
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/090035 Al
20 June 2013 (20.06.2013) P O P C T

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
G06F 11/20 (2006.01) H04L 29/08 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

PCT/US20 12/067502 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

2 December 2012 (02.12.2012) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

(25) Filing Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

(26) Publication Language: English ZM, ZW.

(30) Priority Data: (84) Designated States (unless otherwise indicated, for every

13/329,023 16 December 201 1 (16. 12.201 1) US kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

(71) Applicant: CISCO TECHNOLOGY, INC. [US/US]; UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
SJC/10/2/1, 170 West Tasman Drive, San Jose, California TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
95 134-1706 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ , LT, LU, LV,

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
(72) Inventors: FENG, Chao; 1142 Hyde Avenue, San Jose,

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
CA 95 129 (US). SHARMA, Samar; 1527 Silver Ranch

ML, MR, NE, SN, TD, TG).
Lane, San Jose, CA 95 138 (US). DESAI, Ronak; 4 1176
St. Anthony Drive, Fremont, CA 94539 (US). QU, Di- Declarations under Rule 4.17 :
heng; 4208 Rickey's Way, Unit A, Palo Alto, California — as to applicant's entitlement to apply for and be granted a
94306 (US). patent (Rule 4.1 7(H))

(74) Agent: FRAME, Thomas J.; Patent Capital Group, 281 6 — as to the applicant's entitlement to claim the priority of the
Lago Vista Lane, Rockwall, TX 75032 (US). earlier application (Rule 4.1 7(in))

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

[Continued on nextpage]

(54) Title: SYSTEM AND METHOD FOR NON-DISRUPTIVE MANAGEMENT OF SERVERS IN A NETWORK ENVIRON
MENT

10
12A ^12B

20
19- 19

28- -28

oo FIG. 1
©

(57) Abstract: An example method includes disengaging a target node from a cluster, where the disengaging comprises: selecting an
inheritor; migrating flows from the target node to the inheritor; informing a migration manager that the target node is disengaged

o from the cluster; and broadcasting to peer nodes of the target node that the target node is replaced by the inheritor. In particular im
plementations of the present disclosure, the cluster can include a first layer of a network topology including a forwarding engine that

o implements hash-based packet forwarding; a second layer of the network topology comprising the target node and the inheritor,
where the target node and the inheritor implement flow-based packet forwarding; and a third layer including service nodes con
figured for packet processing in a network.

w o 2013/090035 A l 111 111 II I I I Hill 1 ll l l II llll I I III II I II

Published:

SYSTEM AND M ETHOD FOR NON-DISRU PTIVE MANAG EM ENT

OF SERVERS IN A NETWORK ENVI RON M ENT

TECH NICAL FIELD

[0001] This disclosure relates in general t o the field of communications and, more

particularly, to a system and a method for non-disruptive management of servers in a

network environment.

BACKG ROU ND

[0002] Recent advances in high-speed networks and improved microprocessor

performance are making computer clusters appealing t o enterprises. Some of this allure is

associated with enterprises being able t o provide cost-effective parallel computing. Clusters

that are built using commodity hardware and software components are redefining the

computing world. Enterprises may maintain a computer cluster, such as a server farm, t o

accomplish server needs, which extends beyond the capa bility of a single computer.

Computer clusters may be co-located with network switches and/or routers, which

collectively ena ble communication between different parts of the cluster and the users of

the cluster. Effective management of large computer clusters typically includes redundancy

capabilities, automatic failover features, and the ability for a rapid reconfiguration of the

computer cluster.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] To provide a more complete understanding of the present disclosure and

features and advantages thereof, reference is made t o the following description, taken in

conjunction with the accompanying figures, wherein like reference numerals represent like

parts, in which :

[0004] FIGU RE 1 is a simplified diagram of one embodiment of a communication

system in accordance with the present disclosure;

[0005] FIGU RE 2 is a simplified block diagram illustrating additional details of the

communication system;

[0006] FIGU RE 3 is a simplified diagram of another em bodiment of the

communication system;

[0007] FIGU RE 4 is a simplified flow diagram illustrating example operational

activities that may be associated with embodiments of the communication system;

[0008] FIGU RE 5 is a simplified flow diagram illustrating example operational

activities that may be associated with embodiments of the communication system;

[0009] FIGU RE 6 is a set of example flow t able entries that may be associated with

an embodiment of the communication system in accordance with the present disclosure;

[0010] FIGU RE 7 is a simplified algorithm illustrating a set of example activities that

may be associated with em bodiments of the communication system in accordance with the

present disclosure;

[0011] FIGU RE 8 is a simplified algorithm illustrating another set of example

activities that may be associated with em bodiments of the communication system in

accordance with the present disclosure; and

[0012] FIGU RE 9 is a simplified algorithm illustrating yet another set of example

activities that may be associated with em bodiments of the communication system in

accordance with the present disclosure.

DETAILED DESCRI PTION OF EXAM PLE EM BODI M ENTS

OVE RVI EW

[0013] An example method includes disengaging a target node from a cluster, where

the disengaging comprises: selecting an inheritor; migrating flows from the target node t o

the inheritor; informing a migration manager that the target node is disengaged from the

cluster; and broadcasting t o peer nodes of the target node that the target node is replaced

by the inheritor. In particular implementations of the present disclosure, the cluster can

include a first layer of a network topology including a forwarding engine that implements

hash-based packet forwarding; a second layer of the network topology comprising the

target node and the inheritor, where the target node and the inheritor implement flow-

based packet forwarding; and a third layer including service nodes configured for packet

processing in a network.

[0014] The inheritor can include a peer node of the target node having a least

number of flows within a su bset of nodes of the cluster. In addition, the inheritor can

include a new peer node in the cluster. Selection of the inheritor can include receiving flow-

handling statistics of peer nodes from the migration manager; and distributing the flows

among the peer nodes based on the flow handling statistics so that a total num ber of flows

being handled by the peer nodes are evenly distributed. In addition, the target node may

include a flow-packet distributor.

[0015] The migrating may include duplicating (i.e., replicating at least a portion of) a

flow table t o be provided t o the inheritor. In addition, the method may include purging the

flow table; identifying that the flow t able is empty and no data packet is pending in a

receive/transmit (RX/TX) queue of the target node; and setting a status of the target node

to indicate that the target node is disengaged from the cluster. The method may also

include redirecting a packet from the target node t o the inheritor. The method may also

include providing instructions for a removal of the target node; identifying a confirmation

that the target node is removed; and changing a hash scope in a hashing algorithm t o

remove the target node.

EXAM PLE EM BODI M ENTS

[0016] Turning t o FIG URE 1, FIG URE 1 is a simplified block diagram of

communication system 10 according t o an embodiment of the present disclosure. The

architecture of FIGU RE 1 may include aggregation routers/switches 12A and 12B that are

connected t o flow-packet distributors (FD) 14A and 14B, which in turn connect t o service

nodes 16A, 16B, 16C, and 16D in a cluster 18. As used herein, the term "cluster" refers t o a

group of nodes in communication with each other, and which work together (e.g., t o

perform computing processes, network services, etc. : often in parallel). As used herein, the

term "node" is meant to encompass any servers, computers, network appliances, routers,

switches, gateways, bridges, loadbalancers, firewalls, processors, or any other suita ble

physical device, or physical component capa ble of exchanging information in a network

environment. In an example implementation, cluster 18 is a server cluster in a data center.

[0017] Elements of FIGU RE 1 may be coupled to one another through one or more

interfaces employing any suitable connection (wired or wireless), which provides a via ble

pathway for electronic communications. Additionally, any one or more of these elements of

FIGU RE 1 may be combined or removed from the architecture based on particular

configuration needs. Communication system 10 may include a configuration capable of

transmission control protocol/Internet protocol (TCP/I P) communications for the electronic

transmission or reception of packets in a network. Communication system 10 may also

operate in conjunction with a user datagram protocol/I P (UDP/IP) or any other suita ble

protocol, where appropriate and based on particular needs.

[0018] In operation, service nodes 16A-16D are configured t o provide services

such as packet processing, network services, application services, etc. Examples of service

nodes may include an email server, a web server, a storage server, a firewall, a server

loadbalancer, a content caching server, etc. Aggregation routers/switches 12A-12B include

nodes that connect portions of the network and, further, are capable of inspecting packets

(e.g., data packets) as they are received. Additionally, aggregation routers/switches 12A-

12B are configured for determining the source and destination device of each packet, and

then forwarding them appropriately. Aggregation routers/switches 12A-12B may also

include nodes that com bine multiple network connections in parallel (e.g., to increase

throughput beyond that which a single connection could sustain, or t o provide redundancy

in case one of the links fails, etc.). Note that the terminology 'aggregation routers/switch' is

used interchangeably with the more general term "switch" as used in this Specification.

Examples of such devices include routers (e.g., devices that forward packets between

computer networks), aggregation routers, aggregation switches, network bridges, Layer 3

switches, multilayer switches, gateways, etc.

[0019] Flow-packet distributors include nodes that intercept packets from

aggregation routers/switches and process them as needed. The processing can be based on

the flows identified, and/or other factors such as the num ber of nodes in the cluster, where

packets can be further directed (e.g., forwarded, redirected, etc.) t o appropriate service

nodes. FDs 14A-14B may be capable of ensuring a correct packet sequence for packets that

belong t o the same flow. In various embodiments, the FDs are aware of all flows in the

cluster, and can determine the owner of any single flow (e.g., through a hashing algorithm).

In some embodiments, FD 14A and 14B may be standalone devices. In other embodiments,

FD 14A and 14B may be integrated into service nodes 16A-D. Examples of flow-packet

distributors include switches, routers, servers, processors, engines, etc. that are equipped

with appropriate applications for performing the intended flow-packet distribution

functions.

[0020] According to embodiments of the present disclosure, cluster 18 may

implement a layered design in a two-stage network environment com bining hash-based and

flow-based packet forwarding. A first layer can include aggregation router/switch 12A and

12B, which are equipped with a suita ble forwarding engine 19 that implements hash-based

packet forwarding. A second layer can include nodes that implement flow-based packet

forwarding. Network traffic between the first layer and the second layer may use the hash-

based packet-forwarding scheme. Network traffic in the second layer, and between the

second layer and other layers (such as a third layer), may use a flow-based packet-

forwarding scheme.

[0021] According t o an embodiment of the present disclosure, aggregation

router/switch 12A and 12B may be connected in the first layer via a virtual portchannel

(vPC) link 20, which may comprise a multiport 10 Giga bit Ethernet PortChannel (e.g., IEEE

802.3ad PortChannel). In one embodiment, the first layer may provide a high-speed packet

switching backplane for flows entering and leaving the cluster 18. The first layer may be

connected t o the second layer (e.g., at the layer of FDs 14A and 14B) via various links, such

as 10 Gigabit Ethernet (Giga E) links. For example, aggregation router/switch 12A is

connected to FD 14A through link 22, which may be a lOGiga E link.

[0022] The second layer may perform various functions such as service module

integration, server classification, packet redirection, packet encapsulation, etc. The second

layer may be connected t o the third layer (e.g., at the layer of service nodes 16A-D) via

various links such as 10 Giga bit Ethernet (GigaE) links, Giga bit Ethernet links, etc. For

example, FD 14A is connected t o service node 16A through link 24, which may be a Giga bit

Ethernet link. In various embodiments, the links in cluster 18 may implement link

aggregation. A packet traversing cluster 18 may follow a path from aggregation

router/switch 12A t o service node 16A as follows: the packet may be sent by aggregation

router/switch 12A t o FD 14A via link 22 using a hashing algorithm (i.e., a hash-based packet

forwarding scheme), and the packet may be forwarded by FD 14A t o its destination service

node 16A on link 24 using flow-packet distribution (i.e., a flow-based packet forwarding

scheme).

[0023] According to certain implementations of the present disclosure, a

migration-client module 26 may be provisioned in each of FDs 14A and 14B. In some

embodiments, migration-client module 26 may be a standalone application. In some other

embodiments, migration-client module 26 may coexist with other services such as firewall

applications, server loadbalancer applications, etc. A migration manager 28 may be

provisioned in each of aggregation router/switch 12A and 12B. Migration manager 28 may

determine that an FD (or service node) should be disengaged (e.g., taken off-line), for

example, to power down the node, for maintenance and repairs, for service upgrades, etc.

Assume, for the sake of illustration, that FD 14A is t o be disengaged. According to

embodiments of the present disclosure, migration-client module 26 of FD 14A receives

instructions from migration manager 28 t o gracefully disengage FD 14A out of the cluster

group without data path disruption (i.e., packet loss). Data path disruption may occur when

one or more packets traversing a network do not reach their intended destination.

[0024] In various embodiments, migration-client module 26 may select an

inheritor, which is a peer node such as FD 14B, and may duplicate flows from FD 14A t o

inheritor FD 14B. As used herein, a "peer node" includes a node at the same layer in the

network. For example, in cluster 18, FD 14A is a peer node of FD 14B, and service node 16A

is a peer node of service nodes 16B-16D. Su bsequently, migration-client module 26 may

inform migration manager 28 that FD 14A has been successfully disengaged. Migration-

client module 26 may also broadcast (i.e., transmit to all peer nodes on cluster 18) FD 14B's

new status (as inheritor from FD 14A) t o other peer nodes in cluster 18, as needed. In some

embodiments, the broadcasting may be performed through aggregation router/switch 12A

and 12B. In other embodiments, the broadcasting may be performed among all peer nodes

at the target node's layer. Migration manager 28 may then forward or redirect packets to

the inheritor (i.e., FD 14B) and disengage FD 14A from the cluster. Returning packets in the

flow (e.g., from downstream servers) would be redirected automatically to the inheritor,

which would then own the flow. Note that a returning packet (e.g., in a server response) is

treated as belonging to the same flow as the incoming packet.

[0025] For purposes of illustrating certain example techniques of communication

system 10, it is important t o understand the communications that may be traversing the

network. The following foundational information may be viewed as a basis from which the

present disclosure may be properly explained. Such information is offered earnestly for

purposes of explanation only and, accordingly, should not be construed in any way t o limit

the broad scope of the present disclosure and its potential applications.

[0026] In network communication, pieces of information called packets are

exchanged between devices. A packet is a sequence of octets (i.e., 8 bits) and generally

consists of a header followed by a body. Typically, the header describes the packet's

destination and, optionally, the routers t o use for forwarding until it arrives at its

destination. Typically, the body contains the data being transmitted (i.e., the payload). In a

typical TCP connection, a server creates a listener socket waiting for remote clients to

connect. A client can issue a connect() socket function t o start the TCP handshake. The

client can send a SYN packet (e.g., setting the segment's sequence num ber t o a random

value A). The server responds with a SYN-ACK packet (e.g., setting an acknowledgment

number t o one more than the received sequence num ber (A + 1), and the sequence num ber

that the server chooses for the packet is another random num ber, B). The client responds

with an ACK (e.g., setting the sequence number to the received acknowledgement value

(i.e., A + 1), and the acknowledgement number t o one more than the received sequence

number (i.e., B + 1)). The server issues the acceptQ socket function t o accept the

connection request. The client and server issue read() and write() socket functions t o

exchange data over the socket. At the end of the transmission, either the server or the

client decides t o close the socket with a TCP closure sequence (a FIN packet followed by an

ACK packet).

[0027] TCP/I P communication can be managed in terms of packets, or

alternatively, in terms of flows. A flow is a stream of related packets that meet the same

matching criteria and that share the same characteristics. For example, a flow includes a

stream of packets between a particular source address and a port going t o a unique

destination address and port, where all such packets use the same protocol. An individual

flow might be a voice call, a video call, a file transfer, a web access, etc. Identification of a

flow may depend on the actual implementation. For example, a flow may be identified

solely by the destination address, or it may be identified by a triplet that includes source

address, destination address, and protocol. Alternately, a packet's flow may be identified by

some or all of the following five tuple: (1) source address; (2) destination address; (3) source

port; (4) destination port; and (5) protocol.

[0028] Turning to server clusters, two or more interconnected servers can create

the appearance of a virtual resource, which enhances various server and network

parameters (e.g., server availability, scala bility, etc.). Clusters are usually deployed to

improve performance and availability in comparison to a single device (e.g., computer,

server, storage device, etc.). Clusters may include high-availability clusters (e.g., for

improving the availability of services that the cluster provides), load balancing clusters (e.g.,

for sharing computational workload or functions over a cluster), etc. Server clusters may be

configured for availability, for scala bility, or for other configuration goals.

[0029] In general, clusters have a common objective of com bining multiple

processors to appear as a unified high-performance system using special software and high

speed network interconnects. In an example, server clusters can support more users at a

current level of performance (or improve performance for a current number of users) by

sharing the computational workload across multiple servers. Server clustering can enable

applications to handle more load and avoid service interruptions. The virtual unified

computing resource presented by a server cluster empowers IT personnel with more

choices t o configure the infrastructure (e.g., t o support application performance,

availability, scala bility requirements, etc.).

[0030] Server clusters have historically been associated with university research,

scientific laboratories, and military research for unique applications, such as: meteorology

(e.g., weather simulation); seismology (e.g., seismic analysis); military research (e.g.,

weapons, warfare), etc. Server clusters are also applied in enterprises to a broad range of

applications, such as financial trending analysis (e.g., real-time bond price analysis and

historical trending); film animation (e.g., rendering of artist multi-gigabyte files);

manufacturing (e.g., automotive design modeling and aerodynamics); and search engines

(e.g., quick parallel lookup plus content insertion, etc.).

[0031] In a two-stage server cluster, a flow (e.g., defined by the source and

destination nodes) may be evenly distributed across multiple two-hop paths from ingress to

egress, with some nodes in the network acting as flow-packet distributors. The routing can

be performed in two-stages, and each packet traverses a first path from the ingress node t o

an arbitrary FD, and a second path from the FD t o the egress node. The first path routing

may be based on a hashing algorithm (to randomly spray the packet t o any availa ble FD),

and the second path routing may be flow-based, which ensures flow integrity.

[0032] The hashing algorithm may be implemented on hardware (such as

application specific integrated circuits (ASICs), or network processors). In some

implementations, the algorithm is deterministic; if the same addresses (e.g., source

addresses and/or destination addresses) are used, the resulting hash may be t o the same

port in the communication channel. This strategy prevents out-of-order packet delivery.

For example, one hashing algorithm may translate a five tuple consisting of five flow

parameters (e.g., (1) source address; (2) destination address; (3) source port; (4) destination

port; and (5) protocol) into a hash and spray the traffic t o FDs in the cluster. The hash value

can be used t o select the link for forwarding the packet. For example, all hardware

switching within a particular flow (such as a TCP connection) may be routed t o the same

next hop, thereby reducing the chance of packet reordering or packet loss.

[0033] In another example, the source IP address and source port of the incoming

packet may be converted t o a host identification (ID), which is matched t o the calculated

host ID of the nodes in the cluster. All the nodes may execute the hashing algorithm in

parallel. The node with the host ID that matches the hash may accept the packet, while the

other nodes may drop the packet. In yet another example, the hashing algorithm may be

based on source and destination IP address (for IP interfaces), and source and destination

Media Access Control (MAC) address (for non-I P interfaces). In yet another example, the

hashing algorithm may use one or more of the following parameters: destination MAC

address; source MAC address; source and destination MAC addresses; destination IP

address; source IP address; source and destination IP addresses; source TCP/U DP port

number; destination TCP/U DP port num ber; and source and destination TCP/U DP port

number. Various methods exist for determining the hashing algorithm and associated

parameters, where any such methodologies and different parameters are included within

the broad scope of the present disclosure. The actual parameters t o be used in the hashing

algorithm may be selected by the user as appropriate and based on particular needs.

[0034] The hashing algorithm implemented in hardware is capable of certain high

speed activities; however, other network traffic processing (e.g., flow persistence, deep

packet inspection, etc.) may not be performed as efficiently. Moreover, for applications

that require that all packets in a flow be sent to the same node, a hashing strategy may not

be effective. For example, a return packet may have a different source and destination

address than the original packet. The hash of the source and destination address may lead

to a different num ber than the one calculated for the original packet. Hence, the return

packet may be routed to a different node, according to the hashing algorithm, leading to

potential disruption of the application. Hence, a second stage involving flow forwarding

may be implemented to route the packets to their proper destination nodes.

[0035] The flow-packet distribution may be implemented in software. The

distribution can be based on a flow, where a single flow would not be distributed and would

only use one link. The flow forwarding software may be provisioned in any FDs or service

nodes in the cluster. Configuration settings of the packet (such as security policies,

Application Layer Gateway (ALG), Network Address Translation (NAT) settings, etc.) are

assessed for the first packet of a flow. The settings are then applied to the rest of the

packets in the flow.

[0036] To determine if a packet belongs to a particular flow, the FD matches the

packet's information to that of an existing flow-based on the following five match criteria :

(1) source address; (2) destination address; (3) source port; (4) destination port; and (5)

protocol. Other matching criteria may also be used as appropriate and based on particular

needs. If the packet matches an existing flow, processing for the packet is assessed in the

context of its flow table (i.e., a logical set of entries comprising keys (e.g., fields, parameters,

etc.) and various instructions to apply to packets that match the keys). For example, the FD

may check whether it is the owner of the packet's flow (e.g., the FD may be the owner if it

can access the packet's flow table). If it is not the owner, the FD may determine the true

owner (e.g., using appropriate flow forwarding software, such as the Cisco® Strike Eagle),

and forward the packet t o the true owner (which may be a peer node on the network). If

the packet does not match an existing flow, the packet is used t o create a new flow table.

[0037] Turning to the elastic capacity of applications, server clustering is an effective

tool t o achieve this objective. For example, if a server becomes unavaila ble (for any reason,

such as failure or planned downtime, etc.), another server in the cluster can assume the

workload, thus transparently avoiding loss of service t o the users or applications that access

the cluster. Elastic capacity of applications may be desired for various reasons. For

example, the required capacity of an application can be time-based (e.g., full capacity during

daytime, half capacity during nighttime). In another example, to save energy, the user may

seek t o shut down some servers during off-peak time. In yet another example, a system

upgrade may require an application server t o reboot. If a member server is shut down,

rebooted, or otherwise disengaged from the cluster, data path disruptions may occur. For

example, many applications such as Cisco® Adaptive Security Appliances (ASA), Cisco Wide

Area Application Services (WAAS), etc., require flow affinity in a cluster environment. For

such applications, all packets have to be sent through, or to, a single application server. If

the application server is taken off-line from the cluster, the packets may be lost.

[0038] Mechanisms for flow replication and migration exist in current flow-based

clustering designs. For example, service providers routinely do non-disruptive flow

migration, for example from one aggregation switch to its peer node before upgrading or

maintaining the aggregation switch, usually by withdrawing the route via the switch.

However, such schemes are designed more for a fast failure-recovery than a zero-packet-

drop solution desired in the case of a planned node removal. Moreover, packets in the

server's downstream path may seek t o return by the same path (e.g., via the mem ber that is

removed): resulting in packet drops when the member is removed.

[0039] Generally, in server cluster designs, performance is preeminent; little

consideration has been given to how to shut down nodes (e.g., almost idle servers, etc.)

without packet drops. For example, a certain currently available service appliance design

has a high-power consumption even when there is no packet t o handle, where such

consumption is due to a busy polling mechanism. Customers may desire to automatically

shut down idle servers, while minimizing any potential packet drops. Note that certain

technology can migrate a virtual machine (VM) from one physical server to another in an

environment, where the physical server appears as multiple VMs. However, similar

solutions do not exist in the physical server space, where multiple physical servers act as

one.

[0040] A system for non-disruptive management of servers in a network

environment, illustrated in FIG URE 1, can resolve many of these issues. Em bodiments

according to the present disclosure may provide for non-disruptive management of server

capacity, power, and maintenance. In a two-stage clustering environment combining hash-

based and flow-based packet forwarding, migration manager 28 and migration-client

module 26 can gracefully migrate flows from a departing server t o an active server before

the departing server is cut off from the cluster. In a non-VM clustering environment,

embodiments of the present disclosure can manage server capacity, power management,

and system maintenance in a non-disruptive manner. In various embodiments, a module-

based chassis or a cloud-operating system (e.g., a cloud-based network) can deploy the

adaptive management scheme, as described herein, t o achieve an optimum use of

capacity/power and, further, provide anytime system maintenance with no packet drop.

[0041] In various embodiments, migration-client module 26 is installed in

su bstantially every node in the cluster. In some embodiments, migration-client module 26

is installed only in FDs 14A and 14B. In various embodiments, migration manager 28 may be

a software component that instructs migration-client module 26 t o remove a target node

(i.e., node to be disengaged from cluster 18), such as FD 14A. Flow tables (and other

application states, as appropriate) of FD 14A may thereupon be redistributed to selected

inheritors (which are nodes that replace the target node), such as FD 14B. Peer nodes in the

cluster may be informed that FD 14B is the new owner of flows previously belonging to FD

14A. A message may be sent t o migration manager 28 t o remove FD 14A from its

forwarding engine 19 (e.g., portchannel, WCCP group, etc.). Su bsequently, aggregation

router/switch 12A and 12B may not forward any new packets to FD 14A. FD 14A can then

be shut down, decommissioned, etc., as appropriate.

[0042] Substantially all peer nodes may have access t o lookup tables (or other

logical data bases) indicating ownership of respective flow tables. For example, metadata

from the flows may be stored in a lookup table in one or more of switches 12A or 12 B.

When a packet arrives at a node (e.g., FD 14A), the node may attempt t o access its stored

flow table. If the packet's flow cannot be accessed, FD 14A may read the lookup table to

determine the true owner (e.g., FD 14B), and forward the packet t o the true owner (e.g., FD

[0043] In various em bodiments, the schemes described herein may be

implemented for removing a node from the second layer (comprising FDs) in cluster 18. In

em bodiments where FDs and service nodes are provisioned in the same device (e.g., an

ASA), the schemes described herein may be implemented for both the FD and the service

node component. In embodiments where FD and the service node are in separate devices,

the schemes described herein may additional ly be applied for service nodes if migration

manager 28 and the service node are configured t o send messages t o each other (e.g., Agni,

charging control node (CCN) XM PP).

[0044] Turning t o the infrastructure of FIGU RE 1, in some em bodiments, migration

manager 28 may be provisioned on a supervisor engine in a service module chassis.

Supervisor engines are management applications that can provide centralized forwarding

information and processing, among other functions. Supervisor engines include a policy

feature card (PFC), which is a forwarding plane that performs Layer 2 and Layer 3

forwarding, enforces access control list (ACL) functions and performs policing and marking

for quality of service (QoS) traffic; and a multilayer switch feature card (MSFC), which is a

control plane that performs routing for the chassis. The MSFC can include a route processor

(RP) and a switch processor (SP) for the router and, further, can run Layer 2 and Layer 3

protocols.

[0045] In other embodiments, migration manager 28 may be provisioned inside a

CCN control point. A CCN is a signaling control point used in a communication network that

can receive and process, track, and rate packet data service and content usage requests. A

CCN can be configured to find and communicate with a service data point (SDP), perform

session control, etc. According to em bodiments of the present disclosure, migration

manager 28 may be driven by the user's configuration (e.g. time-based server

addition/removal) or by the application usage, or other factors.

[0046] In various embodiments, migration-client module 26 and migration

manager 28 may be implemented in software. The software may have associated

application programming interface (API), command line interfaces (CLI), graphical user

interfaces (G UI), or other suita ble user interfaces as appropriate and based on particular

needs. The software may be standalone applications, or integrated with other applications,

such as server management application, routing application, etc. Migration-client module

26 and migration manager 28 may also be implemented in firmware (software integrated

into hardware).

[0047] Various designs for the network of communication system 10 are possible.

In general, communication system 10 may include: commodity off the shelf (CotS) server

hardware; GigE or 10 GigE network interface cards (N ICs); low latency hardware; non-

blocking or low-over-subscribed switch fabric; mesh/partial mesh connectivity (e.g., server

cluster designs usually require a mesh or partial mesh fabric t o permit communication

between all nodes in the cluster, where the mesh fabric can be used t o share state, data,

and other information between master-to-compute and compute-to-compute servers in the

cluster); jum bo frame support, etc.

[0048] Aggregation router/switch 12A and 12B may offer administrative privileges

(e.g., a human administrator, an administrator software, an administrator communication

channel such as a control plane, etc.). In some embodiments, a human administrator may

configure aggregation router/switch 12A and 12B for various functions, such as node

removal, load balancing, etc. The human administrator can choose configurations for

various functions using a CLI. For example, aggregation router/switch 12A and 12B may

have portchannels with several load balancing factors t o choose from (e.g., hashing

algorithm based on source IP address, destination IP address, or both, etc.). The human

administrator can choose the appropriate factors using the CLI (e.g., a command on Cisco

Nexus 7000 switch for the hashing algorithm may be: NXOS : (config)# port-channel load-

balance ethernet { various options } [module]) .

[0049] In another example, the human administrator can enter appropriate

commands t o instruct FD 14A t o be disengaged from the cluster (e.g., commands on Cisco

Nexus 7000 switch may include manage-l b-pool remove-node (-p pooljd | -n name) -node

address:port; or manage-lb-pool deactivate-node (-p pooljd | -n name) -node

address:port; etc.). In one example embodiment, a first vendor may manage aggregation

router/switch 12A and 12B, and a second vendor may manage different nodes (e.g., FD 14A

and FD 14B). The second vendor may inform the first vendor that FD 14A is t o be removed

from the cluster. The first vendor may facilitate graceful removal of FD 14B through

appropriate manual commands (using CLI as suited).

[0050] Aggregation router/switch 12A and 12B may be provisioned with

forwarding engines 19 comprising ASICs configured to perform hash-based packet

forwarding. In various embodiments, forwarding engine 19 may provide Ethernet bridging

at Layer 2, IP routing at Layer 3 and other capa bilities. In one embodiment, forwarding

engine 19 may be specifically configured t o forward packets using a combination of

hardware and software. The packets may be hardware switched (e.g., at high rates), and

any exception packets (e.g., packets that arrive with non-supported encapsulation layers,

802.3 Ethernet packets, etc.) may be forwarded to associated software for further

processing. In an example embodiment, forwarding engine 19 may comprise a data plane of

a router, including a routing table that may be looked up t o determine destination

addresses of incoming packets, paths for transmission, etc., a forwarding information base

that may be used to find the proper interface t o send an outgoing packet, and other logical

components.

[0051] In some embodiments, the node t o be removed (e.g., FD 14A) may send a

control plane message t o aggregation router/switch 12A and 12B. Aggregation

router/switch 12A and 12B may determine from the message that FD 14A may be removed

from the forwarding channel (e.g., medium t o forward packets from one layer t o another

layer). Control plane messages may use a control channel t o aggregation router/switch 12A

and 12B. In an example embodiment, a vendor may manage both aggregation

router/switch 12A and 12B and FDs 14A and 14B. In such a scenario, FDs 14A and 14B may

communicate with aggregation router/switch 12A and 12B via control planes. Automated

messages via the control planes may be facilitated in such embodiments t o permit graceful

removal of FD 14A from the cluster.

[0052] The network infrastructure of FIG URE 1 may comprise 10 Giga bit Ethernet

(GigaE), Giga bit Ethernet, or Etherchannel channels, along with appropriate Layer 2 and

Layer 3 interfaces as needed. Redundancy may be built into the network, for example, using

redundant Layer 3 10 GigE links, redundant nodes, etc. Separate cores may be implemented

t o isolate distribution or aggregation layers in terms of administration and policies (e.g.,

quality of service, access lists, troubleshooting, maintenance, etc.) Components of

communication system 10 may sit within a data center and provide services t o enhance

server and application availability, security, etc. In one embodiment, aggregation

router/switch 12A and 12B may include Cisco Nexus aggregation routers/switches. In

another embodiment, FDs 14A and 14B and service nodes 16A-D may comprise an

application control engine (ACE) including parallel network-processor based architecture

with separate control and data paths, switch fabric interface, appropriate control planes and

data planes with route managers, interface managers, etc.

[0053] Turning t o FIG URE 2, FIG URE 2 is a simplified block diagram of an example

implementation of migration-client module 26. According t o an embodiment of the present

disclosure, migration-client module 26 includes a processor 50, a memory 52, an inheritor

selector 54, and a flow handler 56. Flow handler 56 may read or create a flow table 58, and

read or populate a receive/transmit (RX/TX) queue 60. Migration-client module 26 also

includes a broadcast module 62.

[0054] In various embodiments, flow table 58 is stored in memory 52 and RX/TX

queue 60 is stored on a network interface card (N IC). NIC implements any electronic

circuitry required t o communicate in the network, for example, using a specific physical

layer and data link layer standard such as Ethernet, WiFi, or Token Ring, etc. NIC allows

communication among small groups of computers on the same local area network (LAN)

and large-scale network communications through routable protocols, such as TCP/IP. The

NIC may be a standalone card, or it may be integrated into a motherboard of the router or

server. The NIC may have suita ble memory (e.g., static random access memory SRAM) t o

store flow t able 58 and RX/TX queue 60. In one embodiment, memory 52 and processor 50

may be provisioned on the NIC, and flow t able 58 and RX/TX queue 60 may be stored in

memory 52.

[0055] In operation, inheritor selector 54 is configured t o select one or more

inheritors of the target node. In an example embodiment, a single inheritor may be

selected. In another embodiment, one inheritor and a back-up inheritor may be selected.

In yet another embodiment, several peer nodes may be selected as inheritors. In yet

another embodiment, substantially all nodes in the cluster may be selected as inheritors.

Inheritor selector 54 may use any suita ble algorithm for selecting an inheritor. In one

embodiment, inheritor selector 54 selects an inheritor that is least busy, as determined by

the number of flow t able entries in respectively accessible flow tables. In another

embodiment, inheritor selector 54 may randomly select a peer node as the inheritor.

[0056] According to yet another embodiment, each migration-client module 26

may inform migration manager 28 of flow handling statistics of respective FDs (e.g., FD 14A

and FD 14B). Flow handling statistics may include the number of flows handled by each

peer node (e.g., FDs). Migration manager 28 may forward the flow handling statistics t o

migration-client module 26 of the target node (e.g., FD 14A). Migration-client module 26 of

the target node may distribute the flows among the peer nodes based on the flow handling

statistics so that the total flows handled by the peer nodes are evenly distributed. For

example, assume that FD 14A has three peer nodes: each handling 25% of the current flows.

M igration-client module 26 of the target node may spread the target node's flow t able 58

equally across each peer node. Thus, all peer nodes may become inheritors of the target

node for an even portion of the target node's flows. In yet another embodiment, the

inheritor may be manually selected. For example, an administrator may insert a new FD t o

replace the target node (e.g., t o upgrade the target node, while the rest of its peers are

busy). The administrator may force migration-client module 26 of the target node to specify

the new FD as the inheritor (e.g., t o replace the target node during its

upgrade/maintenance). In yet another embodiment, the new FD may be automatically

selected by migration-client module 26 of the target node, as it may have the least num ber

of flows in the network.

[0057] Flow handler 56 is configured t o migrate flows from a target node t o one or

more inheritors. In one embodiment, flow handler 56 performs the migration by duplicating

flow table 58 to the selected inheritors. After contents of flow table 58 have been

duplicated t o the inheritors, flow table 58 is purged (i.e., emptied). The target node can be

disengaged from the cluster after flow table 58 is emptied. Broadcast module 62 may

inform migration manager 28 on the forwarding switch (e.g., aggregation router/switch

12A) that the target node is being removed from the cluster. The switch (e.g., aggregation

router/switch 12A) may subsequently stop forwarding any packets t o the target node. Flow

handler 56 inspects flow table 58 and RX/TX queue 60 for two-way network traffic being

queued therein, for example, t o determine whether any packets are awaiting processing.

When RX/TX queue 60 is empty, broadcast module 62 may broadcast the status of the

inheritor t o peer nodes on the cluster.

[0058] Turning t o FIG URE 3, FIG URE 3 is a simplified block diagram of another

em bodiment of communication system 10. The network design of cluster 18 may include

two layers, with the first layer comprising aggregation router/switch 12A and 12B, and a

second layer comprising service nodes 16A-D. Service nodes 16A-D may connect t o (and

provide services to) a virtual local area network (VLAN) 70 with flow synchronization.

Functionalities of FDs may be integrated into service nodes 16A-D. Network traffic between

the first layer and the second layer may use a hashing algorithm scheme. Network traffic in

the second layer (and from the second layer to VLAN 70) may use a flow-based packet-

forwarding scheme.

[0059] Migration manager 28 and forwarding engine 19 may be provisioned in

each of aggregation router/switch 12A and 12B. Forwarding engine 19 may implement

hash-based packet forwarding. Migration-client module 26 may be provisioned in each of

service nodes 16A-D. In various embodiments, service nodes 16A-D may comprise security

appliances, such as Cisco Adaptive Security Appliances (ASA). Service nodes 16A-D may

execute various services, such as firewall, content security (e.g., antivirus, antispyware, etc.),

IPsec, SSL VPN, intrusion prevention, etc. Migration-client module 26 may run on service

nodes 16A-D as part of the various other services.

[0060] Migration manager 28 of aggregation router/switch 12A may inform a

service node (e.g., service node 16A) that it is being removed. Migration-client module 26

of service node 16A may select a suitable inheritor (e.g., service node 16B) and a back-up

inheritor (e.g., service node 16C) and duplicate flow t ables from service node 16A t o service

nodes 16B and 16C. Migration-client module 26 may broadcast the migration to other peer

nodes (e.g., service node 16D) and inform aggregation router/switch 12A of the removal.

Aggregation router/switch 12A and 12B may communicate the migration information

amongst each other. Migration-client modules 26 may stop forwarding packets t o service

node 16A and instead route packets to service node 16B.

[0061] Turning to FIGU RE 4, FIG URE 4 is a simplified flow diagram illustrating

operational activities that may be associated with communication system 10. Operation

100 begins at 102 when migration-client module 26 is informed of removal of its associated

target node. At 104, inheritor selector 54 of migration-client module 26 may select an

appropriate inheritor from among the peer nodes. At 106, flow handler 56 of migration-

client module 26 may duplicate flow table 58 t o the inheritor(s). At 108, broadcast module

62 may broadcast the new ownership of migrated flows to peer nodes. At 110, flow handler

56 may purge flow t able 58. M igration-client module 26 may wait for flow table 58 t o be

empty and no packet is pending in RX/TX queue 60 before informing migration manager 28

of the status change of the target node and inheritor at 112. In one embodiment,

migration-client module 26 may send a message t o migration manager 28 t o remove the

target node from forwarding engine 19 associated with migration manager 28. The

operations end at 114, and migration manager 28 may cause su bsequent packets to be

forwarded t o the inheritor.

[0062] Turning to FIGU RE 5, FIGU RE 5 is a simplified flow diagram illustrating

example operational activities that may be associated with embodiments of the present

disclosures. Operations 120 begin at 122, when communication system 10 is activated. At

124, migration manager 28 (e.g., in aggregation router/switch 12A) instructs a target node

(e.g., FD 14A) for removal. In one embodiment, the instruction may be communicated t o

migration-client module 26 in the target node. At 126, migration manager 28 waits for

confirmation from migration-client module 26 for the target node to be removed. At 128,

upon receiving the confirmation from migration-client module 26, migration manager 28

may change a hash scope (e.g., in a hashing algorithm) to remove the target node from

further flow distribution. For example, changing the hash scope may result in the target

node's information, such as IP address or ports, being removed from the hashing algorithm.

The process ends at 130.

[0063] Turning t o FIG URE 6, FIG URE 6 is an example of a plurality of flow t able

entries 140 according to an embodiment of the present disclosure. In various

embodiments, flow t able entries 140 may be implemented in an architecture comprising a

two-stage server cluster. For example, the first stage can include spraying the packets

randomly using a hashing algorithm, and the second stage can include flow-based

distribution. Assume, for purposes of discussion only and in connection with FIG URE 5

through FIG URE 8, that migration manager 28 on aggregation router/switch 12A instructs

migration-client module 26 on FD 14A t o be disengaged and migration-client module 26 of

FD 14A selects FD 14B as the inheritor. In embodiments, where cluster 18 comprises only

two layers, assume that migration manager 28 on aggregation router/switch 12A instructs

migration-client module 26 on service node 16A t o be disengaged and migration-client

module 26 selects service node 16B as the inheritor.

[0064] In the embodiment according t o the FIG URE, flow table entries 140 include

a key, which may be defined by the source IP, source port, destination IP, destination port

and protocol of the packets of the flow; action_network, which may include any network

action t o be performed on the packets of the flow; and action_application, which may

include actions specified by the application communicating the packets of the flow. In other

embodiments, the key may alternately include a su bset of the five factors (source IP, source

port, destination IP, destination port, protocol, or a suita ble combination thereof), based on

the flow definition of the network.

[0065] In various embodiments, network actions include forward (e.g., packets is

passed through the node without any processing), rewrite (e.g., the packet is manipulated

to rewrite some parts of the header, such as destination IP address, MAC address, or port,

etc., for a suitable purpose such as loadbalancing, or translating to a different network,

etc.); or redirect (e.g., the packet is forwarded t o the true owner). Application actions can

vary with the particular application communicating the packets. For example, the packet

may be compressed, decompressed for deep packet inspection, encrypted, decrypted, or

cached (e.g., a copy of the packet is saved into a network node for fast access), etc. The

flow table entries (e.g., key, action_network, action_application) described herein are for

example purposes only and are not intended t o be limitations. Various other flow t able

entries may also be used within the broad scope of the present disclosure.

[0066] Turning t o FIG URE 7, FIGU RE 7 is a simplified algorithm 150 for non-

disruptive migration according to embodiments of the present disclosure. Algorithm 150

may be implemented by migration-client module 26 on FD 14A (or service node 16A as

appropriate). Algorithm 150 includes: (1) calling function flow_migrate(); (2) instructing t o

remove the mem ber (i.e., FD 14A) from forwarding engine 19 on aggregation router/switch

12A; (3) waiting until flow t able 58 of FD 14A is empty and no packets are pending in RX/TX

queue 60 (which may be stored on an NIC in FD 14A); and (4) setting the mem berStatus of

FD 14A t o "DISCHARGE D FROM CLUSTER" or other value indicating that the target node is

disengaged from cluster 18.

[0067] In one embodiment, calling the flow_migrate() function may be through a

manual CLI step on aggregation router/switch 12A. In another embodiment, calling the

flow_migrate() function may be through an automated message t o aggregation

router/switch 12A via an API on a control plane. In one embodiment, the memberStatus

may be communicated t o an upper level control plane via the API. In another embodiment,

the mem berStatus may be displayed on the CLI of aggregation router/switch 12A.

Alternately, or additionally the memberStatus may be displayed on appropriate graphical

user interfaces associated with migration manager 28 of aggregation router/switch 12A.

Once the mem berStatus has been set to " DISENGAG ED FROM CLUSTER," the upper control

point management software or the user can safely remove FD 14A from the network.

[0068] Turning t o FIGU RE 8, FIG URE 8 is a simplified algorithm 160 for migrating

flows from a target node to an inheritor according t o embodiments of the present

disclosure. According t o the embodiment of the FIG URE, varia ble mylnheritor, which can

define the inheritor (i.e., FD 14B according t o the example) of the target node (i.e., FD 14A

according t o the example), is set t o the mem ber that has the least num ber of flows. The

member that has the least num ber of flows is likely to be least busy, and probability of

packet drop by such mem ber may be consequently low. In other embodiments, mylnheritor

may be set according to IP addresses of the peer nodes (e.g., nearest IP address, etc.), or

other parameters as appropriate based on particular needs. Flowjnigration is then turned

on. Flow t able 58 of FD 14A may be copied t o mylnheritor's (i.e., FD 14B's) flow table 58.

Copying may be accomplished by point-to-point communication between the target node

(i.e., FD 14A) and the inheritor (i.e., FD 14B). Then, migration-client module 26 of FD 14A

may broadcast t o peer nodes that mylnheritor (i.e., FD 14B) is the owner of all the flow t able

entries in flow t able 58. Flow t able 58 is then purged to remove all flow table entries 140.

[0069] Turning t o FIG URE 9, FIGU RE 9 shows an example flow-handling algorithm

170 according t o an embodiment of the present disclosure. Assume, for the sake of

illustration, that a packet, packet_a, traverses the two-stage cluster of communication

system 10. If flow migration is turned on, the packet is redirected by migration-client

module 26 t o inheritor 14B. Flow migration is turned on if packet_a arrives at FD 14A after

migration manager 28 of aggregation router/switch 12A has instructed migration-client

module 26 of FD 14A t o disengage FD 14A from the cluster, and before FD 14A has been

completely disengaged from the cluster.

[0070] If flow migration is not turned on (indicating that FD 14A is not being

disengaged from the cluster), FD 14A may process packet_a according to existing

methodologies. For example, if packet_a is a SYN packet, it may indicate a new flow. A new

flow_a may be created. Flow_a's action may be prescribed according to the network service

(e.g., forward, or redirect, or rewrite, etc.). Packet_a may be processed according to the

prescribed action. Next, reverse_flow_a (which is the flow of packet_a in its return path in

the same communication session) is defined, as also the corresponding action. In an

embodiment, reverse_flow_a is defined by swapping the source and destination addresses

in the packet header of packet_a. Some applications may have a flow persistence

requirement; incoming packet and returning packet should belong to the same flow (and

flow table). Flow_a and reverse_flow_a are inserted into flow table 58. FD 14A broadcasts

to its peer nodes that it is the owner of flow_a and reverse_flow_a. The packet is then

processed and forwarded according to its destination.

[0071] If packet_a matches flow_a, which has a different owner (e.g., FD 14B),

then FD 14A may redirect packet_a to FD 14B. Separately, if packet_a is not a SYN packet,

indicating an existing flow_a, and FD 14A is the owner of flow_a, FD 14A may then process

packet_a according to the prescribed (or matched) action as per flow_a in FD 14A's flow

table 58. Packet_a may be forwarded to its destination. If the packet is a FIN/RST packet,

indicating end of flow, flow_a may be removed from flow table 58.

[0072] In example embodiments, at least some portions of the activities outlined

herein may be implemented in non-transitory logic (i.e., software) provisioned in, for

example, nodes (e.g., FDs 14A and 14B and/or aggregation router/switch 12A and 12B). This

can include one or more instances of forwarding engine 19, migration manager 28,

migration-client module 26, and/or inheritor selector 54 being provisioned in various

locations of the network. In some embodiments, one or more of these features may be

implemented in hardware, provided external t o these elements, or consolidated in any

appropriate manner to achieve the intended functionality. Aggregation router/switch 12A

and 12B, FDs 14A and 14B, and/or service nodes 16A-D may include software (or

reciprocating software) that can coordinate in order to achieve the operations as outlined

herein. In still other embodiments, these elements may include any suita ble algorithms,

hardware, software, components, modules, interfaces, or objects that facilitate the

operations thereof.

[0073] Furthermore, components of communication system 10 described and shown

herein may also include suita ble interfaces for receiving, transmitting, and/or otherwise

communicating data or information in a network environment. Additionally, some of the

processors and memory associated with the various nodes may be removed, or otherwise

consolidated such that a single processor and a single memory location are responsible for

certain activities. In a general sense, the arrangements depicted in the FIGU RES may be

more logical in their representations, whereas a physical architecture may include various

permutations, combinations, and/or hybrids of these elements. It is imperative t o note that

countless possible design configurations can be used t o achieve the operational objectives

outlined here. Accordingly, the associated infrastructure has a myriad of substitute

arrangements, design choices, device possibilities, hardware configurations, software

implementations, equipment options, etc.

[0074] In some of example embodiments, one or more memory (e.g., memory

associated with migration-client module 26) can store data used for the operations

described herein. This includes the memory being able t o store instructions (e.g., software,

logic, code, etc.) that are executed t o carry out the activities described in this Specification.

A processor can execute any type of instructions associated with the data t o achieve the

operations detailed herein in this Specification. In one example, one or more processors

associated with migration-client module 26 could transform an element or an article (e.g.,

data) from one state or thing to another state or thing. In another example, the activities

outlined herein may be implemented with fixed logic or programmable logic (e.g.,

software/computer instructions executed by a processor) and the elements identified

herein could be some type of a programma ble processor, programma ble digital logic (e.g., a

field programma ble gate array (FPGA), an erasa ble programmable read only memory

(EPROM), an electrically erasa ble programmable read only memory (EEPROM)), an ASIC that

includes digital logic, software, code, electronic instructions, flash memory, optical disks,

CD-ROMs, DVD ROMs, magnetic or optical cards, other types of machine-readable mediums

suita ble for storing electronic instructions, or any suita ble combination thereof.

[0075] Components in communication system 10 can include one or more memory

(e.g., memory associated with migration-client module 26) for storing information to be

used in achieving operations as outlined herein. These devices may further keep

information in any suita ble type of memory element (e.g., random access memory (RAM),

read only memory (ROM), field programmable gate array (FPGA), erasa ble programma ble

read only memory (EPROM), electrically erasa ble programma ble ROM (EEPROM), etc.),

software, hardware, or in any other suitable component, device, element, or object where

appropriate and based on particular needs. The information being tracked, sent, received,

or stored in communication system 10 could be provided in any data base, register, table,

cache, queue, control list, or storage structure, based on particular needs and

implementations, all of which could be referenced in any suita ble timeframe. Any of the

memory items discussed herein should be construed as being encompassed within the

broad term 'memory.' Similarly, any of the potential processing elements, modules, and

machines described in this Specification should be construed as being encompassed within

the broad term 'processor.'

[0076] Note that with the numerous examples provided herein, interaction may be

described in terms of two, three, four, or more nodes. However, this has been done for

purposes of clarity and example only. It should be appreciated that the system can be

consolidated in any suitable manner. Along similar design alternatives, any of the illustrated

computers, modules, components, and elements of the FIG URES may be com bined in

various possible configurations, all of which are clearly within the broad scope of this

Specification. In certain cases, it may be easier t o describe one or more of the

functionalities of a given set of flows by only referencing a limited number of nodes. It

should be appreciated that communication system 10 of the FIG URES and its teachings are

readily scala ble and can accommodate a large number of components, as well as more

complicated/sophisticated arrangements and configurations. Accordingly, the examples

provided should not limit the scope or inhibit the broad teachings of communication system

10 as potentially applied to a myriad of other architectures.

[0077] Note that in this Specification, references to various features (e.g., elements,

structures, modules, components, steps, operations, characteristics, etc.) included in "one

embodiment", "example embodiment", "an embodiment", "another embodiment", "some

embodiments", "various embodiments", "other embodiments", "alternative embodiment",

and the like are intended to mean that any such features are included in one or more

embodiments of the present disclosure, but may or may not necessarily be combined in the

same embodiments. Furthermore, the words "optimize," "optimization," "optimum," and

related terms are terms of art that refer to improvements in speed and/or efficiency of a

specified outcome and do not purport to indicate that a process for achieving the specified

outcome has achieved, or is capable of achieving, an "optimal" or perfectly speedy/perfectly

efficient state.

[0078] It is also important to note that the operations and steps described with

reference to the preceding FIG URES illustrate only some of the possible scenarios that may

be executed by, or within, the system. Some of these operations may be deleted or

removed where appropriate, or these steps may be modified or changed considera bly

without departing from the scope of the discussed concepts. In addition, the timing of

these operations may be altered considera bly and still achieve the results taught in this

disclosure. The preceding operational flows have been offered for purposes of example and

discussion. Substantial flexibility is provided by the system in that any suitable

arrangements, chronologies, configurations, and timing mechanisms may be provided

without departing from the teachings of the discussed concepts.

[0079] Although the present disclosure has been described in detail with reference

to particular arrangements and configurations, these example configurations and

arrangements may be changed significantly without departing from the scope of the present

disclosure. For example, although the present disclosure has been described with reference

to particular communication exchanges involving certain network access and protocols,

communication system 10 may be applica ble t o other exchanges or routing protocols in

which packets are exchanged in order to provide mobility data, connectivity parameters,

access management, etc. Moreover, although communication system 10 has been

illustrated with reference to particular elements and operations that facilitate the

communication process, these elements and operations may be replaced by any suita ble

architecture or process that achieves the intended functionality of communication system

10.

[0080] Numerous other changes, substitutions, variations, alterations, and

modifications may be ascertained to one skilled in the art and it is intended that the present

disclosure encompass all such changes, substitutions, variations, alterations, and

modifications as falling within the scope of the appended claims. In order t o assist the

United States Patent and Trademark Office (USPTO) and, additionally, any readers of any

patent issued on this application in interpreting the claims appended hereto, Applicant

wishes t o note that the Applicant: (a) does not intend any of the appended claims t o invoke

paragraph six (6) of 35 U.S.C. section 112 as it exists on the date of the filing hereof unless

the words "means for" or "step for" are specifically used in the particular claims; and (b)

does not intend, by any statement in the specification, t o limit this disclosure in any way

that is not otherwise reflected in the appended claims.

3919.0426PCT 27

WHAT IS CLAIM ED IS:

1. A method comprising:

disengaging a target node from a cluster, wherein the disengaging comprises:

selecting an inheritor;

migrating flows from the target node to the inheritor;

informing a migration manager that the target node is disengaged from the

cluster; and

broadcasting to peer nodes of the target node that the target node is

replaced by the inheritor.

2. The method of Claim 1, wherein the cluster comprises:

a first layer of a network topology including a forwarding engine that implements

hash-based packet forwarding; and

a second layer of the network topology comprising the target node and the inheritor,

wherein the target node and the inheritor implement flow-based packet forwarding.

3. The method of Claim 2, wherein the cluster further comprises:

a third layer including service nodes configured for packet processing in a network.

4. The method of Claim 1, wherein the inheritor comprises a peer node of the

target node having a least number of flows within a su bset of nodes of the cluster.

5. The method of Claim 1, wherein the inheritor comprises a new peer node in

the cluster.

6. The method of Claim 1, wherein selecting the inheritor comprises:

receiving flow handling statistics of peer nodes from the migration manager; and

distributing the flows among the peer nodes based on the flow handling statistics so

that a total number of flows being handled by the peer nodes are evenly distributed.

3919.0426PCT 28

7. The method of Claim 1, wherein the target node comprises a flow-packet

distributor.

8. The method of Claim 1, wherein the migrating comprises duplicating a flow

table to the inheritor.

9. The method of Claim 8, further comprising:

purging the flow table;

identifying that the flow table is empty and no data packet is pending in a

receive/transmit (RX/TX) queue of the target node; and

setting a status of the target node to indicate that the target node is disengaged

from the cluster.

10. The method of Claim 1, further comprising:

redirecting a packet from the target node to the inheritor.

11. The method of Claim 1, further comprising:

providing instructions for a removal of the target node;

identifying a confirmation that the target node is removed; and

changing a hash scope in a hashing algorithm to remove the target node.

3919.0426PCT 29

12. An apparatus, comprising:

a memory configured to store instructions;

a processor operable to execute the instructions;

an inheritor selector module;

a flow handler; and

a broadcast module, wherein the apparatus is configured for:

disengaging a target node from a cluster, wherein the disengaging comprises:

selecting an inheritor;

migrating flows from the target node to the inheritor;

informing a migration manager that the target node is disengaged

from the cluster; and

broadcasting to peer nodes of the target node that the target node is

replaced by the inheritor.

13. The apparatus of Claim 12, wherein the cluster comprises:

a first layer of a network topology including a forwarding engine that implements

hash-based packet forwarding; and

a second layer of the network topology comprising the target node and the inheritor,

wherein the target node and the inheritor implement flow-based packet forwarding.

14. The apparatus of Claim 12, wherein the migrating comprises providing a flow

table to the inheritor.

15. The apparatus of Claim 14, wherein the apparatus is further configured for:

purging the flow table;

identifying that the flow table is empty and no data packet is pending in a RX/TX

queue of the target node; and

setting a status of the target node to indicate that the target node is disengaged

from the cluster.

3919.0426PCT 30

16. Logic encoded in non-transitory media that includes code for execution and

when executed by a processor is operable to perform operations comprising:

disengaging a target node from a cluster, wherein the disengaging comprises:

selecting an inheritor;

migrating flows from the target node to the inheritor;

informing a migration manager that the target node is disengaged from the

cluster; and

broadcasting to peer nodes of the target node that the target node is

replaced by the inheritor.

17. The logic of Claim 16, wherein the cluster comprises:

a first layer of a network topology including a forwarding engine that implements

hash-based packet forwarding; and

a second layer of the network topology comprising the target node and the inheritor,

wherein the target node and the inheritor implement flow-based packet forwarding.

18. The logic of Claim 16, wherein the inheritor comprises a peer node of the

target node having a least number of flows within a su bset of nodes of the cluster.

19. The logic of Claim 16, wherein the migrating comprises duplicating a flow

table t o be provided to the inheritor.

20. The logic of Claim 19, the operations further comprising:

purging the flow table;

identifying that the flow table is empty and no data packet is pending in a RX/TX

queue of the target node; and

setting a status of the target node to indicate that the target node is disengaged

from the cluster.

A . CLASSIFICATION O F SUBJECT MATTER

INV. G06F11/2Q H04L29/08
ADD.

According to International Patent Classification (IPC) o r to both national classification and IPC

B . FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04L G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data

C . DOCUMENTS CONSIDERED TO B E RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 7 197 660 Bl (LIU CHANGMING [US] ET AL) 1-20
27 March 2007 (2007-03-27)
abstract
col umn 3 , l i ne 41 - col umn 5 , l i ne 62
col umn 8 , l i ne 5 - l i ne 43

0 2005/104650 A2 (NOKIA INC [US] ; NGUYEN 1-20
TUYEN [US]) 10 November 2005 (2005-11-10)
page 2 , l i ne 18 - page 5 , l i ne 16
page 6, l i ne 1 - page 7, l i ne 30

-/-

X| Further documents are listed in the continuation of Box C . See patent family annex.

* Special categories of cited documents :
"T" later document published after the international filing date o r priority

date and not in conflict with the application but cited to understand
"A" document defining the general state of the art which is not considered the principle o r theory underlying the invention

to be of particular relevance

"E" earlier application o r patent but published o n o r after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel o r cannot be considered to involve an inventive

"L" documentwhich may throw doubts on priority claim(s) orwhich is step when the document is taken alone
cited to establish the publication date of another citation o r other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition o r other combined with one o r more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

26 March 2013 04/04/2013

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016 Peeters , Di r k

Prrr

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

"A Redundant Archi tecture for Routi ng 1-20
Protocol s" ,
INTERNET CITATION,
June 2002 (2002-06) , XP002240009 ,
Retri eved from the Internet:
URL: www. i pi nf usi on . com/pdf /WP_Redundancy_r
ev0602 .pdf
[retri eved on 2003-05-02]
the whol e document

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 7197660 Bl 27-03-2007 NONE

WO 2005104650 A2 10-11-2005 BR PI0510793 A 20- 11-2007
CN 101427525 A 06-05-2009
EP 1763762 A2 21-03-2007
JP 2007535852 A 06-12-2007
KR 20070027566 A 09-03-2007
US 2005257002 Al 17- 11-2005
W0 2005104650 A2 10- 11-2005

	abstract
	description
	claims
	drawings
	wo-search-report

