
(19) United States
US 20040O83343A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0083343 A1
Mithal et al. (43) Pub. Date: Apr. 29, 2004

(54) COMPUTER ARCHITECTURE FOR SHARED
MEMORY ACCESS

(75) Inventors: Arvind Mithal, Arlington, MA (US);
Xiaowei Shen, Cambridge, MA (US);
Lawrence Rogel, Brookline, MA (US)

Correspondence Address:
FISH & RICHARDSON PC
225 FRANKLIN ST
BOSTON, MA 02110 (US)

(73) Assignee: Massachusetts Institute of Technology,
a Massachusetts corporation

(21) Appl. No.: 10/690.261

(22) Filed: Oct. 21, 2003

Related U.S. Application Data

(63) Continuation of application No. 09/300,641, filed on
Apr. 27, 1999, now Pat. No. 6,636,950.

(60) Provisional application No. 60/112,619, filed on Dec.
17, 1998. Provisional application No. 60/124,127,
filed on Mar. 12, 1999.

SACHE STORAGE

SACHE CONTROLLER

Publication Classification

(51) Int. Cl. ... G06F 12/00
(52) U.S. Cl. 711/148; 711/117; 711/141

(57) ABSTRACT

A computer architecture that includes a hierarchical memory
System and one or more processors. The processors execute
memory access instructions whose Semantics are defined in
terms of the hierarchical Structure of the memory System.
That is, rather than attempting to maintain the illusion that
the memory System is shared by all processors Such that
changes made by one processor are immediately visible to
other processors, the memory access instructions explicitly
address access to a processor-specific memory, and data
transfer between the processor-specific memory and the
shared memory System. Various alternative embodiments of
the memory System are compatible with these instructions.
These alternative embodiments do not change the Semantic
meaning of a computer program which uses the memory
acceSS instructions, but allow different approaches to how
and when data is actually passed from one processor to
another.

242a

244, 246 248 248 248

OTHER SACHE CONTROLLERS, 132a

SHARED MEMORY
CONTROLLER

SHARED STORAGE
addr T value

266

SHARED MEMORY SYSTEM

500

DIRECTORY

add proc proc 2: Ival
520 530 530 540

wal n

Patent Application Publication Apr. 29, 2004 Sheet 1 of 11

310
PROGRAM

SPECIFICATION

MACHINE -
INSTRUCTION
GENERATOR

MACHINE
INSTRUCTION
SEQUENCE

NSTRUCTION
REORDERING AND
OPTIMIZATION

MACHINE INSTRUCTION
SEQUENCE

FIG. 3A

110

INSTRUCTION
PROCESSOR

E" ("...
SHARED MEMORY SYSTEM

110

INSTRUCTION
PROCESSOR

110

INSTRUCTION
PROCESSOR

MEMORY SYSTEM 120

FIG. 1A

340
PROGRAM

SPECIFICATION

PARALLEL COMPLER

MACHINE MACHINE
INSTRUCTION INSTRUCTION
GENERATOR GENERATOR

MACHINE
NSTRUCTION
SECUENCE

MACHINE
INSTRUCTION
SECUENCE

INSTRUCTION
REORDERING AND
OPTIMIZATION

INSTRUCTION
REORDERING AND
OPTIMIZATION

MACHINE NSTRUCTION
SEOUENCE

MACHINE NSTRUCTION
SEOUENCE

FIG. 3B

US 2004/0083343 A1

Patent Application Publication Apr. 29, 2004 Sheet 2 of 11 US 2004/0083343 A1

110

INSTRUCTION PROCESSOR

INSTRUCTION INSTRUCTION
FETCH UNIT

MEMORY
SYSTEM

SHARED STORAGE SHARED MEMORY SYSTEM

FIG. 1B

Patent Application Publication Apr. 29, 2004 Sheet 3 of 11

TO BRANCH REOLUTION
UNIT, 118

load L.
store L + data load
commit, reconcile data

cache
writeback + data

purge

NSTRUCTION POOL
20

REORDER BUFFER

214 216 28 220

tag Top args I value

INSTRUCTION
SCHEDULER

212

MEMORY ACCESS UNIT

117
132

SACHE CONTROLLER

to other
Sache controllers

142

cache
data 242

SHARED STORAGE

addr value
Y264 266

262

US 2004/0083343 A1

TO FUNCTIONAL UNITS, 116

134

SACHE STORAGE

244, 246: 248

FIG. 2

Patent Application Publication Apr. 29, 2004 Sheet 4 of 11 US 2004/0083343 A1

Process Load(addr): 410

411 IF Cell (addr-Invalid) THEN
412 CREATE Cell(addr, Cache-Pending)
413 SEND Cache-Request(addr) message
414 WAIT FOR Cache?addr, val) return message
415 SET Cell(addr, val, Clean)
416 RETURN val

417 ELSEIF Cell(addr, val-)
418 RETURN Val

419 ENDF

FIG. 4A

Process Reconcile(addr) message: 430

431 IF Cell(addr, Clean) THEN
432 DELETE addr from Sache storage (Cell(addr-Invalid)
433 END F

434 RETURN ack

FIG. 4B

Patent Application Publication Apr. 29, 2004 Sheet 5 of 11 US 2004/0083343 A1

Process Storel (addr, val) message: 460

461 IF Cell(addr, Invalid) THEN
462 CREATE Cell(addr)
463 END F

464 SET Cell(addrval,Dirty)
465 RETURN ack

FIG. 4C

Process Commit(addr) message: 470

471 IF Cell(addr, val, Dirty) THEN
472 SET Cell(addr, val, Writeback-Pending)
473 SEND Writeback(addr, val) message
474 WAIT FOR ack message

475 SET Cell(addr, val, Clean)
476 END F

477 RETURN acknowlegment

FIG.4D

Patent Application Publication Apr. 29, 2004 Sheet 6 of 11 US 2004/0083343 A1

Create Cell(addrstatus): 480

481 IF no space available in Sache storage THEN
482 SELECT Cell(addrval'status) such that status' = Clean or Dirty
483 IF status' = Dirty THEN
484 SEND Writeback(addr, val) message
485 WAIT FOR ack message
486 END F

487 DELETE Cell(addr, val'status")
488 END F

489 SET Cell(addr-status) in available cell

FIG. 4E

US 2004/0083343 A1

HETTO HINOO Å HOWE W CIEHVHS

WELSÅS Å HOWEW GEHWHS

829] 'SHETTOHINOO BHOWS HEHLO

972 8 #7972
E?WHOLS EHOVS

Patent Application Publication Apr. 29, 2004 Sheet 7 of 11

Patent Application Publication Apr. 29, 2004 Sheet 8 of 11 US 2004/0083343 A1

Process LoadL(addr): 610

611 IF Cell(addr-Invalid) THEN
612 CREATE Cell(addr-Cache-Pending)
613 SEND Cache-Request(addr) message
614 STALL LoadL processing UNTIL Cache message is processed

615 GET val from Cell(addr, val, Clean)
616 RETURN Wall

617 ELSEIF Cell(addrval, Clean) OR Cell(addr, valDirty) THEN
618 RETURN val

619 ENDIF

FIG. 6A

Process Reconcile(addr) message: 630

631 RETURN ack

FIG.6B

Patent Application Publication Apr. 29, 2004 Sheet 9 of 11 US 2004/0083343 A1

Process Storel(addr, val) message: 640

641 IF Cell(addr-Invalid) THEN
642 CREATE Cell(addr, Cache-Pending)
643 SEND Cache-Request(addr) message
644 STALL StoreL(addr) processing UNTIL Cache?addr) message
645 END F

646 SET Cell(addr, val Dirty)
647 RETURN ack

FIG. 6C

Process Commit(addr) message: 650

651 IF Cell(addr, val Dirty) THEN
652 SET Cell(addr, val, Writeback-Pending)
653 SEND Writeback(addr, val) message
654 STALL Commit(addr) processing UNTIL Writeback ack
655 SET Cell(addr, val, Clean)
656 END F

657 RETURN ack

F.G. 6D

Patent Application Publication Apr. 29, 2004 Sheet 10 of 11 US 2004/0083343 A1

Process Cache?addr, val): 670

671 IF Cell(addr-Invalid) THEN
672 CREATE Cell(addr)
673 SET Cell(addr, valClean)
674 ELSEIF Cell(addr-Cache-Pending)

675 SET Cell(addr, valClean)
676 RESTART STALLED LoadL(addr) and StoreL(addr)
677 ENDIF

FIG. 6E

Process Writeback-Ack(addr) message: 680

681 IF Cell(addr, val, Writeback-Pending) THEN

682 SET Cell(addr, valClean)
683 RESTART STALLED Commit(addr) processing
684 END F

FIG. 6F

Patent Application Publication Apr. 29, 2004 Sheet 11 of 11 US 2004/0083343 A1

Process Purge-Request(addr) message: 690

691 IF Cell(addr, Clean) THEN
692 DELETE addrfrom sache storage
693 SEND Purged(addr) message

694 ELSEIF Cell(addr, Dirty) THEN
695 SEND Writeback(addr) message

696 DELETE addrfrom Sache storage
697 ENDF

FIG. 6G

US 2004/0083343 A1

COMPUTER ARCHITECTURE FOR SHARED
MEMORY ACCESS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001) This application claims the benefit of U.S. Provi
sional Application No. 60/112,619 filed on Dec. 17, 1998,
and the benefit of U.S. Provisional Application No. 60/124,
127 filed on Mar. 12, 1999.

BACKGROUND

0002 This invention relates to a computer architecture
that includes a shared memory System.
0003. Many current computer systems make use of hier
archical memory Systems to improve memory access from
one or more processors. In a common type of multiprocessor
System, the processors are coupled to a hierarchical memory
System made up of a shared memory System and a number
of memory caches, each coupled between one of the pro
ceSSors and the shared memory System. The processors
execute instructions, including memory acceSS instructions
such as “load” and “store,” Such that from the point of view
of each processor, a Single shared address Space is directly
accessible to each processor, and changes made to the value
Stored at a particular address by one processor are “visible”
to the other processor. Various techniques, generally referred
to as cache coherency protocols, are used to maintain this
type of shared behavior. For instance, if one processor
updates a value for a particular address in its cache, caches
asSociated with other processors that also have copies of that
address are actively notified by the shared memory System
and the notified caches remove or invalidate that address in
their storage, thereby preventing the other processors from
using out-of-date values. The shared memory System keeps
a directory that identifies which caches have copies of each
address and uses this directory to notify the appropriate
caches of an update. In another approach, the caches Share
a common communication channel (e.g., a memory bus)
over which they communicate with the shared memory
System. When one cache updates the Shared memory System,
the other caches “Snoop' on the common channel to deter
mine whether they should invalidate any of their cached
values.

0004. In order to guarantee a desired ordering of updates
to the shared memory System and thereby permit Synchro
nization of programs executing on different processors,
many processors use instructions, generally known as
“fence' instructions, to delay execution of certain memory
access instructions until other previous memory acceSS
instructions have completed. The PowerPC "Sync’ instruc
tion and the Sun SPARC “Membar” instruction are examples
of fence instructions in current processors. These fences are
very “course grain” in that they require all previous memory
access instructions (or a class of all loads or all Stores) to
complete before a Subsequent memory instruction is issued.
0005. Many processor instruction sets also include a
“prefetch' instruction that is used to reduce the latency of
Load instructions that would have required a memory trans
fer between the shared memory System and a cache. The
prefetch instruction initiates a transfer of data from the
shared memory System to the processor's cache but the
transfer does not have to complete before the instruction

Apr. 29, 2004

itself completes. A Subsequent Load instruction then
accesses the prefetched data, unless the data has been
invalidated in the interim by another processor or the data
have not yet been provided to the cache.

SUMMARY

0006. As the number of processors grows in a multiple
processor System, the resources required by current coher
ency protocols grow as well. For example, the bandwidth of
a shared communication channel used for Snooping must
accommodate updates from all the processors. In approaches
in which a shared memory System actively notifies caches of
memory updates, the directory or other data structure used
to determine which caches must be notified also must grow,
as must the communication resources needed to carry the
notifications. Furthermore, in part to maintain high perfor
mance, coherency protocols have become very complex.
This complexity has made validation of the protocols diffi
cult and design of compilers which generate code for
execution in conjunction with these memory Systems com
plicated.

0007. In a general aspect, the invention is a computer
architecture that includes a hierarchical memory System and
one or more processors. The processors execute memory
acceSS instructions whose Semantics are defined in terms of
the hierarchical Structure of the memory System. That is,
rather than attempting to maintain the illusion that the
memory System is shared by all processorS Such that changes
made by one processor are immediately visible to other
processors, the memory acceSS instructions explicitly
address access to a processor-specific memory, and data
transfer between the processor-specific memory and the
shared memory System. Various alternative embodiments of
the memory System are compatible with these instructions.
These alternative embodiments do not change the Semantic
meaning of a computer program which uses the memory
acceSS instructions, but allow different approaches to how
and when data is actually passed from one processor to
another. Certain embodiments of the shared memory System
do not require a directory for notifying processor-specific
memories of updates to the shared memory System.
0008. In one aspect, in general, the invention is a com
puter System that includes a hierarchical memory System and
a first memory acceSS unit, for example, a functional unit of
a computer processor that is used to execute memory access
instructions. The memory acceSS unit is coupled to the
hierarchical memory System, for example over a bus or Some
other communication path over which memory access mes
Sages and responses are passed. The hierarchical memory
System includes a first local Storage, for example a data
cache, and a main Storage. The first memory acceSS unit is
capable of processing a number of different memory access
instructions, including, for instance, instructions that trans
fer data to and from the memory System and instructions,
instructions that guarantee that data transferred to the
memory System is accessible to other processors, and
instructions that access data previously written by other
processor. The first memory access unit is, in particular,
capable of processing the following instructions:

0009. A first instruction, for example, a “store local'
instruction, that Specifies a first address and a first
value. Processing this first instruction by the first

US 2004/0083343 A1

memory acceSS unit causes the first value to be Stored
at a location in the first local Storage that is associ
ated with the first address. For example, if the local
Storage is a cache memory, the processing of the first
instruction causes the first value to be stored in the
cache memory, but not necessarily to be Stored in the
main memory and accessible to other processors
prior to the processing of the first instruction com
pleting. A Second instruction, for example, a “com
mit” instruction, that specifies the first address. Pro
cessing of the Second instruction by the first memory
access unit after processing the first instruction is
Such that the first memory access unit completes
processing of the Second instruction after the first
value is Stored at a location in the main Storage that
is associated with the first address. For example, the
processing of the Second instruction may cause the
value to be transferred to the main Storage, or alter
natively the transfer of the value may have already
been initiated prior to the processing of the Second
instruction, in which case the Second instruction
completes only after that transfer is complete.

0010. Using these instructions, the memory access unit
can transfer data to the local Storage without necessarily
waiting for the data, or Some other form of notification,
being propagated to other portions of the memory System.
The memory access unit can also determine when the data
has indeed been transferred to the main Storage and made
available to other processors coupled to the memory System,
for example when that data is needed for coordinated
operation with other processors.
0.011 The first memory access unit can also be capable of
processing the following instructions:

0012. A third instruction, for example, a “load local'
instruction, that Specifies the first address. Process
ing of the third instruction by the first memory access
unit causes a value to be retrieved by the memory
access unit from a location in the first local Storage
that is associated with the first address.

0013 A fourth instruction, for example, a “recon
cile' instruction, that also specifies the first address.
Processing of the fourth instruction by the first
memory access unit prior to processing the third
instruction causes the value retrieved during process
ing the third instruction to be a value that was
retrieved from a location in the main Storage that is
asSociated with the first address at Some time after
the fourth instruction was begun to be processed. For
example, the fourth instruction may cause the third
instruction to execute as a cache miss and therefore
require retrieving the Specified data from the main
memory.

0.014. Using these latter two instructions, the memory
access unit can retrieve data from the local Storage without
having to wait for the data to be retrieved from main
memory. If data from main memory is needed, for example
to coordinate operation of multiple processors, then the
fourth instruction can be used.

0.015 These computer systems can have multiple
memory access units coupled to the hierarchical memory
System, for example in a multiple processor computer Sys

Apr. 29, 2004

tem in which each processor has a memory acceSS unit, and
the hierarchical memory System has a separate local Storage,
Such as a cache Storage, associated with each processor. In
Such a System, processing the fourth instruction by a Second
memory acceSS unit prior to processing the third instruction
and after the first memory acceSS unit has completed pro
cessing the Second instruction causes the value retrieved
during processing the third instruction to be a value that was
retrieved from a location in the main Storage that is associ
ated with the first address at a time after the fourth instruc
tion was begun to be processed. In this way, the value caused
to be retrieved by the processing of the third instruction by
the Second memory acceSS unit is the first value, which was
Specified in the first instruction which was processed by the
first memory acceSS unit.
0016. These four instructions provide the advantage that
memory access to the local Storages can be executed quickly
without waiting for communication between the local Stor
ages and the main Storage, or between the local Storages
themselves. Note that the values stored in different local
Storages in locations associated with the same address are
not necessarily kept equal, that is, the local Storages are not
coherent. Nevertheless, the instructions also allow coordi
nation and Synchronization of the operation of multiple
processors when required.

0017. In another aspect, in general, the invention is a
computer processor for use in a multiple processor System in
which the computer processor is coupled to one or more
other processors through a memory System, the computer
processor includes a memory access unit configured to
access the memory System by processing a number of
memory acceSS instructions. The memory access instruc
tions can include (a) a first instruction that specifies a first
address and a first value, wherein processing the first instruc
tion causes the first value to be stored at a location in the
memory System that is associated with the first address, Such
that for at least Some period of time the one or more other
processors do not have access to the first value, and (b) a
Second instruction that specifies the first address, wherein
processing of the Second instruction after processing the first
instruction is Such that the processing of the Second instruc
tion completes after the first value is accessible to each of the
one or more other processors. The instructions can addition
ally include (c) a third instruction that specifies a second
address, wherein processing of the third instruction causes a
value to be retrieved from a location in the memory System
that is associated with the Second address, and (d) a fourth
instruction that specifies the Second address, wherein pro
cessing of the fourth instruction prior to processing the third
instruction causes the third instruction to retrieve a value
that was previously Stored in the memory System by one of
the one or more other processors.
0018. In another aspect, in general, the invention is a
multiple processor computer configured to use a Storage
System. The computer includes multiple of memory access
units including a first and a Second memory access unit each
coupled to the Storage System. The first memory access unit
is responsive to execution of instructions by a first instruc
tion processor and the Second memory access unit respon
Sive to execution of instructions by a Second instruction
processor. The first and the Second memory access units are
each capable of issuing memory acceSS messages to the
Storage System, for example messages passing data to the

US 2004/0083343 A1

Storage System or messages requesting data from the Storage
System, and receiving return messages from the Storage
System in response to the memory access messages, for
example return messages providing data from the Storage
System or return messages that acknowledge that data has
been transferred and Stored in the Storage System. In par
ticular, the memory acceSS messages and return messages
can include:

0019. A first memory access message that specifies
a first address and a first value. Receipt of this
message by the Storage System causes the first value
to be Stored at a first location in Storage System that
is associated with the first address. A first return
message that is a response to the first memory access
message, indicating that the first value has been
Stored in the Storage System at a location that is
asSociated with the first address and that is accessible
to the memory acceSS unit receiving the first return
meSSage.

0020. A second return message indicating that the
first value has been Stored in the Storage System at a
location that is associated with the first address and
that is accessible to each of the plurality of memory
acceSS units.

0021. The messages can also include a second memory
access message that specifies the first address, and wherein
the Second return message is a response to the Second
memory acceSS meSSage.

0022. In another aspect, in general, the invention is a
memory System for use in a multiple processor computer
System in which the memory System is coupled to multiple
computer processors. The memory System includes a num
ber of local Storages, including a first local Storage unit and
other local Storage units, and each local Storage unit is
capable of processing various messages received from a
corresponding one of the computer processors. These mes
Sages include (a) a first message that specifies a first address
and a first value, wherein processing the first message by the
first local Storage unit causes the first value to be stored at
a location in the local Storage unit that is associated with the
first address, Such that, for at least a period of time, the other
local Storage units do not have access to the first value, and
(b) a second message that specifies the first address, wherein
processing of the Second message by the first local Storage
unit after processing the first message is Such that the
processing of the Second message completes after the first
value can be accessed by each of the other local Storage
units.

0023 The messages can also include (c) a third message
that specifies a Second address, wherein processing of the
third message causes a value to be retrieved from a location
in the first local Storage that is associated with the Second
address and to be sent to the corresponding computer
processor, and (d) a fourth message that specifies the Second
address, wherein processing of the fourth message prior to
processing the third message guarantees that the value
caused to be sent in processing the third message is a value
that was previously Stored in the memory System by one of
the other processors.
0024. The memory system can also include a main stor
age Such that values Stored in the main Storage are accessible

Apr. 29, 2004

to each of the of local Storages and a controller configured
to transfer data between the main Storage and the plurality of
local Storages according to a plurality of Stored rules. These
rules can include a rule for initiating a transfer of the first
value from the local Storages to the main Storage after
processing the first message and prior to processing the
Second message. An advantage of this System is that the
rules can guarantee that the data transferS initiated by the
controller do not affect the desired operating characteristics
of the computers coupled to the memory System.
0025. In another aspect, in general, the invention is a
computer processor for use in a multiple processor computer
System in which the computer processor and one or more
other computer processors are coupled to a storage System.
The computer processor includes a Storage capable of hold
ing a Sequence of instructions. In particular, the Sequence of
instructions can include a first instruction, for example, a
“fence' or a "synchronization' instruction, that Specifies a
first address range, for example a specific address or a
Starting and an ending address, and a Second address range,
and includes a first Set of instructions that each Specifies an
address in the first address range and that are prior to the first
instruction in the Sequence, and a Second Set of instructions
that each Specifies an address in the Second address range
and that are after the first instruction in the Sequence. The
computer processor also includes an instruction Scheduler
coupled to the Storage. The instruction Scheduler is config
ured to issue instructions from the Sequence of instructions
Such that instructions in the Second Set of instructions do not
issue prior to all of the instructions in the first set of
instructions completing.
0026. This aspect of the invention can include one or
more of the following features.
0027. The first set of instructions includes instructions
that may result in data previously stored in the Storage
System by one of the one or more other processors at an
address in the first address range being transferred to the
computer processor. For example, in a System with local
Storages accessible to corresponding processors, and a main
Storage that is accessible to all processors, the Set of instruc
tions can include all instructions that transfer data from an
address in the first range from the local Storage to the
processor, Since if that data were previously transferred from
the main Storage to the local Storage, the transfer from local
Storage to the processor would result in data previously
Stored in the Storage System by another processor being
transferred.

0028. The first set of instructions includes instructions
that each complete after the instruction Scheduler receives a
corresponding notification from the Storage System that a
value has been Stored in the Storage System at an address in
the first address range Such that the value is accessible to the
one or more other processors.
0029. The second set of instructions includes instructions
that each initiates a transfer of data from the computer
processor to the Storage System for Storage at an address in
the Second address range Such that the data is accessible to
the one or more other processors.
0030 The second set of instructions includes instructions
that may result in data previously stored in the Storage
System by one of the one or more other processors at an
address in the Second address range being transferred to the
computer processor.

US 2004/0083343 A1

0.031) An advantage of this aspect of this invention is that
operation of multiple processors can be coordinated, for
example using flags in the shared memory, while limiting the
impact of the first instruction by not affecting the Scheduling
of instructions that do not reference the Second address
range, and by not depending on the execution of instructions
that do not reference the first address range.
0.032 Embodiments of the invention have one or more of
the following advantages.
0.033 Specification of computer programs in terms of
memory access instructions which have precise Semantics
and which explicitly deal with a hierarchical memory Struc
ture allows compilers to optimize programs independently
of the design of the target memory architecture.
0034 Since a compiler does not have to have knowledge
of the particular implementation of the memory System that
will be used, memory System designers can implement more
complex coherency approaches without requiring modifica
tions to the compilers used.
0.035 Fewer communication resources are required to
implement coherency between the processors-Specific
memories that are required with many current coherency
approaches.
0.036 The shared memory system does not necessarily
have to maintain a directory identifying which processors
have copies of a memory location thereby reducing the
Storage requirements at that shared memory System, and
reducing the complexity of maintaining Such a directory. In
embodiments that do use a directory, the directory can have
a bounded size limiting the number of processors that are
identified as having a copy of a location while allowing a
larger number to actually have copies.
0037 Validation of the correctness of a particular imple
mentation of a cache coherency approach is simplified since
the Semantics of memory instructions does not depend on
the Specific implementation of the cache coherency
approach.

0.038. Other features and advantages of the invention are
apparent from the following description, and from the
claims.

DESCRIPTION OF DRAWINGS

0.039 FIG. 1A illustrates a multiple processor computer
System which includes a memory System that has memory
asSociated with each processor and a shared memory System
accessible to all the processors,
0040 FIG. 1B illustrates the logical structure of the
instruction processors and of the memory System;
0041 FIG. 2 illustrates communication paths used to
access data Storage from an instruction processor,
0.042 FIG. 3A illustrates the stages of compilation of a
program Specification to determine a corresponding
Sequence of machine instructions,
0.043 FIG. 3B illustrates the stages of compilation of a
parallel program Specification to determine multiple
Sequences of machine instructions for multiple processors,
0044 FIGS. 4A-E are pseudo-code specifications of
Sache controller procedures for processing memory acceSS
messages from a processor;

Apr. 29, 2004

004.5 FIG. 5 illustrates an arrangement which imple
ments a false sharing approach; and
0046 FIGS. 6A-G are pseudo-code specification of Sache
controller procedures for a “writer-push coherency proto
col.

DESCRIPTION

0047 1 Architecture (FIGS. 1A-B, 2)
0048 Referring to FIG. 1A, a multiple processor com
puter system 100 embodying the invention includes multiple
instruction processors 110 coupled to a memory system 120.
ASSociated with each instruction processor 110, memory
System 120 has a separate memory Subsystem, a Sache
(“semantic cache”) 130, coupled directly to the instruction
processor 110 and coupled to a shared memory system 140.
Each Sache 130 is similar to a memory cache found in many
conventional cache-based computer Systems in that it pro
vides faster memory access (lower latency) than can gener
ally be provided by shared memory system 140 alone. In
embodiments of this invention, instruction processors 110
execute memory acceSS instructions that have Semantics
defined in terms of the two-layer hierarchical structure of the
memory system, which is made up of Saches 130 and shared
memory System 140. The memory access instructions con
trol or at least constrain when data is transferred between a
Sache and the shared memory System.
0049 AS is discussed further in Section 6.4.4, the logical
structure shown in FIG. 1A can have one or a number of
hardware implementations. For instance, instruction proces
sors 110, Saches 130 and shared memory system 140 can all
be implemented using Separate integrated circuits. Alterna
tively, each instruction processor 110 and all or a portion of
its associated Sache 130 can share a single integrated circuit,
much as a processor core and a primary cache memory often
shares a Single integrated circuit of a current microproces
SOS.

0050 Referring to FIG. 1B, a representative instruction
processor 110 has a general Structure found in many current
microprocessors. An instruction fetch unit 112 retrieves
Stored machine instructions for a computer program from
memory System 120 or from another instruction Storage Such
as an instruction memory cache, and passes them to an
instruction pool 114. Instruction fetch unit 112 processes the
Stored machine instructions prior to passing them to instruc
tion pool 114, for instance renaming logical register refer
ences in a Stored machine instructions to identifiers of
physical Storage locations within the processor. AS discussed
below in Section 6.1, in Some alternative embodiments the
processing includes expansion of each complex Stored
machine instruction into a Series of primitive instructions
that implement the functionality of that complex instruction.

0051. Instructions in instruction pool 114 are passed to
functional units 116, including, for example, an arithmetic
unit, to a memory access unit 117, and to a branch resolution
unit 118. Functional units 116 pass results back to instruction
pool 114 where these results are typically used as operands
in other pending instructions. Memory access unit 117
communicates with memory System 120, for instance to load
or to Store data in memory System 120. Memory acceSS unit
117 provides the data loaded from memory system 120 to
instruction pool 114 where this loaded data is typically used

US 2004/0083343 A1

as an operand of another pending instruction. Branch reso
lution unit 118 accepts branch instructions from instruction
pool 114 and provides information to instruction fetch unit
112 So that the instruction fetch unit accesses the machine
instructions appropriate to flow control of the program being
executed.

0.052 In general, processor 110 executes multiple instruc
tions concurrently. Instruction pool 114 therefore may
include multiple instructions that it has issued by Sending
them to functional units 116, memory access unit 117, or
branch resolution unit 118 but that have not yet completed.
Other instructions in instruction pool 114 may not yet have
been issued by Sending them to one of the units, for example,
because the instructions require as operands the result from
one of the issued instructions which will be returned by unit
executing the instruction. Instruction pool 114 does not
necessarily issue instructions in the order that they are
provided to it by instruction fetch unit 112. Rather instruc
tions may be issued out of order depending on the data
dependencies and. Semantics of the instructions themselves.
0053) Referring still to FIG. 1B, memory system 120
includes one Sache 130 for each instruction processor 110,
and shared memory system 140. Each Sache 130 includes a
Sache controller 132 and a Sache Storage 134. Sache Storage
134 includes data Storage which associates address, data,
and Status information for a limited portion of the address
Space accessible from instruction processor 110. Sache con
troller 132 communicates with memory access unit 117.
Memory access unit 117 passes memory access messages to
Sache controller 132 in response to memory access instruc
tions issued by instruction pool 114. As is discussed further
in Section 5.2, Sache controller 132 processes these memory
access messages by accessing its Sache Storage 134, by
communicating in turn with shared memory System 140, or
both. When it has finished processing a memory acceSS
message, it sends a result or acknowledgment back to
memory acceSS unit 117, which in turn Signals to instruction
pool 114 that the corresponding memory access instruction
has completed.

0.054 Referring to FIG. 2, instruction pool 114 includes
a reorder buffer 210 and an instruction scheduler 230.
Reorder buffer 210 holds a limited number of instructions
212 (e.g., 16 instructions) that come from instruction fetch
unit 112 (FIG. 1B). Instructions are retired from reorder
buffer after they are no longer needed, typically after they
have completed execution or are determined not to be
needed as a result of a branch instruction. In this embodi
ment, each instruction 212 includes a tag 214 that is unique
to the instructions in reorder buffer 210, an identifier of the
operation for that instruction, op. 216, operands 218 for that
operation, and a value 220 that results from the execution of
the instruction. Other embodiments have alternative struc
tures for instruction pool 114. For instance, rather than
Storing the values resulting from execution of instructions
directly with the instructions in the reorder buffer, a Separate
memory area is used and referred to by the instructions in the
reorder buffer.

0.055 Based on the semantics and availability of oper
ands of instructions in reorder buffer 210, as well as avail
ability of processing units, instruction Scheduler 230 deter
mines which instructions in reorder buffer 210 may be issued
and Sent to one of the processing units. Memory acceSS

Apr. 29, 2004

instructions are Sent to memory acceSS unit 117 which in turn
communicates with its corresponding Sache controller 132.
0056 Referring still to FIG. 2, sache storage 134
includes a limited number (e.g., 128K) of cells 242, each
holding an address 246, and a value 248 and a status 244
asSociated with that address. Status 244 can take on the
value Clean or Dirty. A cell is Clean if the value has been
retrieved from shared memory system 140 and has not yet
been modified by instruction processor 110. When instruc
tion processor 110 modifies the value for an address, the
status becomes Dirty. Status 244 can also take on the value
cache-pending when the Sache controller 132 is awaiting a
value for the address from shared memory system 140, and
the value writeback-pending when the Sache controller has
Sent the value to the shared memory System, but has not yet
received an acknowledgment that the value has been written
and is accessible to the other processors.
0057. In the discussion below, the notation Cell(address,
value.Status) is used to denote that Sache storage 134
includes a cell 242 with the indicated address, value, and
Status. A "-" is used to indicate any value. The notation
Cell(address, Invalid) is used to denote that there is no cell
242 with the indicated address in Sache storage 134. Also,
the Status (or State) of an address in the Sache storage refers
to the status of the cell that identifies the address, or invalid
if there is no Such cell, and the value of an address in the
Sache Storage refers to the value in a cell that identifies the
address.

0.058 2 Memory Instructions
0059 Embodiments of this invention make use of four
primary memory access instructions. These are: LoadL
(“Load Local”), StoreL (“Store Local”), Reconcile, and
Commit. Generally, the LoadL and StoreL instructions con
trol the transfer of data between Sache 130 and instruction
processor 110, while the Reconcile and Commit instructions
control or constrain the transfer of data between Sache 130
and shared memory system 140.

0060. The semantics of these instructions is described
below. Note that these semantics do not precisely define how
a processor 110 implements the instructions or how memory
System 120 processes requests resulting from execution of
the instructions. Rather, the Semantics essentially define
what implementations are permissible. Therefore various
embodiments of instruction processors or memory Systems
may operate differently while being consistent with these
Semantics. The Semantics of the four primary memory
acceSS instructions are as follows:

Instruction Semantics

LoadL(addr) If sache 130 includes a cell holding
address addr and value val, then execution
of this LoadL instruction results in the
value wal. If there is no cell in Sache
130 holding addr, then execution of the
LoadL does not complete(i.e., the
instruction is stalled) until a cell for
address addr is created and the value val
the stored at address addr in shared
memory system 140 is passed from the
shared memory system to sache 130 and
stored in the newly created cell in the

US 2004/0083343 A1

-continued

Instruction Semantics

sache. The status of that cell is set to
Clean.

Reconcile(addr) If sache 130 includes a cell holding
address addr, that has a status Clean,
that cell is purged from Sache 130 such
that, for instance, a subsequent LoadL
addr instruction will result in a value
that will have been retrieved from address
addr in shared memory system 140. This
subsequent LoadL is guaranteed to result
in a value that was stored at address addr
in the shared memory system at some time
after this Reconcile instruction was
issued.

StoreL(val, addr) If sache 130 includes a cell holding
address addr, then execution of this
StoreL instruction results in the value

val being stored at that cell, and the
status of the cell being set to Dirty. If
there is no cell in sache 130 holding
addr, then a storage cell is first created
for address addr.

If sache 130 includes a cell holding
address addr that has a status Dirty, then
the value at that cell is passed to shared
memory system 140 and stored at address
addr. If sache 130 does not hold address
addr, or address addr has a status Clean,
then this Commit instruction does not
modify or transfer any data.

Commit(addr)

0061. In alternative embodiments, the Commit and Rec
oncile instructions can Specify a set of addresses, Such as an
address range, rather than Specify a Single address. In this
case, the Semantics of the Commit and Reconcile instruc
tions are the Same as an equivalent Sequence of instructions
that each specifies a single address.

0062) To generally illustrate the semantics of these
memory access instructions, consider the case that instruc
tion pool 114 receives a Sequence of two instructions,
Reconcile(addr) followed by LoadL(addr), from instruction
fetch unit 112. In the case that address addr has status Clean
immediately prior to the Reconcile and there are no inter
vening StoreL instructions to address addr between the
Reconcile and the LoadL, a value Stored in shared memory
system 140 at address addr at a time after the Reconcile was
issued is provided to the instruction pool as a result of the
LoadL instruction. Similarly, if instruction pool 114 receives
the sequence StoreL(val,addr) and Commit(addr), then the
value Val is Stored at address addr in shared memory System
140 by the time that the Commit instruction completes. Note
that the Sequence of a Reconcile and a LoadL instruction
therefore functions in a similar manner as a conventional
"Load' instruction on current processors while the Sequence
of a StoreL and a Commit instruction functions in a similar
manner as a conventional "Store' instruction.

0.063. In order to define the semantics of the memory
access instructions in a multiple processor System, the
allowable data transfers between a Sache 130 and shared
memory system 140 are governed by the following rules:

Apr. 29, 2004

Purge rule Any cell in sache 130 that has a Clean
status may be purged at any time from the
Sache. For example, when a new cell needs
to be created, an existing cell may need
to be purged in order to make room for the
new cell.
Any cell in sache 130 that has a Dirty
status may have its data written to shared
memory system 140 at any time. The status
becomes Clean after the data is written.
Note that a Clean cell may never be
written back to the shared memory system
under any circumstances.
Data in shared memory system 140 at any
address addr for which sache 130 does not
have an associated cell may be transferred
from the shared memory system to the sache
at any time. A new cell in Sache 130 is
created for the address and the status is
set to Clean when the data is transferred.

Writeback rule

Cache rule

0064. In multiple processor computer system 100, one
processor may execute multiple StoreL and LoadL instruc
tions for a particular address without executing an interven
ing Commit instruction for that address. Prior to executing
a Commit instruction, that value will not necessarily be
updated in shared memory system 140. After a Commit
instruction is completed, then a Subsequent Reconcile and
Load Sequence executed by another instruction processor
will retrieve the Commited value. Note that the value may
be updated in the shared memory prior to the Commit
instruction completing, for example, if the Storage cell
holding that address is flushed from Sache 130 to free up
Space for a Subsequently LoadL'ed address that is not
already in the Sache (a Sache miss).
0065. Note also that in multiple processor computer
system 100, multiple Saches 130 may have cells holding the
Same address. These cells may have different values, for
instance if they each have a dirty status with different values
having been LoadL'ed. The cells can also have different
values even though they have Clean Status. For example, one
processor may have eXecuted a Reconcile and LoadL for an
address prior to the value in the Shared memory System for
that address being updated, while another processor
executes a Reconcile and LoadL instruction for that address
after the shared memory System was updated. In this
example, prior to the processors updating the values in their
Saches with StoreL instructions causing the Status to change
to Dirty, each processor has a Clean value for the address,
but the values are different.

0066 Instruction pool 114 can also include instructions
that constrain which instructions can be issued by instruction
Scheduler 230. These “fence' instructions are used to
enforce the order that other memory acceSS instructions are
issued. Instruction Scheduler 114 does not in fact send these
instructions to memory access unit 117. The semantics of the
fence instructions are as follows:

Instruction Semantics

Fencews(addr1, addr2) All Commit (addr1) instructions prior
to the Fence instruction must
complete prior to any subsequent
Reconcile(addr2) instruction being

US 2004/0083343 A1

-continued

Instruction Semantics

issued (for the particular addresses
addr1 and addr2 specified in the
Fence instruction).
All Commit (addr1) instructions prior
to the Fence instruction mus
complete prior to any subsequent
StoreL(addr2) instruction being
issued.
All LoadL(addr1) instructions prior
to the Fence instruction mus
complete prior to any subsequent
Reconcile(addr2) instruction being
issued.
All LoadL(addr1) instructions prior
to the Fence instruction mus
complete prior to any subsequent
StoreL(addr2) instruction being
issued.

Fenceww(addr1, addr2)

FenceRR(addr1, addr2)

FenceRw(addr1, addr2)

0067. In order to illustrate the semantics of the fence
instructions, consider the Sequence of five instructions:
StoreL (val, addr1), Commit (addr1), Fencewis (addr1,
addr2), Reconcile (addr2), LoadL(addr2). In this sequence,
the Reconcile instruction is not issued until the Commit
instruction has completed, that is, until after Val has been
written to address addr1 in the shared memory. The value of
the LoadL instruction is a value at address addr2 in the
shared memory at a time after the Reconcile instruction was
issued, and therefore at a time after Val was stored at addr1
and was “visible” to other processors in the system. The
Fence instructions can be used in this way to Synchronize
operation of multiple processors.

0068] 3 Compiler (FIGS. 3A-B)
0069. Referring to FIG. 3A stored machine instructions
retrieved by instruction fetch unit 112 (FIG. 1B) are pro
duced by a compiler 320. Compiler 320 processes a program
Specification 310, for instance in a high-level programming
language Such a “C”, to generate a processor instruction
Sequence 330. The processor instruction Sequence is Stored
in memory and is Subsequently accessed by instruction fetch
unit 112 (FIG. 1B) when the program is executed. Compiler
330 is typically a software-based module that executes on a
general purpose computer. Compiler 320 includes a machine
instruction generator 322 that takes program Specification
310 and produces a machine instructions Sequence 324 using
a variety of well-known compilation techniques. These
machine instructions make use of various machine instruc
tions, including the memory access instructions described in
Section 2, to represent the desired execution of program
specification 310.

0070 Instruction reordering and optimization stage 326
of compiler 320 reorders machine instructions 324 to pro
duce processor instruction Sequence 330. For example,
compiler 320 reorders the machine instructions to achieve
faster execution using a variety of well-known optimization
techniques. The compiler constrains the reordering, for
example, ensuring that operands are available before they
are used. In addition the Semantics of the memory acceSS
instructions described above further limit the allowable
reorderings. Allowable reorderings are defined in terms of
allowable interchanges of Sequential pairs of instructions.

Apr. 29, 2004

More complex reorderings are performed (at least concep
tually) as a Series of these pair-wise interchanges. In general,
any of the eight memory access instructions (LoadL, StoreL,
Commit, and Reconcile and the four Fence instructions) can
be interchanged with another of the memory instructions,
Subject to there not being a data dependency between the
instructions, and Subject to the following exceptions. The
following instruction pairs cannot be interchanged when the
corresponding addressed variables (addr, addr1, and addr2)
in the two instructions are (or may potentially be) equal:

Instructionn Instructionn--1

StoreL(addr, val) LoadL(addr)
LoadL(addr) StoreL(addr, val)
Reconcile(addr) LoadL(addr)
StoreL(addr, val) Commit(addr)
StoreL(addr, val1)
LoadL(addr1)
Commit(addr1)
Fence. waddr1, addr2)
Fence. (addr1, addr2)

StoreL(addr, val2)
Fence. (addr1, addr2)
Fencew. (addr1, addr2)
StoreL(addr2, val)
Reconcile(addr2)

0071. In this list of exceptions, Fencew is used as
Shorthand to represent either a Fencew or a Fence ww
instruction, and the same shorthand is used for the other
Fence instructions in the list.

0072) Using these reordering constraints an instruction
reordering and optimization stage 326 of compiler 320
reorders machine instructions 324 to produce processor
instruction sequence 330. Note that since certain addresses
of memory operations may not be completely resolved at
compile time, for example when the address is to be com
puted at run time, certain instruction reorderings are not
performed by the compiler Since they may potentially be not
allowed depending on the actual addresses of those instruc
tions that will be determined at run-time. However, even if
the addresses are not completely resolved and known
exactly, the compiler may be able to determine that two
addresses are certain to be unequal thereby allowing Some
instruction reorderings to be nevertheless performed.
0073) Referring to FIG. 3B, a similar compiler structure
is used to process a parallel program Specification 340.
Parallel compiler 350 includes a machine instruction gen
erator 352 that generates multiple Sequences of machine
instructions 324, each for execution on different instruction
processors 110 (FIGS. 1A-B). Machine instruction generator
352 makes use of the new instructions to specify data
transfer and process Synchronization between the proces
Sors. Each of the machine instruction Sequences is indepen
dently reordered by an instruction reordering and optimiza
tion Stage 326 to produce machine instruction Sequences
330.

0.074) 4 Instruction Scheduling and Execution (FIGS.
1B, 2)
0075 Referring to FIG. 2, when a program is executed,
the Stored machine instruction Sequence is provided to
instruction pool 114 from instruction fetch unit 112. As
instructions are provided by the instruction fetch unit and as
issued instructions complete execution, instruction Sched
uler 230 determines which instructions stored in reorder
buffer 210 may be issued, and in the case of memory access

US 2004/0083343 A1

instructions, Sends those instructions to memory access unit
117. Instruction scheduler 230 considers each instruction
stored in reorder buffer 210 in turn to determine whether it
may be issued. If an instruction depends on the result of a
pending instruction for its operands, it is not issued. Another
typical constraint is that an instruction cannot be issued if the
functional unit it requires is busy. Furthermore, a memory
access instruction for an address is not issued until any
previously issued instruction using that address has com
pleted.

0.076 Instruction scheduler 230 applies essentially the
Same constraints on memory access instruction reordering as
is described in the context of compiler optimization
described in Section 3 above. For instance, instruction
scheduler 230 does not issue a LoadL(addr) instruction if a
prior StoreL(addrval) has not yet been issued and completed
for the same address addr. Furthermore, the LoadL(addr)
instruction is not issued if a prior unissued StoreL(addr", Val)
instruction has not yet had the value of addr" determined,
Since addr" may indeed be equal to addr. Similarly, instruc
tion scheduler 230 does not issue a Reconcile(addr2)
instruction if a prior Fence (addr1,addr2) instruction has
not yet been issued and completed.

0077 Referring back to FIG. 2, memory access unit 117
communicates with Sache controller 132 in response to
receiving memory access instructions issued by instruction
scheduler 230. Note that an instruction 212 passed from
instruction scheduler 230 to memory access unit 117
includes its tag 214. Memory access unit 117 passes this tag
along with the instruction in a message to Sache controller
132. Memory access unit 117 then later matches a return
message from the Sache controller, which contains the tag
along with an acknowledgement or return data, based on the
tag. The message types passed from memory acceSS unit 117
to Sache controller 132 correspond directly to the four
primary memory acceSS instructions. The messages and their
expected responses messages are as follows:

Message Response

<tag, LoadL(addr)> <tag, values
<tag, Reconcile(addr)> <tag, Acks
<tag, StoreL(val, addr)> <tag, Acks
<tag, Commit (addr)> <tag, Acks

0078. In each case, memory access unit 117 sends a
message to Sache controller 134 after receiving a corre
sponding instruction from instruction Scheduler 114. After
memory access unit 117 receives a matching response
message from Sache controller 134, it signals to instruction
Scheduler 114 that the instruction has completed execution,
allowing the instruction Scheduler to issue any instructions
waiting for the completion of the acknowledged instruction.

0079. Note that the Fence instructions do not necessarily
result in messages being passed to the memory System 120.
Instruction Scheduler 114 uses these instructions to deter
mine which memory access instructions may be sent to
memory acceSS unit 117. However, the fence instructions are
not themselves Sent to the memory acceSS unit, nor are they
Sent from the memory access unit to the memory System.

Apr. 29, 2004

0080. In the discussion below, the tags used to match
returned values and acknowledgments to the original com
mand messages are not explicitly indicated to Simplify the
notation.

0081) 5 Memory System (FIGS. 1B, 2, 4A-E)
0082) 5.1 Structure (FIGS. 1B, 2)
0083) Referring back to FIG. 1B, and as described briefly
above, memory system 120 includes a number of Saches 130
each coupled to shared memory System 140. Each Sache has
a Sache controller 132 coupled to its Sache Storage 134.
Shared memory system 140 has a shared storage 142 used to
Store data accessible to all the processors.
0084. Referring again to FIG. 2, shared storage 142
includes a number of cells 262, each associating an address
264 with a value 266. Typically, the address 264 is not
explicitly Stored being the hardware address of the location
Storing the value in a data Storage device.
0085 Sache controller 132 sends messages to shared
memory System 140 in order to pass data or requests for data
to shared Storage 142. These messages are:

Message Description

Writeback(val, addr): pass val from sache controller 132
to shared memory system 140 and store
val in the shared storage at address
addr. Shared memory system 140 sends
back an acknowledgement of this command
once val is stored at addr in the
shared storage and is visible to other
processors.
request that the value stored at
address addr in shared memory system
140 be sent to sache controller 132.
After the shared memory system can
provide the value, val, it sends a
Cacheval) message back to the sache
controller.

Cache-Request (addr):

0.086 5.2 Operation (FIGS. 4A-E)
0087. In this embodiment, Sache controller 132 responds
directly to messages from memory access unit 117 in a
manner that is consistent with the Semantics of the memory
acceSS instructions. Note that Several alternative modes of
operation, which may incorporate features that provide
improved memory access performance (e.g., Smaller aver
age access time), also satisfy these memory Semantics. Some
of these alternative modes of operation are described in
Sections 6.3 and 6.4.

0088 Sache controller 132 begins processing each
received message from memory acceSS unit 117 in the order
that it receives the messages, that is, in the order that the
corresponding instructions were issued by instruction Sched
uler 230. Sache controller 132 may begin processing a
message prior to a previous message being fully processed,
that is, the processing of multiple messages may overlap in
time, and may be completed in a different order than they
were received.

0089 Referring to the pseudo-code in FIGS. 4A-E, cache
controller 132 processes messages from memory acceSS unit
117 as follows:

US 2004/0083343 A1

0090 LoadL(addr)
0091) When cache controller 132 receives a LoadL(addr)
from memory access unit 117, it executes a procedure 410
shown in FIG. 4A. If the address is invalid (line 411), that
is, if Sache Storage 134 does not include a cell for address
addr is in its Sache Storage 134, it first creates a new cell for
that address (line 412) using a procedure shown in FIG. 4E
and described below. Sache controller 132 then sends a
Cache-Request message for the newly created cell (line 413)
and waits for a return Cache message (line 414), which has
the value Stored in the shared memory System at that
address. The Sache controller Sets the value in the Sache
Storage cell to the returned value, and the Status to Clean
(line 415). It then returns the retrieved value (line 416). In
the case that the Sache Storage has a cell for the requested
address (line 417), it immediately returns the value stored in
that cell (line 418) to memory access unit 117.
0092 Reconcile(addr)
0093. When sache controller 132 receives a Recon
cile(addr) message from memory access unit 117, it executes
a procedure 430 shown in FIG. 4B. First, it checks to see if
it has a cell associated with address addr and with a status
Clean (line 431). If it does, it deletes that cell from its sache
Storage (line 432). In any case, it then returns an acknowl
edgment to memory access unit 117 (line 434). A Subsequent
LoadL message will therefore access the shared memory
System.

0094 StoreL(addrval)
0.095 When sache controller 132 receives a StoreL(addr,
val) message from memory access unit 117, it executes a
procedure 460 shown in FIG. 4C. In this procedure, the
Sache controller first checks to see if it has a cell associated
with address addr (line 461). If it does not, it first creates a
cell in Sache storage 134 (line 462). If it already has a cell
for address addr, or after it has created a new cell for that
address, Sache controller 134 then updates the cells value to
val and sets the status to Dirty (line 464). Then, it sends an
acknowledgment message back to memory access unit 117
(line 465).
0096) Commit(addr)
0097. When sache controller 132 receives a Commi
t(addr) message from memory access unit 117, it executes a
procedure 470 shown in FIG. 4D. The Sache controller first
checks to see if it indeed has a cell for address addr and that,
if it does, that the status is Dirty (line 471). If these
conditions are Satisfied, it sets the Status of the cell to
Writeback-Pending (line 472) and sends a Writeback mes
sage to the shared memory system (line 473). The sache
controller then waits for an acknowledgment message from
the shared memory system in response to the Writeback
message (line 474). When it has received the acknowledg
ment, it sets the cell's status to Clean (line 475) and returns
an acknowledgment to memory access unit 117 (line 477).
0098. When sache controller 132 needs to create a new
cell in Sache storage 134, it executes a procedure 480 shown
in FIG. 4E. If there is no space available in the Sache storage
(line 481) it first flushes another cell in the storage. The
Sache controller Selects a cell that holds another address
addr" Such that the status of addr" is either Clean or Dirty
(line 482). It selects this cell according to one of a variety of

Apr. 29, 2004

criteria, for example, it Selects the cell that has been least
recently accessed. If the cell's status is Dirty (line 483), it
first sends a Writeback message for that cell (line 484) and
waits from an acknowledgment from the shared memory
system (line 485). After it has received the acknowledge
ment, or if the cell was Clean, it then deletes that cell (line
487). If there was space already available in the sache
Storage, or Storage was created by deleting another cell, the
Sache controller then Sets an available cell to the requested
address (line 489).
0099. In this embodiment, shared memory system 140
processes Cache-Request and Writeback messages from
Sache controllers 132 in turn. It sends a value stored in its
shared Storage in a Cache message in response to a Cache
Request message, and sends an acknowledgment in response
to a Writeback message after it has updated its shared
Storage.

0100. In the discussion that follows regarding alternative
memory protocols, operation of the memory System in this
embodiment is referred to as the “Base” coherency protocol.
Several alternative coherency protocols which maintain the
Semantics of the memory access instructions are presented
below.

0101 6 Other Embodiments
0102) Several other embodiments of the invention
include alternative or additional features to those described
above. Unless otherwise indicated below, the semantics of
the memory access instructions described in Section 2
remain unchanged in these other embodiments.
0103) 6.1 Instruction Fetch Unit
0104 Referring back to FIG. 1B, instruction fetch unit
112 accesses a Sequence of Stored machine instructions Such
as machine instruction sequence 330 (FIG.3A) produced by
compiler 320 (FIG. 3A). The sequence of machine instruc
tions includes memory access instructions that are described
in Section 2.

0105. In an alternative embodiment, the compiler pro
duces a machine instruction Sequence that includes conven
tional Load and Store instructions. These instructions have
conventional Semantics, namely, that the Load instruction
must retrieve the value Stored in the shared memory System,
or at least a value known to be equal to that Stored in the
shared memory System, before completing. Similarly, a
Store instruction must not complete until after the value
Stored is in the shared memory System, or at least that the
value would be retrieved by another processor executing a
Load instruction for that address.

0106. In this alternative embodiment, when instruction
fetch unit 112 processes a conventional Load instruction, it
passes two instructions to instruction pool 114, a Reconcile
instruction followed by a LoadLinstruction. Similarly, when
instruction fetch unit 114 processes a Store instruction, is
passes a StoreL followed by a Commit instruction to instruc
tion pool 114.

0107 Instruction scheduler 230 (FIG. 2) then issues the
instructions according to the Semantic constraints of the
LoadL, StoreL, Commit, and Reconcile instructions, poten
tially allowing other instructions to issue earlier than would
have been possible if the conventional Load and Store
instructions were used directly.

US 2004/0083343 A1

0108 6.2 Memory Access Instructions
0109. In another alternative embodiment, alternative or
additional memory access instructions are used. In particu
lar, these instructions include alternative forms of fence
instructions, Synchronization instructions, and load and Store
instructions with attribute bits that affect the semantics of
those instructions.

0110) 6.2.1 Coarse-Grain Fence Instructions
0111. In addition or as an alternative to the Fence instruc
tions described in Section 2, “course-grain' fence instruc
tions enforce instruction ordering constrains on a pair of
address ranges rather than a pairs of individual addresses.
For example a Fencew (AddrRange1,Addrrange2) instruc
tion ensures that all LoadL(addr1) instructions for any
address addr1 in address range AddrRange1 complete before
any Subsequent StoreL(addr2) instruction for any address
addr2 in address range AddrRange2 is issued. This course
grain fence can be thought of conceptually as a Sequence of
instructions Fencew(addr1,addr2) for all combinations of
addr1 and addr2 in address ranges AddrRange1 and
AddrRange2 respectively. The other three types of course
grain Fence instructions (RR, WR, WW) with address range
arguments are defined similarly.
0112. Other course-grain fence instructions have a com
bination of an address range and a specific Single address as
arguments. Also, an address range consisting of the entire
addressable range is denoted by “*”. Various specifications
of address ranges are used, including for example, an
address range that is specified as all addresses in the same
cache line or on the same page as a specified address, and an
address range defined as all addresses in a specified data
Structure.

0113. Two addition Fence instructions are defined in
terms of these course-grain fences. These are:

PreFencew(addr)=FenceRw(,addr); Fenceww(,addr)
PostFencer (addr)=FenceRR(addr,); Fenceww (addr,)

0114 Generally, PreFencew(addr) requires that all
memory access instructions before the fence be completed
before any StoreL(addr) after the fence can be issued.
Similarly, PostFenceR(addr) requires that any LoadL(addr)
before the fence be completed before any memory acceSS
after the fence can be performed.
0115 6.2.2 Synchronization Instructions
011.6 Additional memory access instructions useful for
Synchronizing processes executing on different instruction
processors 110 are used in conjunction with the instructions
described in Section 2. These include mutex P and V
instructions (wait and Signal operations), a test-and-set
instruction, and load-reserved and Store-conditional instruc
tions, all of which are executed as atomic operations by the
memory System.

0117 The mutex instruction P(lockaddr) can be thought
of as functioning Somewhat both as a conventional Load and
a conventional Store instruction. Instruction scheduler 230
effectively decides to issue a Pinstruction somewhat as if it
were a Sequence of Reconcile, LoadL, StoreL, and Commit
instructions for address lockaddr, although the Pinstruction
remains an atomic memory operation. The Semantics of the
P instruction are such that it blocks until the value at

Apr. 29, 2004

lockaddr in the shared memory System becomes non-Zero at
which point the value at lockaddr is set to Zero and the P
instruction completes. The V(lockaddr) instruction resets the
value at address lockaddr in the Shared memory System to 1.
One implementation of this instruction involves memory
access unit 117 Sending a P(lockaddr) message to Sache
controller 132. Sache controller 132 treats the message as it
would a Reconcile followed by a LoadL message, that is, it
purges any cell of holding lockaddr in Sache Storage 134.
Sache controller 132 then sends a P(lockaddr) message to
shared memory system 140. When the requesting processor
acquires the mutex at lockaddr, Shared memory System 140
Sends back an acknowledgement to Sache controller 132,
which updates Sache Storage 134 for lockaddr, and Sends an
acknowledgement message back to memory access unit 117.
The mutex instruction V(lockaddr) functions as a sequence
of a StoreL and a Commit from the point of view of
instruction scheduler 230. The V instruction does not com
plete until after the shared memory System has been updated.
0118. A Test&Set instruction also functions somewhat
like a Sequence of a conventional Load and Store instruction.
Instruction scheduler 230 issues a Test&Set(addr,val)
instruction as if it were a Sequence of a Reconcile, a Load,
a Store, and a Commit instruction. Memory access unit 117
sends a Test&Set(addrval) message to Sache controller 132.
Sache controller sends a corresponding Test&Set(addrval)
message to shared memory System 140, which performs the
atomic access to address addr, and passes the previous value
stored at that address back to Sache controller 132. Sache
controller 132 updates Sache Storage 134 and passes the
previous value in a return message to memory access unit
117.

0119) The functionality of a conventional Load-Reserved
(also known as Load-Linked) instruction and a correspond
ing Store-Conditional instruction is implemented using a
Reconcile-Reserved and Commit-Conditional instructions.
A Reconcile-Reserved instruction functions as a Reconcile
instruction described in Section 2. However, in addition, in
response to a Load-Reserved(addr) message, Sache control
ler 132 passes a message to shared memory System 140 So
that the shared memory system sets a reserved bit for the
address, or otherwise records that the address is reserved. A
Subsequent Commit-Conditional instruction fails if the
reserved bit has been reset in the Shared memory System.
0120 In other alternative embodiments which use these
and Similar Synchronization instructions, instruction fetch
unit 112 expands the Synchronization instructions into
Semantically equivalent Sequences of LoadL, StoreL, Com
mit, Reconcile, and Fence instructions, as is described in
Section 6.1.

0121) 6.2.3 Instruction Attributes (Bits)
0122) In another alternative embodiment, alternative
memory access instructions are used by processors 110
which do not necessarily include explicit Reconcile, Com
mit, and Fence instructions, although these alternative
instructions are compatible (i.e., they have well defined
Semantics if both are used) with those explicit instructions.
By including the attribute bits, fewer instructions are
needed, in general, to encode a program. Store and Load
instructions each have a set of five attribute bits. These bits
affect the Semantics of the Load and Store instructions, and
effectively define Semantically equivalent Sequences of
instruction.

US 2004/0083343 A1

0123 The Load(addr) instruction has the following
attribute bits which, when set, affects the semantics of the
Load instruction as follows:

Bt Equivalent Semantics

PreR FenceRR(, addr); LoadL(addr)
PreW Fencew (, addr); LoadL(addr)
PostR LoadL(addr); Fence (addr,)
PostW LoadL(addr); FenceRw(addr,)
Rec Reconcile(addr); LoadL(addr)

0.124. Any Subset of the bits can be set although some
combinations are not useful. In alternative embodiments, the
attributes are not encoded as a Set of bits each asSociated
with one attribute, but rather the attributes are encoded using
an enumeration of allowable combinations of attributes. In
this embodiment, a Load instruction with all the bits set,
which is denoted as Load(addr) PreR.PreW.PostR.PostW,
Rec), is semantically equivalent to the Sequence Fence (,
addr), Fence w(,addr); Reconcile (addr); LoadL (addr);
Fencers(addr,), Fencerw(addr,).
0125 Similarly, the Store(addr,val) instruction has the
following attribute bits:

Bt Equivalent Semantics

PreR FenceRw (, addr); StoreL(addr, val)
PreW Fenceww(, addr); StoreL(addr, val)
PostR StoreL(addr, val); Fencew (addr,)
PostW StoreL(addr, val); Fenceww(addr,)
Com StoreL(addr, val); Commit(addr)

0.126 Other memory access instructions can also have
Similar attribute bits. For instance, Synchronization instruc
tions which function essentially as both Load and Store
instructions, Such as the Mutex P instruction, have the
following Semantics:

Bt Equaivalent Semantics

PreR Fence (, addr); Paddr)
PreW Fencew (, addr); Paddr)
PostR P(addr); FencewR(addr,)
PostW P(addr); Fenceww(addr,)
Com P(addr); Commit(addr)
Rec Reconcile(addr); Paddr)

0127 6.2.4 Alternative Implementations of Fence
Instructions

0128. In the implementations of Fence instructions
described above, in general, the instruction Scheduler is
responsible for ensuring that instructions are executed in a
proper order. Neither the memory acceSS unit, nor the
memory System must necessarily enforce a particular order
ing of the instructions they receive.

0129. In an alternative embodiment, the instruction
Scheduler delegates Some of the enforcement of proper
ordering of memory operations to the memory acceSS unit.

Apr. 29, 2004

In particular, the instruction Scheduler Sends multiple
memory acceSS instructions to the memory acceSS unit.
These memory access instruction can include Fence instruc
tions, which have the syntax described above. The memory
acceSS unit is then responsible for delaying Sending memory
acceSS messages to the memory System for certain instruc
tions received after the Fence instruction until it receives
acknowledgment messages for particular memory access
instructions it received prior to the Fence instruction, in
order to maintain the correct Semantics of the overall
instruction Stream.

0.130. In yet another alternative embodiment, the memory
acceSS unit does not necessarily enforce ordering of mes
Sages to the memory System. Rather, when it receives a
Fence command from the instruction Scheduler, it sends a
Fence message to the memory System. The memory System
is responsible for maintaining the appropriate ordering of
memory operations relative to-the received Fence message.
0131 6.2.5 Other Alternatives
0132) The embodiments described above include both
Commit and Reconcile instructions as well as Fence instruc
tions. Fence instructions are not required in a System using
Commit and Reconcile instructions. Similarly, Fence
instructions of the types described above, or equivalently
attribute bits (PreR, PreW, PostR, PostW) that are semanti
cally equivalent to Fence instructions can be used without
the Commit and Reconcile instructions. Also, conventional
Load and Store instructions can coexist with Commit and
Reconcile instructions. For example, Load and Store instruc
tions can be expanded by instruction fetch unit 112 (FIG.
1B) as described in Section 6.1.
0133) 6.3 Memory System
0.134. Alternative embodiments of memory system 120
provide memory services to instruction processors 110 while
preserving the desired execution of programs on those
processors.

0135) 6.3.1 Sache Controller
0.136. In Section 2, three rules governing allowable data
transferS between a Sache and the Shared memory System,
namely, Purge, Writeback, and Cache, were described. The
description in Section 5.2 of operation of an embodiment of
Sache controller 132 essentially applies these rules only
when they are needed to respond to a memory acceSS
message from memory access unit 117. Alternative embodi
ments of Sache controller 132 use other Strategies for apply
ing these rules, for example, to attempt to provide faster
memory access by predicting the future memory request that
an instruction processor will make.
0.137 These alternative embodiments use various heuris
tics in applying these rules. Examples of these heuristics
include:

0138 Apply the Writeback rule for Dirty cells that
are not expected to be modified by a StoreL instruc
tion in the near future. In this way, a Subsequent
Commit instruction for that cell will complete with
out having to first performing a writeback to the
shared memory System. Also, if this cell is needed to
free Space for a new address, then the cell's value
does not have to be written back before using the cell
for the new address.

US 2004/0083343 A1

0.139. Apply the Cache rule for addresses that have
had Reconcile instructions executed but have not yet
had LoadL instructions executed, but that are likely
to be needed in the near future. For example, when
a LoadL instruction references a particular address,
the Cache rule is applied to adjacent addresses
anticipating future LoadL instructions.

0140) 6.4. Alternative Memory System Protocols
0.141. In alternative embodiments, instruction processors
110 operate in the manner described in Section 4. As in the
previously described embodiments, the memory System in
these alternative embodiments is made up of a hierarchy of
Saches coupled to a shared memory System. However, the
Saches and the shared memory System use Somewhat dif
ferent coherency protocols compared to that described in
Section 5.2.

0142) 6.4.1 “Writer push” (FIG. 6A-G)
0143. In the first alternative coherency protocol, the
memory System generally operates Such that Clean copies of
a particular address in one or more Saches is kept equal to the
value in the shared memory system for that address. This
alternative makes use of a directory in the shared memory
System which keeps track of which Saches have copies of
particular addresses.
0144. The Sache controller operates as is described in
Section 5.2 with the following general exceptions. First,
when the Sache controller removes a cell from its Sache
storage, it sends a Purged message to the shared memory
System. The shared memory System therefore has Sufficient
information to determine which Saches have copies of a
particular location. Second, when the Sache controller
receives a Reconcile message from the instruction processor
and that location is in the Sache Storage, then the Sache
controller immediately acknowledges the Reconcile and
does not purge the location or Send a Cache message to the
shared memory System.
0145 Referring to the pseudo-code in FIG. 6A, when the
Sache controller receives a LoadL(addr) message to the
memory access unit, if address addr is Invalid (line 611),
then it creates a cell for that address (line 612) and sends a
Cache-Request(addr) message to the shared memory System
(line 613). The Sache controller then stalls the LoadL
instruction until the Cache message is returned from the
shared memory system (line 614). It then gets that value that
was returned from the shared memory system (line 615) and
returns the value to memory access unit 117 (line 616). If on
the other hand the Sache Storage has either a Clean or Dirty
cell for address addr, it returns the value immediately to the
memory access unit (line 618).
0146 Referring to FIG. 6B, when the Sache controller
receives a Reconcile(addr) message, it immediately
acknowledges it (line 631). Note that is in contrast to the
processing in the Base protocol where addr would be
invalidated causing a Subsequent LoadL to retrieve a value
from the Shared memory System.

0147 Referring to FIG. 6C, when the sache controller
receives a StoreL(addr,val) message, it first checks to See
whether address addr is Invalid (line 641). If it is, it first
creates a cell for that address (line 642). Prior to writing a
value into that cell, it sends a Cache-Request(addr) message

12
Apr. 29, 2004

to the shared memory System and Stalls the StoreL proceSS
ing until the Cache message is returned from the shared
memory System. If the address was not Invalid, or after
Cache message is received, the Sache controller Sets the
value to val and status to Dirty of addr's cell (line 646).
0148 Referring to FIG. 6D, when the sache controller
receives a Commit(addr) message, it first checks that addr is
Dirty (line 651). If it is, it sets the status of that address to
Writeback-Pending (line 652) and sends a Writeback(addr,
val) message to the shared memory system (line 653). It then
Stalls processing of the Commit message until a Writeback
ack is received from the shared memory system (line 654).
It then sets the status of the cell to Clean (line 655).
0149 Referring to FIG. 6E, when the sache controller
receives a Cache (addr,val) message from the shared
memory System, it first checks to see it the address is Invalid
(line 671). If it is, then it creates a new cell for that address
(line 672) and sets the value to the value val received in the
Cache message and the status to Clean (line 673). If on the
other hand, the status of the address is Cache-Pending (line
674), for instance as a result of a previous LoadL or StoreL
instruction, then the Sache controller Sets the value to the
received value, sets the status to Clean (line 675), and
restarts the stalled LoadL or StoreL instruction (line 676).
0150 Referring to FIG. 6F, when the sache controller
receives a Writeback-Ack(addr) message, then if the Status
of addr is Writeback-Pending (line 681), then it sets the
status to Clean (line 682) and restarts the stalled Commit
processing (line 683).
0151. When the Sache controller receives a Writeback
Ack-Flush(addr) message, it processes the message as in the
Writeback-Ack(addr) case, but in addition, it deletes the cell
for address addr. AS will be seen below, this message is used
to maintain coherency between the Sache and the shared
Storage.

0152 Sache controller can also receive a Purge-Request
(addr) message from the shared memory System. This mes
Sage is not in response to any message Sent from the Sache
controller to the shared memory system. As will be
described below, the shared memory System uses the Purge
Request messages to maintain coherency between proces
sors. Referring to FIG. 6G, when the Sache controller
receives a Purge-Request(addr) message, it first checks if
that address is Clean (line 691). If it is, it deletes the cell (line
692) and sends a Purged(addr) message back to the shared
memory system. If the address is Dirty (line 694), it sends
a Writeback(addr) message back to the shared memory
System.

0153. Turning now to the processing in the shared
memory controller of the shared memory System, when the
shared memory controller receives a Writeback message
from a Sache for a particular address, the shared memory
System does not immediately update its Storage Since if it
did, other Saches with Clean copies would no longer have a
consistent value with the shared memory System. Instead of
immediately updating the shared Storage, the shared
memory controller Sends a Purge-Request message for that
location to all other Saches that have previously obtained a
copy of that location from the shared memory System and for
which the Shared memory System has not yet received a
Purged message. Shared memory System maintains a direc

US 2004/0083343 A1

tory which has an entry from each location that any Sache
has a copy of, and each entry includes a list of all the Saches
that have copies.
0154 As described above, in response to a Purge-Re
quest from the shared memory System, a Sache responds
with either a Purged message if it had a clean copy which it
purges from its Sache Storage, or replies with an IS-Dirty
message if it has a dirty copy of the location.
0.155. After receiving a Writeback message from a Sache,
and Sending Purge-Request messages to all other Saches that
have copies of the location, the Shared memory System waits
until it receives either a Writeback or a Purged message from
each of these Saches at which point it acknowledges the
Writeback messages. One Sache receives a Writeback-Ack
message while the others receive Writeback-Ack-Flush mes
Sages. The Sache that receives the Writeback-Ack message
corresponds to the Sache that provided the value that is
actually Stored in the shared Storage. The other Saches
receive Writeback-Ack-Flush messages since although they
have written back values to the shared memory, they are now
inconsistent with the Stored value.

0156 6.4.2 “Migratory”
O157. In the second alternative coherency protocol, one
Sache at a time has “ownership” of an address, and the
ownership of that address “migrates' from one Sache to
another. No other Sache has any copy whatsoever of that
address.

0158. The Sache that has a copy of a location responds to
Commit and Reconcile messages for that location from its
instruction processor without communicating with the
shared memory System. Prior to purging a location, the Sache
Sends a Writeback message if the location has been Com
mitted, and then sends a Purged message.

0159. When the shared memory system receives a Cache
message from a Sache and another Sache has a copy of the
requested location, then the shared memory System sends a
Flush-Request message to that other Sache. If that Sache has
a clean copy deletes the copy and sends a Purged message
back to the shared memory System. If it has a Dirty copy that
has not been written back, it sends a Flushed message, which
is Semantically equivalent to a Writeback message and a
Purged message. After the shared memory System receives
the Flushed message, it updates the memory and responds to
the original Cache request, noting which Sache now has a
copy of that location.
0160 6.4.3 Mixed and Adaptive Cache Protocols
0.161. A number or alternative cache protocols use a
combination of modified versions of the above protocols. In
one Such alternative, Some Saches interact with the shared
memory System using essentially the base protocol, while
other Saches interact with the shared memory System accord
ing to the writer push protocol. In a first variant of this
approach, each processor uses the Same protocol for all
addressed and the choice of protocol is fixed. In a Second
variant, the choice of protocol may depend on the particular
address, for example, Some addresses at one Sache may use
the base protocol while other addresses may use the writer
push protocol. In a third variant, the choice is adaptive. For
example, a Sache may request that address be Serviced
according to the writer push protocol, but the shared

Apr. 29, 2004

memory System may not honor that request and instead reply
with Service according to the base protocol.
0162. In the first variant all addresses at a first set of
Saches, the base protocol Set, are Services according to the
base protocol while all addresses at a Second Set of Saches,
the writer push Set, are Services according to the writer push
protocol. AS in the pure writer push protocol, the shared
memory is maintained to be consistent with Clean cells in
the writer push Set of Saches and interactions between the
shared memory and the writer push Saches follow the writer
push protocol.

0163 When a sache in the base protocol set of Saches
writes back a value to the shared memory, then the Saches in
the writer push set of Saches must be notified. Therefore, as
in the writer push protocol, the memory controller Sends
Purge-Request messages to all the writer push Saches that
have copies of the location, the Shared memory System waits
until it receives either a Writeback or a Purged message from
each of these Saches at which point it acknowledges the
Writeback messages with Writeback-Ack-Flush messages.
The Sache that receives the Writeback-Ack message corre
sponds to the base protocol Sache that provided the value
that is actually Stored in the Shared Storage.
0164. In the second variant, a different set of base pro
tocol Saches and writer push Sashes is defined for each
address.

0.165. In the third variant, when a sache sends a Cache
Request message to the Shared memory, it indicates whether
it wants that address as a base protocol Sache or a writer push
Sache. If the Shared memory receives a request for an
address under the writer push protocol, it may choose to not
honor that request. For instance, it may not have any
remaining entries in the directory for that address in which
case it provides a Cache message that indicates that the value
is being provided under the base protocol.
0166 Otherwise, if a writer push cell is requested, it may
add that Sache to the directory as in the writer push protocol,
and return a cache value that indicates that it is under the
writer push protocol. Also, the Shared memory can option
ally request that a Sache give up a writer push cell by
requesting it to Purge that cell. In this way, the shared
memory can free an entry in its directory.
0167. Other alternative embodiments allow some
addresses to have Some Saches Serviced according to the
base protocol and other Saches Serviced according to the
writer push protocol, while other addresses have Some
Saches Serviced according to the base protocol and other
Saches Serviced according to the migratory protocol.
0168 6.4.4 “False sharing” (FIG. 5)
0169. In general, in the embodiments described above,
data transferS between an instruction processor 110 and its
Sache 130, and those between a Sache 130 and shared
memory system 140 have the same size. However, it is often
desirable for instruction processor 110 to address smaller
units (e.g., bytes) while transfers between Sache 130 and
shared memory system 140 are in units of entire “cache
lines' made up of multiple (e.g., 64 or more) bytes.
0170 Referring to FIG. 5, in an alternative embodiment
of Such a System, which uses a variant of the writer push
protocol, instruction processor 110 addresses memory units

US 2004/0083343 A1

of one particular size or Smaller (e.g., 8 bytes or fewer),
which we will call “words” in the following discussion, and
transfers between Sache 130a and shared memory system
140a are in units of multiple words or greater (e.g., 4 or more
words), which we will call “cache lines.”
0171 Sache 130a includes a Sache controller 132a and a
Sache Storage 134a as in the previously described embodi
ments. However, each cell 242a in Sache Storage 134a is
asSociated with an entire cache line, which includes multiple
values 248, rather than with an individual value. Sache
controller 132a maintains a Status 244 for each cache line at
rather than for each word.

0172 In operation, Sache controller 132a functions simi
larly to the operation of Sache controller 132 described in
Section 5.2. However, a cell is Dirty if any one of the values
in the cell is updated. Also, when Sache controller 132a
passes data to shared memory System 140a, it sends a
Writeback(addrVal1.Valin) message to shared memory Sys
tem 140a that includes an entire cache line rather than an
individual word. Furthermore, when Sache controller 132a
deletes a cache line from its Sache Storage 134a (e.g., in
processing a Reconcile message (line 432 in FIG. 4B) or
creates a new cell (line 487 in FIG. 4E), it additionally sends
a Purged(addr) message to the shared memory System.
When Sache controller 132a processes a StoreL message for
an address that is not in its cache, it sends a Cache-Request
message to the shared memory System to retrieve the appro
priate cache line that includes the address. By keeping track
of Cache-Request and Purged messages from the Saches
130a, shared memory system 140a keeps track of which
Saches include copies of a particular cache line. Note how
ever, that the shared memory System does not necessarily
know whether the status of each of copies is Clean or Dirty.
The method of maintaining these Stated values is described
below.

0173 Shared memory system 14.0a includes shared stor
age 142. In addition shared memory system 14.0a includes a
directory 500 that has multiple directory entries 510, one for
each cache line that is in any Sache Storage 134a. Each
directory entry 510 includes the address of the cache line
520, and a number of processor identifiers 530 that identify
the processors (or equivalently the Saches) that have cached
but not yet written back or purged the cache line. After the
shared memory System receives a writeback for a cache line,
a “twin” cache line 540 is created for that directory entry.
Initially, the value of that twin cache line is the same as the
value Stored in the shared memory System prior to receiving
the first writeback. That is, it is the value that was provided
to each of the Saches that are identified in the directory entry
for that cache line.

0.174 Shared memory system 14.0a includes a shared
memory controller 141a. When shared memory controller
141a receives a Cache-Request message from one of the
Sache controllers 132a for a cache line that is not in its
directory 500, it first creates a directory entry 510, sets
processor identifier 530 to identify the Sache controller that
Sent the Cache-Request command, and sends a Cache mes
Sage which includes the current value of the cache line to the
Sache controller that issued the Cache-Request command.
0175 Prior to receiving a Writeback command for that
cache line from any Sache 130a, shared memory controller
141a continues to immediately respond to Cache-Request

Apr. 29, 2004

messages from other Sache controllers by Sending the value
of the cache line in Shared Storage 142 and adding the
additional processors to the list of processor identifiers 530
in the directory. At this point, shared memory system 140a
is ignorant of whether any of the Saches contain a Dirty copy
of the cache line resulting from a StoreL instruction that may
have modified one or more words of the cache line. In fact,
different instruction processors may have dirtied different
words in the cache line.

0176). At some point, one of the Saches that has received
the cache line in response to one of the previous Cache
Request commands may send a Writeback-message back to
the global memory with an updated value, for instance as a
result of processing a Commit instruction for one of the
locations in the cache line, or as a result of purging the cache
line to free cache Storage. Even if the processor has only
modified one word of the cache line, the entire cache line is
sent back in the Writeback message. On this first Writeback
message for the cache line, shared memory controller 141a
creates twin cache line 540. The cache controller updates the
cache line in the shared Storage (but not in twin cache line
540) and removes the processor identification 530 for the
Sache that Sent the Writeback message. The shared memory
controller holds up the acknowledgment of the Writeback
command until all processors identifiers 530 are removed
from the directory for that cache line.
0177. When a second or subsequent Sache sends back a
Writeback command, shared memory controller 141a com
pares the returned value of each word in the cache line with
the value of that word in twin cache line 540. If it is different,
then that word must have been modified in the sending
Sache, and the shared memory controller modifies that word
of the shared memory System. The processor is removed
from the list of processors in the directory entry for that
cache line. As with the first Writeback, the acknowledgment
of the Second and Subsequent Writeback messages is held up
until all processors are removed from the directory for that
cache line.

0.178 If the shared memory controller receives a Purged
message from one of the processors listed in the directory
entry, it removes that processor from the directory entry.

0179 If shared memory controller 141a receives a
Cache-Request message from another Sache after it has
already received one or more Writeback messages, that
Cache-Request message is not serviced (i.e., not replied to)
until all processors are removed from the directory as a
result of Writeback or Purge commands.
0180. When the last pending processor has been removed
from the directory entry as a result of Writeback and Purged
messages, all pending acknowledgements of the Writebacks
are Sent and the shared Storage 262 for that cache line is
updated with the Staged value. If more than one writeback
was received, Writeback-Ack-Flush acknowledgments are
sent to the Saches, otherwise a Writeback-Ack is sent. The
twin cache line for the entry is also destroyed, and all
pending Cache-Request commands for that cache line are
then serviced by the shared memory controller.
0181. In an alternative embodiment of false sharing,
rather than having a twin Storage for a cache line, directory
entry 510 has a bit mask for the cache line, one bit for each
word in the cache line. Initially, all the bits are cleared. AS

US 2004/0083343 A1

Writeback commands provide modified values of words in
the cache line, only the words with cleared bits are com
pared, and if the received word is different than the corre
sponding word in the shared Storage is different, the corre
sponding bits are Set and the word in Shared Storage 142 is
immediately updated. In this alternative, the bit masks use
leSS Storage than the Staged cache lines.
0182 7 Circuit/Physical Arrangement
0183 Alternative physical embodiments of the systems
described above can be used. For instance, each Sache
controller may be coupled directly to its associated instruc
tion processor in an integrated circuit. The Sache Storage
may also be included in the integrated circuit.
0184 The shared memory system can be physically
embodied in a variety of forms. For example, the shared
memory System can be implemented as a centralized Stor
age, or can be implemented as a distributed shared memory
System with portions of its Storage located with the instruc
tion processors.
0185. The shared memory system may be coupled to the
Saches over a data network. In one Such alternative embodi
ment, the Saches are coupled to a shared memory System on
Server computer over the Internet.
0186. In the described embodiments, the Saches are asso
ciated with instruction processors. In alternative embodi
ments, Separate Sache Storage is associated with Virtual
instruction processors, for example, a separate Sache Storage
being associated with each program executing on the
instruction processor.

What is claimed is:
1. A computer System comprising:
a hierarchical memory System, including a first local

Storage, and a main Storage; and
a first memory acceSS unit coupled to the hierarchical
memory System capable of processing a plurality of
memory access instructions that includes
(a) a first instruction that specifies a first address and a

first value, wherein processing the first instruction by
the first memory access unit causes the first value to
be stored at a location in the first local Storage that is
asSociated with the first address, and

(b) a Second instruction that specifies the first address,
wherein processing of the Second instruction by the
first memory access unit after processing the first
instruction is Such that the first memory acceSS unit
complete processing of the Second instruction after
the first value is Stored at a location in the main
Storage that is associated with the first address.

2. The computer System of claim 1 wherein the plurality
of memory acceSS instructions further includes

(c) a third instruction that specifies the first address,
wherein processing of the third instruction by the first
memory access unit causes a value to be retrieved from
a location in the first local Storage that is associated
with the first address, and

(d) a fourth instruction that specifies the first address,
wherein processing of the fourth instruction by the first
memory access unit prior to processing the third

Apr. 29, 2004

instruction causes the value retrieved during processing
the third instruction to be a value that was retrieved
from a location in the main Storage that is associated
with the first address at a time after the fourth instruc
tion was begun to be processed.

3. The computer system of claim 1 wherein the hierar
chical memory System further includes a Second local Stor
age, and the computer System further comprises a Second
memory acceSS unit coupled to the hierarchical memory
System capable of processing the plurality of memory
access, and the plurality of instructions further includes:

(c) a third instruction that specifies the first address,
wherein processing of the third instruction by the
Second memory acceSS unit causes a value to be
retrieved from a location in the Second local Storage
that is associated with the first address, and

(d) a fourth instruction that specifies the first address,
wherein processing of the fourth instruction by the
Second memory access unit prior to processing the third
instruction and after the first memory access unit has
completed processing the Second instruction causes the
value retrieved during processing the third instruction
to be a value that was retrieved from a location in the
main Storage that is associated with the first address at
a time after the fourth instruction was begun to be
processed, whereby the value caused to be retrieved by
the processing of the third instruction by the Second
memory access unit is the first value, which was
Specified in the first instruction which was processed by
the first memory acceSS unit.

4. A computer processor for use in a multiple processor
System in which the computer processor is coupled to one or
more other processors through a memory System, the com
puter processor comprises a memory access unit configured
to access the memory System by processing a plurality of
memory access instructions, including

(a) a first instruction that specifies a first address and a first
value, wherein processing the first instruction causes
the first value to be Stored at a location in the memory
System that is associated with the first address, Such that
for at least Some period of time the one or more other
processors do not have access to the first value, and

(b) a second instruction that specifies the first address,
wherein processing of the Second instruction after
processing the first instruction is Such that the process
ing of the Second instruction completes after the first
value is accessible to each of the one or more other
processors.

5. The computer processor of claim 4 wherein the plu
rality of memory access instructions further includes

(c) a third instruction that specifies a Second address,
wherein processing of the third instruction causes a
value to be retrieved from a location in the memory
System that is associated with the Second address, and

(d) a fourth instruction that specifies the Second address,
wherein processing of the fourth instruction prior to
processing the third instruction causes the third instruc
tion to retrieve a value that was previously Stored in the
memory System by one of the one or more other
processors.

US 2004/0083343 A1

6. A multiple processor computer configured to use a
Storage System, the computer comprising a plurality of
memory access units, including:

a first memory access unit responsive to execution of
instructions by a first instruction processor, wherein the
first memory acceSS unit is coupled to the Storage
System; and

a Second memory acceSS unit responsive to execution of
instructions by a Second instruction processor, wherein
the Second memory acceSS is coupled to the Storage
System;

wherein the first and the Second memory access units are
each capable of issuing memory access messages to the
Storage System and receiving return messages from the
Storage System in response to the memory acceSS
messages, the memory acceSS messages and return
messages including:
a first memory access message that specifies a first

address and a first value for causing the first value to
be Stored at a first location in Storage System that is
asSociated with the first address,

a first return message that is a response to the first
memory acceSS message, indicating that the first
value has been Stored in the Storage System at a
location that is associated with the first address and
that is accessible to the memory access unit receiving
the first return message;

a Second return message indicating that the first Value
has been Stored in the Storage System at a location
that is associated with the first address and that is
accessible to each of the plurality of memory access
units.

7. The multiple processor computer of claim 6 wherein
the memory access messages and return messages further
include a Second memory access message that Specifies the
first address, and wherein the Second return message is a
response to the Second memory acceSS message.

8. The multiple processor computer of claim 7 wherein
the first memory access unit is configured to issue the first
memory access message in response to execution of a first
processor instruction that specifies the first address and the
first value, and is configured to issue the Second memory
access message in response to execution of a Second pro
ceSSor instruction that Specifies the first address.

9. A memory System for use in a multiple processor
computer System in which the memory System is coupled to
a plurality of computer processors, wherein the memory
System comprises a plurality of local Storages, including a
first local Storage unit and other local Storage units, and each
local Storage unit is capable of processing a plurality mes
Sages received from a corresponding one of the computer
processors, the plurality of messages includes:

(a) a first message that specifies a first address and a first
value, wherein processing the first message by the first
local Storage unit causes the first value to be Stored at
a location in the local Storage unit that is associated
with the first address, Such that, for at least a period of
time, the other local Storage units do not have access to
the first value, and

(b) a second message that specifies the first address,
wherein processing of the Second message by the first

16
Apr. 29, 2004

local Storage unit after processing the first message is
Such that the processing of the Second message com
pletes after the first value can be accessed by each of
the other local Storage units.

10. The memory system of claim 9 wherein the plurality
of memory acceSS messages further includes

(c) a third message that specifies a second address,
wherein processing of the third message causes a value
to be retrieved from a location in the first local Storage
that is associated with the Second address and to be sent
to the corresponding computer processor, and

(d) a fourth message that specifies the Second address,
wherein processing of the fourth message prior to
processing the third message guarantees that the value
caused to be sent in processing the third message is a
value that was previously Stored in the memory System
by one of the other processors.

11. The memory system of claim 9 further comprising:
a main Storage wherein values Stored in the main Storage

are accessible to each of the plurality of local Storages,
and

a controller configured to transfer data between the main
Storage and the plurality of local Storages according to
a plurality of Stored rules.

12. The memory system of claim 11 wherein the plurality
of Stored rules includes:

a rule for initiating a transfer of the first value from the
local storages to the main storage after processing the
first message and prior to processing the Second mes
Sage.

13. A computer processor for use in a multiple processor
computer System in which the computer processor and one
or more other computer processors are coupled to a Storage
System, the computer processor comprising:

a storage capable of holding a Sequence of instructions,
wherein the Sequence of instructions includes a first
instruction that Specifies a first address range and a
Second address range, and includes a first Set of instruc
tions that each specifies an address in the first address
range and that are prior to the first instruction in the
Sequence, and a Second Set of instructions that each
Specifies an address in the Second address range and
that are after the first instruction in the Sequence;

an instruction Scheduler coupled to Said Storage, wherein
the instruction Scheduler is configured to issue instruc
tions in the Sequence of instructions Such that instruc
tions in the Second Set of instructions do not issue prior
to all of the instructions in the first set of instructions
completing.

14. The computer processor of claim 13 wherein the first
Set of instructions includes instructions that may result in
data previously Stored in the Storage System by one of the
one or more other processors at an address in the first
address range being transferred to the computer processor.

15. The computer processor of claim 14 wherein the
Second set of instructions includes instructions that each
initiates a transfer of data from the computer processor to for
Storage at an address in the Second address range Such that
the data is accessible to the one or more other processors.

16. The computer processor of claim 14 wherein the
Second set of instructions includes instructions that may

US 2004/0083343 A1

result in data previously Stored in the Storage System by one
of the one or more other processors at an address in the
Second address range being transferred to the computer
processor.

17. The computer processor of claim 13 wherein the first
Set of instructions includes instructions that each completes
after the instruction Schedule receives a corresponding noti
fication from the Storage System that a value has been Stored
in the Storage System at an address in the first address range
Such that the value is accessible to the one or more other
processors.

18. The computer processor of claim 17 wherein the
Second Set of instructions includes instructions that initiate a
transfer of data from the computer processor to for Storage
at an address in the Second address range Such that the data
is accessible to the one or more other processors.

19. The computer processor of claim 17 wherein the
Second set of instructions includes instructions that may
result in data previously Stored in the Storage System by one
of the one or more other processors at an address in the
Second address range being transferred to the computer
processor.

20. A method for accessing a memory System from a
processor in a multiple processor computer System, com
prising:

(a) in a first processor that is coupled to a first local
Storage in the memory System, processing a first
instruction that specifies a first address and a first value,
including Storing the first value at a location in the first
local Storage that is associated with the first address,
and

(b) in the first processor, after processing the first instruc
tion, processing a Second instruction that specifies the
first address, wherein processing of the Second instruc
tion completes after the first value is Stored at a location
in a shared Storage in the memory System that is
asSociated with the first address.

21. The method of claim 20 further comprising:
(c) in a second processor that is coupled to a Second local

Storage in the memory System, processing a third
instruction that Specifies the first address, including
retrieving a value from a location in the Second local
Storage that is associated with the first address, and

(d) in the Second processor, processing a fourth instruc
tion that specifies the first address prior to processing
the third instruction and after the first processor has
completed processing the Second instruction, including
retrieving the first value from the location in the shared
Storage that is associated with the first address and
Storing the first value at a location in the Second local
Storage that is associated with the first address,
whereby the value retrieved in the processing of the
third instruction is the first value, which was specified
in the first instruction.

22. A method for providing data Storage for a plurality of
computer processors in a memory System that includes a
plurality of local Storages, including a first local Storage unit
and other local Storage units, the method comprising:

receiving at the first local Storage a first message from a
corresponding one of the plurality of computer proces
Sors, wherein the first message specifies a first address
and a first value;

processing the first message by the first local Storage unit
including Storing the first value at a location in the local

Apr. 29, 2004

Storage unit that is associated with the first address,
Such that, for at least a period of time, the other local
Storage units do not have access to the first value;

receiving at the first local Storage a Second message from
the corresponding one of the plurality of computer
processors, wherein the Second message specifies the
first address,

processing the Second message by the first local Storage
unit after processing the first message Such that the
processing of the Second message completes after the
first value can be accessed by each of the other local
Storage units.

23. The method of claim 22 further comprising:
receiving by the first local Storage unit a third message

from the corresponding one of the plurality of computer
processors, wherein the third message specifies a Sec
ond address,

processing the third message including retrieving a value
from a location in the first local Storage that is associ
ated with the Second address and Sending the retrieved
value to the corresponding one of the plurality of
computer processors,

receiving by the first local Storage unit a fourth message
from the corresponding one of the plurality of computer
processors, wherein the fourth message Specifies the
Second address, and

processing of the fourth message prior to processing the
third message;

wherein the value Sent in processing the third message is
a value that was previously stored in the memory
System by one of the other processors.

24. The method of claim 22 wherein the memory system
includes a main Storage wherein values Stored in the main
Storage are accessible to each of the plurality of local
Storages, and the method further comprises:

accessing a plurality of Stored rules, and
transferring data between the main Storage and the plu

rality of local Storages according to the accessed rules.
25. The method of claim 24 wherein transferring data

between the main Storage and the plurality of local Storages
includes initiating a transfer of the first value from the local
Storages to the main Storage after processing the first mes
Sage and prior to processing the Second message.

26. A method for Scheduling instructions in a computer
processor, comprising:

accepting a Sequence of instructions that includes a first
instruction that Specifies a first address range and a
Second address range, a first Set of instructions that each
Specifies an address in the first address range and that
are prior to the first instruction in the Sequence, and a
Second Set of instructions that each specifies an address
in the Second address range and that are after the first
instruction in the Sequence;

executing the first instruction, including waiting for all
instructions in the first Set to complete; and

executing instructions in the Second Set only after execut
ing the first instruction.

