(12) 公開特許公報(A)

(19) 日本国特許庁(JP)

(11)特許出願公開番号 **特開2007-201267** (P2007-201267A)

(43) 公開日 平成19年8月9日(2007.8.9)

(51) Int.C1.			FΙ			テーマコード(参考)
HO1L	27/148	(2006.01)	HO1L	27/14	В	4M118
HO1L	31/10	(2006.01)	HO1L	31/10	А	5F049

審査請求 未請求 請求項の数 7 OL (全 17 頁)

(21) 出願番号	特願2006-19363 (P2006-19363)	 (71)出願人	306037311	
(22) 出願日	平成18年1月27日 (2006.1.27)		富士フイルム株式会社	
			東京都港区西麻布2丁目26番30号	
		(74)代理人	100105647	
			弁理士 小栗 昌] 平
		(74) 代理人	100105474	
			弁理士 本多 弘	ム徳
		(74)代理人	100108589	
			弁理士 市川 养	刊光
		(74)代理人	100115107	
			弁理士 高松 貓	Ē.
		(74)代理人	100132986	
			弁理士 矢澤 瀧	青純
				最終頁に続く

(54) 【発明の名称】固体撮像素子およびその製造方法

(57)【要約】

【課題】カラー対応の縦型オーバーフロードレイン構造の固体撮像素子において、オーバーフロードレインによる蓄積電荷のクリア動作に悪影響を与えることなく、暗 電流を効果的に低減し、白傷の発生を抑制する。

【解決手段】光の波長に応じて、フォトダイオードを構 成する第1導電型層(160,162,164)の深さ を最適化し、短波長の緑(G),青(B)の各光を受け るフォトダイオードの第1導電型層(162,164) を浅く形成し、無駄な部分をなくす。また、併せて、緑 (G),青(B)用のフォトダイオードの直下において 追加のオーバーフローバリア層(121,123)を形 成し、オーバーフローバリアのポテンシャルの高さの差 を低減する。

【選択図】図1

【特許請求の範囲】

【請求項1】

第1 導電型の半導体基板(100,110)と、この半導体基板上に設けられた第2 導 電型のオーバーフローバリア層(120)と、このオーバーフローバリア層上に設けられ た低不純物濃度層(158)と、この低不純物濃度層内に設けられた、赤(R),緑(G),青(B)の各光を光電変換する第1、第2および第3のフォトダイオードと、を備え る縦型オーバーフロードレイン構造の固体撮像素子であって、

(2)

前記赤(R),緑(G),青(B)の各光を光電変換する第1、第2および第3のフォ トダイオードの各々は、上層の第2導電型層(170,172)と、電荷蓄積領域として 機能する下層の第1導電型層(160,162,164)と、により構成され、前記第1 、第2および第3のフォトダイオードの各々における前記下層の第1導電型層(160, 162,164)の深さを各々d1,d2,d3とした場合、d1>d2 d3の関係を 有し、

前記第2および第3のフォトダイオードにおける前記下層の第1導電型層(162,1 64)の下に、該第1導電型層(162,164)の深さ(d2,d3)を浅くしたこと によるオーバーフローバリアの高さの変動を抑制するための追加のオーバーフローバリア 層(121,123)が形成されていることを特徴とする固体撮像素子。

【請求項2】

請求項1記載の固体撮像素子であって、

前記オーバーフローバリア層の厚みが、前記第1導電型層の厚みに対応して設定されて 20 いることを特徴とする固体撮像素子。

【請求項3】

請求項2記載の固体撮像素子であって、

前記第1、第2および第3のフォトダイオードにおける前記下層の第1導電型層(160,162,164)の直下の前記低濃度層(158)の厚みは、いずれも略同一(H1)であることを特徴とする固体撮像素子。

【請求項4】

請求項1記載の固体撮像素子であって、

前記第1導電型層の厚みに対応して前記オーバーフローバリア層の不純物濃度が設定されていることを特徴とする固体撮像素子。

【請求項5】

赤(R),緑(G),青(B)の各光を光電変換する第1、第2および第3のフォトダ イオードを備える縦型オーバーフロードレイン構造の固体撮像素子の製造方法であって、 第1導電型の半導体基板(110)内に形成した第2導電型のオーバーフローバリア層 (120)よりも上側の部分に、電荷の転送路となる不純物層(130,140)と、フ ォトダイオードとなる低不純物濃度層(158)とを形成し、前記転送路となる不純物層 (130,140)上に電荷転送を制御するための転送電極を形成した後に、フォトダイ オードを完成させるフォトダイオード形成工程を有し、

前記フォトダイオード形成工程が、前記半導体基板の前記フォトダイオード形成領域(22)における前記低不純物濃度層(158)内に、前記第1、第2および第3のフォト ダイオードを構成する第1導電型層(160,162,164)を形成し、前記第1導電 型層(160,162,164)とPN接合を形成する上層の第2導電型層(170,1 72)を形成する工程を含み、前記第1、第2および第3のフォトダイオードの各々にお ける前記第1導電型層(160,162,164)の深さを各々d1,d2,d3とした 場合、d1>d2 d3の関係を有するようにし、

さらに、前記第1導電型層の形成後にイオン注入を行い、前記第2および第3のフォト ダイオードを構成する前記第1導電型層(162,164)の下方に、前記第1導電型層 (162,164)の深さ(d2,d3)を浅くしたことによるオーバーフローバリアの 高さの変動を抑制する追加オーバーフローバリア層(121,123)を形成することを 特徴とする固体撮像素子の製造方法。

50

【請求項6】

請求項5記載の固体撮像素子の製造方法であって、

前 記 追 加 オ ー バ ー フ ロ ー バ リ ア 層 (1 2 1 , 1 2 3) を 、 前 記 第 1 、 第 2 お よ び 第 3 の フォトダイオードにおける前記第1導電型層(160,162,164)の直下の前記低 濃度層(158)の厚みを略同一(H1)とするように形成することを特徴とする固体撮 像素子の製造方法。

(3)

【請求項7】

赤 (R) , 緑 (G) , 青 (B) の各光を光電変換する第 1 、第 2 および第 3 のフォトダ イオードを備える縦型オーバーフロードレイン構造の固体撮像素子の製造方法であって、 |第 1 導 電 型 の 半 導 体 基 板 (1 1 0) 内 に 形 成 し た 第 2 導 電 型 の オ ー バ ー フ ロ ー バ リ ア 層 (120)よりも上側の部分に、電荷の転送路となる不純物層(130,140)と、フ ォトダイオードとなる低不純物濃度層(158)とを形成し、前記転送路となる不純物層 (130,140)上に電荷転送を制御するための転送電極を形成した後に、フォトダイ オードを完成させるフォトダイオード形成工程を有し、

前 記 フ ォ ト ダ イ オ ー ド 形 成 工 程 が 、 前 記 半 導 体 基 板 の 前 記 フ ォ ト ダ イ オ ー ド 形 成 領 域 (Z 2)における前記低不純物濃度層(158)内に、前記第1、第2および第3のフォト ダイオードを構成する第1導電型層(160,162,164)を略同じ深さで形成し、 前記第1導電型層(160,162,164)とPN接合を形成する上層の第2導電型層 (170,172)を形成し、

次に、第2および第3のフォトダイオードを構成する前記第1導電型層(160,16 20 0) に対してカウンター不純物としての第2導電型不純物を導入し、これによって第1導 電型層(160,160)の底部の導電型を打ち消し、前記第1、第2および第3のフォ トダイオードを構成するポテンシャル井戸の領域の深さが相互に異なる第1導電型層(1 60,162,164)を形成することを特徴とする固体撮像素子の製造方法。

【発明の詳細な説明】

【技術分野】

 $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$

本発明は、固体撮像素子およびその製造方法し、特に、赤(R),緑(G),青(B) の各光を光電変換するフォトダイオードを具備する、縦型オーバーフロードレイン構造の 固体撮像素子およびその製造方法に関する。

【背景技術】

[0002]

CCDを用いた固体撮像素子では、フォトダイオードにより入射光を電荷に変換し、蓄 積された電荷を電圧に変換して取り出している。このような固体撮像素子を高感度化する ために、フォトダイオードを縦方向に深く形成する技術が種々提案されている(例えば、 特許文献1参照)。この特許文献1の技術では、赤(R),緑(G),青(B)の各光を 光電変換する各フォトダイオードに対し、電荷蓄積層となるN型層を深く形成すると共に 、そのN型層を多段階に分けて形成して濃度プロファイルの適正化を図っている。

[0003]

また、固体撮像素子による撮像を開始する際には、フォトダイオードの電荷を空にする 40 ことが望ましい。このような固体撮像素子の構成として、全画素同時に蓄積電荷を空にす ることが可能な縦型オーバーフロードレイン構造が知られている(例えば、特許文献2参 照)。この縦型オーバーフロードレイン構造では、半導体基板の深さ方向にNPN構造が 形成されており(これらは、バルク型の縦型トランジスタとしての機能をもつ)、基板バ イアスを変化させることによって、中間のP型層によって形成されポテンシャルバリア(ー 般 に オ ー バ ー フ ロ ー バ リ ア と 呼 ば れ る)を 消 滅 さ せ る と 、 全 画 素 同 時 に 蓄 積 電 荷 を ク リ アすることが可能である。

 $\begin{bmatrix} 0 & 0 & 0 & 4 \end{bmatrix}$

図12は、オーバーフロードレイン構造の固体撮像素子における蓄積電荷をクリアする ための動作を説明するためのポテンシャル特性を示す図である。

10

30

図中、T1は、オーバーフローバリア(OFB)が形成されている状態のポテンシャル 特性を示し、T2は、オーバーフローバリア(OFB)が消失した状態のポテンシャル特 性を示す。基板のバイアス電圧を変化させることによって、ポテンシャルカーブがT1か らT2に変化し、これによって、蓄積電荷Qが一気にドレインに放出され、全画素の蓄積 電荷を同時にクリアすることができる。

(4)

【特許文献1】特開2003-86783号公報

【特許文献 2 】特開 2 0 0 4 - 2 2 8 1 4 0 号公報

【発明の開示】

【発明が解決しようとする課題】

【 0 0 0 5 】

特許文献1に記載される技術では、R,G,Bの各色用のフォトダイオードの深さを一 律に深くし、その上で、電荷蓄積層としてのN型層を複数回のイオン注入で形成して不純 物の濃度プロファイルを制御している。しかし、本願発明者の鋭意検討によると、フォト ダイオードを一律に深く形成した場合、波長の長い、赤(R)の光を受けるフォトダイオ ードについては感度が向上するが、波長の短い緑(G),青(B)の光を受けるフォトダ イオードについては、フォトダイオードを深く形成した分の感度向上効果が必ずしも得ら れず、かえって、暗電流の増加による、いわゆる白傷の増加といった弊害が目立つように なることの知見が得られた。

【 0 0 0 6 】

すなわち、赤色(赤外光を含む)に比べて短波長の、緑(G)、青(B)は、深さを深 20 くしたフォトダイオードの(N型層の)最深部には到達しない割合が多く、その最深部の 部分は光電変換にあまり寄与しないといえる。一方、フォトダイオードを構成するN型層 が深くなった分だけ、その表面積が増大して暗電流が増加し、白傷が増加するという弊害 が顕在化する場合がある。

【 0 0 0 7 】

本発明はこのような考察に基づいてなされたものであり、その目的は、赤(R),緑(G),青(B)の各色の光を受けるフォトダイオードを具備する固体撮像素子において、 暗電流を効果的に低減し、白傷の発生を抑制することにある。

【課題を解決するための手段】

[0008]

本発明に係る上記目的は、下記構成によって実現される。

(1) 第1導電型の半導体基板(100、110)と、この半導体基板上に設けられた第2導電型のオーバーフローバリア層(120)と、このオーバーフローバリア層上に設けられた低不純物濃度層(158)と、この低不純物濃度層内に設けられた、赤(R),緑(G),青(B)の各光を光電変換する第1、第2および第3のフォトダイオードと、を備える縦型オーバーフロードレイン構造の固体撮像素子であって、前記赤(R),緑(G),青(B)の各光を光電変換する第1、第2および第3のフォトダイオードの各々は、上層の第2導電型層(170,172)と、電荷蓄積領域として機能する下層の第1導電型層(160,162,164)の深さを各々d1,d2,d3とした場合、d1>d2 d3の関係を有し、前記第2および第3のフォトダイオードにおける前記下層の第1導電型層(162,164)の下に、該第1導電型層(162,164)の深さ(d2,d3)を浅くしたことによるオーバーフローバリアの高さの変動を抑制するための追加のオーバーフローバリア層(121,1 23)が形成されていることを特徴とする固体撮像素子。

【 0 0 0 9 】

この固体撮像素子によれば、光電変換の対象となる光の波長に応じて、フォトダイオードを構成する第1導電型層の深さを最適化して、短波長の緑(G),青(B)の各光を受けるフォトダイオードから無駄な部分を除去し、これによって暗電流を低減し、白傷の発生を抑制することができる。すなわち、長波長の赤(R)の光は、フォトダイオードを構

10

成する第1導電型層(以下の説明では、N型とする)の深部まで到達するため、その深部 で生成される電荷を有効化するためには、フォトダイオードは十分深く形成するのが望ま しいが、短波長の緑(G),青(B)は、赤(R)ほどには深くまで到達しないため、そ の到達位置に合わせて、フォトダイオードを構成するN型層の深さを浅くする。つまり、 赤(R),緑(G),青(B)の各光を光電変換する第1、第2および第3のフォトダイ オードのN型層の深さをd1,d2,d3としたときに、d1>d2>d3、あるいは、 d1>d2=d3の関係が成立するように、各N型層の深さを調整する。

また、固体撮像素子は、受光する光の波長に応じて、各フォトダイオードを構成するN 型層の深さを変化させると、フォトダイオード毎に、N型層の底部とP型のオーバーフロ ーバリア層との間の距離が異なり、フォトダイオード毎に、蓄積電荷を完全にクリアする ために必要な基板電位(以下、オーバーフロー電位という)にばらつきが生じる場合があ る。つまり、フォトダイオードを構成するN型層の底部とP型のオーバーフローバリア層 との間には、 不 純 物 濃 度 が 低 い 低 濃 度 層 (原 則 的 に は P 型 が 望 ま し い が 、 こ れ に 限 定 さ れ るものではなく、N型でもよく、あるいはノンドープであってもよい)が介在するが、こ の低濃度層は、フォトダイオードのバイアスに応じて空乏層を伸長させ、オーバーフロー ドレイン構造のポテンシャルカーブを滑らかに上昇させる(変化させる)働きをもつため 、その低濃度層の厚みが厚いほど、オーバーフローバリア(OFB)のポテンシャルがよ り低くなる。したがって、N型層の深さを浅くした緑(G),青(B)用のフォトダイオ ードでは、オーバーフロードレイン電位をより高くしないと、蓄積電荷を完全にクリアで きなくなる場合があり、そのことが駆動電圧の上昇や、リセット電圧のバラツキ等を発生 させる要因になり得る。そこで、緑(G),青(B)用のフォトダイオードの直下におい て追加のオーバーフローバリア層を形成し、これによって、各フォトダイオードを構成す るN型層の底部とP型のオーバーフローバリア層(追加のオーバーフローバリア層を含む)との間の距離のばらつきを抑制することができる。したがって、各色用のフォトダイオ ードの、オーバーフローバリアのポテンシャルの高さの差が低減され、オーバーフロード レイン電位のばらつきを抑制することが可能となる。

(2) (1)記載の固体撮像素子であって、前記オーバーフローバリア層の厚みが、 前記第1導電型層の厚みに対応して設定されていることを特徴とする固体撮像素子。 【0011】

この固体撮像素子によれば、第1導電型層の厚みに対応してオーバーフローバリア層の 厚みが設定されることで、オーバーフローバリアのポテンシャル高さの差が低減される。 【0012】

(3) (2)記載の固体撮像素子であって、前記第1、第2および第3のフォトダイ オードにおける前記下層の第1導電型層(160,162,164)の直下の前記低濃度 層(158)の厚みは、いずれも略同一(H1)であることを特徴とする固体撮像素子。 【0013】

この固体撮像素子によれば、各フォトダイオードを構成するN型層の底部とP型のオー バーフローバリア層(追加のオーバーフローバリア層を含む)との間に介在する低濃度層 の厚みを略同一とすることによって、オーバーフロードレイン電位のばらつきを十分に抑 制することができる。

【0014】

(4) (1)記載の固体撮像素子であって、前記第1導電型層の厚みに対応して前記 オーバーフローバリア層の不純物濃度が設定されていることを特徴とする固体撮像素子。 【0015】

この固体撮像素子によれば、第1導電型層の厚みに対応してオーバーフローバリア層の 不純物濃度が設定されることで、オーバーフローバリアのポテンシャル高さの差が低減さ れる。

[0016]

(5) 赤(R),緑(G),青(B)の各光を光電変換する第1、第2および第3の 50

10

20

30

フォトダイオードを備える縦型オーバーフロードレイン構造の固体撮像素子の製造方法で あって、第1導電型の半導体基板(110)内に形成した第2導電型のオーバーフローバ リア層(120)よりも上側の部分に、電荷の転送路となる不純物層(130,140) と、 フ ォ ト ダ イ オ ー ド と な る 低 不 純 物 濃 度 層 (1 5 8) と を 形 成 し 、 前 記 転 送 路 と な る 不 純物層(130,140)上に電荷転送を制御するための転送電極を形成した後に、フォ トダイオードを完成させるフォトダイオード形成工程を有し、前記フォトダイオード形成 工程が、前記半導体基板の前記フォトダイオード形成領域(Ζ2)における前記低不純物 濃度層(158)内に、前記第1、第2および第3のフォトダイオードを構成する第1導 電型層(160,162,164)を形成し、前記第1導電型層(160,162,16 4)とPN接合を形成する上層の第2導電型層(170,172)を形成する工程を含み 、前記第1、第2および第3のフォトダイオードの各々における前記第1導電型層(16 0,162,164)の深さを各々d1,d2,d3とした場合、d1>d2 d3の関 係を有するようにし、さらに、前記第1導電型層の形成後にイオン注入を行い、前記第2 および第3のフォトダイオードを構成する前記第1導電型層(162,164)の下方に 、 前 記 第 1 導 電 型 層 (1 6 2 , 1 6 4)の 深 さ (d 2 , d 3) を 浅 く し た こ と に よ る オ ー バーフローバリアの高さの変動を抑制する追加オーバーフローバリア層(121,123)を形成することを特徴とする固体撮像素子の製造方法。 [0017]

この固体撮像素子の製造方法によれば、オーバーフローバリア層を形成し、電荷転送路 を構成する不純物層と、フォトダイオードが後に形成される低濃度層とを形成し、転送電 極を形成した後、フォトダイオード形成工程において、フォトダイオードを構成する第1 導電型層の深さを、光の波長に応じて最適化しつつ形成する。深さが異なるN型層は、例 えば、イオン注入の際の加速エネルギーを適宜、制御することによっても形成することが できる。また、カウンターイオンをN型層の深部に注入することによっても、深さの制御 を行える。これによって、短波長の緑(G),青(B)の各光を受けるフォトダイオード から無駄な部分を除去し、暗電流を低減し、白傷の発生を抑制する。そして、第5の工程 にて、遮光膜、平坦化層を形成し、さらにカラーフィルタ層ならびにオンチップレンズを 形成して、カラー画像対応の固体撮像素子を無理なく形成することができる。

そして、このフォトダイオード形成工程においては、イオン注入によって、追加のオー バーフローバリア層を無理なく形成することができ、第1導電型層の深さの違いによるオ ーバーフローバリアの高さの変動を抑制することができる。 【0018】

 (6) (5)記載の固体撮像素子の製造方法であって、前記追加オーバーフローバリア層(121,123)を、前記第1、第2および第3のフォトダイオードにおける前記第1導電型層(160,162,164)の直下の前記低濃度層(158)の厚みを略同 ー(H1)とするように形成することを特徴とする固体撮像素子の製造方法。
【0019】

この固体撮像素子の製造方法によれば、各フォトダイオードを構成するN型層の底部と P型のオーバーフローバリア層(追加のオーバーフローバリア層を含む)との間に介在す る低濃度層の厚みを略同一とすることによって、オーバーフロードレイン電位のばらつき を十分に抑制することができる。

【 0 0 2 0 】

(7) 赤(R),緑(G),青(B)の各光を光電変換する第1、第2および第3の フォトダイオードを備える縦型オーバーフロードレイン構造の固体撮像素子の製造方法で あって、第1導電型の半導体基板(110)内に形成した第2導電型のオーバーフローバ リア層(120)よりも上側の部分に、電荷の転送路となる不純物層(130,140) と、フォトダイオードとなる低不純物濃度層(158)とを形成し、前記転送路となる不 純物層(130,140)上に電荷転送を制御するための転送電極を形成した後に、フォ トダイオードを完成させるフォトダイオード形成工程を有し、前記フォトダイオード形成 工程が、前記半導体基板の前記フォトダイオード形成領域(Z2)における前記低不純物 10

20

濃度層(158)内に、前記第1、第2および第3のフォトダイオードを構成する第1導 電型層(160,162,164)を略同じ深さで形成し、前記第1導電型層(160, 162,164)とPN接合を形成する上層の第2導電型層(170,172)を形成し、次に、第2および第3のフォトダイオードを構成する前記第1導電型層(160,16 0)に対してカウンター不純物としての第2導電型不純物を導入し、これによって第1導 電型層(160,160)の底部の導電型を打ち消し、前記第1、第2および第3のフォ トダイオードを構成するポテンシャル井戸の領域の深さが相互に異なる第1導電型層(1 60,162,164)を形成することを特徴とする固体撮像素子の製造方法。 【0021】

この固体撮像素子の製造方法によれば、一律の深さにN型層を形成した後、緑(G), 10 青(B)用のフォトダイオードに関して、反対導電型(つまり第2導電型)のカウンター 不純物(ボロン)を深部に導入して電荷を中和し、その部分のN型層を消滅させ、結果的 にN型層を浅くするものである。最初のN型層の形成については、フォトダイオード毎に 注入エネルギーを変える必要がなく、その後、カウンター不純物の導入工程を追加するだ けでよいため(つまり、マスク変更で対応できるため)、製造時の負担を少なくすること ができる。

【発明の効果】

[0022]

本発明によれば、光電変換の対象となる光の波長に応じて、フォトダイオードを構成す る第1導電型層の深さを最適化して、短波長の緑(G),青(B)の各光を受けるフォト 20 ダイオードから無駄な部分を除去し、これによって暗電流を低減し、白傷の発生を抑制す ることができる。

また、各フォトダイオードを構成する第1 導電型層の深さを最適化する際、併せて、緑(G),青(B)用のフォトダイオードの直下において追加のオーバーフローバリア層を形成することによって、各フォトダイオードを構成するN型層の底部とP型のオーバーフローバリア層(追加のオーバーフローバリア層を含む)との間の距離のばらつきを抑制することができる。したがって、各色用のフォトダイオードの、オーバーフローバリアのポテンシャルの高さの差が抑制され、オーバーフロードレイン電位のばらつきを抑制することが可能となる。

【0023】

さらに、各フォトダイオードを構成する第1導電型層の深さの制御や追加のオーバーフ ローバリア層の形成は、イオン注入の加速エネルギーの調整や、イオン注入の際の若干の 工程の追加により、無理なく実現することが可能である。

[0024]

本発明によって、赤(R),緑(G),青(B)の各色の光を受けるフォトダイオード を具備する固体撮像素子において、オーバーフロードレインによる蓄積電荷のクリア動作 に悪影響を与えることなく、暗電流を効果的に低減し、白傷の発生を抑制することが可能 となる。

【発明を実施するための最良の形態】

[0025]

次に、本発明の実施形態について、図面を参照して説明する。

図 1 は、本発明の固体撮像素子の一例(カラー対応で、縦型オーバーフロードレイン構 造をもち、各フォトダイオードの深さが最適化され、かつ、追加のオーバーフローバリア 層が形成されている例)の構成を示すデバイスの断面図である。

【0026】

図示されるように、この固体撮像素子は、N型半導体基板(NSub)100と、N型 エピタキシャル層110と、P型のオーバーフローバリア層120と、P-型の低濃度層 158と、を有する。この低濃度層158は、フォトダイオードのバイアスに応じて空乏 層を伸長させ、縦型オーバーフロードレイン構造のポテンシャルカーブを滑らかに変化さ せる働きをする。なお、低濃度層158の導電型は、場合によってはN型でもよく、ある

いは、ノンドープの層とすることもできる。

【0027】

また、赤(R)の光を光電変換するフォトダイオードは、低濃度層 1 5 8 内に形成された、下層の N 型層 1 6 0 (深さ d 1)ならびに上層の P + 型層 1 7 0 により構成される。 【 0 0 2 8 】

なお、 P 型 層 1 7 2 は反転防止のための拡散層である。また、 P + 型層 1 5 0 は素子分離用の拡散層である。また、 N 型の拡散層 1 4 0 ならびに P 型の拡散層 1 3 0 は、転送路を構成する拡散層である。同様に、緑(G)の光を光電変換するフォトダイオードは、低濃度層 1 5 8 内に形成された、下層の N 型層 1 6 2 (深さd 2)ならびに上層の P + 型層 1 7 0 により構成される。同様に、青(B)の光を光電変換するフォトダイオードは、低濃度層 1 5 8 内に形成された、下層の N 型層 1 6 4 (深さd 3)ならびに上層の P + 型層 1 7 0 により構成される。

[0029]

また、半導体基板の表面には、ゲート絶縁膜(例えばONO膜)180が形成されている。

PY1, PY2は各々、1層目ならびに2層目のポリシリコンで形成される転送電極で ある。また、参照符号182は転送電極間絶縁膜であり、参照符号184はオーバーコー ト絶縁膜である。また、転送電極PY1, PY2は、バリアメタルとしての窒化チタン(TiN)層190と、タングステン(W)からなる遮光膜192により覆われている。 【0030】

20

10

半導体基板上には、 B P S G 膜 2 0 0 が形成され、その上には、平坦化層としての窒化 シリコン(S i N)膜 2 1 0 が形成されている。この平坦化層 2 1 0 の上には、色付の透 明レジストからなる、赤(R),緑(G),青(B)の各色のカラーフィルタ層 2 2 0, 2 2 2 , 2 2 4 が形成されている。

【 0 0 3 1 】

そのカラーフィルタ層220,222,224の上に、有機膜からなる平坦化層229 を介して、オンチップレンズ230が形成されている。

図1の固体撮像素子の特徴は、光の波長に応じて、フォトダイオードを構成するN型層 (160,162,164)の深さ(d1,d2,d3)を最適化し、短波長の緑(G) 30 ,青(B)の各光を受けるフォトダイオードから無駄な部分を除去し、これによって暗電 流を低減し、白傷の発生を抑制する点である。

[0033]

すなわち、長波長の赤(R)の光は、フォトダイオードを構成するN型層160の深部 まで到達するため、その深部で生成される電荷を有効化するためには、そのN型層160 を十分深く形成するのが望ましい。

【0034】

これに対し、短波長の緑(G),青(B)の光は、赤(R)の光ほどには深くまで到達しないため(あるいは、到達する割合が少ないため)、赤(R)の光を受光するフォトダイオードと同様にN型層を深くしても、感度向上には直結せず、かえって、無駄に表面積が増えて暗電流の増大を招くことになる。

【 0 0 3 5 】

そこで、短波長の緑(G),青(B)の光を受けるフォトダイオードに関しては、各光の到達位置に合わせて、フォトダイオードを構成するN型層162,164の深さを浅くする。つまり、赤(R),緑(G),青(B)の各光を光電変換する第1、第2および第3のフォトダイオードのN型層の深さをd1,d2,d3としたときに、d1>d2>d 3、あるいは、d1>d2=d3の関係が成立するように、各N型層(160,162, 164)の深さを調整する。 【0036】

深さが異なるN型層(160,162,164)は、例えば、イオン注入の際の加速エネ

50

ルギーを適宜、制御することによって形成することができる。また、カウンターイオンを N型層の深部に注入することによっても、拡散層の深さの制御を行うことができる。 [0037]

また、図1に示す固体撮像素子の構造においては、緑(G),青(B)用のフォトダイ オードを構成するN型層(162,164)の直下において、追加のオーバーフローバリ ア層(121,123)を形成し、これによって、各フォトダイオードを構成するN型層 (160,162,164)の底部とP型のオーバーフローバリア層120ならびに追加 のオーバーフローバリア層(121,123)との間の距離のばらつきを抑制し、オーバ ーフロードレインの電圧のばらつきを抑制している。

[0038]

追加のオーバーフローバリア層121,123は、オーバーフローバリア層120と同 様にP型層であり、緑(G),青(B)用のフォトダイオードを構成するN型層(162 , 1 6 4)の直下にのみ選択的に形成される。追加のオーバーフローバリア層 1 2 1 , 1 23は、イオン注入の加速エネルギーを調整することによって形成することができる。 [0039]

そして、この追加のオーバーフローバリア層121,123は、下地のオーバーフロー バリア層120と一体化される。追加のオーバーフローバリア層121,123を設ける 理由は、以下のとおりである。

[0040]

すなわち、受光する光の波長に応じて、各フォトダイオードを構成するN型層(160 20 ,162,164)の深さを変化させると、フォトダイオード毎に、 N 型層の底部と P 型 のオーバーフローバリア層との間の距離が異なり、フォトダイオード毎に、蓄積電荷を完 全にクリアするために必要な基板電位(以下、オーバーフロー電位という)にばらつきが 生じる場合がある。つまり、フォトダイオードを構成するN型層(160,162,16 4)の底部とP型のオーバーフローバリア層120との間には、不純物濃度が低い低濃度 層158が介在するが、この低濃度層158は、フォトダイオードのバイアスに応じて空 乏層を伸長させ、オーバーフロードレイン構造のポテンシャルカーブを滑らかに上昇させ る(変化させる)働きをもつ。そのため、低濃度層の厚みが厚いほど、オーバーフローバ リア(OFB)のポテンシャルがより低くなる。したがって、N型層(162,164) の深さを浅くした緑(G),青(B)用のフォトダイオードでは、オーバーフロードレイ ン電位をより高くしないと、蓄積電荷を完全にクリアできなくなる場合があり、そのこと が駆動電圧の上昇や、リセット電圧のバラツキ等の問題となることが生じ得る。 $\begin{bmatrix} 0 & 0 & 4 & 1 \end{bmatrix}$

そこで、緑(G),青(B)用のフォトダイオードの直下において追加のオーバーフロ ーバリア層(121,123)を形成する。これによって、各フォトダイオードを構成す る N 型 層 (160,162,164)の底部と P 型のオーバーフローバリア層 120(な らびに追加のオーバーフローバリア層121,123)との間の距離を略同一(図中では 、距離H1)に揃えることができる。したがって、各色用のフォトダイオードの、オーバ ー フ ロ ー バ リ ア の ポ テ ン シ ャ ル の 高 さ の 差 が 低 減 さ れ 、 オ ー バ ー フ ロ ー ド レ イ ン 電 位 の ば らつきを抑制することが可能となる。

[0042]

図2は、図1の固体撮像素子によって、各フォトダイオードにおけるオーバーフローバ リアのポテンシャルの高さが略均一に制御される様子を説明するための特性図である。 [0043]

図2は、半導体基板の深さ方向のポテンシャルの変化を示しており、図中、PD領域(B)と記載されている範囲は、青(B)用のフォトダイオードを構成するN型層162が 存在する範囲を示しており、同じく、PD領域(R)と記載されている範囲は、赤(R) 用のフォトダイオードを構成するN型層160が存在する範囲を示している。 $\begin{bmatrix} 0 & 0 & 4 & 4 \end{bmatrix}$

また、R(S)は、赤用のフォトダイオードにおける縦方向のポテンシャルカーブを示 50

(9)

10

す。

【0045】

また、 B (S 1) は、図 1 の固体撮像素子のように、フォトダイオードを構成する N 型層(160,162)の深さを最適化し、かつ、追加のオーバーフローバリア層 1 2 1 を形成した場合における、青用のフォトダイオードにおける縦方向のポテンシャルカーブを示している。

(10)

[0046]

また、 B (S 2)は、フォトダイオードを構成する N 型層(1 6 0 , 1 6 2)の深さは 最適化するが、追加のオーバーフローバリア層 1 2 1 は形成しない場合の、青用のフォト ダイオードにおける縦方向のポテンシャルカーブを示している。 【 0 0 4 7 】

ポテンシャルカーブR(S)とB(S1)とを比較すると、オーバーフローバリアのポ テンシャルの高さはほぼ同じであり、同じ電位で蓄積電荷をクリアできる。これに対し、 ポテンシャルカーブB(S2)では、オーバーフローバリアのポテンシャルの高い領域が 広くなり、したがって、蓄積電荷をクリアするためには、より大きなオーバーフロードレ イン電圧を印加する必要があることがわかる。

[0048]

このように、図1の固体撮像素子のように、各フォトダイオードを構成するN型層(1 60,162,164)の深さを最適化する際、併せて、緑(G),青(B)用のフォト ダイオードの直下において追加のオーバーフローバリア層(121,123)を形成する ことによって、各フォトダイオードを構成するN型層(160,162,164)の底部 とP型のオーバーフローバリア層120(ならびに追加のオーバーフローバリア層121 ,123)との間の距離が略同一(H1)となり、各色用のフォトダイオードの、オーバ ーフローバリアのポテンシャルの高さの差が抑制され、オーバーフロードレイン電位のば らつきを抑制することが可能となる。

【0049】

つまり、図1の固体撮像素子では、赤(R),緑(G),青(B)の各色の光を受ける フォトダイオードを具備する固体撮像素子において、オーバーフロードレインによる蓄積 電荷のクリア動作に悪影響を与えることなく、暗電流を効果的に低減し、白傷の発生を抑 制するという効果が得られる。

【 0 0 5 0 】

ここで、図3 ~ 図11を参照して、図1の固体撮像素子の製造方法について以下に説明 する。図3 ~ 図11は各々、図1の固体撮像素子の主要な製造工程毎の断面図である。 【0051】

まず、図 3 のように、 N 型の半導体基板(N s u b) 1 0 0 上に N 型のエピタキシャル 層(N e p i) 1 1 0 を形成し、その N 型のエピタキシャル層(N e p i) 1 1 0 内にイ オン注入を行い、 P 型のオーバーフローバリア層 1 2 0 を形成する。

【0052】

次に、図4に示すように、N型のエピタキシャル層(Nepi)110の、オーバーフ ローバリア層120よりも上側の部分における転送路形成領域(Z1)において、転送路 40 となる拡散層(130,140)を形成し、続いて、素子分離用拡散層150を形成し、 さらに、フォトダイオード形成領域(Z2)において、低不純物濃度層(P-層)158 を形成する。

【0053】

次に、図5に示すように、半導体基板の表面にゲート絶縁膜180を形成し、続いて、 転送路形成領域(Z1)における、転送路となる拡散層(130,140)上に電荷転送 を制御するための、第1層目/第2層目のポリシリコンからなる転送電極(PY1,PY 2)を形成する。参照符号182は、転送電極間絶縁膜であり、184はオーバーコート 絶縁膜である。

【0054】

20

次に、図6に示すように、フォトダイオード形成工程を実施する。即ち、まずフォトダ イオード形成領域(Z2)における、低不純物濃度層((P-層)158内に、第1、第 2および第3のフォトダイオード(各々、赤、緑、青用のフォトダイオードである)を構 成する下層の同じ深さのN型層(160,160,160)を、イオン注入によって形成 する。

(11)

[0055]

そして、さらに、そのN型層(160,160,160)とPN接合を形成する、上層の第2導電型層(170,172)を形成する。

【 0 0 5 6 】

次に、図7に示すように、第2および第3のフォトダイオードを構成するN型層(16 10 0,160)に対してカウンター不純物としてのボロン(B)を導入し、これによってN 型層(160,160)の底部の導電型を打ち消し、結果的に、第1、第2および第3の フォトダイオードを構成する、深さが異なるN型層(160,162,164)を形成す る。即ち、これにより、第1、第2および第3のフォトダイオードを構成するポテンシャ ル井戸の領域の深さが相互に異なる第1導電型層(160,162,164)が形成され る。なお、図7中、X1,X2は、カウンターイオンが注入される領域を示している。こ れによって、第1、第2および第3のフォトダイオードの各々におけるN型層(160, 162,164)の各々の深さd1,d2,d3に関し、d1>d2 d3の関係が成立 する。

【0057】

次に、図8に示すように、ボロン(B)のイオン注入を行って、第2および第3のフォ トダイオードを構成するN型層(162,164)の下方に、そのN型層(162,16 4)の深さ(d2,d3)を浅くしたことによるオーバーフローバリアの高さの変動を抑 制するための、追加のオーバーフローバリア層(121,123)形成する。これによっ て、第1、第2および第3のフォトダイオードにおけるN型層(160,162,164)の直下の低濃度層158の厚みが略同一(H1)となる。上記の工程でフォトダイオー ドが完成する。換言すると、第1導電型層(162,164)の厚みに対応してオーバー フローバリア層(121,123)の厚みが設定されることで、オーバーフローバリアの ポテンシャル高さの差が低減される。なお、オーバーフローバリアのポテンシャル高さの 差を低減するために、第1導電型層(162,164)の厚みに対応してオーバーフロー バリア層(121,123)の不純物濃度を設定することであってもよい。 【0058】

次に、図9に示すように、転送電極(PY1, PY2)上にバリアメタルとしての窒化 チタン(TiN)膜190を形成し、続いて、遮光膜としてのタングステン(W)膜19 2を形成する。

【0059】

次に、図10に示すように、遮光膜192を覆うようにBPSG膜200及び窒化シリコン(SiN)膜210を形成した後、CMPまたはエッチバックにより、その窒化シリコン膜210を平坦化する。

[0060]

次に、図11に示すように、平坦化された窒化シリコン膜210上の、第1、第2およ び第3のフォトダイオードが形成されている領域の各々に対応した位置に、色材を含むレ ジストを順次塗布して、赤(R),緑(G),青(B)のカラーフィルタ層(220,2 22,224)を形成する。

[0061]

続いて、平坦化層229を形成し、各カラーフィルタ層(220,222,224)上 に透明レジストを塗布し、リフロー処理によって表面を球状に加工してオンチップレンズ 230を形成する。

[0062]

以上説明したように、本発明によれば、光電変換の対象となる光の波長に応じて、フォ 50

20

トダイオードを構成する第 1 導電型層の深さを最適化して、短波長の緑(G),青(B) の各光を受けるフォトダイオードから無駄な部分を除去し、これによって暗電流を低減し 、白傷の発生を抑制することができる。 [0063]また、各フォトダイオードを構成する第1導電型層の深さを最適化する際、併せて、緑 (G),青(B)用のフォトダイオードの直下において追加のオーバーフローバリア層を 形成することによって、各フォトダイオードを構成するN型層の底部とP型のオーバーフ ローバリア層(追加のオーバーフローバリア層を含む)との間の距離のばらつきを抑制す ることができる。したがって、各色用のフォトダイオードの、オーバーフローバリアのポ テンシャルの高さの差が低減され、オーバーフロードレイン電位のばらつきを抑制するこ 10 とが可能となる。 [0064]また、各フォトダイオードを構成する第1導電型層の深さの制御や追加のオーバーフロ ーバリア層の形成は、イオン注入の加速エネルギーの調整や、イオン注入の際の若干の工 程の追加により、無理なく実現することが可能である。 [0065] なお、上記の実施形態においては、赤(R)、緑(G)、青(B)の三色の色検出の構 成で説明しているが、三色に限らず、二色や四色以上の場合であっても本発明を適用する ことができる。 【産業上の利用可能性】 20 [0066]本発明は、赤(R),緑(G),青(B)の各色の光を受けるフォトダイオードを具備 する固体撮像素子において、オーバーフロードレインによる蓄積電荷のクリア動作に悪影 響を与えることなく、暗電流を効果的に低減し、白傷の発生を抑制するという効果を奏し 、したがって、カラー対応の縦型オーバーフロードレイン構造の固体撮像素子およびその 製造方法として有用である。 【図面の簡単な説明】 [0067]【図1】本発明の固体撮像素子の他の例(カラー対応で、縦型オーバーフロードレイン構 造をもち、各フォトダイオードの深さが最適化され、かつ、追加のオーバーフローバリア 30 層が形成されている例)の構成を示すデバイスの断面図である。 【図2】図1の固体撮像素子によって、各フォトダイオードにおけるオーバーフローバリ アのポテンシャルの高さが略均一に制御される様子を説明するための特性図である。 【図3】図1の固体撮像素子の製造方法を説明するための、第1の製造工程におけるデバ イスの断面図である。 【図4】図1の固体撮像素子の製造方法を説明するための、第2の製造工程におけるデバ イスの断面図である。 【図5】図1の固体撮像素子の製造方法を説明するための、第3の製造工程におけるデバ イスの断面図である。 【図6】図1の固体撮像素子の製造方法を説明するための、第4の製造工程におけるデバ 40 イスの断面図である。 【図7】図1の固体撮像素子の製造方法を説明するための、第5の製造工程におけるデバ イスの断面図である。 【図8】図1の固体撮像素子の製造方法を説明するための、第6の製造工程におけるデバ イスの断面図である。 【図9】図1の固体撮像素子の製造方法を説明するための、第7の製造工程におけるデバ イスの断面図である。 【図10】図1の固体撮像素子の製造方法を説明するための、第8の製造工程におけるデ バイスの断面図である。 【図11】図1の固体撮像素子の製造方法を説明するための、第9の製造工程におけるデ 50

10

20

バイスの断面図である。 【図12】オーバーフロードレイン構造の固体撮像素子における蓄積電荷をクリアするた めの動作を説明するためのポテンシャル特性を示す図である。 【符号の説明】 [0068] 110 N型エピタキシャル層 120 オーバーフローバリア層 121,123 追加のオーバーフローバリア層 130,140 電荷転送路を構成する拡散層(不純物層) 150 素子分離用拡散層 158 低濃度層(P-層) 160,162,164 フォトダイオードを構成する下層のN型層(各々の厚みd1 , d 2 , d 3) 170 フォトダイオードを構成する上層のP型拡散層 172 反転防止用 P 型 拡散 層 180 ゲ ー ト 絶 縁 膜 182 転 送 電 極 間 絶 縁 膜 184 オーバーコート絶縁膜 190 バリアメタルとしての窒化チタン(TiN)層 192 遮光膜としてのタングステン(W)層 200 B P S G 膜 210 平坦化層としての窒化シリコン(SiN)膜 220,222,224 カラーフィルタ層 229 有機膜からなる平坦化層 230 オンチップレンズ PY1 1層目ポリシリコンからなる転送電極

PY2 2層目ポリシリコンからなる転送電極

【図4】

21:電荷転送路形成領域 22:フォトダイオード形成領域

【図7】

【図9】

【図11】

【図12】

フロントページの続き

(72)発明者 大川 晴
宮城県黒川郡大和町松坂平1丁目6番地 富士フイルムマイクロデバイス株式会社内
Fターム(参考) 4M118 AA05 AB01 BA13 CA04 CA27 EA20 FA06 FA13 FA26 FA33
GB04 GB08 GB11 GC08 GC14 GD04
5F049 MA02 NA05 NB05 QA03 SS02 SZ06 SZ10 TA12 WA03