTM learns to
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decode acoustics from the previously decoded kinematics. Acoustics are represented as
spectral features (e.g. Mel-frequency cepstral coefficients (MFCCs)) extracted from the
speech waveform. FIG. 15D, Decoded signals are synthesized into an acoustic waveform.
FIG. 15E, Spectrogram shows the frequency content of two sentences spoken by a
participant. FIG. 15F, Spectrogram of synthesized speech from brain signals recorded
simultaneously with the speech in e. Mel97 cepstral distortion (MCD), a metric for assessing
the spectral distortion between two audio signals, was computed for each sentence between
the original and decoded audio. FIG. 15G-15H 300 ms long, median spectrograms that were
time-locked to the acoustic onset of phonemes from original (FIG. 15G) and decoded (FIG.
15H) audio. Medians were computed from phonemes in 100 sentences that were withheld
during decoder 101 training (n: /i/ = 112, /z/ =102 115, /p/ 69, /ae/ = 86). These phonemes
represent the diversity of spectral features. Original and decoded median phoneme
spectrograms were well correlated (r > 0.9 for all 104 phonemes, p=1e-18).

[0021] FIG. 16A-16D: Decoded speech intelligibility and feature-specific performance.
FIG. 16A, Spectral distortion, measured by Mel-Cepstral Distortion (MCD) (lower values
are better), between original spoken sentences and neurally decoded sentences that were held
out from model training (n = 100). Reference MCD refers to the MCD resulting from the
synthesis of original kinematics without neural decoding and provides an upper bound for
performance. MCD scores were compared to chance-level MCD scores obtained by
shuffling data before decoding. FIG 16B, Decoded sentence intelligibility was assessed by
asking naive participants to identify the sentence they heard from 10 choices. Each sample (n
= 60) represents the percentage of correctly identified trials for one sentence. The median
sentence was correctly identified 83% of the time. FIG. 16C, Correlation of original and
decoded spectral features. Values represent the mean correlation 166 of the 32 spectral
features for each sentence (n = 100). Correlation performance for individual spectral features
is reported in extended data figure 1b. FIG. 16D, Correlations between original and decoded
intelligibility-relevant features. Kinematic values represent the mean correlation of the 33
kinematic features (the intermediate representation) for each sentence (n =100). Correlation
performance for individual kinematic features is reported in FIG. 19A. Box plots depict
median (horizontal line inside box), 25th and 75th percentiles (box), 25/75th percentiles
+1.5% interquartile range (whiskers), and outliers (circles). Distributions were compared with
each as other as indicated or with chance-level distributions using two-tailed Wilcoxon

signed-rank tests (p < 1e-10, n = 100, for all 176 tests).
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[0022] FIGs. 17A-17F: Effects of model design decisions. FIG. 17A-17B, Mean
correlation of original and decoded spectral features (FIG. 3A) and mean spectral distortion
(MCD) (FIG. 17B) for model trained on varying amounts of training data. Training data was
split according to recording session boundaries resulting the following sizes: 2.4, 5.2, 12.6,
25.3,44.9,55.2,77.4, and 92.3 minutes of speaking data. The neural decoding approach that
included an articulatory intermediate stage (purple) performed significantly better with every
size of training data than direct ECoG to acoustics decoder (grey) (all: p < 1e-5, n = 100;
Wilcoxon signed-rank test, error bars = SE). FIG. 17C, Acoustic similarity matrix compares
acoustic properties of decoded phonemes and originally spoken phonemes. Similarity is
computed by first estimating a gaussian kernel density for each phoneme (both decoded and
original) and then computing the Kullback-Leibler (KL) divergence between a pair of
decoded and original phoneme distributions. Each row compares the acoustic properties of a
decoded phoneme with originally spoken phonemes (columns). Hierarchical clustering was
performed on the resulting similarity matrix. FIG. 17D, Anatomical reconstruction of a
single participant’s brain with the following regions used for neural decoding: ventral
sensorimotor cortex (vSMC), superior temporal gyrus (STG), and inferior frontal gyrus
(IFG). FIG. 17E-17F, Difference in spectral distortion (MCD) (FIG. 17E), and difference in
correlation (Pearson’s r) performance (FIG. 17F) between decoder 248 trained on all regions
and decoders trained on all-but-one region. Exclusion of any region resulted in decreased
performance (p < 3e-4, n = 100; Wilcoxon signed-rank test). Box plots as described in FIG.
16.

[0023] FIGs. 18A-18E: Speech synthesis from neural decoding of silently mimed
speech. FIGs. 18A-18C, Spectrograms of original spoken sentence (a), neural decoding
from audible production (FIG. 18B), and neural decoding from silently mimed production
(c). FIG. 18D-18E, Spectral distortion (MCD) (FIG. 18D) and correlation of original and
decoded spectral features (FIG. 18E) for audibly and silently produced speech. Since
correlations are with respect to original audibly produced sentences, decoded sentences that
were silently mimed were dynamically time-warped according to their spectral features.
Decoded sentences were significantly better than chance-level decoding for both speaking
conditions (p < le-11, for all comparisons, n = 58; Wilcoxon signed-rank test). Box plots as
described in FIG. 16.

[0024] FIGs. 19A-19B: Decoding performance of kinematic and spectral features. FIG.
19A Correlations of all 33 decoded articulatory kinematic features with ground-truth. EMA

features represent X and Y coordinate traces of articulators (lips, jaw, and three points of the
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tongue) along the midsagittal plane of the vocal tract. Manner features represent
complementary kinematic features to EMA that further describe acoustically consequential
movements. FIG. 19B, Correlations of all 32 decoded spectral features with ground-truth.
MECC features are 25 mel-frequency cepstral coefficients that describe power in
perceptually relevant frequency bands. Synthesis features describe glottal excitation weights
necessary for speech synthesis.

[0025] FIG 20: Ground-truth acoustic similarity matrix. Compares acoustic properties of
ground-truth spoken phonemes with one another. Similarity is computed by first estimating a
gaussian kernel density for each phoneme and then computing the Kullback-Leibler (KL)
divergence between a pair of a phoneme distributions. Each row compares the acoustic
properties of a two ground-truth spoken phonemes. Hierarchical clustering was performed

on the resulting similarity matrix.

DETAILED DESCRIPTION

[0026] Provided are methods and systems of encoding and decoding speech from a subject
using articulatory physiology. Methods of the present disclosure include receiving a
physiological feature signal associated with a spatiotemporal movement of a vocal tract
articulator, generating a speech pattern signal in response to the physiological feature signal,
and outputting speech that is based on the speech pattern signal. Methods of the present
disclosure further include acquiring one or more of a linguistic signal and an acoustic signal;
associating a physiological feature with the linguistic or acoustic signal; generating a speech
pattern signal in response to the physiological feature; and outputting speech that is based on
the speech pattern signal. Speech decoding systems and devices using articulatory physiology
for practicing the subject methods are also provided. Various steps and aspects of the methods
will now be described in greater detail below.

[0027] Before the present invention is described in greater detail, it is to be understood
that this invention is not limited to particular embodiments described, as such may, of course,
vary. It is also to be understood that the terminology used herein is for the purpose of
describing particular embodiments only, and is not intended to be limiting, since the scope of
the present invention will be limited only by the appended claims.

[0028] Where a range of values is provided, it is understood that each intervening value,
to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between
the upper and lower limits of that range is also specifically disclosed. Each smaller range

between any stated value or intervening value in a stated range and any other stated or
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intervening value in that stated range is encompassed within the invention. The upper and
lower limits of these smaller ranges may independently be included or excluded in the range,
and each range where either, neither or both limits are included in the smaller ranges is also
encompassed within the invention, subject to any specifically excluded limit in the stated
range. Where the stated range includes one or both of the limits, ranges excluding either or
both of those included limits are also included in the invention.

[0029] Unless defined otherwise, all technical and scientific terms used herein have the
same meaning as commonly understood by one of ordinary skill in the art to which this
invention belongs. Although any methods and materials similar or equivalent to those
described herein can be used in the practice or testing of the present invention, some potential
and exemplary methods and materials may now be described. Any and all publications
mentioned herein are incorporated herein by reference to disclose and describe the methods
and/or materials in connection with which the publications are cited. It is understood that the
present disclosure supersedes any disclosure of an incorporated publication to the extent there
is a contradiction.

[0030] It must be noted that as used herein and in the appended claims, the singular forms
"a","an", and "the" include plural referents unless the context clearly dictates otherwise. Thus,
for example, reference to "an electrode" includes a plurality of such electrodes and reference
to "the signal" includes reference to one or more signals, and so forth.

[0031] It is further noted that the claims may be drafted to exclude any element which may
be optional. As such, this statement is intended to serve as antecedent basis for use of such
exclusive terminology as “solely”, “only” and the like in connection with the recitation of
claim elements, or the use of a “negative” limitation.

[0032] The publications discussed herein are provided solely for their disclosure prior to
the filing date of the present application. Nothing herein is to be construed as an admission
that the present invention is not entitled to antedate such publication by virtue of prior
invention. Further, the dates of publication provided may be different from the actual
publication dates which may need to be independently confirmed. To the extent such
publications may set out definitions of a term that conflict with the explicit or implicit
definition of the present disclosure, the definition of the present disclosure controls.

[0033] As will be apparent to those of skill in the art upon reading this disclosure, each of
the individual embodiments described and illustrated herein has discrete components and
features which may be readily separated from or combined with the features of any of the other

several embodiments without departing from the scope or spirit of the present invention. Any
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recited method can be carried out in the order of events recited or in any other order which is
logically possible.

[0034] While the apparatus and method has or will be described for the sake of
grammatical fluidity with functional explanations, it is to be expressly understood that the
claims, unless expressly formulated under 35 U.S.C. §112, are not to be construed as
necessarily limited in any way by the construction of "means" or "steps"” limitations, but are
to be accorded the full scope of the meaning and equivalents of the definition provided by
the claims under the judicial doctrine of equivalents, and in the case where the claims are
expressly formulated under 35 U.S.C. §112 are to be accorded full statutory equivalents
under 35 U.S.C. §112.

METHODS — ENCODING AND DECODING SPEECH USING ARTICULATORY PHYSIOLOGY

[0035] As summarized above, aspects of the invention include methods and systems of
encoding and decoding speech from a subject using articulatory physiology. Methods of the
present disclosure include receiving a physiological feature signal associated with a
spatiotemporal movement of a vocal tract articulator, generating a speech pattern signal in
response to the physiological feature signal, and outputting speech that is based on the speech
pattern signal. Methods of the present disclosure further include acquiring one or more of a
linguistic signal and an acoustic signal; associating a physiological feature with the linguistic
or acoustic signal; generating a speech pattern signal in response to the physiological feature;
and outputting speech that is based on the speech pattern signal. Speech decoding systems and
devices using articulatory physiology for practicing the subject methods are also provided.
Various steps and aspects of the methods will now be described in greater detail below.

[0036] Aspects of the present disclosure include a method comprising receiving a
physiological feature signal associated with a spatiotemporal movement of a vocal tract
articulator; generating a speech pattern signal in response to the physiological feature signal;
and outputting speech that is based on the speech pattern signal.

[0037] In some embodiments, the vocal tract articulator provides for spatiotemporal
movements of a portion of the body associated with the vocal tract. Examples of a vocal tract
articulator include the upper lip, lower lip, lower incisor, tongue tip, tongue blade, tongue
dorsum, and/or larynx. For example, the wide range of spoken sounds results from highly
flexible configurations of the vocal tract, which filters sound product at, for example, the
larynx, via precisely coordinated movements of the lips, jaw, and tongue. Each vocal tract
articulator has extensive degrees of freedom, allowing a large number of different

realizations for speech movements. Examples of spatiotemporal representation of
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articulators is described in U.S. Patent No. 9,905,239, which is hereby incorporated by
reference in its entirety.

[0038] In some embodiments, the physiological feature signals comprise measurements
of the caudo-rostral displacements of one or more of the vocal tract articulators. In some
embodiments, the method comprises measuring the caudo-rostral displacements of the one
or more of the vocal tract articulators associated with consonant constriction. In some
embodiments, the caudo-rostral displacements capture the shaping of the vocal tract and
places of articulation. In some embodiments, the consonant constriction determines whether
the consonant is a plosive, lateral, fricative, or nasal consonant. In some embodiments, the
measured caudo-rostral displacements range from 0 -0.1,0.1-0.2,0.2-0.3,0.3-04,04
-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, or 0.9-1.0 a.u. In some embodiments, the measured
caudo-rostral displacements range from (0 — 0.25, 0.25 - 0.5, 0.5 — 1.0 a.u. In some
embodiments, the physiological feature signals comprise measurements of the caudo-rostral
velocity. In some embodiments, the measured caudo-rostral velocity range from 0 — 0.1, 0.1
-02,02-0.3,03-04,04-0.5,0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, or 0.9-1.0 a.u. In some
embodiments, the measured caudo-rostral velocity range from 0 — 0.25,0.25 -0.5,0.5-1.0
a.u. In some embodiments, the physiological feature signals comprise measurements of the
caudo-rostral displacement and velocity. In some embodiments, the measured velocity is
proportional to the measured displacement (see e.g. FIG. 11A-11C).

[0039] In some embodiments, spatiotemporal movement of a vocal tract articulator is
measured by electromagnetic midsagittal articulography. Vocal tract imaging technique
using electromagnetic midsagittal articulography can be used study articulation during
continuous speech production. The term “Electromagnetic midsagittal articulography”
(EMA) is used herein in its conventional sense to refer to a kinematic tracking system that
uses low field-strength electromagnetic fields to measure the movement of the portions of
the body associated with the vocal tract (e.g. tongue, lips, jaw, and/or velum). In some
embodiments, two-dimensional (2D) EMA measures movement in the midsagittal plane. In
certain instances, subjects wear a helmet that places three transmitter coils around the head.
The transmitters produce alternating magnetic fields which generate currents in tiny sensors
placed on the surface of the articulators. As the sensors move through the fields, they are
tracked by computer.

[0040] In some embodiments, receiving a physiological feature signal comprises
receiving one or more brain signals; and associating the brain signals to one or more of the

spatiotemporal movements of a vocal tract articulator. In some embodiments, the signals are
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detected from the cortical region of the brain. In some embodiments, the signals are detected
from the ventral sensorimotor cortex of the brain. In some embodiments, the signals are
neural signals. In some embodiments, the neural (e.g. brain signals) signals are detected by
contacting an electrocorticography (ECoG) electrode array with the cortical region of the
brain in an individual. In some embodiments, the signals are acquired by contacting 1 or
more electrodes, 2 or more electrodes, or 3 or more electrodes that detect the plurality of
signals with at least one region of the brain. In some embodiments, the signals are acquired
by contacting 50 or more electrodes, 100 or more electrodes, 150 or more electrodes, 200 or
more electrodes, 250 or more electrodes, or 300 or more electrodes that detect the signals
with at least one region of the brain. In some embodiments, the at least one region of the
brain comprises the speech motor cortex of the brain.

[0041] In some embodiments, the method comprises acquiring brains signals (e.g. ECoG
signals), with an electrical recording device configured to record ECoG signals in the brain.
In some embodiments, the electrical recording device is an ECoG 128-channel recording
device. In some embodiments, the electrical recording device is an ECoG 256-channel
recording device. In some embodiments, the electrical recording device is implantable. In
some embodiments, the electrical recording device is wireless.

[0042] In some embodiments, the method comprises receiving and/or acquiring brain
signals. In some embodiments, the ECoG signals are filtered in a high gamma frequency
range to obtain neural signals in the auditory and sensorimotor brain regions. In some
embodiments, plurality of signals are obtained from auditory and sensorimotor brain regions
selected from the vSMC, STG, and IFG. In some embodiments, plurality of signals are
obtained from auditory and sensorimotor brain regions from the vSMC. In some
embodiments, the signals comprise the high-gamma frequency component and/or the local
field potentials. The high-gamma frequency component is a high-gamma frequency range of
the signals associated one or more of the spatiotemporal movements of a vocal tract
articulator t. In some embodiments, the high-gamma frequency range ranges from 70-200 Hz
(e.g. 70-75 Hz, 75-80 Hz, 80-85 Hz, 95-90 Hz, 90-95 Hz, 95-100 Hz, 100-105 Hz, 105-110
Hz, 110-115 Hz, 115-120 Hz, 120-125 Hz, 125-130 Hz, 130-135 Hz, 135-140 Hz, 140-145
Hz, 145-150 Hz, 150-155 Hz, 155-160 Hz, 160-165 Hz, 165-170 Hz, 170-175 Hz, 175-180
Hz, 180-185 Hz, 185-190 Hz, 190-195 Hz, or 195-200 Hz). In some embodiments, the high-
gamma frequency range ranges from 70-150 Hz.

[0043] In some embodiments, the signals are detected using at least three electrodes

operably coupled to the speech motor cortex of the subject. By “operably coupled” is meant
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that one or more electrodes are of a suitable type and position so as to detect the desired
signals in the speech motor cortex associated with one or more of the spatiotemporal
movements of a vocal tract articulator. According to one embodiment, the one or more
electrodes are operably coupled to the speech motor cortex by implantation on the surface of
the speech motor cortex. In one aspect, an array of electrocorticography electrodes (ECoG
array) is disposed on the surface of the speech motor cortex (e.g., the vSMC) for detection of
neural signals (e.g., local field potentials and/or high gamma frequency signals) generated in
the speech motor cortex. In some embodiments, the neural signals comprise local field
potentials generated in the speech motor cortex. In some embodiments, the signals comprise
high gamma frequency signals (e.g. 70-200 Hz) generated in the speech motor cortex. In
some embodiments, the signals comprise spectral features of the neural signals. In some
embodiments, the spectral features are Mel-frequency cepstral coefficients (MFCCs)
extracted from the speech waveform (e.g. local field potentials generated in the speech motor
cortex). According to certain embodiments, the one or more electrodes are operably coupled
to the speech motor cortex by insertion of the electrodes into the speech motor cortex (e.g.,
at a desired depth). According to certain embodiments, the ECoG electrode array is
implantable. According to certain embodiments, the ECoG electrode array is implanted
directly on the surface of the brain.

[0044] An array may include, for example, about 5 electrodes or more, e.g., about 5 to
10 electrodes, about 10 to 20 electrodes, about 20 to 30 electrodes, about 30 to 40 electrodes,
about 40 to 50 electrodes, about 50 to 60 electrodes, about 60 to 70 electrodes, about 70 to
80 electrodes, about 80 to 90 electrodes, about 90 to 100 electrodes, about 100 to 125
electrodes, about 125 to 150 electrodes, about 150 to 200 electrodes, about 200 to 250
electrodes, about 250 to 300 electrodes (e.g., a 256 electrode array in 16x16 format), about
300 to 400 electrodes, about 400 to 500 electrodes, or about 500 electrodes or more. In some
embodiments, the array includes a 256 electrode array in 16x16 format. In certain
embodiments, the array may cover a surface area of about lecm?, about 1 to 10 cm?, about 10
to 25 cm?, about 25 to 50 cm?, about 50 to 75 cm?, about 75 to 100 cm?, or 100 cm? or more.
Arrays of interest may include, but are not limited to, those described in U.S. Patent Nos.
USD565735; USD603051; USD641886; and USD647208; the disclosures of which are
incorporated herein by reference.

[0045] The specific location at which to position an electrode may be determined by
identification of anatomical landmarks in the subject’s brain, such as the pre-central and

post-central gyri and the central sulcus. For example, in some embodiments, the location of
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the electrode is at or near the precentral and/or postcentral gyri that has distinguishable high
gamma activity during speech production were selected Identification of anatomical
landmarks in a subject’s brain may be accomplished by any convenient means, such as
magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), and
visual inspection of a subject’s brain while undergoing a craniotomy. Once a suitable
location for an electrode is determined, the electrode may be positioned (e.g., implanted)
according to any convenient means. Suitable locations for positioning or implanting the at
least three electrodes may include, but are not limited to, one or more regions of the ventral
sensorimotor cortex (vSMC), including the pre-central gyrus, the post-central gyrus, the
guenon (the gyral area directly ventral to the termination of the central sulcus), the superior
temporal gyrus (STGQG), the inferior frontal gyrus (IFG), and any combination thereof.
Correct placement of the at least three electrodes may be confirmed by any convenient
means, including visual inspection or computed tomography (CT) scan. In some aspects,
after electrode positions are confirmed, they may be superimposed on a surface
reconstruction image of the subject's brain. In certain aspects, the electrodes are positioned
such that the ECoG signals are detected from one or more regions of the vSMC, e.g., the
ECoG signals are detected from a region of the vSMC selected from the pre-central gyrus,
the post-central gyrus, the guenon, STG, IFG, and combinations thereof.

[0046] Methods of interest for positioning electrodes further include, but are not limited
to, those described in U.S. Patent Nos. 4,084,583; 5,119,816; 5,291,888; 5,361,773;
5.479,934; 5,724,984; 5,817,029; 6,256,531; 6,381,481; 6,510,340; 7,239,910; 7,715,607,
7,908,009; 8,045,775; and 8,019,142; the disclosures of which are incorporated herein by
reference in their entireties for all purposes.

[0047] The number of electrodes operably coupled to the speech motor cortex may be
chosen so as to provide the desired resolution and information about the neural signals being
generated in the speech motor cortex.

[0048] In some embodiments, the method includes generating a speech pattern signal in
response to the physiological feature signal. In some embodiments, the speech pattern signal
comprises a combination of phonological, physiological, and acoustic signals. In some
embodiments, the method includes outputting speech that is based on the speech pattern
signal. In some embodiments, the speech pattern signal is outputted as auditory speech or as
text. In some embodiments, the auditory speech can be sounds of one or more syllables,

words, parts of words, phrases, utterances, paragraphs, sentences, and/or a combination
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thereof. In some embodiments, the text includes one or more syllables, words, parts of
words, phrases, utterances, paragraphs, sentences, and/or a combination thereof.

[0049] Aspects of the present disclosure include methods comprising: acquiring one or
more of: a linguistic signal; and an acoustic signal; associating a physiological feature with
the linguistic or acoustic signal; generating a speech pattern signal in response to the
physiological feature; and outputting speech that is based on the speech pattern signal. In
some embodiments, the phonological level describes the signal in terms of phonemes,
syllables and their properties. In some embodiments, the acoustic signal comprises a
continuous time domain or spectrotemporal representation of the acoustic resonances as
produced, e.g. by a subject.

[0050] Speech communication process is cognitively symbolic (i.e., lexical and
phonological) within the speaker and the listener, the underlying phonological string uttered
by a speaker is realized and executed as a continuous motor sequence where the ventral
sensorimotor cortex mediates the coarticulated, multi-articulator spatiotemporal movements
of the vocal tract articulators. These physiological movements add higher order resonances to
the acoustic source of air expelled through vibrating vocal cords. The resulting acoustic signal
is then perceived by the listener in the auditory cortex in terms of the phonetic features of the
incoming acoustic stream.

[0051] In some embodiments, the linguistic signal is a lexical signal. In some
embodiments, the linguistic signal is a phonological signal.

[0052] In some embodiments, associating a physiological feature with the linguistic or
acoustic signal comprises associating the linguistic or acoustic signal with the spatiotemporal
movement of the vocal tract articulator. In some embodiments, associating a physiological
feature with the linguistic or acoustic signal comprises associating the linguistic or acoustic
signal with a spatiotemporal movement of a vocal tract articulator. In some embodiments,
associating a physiological feature with an acoustic signal includes associating the acoustic
signal with the spatiotemporal movement of the vocal tract articulator. As described above,
examples of the vocal tract articulator can include the upper lip, lower lip, lower incisor,
tongue tip, tongue blade, tongue dorsum, and/or larynx. In some embodiments, the vocal
tract articulator is within the oropharyngeal and nasal cavity.

[0053] In some embodiments, the method comprises measuring the caudo-rostral
displacements of one or more of the vocal tract articulators. In some embodiments, the

method comprises measuring the caudo-rostral displacements of one or more of the vocal
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tract articulators associated with consonant constriction. In some embodiments, the
consonant is plosive, lateral, fricative, or nasal.

[0054] In some embodiments, associating a physiological feature with the linguistic or
acoustic signal further comprises detecting one or more signals from the brain; and
associating the brain signals to one or more spatiotemporal movements of the vocal tract
articulator. In some embodiments, the signals are detected from the ventral sensorimotor
cortex of the brain.

[0055] In some embodiments, the method includes generating a speech pattern signal in
response to the physiological feature signal. In some embodiments, the method includes
outputting speech that is based on the speech pattern signal. In some embodiments, the
speech pattern signal is outputted as auditory speech or as text. In some embodiments, the
auditory speech can be sounds of one or more syllables, words, parts of words, phrases,
utterances, paragraphs, sentences, and/or a combination thereof. In some embodiments, the
text comprises one or more syllables, words, parts of words, phrases, utterances, paragraphs,
sentences, and/or a combination thereof.

[0056] In some embodiments, the method comprises measuring the caudo-rostral
displacements of one or more of the vocal tract articulators.

[0057] In some embodiments, comprises measuring the caudo-rostral displacements of
one or more of the vocal tract articulators associated with consonant constriction. In some

embodiments, the consonant is plosive, lateral, fricative or nasal.

[0058] In some embodiments, the spatiotemporal movement of a vocal tract articulator is
measured by EMA.
[0059] In some embodiments, associating a physiological feature with the linguistic or

acoustic signal further comprises: detecting one or more signals from the brain; and
associating the brain signals to one or more spatiotemporal movements of a vocal tract
articulator. In some embodiments, the signals are detected from the ventral sensorimotor
cortex of the brain.

[0060] Phonemes by definition are segmental, perceptually defined, discrete units of
sound. By “speech output” is meant a phonetic component of a word (e.g., a phoneme, a
formant (e.g., formant acoustics of a vowel(s)), a diphone, a triphone, a syllable (such as a
consonant-to-vowel transition (CV)), two or more syllables, a word (e.g., a single-syllable or
multi-syllable word), a phrase, a sentence, or any combination of such speech sounds. The
term “phoneme”, used in its conventional sense to refer to segmental, perceptually defined,

discrete units of sound.
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[0061] In certain aspects, the speech sound includes speech information such as
formants (e.g., spectral peaks of the sound spectrum | P(f) | of the voice) and pitch (e.g., how
“high” or “low” the speech sound is depending on the rate of vibration of the vocal chords)
which are encoded in the speech production signals and capable of being decoded from the
detected speech production signals and/or patterns thereof. For example, with respect to
formants, the speech production signals (e.g., vSMC activity) correlate to the acoustic
parameters of different vowels, as well as different renditions of the same vowel.

[0062] Deriving a speech pattern signal in response to the physiological feature may be
performed using any suitable approach. For example, the speech pattern signals may be
generated for a desired duration of time by associating one or more signals from the brain with
the physiological feature or physiological feature signal as measured by EMA that is
associated with a spatiotemporal movement of a vocal tract articulator or with a linguistic or
acoustic signal.

[0063] Multichannel population neural signals (e.g. one or more brain signals) may be
analyzed using methods including, but not limited to, general linear regression, correlation,
linear quadratic estimation (Kalman-Bucy filter), dimensionality reduction (e.g., principal
components analysis), clustering, pattern classification, and combinations thereof.

[0064] According to certain embodiments, method can be used for a subject that have a
speech impairment or inability to communicate. Subjects of interest include, but are not
limited to, subjects suffering from paralysis, locked-in syndrome, Lou Gehrig’s disease,
aphasia, dysarthria, stuttering, laryngeal dysfunction/loss, vocal tract dysfunction, and the like.

[0065] In certain aspects, the methods of the present disclosure further include producing
the speech sound in audible form (e.g., through a speaker), displaying the speech sound in text

format (e.g., on a display), or both.

Methods — Speech synthesis Decoding

[0066] Provided are methods of decoding speech from the brain of a subject. The methods
include decoding neural signals detected from electrodes operably coupled to the speech motor
cortex of an individual and extracting speech-related features from the neural signals when an
individual is intended to produce a speech output in order to decode the intended speech output
from the neural signals. The methods further include decoding articulatory movement features
from one or more features of the neural signals into acoustic signals and decoding the acoustic
signals into a speech output. The methods further include decoding auditory perceived speech

or verbal produced speech in an individual into one or more syllables, words, parts of words,
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phrases, utterances, paragraphs, sentences, and/or a combination thereof. Speech decoding
systems and devices for practicing the subject methods are also provided.

[0067] Aspects of the present disclosure include a method of decoding speech events in
an individual. In some embodiments, the method includes extracting speech-related features
from a plurality of signals from the brain of an individual when the individual is intended to
produce a speech output; and decoding with one or more decoding constraints the intended
speech output from the plurality of signals.

[0068] In some embodiments, silent speech comprises making mouthing movements
without producing an audible sound.

[0069] Intended speech can include “perceived” or “attempted” speech production and is
used interchangeably herein. In some embodiments, context priors can be used to for decoding
perceived or produced speech. Non-limiting examples of “perceived” speech can include
predicted speech before a speech output is produced from the vocal tract in the individual.
Non-limiting examples of “perceived” speech can include attempted speech before a speech
output is produced from the vocal tract in the individual. In some embodiments, the methods
of the present disclosure provide for decoding predicted speech output before a produced
speech output. In some embodiments, the methods of the present disclosure provide for
decoding predicted speech output at approximately five seconds or more, approximately ten
seconds or more, approximately thirty seconds or more, approximately forty seconds or more,
approximately fifty seconds or more, approximately one minute or more, approximately two
minutes or more, approximately three minutes or more, approximately four minutes or more,
or approximately five minutes or more before a produced speech output. In some
embodiments, the methods of the present disclosure provide for decoding predicted speech
output at five seconds or more, ten seconds or more, twenty seconds or more, thirty seconds
or more, forty seconds or more, fifty seconds or more, one minute or more, two minutes or
more, three minutes or more, four minutes or more, or five minutes or more before a produced
speech output. In some embodiments, “produced” speech comprises one or more syllables,
words, parts of words, phrases, utterances, paragraphs, parts of paragraphs, sentences, parts of
sentences, and/or a combination thereof that produce an audible sound. In some embodiments,
the methods of the present disclosure provide for decoding a produced speech output at
approximately five seconds or more, approximately ten seconds or more, approximately
twenty seconds or more, approximately thirty seconds or more, approximately forty seconds
or more, approximately fifty seconds or more, approximately one minute or more,

approximately two minutes or more, approximately three minutes or more, approximately four
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minutes or more, or approximately five minutes or more after a produced speech output. In
some embodiments, the methods of the present disclosure provide for decoding a produced
speech output at five seconds or more, ten seconds or more, thirty seconds or more, forty
seconds or more, fifty seconds or more, one minute or more, two minutes or more, three
minutes or more, four minutes or more, or five minutes or more after a produced speech output.

[0070] Aspects of the present disclosure further include methods of decoding auditory
perceived speech or verbal produced speech in an individual, the method comprising:
contacting an electrode array with the cortical region of the brain in the individual; conducting
speech perception training on the individual, wherein speech perception training comprises
listening to pre-recorded questions; conducting speech production training on the individual,
wherein speech production training comprises reading one or more answers on a screen;
conducting speech testing on the individual, wherein speech testing comprises listening to pre-
recorded questions and responding verbally with answers to the pre-recorded questions;
recording a time-aligned audio of the speech perception training, speech production training,
and speech testing on the individual; recording neurophysiological signals; analyzing the
neurophysiological signals in the cortical region of the brain; and decoding the
neurophysiological signals into a speech output.

[0071] In some embodiments, the methods of the present disclosure comprise generating
decoding constraints by conducting one or more external context-related cues. In some
embodiments, the one or more external context-related cues includes listening to one or more
questions. In some embodiments, the one or more questions are pre-recorded questions. In
some embodiments, the one or more external context-related cues comprises reading one or
more answers on a screen. In some embodiments, the one or more external context-related
cues comprises reading aloud one or more syllables, words, parts of words, phrases, utterances,
paragraphs, sentences, and/or a combination thereof. In some embodiments, the one or more
external context-related cues comprises reading, aloud, one or more scripts. In some
embodiments, the one or more external context-related cues comprises verbally producing a
set of answer responses after listening to the one or more questions. In some embodiments,
the one or more external context-related cues comprises reading one or more answers on a
screen. In some embodiments, the one or more external context-related cues comprises
responding to one or more questions. In some embodiments, responding to one or more
questions comprises a verbal response. In some embodiments, responding to one or more
questions comprises a silently mimed response. In some embodiments, the one or more

external context-related cues comprises silently mimed speech. In some embodiments, the one
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or more external context-related cues comprises silently miming one or more syllables, words,
parts of words, phrases, utterances, paragraphs, sentences, and/or a combination thereof by
making the kinematic movements of a verbal response but without making sound. In some
embodiments, the kinematic movements during the silently mimed speech is recorded (e.g. in
the form of acoustic signals). In some embodiments, the kinematic movements are correlated
with recorded acoustic signals. In some embodiments, the one or more external context-related
cues comprises a verbal response. In some embodiments, the verbal response is a sound. In
some embodiments, the sound is selected from the group consisting of: a phoneme, formant
acoustics of a vowel, a diphone, a triphone, a consonant-vowel transition, a syllable, a word,
a phrase, a sentence, and combinations thereof.

[0072] In some embodiments, the data produced (e.g. neural signals, optical signals, audio
recordings) from the one or more external context-related cues serve as input to train speech
detection and decoding models of the present disclosure.

[0073] Aspects of the present disclosure include detecting a plurality of
neurophysiological signals from the cortical region of the brain. In some embodiments, the
plurality of neurophysiological signals are neural signals. In some embodiments, the plurality
of neurophysiological signals are optical signals. In some embodiments, the
neurophysiological signals are acquired by contacting 1 or more electrodes, 2 or more
electrodes, or 3 or more electrodes that detect the plurality of signals with at least one region
of the brain. In some embodiments, the neurophysiological signals are acquired by contacting
50 or more electrodes, 100 or more electrodes, 150 or more electrodes, 200 or more electrodes,
250 or more electrodes, or 300 or more electrodes that detect the plurality of signals with at
least one region of the brain. In some embodiments, the at least one region of the brain
comprises the speech motor cortex of the brain.

[0074] The neurophysiological signals are detected using at least three electrodes operably
coupled to the speech motor cortex of the subject. By “operably coupled” is meant that one
or more electrodes are of a suitable type and position so as to detect the desired
neurophysiological signals in the speech motor cortex related to a speech event. According to
one embodiment, the one or more electrodes are operably coupled to the speech motor cortex
by implantation on the surface of the speech motor cortex. In one aspect, an array of
electrocorticography electrodes (ECoG array) is disposed on the surface of the speech motor
cortex (e.g., the vSMC) for detection of ECoG neural signals (e.g., local field potentials)
generated in the speech motor cortex. In some embodiments, the method comprises extracted

speech-related features from the neural or optical signals. In some embodiments, the speech-
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related features comprise local field potentials generated in the speech motor cortex. In some
embodiments, the speech-related features comprise high gamma frequency signals (e.g. 70-
200 Hz) generated in the speech motor cortex. In some embodiments, the speech-related
features comprise spectral features of the neural signals. In some embodiments, the spectral
features are Mel-frequency cepstral coefficients (MFCCs) extracted from the speech
waveform (e.g. local field potentials generated in the speech motor cortex). According to
certain embodiments, the one or more electrodes are operably coupled to the speech motor
cortex by insertion of the electrodes into the speech motor cortex (e.g., at a desired depth).
According to certain embodiments, the neurophysiological electrode array is implantable.
According to certain embodiments, the neurophysiological electrode array is implanted
directly on the surface of the brain.

[0075] The specific location at which to position an electrode may be determined by
identification of anatomical landmarks in the subject’s brain, such as the pre-central and post-
central gyri and the central sulcus. Identification of anatomical landmarks in a subject’s brain
may be accomplished by any convenient means, such as magnetic resonance imaging (MRI),
functional magnetic resonance imaging (fMRI), and visual inspection of a subject’s brain
while undergoing a craniotomy. Once a suitable location for an electrode is determined, the
electrode may be positioned (e.g., implanted) according to any convenient means. Suitable
locations for positioning or implanting the at least three electrodes may include, but are not
limited to, one or more regions of the ventral sensorimotor cortex (vSMC), including the pre-
central gyrus, the post-central gyrus, the guenon (the gyral area directly ventral to the
termination of the central sulcus), the superior temporal gyrus (STG), the inferior frontal gyrus
(IFG), and any combination thereof. Correct placement of the at least three electrodes may be
confirmed by any convenient means, including visual inspection or computed tomography
(CT) scan. In some aspects, after electrode positions are confirmed, they may be superimposed
on a surface reconstruction image of the subject's brain. In certain aspects, the electrodes are
positioned such that the neurophysiological signals are detected from one or more regions of
the vSMC, e.g., the neurophysiological signals are detected from a region of the vSMC
selected from the pre-central gyrus, the post-central gyrus, the guenon, STG, IFG, and
combinations thereof.

[0076] Methods of interest for positioning electrodes further include, but are not limited
to, those described in U.S. Patent Nos. 4,084,583; 5,119,816; 5,291,888; 5,361,773;
5,479,934; 5,724,984; 5,817,029; 6,256,531; 6,381,481; 6,510,340; 7,239,910; 7,715,607;
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7,908,009; 8,045,775; and 8,019,142; the disclosures of which are incorporated herein by
reference in their entireties for all purposes.

[0077] The number of electrodes operably coupled to the speech motor cortex may be
chosen so as to provide the desired resolution and information about the neurophysiological
neural signals being generated in the speech motor cortex during one or more external context-
related cues, as each electrode may convey information about the activity of a particular region
(e.g., the vSMC, STG, or IFG as described in the examples below). By comparing differences
between the signals of each electrode, neurophysiological neural signal patterns may be
derived from the neural signals, or which electrodes responsive to the speech perception or
speech production.

[0078] Accordingly, in certain embodiments, at least 10 electrodes (e.g., at least 20
electrodes) are employed. Between about 3 and 1024 electrodes, or more, may be employed.
In some embodiments, the number of electrodes positioned is about 3 to 10 electrodes, about
10 to 20 electrodes, about 20 to 30 electrodes, about 30 to 40 electrodes, about 40 to 50
electrodes, about 60 to 70 electrodes, about 70 to 80 electrodes, about 80 to 90 electrodes,
about 90 to 100 electrodes, about 100 to 110 electrodes, about 110 to 120 electrodes, about
120 to 130 electrodes, about 130 to 140 electrodes, about 140 to 150 electrodes, about 150 to
160 electrodes, about 160 to 170 electrodes, about 170 to 180 electrodes, about 180 to 190
electrodes, about 190 to 200 electrodes, about 200 to 210 electrodes, about 210 to 220
electrodes, about 220 to 230 electrodes, about 230 to 240 electrodes, about 240 to 250
electrodes, about 250 to 300 electrodes (e.g., a 16x16 array of 256 electrodes), about 300 to
400 electrodes, about 400 to 500 electrodes, about 500 to 600 electrodes, about 600 to 700
electrodes, about 700 to 800 electrodes, about 800 to 900 electrodes, about 900 to 1000
electrodes, or about 1000 to 1024 electrodes, or more. The electrodes may be homogeneous
or heterogeneous.

[0079] Electrodes may be arranged in no particular pattern or any convenient pattern to
facilitate detection of neural signals. For example, a plurality of electrodes may be placed in
a grid pattern, in which the spacing between adjacent electrodes is approximately equivalent.
Such spacing between adjacent electrodes may be, for example, about 2.5 cm or less, about 2
cm or less, about 1.5 cm or less, about 1 cm or less, about 0.5cm or less, about 0.1 cm or less,
or about 0.05 cm or less. Electrodes placed in a grid pattern may be arranged such that the
overall plurality of electrodes forms a roughly geometrical shape. In certain embodiments, a
grid pattern may be roughly square in overall shape, roughly rectangular, roughly trapezoidal,

or roughly oval in shape, or roughly circular.
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[0080] Electrodes may be pre-arranged into an array, such that the array includes a
plurality of electrodes that may be placed on or in a subject’s brain. Such arrays may be
miniature- or micro-arrays, a non-limiting example of which may be a miniature
neurophysiological array (e.g. ECoG array, microelectrode array, electroencephalography
(EEG), array). For a general review of ECoG technology, see Ajmone-Marsan, C.
Electrocorticography: Historical Comments on its Development and the Evolution of its
Practical Applications, Electroencephalogr. Clin. Neurophysiol, Suppl. 1998, 48: 10-16; the
disclosure of which is incorporated herein by reference.

[0081] Also of interest are electrodes that may receive electroencephalography (EEG)
data. One or more wet or dry EEG electrodes may be used in practicing the subject methods.
Electrodes and electrode systems of interest further include, but are not limited to, those
described in U.S. Patent Publication Numbers 2007/0093706, 2009/0281408, 2010/0130844,
2010/0198042, 2011/0046502, 2011/0046503, 2011/0046504, 2011/0237923, 2011/0282231,
2011/0282232 and U.S. Patents 4,709,702, 4967038, 5038782, 6154669; the disclosures of
which are incorporated herein by reference.

[0082] An array may include, for example, about 5 electrodes or more, e.g., about 5 to 10
electrodes, about 10 to 20 electrodes, about 20 to 30 electrodes, about 30 to 40 electrodes,
about 40 to 50 electrodes, about 50 to 60 electrodes, about 60 to 70 electrodes, about 70 to 80
electrodes, about 80 to 90 electrodes, about 90 to 100 electrodes, about 100 to 125 electrodes,
about 125 to 150 electrodes, about 150 to 200 electrodes, about 200 to 250 electrodes, about
250 to 300 electrodes (e.g., a 256 electrode array in 16x16 format), about 300 to 400
electrodes, about 400 to 500 electrodes, or about 500 electrodes or more. In certain
embodiments, the array may cover a surface area of about lem?, about 1 to 10 cm?, about 10
to 25 cm?, about 25 to 50 cm?, about 50 to 75 cm?, about 75 to 100 cm?, or 100 cm? or more.
Arrays of interest may include, but are not limited to, those described in U.S. Patent Nos.
USD565735; USD603051; USD641886; and USD647208; the disclosures of which are
incorporated herein by reference.

[0083] Electrodes may be platinum-iridium electrodes or be made out of any convenient
material. The diameter, length, and composition of the electrodes to be employed may be
determined in accordance with routine procedures known to those skilled in the art. Factors
which may be weighted when selecting an appropriate electrode type may include but not be
limited to the desired location for placement, the type of subject, the age of the subject, cost,

duration for which the electrode may need to be positioned, and other factors.

23



WO 2020/219371 PCT/US2020/028926

[0084] In certain aspects, an array of electrodes (e.g., an ECoG array, microelectrode
array, EEG array) is positioned on the surface of the speech motor cortex such that the array
covers the entire or substantially the entire region of the speech motor cortex corresponding
to the somatotopic arrangement of articulatory kinematic representations of the subject. For
example, the electrode array may be disposed on the surface of the speech motor cortex from
-100 mm to +100 mm, from -80 mm to +80 mm, from -60 mm to +60 mm, from -40 mm to
+40 mm, or from -20 mm to +20 mm relative to the central sulcus along the anterior-posterior
axis. Alternatively, or additionally, the electrode array may be disposed on the surface of the
speech motor cortex from a location at or proximal to the Sylvian fissure to a distance of 500
mm or less, 400 mm or less, 300 mm or less, 200 mm or less, 100 mm or less, 90 mm or less,
80 mm or less, 70 mm or less, 60 mm or less, 50 mm or less, or 40 mm or less from the Sylvian
fissure along the dorsal-ventral axis. Non-limiting examples of an array and example
positioning thereof can be found in U.S. Patent No. 9,905,239, which is hereby incorporated
by reference in its entirety.

[0085] In certain embodiments, a ground electrode or reference electrode may be
positioned. A ground or reference electrode may be placed at any convenient location, where
such locations are known to those of skill in the art. In certain embodiments, a ground
electrode or reference electrode is a scalp electrode. A scalp electrode may be placed on a
subject’s forehead or in any other convenient location.

[0086] Aspects of the present disclosure comprise detecting a plurality of signals when an
individual is intended to produce a speech output. In some embodiments, the plurality of
signals are acquired by any known neurophysiological recording device. In some
embodiments, the plurality of signals are acquired through optical devices. Optical devices
that can be used to acquire the plurality of signals include, but are not limited to: instrinic
optical signal (IOS) imaging, extrinsic optical signal (EOS) imaging, Doppler flowmetry
(LDF), near-infrared (NIR) spectrometer, functional optical coherence tomography (fOCT),
and surface plasmon resonance (SPR). Other techniques such as radioactive imaging can be
used to acquire the plurality of signals. Non-limiting examples include radioactive imaging of
changes in blood flow, magnetoencephalography (MEG), thermal imaging, positron-emission
tomography (PET), functional magnetic resonance imaging (fMRI), and diffuse optical
tomography (DOT). In some embodiments, the plurality of signals are acquired by
microelectrodes. In some embodiments, the plurality of signals are acquired by ECoG. In
some embodiments, the plurality of signals are acquired by EEG. In some embodiments, the

plurality of signals are acquired by intracranial spike recordings. In some embodiments, the
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plurality of signals are neural signals. In some embodiments, the plurality of signals comprise
local field potentials from the speech motor cortex of the brain. In some embodiments, the
plurality of signals are acquired by functional magnetic resonance imaging (fMRI), blood
oxygen level-dependent (BOLD)-fMRI, diffusion tensor imaging (DTI), manganese-enhanced
MRI (ME-MRI), multiphoton microscopy (MP), magnetoencephalographic imaging (MEGI),
and the like.

[0087] In some embodiments, the method comprises extracting speech-related features
from the neural signals. In some embodiments, extracting speech-related features from the
neural signals comprises filtering the plurality of signals in a high gamma frequency range to
obtain neural signals in the auditory and sensorimotor brain regions. In some embodiments,
plurality of signals are obtained from auditory and sensorimotor brain regions selected from
the vSMC, STG, and IFG. In some embodiments, the plurality of signals comprise the high-
gamma frequency component of the local field potentials. The high-gamma frequency
component of the local field potential is a high-gamma frequency range of the plurality of
signals associated with an intended speech output. In some embodiments, the high-gamma
frequency range ranges from 70-200 Hz (e.g. 70-75 Hz, 75-80 Hz, 80-85 Hz, 95-90 Hz, 90-95
Hz, 95-100 Hz, 100-105 Hz, 105-110 Hz, 110-115 Hz, 115-120 Hz, 120-125 Hz, 125-130 Hz,
130-135 Hz, 135-140 Hz, 140-145 Hz, 145-150 Hz, 150-155 Hz, 155-160 Hz, 160-165 Hz,
165-170 Hz, 170-175 Hz, 175-180 Hz, 180-185 Hz, 185-190 Hz, 190-195 Hz, or 195-200 Hz).
In some embodiments, the high-gamma frequency range ranges from 70-150 Hz. In some
embodiments, the analytic amplitude of the high-gamma frequency component of the local
field potentials was extracted with the Hilbert transform and down-sampled to 200 Hz. In some
embodiments, the plurality of signals comprise a low frequency component (e.g. 1-30 Hz)
extracted with a 5th order Butterworth bandpass filter and parallelly aligned with the high-
gamma amplitude.

[0088] In some embodiments, electrodes for which neural signals are collected are from
electrodes located on cortical areas related to speech, such as the vSMC, STG, and/or IFG.
[0089] In some embodiments, the one or more speech related features comprises the high-
gamma amplitude frequency range that correlated with multi-unit firing rates within the neural
signals. In some embodiments, the high gamma amplitude frequency range comprises the

temporal resolution to resolve fine articulatory movements in the individual.

[0090] In some embodiments, the method further comprises recording acoustic signals
(e.g. audio signals). In some embodiments, the method further comprises translating the

recorded acoustic signals into phonetic transcriptions or text. In some embodiments, the
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method comprises aligning the time of the acoustic signals with one or more external context-
related cues and/or speech events. In some embodiments, recording acoustic signals occurs
during one or more external context-related cues. In some embodiments, the acoustic signals
are recorded as acoustic waveforms. In some embodiments, the acoustic signals are
represented as spectral features with the following parameters: a 25 mel-frequency cepstral
coefficients (MFCCs), and/or 5 sub-band voicing strengths for glottal excitation modelling,
pitch, and voicing (e.g. 32 features). In some embodiments, the acoustic parameters are
configured to emphasize perceptually relevant acoustic features while maximizing audio
reconstruction quality.

[0091] In some embodiments, the method further comprises one or more processors. In
some embodiments, the one or more processors comprises one or more decoders. In some
embodiments, the one or more decoders is configured to decode and/or synthesize neural
signals. In some embodiments, the one or more decoders is configured to decode and/or
synthesize acoustic signals. In some embodiments, the one or more decoders are configured
to synthesize the neural signals into acoustic signals. In some embodiments, neural signals and
acoustic signals are recorded simultaneously. In some embodiments, neural signals and
acoustic signals are recorded simultaneously during one or more external context-related cues.
In some embodiments, the method further comprises assessing and/or computing the spectral
distortion between the recorded acoustic signals and the decoded acoustic signals synthesized
from the neural signals. In some embodiments, the spectral distortion is computed using a
Mel-cepstral distortion (MCD) metric (e.g. as shown in FIG. 15E-15f). The use of Mel-
frequency bands as an acoustic parameter emphasizes the distortion of perceptually relevant
frequency bands of the audio spectrogram.

[0092] In some embodiments, MCD of the synthesized speech is calculated when
compared to original ground-truth audio recordings (e.g. recorded acoustic signals). MCD is
an objective measure of error determined from MFCCs and is correlated to subjective

perceptual judgments of acoustic quality. For reference acoustic features mc®? and decoded

features mc (y),

_ 10 I ON
MCD = s 0<§<25(mcd mc, )= (1)
[0093] In some embodiments, the method comprises quantifying one or more external

context-related cues. In some embodiments, the one or more external context-related cues
comprises silent speech. In some embodiments, the method comprises decoding silent speech.

In some embodiments, the method comprises assessing decoding performance by decoding
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silent speech compared to the audible speech of a word, sentence, and/or paragraph uttered
immediately prior to silent speech. In some embodiments, the method comprises dynamically
time warping the decoded silent speech MFCCs to the MFCCs of the audible condition and
computing Pearson’s correlation coefficient and Mel-cepstral distortion.

[0094] In some embodiments, the method comprises detecting when the individual is
intended to produce a speech output. In some embodiments, said detecting comprises
recording neural signals during one or more external context-related cues. In some
embodiments, said detecting comprises extracting high-gamma amplitude signals and/or low
frequency signals from the raw neural signals of each electrode.

[0095] In some embodiments, the method comprises extracting speech-related features
from the signals and decoding the intended speech output in real-time.

[0096] In some embodiments, the method further comprises timing the individual during
the speech event. In some embodiments, the method further comprises timing the individual
during the one or more external context-related cues. In some embodiments, the decoder
synthesizes one or more external context-related cues based on the kinematic movements (e.g.
articulatory kinematics) of the individual during a speech event and/or one or more external
context-related cues. In some embodiments, the articulatory kinematics are configured to
capture the physiological process by which speech is generated and/or encoded in the speech
motor cortex (e.g. vSMC). In some embodiments where the one or more external context-
related cues comprises silent mimes, the decoder synthesizes silent mimed speech based on
the kinematic movements of the individual during the silent mimes. In some embodiments,
the decoder synthesizes spectral features of silently mimed speech that are never audibly
uttered. In some embodiments, the silently mimed speech is dynamically time-warped
according to spectral features of the acoustic signals.

[0097] In some embodiments, the method further comprises translating the speech events
into phonetic transcriptions or text. In some embodiments, the method comprises comparing
median spectrograms of phonemes from original (e.g. recorded acoustic signals) and decoded
(e.g. acoustic signals decoded from neural signals) audio. In some embodiments, the acoustic
signals decoded from neural signals closely resemble original speech. In some embodiments,
the method further comprises computing phone likelihoods at each time point during the
speech event.

[0098] In some embodiments, decoding comprises predicting time segments of the neural
signals that that are associated with speech events. In some embodiments, the time segment

comprises at least 30 seconds, at least 1 minute, at least 5 minutes, at least 10 minutes, at least
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20 minutes, at least 25 minutes, at least 30 minutes, at least 35 minutes, at least 40 minutes, at
least 50 minutes, at least 55 minutes, or at least 60 minutes of speech.

[0099] In some embodiments, decoding the intended speech output comprises machine
learning algorithms that identify spatiotemporal neural patterns associated with the speech
events. In some embodiments, the machine learning algorithms require speech training data
associated with a speech event. In some embodiments, the machine learning algorithm require
at least 30 seconds, at least 1 minute, at least 5 minutes, at least 10 minutes, at least 20 minutes,
at least 25 minutes, at least 30 minutes, at least 35 minutes, at least 40 minutes, at least 50
minutes, at least 55 minutes, or at least 60 minutes of speech training data. In some
embodiments, the spatiotemporal neural patterns comprise rapid evoked responses in the STG
during the speech events. In some embodiments, decoding the intended speech output
comprises predicting the temporal onsets and offsets of the speech events based on the rapid
evoked responses in the STG.

[00100] In some embodiments, wherein the method further comprises displaying the
decoded speech output. In some embodiments, the speech output is displayed on a screen. In
some embodiments, the speech output is displayed on a screen as one or more syllables, words,
parts of words, phrases, utterances, paragraphs, sentences, and/or a combination thereof. In
some embodiments, the speech output is displayed on a screen as one or more sentences. In
some embodiments, the speech output is displayed on a computer, a tablet computer or smart
phone, or any related computing device. In some embodiments, the tablet computer or
smartphone runs an operating system selected from an iOS™ operating system, an Android™
operating system, a Windows™ operating system, or any other tablet- or smartphone-
compatible operating system.

[00101] Aspects of the present disclosure include a non-transitory computer readable
medium storing instructions that, when executed by one or more processors and/or computing
devices, cause the one or more processors and/or computing devices to perform the steps for
decoding speech events in an individual, as provided herein.

1. Aspects of the present disclosure include a non-transitory computer readable medium storing
instructions that, when executed by one or more processors and/or computing devices, cause
the one or more processors and/or computing devices to perform the steps for decoding
auditory perceived speech or verbal produced speech in an individual, as provided herein.

[00102] In some embodiments, the method of the present disclosure method is carried out
using a receiver unit, comprising: a wireless receiver in communication with a wireless

transmitter that receives the plurality of signals detected from at least three electrodes; one or
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more processors; a non-transient computer-readable medium comprising instructions that,
when executed by the one or more processors, cause the one or more processors to: perform
one or more filters on the plurality of signals; decode the plurality of signals into articulatory
movement representations; and output the plurality of acoustic signals into a speech output.

[00103] In some embodiments, the method comprises filtering the plurality of signals with
one or more filters. In some embodiments, the one or more filters comprises one or more notch
filters. In some embodiments, the one or more filters comprises one or more band-pass finish
impulse response (FIR) filters. In some embodiments, the one or more processors is configured
to extract analytic amplitude values across the one or more band-pass FIR filters applied to
the plurality of signals. In some embodiments, the one or more processors is configured to
average the analytic amplitude values across the one or more band-pass FIR filters to obtain
one or more high gamma analytic amplitude signals (e.g. high gamma frequency range
signals).

[00104] In some embodiments, the one or more processors is configured to normalize and
store the one or more high gamma analytic amplitude signals in an event detector process. In
some embodiments, the event detector process is configured to analyze the high gamma
analytic signals. In some embodiments, the gamma analytic signals are analyzed at one or
more time points to predict the onset and offset of auditory perceived or verbal produced
speech events. In some embodiments, the one or more time points comprises 10 or more ms
time points, 20 or more ms time points, 30 or more ms time points, 40 or more ms time points,
or 50 or more ms time points. In some embodiments, the one or more time points comprises
10 or more ms time points, 50 or more ms timepoints, 100 or more ms time points, 150 or
more ms time ponts, 200 or more time points, 250 or more ms timepoints, 300 or more ms
time points, 350 or more ms time points, 400 ms or more time points, 450 or more ms time
points, or 500 or more ms time points.

[00105] In some embodiments, the one or more processors are configured to decode the
one or more high gamma analytic amplitude signals into the speech output.

[00106] In some embodiments, the one or more processors is a neural decoder. In some
embodiments, the method comprises two or more processors, three or more processors, four
or more processors, or five or more processors. In some embodiments, the one or more
processors comprises a neural decoder comprising a bidirectional long short-term memory
comprising an algorithm for decoding the plurality of acoustic signals into the speech output.
In some embodiments, the one or more processors is one or more (€.g. two or more, three or

more, four or more, or five or more) stacked 3-layer bidirectional long short term memory
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(bLSTM) recurrent neural networks. In some embodiments, a first stacked 3-layer bLSTM is
configured to learn the mapping between time point windows (e.g. 300 ms windows) of high-
gamma and local field potential signals and the corresponding single time point of 32
articulatory features related to movement of the vocal tract. In some embodiments, a second
stacked 3-layer bLSTM is configured to learn the mapping between the output of decoded
articulatory features and 32 acoustic parameters for decoding an intended speech output (e.g.
one or more syllables, words, parts of words, phrases, utterances, paragraphs, sentences,
and/or a combination thereof). In some embodiments, the first and/or second stacked 3-layer
bLSTM is trained with a learning rate of 0.001.

[00107] In some embodiments, the bLSTM decodes speech-related features from the neural
signals. In some embodiments, the speech-related features are articulatory kinematic features
from the neural or optical signals. In some embodiments, the speech-related features comprises
articulatory movement representations. In some embodiments, the one or more processors
decodes the articulatory movement representations into acoustic signals. In some
embodiments, the speech-related features comprises articulatory kinematic features. In some
embodiments, the one or more processors decodes the articulatory kinematic features into
acoustic signals. In some embodiments, the one or more processors decodes the articulatory
movement representations and the articulatory kinematic features into acoustic signals. In
some embodiments, a second bLSTM decodes acoustic features from the speech-related
features of the neural or optical signals. In some embodiments, the bLSTM decodes acoustic
features from the decoded articulatory kinematic features from the neural signals. In some
embodiments, the bLSTM decodes acoustic features from the articulatory movement features.
In some embodiments, the articulatory movement features comprise recorded acoustic signals
during a speech event.

[00108] In some embodiments, the one or more processors comprises an algorithm for
decoding an intended speech output. In some embodiments, the algorithm is an articulatory
kinematics inference model. In some embodiments, the articulatory inference model
comprises a stacked deep encoder-decoder. In some embodiments, the encoder combines
phonological and acoustic representations into a latent articulatory representation that is then
decoded to reconstruct the original acoustic signal during a speech event. In some
embodiments, the latent representation is initialized with inferred articulatory movement from
Electromagnetic Midsagittal Articulography (EMA) and appropriate manner features.

[00109] In some embodiments, the one or more processors comprises a machine learning

algorithm for estimating 32 dimensional articulatory kinematic trajectories (e.g. acoustically
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consequential movements of the vocal tract) using only produced acoustic and phonetic
transcriptions or text. Dimensional articulatory kinematic trajectories are described in Chartier
et al. (Neuron (2018) 98:5, pgs 1042-1054), which is hereby incorporated by reference in its
entirety. In some embodiments, the dimensional articulatory kinematic trajectories are
represented as place manner tuples (representations as continuous binary valued features) that
incorporate physiological aspects in EMA, which include one or more of the tongue blade,
tongue tip, jaw, upper lip, lower lip, velar stop, velar nasal, palatal approximant, palatal
fricative, palatal affricate, labial stop, labial approximant, labial nasal, glottal fricative, dental
fricative, labiodental fricative, alveolar stop, alveolar approximant, alveolar nasal, alveolar
lateral, alveolar fricative, unconstructed, and voicing. In some embodiments, the machine
learning algorithm comprises an existing annotated speech database (Wall Street Journal
Corpus) and trained speaker independent deep recurrent network regression models to predict
the place-manner tuple vectors from the acoustic signal of a speech event.

[00110] In some embodiments, the one or more processors comprises an autoencoder. In
some embodiments, the autoencoder is a recurrent neural network encoder that is trained to
convert phonological and acoustic features to the initialized 32 articulatory representations. In
some embodiments, the one or more processor comprises a decoder, wherein the decoder
converts the articulatory representation back to acoustic signals. In some embodiments, the
one or more processors (e.g. stacked neural network) is re-trained optimizing the joint loss on
acoustic and EMA parameters. After convergence, the encoder is used to estimate the final
articulatory kinematic features that act as the intermediate to decode acoustics from neural
signals.

[00111] In some embodiments, the one or more processors further comprises an
autoencoder configured to convert phonological and acoustic features of the audible speech or
silent speech acoustic signals into one or more articulatory representations. In some
embodiments, the one or more processors further comprises a decoder configured to convert
the one or more articulatory representations to audible speech or silent speech acoustic signals.
In some embodiments, the one or more processors further comprises an encoder configured to
estimate final articulatory kinematic features, wherein the final articulatory kinematic features
are used in an algorithm to decode articulatory movement features from the neural signals.

[00112] In some embodiments, the one or more processors comprises a deep neural network
comprising an algorithm for decoding the audible speech or silent speech acoustic signal as

mel frequency cepstral coefficients. In some embodiments, the deep neural network comprises
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an algorithm for decoding the audible speech or silent speech acoustic signals as 25
dimensional mel frequency cepstral coefficients.

[00113] In some embodiments, the one or more processors comprises a hidden Markov
model based acoustic model configured to perform sub-phonetic alignment.

[00114] In some embodiments, the one or more processors comprises a Kullback-Leibler
(KL) divergence model configured to compare the distribution of a decoded phoneme of the
neural signals to a distribution of a ground-truth phoneme.

[00115] Aspects of the present disclosure further include methods of decoding auditory
perceived speech or verbal produced speech in an individual, the method comprising:
contacting an electrode array with the cortical region of the brain in the individual; conducting
speech perception training on the individual, wherein speech perception training comprises
listening to pre-recorded questions; conducting speech production training on the individual,
wherein speech production training comprises reading one or more answers on a screen;
conducting speech testing on the individual, wherein speech testing comprises listening to pre-
recorded questions and responding verbally with answers to the pre-recorded questions;
recording a time-aligned audio of the speech perception training, speech production training,
and speech testing on the individual; recording neural signals; analyzing the neural signals in
the cortical region of the brain; and decoding the neural signals into a speech output.

[00116] In some embodiments, the method further comprises translating the time-aligned
audio into phonetic transcriptions.

[00117] In some embodiments, the method further comprises determining time points at
which the recorded neural signals is associated with speech perception, speech production,
speech testing, or silence.

[00118] In some embodiments, the method further comprises determining which electrodes
in the electrode array are responsive to the speech perception training, speech production
training, or speech testing.

[00119] In some embodiments, the electrode array comprises 3 or more electrodes.

[00120] In some embodiments, decoding comprises computing speech perception, speech
production, or silence probabilities. In some embodiments, the decoding is computed with one
or more processors as described in the present disclosure. In some embodiments, the method
comprises a non-transient computer-readable medium comprising instructions that, when
executed by the one or more processors, cause the one or more processors to perform its

intended function as disclosed herein.
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[00121] In some embodiments, the methods of the present disclosure include methosd of
decoding intended speech events in an individual, the method comprising extracting speech-
related features from a plurality of signals from the brain of the individual when the individual
is intended to produce a speech output; and decoding, with one or more decoding constraints,
the intended speech output from the plurality of signals. \

[00122] In some embodiments, the plurality of signals comprises neural signals acquired
by electrocorticography (ECoG), electroencephalography (EEG), or microelectrodes.

[00123] In some embodiments, the plurality of signals comprises optical signals, wherein
the optical signals are fast optical signals (FOS) or event-related optical signals (EROS) or
BOLD signals in functional magnetic resonance imaging (fMRI).

[00124] In some embodiments, said acquiring comprises contacting at least three electrodes
that detect the plurality of signals with at least one region of the brain. In some embodiments,
the at least one region of the brain comprises the speech motor cortex of the brain. In some
embodiments, the at least one region of the brain is selected from the sensorimotor cortex
(SMC), superior temporal gyrus (STG), and inferior frontal gyrus (IFG).

[00125] In some embodiments, contacting comprises implantation on the surface of the
speech motor cortex of the brain. In some embodiments, the plurality of signals comprise local
field or action potentials from the at least one region of the brain. In some embodiments, the
plurality of signals comprise the high-gamma frequency or other frequency components of the
local field potentials.

[00126] In some embodiments, the method further comprises detecting when the individual
is intended to produce a speech output.

[00127] In some embodiments, wherein extracting speech-related features from the signals
and decoding the intended speech output occurs in real-time. In some embodiments, where the
one or more external context-related cues comprises listening to pre-recorded questions. In
some embodiments, the one or more external context-related cues comprises reading one or
more answers on a screen. In some embodiments, wherein the one or more external context-
related cues comprises responding to pre-recorded questions. In some embodiments, wherein
responding to pre-recorded questions comprises a verbal response. In some embodiments,
wherein the verbal response is a sound. In some embodiments, wherein the sound is selected
from the group consisting of: a phoneme, formant acoustics of a vowel, a diphone, a triphone,
a consonant-vowel transition, a syllable, a word, a phrase, a sentence, and combinations
thereof. In some embodiments, wherein the one or more external context-related cues

comprises visually responding to pre-recorded questions.
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[00128] In some embodiments, wherein the method further comprises timing the individual
during the speech event. In some embodiments, wherein the one or more external context-
related cues comprises silently mimed speech.

[00129] In some embodiments, wherein the method further comprises translating the
speech events into phonetic transcriptions or text. [n some embodiments, wherein the method
further comprises computing phone likelihoods at each time point during the speech event.

[00130] In some embodiments, wherein said extracting speech-related features comprises
filtering the plurality of signals in a high gamma frequency range to obtain neural signals in
the auditory and sensorimotor brain regions. In some embodiments, wherein the plurality of
signals are obtained from auditory and sensorimotor brain regions selected from the vSMC,

STG, and IFG.

[00131] In some embodiments, wherein the high gamma frequency ranges from 70 to 200
Hz.
[00132] In some embodiments, wherein decoding comprises predicting time segments of

the neural signals that that are associated with speech events. In some embodiments, wherein
the intended speech output is decoded before the produced speech output.

[00133] In some embodiments, wherein the neural signals comprise rapid evoked responses
in the one or more regions in the brain during the speech events.

[00134] In some embodiments, wherein decoding comprises predicting the temporal onsets
and offsets of the speech events based on the rapid evoked responses in the one or more regions
of the brain.

[00135] In some embodiments, wherein the method further comprises displaying the
decoded speech output. In some embodiments, wherein the speech output is displayed on a
screen as one or more words. In some embodiments, wherein the speech output is displayed
On a screen as one Or more sentences.

[00136] In some embodiments, wherein the method is carried out using a receiver unit,
comprising: a receiver (e.g. wireless or non-wireless) in communication with a transmitter that
receives the plurality of signals detected from the at least three electrodes; one or more
processors; a non-transient computer-readable medium comprising instructions that, when
executed by the one or more processors, cause the one or more processors to: perform one or
more filters on the plurality of signals; decode the plurality of signals into articulatory
movement representations; and output the plurality of acoustic signals into a speech output.

[00137] In some embodiments, wherein the one or more processors is a neural decoder. In

some embodiments, wherein the one or more processors decodes the articulatory movement
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representations into acoustic signals. In some embodiments, wherein the one or more filters
comprises one or more notch filters. In some embodiments, wherein the one or more
processors is further configured to stream the plurality of signals onto a computer. In some
embodiments, wherein the one or more filters comprises one or more band-pass finish impulse
response (FIR) filters. In some embodiments, wherein the one or more processors is configured
to extract analytic amplitude values across the one or more band-pass FIR filters applied to
the plurality of signals. In some embodiments, wherein the one or more processors is
configured to average the analytic amplitude values across the one or more band-pass FIR
filters to obtain one or more gamma (e.g. high) analytic amplitude signals. In some
embodiments, wherein the one or more processors is configured to normalize and store the
one or more gamma (e.g. high) analytic amplitude signals. In some embodiments, wherein the
one or more processors comprises an event detector process configured to analyze the gamma
(e.g. high) analytic signals.

[00138] In some embodiments, wherein the gamma (e.g. high) analytic signals are analyzed
at one or more time points to predict the onset and offset of auditory perceived or verbal
produced speech events. In some embodiments, wherein the one or more processors are
configured to decode the one or more high gamma analytic amplitude signals into the speech
output.

[00139] In some embodiments, wherein the neural decoder comprises a bidirectional long
short-term memory recurrent neural network comprising an algorithm for decoding the
plurality of acoustic signals into the speech output.

[00140] Aspects of the present disclosure include a method of decoding auditory perceived
speech or verbal produced speech in an individual, the method comprising: a) contacting an
electrode array with the cortical region of the brain in the individual; b) conducting at least
one of: speech perception training on the individual, wherein speech perception training
comprises listening to a sound; speech production training on the individual, wherein speech
production training comprises reading; speech testing on the individual, wherein speech
testing comprises listening to a sound and responding verbally to the sound; e) recording a
time-aligned audio of the speech perception training, speech production training, and speech
testing on the individual; f) recording a plurality of signals in step b); g) analyzing the neural
signals in the cortical region of the brain; and i) decoding the neural signals into a speech
output.

[00141] In some embodiments, wherein the plurality of signals are neural signals. In some

embodiments, wherein the method further comprises translating the time-aligned audio in step
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e) into phonetic transcriptions or text. In some embodiments, wherein the method further
comprises determining time points at which the recorded neural signals is associated with
speech perception, speech production, speech testing, or silence.

[00142] In some embodiments, the method further comprises determining which electrodes
in the electrode array are responsive to the speech perception training, speech production
training, or speech testing. In some embodiments, the electrode array comprises three or more
electrodes. In some embodiments, decoding comprises computing speech perception, speech

production, or silence probabilities.

SYSTEMS — ENCODING AND DECODING SPEECH USING ARTICULATORY PHYSIOLOGY

[00143] Also provided are systems for performing the methods of the present disclosure.
Such systems include speech communication systems that output speech based on a speech
pattern signal in response to physiological feature signals according to the present disclosure.
In some embodiments, the system comprises a processor comprising memory operably
coupled to the processor, wherein the memory includes instructions stored thereon, which
when executed by the processor, cause the processor to perform one or more of the steps of
the methods of the present disclosure.

[00144] Aspects of the present disclosure include a non-transitory computer readable
medium storing instructions that, when executed by one or more processors and/or
computing devices, cause the one or more processors and/or computing devices to perform
the steps for generating a speech output, as provided herein.

[00145] In some embodiments, the system comprises a processor comprising memory
operably coupled to the processor, wherein the memory includes instructions stored thereon,
which when executed by the processor, cause the processor to receive a physiological feature
signal associated with a spatiotemporal movement of a vocal tract articulator. In some
embodiments, the system comprises a processor comprising memory operably coupled to the
processor, wherein the memory includes instructions stored thereon, which when executed by
the processor, cause the processor to generate a speech pattern signal in response to the
physiological feature signal. In some embodiments, the system comprises an output for putting
speech that is based on the speech pattern signal.

[00146] In some embodiments, the system comprises a processor comprising memory
operably coupled to the processor, wherein the memory includes instructions stored thereon,
which when executed by the processor, cause the processor to receive a physiological feature

signal associated with a spatiotemporal movement of a vocal tract articulator; generate a
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speech pattern signal in response to the physiological feature signal; and an output for
outputting speech that is based on the speech pattern signal.

[00147] In some embodiments, the processor is one or more processors. In some
embodiments, the method comprises two or more processors, three or more processors, four
Or more processors, or five or more processors.

[00148] In some embodiments, the one or more processors comprises bidirectional long-
short term memory (bLSTM). In some embodiments, the bidirectional long-short term
memory comprises algorithm for encoding the physiological feature signal. In some
embodiment, the bLSTM comprises an algorithm for decoding the physiological feature
signal to a speech pattern signal. In some embodiments, the bLSTM comprises an algorithm
for decoding physiological signal to auditory speech. In some embodiments, the bLSM
comprises an algorithm for decoding physiological signal to text.

[00149] In some embodiments, the one or more processors comprises a bidirectional long-
short term memory comprising an algorithm for decoding speech pattern signals in response
to the physiological feature signals, linguistic signals, and/or acoustic signals into an output
for outputting speech that is based on the speech pattern signals, linguistic signals, and/or
acoustic signals associated with a physiological feature. In some embodiments, the one or
more processors is one or more (e.g. two or more, three or more, four or more, or five or
more) stacked 3-layer bLSTM recurrent neural networks. In some embodiments, a first
stacked 3-layer bLSTM is configured to learn the mapping between time point windows (e.g.
300 ms windows) of high-gamma and local field potential signals (e.g. one or more brain
signals) and the corresponding single time point of 32 vocal tract articulators related to
movement of the vocal tract. In some embodiments, a second stacked 3-layer bLSTM is
configured to learn the mapping between the speech output of vocal tract articulators and 32
acoustic parameters for outputting auditory speech or text (e.g. one or more sounds or text of
syllables, words, parts of words, phrases, utterances, paragraphs, sentences, and/or a
combination thereof). In some embodiments, the first and/or second stacked 3-layer bLSTM
is trained with a learning rate of 0.001.

[00150] In some embodiments, the bLSTM generates a speech pattern signal in response to
the physiological feature signal. In some embodiments, the one or more processors encodes
the brain signals associated with one or more spatiotemporal movements of a vocal tract
articulator to generate a physiological feature signal. In some embodiments, the one or more
processors encodes the physiological feature signal into a speech output. In some

embodiments, a second bLSTM encodes acoustic signals. In some embodiments, the bLLSTM
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encodes acoustic features from the physiological features. In some embodiments, the bLSTM
encodes phonological and acoustic signals into a physiological feature signal. In some
embodiments, the physiological feature signal is decoded into a speech pattern signal. In some
embodiments, the bLSTM decodes the physiological feature signal to auditory speech.
[00151] In some embodiments, wherein the processor comprises a deep neural network
(DNN) In some embodiments, the deep neural network comprises algorithm for decoding the
physiological feature signal to a speech pattern signal. In some embodiments, the deep neural
network comprises algorithm for decoding physiological signal to auditory speech. In some

embodiments, the deep neural network comprises algorithm for decoding physiological signal

to text.

[00152] In some embodiments, the system comprises a BLSTM and a deep neural network
(DNN).

[00153] In some embodiments, the deep neural network comprises algorithm for decoding

physiological signal as mel frequency cepstral coefficients (MFCC). The use of Mel-frequency
bands as an acoustic parameter emphasizes the distortion of perceptually relevant frequency
bands of the audio spectrogram.

[00154] In some embodiments, the deep neural network comprises algorithm for decoding
physiological signal as 25 dimensional mel frequency cepstral coefficients.

[00155] In some embodiments, the bLSTM and/or the deep neural network comprises a
encoder-decoder network. In some embodiments, the bLSTM and/or deep neural network is
configured to encode a physiological feature, a phonological feature, and/or a acoustic
features. In some embodiments, the bLSTM and/or deep neural network encodes a
physiological feature, a phonological feature, and/or an acoustic features into a 31 dimensional
feature space. In some embodiments, the bLSTM and/or deep neural network encodes a
physiological feature, a phonological feature, and/or a acoustic features into a 32 dimensional
feature space. In some embodiments, the encoder network is a recurrent network. In some
embodiments, a sequence-to-sequence regression was used with bidirectional LSTM cells to
encode the physiological layer. In some embodiments, a decoder is configured to be trained to
decode from the physiological feature signals to acoustic feature signals, coded as 25
dimensional mel frequency cepstral coefficients. In some embodiments, the decoder comprises
a feedforward network. In some embodiments, the encoder network and the decoder network
are trained individually. In some embodiments, the one or more processors are stacked
together and backpropagated through the whole training data as a single network as illustrated

in FIG. 3.
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[00156] In some embodiments, the processor is configured to provide a mean squared error
on the acoustic signal, and an auxiliary loss function. In some embodiments, the mean squared
error on the EMA displacement traces in the bottleneck layer for which there is groundtruth
data. In some embodiments, the augmented manner features are not included in the cost
function allowing the network to freely change them through the backpropagation training.

[00157] In some embodiments, the physiological feature signal comprises a dataset
associated with spatiotemporal movement of one or more vocal tract articulators. In some
embodiments, the vocal tract articulator is selected from the group consisting of the upper
lip, lower lip, lower incisor, tongue tip, tongue blade, tongue dorsum and larynx. In some
embodiments, the dataset comprises measurements of the caudo-rostral displacements of the
one or more of the vocal tract articulators. In some embodiments, the physiological feature
comprises a electromagnetic midsagittal articulography dataset associated with
spatiotemporal movement of one or more vocal tract articulators.

[00158] In some embodiments, the system comprises memory operably coupled to the
processor wherein the memory includes instructions stored thereon, which when executed by
the processor, cause the processor to: receive one or more signals from the brain; and
associate the brain signals to one or more spatiotemporal movements of a vocal tract
articulator to generate a physiological feature signal; and generate a speech pattern signal in
response to the physiological feature signal.

[00159] In some embodiments, the system comprises electrical leads (e.g. electrodes
and/or electrode arrays) for receiving signals from all or a part of the ventral sensorimotor
cortex of the brain. In some embodiments, wherein the output is configured to output
auditory speech or text. In some embodiments, the output is an audio speaker. In some
embodiments, output is a text generator. In some embodiments, output is a speech generator.

[00160] Aspects of the present disclosure include a system comprising input for receiving
one or more of: a linguistic signal; an acoustic signal; and a processor comprising memory
operably coupled to the processor wherein the memory includes instructions stored thereon,
which when executed by the processor, cause the processor to: associate a physiological
feature with an inputted linguistic or acoustic signal; and an output configured to output a
speech signal in response to the physiological feature.

[00161] In some embodiments, the processor is one or more processors. In some
embodiments, the processor comprises bidirectional long-short term memory. In some
embodiments, the bidirectional long-short term memory comprises algorithm for encoding

the physiological signal associated with the inputted linguistic or acoustic signal.
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[00162] In some embodiments, the processor comprises a deep neural network (DNN). In
some embodiments, the deep neural network comprises algorithm for decoding physiological
signal to a speech signal. In some embodiments, the deep neural network comprises
algorithm for decoding physiological signal to auditory speech. In some embodiments, the
deep neural network comprises algorithm for decoding physiological signal to text. In some
embodiments, the deep neural network comprises algorithm for decoding physiological
signal as mel frequency cepstral coefficients. In some embodiments, the deep neural network
comprises algorithm for decoding physiological signal as 25 dimensional mel frequency
cepstral coefficients.

[00163] In some embodiments, the physiological feature comprises a dataset associated
with spatiotemporal movement of one or more vocal tract articulators.

[00164] In some embodiments, the vocal tract articulator is selected from the group
consisting of the upper lip, lower lip, lower incisor, tongue tip, tongue blade, tongue dorsum
and larynx.

[00165] In some embodiments, the dataset comprises measurements of the caudo-rostral
displacements of the one or more of the vocal tract articulators.

[00166] In some embodiments, the physiological feature comprises a electromagnetic
midsagittal articulography dataset associated with spatiotemporal movement of one or more
vocal tract articulators.

[00167] In some embodiments, the system comprises memory operably coupled to the
processor wherein the memory includes instructions stored thereon, which when executed by
the processor, cause the processor to: receive one or more signals from the brain; and
associate the brain signals to one or more spatiotemporal movements of a vocal tract
articulator to generate a physiological feature signal; and generate a speech pattern signal in
response to the physiological feature signal.

[00168] In some embodiments, the system further comprises electrical leads (e.g.
electrodes and/or electrode arrays) for receiving signals from all or a part of the ventral
sensorimotor cortex of the brain.

[00169] In some embodiments, the output is configured to output auditory speech or text.
In some embodiments, the output is an audio speaker. In some embodiments, the output is a
text generator. In some embodiments, the output is a speech generator.

[00170] In some embodiments, the systems of the present disclosure comprise a
neurotransmitter that detects brain signals associated with one or more spatiotemporal

movements of a vocal tract articulator when operably coupled to the speech motor cortex of
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a subject while the subject imagines producing a speech sound, and a transmitter (e.g., a
wireless transmitter) that transmits the detected speech production signals. The receiver unit
includes: a receiver (e.g., a wireless receiver) in communication with the transmitter that
receives the detected speech production signals; a speech generator, a processor and a
memory (e.g., a non-transitory computer readable medium) that includes instructions which,
when executed by the processor, derive a speech signal pattern from the detected speech
production signals, correlates the speech production signal pattern with a reference speech
signal pattern to decode the speech sound, and communicates the speech sound using the
speech generator.

[00171] As set forth above, systems of the present disclosure include a neurosensor which
includes a transmitter that transmits the detected speech signal patterns. In certain aspects, the
transmitter is a wireless transmitter. Wireless transmitters of interest include, but are not
limited to, WiFi-based transmitters, Bluetooth-based transmitters, radio frequency (RF)-based
transmitters, and the like. The wireless receiver of the receiver unit is selected such that it is
compatible with the wireless format of the wireless transmitter.

[00172] In some embodiments, systems of the present disclosure include a speech
generator. In certain aspects, the speech generator comprises a speaker that produces the
speech sound in audible form. For example, the speaker may produce the speech sound in a
manner that replicates a human voice. Alternatively, or additionally, the speech generator may
include a display that displays the speech sound in text format. According to certain
embodiments, the speech generator includes both a speaker that produces the speech sound in
audible form and a display that displays the speech sound in text format. In certain aspects,
the receiver unit includes a control that enables the subject to toggle between producing the
speech sound in audible form, displaying the speech sound in text format, and both. The
speech generator is capable of generating any of the speech sounds actually or imaginarily
produced by the subject, e.g., a phoneme, a diphone, a triphone, a syllable, a consonant-vowel
transition (CV), a word, a phrase, a sentence, or any combination of such speech sounds. In
certain aspects, the speech generator is capable of generating the formants and/or pitch of the
speech sound(s) actually or imaginarily produced by the subject, e.g., based on information
relating to formants and pitch encoded in the speech production signals and patterns thereof.
For example, speech production signal patterns which include information relating to formants
and pitch may be correlated to reference speech production signal patterns associated with
known formants and pitches (e.g., as established during a training period), and the speech

generator may produce the speech sound (e.g., in audible form or text format) with the
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correlated formants and pitch. Inclusion of the formants and pitch in the speech sound
produced by the speech generator is useful, e.g., to make the speech sound more natural and/or
understandable to those with whom the subject is communicating.

[00173] In certain aspects, the receiver unit is a unit dedicated solely to receiving and
processing speech production signals detected by the neurosensor, deriving and decoding
speech production signal patterns, and the like. In other aspects, the receiver unit is a device
commonly used among the subject’s population which is capable of performing the functions
of the receiver unit. For example, the receiver unit may be a desktop computer, a laptop
computer, a tablet computer, a smartphone, or a TTY device. According to certain
embodiments, the receiver is a tablet computer or smartphone, e.g., a tablet computer or

smartphone which runs an operating system selected from an i0S™

operating system, an
Android™ operating system, a Windows™ operating system, or any other tablet- or
smartphone-compatible operating system.

[00174] Speech communication systems of the subject disclosure may include any
components or functionalities described hereinabove with respect to the subject methods. For
example, the may include the number, types, and positioning of one or more vocal tract
articulators or processors as described above in regard to the methods of the present disclosure
such that speech signals in response to the physiological feature sufficient to are detected and
can be generated into audible speech. Also by way of example, the memory (e.g., a non-
transitory computer readable medium) of the receiving unit may include instructions for
performing time-frequency analysis (e.g., by Fast Fourier Transform (FFT), wavelet
transform, Hilbert transform, bandpass filtering, and/or the like) of speech pattern signals,
physiological feature signals, or acoustic signals can be detected and/or generated.

[00175] In some embodiments, the memory (e.g., a non-transitory memory) includes
instructions for deriving a speech production signal pattern from the detected speech
production signals and correlating the speech production signal pattern with a reference speech
production signal pattern. In certain aspects, the speech production signal pattern is a
spatiotemporal pattern of activity and/or inactivity in regions of the vSMC identified by the
present inventor as corresponding to regions associated with the control of particular speech
articulators. Upon establishment of reference speech production signal patterns (such as the
spatiotemporal signal patterns) corresponding to various speech sounds (e.g., the various
phonemes, syllables (e.g., CVs), words, parts of words, parts of sentences, and the like as
described in detail in the Examples section below) which may be included in the same or a

separate memory, the speech sound produced or imaginarily produced by the subject may be
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decoded by correlating the derived speech production signal pattern(s) to the reference speech
production signal pattern(s). That is, the reference speech production signal pattern that
correlates (e.g., is most similar with respect to the spatiotemporal activity pattern in the vSMC)
to the derived speech production signal pattern may be identified. Upon identification of this
reference speech production signal pattern, the derived speech production signal pattern is
decoded as the speech sound associated with the reference speech production signal pattern,
thereby decoding speech from the brain of the subject. In certain aspects, a decoding algorithm
is trained on recorded data (e.g., a database of reference speech production signal patterns),
stored in the memory, and then applied to novel neural signal inputs for real-time

implementation.

SYSTEMS — SPEECH SYNTHESIS DECODING

[00176] Also provided are systems for performing the methods of the present disclosure.
Such systems include speech decoding systems.

[00177] Aspects of the present disclosure include a system comprising an electrode array
positioned on the brain of an individual; one or more procesors; a non-transient computer-
readable medium comprising instructions that, when executed by the one or more
processors, cause the one or more processors to: record neural signals associated with
cortical activity in the brain; extract one or more neural signals of the brain; and decode a
speech output from the neural signals.

[00178] Aspects of the present disclosure include a speech neural decoding system
comprising an electrode array in contact with the cortical region of the brain in the
individual, wherein the electrode array comprises a plurality of electrodes; an electrical
recording device configured to record neural signals in the brain; one or more processors; a
non-transient computer-readable medium comprising instructions that, when executed by the
processor, cause the one or more processors to: perform one or more filters on the plurality
of signals; decode the plurality of signals into articulatory movement representations; and

output the plurality of acoustic signals into a speech output.

[00179] Aspects of the present disclosure include a speech neural decoding system
comprising:
[00180] an electrode array in contact with the cortical region of the brain in the individual;

one or more processors; a non-transient computer-readable medium comprising instructions
that, when executed by the one or more processors, cause the one or more processors to:
record neural or optical signals associated with cortical activity in the brain; extract one or

more features associated with cortical activity in the brain; decode articulatory movement
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features from the one or more features of the neural signals; decode acoustic signals from the
articulatory movement features, and decode a speech output from the acoustic signals.

[00181] In some embodiments, the neural array comprises a plurality of electrodes. In
some embodiments, the plurality of electrodes comprises 50 or more electrodes, 100 or more
electrodes, 150 or more electrodes, 200 or more electrodes, 250 or more electrodes, 300 or
more electrodes, 350 or more electrodes, 400 or more electrodes, 450 or more electrodes, or
500 or more electrodes.

[00182] In some embodiments, the system comprises an electrical recording device
configured to record neural signals in the brain. In some embodiments, the electrical
recording device is a 16-channel recording device. In some embodiments, the electrical
recording device is a 32-channel recording device. In some embodiments, the electrical
recording device is a 64-channel recording device. In some embodiments, the electrical
recording device is a 128-channel recording device. In some embodiments, the electrical
recording device is an 256-channel recording device. In some embodiments, the electrical
recording device is implantable. In some embodiments, the electrical recording device is
wireless.

[00183] In some embodiments, the electrical recording device is an ECoG recording
device. In some embodiments, the electrical recording device is an EEG recording device. In
some embodiments, the electrical recording device comprises a plurality of microelectrodes.
In some embodiments, the electrical recording device is any known electrical recording
device configured to record a plurality of neural signals in the brain.

[00184] In some embodiments, the system comprises one or more processors. In some
embodiments, the system comprises a non-transient computer-readable medium comprising
instructions that, when executed by the processor, cause the one or more processors to:
perform one or more filters on the plurality of signals; decode the plurality of signals into
articulatory movement representations; and output the plurality of acoustic signals into a
speech output.

[00185] In some embodiments, the plurality of signals comprise ECoG signals or EEG
signals. In some embodiments, the ECoG signals or EEG signals are neural signals.

[00186] In some embodiments, the one or more filters comprises one or more low-pass
filters (e.g. low frequency component ranging from 1-30 Hz). In some embodiments, the one

or more filters comprises one or more notch filters.

44



WO 2020/219371 PCT/US2020/028926

[00187] In some embodiments, neural signals are filtered at a high gamma frequency
ranging from 70 to 200 Hz. In some embodiments, the neural signals are filtered at a low
frequency ranging from 1-30 Hz.

[00188] In some embodiments, the one or more processors is configured to stream the
signals onto a computer, tablet, smartphone, and/or related devices.

[00189] wherein the one or more processors is configured to apply one or more band-pass
finish impulse response (FIR) filters to the neural signals. In some embodiments, the one or
more FIT filters are configured to band-pass the neural signals in one or more different sub-
bands in the high gamma band frequency range. In some embodiments, the one or more
processors is configured to extract analytic amplitude values (e.g. high gamma analytic
amplitude values) across the one or more band-pass FIR filters applied to the neural signals.
In some embodiments, the one or more processors is configured to average the analytic
amplitude values across the one or more band-pass FIR filters to obtain one or more high
gamma analytic amplitude signals.

[00190] In some embodiments, the one or more processors is configured to normalize and
store the one or more high gamma analytic amplitude signals in an event detector process,
wherein the event detector process analyzes the high gamma analytic signals at one or more
time points. In some embodiments, the event detector process is configured to analyze the
high gamma analytic signals at one or more time points to predict the onset and offset of
auditory perceived speech or verbal produced speech events.

[00191] In some embodiments, the one or more processors is configured to decode the
one or more high gamma analytic amplitude signals into an intended speech output.

[00192] In some embodiments, the electrode array is contacted with the cortical region of
the brain. In some embodiments, the electrode array is positioned on a cap that is placed on
the surface of the cortical region of the brain. In some embodiments, said contacting
comprises implanting the electrode array in the cortical region of the brain. In some
embodiments, wherein said contacting comprises operably coupling a neurosensor
comprising the electrode array to the cortical region of the brain.

[00193] In some embodiments, the intended speech output is configured to output text as
one or more syllables, words, parts of words, phrases, utterances, paragraphs, sentences,
and/or a combination thereof.

[00194] Aspects of the present disclosure include a system comprising: an electrode array
positioned on a brain of an individual; one or more processors; a non-transient computer-

readable medium comprising instructions that, when executed by the one or more
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processors, cause the one or more processors to: record and/or detect neural signals
associated with cortical activity in the brain; extract one or more features from the neural
signals of the brain; decode articulatory movement features from the one or more features of
the neural signals; decode acoustic signals from the articulatory movement features; and
decode a speech output from the acoustic signals. In some embodiments, the speech output is
text comprising one or more syllables, words, parts of words, phrases, utterances,
paragraphs, sentences, and/or a combination thereof.

[00195] Aspects of the present disclosure include a system comprising an electrode array
positioned on the brain of an individual; one or more procesors; a non-transient computer-
readable medium comprising instructions that, when executed by the one or more
processors, cause the one or more processors to: record neural signals associated with
cortical activity in the brain; extract one or more neural signals of the brain; and decode a
speech output from the neural signals.

[00196] Aspects of the present disclosure include a speech neural decoding system
comprising an optical device configured to record optical signals from a cortical region of
the brain in the individual; one or more processors; a non-transient computer-readable
medium comprising instructions that, when executed by the processor, cause the one or more
processors to: perform one or more filters on the plurality of signals; decode the plurality of
optical signals into articulatory movement representations; and output the plurality of optical

signals into a speech output.

[00197] Aspects of the present disclosure include a speech neural decoding system
comprising:
[00198] an optical device configured to record optical signals from a cortical region of the

brain in the individual; one or more processors; a non-transient computer-readable medium
comprising instructions that, when executed by the one or more processors, cause the one or
more processors to: record optical signals associated with cortical activity in the brain;
extract one or more features associated with cortical activity in the brain; decode articulatory
movement features from the one or more features of the optical signals; decode optical
signals from the articulatory movement features, and decode a speech output from the optical
signals.

[00199] In some embodiments, the system includes an optical device for configured to
acquire optical signals associated with one or more context-related features. In some
embodiments, the plurality of signals are acquired by any known neurophysiological

recording device. In some embodiments, the plurality of signals are optical signals. In some
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embodiments, the plurality of signals are acquired through optical devices. Optical devices
that can be used to acquire the plurality of signals include, but are not limited to: instrinic
optical signal (IOS) imaging, extrinsic optical signal (EOS) imaging, Doppler flowmetry
(LDF), near-infrared (NIR) spectrometer, functional optical coherence tomography (fOCT),
and surface plasmon resonance (SPR). Other techniques such as radioactive imaging can be
used to acquire the plurality of signals. Non-limiting examples include radioactive imaging
of changes in blood flow, magnetoencephalography (MEG), thermal imaging, positron-
emission tomography (PET), functional magnetic resonance imaging (fMRI), and diffuse
optical tomography (DOT).

[00200] In some embodiments, the one or more processor comprises one or more BLSTM
neural networks. In some embodiments, the one or more bidirectional long short-term
memory comprises an algorithm for decoding articulatory movement features from the
neural or optical signals. In some embodiments, the one or more bidirectional long short-
term memory neural networks comprises an algorithm for decoding the acoustic signals,
neural signals, and/or optical signals into text. In some embodiments, the one or more
bidirectional long short-term memory neural networks comprising an algorithm for decoding
articulatory movement features from the neural signals or optical signals is a first
bidirectional long short-term memory neural network. In some embodiments, the one or
more bidirectional long short-term memory neural networks comprising an algorithm for
decoding the acoustic signals into text is a second neural network. In some embodiments, the
second neural network is a bidirectional long short-term memory neural network. In some
embodiments, the neural signals are electrocorticography (ECoG) neural signals. In some
embodiments, the neural signals are EEG signals.

[00201] In some embodiments, the one or more processors comprises a second neural
network (e.g. bidirectional long short-term memory) comprising an algorithm for decoding
acoustic signals from the articulatory movement features. In some embodiments, the
articulatory movement features comprise kinematic representations of articulation from the
one or more features from the neural or optical signals. In some embodiments, the one or
more processors comprises a second neural network (e.g. bidirectional long short-term
memory)comprising an algorithm for decoding the audible speech and/or silent speech
acoustic signals from the individual.

[00202] In some embodiments, the neural signals are recorded during an audible speech

event, a silent speech event, and/or one or more external context-related cues from the
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individual. In some embodiments, the one or more processors is further configured to record
the audible speech or silent speech signals from the individual.

[00203] In some embodiments, the one or more processors is further configured to record
audible and silent speech signals simultaneously during recording of the neural signals.

[00204] In some embodiments, the one or more features of the neural signals comprises
high-gamma amplitude signals in a frequency ranging from 70-200 Hz. In some
embodiments, the one or more features of the neural signals comprises low frequency
amplitude signals in a frequency ranging from 1-30 Hz.

[00205] In some embodiments, the one or more processors is configured to estimate vocal
kinematic trajectories associated with the audible speech or silent speech signals.

[00206] In some embodiments, the one or more processors further comprises an
autoencoder configured to convert phonological and acoustic features of the audible speech
or silent speech acoustic signals into one or more articulatory representations. In some
embodiments, the one or more processors further comprises a decoder configured to convert
the one or more articulatory representations to audible speech or silent speech acoustic
signals. In some embodiments, the one or more processors further comprises an encoder
configured to estimate final articulatory kinematic features, wherein the final articulatory
kinematic features are used in an algorithm to decode articulatory movement features from
the neural signals.

[00207] In some embodiments, the electrode array is operably connected to the ventral
sensorimotor cortex (vSMC), superior temporal gyrus (STG), and/or the inferior frontal
gyrus (IFG) of the brain.

[00208] In some embodiments, the one or more processors comprises a deep neural
network comprising an algorithm for decoding the audible speech or silent speech acoustic
signal as mel frequency cepstral coefficients. In some embodiments, the deep neural network
comprises an algorithm for decoding the audible speech or silent speech acoustic signals as
25 dimensional mel frequency cepstral coefficients.

[00209] In some embodiments, the one or more processors comprises a hidden Markov
model based acoustic model configured to perform sub-phonetic alignment.

[00210] In some embodiments, the one or more processors comprises a Kullback-Leibler
(KL) divergence model configured to compare the distribution of a decoded phoneme of the
neural signals to a distribution of a ground-truth phoneme.

[00211] Aspects of the present disclosure include a speech neural decoding system

comprising:
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[00212] an electrode array in contact with the cortical region of the brain in the individual,
wherein the electrode array comprises a plurality of electrodes; an electrical recording device
configured to record neural signals in the brain; one or more processors; a non-transient
computer-readable medium comprising instructions that, when executed by the processor,
cause the one or more processors to: perform one or more filters on the plurality of signals;
decode the plurality of signals into articulatory movement representations; and output the

plurality of acoustic signals into a speech output.

[00213] In some embodiments, the one or more filters comprises one or more low-pass
filters.
[00214] In some embodiments, wherein the one or more filters comprises one or more

notch filters.

[00215] In some embodiments, wherein the one or more processors is configured to
stream the signals onto a real-time computer.

[00216] In some embodiments, wherein the neural signals are neural signals.

[00217] In some embodiments, wherein the one or more processors is configured to apply
one or more band-pass finish impulse response (FIR) filters to the neural signals.

[00218] In some embodiments, wherein the one or more FIT filters are configured to
band-pass the ECoG signals in one or more different sub-bands in the high gamma band
frequency range.

[00219] In some embodiments, wherein the one or more processors is configured to
extract analytic amplitude values across the one or more band-pass FIR filters applied to the
neural signals.

[00220] In some embodiments, wherein the one or more processors is configured to
average the analytic amplitude values across the one or more band-pass FIR filters to obtain
one or more high gamma analytic amplitude signals.

[00221] In some embodiments, wherein the one or more processors is configured to
normalize and store the one or more high gamma analytic amplitude signals in an event
detector process, wherein the event detector process analyzes the high gamma analytic
signals at one or more time points.

[00222] In some embodiments, wherein the event detector process analyzes the high
gamma analytic signals at one or more time points to predict the onset and offset of auditory

perceived speech or verbal produced speech events.
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[00223] In some embodiments, wherein the one or more processors is configured to
decode the one or more high gamma analytic amplitude signals into an intended speech
output.

[00224] In some embodiments, wherein said contacting comprises implanting the
electrode array in the cortical region of the brain.

[00225] In some embodiments, wherein said contacting comprises operably coupling a
neurosensor comprising the electrode array to the cortical region of the brain.

[00226] In some embodiments, wherein the intended speech output is configured to
output text as one or more syllables, words, parts of words, phrases, utterances, paragraphs,

sentences, and/or a combination thereof.

[00227] In some embodiments, wherein the neural signals are filtered at a frequency
ranging from 70 to 200 Hz.
[00228] In some embodiments, wherein the one or more processor comprises one or more

bidirectional long short-term memory (BLSTM) or other recurrent neural networks.

[00229] A system comprising: an electrode array positioned on a brain of an individual;
one or more processors; a non-transient computer-readable medium comprising instructions
that, when executed by the one or more processors, cause the one or more processors to:
record neural signals associated with cortical activity in the brain; extract one or more
features from the neural signals of the brain; decode articulatory movement features from the
one or more features of the neural signals; decode acoustic signals from the articulatory

movement features; and decode a speech output from the acoustic signals.

[00230] In some embodiments, wherein the one or more processors comprises a recurrent
neural network (RNN).
[00231] In some embodiments, wherein the RNN is one or more bidirectional long short-

term memory (BLSTM) or other recurrent neural networks.
[00232] In some embodiments, wherein the bidirectional long short-term memory
comprises an algorithm for decoding articulatory movement features from the neural signals.
[00233] In some embodiments, wherein the one or more bidirectional long short-term
memory neural networks comprises an algorithm for decoding the acoustic signals into text.
[00234] In some embodiments, wherein the speech output is text comprising one or more
syllables, words, parts of words, phrases, utterances, paragraphs, sentences, and/or a

combination thereof.
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[00235] In some embodiments, wherein the one or more processors comprises a second
neural network (e.g. bidirectional long short-term memory) comprising an algorithm for
decoding acoustic signals from the articulatory movement features

[00236] In some embodiments, wherein the articulatory movement features comprise

kinematic representations of articulation from the one or more features from the neural

signals.
[00237] In some embodiments, wherein the neural signals are recorded during:
[00238] audible speech from the individual;
[00239] silent or intended speech from the individual; and/or
[00240] a sound heard from the individual.
[00241] In some embodiments, wherein the one or more processors is further configured

to record audible or silent speech signals simultaneously during recording of the neural
signals.

[00242] In some embodiments, wherein the neural signals are electrocorticography
(ECoGQG) neural signals.

[00243] In some embodiments, wherein the one or more features of the neural signals
comprises high-gamma amplitude signals in a frequency ranging from 70-200 Hz.

[00244] In some embodiments, wherein the one or more features of the neural signals
comprises low frequency amplitude signals in a frequency ranging from 1-30 Hz.

[00245] In some embodiments, wherein the one or more processors is further configured
to record the audible speech or silent speech signals from the individual.

[00246] In some embodiments, wherein the one or more processors comprises a second
neural network (e.g. bidirectional long short-term memory) comprising an algorithm for
decoding the audible speech or silent speech acoustic signals from the individual.

[00247] In some embodiments, wherein the one or more processors is configured to
estimate vocal kinematic trajectories associated with the audible speech or silent speech
signals.

[00248] In some embodiments, wherein the one or more processors further comprises an
autoencoder configured to convert phonological and acoustic features of the audible speech
or silent speech acoustic signals into one or more articulatory representations.

[00249] In some embodiments, wherein the one or more processors further comprises a
decoder configured to convert the one or more articulatory representations to audible speech

or silent speech acoustic signals.
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[00250] In some embodiments, wherein the one or more processors further comprises an
encoder configured to estimate final articulatory kinematic features, wherein the final
articulatory kinematic features are used in an algorithm to decode articulatory movement
features from the neural signals.

[00251] In some embodiments, wherein the electrode array is operably connected to the
ventral sensorimotor cortex (vSMC), superior temporal gyrus (STG), and the inferior frontal
gyrus (IFG) of the brain.

[00252] In some embodiments, wherein the one or more processors comprises a deep
neural network comprising an algorithm for decoding the audible speech or silent speech
acoustic signal as mel frequency cepstral coefficients.

[00253] In some embodiments, wherein the deep neural network comprises an algorithm
for decoding the audible speech or silent speech acoustic signals as 25 dimensional mel
frequency cepstral coefficients.

[00254] In some embodiments, wherein the one or more processors comprises a hidden
Markov model based acoustic model configured to perform sub-phonetic alignment.

[00255] In some embodiments, wherein the one or more processors comprises a
Kullback-Leibler (KL) divergence model configured to compare the distribution of a
decoded phoneme of the ECoG signals to a distribution of a ground-truth phoneme.

[00256] A system comprising: an electrode array positioned on a brain of an individual;
one or more processors; a non-transient computer-readable medium comprising instructions
that, when executed by the one or more processors, cause the one or more processors to:
record neural signals associated with cortical activity in the brain; extract one or more
features from the neural signals of the brain; and decode a speech output from the neural
signals.

[00257] In some embodiments, wherein the processor further decodes articulatory
movement features from the one or more features of the neural signals.

[00258] In some embodiments, wherein the processor further decodes acoustic signals

from the articulatory movement features.

UTILITY

[00259] The subject methods and systems find use in any application in which itis desirable
to decode speech from the brain of a subject (e.g., a human subject). Subjects of interest
include those in which the ability to communicate via spoken language is lacking or impaired.

Examples of such subjects include, but are not limited to, subjects who may be suffering from
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paralysis, locked-in syndrome, Lou Gehrig’s disease, aphasia, dysarthria, stuttering, laryngeal
dysfunction/loss, vocal tract dysfunction, and the like. An example application in which the
subject methods and systems find use is providing a speech impaired individual with a speech
communication neuroprosthetic system which detects and decodes speech production signals
and/or patterns thereof from the speech motor cortex of the subject and produces audible
speech and/or speech in text format, enabling the subject to communicate with others without
using speech articulators or writing/typing the speech for display to others. The methods and
systems of the present disclosure also find use in diagnosing speech motor disorders (e.g.,
aphasia, dysarthria, stuttering, and the like). In addition, the subject methods and systems find
use, e.g., in enabling individuals to communicate via mental telepathy.

[00260] In certain aspects, methods and systems of the present disclosure utilize population
neural analyses to decode and/or generate individual speech sounds (phonemes, including
consonants and vowels). These speech sounds are the building block units of human speech.
Phonemes can be concatenated into syllables, words, phrases and sentences to provide the full
combinatorial potential of spoken language. 'This approach based on the natural
neurophysiologic mechanisms of speech production has distinct advantages over present
technologies for, e.g., communication neuroprostheses, which either focus on purely acoustic
parameter control (e.g. formant) or spelling devices, neither of which are robust or efficient

for communication.

EXAMPLES
[00261] As can be appreciated from the disclosure provided above, the present disclosure
has a wide variety of applications. Accordingly, the following examples are put forth so as to
provide those of ordinary skill in the art with a complete disclosure and description of how to
make and use the present invention, and are not intended to limit the scope of what the
inventors regard as their invention nor are they intended to represent that the experiments
below are all or the only experiments performed. Those of skill in the art will readily recognize
a variety of noncritical parameters that could be changed or modified to yield essentially
similar results. Efforts have been made to ensure accuracy with respect to numbers used (e.g.
amounts, temperature, etc.) but some experimental errors and deviations should be accounted

for.

53



WO 2020/219371 PCT/US2020/028926

Example 1: Generative modeling of human speech production using articulatory physiology
[00262] The following presents a framework for analysis and synthesis of speech by

mimicking the generative process of articulatory physiological behavior in human speech
production. The present disclosure reliably estimates the articulatory physiological substrate
from the speech acoustic signal (i.e., the ‘speech motor code’). Computationally, a deep
recurrent encoder decoder architecture is implemented to encode phonological and acoustic
signals into an ‘articulatory physiological embedding’ that decodes the speech acoustics. The
stacked network jointly optimizes the physiological representation and the generated acoustic
signal. The embedding was validated as the true physiological substrate empirically by
showing performance in acoustic-to-articulatory inversion. Additionally, a new generative
text-to-speech system was created that performs the 2-stage conversion of text into a
physiological embedding that is then converted to acoustics. It was shown that enforcing the
physiological intermediate yields better quality synthesis while requiring lesser amount of
training data than is conventionally demanded by current models for speech synthesis.

[00263] The present disclosure provides for speech production datasets based on
Electromagnetic Midsagittal articulography (EMA) and a method for inferring the
physiological substrate for the speech signal and show objective gains of such a representation
in speech synthesis.

Speech Production: Integrating Phonology, Physiology and Acoustics

[00264] Though the speech communication process is cognitively symbolic (i.e., lexical
and phonological) within the speaker and the listener, the underlying phonological string
uttered by a speaker is realized and executed as a continuous motor sequence where the ventral
sensorimotor cortex mediates the coarticulated, multi-articulator spatiotemporal movements
of the vocal tract articulators. These physiological movements add higher order resonances to
the acoustic source of air expelled through vibrating vocal cords. The resulting acoustic signal
is then perceived by the listener in the auditory cortex in terms of the phonetic features of the
incoming acoustic stream

[00265] Speech is conventionally represented at these two ‘observable’ levels of abstraction
— (i) the phonological level which describes the signal in terms of phonemes, syllables and
their properties, and as the (ii) the acoustic signal, a continuous time domain or
spectrotemporal representation of the acoustic resonances as produced by the speaker.
Articulatory physiology is the ‘latent’ process that links these two levels in speech production
(phonology = physiology = acoustics). Since most of the articulatory processes are within

the oropharyngeal and nasal cavity, and happen at rapid time scales, they remain hidden to the
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naked eye or any imaging modality. Existing efforts to assay the articulatory processes
underlying speech production through techniques like X-ray microbeam, Electromagnetic
Midsagittal Articulography, and more recently real time Magnetic Resonance Imaging, offer
a spatially and temporally sparse and incomplete view of the physiological processes making
it hard to model the explicit generative process. Hence conventional ‘acoustic models’ are
predictive distributions of acoustic observations over phonological units. Following
formulation prescribed in, given a training data set of acoustics X and corresponding word
sequences W, the acoustic observation sequence for a given word w is drawn from the

posterior predictive distribution by introducing the auxiliary variable %,

N
RS }5 Pla A, X Wl s j‘ Forka AP, XA {1}
X .

[00266] The two factors are individually optimized for computational tractability, where in

by

the training phase, acoustic model -* is chosen as,

A= arg maxy, P{ALX, W) {(H
= argmax, PIMX, L) P{LW) 3
sequences W are further expanded as a Markov sequences of the phonological states L, that

factors out the dependency on words. Similarly the predictions are made at test time by

)

drawing from P where = argman, P 1w} is the predicted Markov sequence of the
phonetic states. Even as efforts in statistical parametric speech synthesis continue to improve,
they do not approach the naturalness of more concatenative nonparametric strategies. This
statistical paradigm was improved by explicitly including the physiology H as the dependency
that factors the phonology L out of the acoustic model. The graphical model illustration is

given in Fig. 1. Specifically, a refactorization of the acoustic model is provided herein as
A = argmax PONX, HYP{HILYP(LIW) )
A

Pleih X i

and the prediction as a draw from the distribution , where :%is the optimal

physiological description for a given phonological string /

b= argmax PRI &)
h

[00267] The parameters that demonstrated physiology H made the acoustic model A
independent of phonology L, included choosing H that i) was predictable from phonology, to
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maximize P(HIL), and ii) provide a complete account of the acoustic signal, to maximize

e e
Fiwik, Ay

Optimizing H, The Physiological Substrate of the Speech Signal
[00268] An encoder-decoder architecture for a deep network to jointly optimize these
constraints is shown. An aspect of the present disclosure was to learn a physiological
embedding for speech data. Since articulatory physiology is a complex motor behavior with a
many to one mapping between articulation and acoustics, it is important to use actual
physiological data. The Electromagnetic Midsagittal Articulography (EMA) dataset was used
that has parallel recordings of acoustics and displacement traces in caudo-rostral x and y
directions of select points on a subject’s vocal tract as shown in FIG. 1A. For the EMA data,
the displacement traces capture the shaping of the vocal tract and places of articulation. One
property of speech is the manner of consonant constriction, i.e., whether the consonant is a
plosive, lateral, fricative, or nasal etc. An aspect of the present disclosure was to reconstruct
the speech signal with minimal loss, additional manner information was augmented to create
a representation for the speech signal that is has the representational capacity for complete
description of speech. Since manner is manifest in acoustics, manner feature detectors were
trained on existing acoustic speech corpora. These detectors are then run on the EMA subject
to create the manner of articulation feature streams, synchronously with the EMA and the
acoustic data. Specifically, binary feature detectors of place and manner are trained on wall
street journal speech corpus. Additional physiological information about energy and voicing
etc., are also included. Note that while the fundamental frequency FO is certainly
physiological, it is solely caused by the vocal folds and not considered in this study. In all 31
continuous valued features are created for all utterances of the corpus. These features serve as
the initialization for the physiological substrate of the speech signal. FIG. 3 presents an
example utterance along with the spectrogram and the initialized physiological features. The
EMA displacements are real data collected from the articulatory kinematic movements during
this utterance. The manner feature streams are very spare and are invoked only when the
associated manner is evident from the acoustics. Encoder-decoder network architectures can
be used for learning meaningful embeddings in several domains. In order to enable a
physiological encoding, encode phonological features were also encoded along with the
acoustic features into the 31 dimensional feature space. Since physiology is coarticulated both
with carryover and anticipatory coarticulation, it is important for the encoder network to be a

recurrent network. State-of-the-art sequence-to-sequence regression was used with

56



WO 2020/219371 PCT/US2020/028926

bidirectional LSTM cells to encode the physiological layer. Similarly, a decoder was trained
to go from the physiological descriptions to acoustic observations, coded as 25 dimensional
mel frequency cepstral coefficients. Since articulation can causally account for acoustics in
the paradigm provided herein, a strictly feedforward network was used as the decoder. Once
these networks are trained individually, they are stacked together and backpropagated through
the whole training data as a single network as illustrated in FIG. 3.

[00269] Since initialization alone doesn’t ensure that the eventual bottleneck layer ends up
being “physiological”, two loss functions were optimized jointly—i) Mean squared error on
the reconstructed acoustic signal, and an auxiliary loss function i.e., ii) Mean squared error on
the EMA displacement traces in the bottleneck layer for which there is groundtruth data. The
augmented manner features are not included in the cost function allowing the network to freely

change them through the backpropagation training.

Is the embedding truly phvsiological?

[00270] The algorithm provided herein is run on the training set of the mngu0 corpus. Upon
completion of training, unseen utterances were encoded using the stacked network. FIGs. 4A-
4D shows an example test utterance and the outputs of the encoding layer and decoding layers.

[00271] The decoded spectrogram reconstructions of unseen trials are completely
intelligible and have minimal perceptual loss to the original utterances. Furthermore, the
encoded embedding was found to match with very high degree of correlation to the EMA
trajectories of the subjects’ actual productions as can be seen in FIG. 4D, confirming that the
encoder network is embedding a physiological substrate of the actual speech signal. The
augmented manner dimensions change post training, in that they are smoother and relatively
less sparse than initialized, but still adhere to the broad class they were initialized to capture.
The summary statistics of all articulator correlations on test set is shown in table 1 for the

EMA dimensions where ground truth is available is shown in Table 1 of FIG. 5.

A Physiologically Generative Model of Speech Synthesis
[00272] The ability to infer a reliable physiological embedding H lets allowed for
generative modelling of acoustics X, and testing if such an endeavor has any benefits
compared to the traditional acoustics based on phonology L. To investigate this, all training
data from the mnguQ corpus was processed to estimate the physiological embedding using
approaches described earlier. Two models of speech synthesis are compared, i) deep

bidirectional LSTM based network for estimating acoustics from phonological features
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(Traditional TTS) and ii) A similar network to perform the 2-stage process of physiological
substrate from phonological features, followed by conversion of physiology to acoustics.
[00273] To further validate the hypothesis that generative modelling of the causal
physiological process reduced the need for data compared to a completely agnostic but similar
network architecture, performance was reported where only 16 minutes of speech is made
available to the synthesizers. The Mel-Cepstral Distortion, an error metric used to check
goodness of an acoustic model is compared. It can be seen that, indeed imposition of the
physiology factorization is able to give better prediction than a conventional acoustic model
for speech synthesis based only on phonological features. The difference in performance is

more striking when very little amount of training data is presented.

[00274] Provided herein is a generative modelling of the causal physiological processes in
the context of speech production. After reformulating the conventional statistical paradigm for
speech synthesis to explicitly model physiology, an algorithm was developed for inferring the
physiological substrate of the speech signal that was validated on ground truth behavior.
Additionally, the benefit of such a reformulation was shown by gains in statistical speech
synthesis. Physiological modelling can be beneficial to several other speech problems like
voice conversion, articulatory synthesis, speech recognition as it is modelling the very

coarticulatory processes that make acoustic modelling challenging in these applications.

Example 2: Encoding of Articulatory Kinematic Trajectories in Human Speech Sensorimotor

Cortex

[00275] Encoding of articulatory kinematic trajectories in human speech sensorimotor
cortex is shown in Chartier et al., (Chartier et al., (2018) Neuron 98, 1042-1054), which is
hereby incorporated by reference in its entirety.

[00276] Fluent speech production requires precise vocal tract movements. The encoding
of these movements in the human sensorimotor cortex was examined. Neural activity at
individual electrodes encodes diverse movement trajectories that yield the complex
kinematics underlying natural speech production.

[00277] High-density intracranial electrocorticography (ECoG) signals were recorded
while participants spoke aloud in full sentences. Continuous speech production provided for
studying the dynamics and coordination of articulatory movements not well captured during
isolated syllable production. Furthermore, since a wide range of articulatory movements is

possible in natural speech, sentences were used to cover nearly all phonetic and articulatory
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contexts in American English. This approach provided herein allowed characterization of
sensorimotor cortical activity during speech production in terms of vocal tract movements.
[00278] A statistical approach was developed to derive the vocal tract movements from
the produced acoustics. The inferred articulatory kinematics were used to determine the
neural encoding of articulatory movements, in a manner that was model independent and
agnostic to pre-defined articulatory and acoustic patterns used in speech production (e.g.,
phonemes and gestures). By learning how combinations of articulator movements mapped to
electrode activity, articulatory kinematic trajectories (AKTs) were estimated for single
electrodes and characterized the heterogeneity of movements that were represented through

the speech vSMC.

Inferring Articulatory Kinematics

[00279] To estimate the articulatory kinematics during natural speech production, reliable
estimates of vocal tract movements were obtained from only the produced speech acoustics.

[00280] Provided herein is an approach for speaker-independent AAIL The AAI model
was trained using publicly available multi-speaker articulatory data recorded via EMA, a
reliable vocal tract imaging technique well suited to study articulation during continuous
speech production. The training dataset comprised simultaneous recordings of speech
acoustics and EMA data from eight participants reading aloud sentences from the MOCHA-
TIMIT dataset . EMA data for a speech utterance consisted of six sensors that tracked the
displacement of articulators critical to speech articulation (FIG 7A) in the caudorostral (x)
and dorsoventral (y) directions. Laryngeal function was approximated by using the
fundamental frequency (f0) of produced acoustics and whether or not the vocal folds were
vibrating (voicing) during the production of any given segment of speech. In all, a 13
dimensional feature vector described articulatory kinematics at each time point (FIG. 7B).

[00281] Phonological context was incorporated into a deep neural network to capture
context-dependence variance.

[00282] Additionally, training speakers were spectrally warped to sound like the target (or
test) speaker to improve cross-speaker generalizability. With these modifications, the AAI
method provided herein performed markedly better than the current state-of-the-art methods
within the speaker-independent condition and proved to be a reliable method to estimate
articulatory kinematics. Using leave-one-participant-out cross-validation, the mean
correlation of inferred trajectories with ground truth EMA for a held out test participant was

0.68 = 0.11 across all articulators and participants (0.53 correlation reported by Afshan and
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Ghosh, 2015). FIG. 7B shows the inferred and ground truth EMA traces for each articulator
during an example utterance for an unseen test speaker. There was a high degree of
correlation across all articulators between the reference and inferred movements. Figure S1A
shows a detailed breakdown of performance across each of the 12 articulators. To investigate
the ability of AAI method presented herein to infer acoustically relevant articulatory
movements, identical deep recurrent networks were trained to perform articulatory synthesis,
i.e., predicting the acoustic spectrum (coded as 24-dimensional mel-cepstral coefficients and
energy) from articulatory kinematics, for both the real and inferred EMA. It was found on
average that there was no significant difference (p = 0.4; Figures S1B and S1C) in the
resulting acoustic spectrum of unseen utterances when using either the target speaker’s real
EMA or those inferred via from the AAI method. This suggests that the difference between
inferred and real EMA may largely be attributed to kinematic excursions that do not have
significant acoustic effects. Other factors may also include differences in sensor placement,
acquisition noise, and other speaker/recording specific artifacts that may not have acoustic
relevance.

[00283] To further validate the AAI method, how well the inferred kinematics preserved
phonetic structure was evaluated. To do so, the phonetic clustering resulting from both real
and inferred kinematic descriptions of phonemes was analyzed. For one participant’s real
and inferred EMA, a 200-ms window of analysis was constructed around the kinematics for
each phoneme onset. Linear discriminant analysis (LDA) was used to model the kinematic
differences between phonemes from the real EMA data. Both real and inferred EMA data
was projected for phonemes into this two-dimensional LDA space to observe the relative
differences in phonetic structure between real and inferred EMA. It was found that the
phonetic clustering and relative distances between phonemes centroids were largely
preserved (FIG. 7C) between inferred and real kinematic data (correlation r = 0.97 for
consonants and 0.9 for vowels; p < 0.001). Together, these results demonstrate that using
kinematic, acoustic, and linguistic metrics, it is possible to obtain high-resolution

descriptions of vocal tract movements from easy-to-record acoustic data.

Encoding of Articulatory Kinematic Trajectories at Single vSMC Electrodes
[00284] Using AALI vocal tract movements were inferred as traces from EMA sensor
locations (FIG. 7A) while participants read aloud full sentences during simultaneous

recording of acoustic and high-density intracranial ECoG signals. To describe the

relationship between vocal tract dynamics and sensorimotor cortical activity, a trajectory-
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encoding model was used to predict each electrode’s high gamma (70-150 Hz) activity (Z
scored analytic amplitude) as a weighted sum of articulator kinematics over time. Ridge
regression was used to model high gamma activity for a given electrode from time-varying
estimated EMA sensor positions.

[00285] In FIG. 8, for an example electrode (FIG. 8A) it was shown that the weights
learned (FIG. 8C) from the linear model act as a spatiotemporal filter that was then
convolved with articulator kinematics (FIG. 8B) to predict electrode activity (FIG. 8D). The
resulting filters described specific patterns of AKTs (FIG. 8C), which are the vocal tract
dynamics that best explain each electrode’s activity. By validating on held-out data, it was
found that the AKT model significantly explained neural activity for electrodes active during
speech in the vSMC (108 electrodes across 5 participants; mean r = 0.25 £ 0.08 up to 0.5, p
< 0.001) compared to AKT models constructed for electrodes in other anatomical regions (p
< 0.001, Wilcoxon signed-rank test; Figure S7).

[00286] To provide a more intuitive understanding of these filters, the X and Y
coordinates were projected of each trajectory onto a midsagittal schematic view of the vocal
tract (FIG. 8E). Each trace represents a kinematic trajectory of an articulator with a line that
thickens with time to illustrate the time course of the filter.

[00287] For the special case of the larynx, voicing-related pitch modulations were used
that were represented along the y axis with the x axis, providing a time course for
visualization.

[00288] A consistent pattern was observed across articulators in which each exhibited a
trajectory that moved away from the starting point in a directed fashion before returning to
the starting point. The points of maximal movement describe a specific functional vocal tract
shape involving the coordination of multiple articulators. For example, the AKT (FIG. 8E)
for the electrode in FIG. 8A exhibits a clear coordinated movement of the lower incisor and
the tongue tip in making a constriction at the alveolar ridge. Additionally, the tongue blade
and dorsum move frontward to facilitate the movement of the tongue tip. The upper and
lower lips remain open and the larynx is unvoiced. The vocal tract configuration corresponds
to the classical description of an alveolar constriction (e.g., production of /t/, /d/, /s/, /z/,
etc.). The tuning of this electrode to this particular phonetic category is apparent in FIG. 8D,
where both the measured and predicted high gamma activity increased during the
productions /st/, /dis/, and /nz/, all of which require an alveolar constriction of the vocal

tract.
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[00289] While vocal tract constrictions have typically been described as the action of one
primary articulator, the coordination among multiple articulators is critical for achieving the
intended vocal tract shape. For example, in producing a /p/, if the lower lip moves less than
it usually does (randomly, or because of an obstruction), then the upper lip compensates and
lip closure is accomplished. This coordination may arise from the complex and highly
overlapping topographical organization of articulator representation in the vSMC.

[00290] Alternatively, high gamma activity could be related to a single articulator
trajectory with the rest of articulators representing irrelevant correlated movements. To
evaluate these hypotheses, a cross-validated, nested regression model was used to compare
the neural encoding of a single articulator trajectory with the AKT model. Here, one
articulator was referred to as one EMA sensor. The models were trained on 80% of the data
and tested on the remaining 20% data. For each electrode, fit single articulatory trajectory
models were fit using both x and y directions for each estimated EMA sensor and chose the
single articulator model that performed best for the comparison with the AKT model. Since
each single articulator model is nested in the full AKT model, a general linear F-test was
used to determine whether the additional variance explained by adding the rest of the
articulators at the cost of increasing the number of parameters was significant. After testing
each electrode on the data held-out from the training set, it was found that the multi-
articulatory patterns described by the AKT model explained significantly more variance
compared to the single articulator trajectory model (F(280,1,820) > 1.31, p < 0.001 for 96 of
108 electrodes, mean F-statistic = 6.68, p < 0.001, Wilcoxon signed-rank tests; Figure S3;
mean change in R2, 99.55% =+ 8.63%; Figure S4). This means that activity of single
electrodes is more related to vocal tract movement patterns involving multiple articulators
than it is to those of a single articulator.

[00291] One potential explanation for this result is that single electrode neural activity in
fact encodes the trajectory of a single articulator but could appear to be multi-articulatory
because of the correlated movements of other articulators due to the biomechanical
properties of the vocal tract. The structure of correlations were examined among articulators
during periods of high and low neural activity for each speech-active electrode. If the
articulator correlation structures were the same regardless of electrode activity, then the
additional articulator movements would be solely the result of governing biomechanical
properties of the vocal tract. However, it was found that articulator correlation structures
differed according to whether high gamma activity was high or low (threshold at 1.5 SDs) (p

< (0.001 for 108 electrodes, Bonferroni corrected), indicating that in addition to coordination
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due to biomechanical properties of the vocal tract, coordination among articulators was
reflected in changes of neural activity. Contrary to popular assumptions of a one-to-one
relationship between a given cortical site and articulator in the homunculus, these results
demonstrate that, similar to cortical encoding of coordinated movements in limb control,
neural activity at a single electrode encodes the specific, coordinated trajectory of multiple

articulators.

Kinematic Organization of vSMC

[00292] Hierarchical clustering of electrode selectivity patterns was used to reveal the
phonetic organization of the vSMC. Whether clustering based upon all encoded movement
trajectories (i.e., grouping of kinematically similar AKTs) yielded similar organization was
then examined. Because the AKTs were mostly out-and back in nature, the point of maximal
displacement was extracted for each articulator along their principal axis of movement to
concisely summarize the kinematics of each AKT. Hierarchical clustering was used to
organize electrodes by their condensed kinematic descriptions (FIG. 9A).

[00293] To interpret the clusters in terms of phonetics, a phoneme-encoding model was fit
for each electrode. Similar to the AKT model, electrode activity was explained as a weighted
sum of phonemes in which the value each phoneme was either 1 or 0 depending on whether
it was being uttered at a given time. For each electrode, the maximum encoding weight was
extracted for each phoneme. The encoded phonemes for each electrode were shown in the
same order as the kinematically clustered electrodes (FIG. 9B).

[00294] There was a clear organizational structure that revealed shared articulatory
patterns among AKTs. The first level organized AKTs by their direction of jaw movement
(lower incisor goes up or down). Sublevels manifested four main clusters of AKTs with
distinct coordinative articulatory patterns. The AKTs in each cluster were averaged together,
yielding a representative AKT for each cluster (FIG. 9C). Three of the clusters described
constrictions of the vocal tract: coronal, labial, and dorsal, which broadly cover all
consonants in English. The other cluster described a vocalic (vowel) AKT involving
laryngeal activation and a jaw opening motion. Instead of distributed patterns of electrode
activity representing individual phonemes, it was found that electrodes exhibited a high
degree of specificity toward a particular group of phonemes.

[00295] Electrodes within each AKT cluster also primarily encoded phonemes that had
the same canonically defined place of articulation. For example, an electrode within the

coronal AKT cluster was selective for /t/, /d/, /n/, [/, /s/, and /z/, all of which have a similar
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place of articulation. However, there were differences within clusters. For instance, within
the coronal AKT cluster (Figures 3A and 3B, green), electrodes that exhibited a
comparatively weaker tongue tip movement (less purple) had phonetic outcomes less
constrained to phonemes with alveolar places of constriction (less black for phonemes in
green cluster).

[00296] Hierarchical clustering was also performed on the phoneme encoding weights to
identify phoneme organization to both compare with and help interpret the clustering of
AKTs. These results show phonetic organization of the vSMC, as phonetic features defined
by place of articulation were dominant. A strong similarity in clustering was found when
electrodes were described by their AKTs and phonemes (Figures 3A and 3B), which is not
surprising given that AKTs reflected specific locations of vocal tract constrictions (FIG. 9C).

[00297] Broad groupings of electrodes that were sensitive to place of articulation was
observed, but within those groupings, differences in encoding for manner and voicing in
consonant production were found. Within the coronal cluster, electrode-encoding weights
were highest for fricatives, then affricates, and followed by stops (F(3) = 36.01, p < 0.001,
ANOVA). Conversely, bilabial stops were more strongly encoded than labiodental fricatives
(p < 0.001, Wilcoxon signed-rank tests). Additionally, consonants (excluding liquids) were
found to be clustered entirely separately from vowels. Again, the vocalic AKTs were defined
by both laryngeal action (voicing) and jaw opening configuration. Vowels were organized by
three primary clusters that correspond to low vowels, mid/high vowels, and high front
vowels.

[00298] To understand how kinematically and phonetically distinct each AKT cluster was
from one another, the relationship between within-cluster and between-cluster similarities
was quantified for each AKT cluster using the silhouette index as a measure of clustering
strength (Figure S5). The degrees of clustering strength of AKT clusters for kinematic and
phonetic descriptions were significantly higher compared to shuffled distributions indicating
that clusters had both similar kinematic and phonetic outcomes (p < 0.01, Wilcoxon signed-
rank tests).

[00299] The anatomical clustering of AKTs was also examined across vSMC for each
participant. While the anatomical clusterings for coronal and labial AKTs were significant (p
< (0.01, Wilcoxon signed-rank tests), clusterings for dorsal and vocalic AKTs were not. To
further investigate the anatomical locations of AKT clusters, electrode locations were
projected from all participants onto a common brain (FIG. 10). It was found that this coarse

somatotopic organization was present for AKTs, which were spatially localized according to
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kinematic function and place of articulation. Since AKTs encoded coordinated articulatory
movements, single articulator localization was not found. For example, with detailed
descriptions of articulator movements, lower incisor movements were not localized to a
single region; rather, opening and closing movements were represented separately, as seen in

vocalic and coronal AKTs, respectively.

Damped Oscillatory Dynamics of Trajectories

[00300] Similar to motor cortical neurons involved in limb control, it was found that the
encoded kinematic properties were time-varying trajectories. However, in contrast to the
variety of trajectory patterns found during limb control from single neurons, it was observed
that each AKT exhibited an out and-back trajectory from single ECoG electrode recordings.
To further investigate the trajectory dynamics of every AKT, phase portraits (velocity and
displacement relationships) were analyzed for each articulator. In FIG. 11A, the encoded
position and velocity of trajectories of each articulator were shown, along its principal axis
of displacement, for AKTs of four example electrodes, each representative of a main AKT
cluster. The trajectory of each articulator was determined by the encoding weights from each
AKT. All trajectories moved outward and then returned to the same position as the starting
point with corresponding increases and decreases in velocity forming a loop. This was true
even for articulators that only made relatively small movements.

[00301] In FIG. 11B, the trajectories for each articulator from all 108 AKTs were shown,
which again illustrate the out-and-back trajectory patterns. Trajectories for a given articulator
did not exhibit the same degree of displacement, indicating a level of specificity for AKTs
within a particular cluster. Qualitatively, it was observed that trajectories with more
displacement also tended to correspond with high velocities.

[00302] While each AKT specifies time-varying articulator movements, the governing
dynamics dictating how each articulator moves may be time invariant. In articulator
movement studies, the time-invariant properties of vocal tract gestures have been described
by damped oscillatory dynamics. Just like a pendulum, descriptors of movement (i.e.,
velocity and position) are related to one another independent of time. A linear relationship
was found between peak velocity and displacement for every articulator described by the
AKTs (FIG. 11C; r=0.85, 0.77, 0.83, 0.69, 0.79, and .83, in respective order; p < 0.001),
demonstrating that AKTs also exhibited damped oscillatory dynamics. Furthermore, the
slope associated with each articulator revealed the relative speed of that articulator. The

lower incisor and upper lip moved the slowest (0.65 and 0.65 slopes), and the tongue varied
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in speed along the body, with the tip moving fastest (0.66, 0.78, and 0.99 slopes,
respectively). These dynamics indicate that an AKT makes a stereotyped trajectory to form a
single vocal tract configuration, a sub-syllabic speech component, acting as a building block
for the multiple vocal tract configurations required to produce single syllables. The velocity-
position relationship strongly indicates that the AKT model encoded movements for each

articulator corresponding to the intrinsic dynamics of continuous speech production.

Coarticulated Kinematic Trajectories

[00303] Some of the patterns observed in the detailed kinematics of speech result from
interactions between successive vocal tract constrictions, a phenomenon known as
coarticulation. Depending on the kinematic constraints of vocal tract constrictions, some
vocal tract constrictions may require anticipatory or carryover modifications to be optimally
produced. Despite these modifications, each vocal tract constriction is often thought of as an
invariant articulatory unit of speech production in which context-dependent kinematic
variability results from the co-activation (i.e., temporal overlap) of vocal tract constrictions.
At least some coarticulatory effects were found to arise from intrinsic biomechanical
properties of the vocal tract. Whether the vSMC shared similar invariant properties by
studying how vSMC representations of vocal tract AKTs interacted with one another during
varying degrees of anticipatory and carryover coarticulation was investigated.

[00304] During anticipatory coarticulation, kinematic effects of upcoming phonemes may
be observed during the production of the present phoneme. For example, consider the
differences in jaw opening (lower incisor goes down) during the productions of /&z/ (as in
“‘has’’) and /eep/ (as in ‘‘tap’’) (FIG. 12A). The production of /®/ requires a jaw opening, but
the degree of opening is modulated by the upcoming phoneme. Since /z/ requires a jaw
closure to be produced, the jaw opens less during /&z/ to compensate for the requirements of
/z/. On the other hand, /p/ does not require a jaw closure and the jaw opens more during /p/.
In each context, the jaw opens during /&/, but to differing degrees based the compatibility of
the upcoming movement.

[00305] To investigate whether anticipatory coarticulation is neurally represented, the
change in neural activity was investigated during the production /&z/ and /&p/, two contexts
with differing degrees of coarticulation. While vSMC activity at the electrode population
level is biased toward surrounding contextual phonemes, the representation of coarticulation
was investigated at single electrodes. High gamma of an electrode that encoded a vocalic

AKT was studied, crucial for the production of /&/ (high phonetic selectivity index for /z/).
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In FIG. 12B, the AKT for electrode 120 describes a jaw opening and laryngeal vocal tract
configuration. Time locked to the acoustic onset of /&/, high gamma for electrode 120 was
higher during /e@p/ than /2z/ (FIG. 12C). To quantify this difference, the median high gamma
activity was compared during 50 ms centered on the point of peak discriminability for all
phonemes (p < 0.05, Wilcoxon signed-rank tests). It was also found that the predicted high
gamma from the AKT was similarly higher during /&p/ than /@z/ (p < 0.001, Wilcoxon
signed-rank tests) (FIG. 12D). For this electrode, it was found that high gamma activity
reflected changes in kinematics, as predicted by the AKT, due to anticipatory coarticulation
effects.

[00306] Whether coarticulatory effects were present in all vSMC electrodes during all the
anticipatory contexts of every phoneme were examined. To quantify this effect, a mixed-
effects model was fit to study how high gamma for a given electrode changed during the
production of a phoneme with different following phonemes.

[00307] In particular, for an electrode with an AKT heavily involved in producing a given
phoneme, the kinematic compatibility of the following phoneme would be reflected in its
peak high gamma. The model used cross-random effects to control for differences across
electrodes and phonemes and a fixed effect of predicted high gamma from the AKT to
describe the kinematic variability to which each electrode is sensitive. In FIG. 12E, each line
shows the relationship between high gamma and coarticulated kinematic variability for a
given phoneme and electrode in all following phonetic contexts with at least 25 instances.
For example, one line indicates how high gamma varied with the kinematic differences
during /t/, /ta/, ..., /ts/, etc. Kinematic variability due to following phonemes was a
significant effect of the model indicating that neural activity associated with particular
articulatory movements is modulated by the kinematic constraints of the following
articulatory context (b = 0.30, SE = 0.04, c2(1) = 38.96, p = 4e-10).

[00308] In a similar fashion, the neural representation of carryover articulation was also
investigated, in which kinematic effects of previously produced phonemes are observed. In
FIG. 12F, two coarticulated contexts with varying degrees of compatibility were shown: /&z/
(asin ‘‘has’’) and /iz/ (as in ‘‘ease’’). /&/ involves a large jaw opening while /i/ does not.
However, in both contexts the jaw is equally closed for /z/ and the major difference between
/&z/ and /iz/ is how much the jaw must move to make the closure. While the target jaw
position for /z/ was achieved in both contexts, it was found that for an electrode with a
coronal AKT involved in producing /z/ (FIG. 12G), the difference in high gamma reflected

the kinematic differences between the two preceding phonemes (Figures 6H and 61). Again,
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a mixed effects model was used to examine the effects of carryover coarticulation in all
vSMC electrodes to find that neural activity reflected carried-over kinematic differences in
electrodes with AKTs for making the present phoneme (b = 0.32, SE = 0.04, c2(1) =42.58, p
=6e-11) (FIG. 12]). These results indicate that electrodes involved in producing a particular
vocal tract configuration reflect kinematic variability due to anticipatory and carryover

coarticulation.

Comparison with Other Encoding Models

[00309] To evaluate how well AKTs are encoded in the vSMC, the following were
compared: (1) the AKT model’s encoding performance with respect to other cortical regions
and (2) vSMC-encoding models for alternative representations of speech.

[00310] To determine how specific AKTs are to the vSMC, AKT model performance
(Pearson’s r on held-out data) of every cortical region recorded from across participants
(FIG. 13A) was compared. Besides electrodes from middle frontal gyrus (MFG) and pars
orbitalis (n = 4), the AKT model significantly explained some of the variance for all
recorded cortical regions above chance level (p < 0.001, Wilcoxon rank-sum test). However,
for the considered electrodes in this study (EIS)—i.e., the speech active electrodes in the
vSMC—the AKT model explained neural activity markedly better than in other cortical
areas (p < le-15, Wilcoxon rank-sum test). The other cortical areas that were examined were
shown to be involved in different aspects of speech processing—acoustic and phonological
processing (superior temporal gyrus [STG] and middle temporal gyrus [MTG]) and
articulatory planning (inferior frontal gyrus [IFG]). Therefore, it was expected that cortical
activity in these regions would have some correlation to the produced kinematics. The higher
performance of the AKT model for EIS indicates that studying the neural correlates of
kinematics may best focused in the vSMC.

[00311] While AKTs were best encoded in vSMC, there may be alternative
representations of speech that may better explain vSMC activity. vSMC encoding of both
acoustics (described here by using the first three formants: F1, F2, and F3) and phonemes
were evaluated with respect to the AKT model. Each model was fit in the same manner as
the AKT model and performance compared on held-out data from training. If each vSMC
electrode represented acoustics or phonemes, then a higher model fit was expected for that
representation than the AKT model. Due to the similarity of these representations, the
encoding models were expected to be highly correlated. It is worth noting that the inferred

articulator movements are unable to provide an account of movements without correlations
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to acoustically significant events, a key property that would be invaluable for differentiating
between models.

[00312] Furthermore, while acoustics and phonemes are both complete representations of
speech, the midsagittal movements of a few vocal tract locations captured by EMA are a
partial description of speech relevant movements of the vocal tract in that there are missing
palate, lateral, and oropharyngeal movements. Even so, it was found that articulator
movements were encoded markedly better than both the acoustic and phoneme-encoding
models despite the limitations of the AKT model (Figures 7B and 7C; p < 1e-20, Wilcoxon
rank-sum test).

[00313] Therefore, vSMC encoding is tuned to articulatory features. During single-vowel
production, the vSMC showed encoding of directly measured kinematics over phonemes and
acoustics.

[00314] Furthermore, the vSMC is also responsible for non-speech voluntary movements
of the lips, tongue, and jaw in behaviors such as swallowing, kissing, and oral gestures.
While vSMC is critical for speech production, it is not the only vSMC function. Indeed,
when the vSMC is injured, patients have facial and tongue weakness, in addition to
dysarthria. When the vSMC is electrically stimulated, movements were observed, but not

speech sounds, phonemes, or auditory sensations.

Decoding Articulator Movements

[00315] Given that encoding of AKTs at single electrodes could be determined,
understanding how well decoding vocal tract movements from the population of electrodes
was studied. Articulatory movements were decoded during sentence production with a long
short-term memory recurrent neural network (LSTM), an algorithm well suited for time-
series regression. The performance of the decoder was high, especially in light of the
articulatory variance lost due to process of inferring kinematics and the neural variance
unrecorded by the ECoG grid (i.e., within the central sulcus or at a resolution finer than the
capability of the electrodes). For an example sentence (FIG. 14A), the predicted articulator
movements from the decoder closely matched with the inferred articulator movements from
the acoustics. All of the articulator movements were well predicted across 100 held-out

sentences significantly above chance (mean r = 0.43, p < 0.001) (FIG. 14B).

DISCUSSION
[00316] A novel AAI method was used to infer vocal tract movements, which was then

related directly to high-resolution neural recordings. By describing vSMC activity with
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respect to detailed articulatory movements, it was demonstrated that discrete neural
populations encode AKTs.

[00317] As provided herein, features of the AKTs that are encoded in the vSMC are
shown. First, encoded articulator movements are coordinated to make a specific vocal-tract
configuration.

[00318] vSMC activity was studied using detailed articulatory trajectories that suggest
that similar to limb control, coordinated movements across articulators for specialized vocal
tract configurations are encoded at the single electrode level. For example, the coordinated
movement to close the lips is encoded rather than individual lip movements.

[00319] For speech, four major clusters of AKTs were found that were differentiated by
place of articulation and covered the main vocal tract configurations that comprise American
English. At the sampling level of ECoG, cortical populations encode sub-syllabic
coordinative movements of the vocal tract.

[00320] As provide herein another feature of AKTs includes the trajectory profile itself.
Encoded articulators moved in out-and-back trajectories with damped oscillatory dynamics.
During limb control, single motor cortical neurons have been also found to encode time-
dependent kinematic trajectories, but the patterns were very heterogeneous and did not show
clear spatial organization. It is possible that individual neurons encode highly specific
movement fragments that combine to form larger movements represented by ensemble
activity at the ECoG scale of resolution.

[00321] For speech, these larger movements correspond to canonical vocal tract
configurations. While motor cortical neurons encoded a variety of trajectory patterns, AKTs
was found to only exhibited out and- back profiles that may be a fundamental movement
motif in continuous speech production.

[00322] With both coordinative and dynamical properties, each AKT appeared to encode
the movement necessary to make a specific vocal tract configuration and return to a neutral
position. Each vocal tract gesture is described as coordinated articulatory pattern to make a
vocal tract constriction. Like the AKTs, each vocal tract gesture has been characterized as a
time-invariant system with damped oscillatory dynamics

[00323] AKTs encoded in vSMC neural activity were found to be reflected kinematic

differences due to constraints of the phonetic or articulatory context.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
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[00324] Five human participants (Female, ages: 30, 31, 43, 46, 47) underwent chronic
implantation of high-density, subdural electrode array over the lateral surface of the brain as
part of their clinical treatment of epilepsy (2 left hemisphere grids, 3 right hemisphere grids).

[00325] Participants gave their written informed consent before the day of the surgery. No
participants had a history of any cognitive deficits that were relevant to the aims of the
present study. All participants were fluent in English. All procedures were approved by the

University of California, San Francisco Institutional Review Board.

METHOD DETAILS

Experimental Task

[00326] Participants read aloud 460 sentences from the MOCHA-TIMIT database.
Sentences were recorded in 9 blocks (8 of 50, and 1 of 60 sentences) spread across several
days of patients’ stay. Within each block, sentences are presented on a screen, one at a time,
for the participant to read out. The order was random and participants were given a few
seconds of rest in between.

[00327] MOCHA-TIMIT is a sentence-level database, a subset of the TIMIT corpus
designed to cover all phonetic contexts in American English. Each participant read each
sentence 1-10 times. Microphone recordings were obtained synchronously with the ECoG

recordings.

Data acquisition and signal processing

[00328] Electrocorticography was recorded with a multi-channel amplifier optically
connected to a digital signal processor. Speech was amplified digitally and recorded with a
microphone simultaneously with the cortical recordings. ECoC electrodes were arranged in a
16 3 16 grid with 4 mm pitch. The grid placements were decided upon purely by clinical
considerations. ECoG signals were recorded at a sampling rate of 3,052 Hz. Each channel
was visually and quantitatively inspected for artifacts or excessive noise (typically 60 Hz
line noise). The analytic amplitude of the high-gamma frequency component of the local
field potentials (70 - 150 Hz) was extracted with the Hilbert transform and down-sampled to
200 Hz. Finally, the signal was z-scored relative to a 30 s window of running mean and
standard deviation, so as to normalize the data across different recording sessions. High-
gamma amplitude was studied because it correlates well with multi-unit firing rates and has

the temporal resolution to resolve fine articulatory movements.
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Phonetic and phonological transcription

[00329] For the collected speech acoustic recordings, transcriptions were corrected
manually at the word level so that the transcript reflected the vocalization that the participant
actually produced. Given sentence level transcriptions and acoustic utterances chunked at the
sentence level, hidden Markov model based acoustic models were built for each participant
so as to perform sub-phonetic alignment. Phonological context features were also generated

from the phonetic labels, given their phonetic, syllabic and word contexts.

Speaker-Independent Acoustic-to-Articulatory Inversion (AAI)

[00330] To perform articulatory inversion for a target participant for whom only acoustic
data is available, a method was developed, referred to herein as “‘Speaker-Independent
AAIL”’ where parallel EMA and speech data were simulated for the target speaker. In
contrast to earlier approaches for speaker-independent AAI, where normalization is
performed to remove speaker identity from acoustics, the opposite goal was accomplished of
transforming the 8 EMA participants’ spectral properties to match those of the target speaker
for whom an estimate vocal tract kinematics was wanted. To transform the acoustics of all
data to the target speaker, a voice conversion was applied to transform the spectral properties
of each EMA speaker to match those of the target participant. This method assumes acoustic
data corresponding to the same sentences for the two participants. When parallel acoustic
data was not available across participants (the mnguQ corpus uses a different set of
sentences than the MOCHA-TIMIT corpus), concatenative speech synthesis were used to
synthesize comparable data across participants.

[00331] For cross-participant utilization of kinematic data, for each of the training
speakers, an articulator specific z-scoring across each participant’s EMA data was used. This
ensured that the target speaker’s kinematics were an unbiased average across all available
EMA participants. The kinematics were described by 13 dimensional feature vectors (12
dimensions to represent X and Y coordinates of 6 vocal tract points and fundamental
frequency, FO, representing the Laryngeal function).

[00332] 24 dimensional mel-cepstral coefficients were used as the spectral features. Both
kinematics and acoustics were sampled at a frequency 200 Hz (each feature vector
represented a 5 ms segment of speech). Additionally, phonetic and phonological information
corresponding to each frame of speech was coded as one-hot vectors and padded onto the
acoustic features. These features included phoneme identity, syllable position, word part of

speech, positional features of the current and of the neighboring phoneme and syllable states.
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Contextual data was found to provide complementary information to acoustics and improved
inversion accuracies.

[00333] Using these methods for each EMA participant-to-target participant pair, a
simulated dataset of parallel speech and EMA data was created, that were both customized
for the target participant. For training the inversion model itself, a deep recurrent neural
network was used based articulatory inversion technique to learn a mapping from spectral
and phonological context to a speaker generic articulatory space. An optimal network
architecture with a 4 layer deep recurrent network with two feedforward layers (200 hidden
nodes) and two bidirectional LSTM layers (with 100 LSTM cells) was chosen. The trained
inversion model was then applied to all speech produced by the target participant to infer
articulatory kinematics in the form of Cartesian X and Y coordinates of articulator
movements. The network was implemented using Keras, a deep learning library running on

top of a Tensorflow backend.

Electrode selection

[00334] Electrodes located on either the precentral and postcentral gyri that had
distinguishable high gamma activity during speech production were selected. The
separability of phonemes was measured using the ratio of between-class to within-class
variability (F statistic) for a given electrode across time. Electrodes with a maximum F
statistic of 8 or greater were chosen. This resulted in a total of 108 electrodes across the 5

participants with robust activity during speech production.

Encoding models

[00335] To uncover the kinematic trajectories represented in electrodes, linear encoding
models were used to describe the high gamma activity recorded at each electrode as a
weighted sum of articulator kinematics over time. This model is similar to the
spectrotemporal receptive field, a model widely used to describe selectivity for natural
acoustic stimuli. However, in the model presented herein, articulator X and Y coordinates
are used instead spectral components. The model estimates the time series xi(t) for each
electrode i as the convolution of the articulator kinematics A, comprised of kinematic
parameters k, and a filter H, which is referred to as the articulatory kinematic trajectory

(AKT) encoding of an electrode.
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[00336] The filter provided herein is designed to use a 500 ms window of articulator
movements centered about the high gamma sample to be predicted. Movements occurring

[00337] before the sample of high gamma are indicated by a negative lag while
movements occurring after the high gamma sample are indicated by a positive lag. The 500
ms window was chosen to both maximize the performance of the AKT model (Figure S6)
and allow full visualization of the AKTs. While Figure S6, indicates the filters need only be
200 ms long for optimal performance, it was found that extending filters to 500 ms with
appropriate regularization ensured that visualization occured every AKT in its entirety. Some
AKTs encoded movements occurring well before or after the corresponding neural activity
resulting AKTs cutoff using a 200 ms window. L2 regularization ensured that weights from
time points not encoding an articulatory trajectory (e.g., at 250 ms before the neural sample)
had no weighting and did not affect interpretability of the AKTs.

[00338] Additionally, acoustic and phoneme encoding models were fit to electrode
activity. Instead of articulator X and Y coordinates, formants (F1, F2, and F3) were used as a
description of acoustics and a binary description of the phonemes produced during a
sentence. Each feature indicated whether a particular phoneme was being produced or not
with a 1 or 0, respectively. The encoding models were fit using ridge regression and trained
using cross-validation with 70% of the data used for training, 10% of the data held-out for
estimating the ridge parameter, and 20% held out as a final test set. The final test set
consisted of sentences produced during entirely separate recording sessions from the training
sentences. Performance was measured as the correlation between the predicted response of

the model and the actual high gamma measured in the final test set.

Hierarchical clustering

[00339] Ward’s method was used for agglomerative hierarchical clustering. Clustering of
the electrodes was carried out solely on the kinematic descriptions for encoded kinematic
trajectory of each electrode. To develop concise kinematic descriptions for each kinematic
trajectory, the point of maximal displacement was extracted for each articulation. Principal
components analysis was used on each articulator to extract the direction of each articulator
that explained the most variance. The filter weights were then projected onto each
articulator’s first principal component and chose the point with the highest magnitude. This
resulted in length 7 vector with each articulator described by the maximum value of the first
principal component. Phonemes were clustered based on the phoneme encoding weights for

each electrode.
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[00340] For a given electrode, the maximum encoding weight was extracted for each
phoneme during a 100 ms window centered at the point of maximum phoneme

discriminability (peak F statistic) for the given electrode.

Cortical surface extraction and electrode visualization

[00341] To visualize electrodes on the cortical surface of a participant’s brain, a
normalized mutual information routine was used in SPM12 to co-register the preoperative
T1 MRI with a postoperative CT scan containing electrode locations. Freesurfer was used to
make pial surface reconstructions. To visualize electrodes across participants on a common
MNI brain, nonlinear surface registration was performed using a spherical sulcal-based
alignment in Freesurfer, aligned to the cvs avg35 inMNI152 template. While the geometry of
the grid is not maintained, the nonlinear alignment ensures that electrodes on a gyrus in the

participant’s native space will remain on the same gyrus in the atlas space.

Decoding model

[00342] To decode articulatory movements, a long short-term memory (LSTM) recurrent
neural network was trained to learn the mapping from high gamma activity to articulatory
movements. LSTM are particularly well suited for learning mappings with time-dependent
information. Each sample of articulator position was predicted by the LSTM using a window
of 500 ms of high gamma activity, centered about the decoded sample, from all vSMC
electrodes. The decoder architecture was a 4 layer deep recurrent network with two
feedforward layers (100 hidden nodes each) and two bidirectional LSTM layers (100 cells).

[00343] Using Adam optimization and dropout (40% of nodes), the network was trained
to reduce mean squared error of the decoded and actual output. The network was

implemented using Keras, a deep learning library running on top of a Tensorflow backend.

QUANTIFICATION AND STATISTICAL ANALYSIS

Nested encoding model comparison

[00344] A nested regression model was used to compare the neural encoding of a single
articulator trajectory with the AKT model. For each electrode, single articulatory trajectories
models were fit using both X and Y directions for each EMA sensor and chose the single
articulator model that with the lowest residual sum of squares (RSS) on held-out data. From
RSS values for the full (2) and nested (1) models, the significance of the explained variance

was compared by calculating an F statistic for each electrode.
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p and n are the number of model parameters and samples used in RSS computation,
respectively. An F statistic greater than the critical value defined by the number of
parameters in both models and confidence interval indicates that the full model (AKT)
explains statistically significantly explains more variance than the nested model (single

articulator) after accounting for difference in parameter numbers.

Correlation structure comparison

[00345] To test whether the correlational structure of articulators (EMA points) was
different between periods of low and high gamma activity for a speech responsive electrode,
the inferred articulator movements was split into two datasets based on whether the z-scored
high gamma activity of given electrode for that sample was above the threshold (1.5). 1000
points of articulator movement was then randomly sampled from each dataset to construct
two cross-correlational structures between articulators. To quantify the difference between
the correlational structures, the Euclidean distance was computed between the two
structures. An additional 1000 points were then sampled from the below threshold dataset to
quantify the difference between correlational structures within the sub-threshold data. This
process was repeated 1000 times for each electrode and compared the two distributions of
Euclidean distances with a Wilcoxon rank sum test (Bonferroni corrected for multiple
comparisons) to determine whether correlational structures of articulators differed in relation

to high or low high gamma activity of an electrode.

Silhouette analysis

[00346] To assess cluster separability, the silhouette index was computed for each
electrode to compare how well each electrode matched its own cluster based on the given
feature representation. The silhouette index for an electrode is calculated by taking the
difference between the average dissimilarity with all electrodes within the same cluster and
the average dissimilarity with electrodes from the nearest cluster. This value is then
normalized by taking the maximum value of the previous two dissimilarity measures. A

silhouette index close to 1 indicates that the electrode is highly matched to its own cluster. O
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indicates that that the clusters may be overlapping, while -1 indicates that the electrode may

be assigned to the wrong cluster.

Phoneme Selectivity Index (PSI)

[00347] To determine the phoneme selectivity of each electrode, the statistical framework
was used to test whether the high gamma activity of an electrode is significantly different
during the productions of two different phonemes. For a phoneme pair and a given electrode,
two distributions of high gamma activity were created from data acoustically aligned to each
phoneme. A 50 ms window of activity centered on the time point was used with the peak F
statistic for that electrode. A non-parametric statistical hypothesis test (Wilcox rank-sum
test) was used to assess whether these distributions have different medians (p < 0.001). The
PSI is the number of phonemes that have statistically distinguishable high gamma activity
for a given electrode.

[00348] A PSI of 0 indicates that no other phonemes have a distinguishable high gamma
activity. Whereas, a PSI of 40 indicates that all other phonemes have distinguishable high

gamma activity.

Mixed effects model

[00349] To examine the relationship between high gamma and coarticulated kinematics, a
mixed-effects model was used with several crossed random effects. In particular, for a given
electrode, the ‘‘peak activity’’ was computed by taking the median high gamma activity
during a 50 ms window centered about the peak F statistic for that electrode (see PSI
method) during the production of a target phoneme.

[00350] The mean peak activity was then taken for each unique phoneme pair (target
phoneme preceded by context phoneme). For each electrode, phoneme pairs with at least 25
instances were considered and a target PSI > 25. This helped stabilize the means and
targeted electrodes that presumably encoded the AKT necessary to produce the target
phoneme. In Figures 6C, 6D, 6H, and 6I, /z/ was extended to include /z/ and /s/, and /p/ to
include /p/ and /b/ since, from an EMA standpoint, the articulation is nearly identical and it
increased the number of coarticulated instances that could be analyzed, thus decreasing
biases from other contextual effects and variability from noise. In a similar fashion to high
gamma, high gamma activity predicted by the AKT model was computed to provide insight
into the kinematics during the production of a particular phoneme pair. The mixed-effects

model described high gamma from a fixed effect of kinematically predicted high gamma
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with crossed random effects (random slopes and intercepts) controlling for difference in
electrodes, and target and context phonemes. To determine model goodness, ANOVA was
used to compare the model with a nested model that retained the crossed random effects but

removed the fixed effect. The mixed-effects model was fit using the Ime4 package in R.

Example 3: Speech synthesis from neural decoding of spoken sentences

[00351] A neural decoder was designed that explicitly leverages kinematic and sound
representations encoded in human cortical activity to synthesize audible speech. Recurrent
neural networks first decoded directly recorded cortical activity into articulatory movement
representations, and then transformed those representations into speech acoustics. In closed
vocabulary tests, listeners could readily identify and transcribe neurally synthesized speech.
Intermediate articulatory dynamics enhanced performance even with limited data. Decoded
articulatory representations were highly conserved across speakers, enabling a component of
the decoder be transferrable across participants. Furthermore, the decoder could synthesize
speech when a participant silently mimed sentences. These findings advance the clinical
viability of speech neuroprosthetic technology to restore spoken communication.

[00352] A biomimetic approach that focuses on vocal tract movements and the sounds
they produce can achieve the high communication rates of natural speech, and also likely the
most intuitive for users to learn. In patients with paralysis, for example from ALS or
brainstem stroke, high fidelity speech control signals may only be accessed by directly
recording from intact cortical networks.

[00353] The feasibility of a neural speech prosthetic was demonstrated by translating
brain signals into intelligible synthesized speech at the rate of a fluent speaker. High-density
electrocorticography (ECoG) signals were recorded from five participants undergoing
intracranial monitoring for epilepsy treatment as they spoke several hundred sentences aloud.
A recurrent neural network was designed that decoded cortical signals with an explicit

intermediate representation of the articulatory dynamics to synthesize audible speech.

Speech decoder design

[00354] The two-stage decoder approach is shown in FIG. 15A-15D. Stage 1: a
bidirectional long short-term memory (bLSTM) recurrent neural network decodes
articulatory kinematic features from continuous neural activity (high-gamma amplitude
envelope and low frequency component) recorded from ventral sensorimotor cortex (vSMC),

superior temporal gyrus (STG), and inferior frontal gyrus (IFG) (FIG. 15A-15B). Stage 2: a
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separate bLSTM decodes acoustic features (Fo, mel-frequency cepstral coefficients
(MFCCs), voicing and glottal excitation strengths) from the decoded articulatory features
from Stage 1 (FIG. 1C). The audio signal is then synthesized from the decoded acoustic
features (FIG. 15D). To integrate the two stages of the decoder, Stage 2 (articulation-to-
acoustics) was trained directly on output of Stage 1 (brain-to-articulation) so that it not only
learns the transformation from kinematics to sound, but can correct articulatory estimation
errors made in Stage 1.

[00355] A component of the decoder of the present disclosure is the intermediate
articulatory representation between neural activity and acoustics (FIG. 15B). The vSMC
exhibits robust neural activations during speech production that predominantly encode
articulatory kinematics. A statistical approach was used to estimate vocal tract kinematic
trajectories (movements of the lips, tongue, and jaw) and other physiological features (e.g.
manner of articulation) from audio recordings. These features initialized the bottleneck layer
within a speech encoder-decoder that was trained to reconstruct a participant’s produced
speech acoustics. The encoder was then used to infer the intermediate articulatory
representation used to train the neural decoder. With this decoding strategy, it was possible

to accurately reconstruct the speech spectrogram.

Synthesis performance

[00356] Overall, detailed reconstructions of speech synthesized from neural activity alone
was observed. FIGs. 15E-15F shows the audio spectrograms from two original spoken
sentences plotted above those decoded from brain activity. The decoded spectrogram
retained salient energy patterns present in the original spectrogram and correctly
reconstructed the silence in between the sentences when the participant was not speaking.
FIGs. 19A-19B, illustrates the quality of reconstruction at the phonetic level. Median
spectrograms of original and synthesized phonemes showed that the typical spectrotemporal
patterns were preserved in the decoded exemplars (e.g. formants F1-F3 in vowels /i:/ and
/®/; and key spectral patterns of mid-band energy and broadband burst for consonants /z/ and
/p/, respectively).

[00357] To understand to what degree the synthesized speech was perceptually
intelligible to naive listeners, two listening tasks were conducted that involved single-word
identification and sentence-level transcription, respectively. The tasks were run on Amazon

Mechanical Turk, using all 101 synthesized sentences from the test set for participant P1.
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[00358] For the single-word identification task, 325 words were evaluated that were
spliced from the synthesized sentences. The effect of word length (number of syllables) and
the number of choices (10, 25, and 50 words) on speech intelligibility were quantified, since
these factors inform optimal design of speech interfaces. It was found that listeners were
more successful at word identification as syllable length increased, and number of word
choices decreased, consistent with natural speech perception.

[00359] For sentence-level intelligibility, a closed vocabulary, free transcription task was
designed. Listeners heard the entire synthesized sentence and transcribed what they heard by
selecting words from a defined pool (of either 25 or 50 words) that included the target words
and random words from the test set. The closed vocabulary setting was necessary because
the test set was a subset of sentences from MOCHA-TIMIT which was primarily designed to
optimize articulatory coverage of English but contains highly unpredictable sentence
constructions and low frequency words.

[00360] Listeners were able to transcribe synthesized speech well. Of the 101 synthesized
trials, at least one listener was able to provide a perfect transcription for 82 sentences with a
25-word pool and 60 sentences with a 50-word pool. Of all submitted responses, listeners
transcribed 43% and 21% of the total trials perfectly, respectively (FIG. 6). Transcribed
sentences had a median 31% WER with a 25-word pool size and 53% WER with a 50-word
pool size. Table 1 shows listener transcriptions for a range of WERs. Median level
transcriptions still provided a fairly accurate, and in some cases legitimate transcription (eg.,
“mum” transcribed as “mom” etc.). The errors suggest that the acoustic phonetic properties
of the phonemes are still present in the synthesized speech, albeit to the lesser degree (eg.,
“rabbits " transcribed as “rodents”). This level of intelligibility for neurally synthesized
speech would already be immediately meaningful and practical for real world application.

{80361 ] The decoding performance was then quantified at a feature level for all
participants. In speech synthesis, the spectral distortion of synthesized speech from ground-
truth is commonly reported using the mean Mel-Cepstral Distortion (MCD). Mel-Frequency
bands emphasize the distortion of perceptually relevant frequency bands of the audio
spectrogram. In FIG. 16A, the MCD of neurally synthesized speech was compared to a

reference synthesis from articulatory kinematics and chance-level decoding (lower MCD is
better). The reference synthesis acts as a bound for performance as it simulated what perfect
neural coding of the kinematics would achieve. For the five participants (P1-5), the median

MCD scores of decoding speech ranged from 5.14 dB, 5.55 dB, and 5.49 dB, all better than
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chance-level decoding (p<le-18, n=100 sentences, Wilcoxon signed-rank test (WSRT), for
each participant).

[30362] The correlations between original and decoded acoustic features were computed.
For each sentence and feature, the Pearson’s correlation coefficient was computed using
every sample (at 200 Hz) for that feature. The sentence correlation of the mean decoded
acoustic features (intensity + MFCCs + excitation strengths + voicing) and inferred
kinematics across participants are plotted. Prosodic features such as pitch (FO), speech
envelope, and voicing were decoded well above chance-level (r > 0.6, except FO for P2: r=
0.49 and all features for PS5, p<le-10, WSRT, for all participants and features).

[60363] To assess perceptual intelligibility of the decoded speech, Amazon Mechanical
Turk was used to evaluate naiive listener’s ability to understand the neurally decoded trials.
166 people were asked to identify 10 sentences (written on screen) corresponded to the
decoded audio they heard. The median percentage of participants who correctly identified
each sentence was 83%, significantly above chance (10%) (FIG. 16B).

[60364] In addition to spectral distortion and intelligibility, the correlations between
original and decoded spectral features were also examined. The median correlations (of
sentences, Pearson’s r) of the mean decoded spectral feature (pitch + 25 MFCCs + excitation
strengths + voicing) for each participant were 0.55, 0.49, and 0.42 (FIG. 16C).

[00365] Similarly, for decoded kinematics (the intermediate representation), the median
correlations were 0.66, 0.54, and 0.50 (FIG. 16D). Finally, three key aspects of prosody were
examined for intelligible speech: pitch ({0), speech envelope, and voicing (FIG. 16D). For all
participants, these features were decoded well above chance-level correlations (r > 0.6,
except fO for P2: r= 0.49, p<le-10, n=100, WSRT, for all participants and features in FIGs.
16C-16D). Correlation decoding performance for all other features is shown in FIGs. 19A-
19B.

Effects of model design decisions

[00366] The following analyses were performed on data from P1. In designing a neural
decoder for clinical applications, there are several key considerations that determine model
performance. First, in patients with severe paralysis or limited speech ability, training data
may be very difficult to obtain. Therefore, the amount of data necessary was assessed to
achieve a high level of performance. A clear advantage was found in explicitly modeling
articulatory kinematics as an intermediate step over decoding acoustics directly from the

ECoG signals. The motivation for including articulatory kinematics was to reduce the
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complexity of the ECoG-to-acoustic mapping because it captures the physiological process
by which speech is generated and is encoded in the vSMC. The “direct” decoder was a
bLSTM recurrent neural network optimized for decoding acoustics (MFCCs) directly from
same ECoG signals as employed in articulatory decoder.

[00367] It was found that a robust performance could be achieved with as little as 25
minutes of speech, but performance continued to improve with the addition of data (FIG.
17A-17B). Without the articulatory intermediate step, the direct ECoG to acoustic decoding
MCD was offset by 0.54 dB (0.2 dB is perceptually noticeable) using the full data set (FIG.
17A) (pzle‘”, n=101, WSRT), a substantial difference given that a change in MCD as small
as 0.2 dB is perceptually noticeable The biomimetic approach using an intermediate
articulatory representation requires less training data.

[00368] To understand the acoustic-phonetic properties that were preserved in decoded
speech important for relative phonetic discrimination, the distribution of spectral features of
each decoded phoneme to those of each ground-truth was compared by constructing a
statistical distribution of the spectral feature vectors for each phoneme. Uinsg the Kullback-
Leibler (KL) divergence, the distribution of each decoded phoneme was compared to the
distribution of each ground-truth phoneme to determine how similar they were (FIG. 17C).
From the acoustic similarity matrix of only ground-truth phoneme pairs (FIG. 20), it was
hypothesized that in addition to the same decoded and ground-truth phoneme being similar
to one another, phonemes with shared acoustic properties would also be characterized as
similar to one another. For example, two fricatives will be more acoustically similar to one
another than to a vowel.

[00369] Hierarchical clustering on the KL-divergence of each phoneme pair demonstrated
that phonemes were clustered into four main groups. Group 1 contained consonants with an
alveolar place of constriction. Group 2 contained almost all other consonants. Group 3
contained mostly high vowels. Group 4 contained mostly mid and low vowels. The
difference between groups tended to correspond to variations along acoustically significant
dimensions (frequency range of spectral energy for consonants, and formants for vowels).
Indeed, these groupings explain some of the confusions reflected in listener transcriptions of
these stimuli. This hierarchical clustering was also consistent with the acoustic similarity
matrix of only ground-truth phoneme-pairs (FIG. 6) (cophenetic correlation = 0.71, p=1e'?).

[00370] Third, since the success of the decoder depends on the initial electrode placement,
the contribution of several anatomical regions (vSMC, STG, and IFG) that are involved in

continuous speech production was quantified. Decoders were trained in a leave-one-region-
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out fashion where all electrodes from a particular region were held out (FIG. 17D) and
performance was compared. Removing any region led to some decreased decoder
performance (FIGs. 17E-17F) (p=3e™, n=100, WSRT). However, excluding vSMC resulted
in the largest decrease in performance (1.13 dB MCD increase).

[00371] Fourth, it was investigated whether the decoder generalized to novel sentences
that were never seen in the training data. Since P1 produced some sentences multiple times,
two decoders were compared: one that was trained on all sentences (not the particular
instances in the test set), and one that was trained excluding every instance of the sentences
in the testing set. No significant difference was found in decoding performance of the
sentences for both MCD and correlations of spectral features (p=0.36, p=0.75, n=51,
WSRT). As a result, the decoder can generalize to arbitrary words and sentences that the

decoder was never trained on.

Silently mimed speech decoding

[00372] To rule out the possibility that the decoder is relying on the auditory feedback of
participants’ vocalization, and to simulate a setting where subjects do not overtly vocalize,
the decoder was tested on silently mimed speech. A decoder with a held-out set of 58
sentences was tested in which the participant (P1) audibly produced each sentence and then
mimed the same sentence, making the same kinematic movements but without making
sound. Even though the decoder was not trained on mimed sentences, the spectrograms of
synthesized silent speech demonstrated similar spectral patterns to synthesized audible
speech of the same sentence (FIGs 18A-18C). With no original audio to compare,
performance of the synthesized mimed sentences was quantified with the audio from the
trials with spoken sentences. The spectral distortion and correlation of the spectral features
was calculated by first dynamically time-warping the spectrogram of the synthesized mimed
speech to match the temporal profile of the audible sentence (FIGs. 18D-18E) and then
comparing performance. Performance on mimed speech was inferior to that of
audible/spoken speech (30% MCD difference), and demonstrates that it is possible to decode
important spectral features of speech that were never audibly uttered (p < 1le’!!, compared to

chance, n = 58; Wilcoxon signed-rank test).

State-space of decoded speech articulation
[00373] Modeling the underlying kinematics enhances the decoding performance. Low-

dimensional kinematic state-space trajectories were examined, by computing the state-space
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projection via principal components analysis (PCA) on the articulatory kinematic features.
The first ten principal components (PCs) (of 33 total) captured 85% of the variance and the
first two PCs captured 35%.

[00374] The state-space trajectories appeared to manifest the dynamics of syllabic
patterns in continuous speech. When examining transitions of specific phonemes, it was
found that PC1 and PC2 retained their biphasic trajectories of vowel/consonant states, but
showed specificity toward particular phonemes indicating that PC1 and PC2 are not
necessarily just describing jaw opening and closing, but rather global opening and closing
configurations of the vocal tract. These findings are consistent with theoretical accounts of
human speaking behavior, which postulate that high-dimensional speech acoustics lie on a
low-dimensional articulatory state-space.

[00375] To evaluate the similarity of the decoded state-space trajectories, productions of
the same sentence across participants that were projected into their respective kinematic
state-spaces were correlated (only P1, P2, and P4 had comparable sentences). The state-
space trajectories were highly similar (1>0.8, Figure 18F), demonstrating that the decoder is
likely relying upon a shared representation across speakers, a critical basis for generalization.

[00376] A shared kinematic representation across speakers could be very advantageous
for someone who cannot speak as it may be more intuitive and faster to first learn to use the
kinematics decoder (Stage 1), while using an existing kinematics-to-acoustics decoder (stage
2) trained on speech data collected independently.

Discussion

[00377] The results demonstrate intelligible speech synthesis from ECoG during both
audible and silently mimed speech production. The present disclosure demonstrates speech
synthesis using high-density, direct cortical recordings from human speech cortex. The
decoder of the present disclosure explicitly incorporated the knowledge to simplify the
translation of neural activity to sound by first decoding the primary physiological correlate
of neural activity and then transforming to speech acoustics. This statistical mapping permits
generalization with limited amounts of training.

[00378] The results show that cortical activity at vSMC electrodes provided for decoding
(FIGs. 17E-17F) because it encodes the underlying articulatory physiology that produces
speech. This knowledge was incorporated to simply the complex mapping from neural
activity to sound by first decoding the physiological correlate of neural activity and then
transforming to speech acoustics. Therefore, statistical mapping permits generalization with

limited amounts of training.
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[00379] The present disclosure represents one step forward for addressing a major
challenge posed by paralyzed patients who cannot speak. The results demonstrate that
speakers share a similar kinematic state-space representation (speaker-independent), and it is
possible to transfer model knowledge about the mapping of kinematics to sound across
subjects. Tapping into this emergent, low-dimensional representation from coordinated
population neural activity in the intact cortex may be a critical for bootstrapping a decoder,
as well facilitating BCI learning.

[00380] Table 2. Listener transcriptions of neurally synthesized speech. Examples

shown at several word error rate levels. The original text is indicated by “0” and the listener

transcriptions are indicated by “1”.

Word Error Rate | Original sentences (o) and transcriptions of synthesized speech (t)

0% 0: is this seesaw safe

t: is this seesaw safe

~10% o: bob bandaged both wounds with the skill of a doctor

t bob bandaged full wounds with the skill of & doctor

~20% o: those thieves stole thirty jewels

t: thirty thieves stole thirty jewels

o: help celebrate brother's success

t: help celebrate his brother's success

~30% o: get a calico cat to keep the rodents away

t: the calico cat to keep the rabbits away

o: carl lives in a lively home

t: carl has a lively home

~50% o: mum strongly dislikes appetizers

. mom often dislikes appetizers

o: etiquette mandates compliance with existing regulations

t: etiquette can be made with existing regulations

>70% o: at twilight on the twelfth day we’ll have Chablis

t: 1 was walking through chablis

Methods
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[00381] Participants and experimental task. Three human participants (30 F, 31 F, 34
M) underwent chronic implantation of high-density, subdural electrode array over the lateral
surface of the brain as part of their clinical treatment of epilepsy (right, left, and right
hemisphere grids, respectively). Participants gave their written informed consent before the
day of the surgery. All participants were fluent in English. All protocols were approved by
the Committee on Human Research at UCSF and experiments/data in this study complied
with all relevant ethical regulations. Each participant read and/or freely spoke a variety of
sentences. P1 read aloud two complete sets of 460 sentences from the MOCHA-TIMIT
database. Additionally, P1 also read aloud passages from the following stories: Sleeping
Beauty, Frog Prince, Hare and the Tortoise, The Princess and the Pea, and Alice in
Wonderland. P2 read aloud one full set of 460 sentences from the MOCHA-TIMIT database
and further read a subset of 50 sentences an additional 9 times each. P3 read 596 sentences
describing three picture scenes and then freely described the scene resulting in another 254
sentences. P3 also spoke 743 sentences during free response interviews. In addition to
audible speech, P1 also read 10 sentences 12 times each alternating between audible and
silently mimed (i.e. making the necessary mouth movements) speech. Microphone
recordings were obtained synchronously with the ECoG recordings.

[00382] Data acquisition and signal processing. Electrocorticography was recorded
with a multi-channel amplifier optically connected to a digital signal processor (Tucker-
Davis Technologies). Speech was amplified digitally and recorded with a microphone
simultaneously with the cortical recordings. ECoG electrodes were arranged ina 16 x 16
grid with 4 mm pitch. The grid placements were decided upon purely by clinical
considerations. ECoG signals were recorded at a sampling rate of 3,052 Hz. Each channel
was visually and quantitatively inspected for artifacts or excessive noise (typically 60 Hz
line noise). The analytic amplitude of the high-gamma frequency component of the local
field potentials (70 - 200 Hz) was extracted with the Hilbert transform and down-sampled to
200 Hz. The low frequency component (1-30 Hz) was also extracted with a 5th order
Butterworth bandpass filter, down-sampled to 200 Hz and parallelly aligned with the high-
gamma amplitude. Finally, the signals were z-scored relative to a 30 second window of
running mean and standard deviation, so as to normalize the data across different recording
sessions. High-gamma amplitude was studied because it correlates well with multi-unit
firing rates and has the temporal resolution to resolve fine articulatory movements. A low
frequency signal component was also included due to the decoding performance

improvements note for reconstructing perceived speech from auditory cortex. Decoding
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models were constructed using all electrodes from vSMC, STG, and IFG except for
electrodes with bad signal quality as determined by visual inspection.

[00383] Phonetic and phonological transcription. For the collected speech acoustic
recordings, transcriptions were corrected manually at the word level so that the transcript
reflected the vocalization that the participant actually produced. Given sentence level
transcriptions and acoustic utterances chunked at the sentence level, hidden Markov model
based acoustic models were built for each participant so as to perform sub-phonetic
alignment within the Festvox framework. Phonological context features were also generated
from the phonetic labels, given their phonetic, syllabic and word contexts.

[00384] Cortical surface extraction and electrode visualization. The electrodes were
localized on each individual’s brain by co-registering the preoperative T1 MRI with a
postoperative CT scan containing the electrode locations, using a normalized mutual
information routine in SPM12. Pial surface reconstructions were created using Freesurfer.
Final anatomical labeling and plotting was performed using the img pipe python package.

[00385] Inference of articulatory kinematics. The articulatory kinematics inference
model comprises a stacked deep encoder-decoder, where the encoder combines phonological
and acoustic representations into a latent articulatory representation that is then decoded to
reconstruct the original acoustic signal. The latent representation is initialized with inferred
articulatory movement from Electromagnetic Midsagittal Articulography (EMA) and
appropriate manner features. A statistical subject-independent approach to acoustic-to-
articulatory inversion which estimates 12 dimensional articulatory kinematic trajectories (x
and y displacements of tongue dorsum, tongue blade, tongue tip, jaw, upper lip and lower
lip, as would be measured by EMA) using only the produced acoustics and phonetic
transcriptions is known. Since, EMA features do not describe all acoustically consequential
movements of the vocal tract, complementary speech features were appended that improve
reconstruction of original speech. In addition to voicing and intensity of the speech signal,
place manner tuples were added (represented as continuous binary valued features) to
bootstrap the EMA with what was determined were missing physiological aspects in EMA.
There were 18 additional values to capture the following place-manner tuples: 1) velar stop,
2) velar nasal, 3) palatal approximant, 4) palatal fricative, 5) palatal affricate, 6) labial stop,
7) labial approximant, 8) labial nasal, 9) glottal fricative, 10) dental fricative, 11) labiodental
fricative, 12) alveolar stop, 13) alveolar approximant, 14) alveolar nasal, 15) alveolar lateral,
16) alveolar fricative, 17) unconstructed, 18) voicing. For this purpose, an existing annotated

speech database (Wall Street Journal Corpus) was used and trained speaker independent
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deep recurrent network regression models to predict these place-manner vectors only from
the acoustics, represented as 25-dimensional Mel Frequency Cepstral Coefficients (MFCCs).
The phonetic labels were used to determine the ground truth values for these labels (e.g., the
dimension “labial stop” would be 1 for all frames of speech that belong to the phonemes /p/,
/b/ and so forth). However, with a regression output layer, predicted values were not
constrained to the binary nature of the input features. In all, these 32 combined feature
vectors form the initial articulatory feature estimates.

[00386] Finally, to ensure that the combined 32 dimensional representation has the
potential to reliably reconstruct speech, an autoencoder was designed to optimize these
values. Specifically, a recurrent neural network encoder is trained to convert phonological
and acoustic features to the initialized 32 articulatory representations and then a decoder
converts the articulatory representation back to the acoustics. The stacked network is re-
trained optimizing the joint loss on acoustic and EMA parameters. After convergence, the
encoder is used to estimate the final articulatory kinematic features that act as the
intermediate to decode acoustics from ECoG.

[00387] Neural decoder. The decoder maps ECoG recordings to MFCCs via a two stage
process by learning intermediate mappings between ECoG recordings and articulatory
kinematic features, and between articulatory kinematic features and acoustic features. All
data (ECoG, kinematics, and acoustics) are sampled and processed by the model at 200 Hz.
This model was implemented using TensorFlow in python. In the first stage, a stacked 3-
layer bLSTM learns the mapping between 300 ms (60 time points) window of high-gamma
and LFP signals and a corresponding single time point (sampled at 200 Hz) of the 32
articulatory features. In the second stage, an additional stacked 3-layer bLSTM learns the
mapping between the output of the first stage (decoded articulatory features) and 32 acoustic
parameters (200 Hz) for full sentences sequences. These parameters are 25 dimensional
MFECCs, 5 sub-band voicing strengths for glottal excitation modelling, log(F0), voicing. At
each stage, the model is trained to with a learning rate of 0.001 to minimize mean-squared
error of the target. Dropout rate is set to 50% to suppress overfitting tendencies of the model.
A bLSTM was used because of their ability to retain temporally distant dependencies when
decoding a sequence.

[00388] During testing, a full sentence sequence of neural activity (high-gamma and low-
frequency components) is processed by the decoder. The first stage processes 300 ms of data
at a time, sliding over the sequence sample by sample, until it has returned a sequence of

kinematics that is equal length to the neural data. The neural data is padded with an
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additional 150 ms of data before and after the sequence to ensure the result is the correct
length. The second stage processes the entire sequence at once, returning an equal length
sequence of acoustic features. These features are then synthesized into an audio signal.

[00389] At each stage, the model is trained using the Adam optimizer to minimize mean-
squared error. The optimizer was initialized with learning rate=0.001,betal=0.9,
beta2=0.999, epsilon=1e-8. Models were stopped from training after the validation loss no
longer decreased. Dropout rate is set to 50% in stage 1 and 25% in stage 2 to suppress
overfitting tendencies of the models. There are 100 hidden units for each LSTM cell. Each
model employed 3 stacked bLSTMs with an additional linear layer for regression. A bLSTM
was used because of their ability to retain temporally distant dependencies when decoding a
sequence.

[00390] In the first stage, the batch size for training is 256, and in the second stage the
batch size is 25. Training and testing data were randomly split based off of recording
sessions, meaning that the test set was collected during separate recording sessions from the
training set. The training and testing splits in terms of total speaking time (minutes:seconds)
are as follows: P1 — training: 92:15, testing: 4:46 (n=101); P2 — training: 36:57, testing: 3:50
(n=100); P3 — training: 107:42, testing: 4:44 (n=98); P4 — training: 27:39, testing 3:12
(n=82).; P5 — training 44:31, testing 2:51 (n=44). n=number of sentences in test set.

[00391] The “direct” ECoG to acoustics decoder a similar architecture as the stage 1
articulatory bLSTM except with an MFCC output. Originally the direct acoustic decoder was
trained as a 6-layer bLSTM that mimics the architecture of the 2 stage decoder with MFCCs
as the “intermediate layer” and as the output. However, it was found that performance was
better with a 4-layer bLSTM (no intermediate layer) with 100 hidden units for each layer,
50% dropout and 0.005 learning rate using Adam optimizer for minimizing mean-squared
error. Models were coded using Python’s version 1.9 of Tensorflow.

[00392] Speech synthesis from acoustic features. An implementation of the Mel-log
spectral approximation algorithm with mixed excitation within Festvox was used to generate
the speech waveforms from estimates of the acoustic features from the neural decoder.

[00393] Model training procedure. As described, simultaneous recordings of ECoG and
speech are collected in short blocks of approximately 5 minutes. To partition the data for
model development, 2-3 blocks were allocated for model testing, 1 block for model
optimization, and the remaining blocks for model training. The test sentences 432 for P1 and
P2 each spanned 2 recording blocks and comprised 100 sentences read aloud. The test

sentences for P3 were different because the speech comprised 100 sentences over three

89



WO 2020/219371 PCT/US2020/028926

blocks of freely and spontaneously speech describing picture scenes. For shuffling the data
to test for significance, the order of the electrodes were shuffled that were fed into the
decoder. This method of shuffling preserved the temporal structure of the neural activity.
[00394] Mel-Cepstral Distortion (MCD). To examine the quality of synthesized speech,
the Mel-Cepstral Distortion (MCD) of the synthesized speech was calculated when
compared the original ground-truth audio. MCD is an objective measure of error determined

from MFCCs and is correlated to subjective perceptual judgments of acoustic quality. For

reference acoustic features mc®’ and decoded features mc®),

_ 10 0 _ 02
MCD = m(lo)\/o<£25(mcd mc, )= (1)
[00395] Intelligibility Assessment. Listening tests using crowdsourcing are a standard

way of evaluating the perceptual quality of synthetic speech. To comprehensively assess the
intelligibility of the neurally synthesized speech, a series of identification and transcription
tasks was conducted on the Amazon Mechanical Turk. A set of 60 sentences (6 trials of 10
unique sentences) were evaluated int his assessment. These trials, also held out during
training the decoder, were used in place of the 100 unique sentences tested throughout the
rest of FIG. 2 because the listeners always had the same 10 sentences to chose from. Each
trial sentence was listened to by 50 different listeners. In all, 166 unique listeners took part in
the evaluations.

[00396] To assess the amount of training data affects decoder performance, the data was
partitioned by recording blocks and trained a separate model for an allotted number of
blocks. In total, 8 models were trained, each with one of the following block allotments: [1,
2,5, 10, 15, 20, 25, 28]. Each block comprised an average of 50 sentences recorded in one
continuous session.

[00397] For the word level identification tasks, several cohorts of words grouped by the
number of syllables within were created. Using the time boundaries from the ground truth
phonetic labelling, audio was extracted from the neurally synthesized speech into four
classes of 1-syllable, 2-syllable, 3-syllable and 4-syllable words. Tests were conducted on
each of these groups of words that involve identification of the synthesized audio from a
group of i) 10 choices, ii) 25 choices, and iii) 50 choices of what they think the word is. The
presented options included the true word and the remaining choices randomly drawn from
the other words within the class. All words within the word groups were judged for

intelligibility without any further sub-selection.
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[00398] Since the content words in the MOCHA-TIMIT data are largely low frequency
words to assess sentence-level intelligibility, along with the neurally synthesized audio file,
the listeners were presented with a pool of words that may be in the sentence. This makes it
task a limited vocabulary free response transcription. Two experiments were conducted
where the transcriber is presented with pool of i) 25 word choices, and ii) 50 word choices
that may be used the sentence. The true words that make up the sentence are included along
with randomly drawn words from the entire test set and displayed in alphabetical order.
Given that the median sentence is only 7 words long (std=21., min=4, max=13), this task
design allows for reliable assessment of intelligibility. Each trial was judged by 10-20
different listeners. Each intelligibility task was performed by 47-187 unique listeners (a total
of 1755 listeners across 16 intelligibility tasks making all reported analyses statistically
reliable. All sentences from the test set were sent for intelligibility assessment without any
further selection. The listeners were required to be English speakers located in the United
States, with good ratings(>98% rating from prior tasks on the platform). For the sentence
transcription tasks, an automatic spell checker was employed to correct misspellings. No
further spam detection, or response rejection was done in all analyses reported. Word Error
Rate (WER) metric computed on listener transcriptions is used to judge the intelligibility of
the neurally synthesized speech. Where I is the number of word insertions, D is the number
of word deletions and S is the number of word substitutions for a reference sentence with N

words, WER is computed as

WER = 1+g +S @)
[00399] Data limitation analysis. To assess the amount of training data affects decoder

performance, the data was partitioned by recording blocks and trained a separate model for
an allotted number of blocks. In total, 8 models were trained, each with one of the following
block allotments: [1, 2, 5, 10, 15, 20, 25, 28]. Each block comprised an average of 50
sentences recorded in one continuous session.

[00400] Quantification of silent speech synthesis. By definition, there was no acoustic
signal to compare the decoded silent speech. In order to assess decoding performance,
decoded silent speech was evaluated in regards to the audible speech of the same sentence
uttered immediately prior to the silent trial. This was done so dynamically time-warping the
decoded silent speech MFCCs to the MFCC:s of the audible condition and computing
Pearson’s correlation coefficient and Mel-cepstral distortion.

[00401] Phoneme acoustic similarity analysis. The acoustic properties of decoded

phonemes were compared to ground-truth to better understand the performance of the
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decoder of the present disclosure. To do this, all time points were sliced for which a given
phoneme was being uttered and used the corresponding time slices to estimate its
distribution of spectral properties. With principal components analysis (PCA), the 32
spectral features were projected onto the first 4 principal components before fitting the
gaussian kernel density estimate (KDE) model. This process was repeated so that each
phoneme had two KDEs representing either its decoded and or ground-truth spectral
properties. Using Kullback-Leibler divergence (KL divergence), each decoded phoneme
KDE was compared to every ground-truth phoneme KDE, creating an analog to a confusion
matrix used in discrete classification decoders. KL. divergence provides a metric of how
similar two distributions are to one another by calculating how much information is lost
when one distribution was approximated with another. Lastly, Ward’s method was used for
agglomerative hierarchical clustering to organize the phoneme similarity matrix.

[00402] To understand whether the clustering of the decoded phonemes was similar to the
clustering of ground-truth phoneme pairs, the cophenetic correlation (CC) was used to assess
how well the hierarchical clustering determined from decoded phonemes preserved the
pairwise distance between original phonemes, and vice versa>*. For the decoded phoneme
dendrogram, the CC for preserving original phoneme distances was 0.71 as compared to
0.80 for preserving decoded phoneme distances. For the original phoneme dendrogram, the
CC for preserving decoded phoneme distances was (.64 as compared to (.71 for preserving
original phoneme distances. p<le-10 for all correlations.

[00403] State-space Kinematic trajectories. For state-space analysis of kinematic
trajectories, principal components analysis (PCA) was performed on the 33 kinematic
features using the training data set from P1. FIGs. 4A-4B shows kinematic trajectories
(original, decoded (audible and mimed) projected onto the first two principal components
(PCs). The example decoded mimed trajectory occurred faster in time by a factor of 1.15
than the audible trajectory so the trajectory was uniformly temporally stretched for
visualization. The peaks and troughs of the decoded mimed trajectories were similar to the
audible speech trajectory (r=0.65, r=0.55) although the temporal locations are shifted relative
to one another, likely because the temporal evolution of a production, whether audible or
mimed, is inconsistent across repeated productions. To quantify the decoding performance of
mimed trajectories, the dynamic time-warping approach described above was used, although
in this case, temporally warping with respect to the inferred kinematics (not the state-space).

[00404] For analysis of state-space trajectories across participants, the correlations of

productions of the same sentence were measured, but across participants. Since the sentences
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were produced at different speeds, they were dynamically time-warped to match and
compared against correlations of dynamically time-warped mismatched sentences.

[00405] Although the foregoing invention has been described in some detail by way of
illustration and example for purposes of clarity of understanding, it is readily apparent to
those of ordinary skill in the art in light of the teachings of this invention that certain changes
and modifications may be made thereto without departing from the spirit or scope of the
appended claims.

[00406] Accordingly, the preceding merely illustrates the principles of the invention. It
will be appreciated that those skilled in the art will be able to devise various arrangements
which, although not explicitly described or shown herein, embody the principles of the
invention and are included within its spirit and scope. Furthermore, all examples and
conditional language recited herein are principally intended to aid the reader in
understanding the principles of the invention and the concepts contributed by the inventors
to furthering the art, and are to be construed as being without limitation to such specifically
recited examples and conditions. Moreover, all statements herein reciting principles, aspects,
and embodiments of the invention as well as specific examples thereof, are intended to
encompass both structural and functional equivalents thereof. Additionally, it is intended that
such equivalents include both currently known equivalents and equivalents developed in the
future, i.e., any elements developed that perform the same function, regardless of structure.
Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of
whether such disclosure is explicitly recited in the claims.

[00407] The scope of the present invention, therefore, is not intended to be limited to the
exemplary embodiments shown and described herein. Rather, the scope and spirit of present
invention is embodied by the appended claims. In the claims, 35 U.S.C. §112(f) or 35 U.S.C.
§112(6) is expressly defined as being invoked for a limitation in the claim only when the
exact phrase "means for" or the exact phrase "step for" is recited at the beginning of such
limitation in the claim; if such exact phrase is not used in a limitation in the claim, then 35

U.S.C. § 112 (f) or 35 U.S.C. §112(6) is not invoked.
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CLAIMS

What is claimed is:

1. A method comprising:

receiving a physiological feature signal associated with a spatiotemporal movement of a vocal
tract articulator;

generating a speech pattern signal in response to the physiological feature signal; and

outputting speech that is based on the speech pattern signal.

2. The method according to claim 1, wherein the vocal tract articulator is selected from the
group consisting of the upper lip, lower lip, lower incisor, tongue tip, tongue blade, tongue

dorsum and larynx.

3. The method according to any one of claims 1-2, wherein the physiological feature signal
comprises measurements of the caudo-rostral displacements of one or more of the vocal tract

articulators.

4. The method according to claim any one of claims 1-3, wherein the method comprises
measuring the caudo-rostral displacements of one or more of the vocal tract articulators

associated with consonant constriction.

5. The method according to claim 4, wherein the consonant is plosive, lateral, fricative or nasal.

6. The method according to any one of claims 1-5, wherein spatiotemporal movement of a

vocal tract articulator is measured by electromagnetic midsagittal articulography.

7. The method according to claim 1, wherein receiving a physiological feature signal
comprises:

receiving one or more brain signals; and

associating the brain signals to one or more of the spatiotemporal movements of a vocal tract

articulator.
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8. The method according to claim 9, wherein the signals are detected from the ventral

sensorimotor cortex of the brain.

9. The method according to claim 3, wherein the caudo-rostral displacements are configured to

measure the shape and location of the one or more vocal tract articulators.

10. The method according to any one of claims 1-12, wherein the speech pattern signal is

outputted as auditory speech or as text.

11. A method comprising:
acquiring one or more of:
a linguistic signal; and
an acoustic signal;
associating a physiological feature with the linguistic or acoustic signal;
generating a speech pattern signal in response to the physiological feature; and

outputting speech that is based on the speech pattern signal.

12. The method according to claim 11, wherein the linguistic signal is a lexical signal.

13. The method according to any one of claims 11-12, wherein the linguistic signal is a

phonological signal.

14. The method according to any one of claims 11-13, wherein associating a physiological
feature with the linguistic or acoustic signal comprises associating the linguistic or acoustic

signal with a spatiotemporal movement of a vocal tract articulator.
15. The method according to claim 14, wherein the vocal tract articulator is selected from the
group consisting of the upper lip, lower lip, lower incisor, tongue tip, tongue blade, tongue

dorsum and larynx.

16. The method according to any one of claims 14-15, wherein the method comprises measuring

the caudo-rostral displacements of one or more of the vocal tract articulators.
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17. The method according to claim any one of claims 14-16, wherein the method comprises
measuring the caudo-rostral displacements of one or more of the vocal tract articulators

associated with consonant constriction.

18. The method according to claim 17, wherein the consonant is plosive, lateral, fricative or

nasal.

19. The method according to any one of claims 14-18, wherein spatiotemporal movement of a

vocal tract articulator is measured by electromagnetic midsagittal articulography.

20. The method according to any one of claims 11-19, wherein associating a physiological
feature with the linguistic or acoustic signal further comprises:

detecting one or more signals from the brain; and

associating the brain signals to one or more spatiotemporal movements of a vocal tract

articulator.

21. The method according to claim 20, wherein the signals are detected from the ventral

sensorimotor cortex of the brain.

22. The method according to claim 20, wherein the vocal tract articulator is selected from the
group consisting of the upper lip, lower lip, lower incisor, tongue tip, tongue blade, tongue

dorsum and larynx.

23. The method according to any one of claims 11-22, wherein the speech signal is outputted as

auditory speech or as text.

24. A system comprising:

a processor comprising memory operably coupled to the processor wherein the memory includes
instructions stored thereon, which when executed by the processor, cause the processor to:
receive a physiological feature signal associated with a spatiotemporal movement of a vocal
tract articulator; and

generate a speech pattern signal in response to the physiological feature signal; and

an output for outputting speech that is based on the speech pattern signal.
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25.

26.

27

28.

29.

30.

31.

32.

33.

34.

The system according to claim 24, wherein the processor comprises bidirectional long-short

term memory (bLSTM).

The system according to claim 25, wherein the bLSTM is a stacked 3-layer bISTM processor

configured to encode one or more vocal tract articulators.

. The system according to claim 25, wherein the bidirectional long-short term memory

comprises algorithm for encoding the physiological feature signal.

The system according to any one of claims 24-27, wherein the processor comprises a deep

neural network (DNN).

The system according to claim 28, wherein the deep neural network comprises algorithm for

decoding the physiological feature signal to a speech pattern signal.

The system according to claim 29, wherein the deep neural network comprises algorithm for

decoding physiological signal to auditory speech.

The system according to claim 29, wherein the deep neural network comprises algorithm for

decoding physiological signal to text.

The system according to any one of claims 28-31, wherein the deep neural network
comprises algorithm for decoding physiological signal as mel frequency cepstral

coefficients.

The system according to claim 32, wherein the deep neural network comprises algorithm for

decoding physiological signal as 25 dimensional mel frequency cepstral coefficients.
The system according to any one of claims 24-33, wherein the physiological feature signal

comprises a dataset associated with spatiotemporal movement of one or more vocal tract

articulators.
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35. The system according to claim 34, wherein the vocal tract articulator is selected from the
group consisting of the upper lip, lower lip, lower incisor, tongue tip, tongue blade, tongue

dorsum and larynx.

36. The system according to claim 34, wherein the dataset comprises measurements of the

caudo-rostral displacements of the one or more of the vocal tract articulators.

37. The system according to claim 36, wherein the physiological feature comprises a
electromagnetic midsagittal articulography dataset associated with spatiotemporal movement

of one or more vocal tract articulators.

38. The system according to any one of claims 24-37, further comprising memory operably
coupled to the processor wherein the memory includes instructions stored thereon, which
when executed by the processor, cause the processor to:

receive one or more signals from the brain; and

associate the brain signals to one or more spatiotemporal movements of a vocal tract articulator
to generate a physiological feature signal; and

generate a speech pattern signal in response to the physiological feature signal.

39. The system according to claim 38, further comprising electrical leads for receiving signals

from all or a part of the ventral sensorimotor cortex of the brain.

40. The system according to any one of claims 24-39, wherein the output is configured to output

auditory speech or text.

41. The system according to claim 40, wherein the output is an audio speaker.

42. The system according to claim 40, wherein the output is a text generator.

43. A system comprising:

input for receiving one or more of:

a linguistic signal; and

an acoustic signal; and
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44.

45.

46.

47.

48.

49.

50.

51.

a processor comprising memory operably coupled to the processor wherein the memory
includes instructions stored thereon, which when executed by the processor, cause the
processor to:

associate a physiological feature with an inputted linguistic or acoustic signal; and

an output configured to output a speech signal in response to the physiological feature.

The system according to claim 43, wherein the processor comprises bidirectional long-short

term memory (BLSTM).

The system according to claim 44, wherein the bidirectional long-short term memory
comprises algorithm for encoding the physiological signal associated with the inputted

linguistic or acoustic signal.

The system according to any one of claims 43-45, wherein the processor comprises a deep

neural network (DNN).

The system according to claim 46, wherein the deep neural network comprises algorithm for

decoding physiological signal to a speech signal.

The system according to claim 47, wherein the deep neural network comprises algorithm for

decoding physiological signal to auditory speech.

The system according to claim 48, wherein the deep neural network comprises algorithm for

decoding physiological signal to text.
The system according to any one of claims 46-49, wherein the deep neural network
comprises algorithm for decoding physiological signal as mel frequency cepstral

coefficients.

The system according to claim 50, wherein the deep neural network comprises algorithm for

decoding physiological signal as 25 dimensional mel frequency cepstral coefficients.
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52.

53.

54.

55.

56.

The system according to any one of claims 43-51, wherein the physiological feature
comprises a dataset associated with spatiotemporal movement of one or more vocal tract

articulators.

The system according to claim 52, wherein the vocal tract articulator is selected from the
group consisting of the upper lip, lower lip, lower incisor, tongue tip, tongue blade, tongue

dorsum and larynx.

The system according to claim 53, wherein the dataset comprises measurements of the

caudo-rostral displacements of the one or more of the vocal tract articulators.

The system according to claim 54, wherein the physiological feature comprises a
electromagnetic midsagittal articulography dataset associated with spatiotemporal movement

of one or more vocal tract articulators.

The system according to any one of claims 43-51, further comprising memory operably
coupled to the processor wherein the memory includes instructions stored thereon, which

when executed by the processor, cause the processor to:

receive one or more signals from the brain; and

associate the brain signals to one or more spatiotemporal movements of a vocal tract articulator

to generate a physiological feature signal; and

generate a speech pattern signal in response to the physiological feature signal.

57.

58.

59.

60.

The system according to claim 56, further comprising electrical leads for receiving signals

from all or a part of the ventral sensorimotor cortex of the brain.

The system according to any one of claims 43-57, wherein the output is configured to output

auditory speech or text.

The system according to claim 58, wherein the output is an audio speaker.

The system according to claim 58, wherein the output is a text generator.
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FIGs. 8A-8E
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FIGs. 8A-8E (cont)
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FIGs. 9A-9C
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FIG. 10
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FIGs. 11A-11C
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FIGs. 12A-12)
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FIGs. 12A-12) (cont)
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FIGs. 13A-13C
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FIG. 14A
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FIG. 14B
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FIGs. 15A-15G
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FIGs. 16A-16D
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FIGs. 17A-17F
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FIGs. 19A-19B
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