
(19) United States
US 2010O332401A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0332401 A1
Prahlad et al. (43) Pub. Date: Dec. 30, 2010

(54)

(76)

(21)

(22)

(60)

PERFORMING DATA STORAGE
OPERATIONS WITH ACLOUD STORAGE
ENVIRONMENT, INCLUDING
AUTOMATICALLY SELECTING AMONG
MULTIPLE CLOUD STORAGE SITES

Inventors: Anand Prahlad, Bangalore (IN);
Marcus S. Muller, Tinton Falls, NJ
(US); Rajiv Kottomtharayil,
Marlboro, NJ (US); Srinivas
Kavuri, Miyapur (IN); Parag
Gokhale, Ocean, NJ (US)

Correspondence Address:
PERKINS COE LLP
PATENTSEA
P.O. BOX 1247
SEATTLE, WA 98111-1247 (US)

Appl. No.: 12/751,651

Filed: Mar. 31, 2010

Related U.S. Application Data

Provisional application No. 61/299.313, filed on Jan.
28, 2010, provisional application No. 61/221,993,
filed on Jun. 30, 2009, provisional application No.
61/223,695, filed on Jul. 7, 2009.

Start

Publication Classification

(51) Int. Cl.
G06Q 10/00 (2006.01)
G06F 12/00 (2006.01)
G06F 2/16 (2006.01)
G06Q 30/00 (2006.01)

(52) U.S. Cl. 705/80; 711/162; 705/7; 705/1.1;
711/E12.001: 711/E12.103

(57) ABSTRACT

Systems and methods are disclosed for performing data stor
age operations, including content-indexing, containerized
deduplication, and policy-driven storage, within a cloud envi
ronment. The systems support a variety of clients and cloud
storage sites that may connect to the system in a cloud envi
ronment that requires data transfer over wide area networks,
Such as the Internet, which may have appreciable latency
and/or packet loss, using various network protocols, includ
ing HTTP and FTP. Methods are disclosed for content index
ing data stored within a cloud environment to facilitate later
searching, including collaborative searching. Methods are
also disclosed for performing containerized deduplication to
reduce the strain on a system namespace, effectuate cost
savings, etc. Methods are disclosed for identifying Suitable
storage locations, including Suitable cloud storage sites, for
data files Subject to a storage policy. Further, systems and
methods for providing a cloud gateway and a scalable data
object store within a cloud environment are disclosed, along
with other features.

y 2705

Access storage policy

Determine storage
requirements for groups o

objects

y 2710

. 2700

y 27 12

devices
Identify candidate storage

y 27 15

Transmit requests

272O

Receive quotes

27

data

candidate devices

candidate devices

Transmit instructions regard
storage location of group

Access historical projected

Evaluate storage costs of

Compare storage Costs of

25

ing

US 2010/0332401 A1 Dec. 30, 2010 Sheet 1 of 33 Patent Application Publication

89 || ||

I '9IAI

Patent Application Publication Dec. 30, 2010 Sheet 2 of 33 US 2010/0332401 A1

primary storage

245 105 150
storage manager

- - - - - - - - - - - 235, 233
network mgmt. agent agent :

211, 220 225,
mgmt. jobs interface

130 index agent agent :

270
network
client
agent 3S

- am - or - O - - - - - - - - - - -

Secondary storage \
W

261 261 W
C C 165 C 165
SS Secondary storage computing SS secondary storage Computing

index device 23s 2O5 index device 235 205
tent 247 Content 247 Network con

S D N. indexing C D agent indexing
SS agen component SS component

index deduplication index deduplication
module module

Media file system agent 236 Media file system agent 236
Cloud storage Cloud storage
Submodule Submodule

297
297

Deduplication
database 115 115 Deduplication

storage storage database
device device

FIG. 2

Patent Application Publication Dec. 30, 2010 Sheet 3 of 33 US 2010/0332401 A1

340
Receive a file system request
to write data to a target cloud

storage site

Add data associated With
received file system
request to buffer

Y 370

Convert file system requests to
vendor-specific API calls

380

Transmit buffer using vendor
specific API calls

Transmission
Successful?

FIG. 3A

Patent Application Publication Dec. 30, 2010 Sheet 4 of 33 US 2010/0332401 A1

3OO

310

Receive copy of an original
data set from a file system

320

index data

330
Deduplicate data and store
deduplicated data on cloud

Storage

FIG. 3B

Patent Application Publication Dec. 30, 2010 Sheet 5 of 33 US 2010/0332401 A1

400

130 297

Deduplication
Database

Client 1

Deduplication Module

Data object
identifica

tion

dentifier
generation

Client 2

identifier Criteria
comparison evaluation

Storage
Client in device

FIG. 4

Patent Application Publication Dec. 30, 2010 Sheet 6 of 33 US 2010/0332401 A1

chunk folder

504

506 .
508

5OO

FIG. 5A

502

515

504

metadata file 2

506

N file 2

Patent Application Publication Dec. 30, 2010 Sheet 7 of 33 US 2010/0332401 A1

522 524

Stream Stream
Header 1 Header 2

542 542 542 542 542

CO Cn

O 5 10 15 65

544 544 544 544 544

540

FIG. 5D

Patent Application Publication Dec. 30, 2010 Sheet 8 of 33 US 2010/0332401 A1

600

605
Receive Selection of an archive file

to prune

610

Perform lookup of archive file

615
Does

archive file have references
out?

Delete the references out

DO
archive files referenced

by references out have other
references in?

Prune archive files referenced by
references out

635

Does archive file have
references in?

Y 640

Delete references in

645
Add reference to archive file to deleted

archive file table

650

Prune archive file

655
Add deleted time stamp

to archive file table

FIG. 6

Patent Application Publication Dec. 30, 2010 Sheet 9 of 33 US 2010/0332401 A1

700

710 720 730

3

742

744

746 AF, OF

748

. . . .

FIG. 7A

750

775 780 760 765 770

---, --, -arror---

rer a afor,

792

Patent Application Publication Dec. 30, 2010 Sheet 10 of 33 US 2010/0332401 A1

752

762 .
Deleted

Timestamp

754 756 758

Archive

Patent Application Publication Dec. 30, 2010 Sheet 11 of 33 US 2010/0332401 A1

8O2

V 001

04

i.e.
8

nk 0

Metadata file 806

Non-S data

Metadata index file 808

Index to metadata file

Container file 001 810

Chu

Metadata file 807

Metadata index file 809

Index to metadata file

Container file 001 813

Leef.
Container index file 814

001. B1 001 B2 001 Bn
1 O

FIG. 8

Patent Application Publication Dec. 30, 2010 Sheet 12 of 33 US 2010/0332401 A1

900

905

Receive selection of a job
to be pruned

907
Determine archive file, volume

folders, and chunk folders
Corresponding to job

932
entries in container

index file corresponding
o the container equa

to zero?

Delete container file

More
Container files in Chunk

folderS2

910
Delete metadata files and

metadata index files in chunk
folders

915

ACCeSS COntainer file in Chunk
folders

block in the container
file, is its reference Count

in primary table equal

Free up space in
Container files?

Set corresponding entry in
container index file equal to

Zero
Y

945

Free up space in
Container files

More blocks in
COntainer file?

FIG. 9

Patent Application Publication Dec. 30, 2010 Sheet 13 of 33 US 2010/0332401 A1

index Content

1010

Select copy of data set

1020

Identify content

1030

Update content index

FIG. I.0

US 2010/0332401 A1 Dec. 30, 2010 Sheet 14 of 33 Patent Application Publication

00 || ||

I I "ADIAH

Patent Application Publication Dec. 30, 2010 Sheet 15 of 33 US 2010/0332401 A1

1200 Restore

1205

Receive selection of a file to
restore

1210

Determine archive file ID and
Offset

1215

Access secondary storage

1220

Open chunk folder

1225

Parse metadata fie

1230

Determine location of file from
metadata

1235

Open file

1240

Restore file

Return

FIG. I2

Patent Application Publication Dec. 30, 2010 Sheet 16 of 33 US 2010/0332401 A1

13OO

1310 1320 1330

AF

1350

1370 1380 1390

Archive File ID Media Chunk

C, J, Cycle, AF AF1, OF, Size
AF, OF2, Size
AF, OF3, Size

FIG. I.3B

Patent Application Publication Dec. 30, 2010 Sheet 17 of 33 US 2010/0332401 A1

Search Index

1410

Receive Search Request

1420

Search Content Index

1 4 2 5

Generate Search Results

1430

Get Next Search Result

1440

Retrieve Archived Content

More Results?

1460

Provide Search Results

FIG. I.4

US 2010/0332401 A1 Dec. 30, 2010 Sheet 18 of 33 Patent Application Publication

89 || ||

SI ‘OICH

d??; S\/N 909 !,

9 I ADIAI
| w |

US 2010/0332401 A1 Patent Application Publication

Patent Application Publication

1505

data
reception

1710

input

1730

file system

Dec. 30, 2010 Sheet 20 of 33

operating
system

data
migration

FIG. I. 7

US 2010/0332401 A1

data
storage
engine

Cached

data store

Patent Application Publication Dec. 30, 2010 Sheet 21 of 33 US 2010/0332401 A1

1800

1810

identify blocks that satisfy a
Criteria

1820

transfer blocks to media agent

- - - - - - - - - - -------

update allocation table

Patent Application Publication

1900

Dec. 30, 2010 Sheet 22 of 33 US 2010/0332401 A1

1910

identify sub-objects that satisfy
a Criteria

1920

transfer sub-objects to media
agent

- - - - - - - - - - - - - - - - -

| update allocation table

Patent Application Publication Dec. 30, 2010 Sheet 23 of 33 US 2010/0332401A1

2000

2010

receive a request to modify a
file located in a data store

2020

identify blocks or chunks of the
file associated with the request

2030

retrieve the identified blocks or
chunks from the stored file

2040

modify the blocks or chunks

2050

transfer the modified blocks or
chunks to the data store

Return

FIG. 20

US 2010/0332401 A1 Dec. 30, 2010 Sheet 24 of 33 Patent Application Publication

IZ (OICH

662

prio|O

z??? ??ERS-sy?s – – – – –

US 2010/0332401 A1 Dec. 30, 2010 Sheet 25 of 33 Patent Application Publication

| | | |

z?z?ž? —|
{ | | | | |

Patent Application Publication Dec. 30, 2010 Sheet 26 of 33 US 2010/0332401 A1

2300

Receive identifier for object
and metadata

Perform lookup of object in
| deduplication databases :

11 N 2315 2355
Update deduplication

database

No
2320

Request object

2325

Apportion costs among clients
or related entities

Ax w - - - - - -

FIG. 23

Patent Application Publication Dec. 30, 2010 Sheet 27 of 33

Receive metadata, identify
logical group and archive file

Receive object identifier

2410
Lookup object in

deduplication database

Update deduplication
database

Content index object

For each block in object

Receive block identifier

Update archive file C 2445
N
O 2460

Request block

2465
Store block in container file and

update archive file and
deduplication database

More blocks?

Update deduplication

Update archive file

US 2010/0332401 A1

database

FIG. 24A

Patent Application Publication Dec. 30, 2010 Sheet 28 of 33 US 2010/0332401 A1

2475

Content index object

2480
Update ingestion database and

return UR

2485

Apportion Costs

FIG. 24B

Patent Application Publication Dec. 30, 2010 Sheet 29 of 33 US 2010/0332401 A1

2500 115A-N
Cloud
Storage

Site

150

Storage
Cell

2505

Collaborative
document Collaborative Security

management search system system
system

DOCument
retention
system

FIG. 25

Patent Application Publication Dec. 30, 2010 Sheet 30 of 33 US 2010/0332401 A1

2600

HTML 2610

P9 list view

ASPX
page

Configuration
database

2610

Schema
XML

2670 View
definition

FIG. 26

Patent Application Publication Dec. 30, 2010 Sheet 31 of 33 US 2010/0332401 A1

Start

2705
2700

ACCess storage policy

2710
Determine storage

requirements for groups of
objects

Identify candidate storage
devices

D

ear7
1

2715

Transmit requests

2720

Receive quotes

2725

Access historical/projected
data

2730

Evaluate storage costs of
Candidate devices

2735

Compare storage costs of
Candidate devices

2740

Transmit instructions regarding
storage location of group

End

FIG. 27

Patent Application Publication Dec. 30, 2010 Sheet 32 of 33 US 2010/0332401 A1

2805

Determine system capacity and
quotation policies

2810

Receive requests

2815

Evaluate pending requests and
generate quotes

2800

2820

Send duotes

2825

Receive acceptances

FIG. 28

Patent Application Publication

2900

receive a request to encrypt a
file located on a target cloud

encrypt file using vendor
specific API encryption calls

Dec. 30, 2010 Sheet 33 of 33

2910

storage site

encryption 2915
Supported by target
cloud storage site

AP2

return

FIG. 29

download file using vendor
specific API call

encrypt file locally

OverWrite the file with
encrypted version using
vendor-specific API call

US 2010/0332401 A1

2940

2945

2950

US 2010/0332401 A1

PERFORMING DATA STORAGE
OPERATIONS WITH ACLOUD STORAGE

ENVIRONMENT, INCLUDING
AUTOMATICALLY SELECTING AMONG
MULTIPLE CLOUD STORAGE STES

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims the benefit of the assignee's
pending U.S. Patent Application Nos. 61/299.313, filed Jan.
28, 2010, entitled PERFORMING DATA STORAGE
OPERATIONS, INCLUDING CONTENT-INDEXING,
CONTAINERIZED DEDUPLICATION, AND POLICY
DRIVEN STORAGE WITHIN A CLOUD ENVIRON
MENT (attorney docket number 606928.0751 US3); 61/221,
993, filed Jun. 30, 2009, entitled SYSTEMS AND
METHODS FOR PERFORMING DATA STORAGE
OPERATIONS, INCLUDING CROSS-CLOUD STOR
AGE, OVERVARIOUS NETWORK PROTOCOLS (Attor
ney Docket No. 60692-8075US); and 61/223,695, filed Jul. 7,
2009, entitled SYSTEMS AND METHODS FOR PER
FORMING DATA STORAGE OPERATIONS, INCLUD
ING CROSS-CLOUD STORAGE, OVERVARIOUS NET
WORK PROTOCOLS (Attorney Docket No. 60692
8075US 1), all of which are incorporated herein by reference.

BACKGROUND

0002 Current storage management systems employ a
number of different methods to perform storage operations on
electronic data. For example, data can be stored in primary
storage as a primary copy that includes production data, or in
secondary storage as various types of secondary copies
including, as a backup copy, a Snapshot copy, a hierarchical
storage management copy (HSM), as an archive copy, and
as other types of copies.
0003) A primary copy of data is generally a production
copy or other “live' version of the data which is used by a
Software application and is generally in the native format of
that application. Primary copy data may be maintained in a
local memory or other high-speed storage device that allows
for relatively fast data access if necessary. Such primary copy
data is typically intended for short term retention (e.g., several
hours or days) before some or all of the data is stored as one
or more secondary copies, for example to prevent loss of data
in the event a problem occurred with the data stored in pri
mary Storage.
0004 Secondary copies include point-in-time data and are
typically for intended for long-term retention (e.g., weeks,
months or years depending on retention criteria, for example
as specified in a storage policy as further described herein)
before some or all of the data is moved to other storage or
discarded. Secondary copies may be indexed so users can
browse, search and restore the data at another point in time.
After certain primary copy data is backed up, a pointer or
other location indicia Such as a stub may be placed in the
primary copy to indicate the current location of that data.
Further details may be found in the assignee's U.S. Pat. No.
7,107,298, filed Sep. 30, 2002, entitled SYSTEM AND
METHOD FOR ARCHIVING OBJECTS IN AN INFOR
MATION STORE (Attorney Docket No. 60692-8003US1).
0005 One type of secondary copy is a backup copy. A
backup copy is generally a point-in-time copy of the primary
copy data stored in a backup format as opposed to in native

Dec. 30, 2010

application format. For example, a backup copy may be
stored in a backup format that is optimized for compression
and efficient long-term storage. Backup copies generally have
relatively long retention periods and may be stored on media
with slower retrieval times than other types of secondary
copies and media. In some cases, backup copies may be
stored at on offsite location.
0006 Another form of secondary copy is a snapshot copy.
From an end-user viewpoint, a Snapshot may be thought as an
instant image of the primary copy data at a given point intime.
A Snapshot may capture the directory structure of a primary
copy volume at a particular moment in time, and may also
preserve file attributes and contents. In some embodiments, a
Snapshot may exist as a virtual file system, parallel to the
actual file system. Users may gain a read-only access to the
record of files and directories of the snapshot. By electing to
restore primary copy data from a Snapshot taken at a given
point in time, users may also return the current file system to
the prior state of the file system that existed when the snapshot
was taken.
0007 A Snapshot may be created nearly instantly, using a
minimum of file space, but may still function as a conven
tional file system backup. A Snapshot may not actually create
another physical copy of all the data, but may simply create
pointers that are able to map files and directories to specific
disk blocks.
0008. In some embodiments, once a snapshot has been
taken, Subsequent changes to the file system typically do not
overwrite the blocks in use at the time of snapshot. Therefore,
the initial Snapshot may use only a small amount of disk space
to record a mapping or other data structure representing or
otherwise tracking the blocks that correspond to the current
state of the file system. Additional disk space is usually only
required when files and directories are actually modified later.
Furthermore, when files are modified, typically only the
pointers which map to blocks are copied, not the blocks
themselves. In some embodiments, for example in the case of
copy-on-write Snapshots, when a block changes in primary
storage, the block is copied to secondary storage before the
block is overwritten in primary storage and the Snapshot
mapping of file system data is updated to reflect the changed
block(s) at that particular point in time.
0009. An HSM copy is generally a copy of the primary
copy data, but typically includes only a Subset of the primary
copy data that meets a certain criteria and is usually stored in
a format other than the native application format. For
example, an HSM copy might include only that data from the
primary copy that is larger than a given size threshold or older
than a given age threshold and that is stored in a backup
format. Often, HSM data is removed from the primary copy,
and a stub is stored in the primary copy to indicate its new
location. When a user requests access to the HSM data that
has been removed or migrated, systems use the stub to locate
the data and often make recovery of the data appear transpar
ent even though the HSM data may be stored at a location
different from the remaining primary copy data.
0010. An archive copy is generally similar to an HSM
copy, however, the data satisfying criteria for removal from
the primary copy is generally completely removed with no
stub left in the primary copy to indicate the new location (i.e.,
where it has been moved to). Archive copies of data are
generally stored in a backup format or other non-native appli
cation format. In addition, archive copies are generally
retained for very long periods of time (e.g., years) and in some

US 2010/0332401 A1

cases are never deleted. Such archive copies may be made and
kept for extended periods in order to meet compliance regu
lations or for other permanent storage applications.
0011. In some embodiments of storage management sys
tems, application data over its lifetime moves from more
expensive quick access storage to less expensive slower
access storage. This process of moving data through these
various tiers of storage is sometimes referred to as informa
tion lifecycle management (“ILM”). This is the process by
which data is "aged from more forms of secondary storage
with faster access/restore times down through less expensive
secondary storage with slower access/restore times, for
example, as the data becomes less important or mission criti
cal over time.
0012. In some embodiments, storage management sys
tems may perform additional operations upon copies, includ
ing deduplication, content indexing, data classification, data
mining or searching, electronic discovery (E-discovery) man
agement, collaborative searching, encryption and compres
S1O.

0013. One example of a system that performs storage
operations on electronic data that produce Such copies is the
Simpana Storage management system by CommVault Sys
tems of Oceanport, N.J. The Simpana system leverages a
modular storage management architecture that may include,
among other things, storage manager components, client or
data agent components, and media agent components as fur
ther described in U.S. Pat. No. 7,246.207, filed Apr. 5, 2004,
entitled SYSTEMAND METHOD FOR DYNAMICALLY
PERFORMING STORAGE OPERATIONS IN A COM
PUTER NETWORK. The Simpana system also may be hier
archically configured into backup cells to store and retrieve
backup copies of electronic data as further described in U.S.
Pat. No. 7,395,282, filed Jul. 15, 1999, entitled HIERARCHI
CAL BACKUP AND RETRIEVAL SYSTEM.
0014 Components within conventional storage manage
ment systems often communicate via one or more proprietary
network protocols; this limits the devices that may connect to
the system. Conventional systems may utilize propriety or
non-proprietary network protocols at any of the seven Open
Systems Interconnection Reference Model (OSIRM) layers,
and may often utilize proprietary application-layer protocols.
For example, if a client has primary data stored on it, and a
storage management system is utilized to create a secondary
copy of this data on a secondary storage device, the client may
communicate with the secondary storage device by utilizing a
proprietary application-level network protocol. In order to
create a secondary copy on the secondary storage device in
Such a scenario, both the client and secondary storage device
must have proprietary software and/or hardware installed or
otherwise be configured to perform the proprietary network
protocol. Thus, the ability of a conventional storage manage
ment system is generally limited to performing storage opera
tions on those clients and secondary storage devices having
pre-installed hardware or software.
0015. Although some conventional data storage systems
may permit a client to communicate with the system via a
non-proprietary network protocol Such as hypertext transfer
protocol (HTTP) or file transfer protocol (FTP), generally
Such systems do not facilitate a wide range of value-added
storage operations. For example, cloud storage sites typically
provide only storage of and access to data objects as a service
provided to end users. Generally, uploading, access and
manipulation of data stored on a cloud storage site is con

Dec. 30, 2010

ducted via an HTTP, FTP or similar network connection.
Cloud storage service providers include Amazon Simple
Storage Service, RackSpace, Windows Azure, and Iron
Mountain, and Nirvanix Storage Delivery Network. Cloud
storage service providers often bill end users on a utility
computing basis, e.g., per gigabyte stored, uploaded and/or
downloaded per month. Conventional cloud storage sites may
not permit the end user to perform value-added storage opera
tions such as ILM, deduplication, content indexing, data clas
sification, data mining or searching, E-discovery manage
ment, collaborative searching, encryption or compression.
0016. The need exists for systems and methods that over
come the above problems, as well as Systems and methods
that provide additional benefits. Overall, the examples herein
of some prior or related Systems and methods and their asso
ciated limitations are intended to be illustrative and not exclu
sive. Other limitations of existing prior systems and methods
will become apparent to those of skill in the art upon reading
the following Detailed Description.

BRIEF DESCRIPTION OF THE DRAWINGS

0017 FIG. 1 illustrates an example of one arrangement of
resources in a computing network that may employ aspects of
the invention.
0018 FIG. 2 is a block diagram illustrating an example of
a data storage enterprise system that may employ aspects of
the invention.
0019 FIG. 3A is a flow diagram illustrating a routine for
writing data to cloud storage sites.
0020 FIG. 3B, is a flow diagram illustrating a routine for
migrating or copying data into an archive format in secondary
storage, including secondary cloud storage.
0021 FIG. 4 is a block diagram illustrating an example of
a deduplication module.
0022 FIGS. 5A-5D illustrate various data structures for
deduplicating and storing copies or instances of data objects
on a storage device or for other processes.
0023 FIG. 6 is a flow diagram illustrating a process for
pruning a deduplication database by pruning or deleting data
objects stored in archive files, or entire archive files.
0024 FIGS. 7A-7C illustrate various data structures
which aspects of the invention may utilize for pruning object
level deduplicated data or for other processes.
0025 FIG. 8 illustrates various data structures which
aspects of the invention may utilize for deduplicating and
storing copies or instances of data blocks on a storage device
or for other processes.
0026 FIG. 9 is a flow diagram illustrating a process for
pruning a deduplication database by pruning or deleting data
blocks stored in archive files, or entire archive files.
0027 FIG. 10 is a flow diagram that illustrates the pro
cessing of a content indexing component.
0028 FIG. 11 illustrates suitable data structures for facili
tating content indexing.
0029 FIG. 12 is a flow diagram illustrating a process for
restoring or retrieving data from chunk folders in an archive
file format on secondary storage.
0030 FIGS. 13A and 13B illustrate example data struc
tures that the system may maintain to facilitate the restoration
or retrieval of data from chunk folders in anarchive file format
on secondary storage.
0031 FIG. 14 is a flow diagram illustrating the processing
of a search request by the system.

US 2010/0332401 A1

0032 FIG. 15 illustrates another example of an arrange
ment of resources in a computing network that may employ
aspects of the invention.
0033 FIG. 16 is a block diagram illustrating a suitable
environment for utilizing a networked data storage device.
0034 FIG. 17 shows a block diagram illustrating compo
nents of the network-attached storage (NAS) filer component
of a cloud gateway configured to perform data migration.
0035 FIG. 18 depicts a flow diagram illustrating a routine
for performing block-level data migration in a cloudgateway.
0036 FIG. 19 is a flow diagram illustrating a routine for
performing Sub-object-level data migration in a cloud gate
way.
0037 FIG. 20 shows a flow diagram illustrating a routine
for block-based or sub-object-based data restoration and
modification in a cloud gateway.
0038 FIG. 21 illustrates another example of an arrange
ment of resources in a computing network that may employ
aspects of the invention to provide data storage software as a
service.
0039 FIG. 22 is a block diagram illustrating components
of an object store.
0040 FIG. 23 shows a flow diagram illustrating a first
process that may be performed by an object store to process a
request to store a data object.
0041 FIGS. 24A and 24B together show a flow diagram
illustrating a second process that may be performed by an
object store to process a request to store a data object.
0042 FIG. 25 is a block diagram illustrating an example
architecture for integrating a collaborative search system with
a collaborative document management system.
0043 FIG. 26 is a schematic diagram illustrating integra
tion of parsers with a typical collaborative document man
agement System.
0044 FIG.27 is a flow diagram of a process for identifying
Suitable storage locations for various data objects Subject to a
storage policy.
0045 FIG.28 is a flow diagram of a process for scheduling
cloud storage requests.
0046 FIG. 29 illustrates a process for encrypting files
stored within a cloud storage site.

DETAILED DESCRIPTION

0047. The headings provided herein are for convenience
only and do not necessarily affect the scope or meaning of the
claimed invention.

Overview 11
Suitable Environments 13
Storage Operation Cell 15
Network Agents 33
Network Client Agents 34
Media File System Agent 34
Cloud Storage Submodules: Vendor-Agnostic File System Calls, 35
Buffering of Storage Requests, and Logging Cloud Storage
Performance
Migrating or Copying Data to Secondary Storage, Including 41
Secondary Cloud Storage
Deduplication 43

Object-Level Deduplication 44
Data Structures for Object-Level Deduplication 46
Pruning Object-Level Deduplicated Data S4
Sub-Object-Level Deduplication 58
Block-Level Deduplication 60
Data Structures for Block-Level Deduplication 63

Dec. 30, 2010

-continued

Deduplication Databases to Enable Containerized 67
Deduplication to Cloud-Based Storage
Pruning Block-Level Deduplicated Data 69
Containerizing Deduplicated Data for Storage in the Cloud 73

Indexing of Data 75
Policy-Driven Storage of Data Across Cloud Storage Sites 77
Restoring Dehydrated Data Objects from Cloud Storage Sites 78
Local Searching of Data Stored on Remote Cloud Storage Sites 81
Collaborative Searching 82
Cloud Gateway 87

Cloud Gateway Architecture 88
Cloud Gateway for Cloud Storage Sites and Deduplication 91
and Policy-Driven Data Migration
Data Recovery in Cloud Storage Sites via Cloud Gateway 98
Device

System Configurations to Provide Data Storage and Management 1OO
Software as a Service
Object Store 102
Object Store Methods 113
Process for Cost-Balancing Cloud Storage 124
Process for Scheduling Cloud Storage Requests 130
Process for Encrypting Files within Cloud Storage 134
Protecting Remote Office and Branch Office (ROBO) Data 136
Conclusion 138
CLAIMS 147

0048. Overview
0049. With the massive volume of files being hosted in
cloud environments, traditional file system based approaches
are failing to scale. As much as 90% of new data created is
unstructured and/or file based. As such data makes its way
into the cloud, the need for systems that can scale to several
million files and possibly petabytes of capacity becomes nec
essary. Traditional file systems and filers have their strengths,
and high-performance file sharing needs still exist within data
centers, so existing filers and file systems fulfill that need.
Cloud storage, on the other hand, with associated network
latencies is not always a good fit for certain use cases. But
cloud storage excels with Internet applications where the
generation of content can be viral and where it can be virtually
impossible to predict capacity or access needs. Cloud storage
is also ideal in the case of Web 2.0 applications which pro
mote collaboration between hundreds and thousands of user
sharing the same files or objects.
0050. While file systems have been a successful way of
allowing people to store their data in an intuitive form that is
easy to visualize, they have complexities which get exposed
when the number of objects they need to manage reach mas
sive proportions. File systems are typically built on block
storage devices and all files are eventually broken down into
blocks that need to be placed on the storage system. The file
system has to maintain a “table of contents' (e.g. a FAT),
which tracks not only what files it is holding, but which blocks
on the storage comprise that file. On a system with a massive
number of files, each with a large number of blocks, the
numbers get large enough that traditional file systems start to
slow down or even crash. What's typically done when this
happens is that a new file system or filer is added. But the new
file system provides a completely different namespace than
the original and all users of the file system (humans and
applications) need to be aware of this change and know which
namespace they need to look in to find their files.
0051 Systems and methods are disclosed herein for per
forming data storage operations, including content indexing,
containerized deduplication, and policy-driven storage,
within a cloud environment. The systems Support a variety of

US 2010/0332401 A1

clients and storage devices that connect to the system in a
cloud environment, which permits data transfer over wide
area networks, such as the Internet, and which may have
appreciable latency and/or packet loss. The system allows
available storage devices to include cloud storage sites. Meth
ods are disclosed for content indexing data stored within a
cloud environment to facilitate later searching, including col
laborative searching. Methods are also disclosed for perform
ing containerized deduplication to reduce the strain on a
system namespace and effectuate cost savings. Methods are
disclosed for identifying Suitable storage locations, including
Suitable cloud storage sites, for data files Subject to a storage
policy. Further, systems and methods for providing a cloud
gateway and a scalable data object store within a cloud envi
ronment are disclosed.
0052 Various examples of the invention will now be
described. The following description provides specific details
for a thorough understanding and enabling description of
these examples. One skilled in the relevant art will under
stand, however, that the invention may be practiced without
many of these details. Likewise, one skilled in the relevantart
will also understand that the invention may include many
other obvious features not described in detail herein. Addi
tionally, some well-known structures or functions may not be
shown or described in detail below, so as to avoid unneces
sarily obscuring the relevant description.
0053. The terminology used below is to be interpreted in

its broadest reasonable manner, even though it is being used in
conjunction with a detailed description of certain specific
examples of the invention. Indeed, certain terms may even be
emphasized below; however, any terminology intended to be
interpreted in any restricted manner will be overtly and spe
cifically defined as such in this Detailed Description section.
0054. Unless described otherwise below, aspects of the
invention may be practiced with conventional data processing
and data storage systems. Thus, the construction and opera
tion of the various blocks shown in the Figures may be of
conventional design, and need not be described in further
detail herein to make and use aspects of the invention,
because such blocks will be understood by those skilled in the
relevant art. One skilled in the relevant art can readily make
any modifications necessary to the blocks in the Figures based
on the detailed description provided herein.
0055 Suitable Environments
0056. The Figures and the discussion herein provide a

brief, general description of certain Suitable computing envi
ronments in which aspects of the invention can be imple
mented. Although not required, aspects of the invention are
described in the general context of computer-executable
instructions. Such as routines executed by a general-purpose
computer, e.g., a server computer, wireless device, or per
sonal computer. Those skilled in the relevant art will appre
ciate that aspects of the invention can be practiced with other
communications, data processing, or computer system con
figurations, including: Internet appliances, hand-held devices
(including personal digital assistants (PDAs), wearable com
puters, all manner of cellular or mobile phones, multi-proces
sor Systems, microprocessor-based or programmable con
Sumer electronics, set-top boxes, network PCs, mini
computers, mainframe computers, and the like. The terms
“computer,” “server.” “and the like are generally used inter
changeably herein, and refer to any of the above devices and
systems, as well as any data processor. Aspects of the inven
tion can be practiced in Software that controls or operates data

Dec. 30, 2010

storage hardware that is specifically designed for use in data
storage networks, e.g., as described in detail herein.
0057 While aspects of the invention, such as certain func
tions, are described as being performed exclusively on a
single device, the invention can also be practiced in distrib
uted environments where functions or modules are shared
among disparate processing devices, which are linked
through a communications network, Such as a Local Area
Network (LAN), Wide Area Network (WAN), and/or the
Internet. In a distributed computing environment, program
modules may be located in both local and remote memory
storage devices.
0.058 Aspects of the invention including computer imple
mented instructions, data structures, screen displays, and
other data may be stored or distributed on tangible computer
readable storage media, including magnetically or optically
readable computer discs, hard-wired or preprogrammed
chips (e.g., EEPROM semiconductor chips), nanotechnology
memory, biological memory, or other data storage media.
Alternatively, computer implemented instructions, data
structures, Screen displays, and other data under aspects of the
invention may be distributed via communication medium,
such as over the Internet or over other networks (including
wireless networks), on a propagated signal on a propagation
medium (e.g., an electromagnetic wave(s), a Sound wave,
etc.) over a period of time, or they may be provided on any
analog or digital network (packet Switched, circuit Switched,
or other scheme).
0059 FIG. 1 illustrates an example of one arrangement of
resources in a computing network that may employ the pro
cesses and techniques described herein, although many others
are of course possible. Clients 130, as part of their function,
may utilize data, which includes files, directories, metadata
(e.g., access control list (ACLS) creation/edit dates associ
ated with the data, etc.), and other data objects. The data on
the clients 130 is typically a primary copy (e.g., a production
copy). During a copy, backup, archive or other storage opera
tion, the clients 130 may send a copy of some data objects (or
Some components thereof) to a secondary storage computing
device 165 by utilizing one or more data agents 195,
described below.
0060. The secondary storage computing device 165 may
in turn create secondary copies of primary data objects (or
Some components thereof) in storage devices 115, which may
include various cloud storage sites 115A-N. Communica
tions between the secondary storage computing devices 165
and cloud storage sites 115A-N may utilize REST protocols
(Representational state transfer interfaces) that satisfy basic
C/R/U/D semantics (Create/Read/Update/Delete semantics),
or other hypertext transfer protocol (“HTTP)-based or file
transfer protocol (“FTP)-based protocols (e.g. Simple
Object Access Protocol).
0061. In conjunction with creating secondary copies in
cloud storage sites 115A-N, the secondary storage computing
device 165 may also perform local content indexing and/or
local object-level, sub-object-level or block-level deduplica
tion when performing storage operations involving various
cloud storage sites 115A-N. By providing content indexing
and local searching, the system may reduce the time and cost
associated with data access or data search requests sent to
remote cloud storage sites. By deduplicating locally, the sys
tem may reduce the amount of data transfer required over a
wide area network between the secondary storage computing
devices 165 and the cloud storage sites 115A-N, and may

US 2010/0332401 A1

reduce the cost associated with data uploads to and data
storage on cloud storage sites. Further details are provided
below.
0062 Storage Operation Cell
0063 FIG. 2 illustrates an example of one arrangement of
a storage operation cell 150 in a computing network that may
employ the processes and techniques described herein,
although many others are of course possible. FIG. 2 shows a
hierarchical arrangement of resources, which includes a stor
age operation cell 150 having a storage manager 105, one or
more data agents 195, one or more network client agents 255,
one or more secondary storage computing devices 165, one or
more media file system agents 240, one or more storage
devices 115, one or more clients 130, and one or more data or
information stores 260. The cell 150 also includes a manage
ment index 211, a management light index 245, a jobs agent
220, an interface agent 225, a management agent 233, one or
more network agents 235, one or more metabases 270, one or
more secondary storage indices 261, one or more deduplica
tion modules 299, one or more content indexing components
205, one or more deduplication databases 297, and one or
more secondary storage light indices 247. Such system and
elements represent a modular storage system Such as the
CommVault Simpana system, available from CommVault
Systems, Inc. of Oceanport, N.J., and further described in the
assignee's U.S. Pat. No. 7,035,880, filed Jul. 6, 2000, entitled
MODULARBACKUP AND RETRIEVAL SYSTEMUSED
IN CONJUNCTION WITH A STORAGE AREA NET
WORK. Although not illustrated in FIG. 1, in some imple
mentations, one or more of the secondary storage computing
devices 165 (and/or deduplication databases, secondary stor
age indices, secondary storage light indices, and/or other
system components) may reside on one or more cloud storage
site 115A-N. For example, in such implementations, a sec
ondary storage computing device may utilize computational
resources (e.g., computational processing capacity) provided
by a vendor that operates a cloud storage site 115A-N to
perform its functionality.
0064. A storage operation cell, such as cell 150, may gen
erally include combinations of hardware and Software com
ponents associated with performing storage operations on
electronic data. (While aspects of the invention are described
as employing the hierarchical architecture with cells, those
aspects may likewise be employed in other architectures
without cells, such as a simple client-server or peer-to-peer
configuration.) Storage operation cells 150 may be related to
backup cells and provide some or all of the functionality of
backup cells as described in the assignee's U.S. Pat. No.
7,395,282 filed Jul. 15, 1999, entitled HIERARCHICAL
BACKUP AND RETRIEVAL SYSTEM. However, storage
operation cells may also perform additional types of Storage
operations and other types of storage management functions
that are not generally offered by backup cells.
0065. Additional data storage operations performed by
storage operation cells 150 may include creating, storing,
retrieving, and migrating primary storage data (e.g., data store
260) and secondary storage data (which may include, for
example, Snapshot copies, backup copies, Hierarchical Stor
age Management (HSM) copies, archive copies, and other
types of copies of electronic data) stored on Storage devices
115. In some embodiments, storage operation cells may per
form additional storage operations upon copies, including
ILM, deduplication, content indexing, data classification,
data mining or searching, electronic discovery (E-discovery)

Dec. 30, 2010

management, collaborative searching, encryption and com
pression. Alternatively or additionally, a storage operation
cell may make or retain disaster recovery copies, often as
secondary, high-availability disk copies. Such cell may make
secondary disk copies to disaster recovery (DR) locations
using auxiliary copy or replication technologies. Storage
operation cells 150 may also provide one or more integrated
management consoles for users or system processes to inter
face with in order to perform certain storage operations on
electronic data. Such integrated management consoles may
be displayed at a central control facility or several similar
consoles may be distributed throughout multiple network
locations to provide global or geographically specific net
work data storage information.
0066. In one example, storage operations may be per
formed according to various storage preferences, for
example, as expressed by a user preference or a storage
policy. A “storage policy' is generally a data structure or other
information Source that includes a set of preferences and
other storage criteria associated with performing a storage
operation. The preferences and storage criteria may include,
but are not limited to, a storage location (or a class or quality
of storage location), deduplication requirements, relation
ships between system components, network pathways to uti
lize in a storage operation, retention policies, data character
istics, compression or encryption requirements, preferred
system components to utilize in a storage operation, the esti
mated or historic usage or cost associated with operating
system components, frequency or use/access/etc. Various
time-related factors, single-instancing and/or deduplication
information, and other criteria relating to a data storage or
management operation. For example, a storage policy may
indicate that certain data is to be stored in the storage device
115, retained for a specified period of time before being aged
to another tier of secondary storage, copied to the storage
device 115 using a specified number of data streams, etc. As
one example, a storage policy may specify that certain data
should be stored in one or more target cloud storage sites
115A-N, as described herein.
0067. As another example, a storage policy may specify
that a first type of files should be retained for one year in a first
target cloud storage site 115A, that a second type of files
should be retained for seven years in a second cloud storage
site 1158, and that a third type of files should be retained
indefinitely in a third cloud storage site 115N. As yet another
example, a storage policy may specify that a first type of files
(e.g., secondary disk copies needed for rapid disaster recov
ery) be stored only in storage sites 115, including cloud
storage sites 115A-N, that can provide sufficient bandwidth,
network capacity or other performance to ensure that the time
needed to recover a file from the storage device 115 (e.g.,
cloud storage site 115A-N) is less a specified recovery time
objective.
0068. As another example, a storage policy relating to
cloud storage sites 115A-N may specify that a cloud storage
site should be chosen, at least in part, based on the geographi
cal (or network) proximity between a data source (e.g., client
130 and/or secondary storage computing device 165) and the
cloud storage site in order to improve data transfers.
0069. As another example, a storage policy relating to
cloud storage sites 115A-N may specify that a first type of
files bestored only on cloud storage sites that have a sufficient
level of fault tolerance. For example, a storage policy may
specify that a first type of files bestored only on cloud storage

US 2010/0332401 A1

sites 115A-N that replicate copies of their data across two or
more geographically separate regions or across two or more
separate power grids. As yet another example, a storage
policy may specify that a first type of files be stored only on
cloud storage sites 115A-N that satisfy other consumer crite
ria. For example, a storage policy may specify that a first type
of files bestored only on cloud storage sites 115A-N that are
certified as being “environmentally green,” that align with
particular political or Social agendas, that do or do not have
operations in certain countries (e.g., sites that do have opera
tions in developing nations and/or do not have operations in
embargoed countries), or that satisfy some other consumer
criteria.

0070 A storage policy might define different classes of
storage that should be utilized for different types of data. For
example, a storage policy may define “first-class storage as
rapid access media, Such as storage devices having magnetic
disk (or faster access) storage media, a high bandwidth net
work connection to the cloud storage site, and a cloud storage
site that satisfies certain performance criteria (e.g., has high
bandwidth for faster uploads and/or downloads and/or uti
lizes RAID or similar methods that improve the fault-toler
ance of the site). "Second-class storage may be defined
under a storage policy as a second cloud storage site having
magnetic tape (or slower access) data storage, lower band
width connections and/or less fault tolerance. As another
example, a storage policy may define storage classes based on
the actual performance achieved by cloud storage sites or
other storage devices 115. For example, a storage policy may
define first-class storage as cloud storage sites that actually
achieve a threshold average throughput, data recovery rate,
and/or specified error rate.
0071. To facilitate the selection of cloud storage sites on
the basis of actual performance, a storage manager 105, sec
ondary storage computing devices 165 and/or other system
components may track, log and/or analyze the performance
achieved by cloud storage sites. Thus, a client computer or
organization may contract with a cloud storage provider for a
defined level of service, where the level of service relates to a
storage policy as defined herein (e.g. aggregated data storage
Volumes, fault tolerance, data recovery rates, threshold
latency and/or bandwidth, etc., defined under a service level
agreement (SLA).) The client computer may then periodi
cally perform tests or monitor performance of the cloud stor
age provider as compared to the defined level of service to
ensure the appropriate level of service.
0072. In some implementations, a storage policy may
comprise an audit policy. An audit policy is a set of prefer
ences, rules and/or criteria that protect sensitive data in the
storage operation cell 150. For example, an audit policy may
define “sensitive objects” as files or objects that contain par
ticular keywords (e.g. “confidential.” or “privileged') and/or
are associated with particular keywords (e.g., in metadata) or
particular flags (e.g., in metadata identifying a document or
email as personal, confidential, etc.). An audit policy may
further specify rules for handling sensitive objects. As an
example, an audit policy may require that a reviewer approve
the transfer of any sensitive objects to a cloud storage site
115A-N, and that if approval is denied for a particular sensi
tive object, the sensitive object should be transferred to a local
storage device 115 instead. To facilitate this approval, the
audit policy may further specify how a secondary storage
computing device 165 or other system component should
notify a reviewer that a sensitive object is slated for transfer.

Dec. 30, 2010

0073. In some implementations, a storage policy may
comprise a provisioning policy. A provisioning policy is a set
of preferences, priorities, rules and/or criteria that specify
how various clients 130 (or groups of clients 130, e.g., a group
of clients 130 associated with a department) may utilize vari
ous system resources, including resources such as available
storage on cloud storage sites 115A-N and/or the network
bandwidth between the storage operation cell 150 and cloud
storage sites 115A-N. A provisioning policy may specify, for
example, data quotas for particular clients 130 (e.g. a
gigabyte amount of data that can be stored monthly, quarterly
or annually). Components of the storage operation cell 150,
Such as the secondary storage computing devices 165, may
enforce the provisioning policy (including quotas) during the
transfer of data to secondary storage (e.g., during the process
300, shown in FIG.3B). If a client (typically associated with
a department within an organization) exceeds the policy, then
a budget for that client/department may be charged for excess
storage or resource allocation.
0074. In some implementations, a storage policy may
comprise a cost policy. A cost policy is a set of preferences,
priorities, rules and/or criteria that specify how to identify
Suitable storage locations, including Suitable cloud storage
locations. For example, a cost policy may describe the
method of evaluating a cost function, as described in greater
detail herein with respect to FIG. 27. Here again, if a client
exceeds the policy, then a budget for that client/department
may be charged for excess storage or resource allocation.
0075. A storage policy may be stored in a database of the
storage manager 105. Such as management index 211, or in
other locations or components of the system. As will be
described in detail herein, the system may utilize a storage
policy when identifying Suitable storage locations for various
data objects subject to the storage policy.
0076. Additionally or alternatively, a “schedule policy'
may specify when and how often to perform storage opera
tions and may also specify performing certain storage opera
tions on Sub-clients of data and how to treat those Sub-clients.
A “sub-client' is a portion of one or more clients 130 and can
contain either all of the client's 130 data or a designated
subset thereof. For example, an administrator may find it
preferable to separate email data from financial data using
two different sub-clients having different storage prefer
ences, retention criteria, etc. A schedule policy may be stored
in the management index 211 of the storage manager 105
and/or in other locations within the system.
0077 Storage operation cells may contain not only physi
cal devices, but also may represent logical concepts, organi
Zations, and hierarchies. For example, a first storage opera
tion cell 150 may be configured to perform a first type of
storage operation Such as an HSM operation, which may
include backup or other types of data migration, and may
include a variety of physical components including a storage
manager 105 (or management agent 233), a secondary Stor
age computing device 165, a client 130, and other compo
nents as described herein. A second storage operation cell 150
may contain the same or similar physical components; how
ever, it may be configured to perform a second type of storage
operation, such as a storage resource management (SRM)
operation, and may include monitoring a primary data copy or
performing other known SRM operations.
0078 Thus, as can be seen from the above, although the

first and second storage operation cells 150 are logically
distinct entities configured to perform different management

US 2010/0332401 A1

functions (e.g., HSM and SRM, respectively), each storage
operation cell 150 may contain the same or similar physical
devices. Alternatively, different storage operation cells 150
may contain some of the same physical devices and not oth
ers. For example, a storage operation cell 150 configured to
perform SRM tasks may contain a secondary storage com
puting device 165, client 130, or other network device con
nected to a primary storage Volume, while a storage operation
cell 150 configured to perform HSM tasks may instead
include a secondary storage computing device 165, client
130, or other network device connected to a secondary stor
age Volume and may not contain the elements or components
associated with and including the primary storage Volume.
(The term “connected as used herein does not necessarily
require a physical connection; rather, it could refer to two
devices that are operably coupled to each other, communica
bly coupled to each other, in communication with each other,
or more generally, refer to the capability of two devices to
communicate with each other, often with intervening compo
nents in between.) These two storage operation cells 150,
however, may each include a different storage manager 105
that coordinates storage operations via the same secondary
storage computing devices 165 and storage devices 115. This
“overlapping configuration allows storage resources to be
accessed by more than one storage manager 105. Such that
multiple paths exist to each storage device 115 facilitating
failover, load balancing, and promoting robust data access via
alternative routes.
0079 Alternatively or additionally, the same storage man
ager 105 may control two or more storage operation cells 150
(whether or not each storage operation cell 150 has its own
dedicated storage manager 105). Moreover, in certain
embodiments, the extent or type of overlap may be user
defined (through a control console) or may be automatically
configured to optimize data storage and/or retrieval.
0080. The clients 130, as part of their function, may utilize
data, which includes files, directories, metadata, and other
data objects. The data on the clients 130 is typically a primary
copy (e.g., a production copy). During a copy, backup.
archive or other storage operation, the clients 130 may send a
copy of Some data objects to a secondary storage computing
device 165 by utilizing one or more data agents 195.
0081. The data agent 195 may be a software module or part
of a Software module that is generally responsible for storage
operations, such as copying, archiving, migrating, and recoV
ering data from client 130 stored in data store 260 or other
memory location. Each client 130 may have at least one data
agent 195, and the system can support multiple clients 130.
Data agent 195 may be distributed between client 130 and
storage manager 105 (and any other intermediate compo
nents), or it may be deployed from a remote location or its
functions approximated by a remote process that performs
some or all of the functions of data agent 195.
0082. The overall system may employ multiple data
agents 195, each of which may backup, migrate, archive, and
recover data associated with a different application.
I0083. For example, different individual data agents 195
may be designed to handle Microsoft Exchange data, Lotus
Notes data, Microsoft Windows 2000 file system data,
Microsoft Active Directory Objects data and other types of
data known in the art. Other embodiments may employ one or
more generic data agents 195 that can handle and process
multiple data types rather than using the specialized data
agents described above.

Dec. 30, 2010

I0084. If a client 130 has two or more types of data, one data
agent 195 may be required for each data type to copy, archive,
migrate, and restore the data of the client 130. Alternatively,
the overall system may use one or more generic data agents
195, each of which may be capable of handling two or more
data types. For example, one generic data agent 195 may be
used to back up, migrate, and restore Microsoft Exchange
2000 Mailbox data and Microsoft Exchange 2000 Database
data while another generic data agent 195 may handle
Microsoft Exchange 2000 Public Folder data and Microsoft
Windows 2000 File System data, etc.
I0085. The data agents 195 may be responsible for arrang
ing or packing data to be copied, transferred, or migrated into
a certain format such as anarchive file format. Nonetheless, it
will be understood that this represents only one example, and
any suitable packing or containerization technique or transfer
methodology may be used if desired. Such an archive file may
include a metadata list of files or data objects copied in meta
data, the file, and data objects themselves. Moreover, any data
moved by the data agents may be tracked within the system by
updating indexes associated with appropriate storage manag
ers 105 or secondary storage computing devices 165. As used
herein, a file or a data object refers to any collection or
grouping of bytes of data that can be viewed as one or more
logical units.
I0086. The network client agent 255 may be a software
module, part of a software module, and/or may comprise
hardware that generally provides the client 130 with the abil
ity to communicate with other components within the system,
such as storage manager 105, other clients 130, and second
ary storage computing devices 165. Network clientagent 255
may permit communication via one or more proprietary and/
or non-proprietary network protocols, notably to cloud-based
storage, as described herein.
I0087 Generally speaking, the storage manager 105 may
be a Software module or other application that coordinates
and controls storage operations performed by storage opera
tion cell 150. Storage manager 105 may communicate with
some or all elements of storage operation cell 150 including
clients 130, data agents 195, secondary storage computing
devices 165, and storage devices 115 to initiate and manage
system backups, migrations, data recovery, and other storage
operations.
I0088 Storage manager 105 may include a jobs agent 220
that monitors the status of Some or all storage operations
previously performed, currently being performed, or sched
uled to be performed by storage operation cell 150, including
storage jobs sent to cloud-based storage. Jobs agent 220 may
be communicatively coupled to interface agent 225 (e.g., a
Software module or application). Interface agent 225 may
include information processing and display Software, such as
a graphical user interface ("GUI”), an application program
ming interface (API), or other interactive interface through
which users and system processes can retrieve information
about the status of storage operations. Through interface
agent 225, users may optionally issue instructions to various
storage operation cells 150 regarding the performance of the
storage operations as described and contemplated herein. For
example, a user may modify a schedule concerning the num
ber of pending Snapshot copies or other types of copies sched
uled as needed to Suit particular requirements. As another
example, a user may employ the GUI to view the status of
pending storage operations in some orall of the storage opera
tion cells 150 in a given network or to monitor the status of

US 2010/0332401 A1

certain components in a particular storage operation cell 150
(e.g., the amount of storage capacity left in a particular stor
age device 115). In some embodiments, users or other system
processes may retrieve information or issue commands by
employing API commands sent to the interface agent via the
network agent 235.
0089. The storage manager 105 may also include a man
agementagent 233 that is typically implemented as a Software
module or application program. In general, management
agent 233 provides an interface that allows various manage
ment agents 233 in other storage operation cells 150 to com
municate with one another. For example, assume a certain
network configuration includes multiple storage operation
cells 150 adjacent to one another or otherwise logically
related in a WAN or LAN configuration. In this arrangement,
each storage operation cell 150 may be connected to the other
through a respective interface agent 225. This allows each
storage operation cell 150 to send and receive certain perti
nent information from other storage operation cells 150,
including status information, routing information, informa
tion regarding capacity and utilization, etc. These communi
cations paths may also be used to convey information and
instructions regarding storage operations. The storage opera
tion cells 150 can be organized hierarchically such that hier
archically Superior cells control or pass information to hier
archically subordinate cells or vice versa.
0090 Storage manager 105 may also maintain a manage
ment index 211, database, or other data structure. The data
stored in management index 211 may be used to indicate
logical associations between components of the system, user
preferences, management tasks, media containerization and
data storage information or other useful data. For example,
the storage manager 105 may use data from management
index 211 to track the logical associations between secondary
storage computing device 165 and storage devices 115 (or the
movement of data as containerized from primary to second
ary storage). In the case of cloud-based storage, the manage
ment index may indicate which cloud-based storage site(s)
stores which data set.

0091 Storage manager 105 may also include a network
agent 235 that is typically implemented as a software module
or part of a software module. In general, network agent 235
provides the storage manager 105 with the ability to commu
nicate with other components within the system, such as
clients 130, data agents 195, and secondary storage comput
ing devices 165. As with the network client agents 255, the
network agents 235 may permit communication via one or
more proprietary and/or non-proprietary network protocols.
Network agent 235 may be communicatively coupled to man
agement light index 245, management index 211, jobs agent
220, management agent 233, and interface agent 225.
0092 Generally speaking, the secondary storage comput
ing device 165, which may include or be a media agent, may
be implemented as a software module that conveys data, as
directed by storage manager 105, between a client 130 and
one or more physical storage devices 115. Such as a tape
library, a magnetic media storage device, an optical media
storage device, a cloud storage site, or any other Suitable
storage device. In one embodiment, secondary storage com
puting device 165 may be communicatively coupled to and
control a storage device 115. A secondary storage computing
device 165 may be considered to be associated with a particu

Dec. 30, 2010

lar storage device 115 if that secondary storage computing
device 165 is capable of routing and storing data to that
particular storage device 115.
0093. In operation, a secondary storage computing device
165 associated with a particular storage device 115 may
instruct the storage device 115 to use a robotic arm or other
retrieval means to load or eject a certain storage media. Sec
ondary storage computing device 165 may also instruct the
storage device 115 to archive, migrate, restore, or copy data to
or from the storage device 115 or its associated Storage media.
Secondary storage computing device 165 may also instruct
the storage device 115 to delete, sparsify, destroy, sanitize, or
otherwise remove data from the storage device 115 or its
associated storage media. Secondary storage computing
device 165 may communicate with a storage device 115 via
any suitable communications path, including SCSI, a Fibre
Channel communications link, or a wired, wireless, or par
tially wired/wireless computer network, including the Inter
net. In some embodiments, the storage device 115 may be
communicatively coupled to the storage manager 105 via a
storage area network (SAN).
0094. A secondary storage computing device 165 may
also include at least one media file system agent 240. Each
media file system agent 240 may be a Software module or part
of a software module that is generally responsible for
archiving, migrating, restoring, accessing, reading, Writing,
moving, deleting, sanitizing, or otherwise performing file
system and data storage operations on various storage devices
115 of disparate types. For example, media file system agent
240 may be configured to permit secondary storage comput
ing device 165 to open, read, write, close, and delete data on
cloud storage sites or storage devices 115 having optical,
magnetic, or tape media.
0.095 A secondary storage computing device 165 may
also include a network agent 235 similar or identical to that
described previously. Generally, network agent 235 provides
the secondary storage computing device 165 with the ability
to communicate with other components within the system,
Such as other secondary storage computing devices 165, Stor
age manager 105, clients 130, data agents 195, and storage
devices 115. Network agent 235 generally provides commu
nication via one or more proprietary and/or non-proprietary
network protocols.
0096. A secondary storage computing device 165 may
also include a content indexing component 205 to perform
content indexing of data in conjunction with the archival,
restoration, migration, or copying of data, or at Some other
time. Content indexing of data is described in greater detail
herein. Each secondary storage computing device 165 may
maintain an index, a database, or other data structure (referred
to herein as “secondary storage index” or “SS index' 261)
that may store index data generated during backup, migra
tion, restoration, and other storage operations for secondary
storage ("SS) as described herein, including creating a meta
base (MB). For example, performing Storage operations on
Microsoft Exchange data may generate index data. Such
index data provides a secondary storage computing device
165 or other external device with an efficient mechanism for
locating data stored or backed up. Thus, an SS index 261
and/or a management index 211 of a storage manager 105
may store data associating a client 130 with a particular
secondary storage computing device 165 or storage device
115, for example, as specified in a storage policy, whilean SS
index 261, metabase, database, or other data structure in

US 2010/0332401 A1

secondary storage computing device 165 may indicate where
specifically the data of the client 130 is stored in storage
device 115, what specific files were stored, and other infor
mation associated with storage of the data of the client 130. In
Some embodiments, such index data may be stored along with
the data backed up in a storage device 115, with an additional
copy of the index data written to index cache in a secondary
storage device 165. Thus the data is readily available for use
in storage operations and other activities without having to be
first retrieved from the storage device 115.
0097 Generally speaking, information stored in cache is
typically information that reflects certain particulars about
operations that have recently occurred. After a certain period
of time, this information is sent to secondary storage and
tracked. This information may need to be retrieved and
uploaded back into a cache or other memory in a secondary
computing device before data can be retrieved from Storage
device 115. In some embodiments, the cached information
may include information regarding the format or container
ization of archives or other files stored on storage device 115.
0098. A secondary storage computing device 165 may
also include a deduplication database 297 to perform dedu
plication of data in conjunction with the archival, restoration,
migration, or copying of data, or at Some other time. The
secondary storage computing devices 165 may also maintain
one or more deduplication databases 297. Single instancing is
one form of deduplication and generally refers to storing in
secondary storage only a single instance of each data object
(or each data sub-object or each data block) in a set of data
(e.g., primary data). More details as to single instancing may
be found in one or more of the following commonly assigned
U.S. patent applications: 1) U.S. Pat. Pub. No. 2006-0224846
(entitled SYSTEMAND METHOD TO SUPPORTSINGLE
INSTANCE STORAGE OPERATIONS, Attorney Docket
No. 60692-8023US00); 2) U.S. Pat. Pub. No. 2009-0319585
(entitled APPLICATION-AWARE AND REMOTE SINGLE
INSTANCE DATA MANAGEMENT, Attorney Docket No.
60692-8056US00); 3) U.S. Pat. Pub. No. 2009-0319534 (en
titled APPLICATION-AWARE AND REMOTE SINGLE
INSTANCE DATA MANAGEMENT, Attorney Docket No.
60692-8057US00), 4) U.S. Pat. Pub. No. 2008-0243879 (en
titled SYSTEMAND METHOD FOR STORING REDUN
DANT INFORMATION, Attorney Docket No. 60692
8036US02); and 5) U.S. Pub. App. No. 2008-0229037
(entitled SYSTEMS AND METHODS FOR CREATING
COPIES OF DATA, SUCH AS ARCHIVE COPIES, Attor
ney Docket No. 60692-8037 US01).
0099. Another form of deduplication is variable instanc
ing, which generally refers to storing in secondary storage
one or more instances, but fewer than the total number of
instances, of each data block (or data object or data Sub
object) in a set of data (e.g., primary data). More details as to
variable instancing may be found in the commonly assigned
U.S. Pat. App. No. 61/164,803 (entitled STORING AVARI
ABLE NUMBER OF INSTANCES OF DATA OBJECTS,
Attorney Docket No. 60692-8068US00). The deduplication
module 299 and deduplication database 297 are described in
greater detail herein.
0100. As shown in FIG. 2, clients 130 and secondary stor
age computing devices 165 may each have associated meta
bases or indices (270 and 261, respectively). However, in
Some embodiments, each "tier of storage. Such as primary
storage, secondary storage, tertiary storage, etc., may have
multiple metabases/indices or a centralized metabase/index,

Dec. 30, 2010

as described herein. For example, rather than a separate meta
base or index associated with each client in FIG. 2, the meta
bases/indices on this storage tier may be centralized. Simi
larly, second and other tiers of storage may have either
centralized or distributed metabases/indices. Moreover,
mixed architecture systems may be used if desired, that may
include a first tier centralized metabase/index system coupled
to a second tier storage system having distributed metabases/
indices and vice versa, etc.
0101 Moreover, in operation, a storage manager 105 or
other management module may keep track of certain infor
mation that allows the storage manager to select, designate, or
otherwise identify metabases/indices to be searched in
response to certain queries as further described herein. Move
ment of data between primary and secondary storage may
also involve movement of associated metadata and index data
and other tracking information as further described herein.
0102. In some embodiments, management index 211 and/
or SS index 261 may provide content indexing of data gen
erated during backup, migration, restoration, and other Stor
age operations. In this way, management index 211 and/or SS
index 261 may associate secondary storage files with various
attributes, characteristics, identifiers, or other tags or data
classifications associated with the file content. In Such
embodiments, a user of storage operation cell 150 may search
for content within the storage operation cell via the interface
agent 225. Methods of performing content indexing and
searching, including collaborative searching, within a storage
operation cell 150 are described in the commonly assigned
U.S. Patent Publication Nos. 2008-0091655 (entitled
METHOD AND SYSTEM FOR OFFLINE INDEXING OF
CONTENT AND CLASSIFYING STORED DATA, Attor
ney Docket No. 60692-8046US) and 2008-0222108 (entitled
METHOD AND SYSTEM FOR COLLABORATIVE
SEARCHING, Attorney Docket No. 60692-8047US1).
0103) In some embodiments, storage manager 105 may
also include or be operably coupled to a management light
index 245 that may store index data, metadata, or other infor
mation generated during backup, migration, restoration, or
other storage operations. The management light index 245
provides storage manager 105 and other components with an
alternate mechanism for locating data stored or backed up, so
that they may more rapidly respond to client 130 or other
requests received via HTTP or similar protocols that are sus
ceptible to time-outs.
0104. Management light index 245 may store some subset
of the information contained in management index 211, SS
index 261, client metabase 270 and/or other information. For
example, the management light index 245 comprises the fol
lowing information about each data file in the storage opera
tion cell 150: a file name or other descriptor, a descriptor for
the client 130 or sub-client associated with the file (typically
the client 130 that created the file), the size of the file, the
storage location of the file (including the storage device,
associated secondary storage computing devices 165 and/or
other index data), file type (e.g., file extension or descriptor to
associate an application with the file), etc. In some embodi
ments, the management light index 245 may comprise addi
tional information, Such as limited content information.
Within the management light index 245, each data file may
also be associated with a token that uniquely identifies the
data file. In some embodiments, however, the token may not
be unique for all data files in the management light index 245;

US 2010/0332401 A1

instead, the combination of the token with another data field
(e.g., the associated client 130) may be unique.
0105. During the operation of the storage operation cell
150, management light index 245 may be populated or
changed. For example, whenever a secondary storage opera
tion is performed (due to a client 130 request, a scheduled job,
the application of a storage policy, or otherwise), the man
agement light index 245 may be updated by the storage man
ager 105, secondary storage computing device 165, or other
system component responsible for performing some or all of
the storage operation. For example, if a client 130 (or its data
agent 195) requests the creation of a backup, archival, or other
secondary copy, the secondary storage computing device 165
(e.g. cloud-based storage site) creating that secondary copy
may create one or more new entries in the management light
index 245 reflecting the name, location, size, and client 130
associated with the newly created secondary copy. As another
example, if due to an ILM storage policy, a file is migrated
from a first storage device 115 to a second storage device 115,
a secondary storage computing device 165 may update the
management light index 245 to reflect the new location of the
file.
0106. In one example, the management light index 245
may only be populated with information regarding data files
that originated from clients 130 that connect to the storage
operation cell 150 via certain network protocols. For
example, the management light index 245 may only be popu
lated with information regarding data files that originated
from clients 130 that connect to the storage operation cell 150
via the HTTP protocol.
0107 The secondary storage computing device 165 may
include or be operably coupled to a secondary storage light
index 247 (“SS light index”). Typically SS light index 247
comprises a Subset of the information included in manage
ment light index 245. For example, SS light index 247
includes a Subset of information pertaining to secondary Stor
age data files stored in storage devices 115 associated with the
secondary storage computing device 165. During the opera
tion of the storage operation cell 150, SS light index 247 may
be populated or changed in the same or similar manner as
management light index 245.
0108. The management light index 245 and SS light index
247 may be implemented in a non-relational database format,
such as C-Tree from Faircom, Inc., SimpleDB from Amazon,
Inc., or CouchDB from the Apache Software Foundation. In
this way, the storage manager 105 may provide a faster
response to client 130 or other requests than if it were to query
management index 211, metabase 270 and/or SS index 261,
and thus prevent time-outs when communicating via certain
network protocols such as HTTP. Components of the storage
operation cell 150 system, Such as storage manager 150, may
be configured to facilitate data storage provisioning and/or
cost charge backs. In some implementations, the system may
evaluate the state of stored data relative to enterprise needs by
using weighted parameters that may be user defined, e.g., in
order to facilitate the generation of or enforcement of a pro
visioning policy. In some implementations, the system may
calculate data costing information and other information
including information associated with the cost of storing data
and data availability associated with storage operation cells,
e.g., in order to facilitate charge backs. The system may
identify network elements, associated characteristics or met
rics with the network elements, receive additional data, such
as SRM or HSM data, from storage operation cells, and

Dec. 30, 2010

correlate the additional data with the network elements to
calculate a cost of data storage or an availability of data. In
Some implementations, data may be identified according to
user, department, project, or other identifier. In other imple
mentations, data availability or data cost is compared to a
service level agreement (SLA). In some implementations, a
prediction of media usage is generated according to data use,
availability, or cost. Further details regarding provisioning
and charge backs may be found in the commonly assigned
U.S. application Ser. No. 12/015,470, filed Jan. 16, 2008,
entitled SYSTEMS AND METHODS FOR STORAGE
MODELING & COSTING.' (Attorney Docket No.
606928020US1), which is hereby incorporated herein in its
entirety.
0109. In some implementations, storage manager 150 may
comprise a management module configured to predict and
plan future storage needs. The management module may
receive information related to storage activities associated
with one or more storage operation components within the
storage operation cell under the direction of the storage man
ager component. The management module is adapted to pre
dict storage operation resource allocations based on the
received information related to the storage activities. Further
details relating to the prediction of storage operation resource
allocations may be found in the commonly assigned U.S.
application Ser. No. 1 1/639,830, filed Dec. 15, 2006, entitled
“System and Method for Allocation of Organizational
Resources” (Attorney Docket No. 606928019US2), and U.S.
application Ser. No. 1 1/825,283, filed Jul. 5, 2007, entitled
“System and Method for Allocation of Organizational
Resources” (Attorney Docket No. 606928019US3), which
are hereby incorporated herein in their entirety.
0110. In some implementations, components of the stor
age operation cell 150, may be configured to copy data of one
or more virtual machines being hosted by one or more non
virtual machines (e.g., hosted by a cloud storage site 115A
N). Further details relating to copying data of virtual
machines may be found in the commonly assigned U.S. appli
cation Ser. No. 12/553,294, filed Sep. 3, 2009, entitled “SYS
TEMS AND METHODS FOR MANAGEMENT OF VIR
TUALIZATION DATA.” (Attorney Docket No.
606928.050US3), which is hereby incorporated herein in its
entirety.
0111 Network Agents
0112 Network agent 235 may comprise one or more sub
processes or network Subagents, which are typically imple
mented as a Software module or part of a Software module.
Each network Subagent may be responsible for managing
communications between the network agent 235 and a remote
device conducted via a particular network protocol. Such as
HTTP. Remote devices might include any component of the
storage operation cell 150, such as clients 130, secondary
storage computing devices 165, storage devices 115, storage
managers 105 or other networked devices. Each network
Subagent may do some or all of the following: accept or
initiate connections to remote devices; authenticate remote
devices and/or specific users on remote devices; receive
requests from remote devices; provide responses to remote
devices; log requests and responses; detect or respond to
network time-outs; compress or encrypt data; serve data or
content to remote devices; redirect remote devices to other
system components; call other applications, Scripts, or system
resources; and implement bandwidth throttling. Each net
work Subagent may include instructions for interpreting rou

US 2010/0332401 A1

tines, data structures, object classes, and/or protocols defined
in a particular API or similar interface.
0113 Typically, each Subagent manages communications
made via a particular network protocol. For example, each
Subagent manages communications utilizing a particular
layer protocol. Such as a transport layer protocol like Trans
port Control Protocol (“TCP) from the TCP/IP (Internet
Protocol). However, a subagent may additionally or alterna
tively manage one or more protocols from a layer other than
the transport layer (e.g., application layer), more than one
transfer layer protocol.
0114 Typical network subagents, include an HTTP Sub
agent, an FTP Subagent, and a proprietary protocol Subagent.
An HTTP Subagent may manage connections that utilize
HTTP and/or HTTP over TLS/SSL(“HTTPS). An FTP sub
agent may manage connections to the network agent 235 that
utilize the FTP and/or secure FTP. A proprietary protocol
Subagent may manage connections that utilize a particular
proprietary application-layer protocol. In some embodi
ments, the proprietary protocol Subagent may be configured
to facilitate a virtual private network connection running over
an HTTPS protocol, or another type of open/secure pipe
wrapped in an HTTPS protocol. Non-exclusive examples of
other possible network Subagents (not shown) include net
work Subagents to implement the common internet file sys
tem (CIFS) protocol and the network file system (NFS) pro
tocol.

0115 Network Client Agents
0116. Network clientagents 255 are similar to the network
agents 235. Typically, each network client Subagent manages
communications utilizing a network protocol, and is Substan
tially similar to the network subagents described above. Thus,
typical network client subagents include an HTTP client sub
agent, an FTP client Subagent, a proprietary protocol client
Subagent, and a telecommunications protocol client Sub
agent. An HTTP client subagent may be a web browser appli
cation configured to connect both to network client agents
255 as well as other resources such as general Internet or web
servers. A telecommunications protocol client Subagent may
manage remote connections that utilize data transfer proto
cols Supported by certain types of telecommunications net
works, e.g., Global System for Mobile (GSM), code/time
division multiple access (CDMA/TDMA), and/or 3rd Gen
eration (3G) telecommunications networks. For example,
telecommunications protocol client Subagent may permit a
user to initiate an HTTP connection by using an API associ
ated with a mobile operating system such as Windows
Mobile, BlackBerry OS, iPhone OS, Palm OS, Symbian, and
Android.

0117 Media File System Agent
0118 Media file system agent 240 may comprise one or
more media Submodules. Each media Submodule may permit
the media file system agent 240 to perform basic file system
commands (e.g., open, read, write, close, and delete) on a
certain type of storage device 115, and/or to otherwise direct
a certain type of storage device 115 to perform file system or
storage operations. For example, the media file system agent
240 may comprise tape, optical and/or magnetic Submodules
to open, read, write, close, and delete data files on storage
devices utilizing tape, optical and magnetic media, respec
tively. Media file system agent 240 may also comprise one or
more cloud storage submodules 236 that permit the media file
system agent 240 to open, read, write, close, and delete data

Dec. 30, 2010

files stored on cloud storage sites and/or otherwise direct
cloud storage sites to perform data storage operations.
0119) Cloud Storage Submodules: Vendor-Agnostic File
System Calls, Buffering of Storage Requests, and Logging
Cloud Storage Performance
I0120 Each cloud storage vendor associated with a par
ticular cloud storage site 115A-N utilized by the system may
provide an API that has vendor-specific implementation of
basic file system calls. For example, each vendor API may
prescribe a different functional call for opening/creating a
new data file on the vendor's cloud storage site. Typically a
cloud storage vendor API will utilize REST-based protocols.
The system described herein may used a cloud storage Sub
module to map each generic file system command (e.g., an
open command) to the various implementations of the com
mand as defined in each of the APIs provided by the various
cloud storage vendors. Using the mapping, a cloud storage
Submodule may convert a generic file system command
received by the media file system agent 240 into the appro
priate vendor-specific call for a target cloud storage site
115A-N. In this way, the cloud storage submodule permits the
system to ignore implementation details of the various cloud
storage sites 115A-N used by the system and simply treat
each site in a manner analogous to local data storage media,
Such as local optical or tape media. In this manner, a cloud
storage Submodule may obviate the need for complex Script
ing or the addition of disparate cloud gateway appliances to
write data to multiple cloud storage site targets. In this way, a
cloud storage submodule 236 also presents clients 130 and
other system components with a unified name space, even if
the system is storing data on multiple cloud storage sites 115.
I0121 For example, the cloud storage submodule 236
includes an interface to translate the REST-based protocols of
the Amazon S3 APIs, the Windows Azure APIs and the Rack
space APIs into generic commands for use with a file system
such as Windows, Solaris, Unix or Linux. Thus, the cloud
storage Submodule converts the format and parameters of
relevant storage vendor APIs, such as “open file' and “write
file', into a normalized or generic format for use with file
systems. (The cloud storage Submodule may likewise con
Vert, if needed, the generic format into a format for specific
file systems such as Windows, Linux, etc.) As shown in FIG.
2, the cloud storage submodule 236 may reside on media file
system agent 140 located on the secondary storage computing
device 165 to initiate file system and storage operations on
cloud storage sites (including data transfers to and from a
site). To initiate file system and storage operations, the cloud
storage submodule 236 may invoke the network agent 235,
via an HTTP Subagent, an FTP subagent, or another type of
network Subagent, to open a suitable network connection to a
target cloud storage site so that the cloud storage Submodule
may make various file system requests upon the target cloud
storage site for storage operations via this network connec
tion.

I0122) Some cloud storage site APIs may provide advanced
functionality to manipulate files stored on a cloud storage site
that extend beyond basic file system calls such as open, read,
write. For example, cloud storage site APIs may provide
commands for the encryption, compression and/or other
advanced file operations. Cloud storage Submodules may
map generic advanced file operations (e.g., a generic encryp
tion command) to the various implementations of the com
mand as defined in each of the APIs provided by the various
cloud storage vendors. As one example, a cloud storage site

US 2010/0332401 A1

API may provide a command to encrypt a file located on the
cloud storage site using an encryption method that does not
result in the cloud storage site receiving a key (or does not
result in the cloud storage site receiving or retaining other
information sufficient to decrypt an encrypted file). For
example, a cloud storage site API may permit storing
encrypted data belonging to a client on a cloud storage site,
together with an encrypted version of the encryption key that
was used to encrypt the encrypted data. A password would be
required from the client in order to decrypt the encrypted
version of the encryption key stored on the storage system
belonging to the application service provider. This is advan
tageous for the client, because it would prevent the applica
tion service provider from decrypting the data belonging to
the customer, without the customer's permission.
0123. Additionally, using the mapping, a cloud storage
Submodule 236 may permit other system components to
direct one cloud storage site 115 to transfer some or all files to
another cloud storage site 115, without first transferring the
files back to the storage cell 150. In this way, the system may
efficiently and effectively “fire' underperforming or expen
sive cloud storage sites 115 or otherwise adjust how it uses
multiple cloud storage sites 115A-N. For example, if the
system determines that a cloud storage site is underperform
ing, it may transfer files from the underperforming site to a
different site that is meeting performance metrics specified in
a storage policy.
0.124 When a cloud storage submodule 236 initiates file
System and storage operations on a cloud storage site, it may
determine or test and record (or report, e.g., to a storage
manager 105) the performance achieved by the cloud storage
site, such as the throughput of the site, the number of failures
that occurred, the number of timeouts, speed of restores,
speed of responses to queries, or other metrics. By determin
ing the actual performance of cloud storage sites 115A-N, the
storage operation cell 150 may adjust its classifications of
various cloud storage sites 115 (e.g., as first-class storage, as
second-class storage, etc.) dynamically or periodically. Addi
tionally, on a periodic basis, the system may determine which
cloud storage sites are underperforming so that it may transfer
files from the underperforming site to a different site that is
meeting performance metrics specified in a storage policy or
take other suitable action (e.g., requesting a reduced storage
price).
0.125. A cloud storage submodule 236 may also store and/
or manage credentials or other authorization and connection
information (e.g., site configuration settings, login informa
tion, certificates, etc.) that permit the cloud storage submod
ule to perform storage operations on a cloud storage site 115.
To add a new cloud storage site 115 to the storage operation
cell 150, the system may populate each cloud storage sub
module with the appropriate configuration settings or creden
tials for the new site.

0126 The cloud storage submodule 236, during a period
of its operation, may receive a series of similar requests for
the Submodule to transfer data to a target cloud storage site
(e.g., cloud storage site 115A); each individual request in the
series may only involve a small amount of data (e.g., a few
data blocks or a small data object such as an email). For
example, since the system may utilize cloud storage Submod
ule to transfer data to cloud storage sites 115A-N during
containerized deduplication, it may receive a series of similar
file requests (e.g., to write several Small email data objects to
the same target container file on the same target cloud storage

Dec. 30, 2010

site). To facilitate more efficient data transmission, which
may occur over a lossy and/or latent WAN (such as the Inter
net), the cloud storage Submodule may utilize two or more
local buffers (e.g., buffers stored in local memory, Such as
local RAM) to manage the series of transfer requests. The
buffers need not be large, and could be set in one embodiment
to 128k each, although larger buffers may of course be used,
and the size of the various buffers used by the cloud storage
submodule may be configurable by the user.
I0127. As an example, the cloud storage submodule 236
may maintain a first buffer that reflects the data transmitted in
the last storage request from the cloud storage Submodule to
the target cloud storage site 115A. By maintaining the first
buffer, the cloud storage Submodule can easily and more
quickly restart data transmission if the last request fails (e.g.,
due to packet loss/latency). In this example, the cloud storage
Submodule may maintain a second buffer that aggregates the
data associated with various storage requests received by the
cloud storage Submodule from other system components
(e.g., the deduplication module 299) since the cloud storage
Submodule began transmitting the last storage request to the
target cloud storage site 115A. In this example, the contents
of the second buffer may be sent as a second request to the
cloud storage site 115A once the cloud storage submodule
Successfully transmits the last request and/or receives confir
mation that the cloud storage site 115A successfully received
the last request.
I0128. In this example, the size of the buffers may be
adjusted to reflect relative network latency and network band
width. For example, a larger buffer size may be chosen if the
network latency is high, so that more data may be added to the
second buffer while the cloud storage submodule transmits
the last request and/or awaits a response from the target cloud
storage site 115-A regarding the last storage request. As
another example, a smaller buffer size may be chosen if the
network bandwidth is low, since the maximum transmission
size imposed by TCP/IP protocols may be lower. Buffering a
series of requests in this manner may improve transmission
efficiency, since it may result in the transmission of less
non-data (e.g., less transmission of padding Zeros added to the
transmission as a result of TCP/IP protocols).
I0129 FIG. 3A is a flow diagram illustrating a method 300
for writing data to cloud storage sites. A cloud storage Sub
module 236 or another system component may perform
method 300 to provide other system components with ven
dor-agnostic file system calls and/or efficient data transmis
sion to cloud storage sites 115A-N. At step 340, cloud storage
submodule 236 receives a file system request to write data to
a target cloud storage site 115A-N. For example, cloud stor
age submodule 236 may receive a request to write N blocks to
a first container file located on a first cloud storage site. At step
350, cloud storage submodule 236 adds the received data
(e.g., N blocks of data) to a buffer.
0.130. Although not shown, prior to step 350, cloud storage
submodule 236 may first determine if the received request has
Sufficiently similar characteristics to other prior requests that
are reflected in the buffer. For example, cloud storage sub
module 236 may determine if the instant file system request
has the same target file on the same target cloud storage site
115A-115N as other file system requests whose data is
already stored in the buffer. If the request is not sufficiently
similar, cloud storage Submodule 236 may proceed to step
370 instead. Cloud storage submodule 236 may also allocate
a new buffer and initiate a new parallel process 300 to handle

US 2010/0332401 A1

the latest request using the new buffer. Additionally, although
not shown, prior to step 350, cloud storage submodule 236
may determine if the file system request relates to a set of data
exceeding the buffer size (or another threshold size). If the
related set of data is larger than the threshold size, the cloud
storage submodule 236 may simply convert the received file
system request to one or more vendor-specific API calls and
transmit the set of data separately from the other buffered
requests before proceeding to step 340. For example, a
received 2 MB file may bypass the buffering and simply
proceed on in the process.
0131. At decision step 360, cloud storage submodule 236
determines if the buffer is full. If it is not full, steps 340-360
are repeated. For example, cloud storage Submodule 236 may
receive a request to store Madditional blocks to the same file
and add these Mblocks of data to the buffer. If the buffer is full
at decision step 360, cloud storage submodule 236 proceeds
to step 370. At step 370, cloud storage submodule converts the
received file system requests to one or more vendor-specific
API calls. For example, using the mapping described herein,
cloud storage submodule may identify the calls from the
target cloud storage site API that cause the target cloud stor
age site to (1) open a target file on the target cloud storage site
for writing, and (2) write the received and buffered data to the
target file. At step 380, cloud storage submodule transmits the
buffer using the vendor-specific API calls. To transmit the
buffer, cloud storage Submodule may utilize a network agent
235 to establish an HTTP, HTTPS, and/or other suitable net
work connection to the target cloud storage site. At step 390,
generally after waiting a Sufficient time for a response from
the target cloud storage site, cloud storage Submodule deter
mines if the transmission was successful. If it was successful,
process 300 returns. Otherwise, steps 380 and 390 are
repeated and the data is re-transmitted.
0132 Although not shown in FIG.3A, while cloud storage
submodule 236 is performing steps 380-390, it may also
allocate a new buffer to manage new file system requests and
may initiate a parallel process 300 to manage these new file
system requests using the new buffer.
0.133 Cloud storage submodule 236 may be configured to
permit a direct interface to cloud storage sites 115A-N by
presenting cloud storage sites to a user or system in the same
manner as a local storage Volume. For example, a cloud
storage Submodule 236 operating on a computing device may
permit the operating system of that computing device to
"mount a cloud storage site as a storage Volume or otherwise
provide an interface to have the cloud storage site display to
the operating system of the computer as a locally attached
drive (similar to network attached storage (NAS)). Cloud
storage Submodule 236 may further permit the operating sys
tem to make various file system requests upon the mounted
cloud storage site in a manner analogous to local disk storage.
In Such implementations, cloud storage Submodule 236 may
be installed on clients 130 to facilitate easier utilization of
remote cloud storage sites.
0134 Migrating or Copying Data to Secondary Storage,
Including Secondary Cloud Storage
0135 FIG. 3B shows a flow diagram illustrating a suitable
routine 300 for migrating or copying data into an archive
format in secondary storage, including secondary cloud stor
age. In step 310, the system receives a copy of an original data
set from a file system. Alternatively, the system may access

Dec. 30, 2010

the copy or otherwise communicate with data storage com
ponents in a data storage system to gain access to the data to
be copied.
0.136. At step 310 (or at any other suitable point in routine
300), the system may check the original data set against any
audit policies applicable to the data set to determine if the data
set comprises one or more sensitive objects and whether the
migration or copying of sensitive objects to secondary storage
requires approval by a reviewer or other action. If approval or
other action is required, the system may take appropriate
steps in accordance with the applicable audit policy. Such as
notifying a reviewer of the sensitive object and pausing the
routine 300 until the system receives an indication that the
reviewer approves of the migration/copying. As another
example, the system may continue to perform routine 300, but
only for the non-sensitive data objects in the data set. If the
system receives an indication that the reviewer does not
approve of the migration/copying of a sensitive object, the
system may take other steps inaccordance with the applicable
audit policy. For example, the system may break the set into
two or more data Subsets (one containing no sensitive objects)
and store the data Subsets that have sensitive objects in an
archive format at a Suitable alternative secondary storage
location (e.g., a local storage device 115).
0.137 In step 320, the system may index the data in the
copy. For example, the system may index the content of the
data as described herein. In step 330, the system may perform
deduplication upon the data, by removing duplicate instances
of files, data objects, blocks, sub-objects, and other informa
tion, and storing deduplicated data (or "dehydrated data') in
secondary cloud storage, typically in an archive file format.
Although not shown explicitly, in Some embodiments, the
indexing of the data at block 320 may occur after deduplica
tion of the data at block 330, in order to reduce the volume of
data that the system must index. Indexing, deduplication, and
storing deduplicated data for cloud storage are described in
greater detail herein, beginning with deduplication and fol
lowed by indexing.
0.138. Although not shown, the system may encrypt the
data before or after a secondary copy or archival copy is
created. For example, the system may employ many different
techniques for encrypting the archive copy, including encryp
tion techniques that satisfy Federal Information Processing
Standards (FIPS). Further details about encryption and
encrypting archive copies of data may be found in commonly
assigned U.S. Patent Publication No. US2008-0320319A1,
filed on Mar. 31, 2008, entitled SYSTEM AND METHOD
FOR ENCRYPTING SECONDARY COPIES OF DATA
(Attorney Docket No. 60692-8041US3). Additionally,
although not shown, the system may compress the data before
or after a secondary copy or archival copy is shown. For
example, the system may employ many different well-known
techniques or applications for compressing data, including
Lempel–Ziv (LZ) techniques, DEFLATE techniques, and LZ
Renau (LZR) techniques.
0.139. In some implementations, the techniques described
herein may be utilized to make secondary disk copies to
disaster recovery (DR) locations using auxiliary copy or rep
lication technologies as noted above.
0140. In some examples, the techniques described herein
may be used on copies of data created by replication opera
tions such as CDR (Continuous Data Replication) and DDR
(Discrete Data Replication). For example, for data protected
by a replication operation, multiple Consistent Recovery

US 2010/0332401 A1

Points (CRPs) are established, and the replicated data can
analyzed at such CRPs. To create a CRP, the system suspends
writes to the data, and makes a copy of the data. The system
then transfers that copy to another location, such as to one of
the cloud storage sites. Further details on CDR may be found
in the assignee's U.S. Pat. No. 7,651,593, entitled “SYS
TEMS AND METHODS FOR PERFORMING DATAREP
LICATION.
0141 Deduplication
0142. Referring to FIG. 4, the deduplication module 299
includes various components that perform various functions
associated with deduplication, some of which are described
below. More details may be found in the assignee's U.S. Pat.
Pub. No. 2008-0243958, entitled SYSTEMAND METHOD
FORSTORING REDUNDANT INFORMATION (Attorney
Docket No. 60692-8036US05), the entirety of which is incor
porated by reference herein. These components include a data
object identification component 410, an identifier generation
component 420, an identifier comparison component 425.
and a criteria evaluation component 430. The data object
identification component 410 identifies files, data objects,
Sub-objects, or blocks, such as in response to a storage opera
tion. The identifier generation component 420 generates an
identifier for the file, data object, sub-object, or block (iden
tifiers are discussed in more detail below) The identifier com
parison component 425 performs comparisons of identifiers
of various files, data objects, sub-objects, or blocks to deter
mine if the files, data objects, Sub-objects, or blocks contain
similar data (for example, the identifier comparison compo
nent 425 can compare identifiers of two or more files, data
objects, sub-objects, or blocks to determine if the files or data
objects contain the same data, metadata Such as access control
lists (ACLs), descriptive metadata that describes the files,
data objects. Sub-objects, or blocks (e.g., file name, file size,
file author, etc.) of the two or more files, data objects, sub
objects, or blocks). The criteria evaluation component 430
evaluates aspects of files, data objects, Sub-objects, or blocks
against a set of criteria. The deduplication module 299 may
also contain other components that perform other functions.
0143. Examples of identifiers include a hash value, mes
Sage digest, checksum, digital fingerprint, digital signature,
or other sequence of bytes that Substantially uniquely identi
fies the file or data object in the data storage system. For
example, identifiers could be generated using Message Digest
Algorithm 5 (MD5) or Secure Hash Algorithm SHA512. In
Some instances, the phrase “substantially unique' is used to
modify the term “identifier because algorithms used to pro
duce hash values may result in collisions, where two different
data objects, when hashed, result in the same hash value.
However, depending upon the algorithm or cryptographic
hash function used, collisions should be suitably rare and thus
the identifier generated for a file or data object should be
unique throughout the system. The term “probabilistically
unique identifier may also be used. In this case, the phrase
“probabilistically unique' is used to indicate that collisions
should be low-probability occurrences, and, therefore, the
identifier should be unique throughout the system. In some
examples, data object metadata (e.g., file name, file size) is
also used to generate the identifier for the data object.
0144. The hash values may also be used to verify data
transferred to a cloud storage site. For example, a file may first
belocally hashed at a client to create a first hash value. The file
may then be transferred to the cloud storage site. The cloud
storage site in turn similarly creates a hash value and sends

Dec. 30, 2010

this second hash value back. The client may then compare the
two hash values to verify that the cloud storage site properly
received the file for storage. As explained herein, various
system components, from the client, to storage cell compo
nents, to cloud gateways, to cloud storage sites themselves
may perform such hashing and generation of hash values for
verification.
(0145. Object-Level Deduplication
0146 The deduplication module 299 may conduct object
level deduplication as follows before transferring data to
cloud storage sites 115. (Further details may be found in the
assignee's U.S. Pat. Pub. No. 2009-0319585, entitled APPLI
CATION-AWARE AND REMOTE SINGLE INSTANCE
DATA MANAGEMENT (Attorney Docket No. 60692
8056US00).) First, the deduplication module 299 generates
an identifier for a data object. After generating the identifier
for a data object, the deduplication module 299 determines
whether it should be stored to the cloud storage site 115 as a
secondary copy (e.g., a backup copy) of the data of the clients
130. To determine this, the deduplication module 299
accesses the deduplication database 297 to check if a copy or
sufficient number of copies or instances of the data object
have already been appropriately stored on a cloud storage site
115. The deduplication database 297 utilizes one or more
tables or other data structures to store the identifiers of the
data objects that have already been stored on a cloud storage
site 115. In one implementation, the system may store mul
tiple copies of a data object, but only one copy of the data
object with each of multiple, different cloud storage sites, and
the data structure described herein facilitates that process.
0147 If an insufficient number of copies or instances of
the data object have already been appropriately stored on a
cloud storage site 115, the deduplication module 299 sends
the data object to one of the cloud storage site 115 for storage
and adds its identifier to the deduplication database 297 (or if
an instance already existed, the deduplication module 299
may add a reference, e.g., to an index in the deduplication
database 297, such as by incrementing a reference count in
the index). The deduplication module may also store in the
deduplication module 297 a URL, link, path or identifier of
the location or identity of the particular cloud storage site if
multiple sites are being used.
0.148. If a sufficient number of instances have been appro
priately stored, the deduplication module 299 can avoid send
ing another copy to the cloud storage site 115. In this case, the
deduplication module 299 may add a reference (e.g., to an
index in the deduplication database 297, such as by incre
menting a reference count in the index) to the already stored
instance of the data object, and may only store a pointer to the
data object on the cloud storage site 115. The link or pointer
may comprise a URL to a data object or file within a cloud
storage site 115A-N. As explained below, adding a reference
to the already stored instance of the data object enables the
storage of only a single instance of the data object (or fewer
instances of the data object) while still keeping track of other
instances of the data object that do not need to be stored.
0149. In some examples, instead of the clients 130 sending
the data objects to the deduplication module 299 and the
deduplication module 299 generating the identifiers, the cli
ents 130 can themselves generate an identifier for each data
object and transmit the identifiers to the deduplication mod
ule 299 for lookup in the deduplication database 297. This
example may be useful if the clients were to send data directly
to the cloud storage site 115, and thus deduplicating data

US 2010/0332401 A1

before sending it can conserve time and bandwidth, and Stor
age resources at the cloud storage site (which may charge
based on amount of data stored.) If the deduplication module
299 determines that a sufficient number of instances of a data
object have not already been appropriately stored on a cloud
storage site 115, the deduplication module 299 can instruct
the client 130 to send it a copy of the data object, which it then
stores on the cloud storage site. In this example, the dedupli
cation module may reside on a server to which the client is
connected (e.g. over a LAN or secure WAN). Alternatively,
the client 130 itself can send the copy of the data object to the
cloud storage site 115, in which case the client may have the
deduplication module 299 residing on the client. In some
examples, the deduplication module 299 generates the iden
tifier on data already stored on the cloud storage site 115 or on
other cloud storage sites (e.g., secondarily stored data is dedu
plicated).
0150. The deduplication module 299 can support
encrypted data objects. For example, one client 130 could
generate an identifier for a data object, and then encrypt it
using one encryption algorithm. Another client 130 could
generate an identifier for another data object, and then encrypt
it using another encryption algorithm. If the two data objects
are identical (meaning the two objects have the same data,
while their metadata, such as ACLs or descriptors, could be
different), they will both have the same identifier. The dedu
plication module 299 can then store both encrypted instances
of the data object or only a single encrypted instance (or a
reduced number of encrypted instances). In some examples,
the deduplication module 299 stores a key or other mecha
nism to be used to encrypt and/or decrypt data. The dedupli
cation module 299 can also support compressed data objects.
In general, the same compression algorithm may be used to
compress data objects. Therefore, the deduplication module
299 can generate an identifier for a data object before or after
it has been compressed.
0151
0152 Some details will now be provided of suitable
object, sub-object level and block level deduplication that the
system may employ. Further details may be found in the
assignee's U.S. patent application Ser. No. 12/565,576, filed
Sep. 23, 2009, entitled “Systems and Methods for Managing
Single Instancing Data” and the assignee's U.S. patent appli
cation Ser. No. 12/553,199, filed Sep. 3, 2009, entitled
TRANSFERRING OR MIGRATING PORTIONS OF
DATA OBJECTS, SUCH AS BLOCK-LEVEL DATA
MIGRATION OR CHUNK-BASED DATA MIGRATION
(Attorney Docket No. 60692.8065US 1). FIGS.5A and 5B
are block diagrams illustrating various data structures which
aspects of the invention may utilize for deduplicating and
storing copies or instances of data objects on the cloud storage
site 115. FIG. 5A illustrates a data structure 500 used in a
storage operation. For the storage operation, a chunk folder
502 is created on the cloud storage site 115. Contained within
the chunk folder are three files: 1) a metadata file 504; 2) an
“N' file 506; and 3) a single instance, or “S” file 508. The
three files are each logical containers of data. The “S” file
stores deduplicated data (e.g., deduplicated files). The “N”
file stores data that is not deduplicated (e.g., metadata, Such
as descriptive metadata associated with deduplicated files).
The metadata file stores references to the location(s) of data
objects in the “S” file and the “N' file. Note that although
three container files are shown (S, N, and index), in some
embodiments a chunk folder may comprise more than one

Data Structures for Object-Level Deduplication

Dec. 30, 2010

“S” file (e.g., S1, S2 . . . Sy, where y is an integer) to store
deduplicated data and/or more than one “N' file (e.g., N1, N2
... NZ, where Z is an integer). While described as being stored
on the cloud storage site 115, the “N” and metadata files may
alternatively or additionally be stored elsewhere, such as on
the secondary storage computer device 165 and/or storage
manager 105.
0153. The chunk folder 502 and the files 504-508 may be
equivalent to a directory and files (or folder and files) on a file
system. For example, the chunk folder 502 may be a directory
and the files 504-508 may be files located within the directory.
As another example, the chunk folder 502 may be a file and
the files 504-508 may be portions of the file. As another
example, the files 504-508 may be collections of blocks or
bytes grouped together. Those of skill in the art will under
stand that the chunk folder 502 and the files 504-508 may be
comprised in various data structures and are not limited to a
directory and files within the directory.
0154 The deduplication module 299 places data objects in
the “S” file 508 that meet certain criteria for deduplication.
These criteria may include the following: 1) that the data
object has been determined to be data or of type data (as
opposed to metadata or of type metadata); and 2) that the data
object is larger thana pre-configured size, such as 64Kb. Type
data is generally the payload portion of a file or data object
(e.g., a file's contents) and type metadata is generally the
metadata portion of the file or data object (e.g., metadata Such
as file name, file author, etc.). This pre-configured size may be
configurable by an administrator or other user with the appro
priate permissions. For example, if the administrator wants all
data objects of type data to be deduplicated, the administrator
can set the pre-configured size to 0 Kb. As another example,
if the administrator wants only data objects of type data
greater than 128Kb to be deduplicated, the administrator can
set the pre-configured size to 128Kb.
(O155 The deduplication module 299 determines if a data
object meets these criteria by evaluating aspects of the data
object (e.g., its type, its size) against the criteria. If so, the
deduplication module determines if a sufficient number of
instances of the data object have already been appropriately
stored on the cloud storage site 115 (or elsewhere), which the
deduplication module determines by generating or retrieving
an identifier for the data object and looking up the identifier in
the deduplication database 297. During this lookup, to deter
mine whether other instances were appropriately stored, the
deduplication database 297 may restrict the lookup to only
those instances of the object stored on certain cloud storage
sites 115 and/or certain classes of cloud storage sites 115. For
example, the deduplication database 297 may restrict the
lookup to those cloud storage sites 115 that would satisfy
applicable storage policy parameters, such as class of storage
used for the object. Additionally, during this lookup, the
deduplication database 297 may restrict the lookup to only
those instances of the object stored within a certain time
frame. For example, the deduplication database 297 may
restrict lookup only to those instances stored within second
ary storage in the last seven years.
0156 If a sufficient number of instances of the data object
have already been appropriately stored on a cloud storage site
115, the deduplication module 299 places the data object in
the “S” file 508. The deduplication module 299 may also
apply other criteria that the data object must meet for dedu
plication (e.g., criteria based upon characterizing or classify
ing the data object using techniques such as those described in

US 2010/0332401 A1

commonly assigned U.S. Pat. Pub. No. 2007-0185925 (en
titled SYSTEMS AND METHODS FOR CLASSIFYING
ANDTRANSFERRING INFORMATION IN A STORAGE
NETWORK, Attorney Docket No. 60692-8029US02), the
entirety of which is incorporated by reference herein).
(O157 For each data object that is placed in the “S” file 508,
the deduplication module 299 adds a reference to the data
object in the metadata file 504, called an internal reference.
For example, the internal reference may be a pointer or link to
the location of the data object in the “S” file 508. As further
described herein, the deduplication module 299 maintains a
primary table that contains all the deduplication records of all
data objects for which an identifier was created. The dedupli
cation module 299 may add as the internal reference a record
of the already stored instance of the data object from the
primary table.
0158. The deduplication module 299 places data objects in
the 'N' file 506 that do not meet the above criteria for dedu
plication. For example, a data object may be metadata (e.g.,
ACLs for a file that is placed in the “S” file, file descriptor
information, etc.). In this case, the data object will be placed
in the “N' file. As another example, a data object may be
Smaller than the pre-configured size, e.g., the data object is
smaller than 64 Kb. In this case, the deduplication module
299 may incur too much overhead to generate its identifier
and perform a lookup of the identifier in the deduplication
database 297. Therefore, the data object is placed in the “N”
file. As another example, a prior instance of an object may
have been stored on tape and reflected in the deduplication
database 297, but the storage policy applicable to the current
data object requires disk storage. Therefore, the data object is
placed in the “N' file 506. For each data object that is placed
in the “N' file 506, the deduplication module 299 may also
add a reference to the data object in the metadata file 504,
called an internal reference. For example, the internal refer
ence may be a pointer or link to the location(s) of the data
object in the “N' file. A new “N' file may be created during
each storage operation job.
0159 FIG. 5B illustrates a data structure 510 that may be
created as a result of one or more storage operations. The data
structure 510 is similar to the data structure 500 illustrated in
FIG. 5A, but now includes a second chunk folder 502'. For
example, the deduplication module 299 may create the sec
ond chunk folder 502 as a result of a second storage opera
tion. Consider the situation where a single data object is
Subjected to two Successive storage operations. The first stor
age operation would result in the creation of the first chunk
folder 502 illustrated in FIG.5A, with the single data object in
a first “S” file 508, its metadata (e.g., ACLs) in a first “N' file
506, and any references to the single data object and its
metadata in a first metadata file 504.

0160 The second storage operation would result in the
creation of the second chunk folder 502 illustrated in FIG.
5B. As illustrated in FIG. 5B, the second chunk folder 502
would have a second “N' file 506 containing the metadata
(e.g., the ACLS of the single data object, regardless of whether
they have changed) and a second metadata file 504. Instead of
having a second “S” file 508, the second metadata file 504
would have a pointer 515 to the single data object contained
in the first “S” file 508. Because an instance of the single data
object is already contained within the first “S” file 508, there
is no need for another instance of it to be contained within the
second “S” file 508. However, there is a need to keep a record
of the fact that the second storage operation involved an

Dec. 30, 2010

instance of the single data object. This is accomplished by the
pointer 515 within the second metadata file 504.
0.161. In some cases, instead of always placing in the “N'

file 508 data objects that do not meet the above criteria for
deduplication, the deduplication module 299 generates an
identifier for the data object, looks up the identifier in the
deduplication database 297 to see if the data object has
already been stored, and if not, places it in the “S” file 508. If
the data object has already been stored, the deduplication
module would then add a pointer to the location of the
instance of the previously stored data object in the metadata
file 504. For example, this variation on the process could be
used to deduplicate metadata instead of always storing it in
the N file SO6.

(0162 FIG.5C illustrates a data structure 520 for the meta
data file 504. The data structure 520 consists of one or more
stream headers 522 and stream data 524. The stream header
522 describes a data object contained in an “N' file 506 or an
“S” file 508 (e.g., its location, its size, an offset within the file,
etc.). The stream data 524 contains the pointer to the data
object contained in the “N' file 506 or the “S” file 508. For
example, the pointer may give its location within the “N' file
506 or the “S” file 508. The location of the data object may be
given by offsets within the “N' file 506 or the “S” file 508. For
example, its location may be given by a starting offset, and its
length or size. As another example, its location may be given
by a starting offset and an ending offset. As previously men
tioned, the data object may be in an “S” file 508 in another
chunk folder, and the stream data 524 would point to this “S”
file in the other chunk folder (e.g., give its location in the “S”
file in the other chunk folder). Each time the deduplication
module 299 places a data object in the “S” file 508, the
deduplication module 299 adds a stream header 522 and
corresponding stream data 524 to the metadata file 504.
(0163. One advantage of the data structures 500,510,520
illustrated in FIGS. 5A through 5C and the techniques
described herein is that they reduce the number of files stored
on the file system of the cloud storage site 115. Thus, there are
as little as three files created for each storage operation—the
metadata file 504, the “N file 506, and the “S” file 508.
Therefore, a maximum number of files on the file system of
the cloud storage site 115 may be as low as the number of
storage operations performed by the deduplication module
299 multiplied by three. File systems of certain operating
systems may have practical limits to the numbers of files that
they can store that are well below their theoretical limits. For
example, a file system may not, in practice, be able to store a
number of files above a certain threshold without experienc
ing significant system degradation (which can be defined in
numerous ways, such as an increase in seek time of randomly
accessed media that is ten percent longer than normal, a delay
in reads or writes on randomly accessed media, or in other
ways).
0164. By storing multiple data objects in a small number
of container files (as few as two), the storing of each data
object as a separate file on the file systems of the cloud storage
site can be avoided. This reduces the number of files that
would be stored on the file systems of the cloud storage site,
thereby ensuring that the cloud storage site can adequately
store the data of computing devices in the data storage net
work. Therefore, the file system of the cloud storage site may
not necessarily have to contend with storing excessively large
numbers of files, such as millions of files or more. Accord
ingly, these techniques enable very large numbers of data

US 2010/0332401 A1

objects to be stored without regard to the limitations of the file
system of the cloud storage site.
0.165. Further, separate files may be established for sepa
rate customers using the cloud storage site. So, the could
storage site 115A may establish separate folders for each new
customer who contracts to store data at the site, and thus that
customer's data is logically segregated from data of other
CuStOmerS.

(0166 Even if the deduplication module 299 performs
numerous storage operations using these data structures 500,
510, this will result in far fewer files on the cloud storage site
115 than storage operations where each involved data object
is stored as a separate file. Another advantage is that the
metadata files 504 could be used to replicate the data stored in
the deduplication database 297 or reconstruct the deduplica
tion database 297 if its data is ever lost or corrupted. This is
because the metadata files 504 may store essentially the same
information as what is stored in the deduplication database
297.

0167 However, the storage of data objects in containers
such as the “N' file 506 and the “S” file 508 may create
additional complexities when it comes time to prune or delete
data objects involved in previous storage operations. This is
because the data objects are not stored as files on the file
system and thus cannot be directly referenced by the file
system. For example, consider a first storage operation,
involving a first file and a second file, and a second storage
operation, involving the first file and a third file, both occur
ring on the same day. Further consider that the first storage
operation's files are eligible to be pruned after 15 days and the
second storage operation's files are eligible to be pruned after
30 days. Using the techniques described herein, the first stor
age operation would store the first and second files in an “S”
file 508 and the second storage operation would store a
pointer to the first file in an “N' file 506 and the third file in
another 'S' file 508.

0168 After 15 days have elapsed, the first and second files
are eligible to be pruned. The first file is referenced by the “N”
file 506 of the second storage operation and cannot yet be
pruned. However, the second file, because it is not referenced
by any 'N' files 506 in any other storage operations, can be
pruned. Using the metadata file 504 corresponding to the “S”
file 508, the deduplication module 299 locates the second file
within the “S” file 508. The deduplication module 299 can
then instruct the operating system (e.g., a Windows operating
system, a Unix operating system, a Linux operating system,
etc.) of the cloud storage site 115 to convert the “S” file 508
into a sparse file. A sparse file is a well-known type of file
having data within but not filling the file's logical space (e.g.,
at the beginning of the file and at the end of the file, and a hole
or empty space in between). In converting the “S” file 508 into
a sparse file, the portions corresponding to the second file may
be zeroed out. These portions are then available for storage of
other files or data objects by the operating system on cloud
storage sites (e.g., on magnetic disks, but sparse files may be
used on other types of cloud storage sites, such as tape or
optical disks). Additionally or alternatively, the “S” file may
be designated as a sparse file upon its creation.
0169. After 30 days have elapsed, the first and third files
are eligible to be pruned. Assuming that there are no inter
vening storage operations involving files that reference either
of these files, both the first and third files can be pruned. The
chunk folders 502 corresponding to the first and second stor
age operations can be deleted, thereby deleting the metadata

Dec. 30, 2010

files 204, the “N' files 506 and the “S” files 508 and recov
ering the space previously allocated for their storage. (The
process for pruning data objects is discussed in greater detail
with reference to, e.g., FIGS. 4 and 14.) Therefore, the data
structures 500,510,520 illustrated in FIGS. 5A through 5C
and the techniques described herein also allow for pruning
data objects to recover space previously allocated to them on
the cloud storage site 115.
(0170 Accordingly, the data structures 500,510,520 illus
trated in FIGS. 5A through 5C and the techniques described
herein enable the performance of storage operations cumula
tively involving very large numbers of data objects, while still
allowing for recovery of space allocated to these data objects
when their storage is no longer required. For example, an
administrator can back up numerous files across numerous
clients and avoid storing redundant copies or instances of the
files. The administrator can also easily recover space on the
cloud storage site 115 when it is no longer required to store
the files, for example, as according to a retention policy that
indicates for how long files are to be stored on the cloud
storage site 115. Accordingly, the data structures and tech
niques described herein enable the optimization of storage
operations involving very large numbers of data objects.
0171 After having been stored on the cloud storage site
115, files contained in chunk folders may be moved to sec
ondary storage, Such as to disk drives, cloud storage sites, or
to tapes in tape drives. More details as to these operations may
be found in the previously referenced U.S. Pat. Pub. No.
2008-0243958, entitled SYSTEM AND METHOD FOR
STORING REDUNDANT INFORMATION (Attorney
Docket No. 60692-8036US5). In moving chunk files to sec
ondary storage, they may be converted into an archive file
format. In some examples, the techniques described herein
may be used to deduplicate data already stored on secondary
Storage.
0172 FIG.5D is an illustration of a data structure 540 for
storing chunk folders and their container files in an archive
file format. The archive file may be stored on various cloud
storage sites, such as on disk drives, magnetic tapes, or cloud
storage sites. The archive file includes a chunk 0542 located
at offset 0, a chunk 1542 located at offset 5, a chunk 2542
located at offset 10, a chunk 3542 located at offset 15, and a
chunk n located at offset 65. The offsets are in relation to the
start of the archive file. More details as to a suitable archive
file format may be found in the assignee's U.S. Pat. Pub. No.
2008-0229037, entitled SYSTEMS AND METHODS FOR
CREATING COPIES OF DATA, SUCH AS ARCHIVE
COPIES (Attorney Docket No. 60692-8037 US01), the
entirety of which is incorporated by reference herein. An
archive file may be considered as a container of data objects.
(0173 Pruning Object-Level Deduplicated Data
0.174 Consider the example of a client for which a storage
operation job was performed on Jan. 1, 2008, resulting in the
creation of an archive file. A retention policy provides that the
archive file has to be retained for 30 days. On Jan. 31, 2008,
the archive file becomes prunable and thus can be deleted.
Deleting the archive file may require deleting data stored in
one or more chunks on one or more media. However, the
archive file may not be able to be deleted if it is referenced by
data objects within otherarchive files. This is to avoid orphan
ing data objects, e.g., by deleting a data object when it is still
referenced in another archive file. The system keeps tracks of
references to data objects in order to avoid orphaning data
objects.

US 2010/0332401 A1

0175 To assist in pruning, the deduplication database 299
maintains a primary table and a secondary table. The primary
table contains all the single instance records of all data objects
for which an identifier was created. For each record in the
primary table, the secondary table contains a record that may
reference the record in the primary table.
(0176 FIGS. 7A and 7B illustrate example primary and
secondary tables 700, 750. The primary table 700 has a pri
mary record ID column 710 that may contain primary keys, a
file ID column 720 that contains an identifier of a file or data
object (e.g., the identifier of the file or data object), and a
location column 730 that contains the location of the file or
data object (e.g., the archive file ID and its offset within the
archive file). The primary table 700 may also contain other
columns (not shown).
(0177. The secondary table 750 has a secondary record ID
column 760 that may contain primary keys, an archive file ID
column 765 that contains the archive file ID, a file column 770
that contains the same identifier of the file or data object as in
the primary table 700, and a reference, column 775 that
contains an identifier (in the form of an archive file ID and an
offset) of a file or data object that references the archive file.
The secondary table 750 also has a reference column 780
that contains an identifier (in the form of anarchive file ID and
an offset) of a referenced file or data object. The secondary
table 750 may also contain other columns (not shown).
0.178 FIG. 6 is a flow diagram illustrating a process 600
for pruning a deduplication database 299 by pruning or delet
ing data objects stored in archive files, or entire archive files.
As previously noted, archive files can be thought of as con
tainers of data objects. The process 600 begins at step 605
where a selection of an archive file to be pruned is made. This
selection can be made manually, such as by an administrator,
or automatically, such as by the archive file aging out of a
retention policy. At step 610, the media file system agent 240
performs a lookup of the archive file in the primary 700 and
secondary tables 700, 750. At step 615, the media file system
agent 240 determines if the archive file has references out
(e.g., to other archive files).
(0179 If the archive file has references out, the process 600
continues to step 620, where the references out are deleted. At
step 625, the media file system agent 240 determines if the
archive files referenced by the references out have other ref
erences in. If there are no other references in, at step 630, the
media file system agent 240 prunes the archive files refer
enced by the references out.
0180. If the archive file does not have any references out
(step 615), or if it does, and if the archive files referenced by
the references out have other references in (step 625), the
process 600 continues at step 635. At this step, the media file
system agent 240 determines if the archive file has references
in. If it does have references in, this means the archive file
cannot be pruned. The process continues at step 640, where
the media file system agent 240 deletes the references in. At
step 645 the media file system agent 240 adds a reference to
the archive file to a deleted archive file table (discussed
below).
0181. If the archive file does not have any references in
(step 635), the media file system agent 240 prunes the archive
file at step 650. The media file system agent 240 then creates
an entry in the deleted archive file table for the pruned archive
file (if there wasn't already an entry) and adds a deleted
timestamp to the entry. If there is already an entry for the

Dec. 30, 2010

pruned archive file, the media file system agent 240 adds a
deleted timestamp to the entry at step 655.
0182 FIG. 7C illustrates an example deleted archive file
table 752. The deleted archive file table 752 has a primary
record ID column 754 that may contain primary keys, an
archive file ID column 756 that contains an identifier of the
archive file, a reference, column 758 that contains an iden
tifier (in the form of an archive file ID and an offset) of a file
or data object that references the archive file, and a deleted
timestamp column 762 that contains a timestamp indicating
when the archive file was deleted. In the case of anarchive file
that has not yet been deleted, the timestamp deleted column
would be empty or null in the archive file's entry.
0183 The process 600 will now be explained using the
examples of the records shown in the primary and secondary
tables 700, 750. At time T, the process 600 begins. At step
605, the media file system agent 240 receives a selection of
AF to prune. At step 610 the media file system agent 240
looks up AF in the primary and secondary tables 700,750. At
step 615, the media file system agent 240 determines that AF
has a reference out, shown by entry 794 in the secondary table
750. (Entry 792 is shown in the secondary table 750 with
strikethrough to indicate that it was previously deleted during
an operation to prune AF.) At step 620, the media file system
agent 240 deletes this reference out by deleting entry 794
from the secondary table 750. At step 625, the media file
system agent 240 determines if AF has any other references
in. Since the only reference in for AF is from AF (which is
to be pruned), AF does not have any other references in. At
step 630, the media file system agent 240 then prunes AF and
adds a timestamp indicating that AF was pruned at time T at
entry 772 of the deleted archive file table 752.
0.184 At step 635, the media file system agent 240 deter
mines if AF has any references in. AF has a reference in
from AF, shown in entry 796 of the secondary table 750. The
media file system agent 240 thus cannot prune AF. At step
640, the media file system agent 240 deletes the references in
to AF by deleting entry 796 from the secondary table 750. At
step 645, the media file system agent 240 adds entry 774 to the
deleted archive file table 752, leaving the deleted timestamp
blank. The blank timestamp indicates that AF should be
pruned. The process 600 then concludes.
0185. At time T, the process 600 begins anew. At step
605, the media file system agent 240 receives a selection of
AF to prune. At step 610, the media file system agent 240
looks up AF in the primary and secondary tables 700,750. At
step 615, the media file system agent 240 determines that AF
has a reference out, shown by entry 798 in the secondary table
750, which references AF. At step 620, the media file system
agent 240 deletes entry 798 from the secondary table 750. At
step 625, the media file system agent 240 determines if AF
has any other references in. Since the only reference in for
AF is from AF (which is to be pruned), AF does not have
any other references in and can now be pruned. At step 630,
the media file system agent 240 then prunes AF and adds a
timestamp indicating that AF was pruned at time T at entry
774 of the deleted archive file table 752. This entry now
indicates that AF has been pruned at time T.
0186. At step 635, the media file system agent 240 deter
mines if AF has any references in. AF has no references in
listed in the secondary table 750. The media file system agent
thus can prune AF. At step 650, the media file system agent
240 prunes AF. At step 655, the media file system agent 240

US 2010/0332401 A1

adds the entry 776 to the deleted archive file table 752 with a
deleted timestamp as T. The process 600 then concludes.
0187. The pruning process 600 thus enables the system to
maximize available storage space for storing archive files by
storing them efficiently and then deleting or pruning them
when it is no longer necessary to store them. The pruning
process 600 may have additional or fewer steps than the ones
described, or the order may vary other than what is described.
For example, instead of the media file system agent 240
adding a timestamp to an entry in the deleted archive file table
752 to indicate when the archive file was pruned, the media
file system agent may simply delete the entry from the deleted
archive file table 752. As another example, entries in the
primary table 700 may also be deleted when the correspond
ing archive files are deleted. Those of skill in the art will
understand that other variations are of course possible.
0188 Sub-Object-Level Deduplication
0189 Instead of deduplication of data objects, deduplica
tion can be performed on a sub-object level in a substantially
similar fashion to that described previously with respect to
object-level deduplication. A sub-object is a set of blocks that
forms a proper subset of all of the blocks within a file or data
object. That is, for a file consisting of n blocks, the largest
sub-object of the file comprises at most n-1 blocks. An object
may thus comprise two or more Sub-objects, and be a logical
division of the data object. For example, a pst file may
include two or more sub-objects: a first sub-object that stores
emails from a user's mailbox, and one or more Sub-objects
that stores attachments or other data objects associated with
the user's mailbox (e.g. subfolders, shared folders, etc.) The
deduplication module 299 may include an object division
component (not shown) that divides data objects, such as
files, into Sub-objects. The object division component may
receive files or objects, divide the files into two or more
sub-objects, and then deduplicate the two or more sub-objects
as described previously with respect to object-level dedupli
cation.
0190. The object division component may perform differ
ent processes when determining how to divide a data object.
For example, the object division component may include
indexing, header, and other identifying information or meta
data in a first Sub-object and the payload in other Sub-objects.
The object division component may follow a rules-based
process when dividing a data object. The rules may define a
minimum or maximum data size for a sub-object, a time of
creation for data within a Sub-object, a type of data within a
Sub-object, and so on.
0191 For example, the object division component may
divide a user mailbox (such as a pst file) into a number of
Sub-objects, based on various rules that assign emails within
the mailbox to sub-objects based on the metadata associated
with the emails. The object division component may place an
index of the mailbox (and its various subfolders) in a first
sub-object and all emails for that mailbox in other sub-ob
jects. The object division component may then divide the
other sub-objects based on dates of creation, deletion or
reception of the emails, size of the emails, sender of the
emails, type of emails, and so on. Thus, as an example, the
object division component may divide a mailbox as follows:

User1/Sub-object1 Index
User1/Sub-object2 Sent emails

Dec. 30, 2010

-continued

Received emails
Deleted emails
All Attachments.

User1/Sub-object3
User1/Sub-object4
User1/Sub-object5

Of course, other divisions are possible. Sub-objects may not
necessarily fall within logical divisions. For example, the
object division component may divide a data object based on
information or instructions not associated with the data
object, such as information about data storage resources,
information about a target cloud storage site, historical infor
mation about previous divisions, and so on.
0.192 Once the division component has divided an object
into Sub-objects, deduplication of the Sub-objects proceeds in
substantially the same fashion as described previously with
respect to object-level deduplication. To do this, the dedupli
cation module determines, by analyzing data structures in the
deduplication database in view of the sub-object's identifier,
whether the sub-object of data is already stored on a cloud
storage site. If it is, then the secondary storage computing
device 1) stores a link to the already stored sub-object of data
in a metadata file and 2) discards the sub-object of data from
the memory buffer. If it is not already stored, then the sec
ondary storage computing device 165 stores the sub-object of
data in a container file. A link or pointer may comprise a URL
to a data object or file within a cloud storage site 115A-N.
(0193 Block-Level Deduplication
(0194 Instead of deduplication of files, data objects or
sub-objects, deduplication can be performed on a block level.
Files can be broken into blocks and deduplicated by the
deduplication module 299. Typically blocks are fixed sizes,
such as 64 Kb or 128Kb. In such embodiments, typically, the
clients 130 will generate the identifiers, since distributed
identifier generation may free up the deduplication module
299 to perform other operations (e.g., storing data, retrieving
data, etc.). The clients 130 typically send the blocks of data
and other data (e.g., metadata and/or the data that is not
eligible for deduplication) in a data stream to the deduplica
tion module 299. A deduplication module 299 receives blocks
of data from the clients 130 and accesses a deduplication
database 297 to determine whether a sufficient number of
instances of each block have been appropriately stored. To do
this, the system determines, by analyzing data structures in
the deduplication database 297 in view of the block's identi
fier, the number of instances of each block of data that is
already appropriately stored on a cloud storage site. During
this lookup, to determine whether prior instances were appro
priately stored, the system may only consider those instances
of the object stored on certain cloud storage sites 115 and/or
certain classes of cloud storage sites 115. For example, the
deduplication module 299 may restrict the lookup to those
cloud storage sites 115 that would satisfy storage policy
parameters applicable to each block, Such as class of storage
used for the object (e.g. data security associated with a par
ticular cloud storage site). Additionally, during this lookup,
the deduplication database 297 may restrict the lookup to
only those instances of a block stored within a certain time
frame. For example, the deduplication database 297 may
restrict lookup only to those instances stored within second
ary storage in the last seven years.
0.195. If an appropriate number of instances of a block
have already been appropriately stored, then the deduplica
tion module 2991) stores a link to the already stored block of

US 2010/0332401 A1

data in a metadata file and 2) discards the block of data from
the memory buffer. If it is not already stored, the deduplica
tion module 299 stores the block of data in a container file. A
link or pointer may comprise a URL to a block or file within
a cloud storage site 115A-N.
0196. Because the size of a block of data and associated
metadata is typically less than the size of a memory buffer, the
deduplication module 299 can keep a single block of data in
a single memory buffer while it looks up its identifier in the
deduplication database 297. This allows the deduplication
module to avoid writing the block of data to a disk (an opera
tion that is typically slower than storing the block of data in a
RAM buffer) until the deduplication module determines that
it needs to store the block of data in a container file on a cloud
storage site. The deduplication module 299 stores data that is
not eligible for deduplication in metadata files.
0.197 Alternatively, the clients 130 may transmit only the
identifiers to the deduplication module 299 for lookup in the
deduplication database 297. If the deduplication module 299
determines that an instance of a block has not already been
stored on the cloud storage site 115, the deduplication module
299 can instruct the client 130 to send a copy of the block to
the deduplication module, which it then stores on the cloud
storage site 115. Alternatively, the client 130 itself can send
the copy of the block to the cloud storage site 115.
0198 By storing multiple blocks of data in a single con
tainer file, the deduplication module 299 avoids storing each
block of data as a separate file on the file systems of the cloud
storage sites. This reduces the number of files that would be
stored on the file systems of the cloud storage sites, thereby
ensuring that the cloud storage sites can adequately store the
data of the clients 130 in the data storage system.
0199. One advantage of these techniques is that they sig
nificantly reduce the number of files stored on a file system of
a client or cloud storage site. This is at least partly due to the
storage of data blocks within the container files. Even if the
deduplication module performs numerous storage opera
tions, these techniques will result in storing far fewer files on
the file system than storage operations where each data block
is stored as a separate file. Therefore, the file system of the
client or cloud storage site may not necessarily have to con
tend with storing excessively large numbers of files. Such as
millions of files or more. Accordingly, these techniques
enable very large numbers of blocks of data to be stored
without regard to limitations of the file system of the client or
cloud storage site.
0200. However, the storage of blocks of data in container

files may create additional complexities when it comes time
to prune or delete data. This is because a container file may
contain blocks of data that are referenced by links in metadata
files and thus cannot be deleted, as these blocks of data
typically still need to be stored on the cloud storage sites.
Furthermore, because the blocks of data are not stored as files
on the file systems of the cloud storage sites, they cannot be
directly referenced by the file system.
0201 The systems and methods described herein provide
solutions to these problems. The deduplication module cre
ates the container files as sparse files (typically only on oper
ating systems that Support sparse files, e.g., Windows operat
ing systems, but also on other operating systems that Support
sparse files). A sparse file is type of file that may include
empty space (e.g., a sparse file may have real data within it,
such as at the beginning of the file and/or at the end of the file,
but may also have empty space in it that is not storing actual

20
Dec. 30, 2010

data, Such as a contiguous range of bytes all having a value of
Zero). Second, the deduplication module maintains a separate
index that stores an indication of whether blocks of data in
container files are referred to by links in metadata files. In
Some examples, this can be thought of as creating another file
system on top of the existing file systems of the cloud storage
sites that keeps track of blocks of data in the container files.
0202. When a block of data is not referred to and does not
need to be stored, the deduplication module can prune it. To
prune data, the deduplication module accesses the separate
index to determine the blocks of data that are not referred to
by links. On operating systems that Support sparse files, the
deduplication module can free up space in the container files
corresponding to those blocks of data by marking the portions
of the physical media corresponding to the unreferenced por
tions of the container file as available for storage (e.g., by
Zeroing out the corresponding bytes in the container files). On
operating systems that do not support sparse files, the dedu
plication module can free up space in the container files by
truncating the extreme portions of the container files (e.g., the
beginnings and/or the ends of the container files), thereby
making the corresponding portions of the physical media
available to store other data. Freeing up space in container
files allows the operating system to utilize the freed-up space
in other fashions (e.g., other programs may utilize the freed
up space).
0203 Data Structures for Block-Level Deduplication
0204 FIG. 8 is a diagram illustrating data structures that
may be used to store blocks of deduplicated data and non
deduplicated data on the cloud storage site 115 in an archive
format. The data structures include one or more volume fold
ers 802, one or more chunk folders 804/805 within a volume
folder 802, and multiple files within a chunk folder 804. Each
chunk folder 804/805 includes a metadata file 806/807, a
metadata index file 8087809, one or more container files 810/
811/813, and a container index file 812/814. The metadata file
806/807 stores non-deduplicated data blocks as well as links
to deduplicated data blocks stored in container files. The
metadata index file 8087809 stores an index to the data in the
metadata file 806/807. The container files 810/811/813 Store
deduplicated data blocks. The container index file 812/814
stores an index to the container files 810/811/813. Among
other things, the container index file 812/814 stores an indi
cation of whether a corresponding block in a container file
810/811/813 is referred to by a linkin a metadata file 806/807.
For example, data block B2 in the container file 810 is
referred to by a link in the metadata file 807 in the chunk
folder 805. Accordingly, the corresponding index entry in the
container index file 812 indicates that the data block B2 in the
container file 810 is referred to. As another example, data
block B1 in the container file 811 is referred to by a link in the
metadata file 807, and so the corresponding index entry in the
container index file 812 indicates that this data block is
referred to.

0205 As an example, the data structures illustrated in FIG.
8 may have been created as a result of two storage operations
involving two clients 130. For example, a first storage opera
tion on a first client 130 could result in the creation of the first
chunk folder 804, and a second storage operation on a second
client 130 could result in the creation of the second chunk
folder 805. The container files 810, 811 in the first chunk
folder 804 would contain the blocks of deduplicated data of
the first client 130. If the two clients 130 have substantially
similar data, the second storage operation on the data of the

US 2010/0332401 A1

second client 130 would result in the media file system agent
240 storing primarily links to the data blocks of the first client
130 that are already stored in the container files 810, 811.
Accordingly, while a first storage operation may result in
storing nearly all of the data Subject to the storage operation,
Subsequent storage operations involving storage of similar
data on the same cloud storage site 115 (or another appropri
ate cloud storage site) may result in Substantial data storage
space Savings, because links to already stored data blocks can
be stored instead of additional instances of data blocks.

0206. If the cloud storage site 115 (or operating system of
the cloud storage site) Supports sparse files, then when the
media file system agent 240 creates container files 810, 811,
813, it can create them as sparse files. A sparse file is type of
file that may include empty space (e.g., a sparse file may have
real data within it, Such as at the beginning of the file and/or
at the end of the file, but may also have empty space in it that
is not storing actual data, such as a contiguous range of bytes
all having a value of Zero). Having the container files 810,
811, 813 be sparse files allows the media file system agent 240
to free up space in the container files 810, 811, 813 when
blocks of data in the container files 810, 811, 813 no longer
need to be stored on the cloud storage sites 115. In some
examples, the media file system agent 240 creates a new
container file 810, 811, 813 when a container file either
includes 100 blocks of data or when the size of the container
file 810 exceeds 50 Mb. In other examples, the media file
system agent 240 creates a new container file 810, 811, 813
when a container file satisfies other criteria (e.g., it contains
from approximately 100 to approximately 1,000 blocks or
when its size exceeds approximately 50Mb to 1 Gb). Those of
skill in the art will understand that the media file system agent
240 can create a new container file 810, 811, 813 when other
criteria are met.

0207. One advantage of the data structures illustrated in
FIG. 8 and/or of the techniques described herein is that they
significantly reduce the number of files transferred and stored
on a file system of the cloud storage site 115. This is at least
partly due to the storage of data blocks within the container
files 810, 811, 813. Even if numerous storage operations
using these data structures are performed, there will be far
fewer files on the cloud storage site 115 than there would be
in storage operations where each data block is stored as a
separate file. Therefore, the client computers need not transfer
certain blocks or files, and the file system of the cloud storage
site 115 may not necessarily have to contend with storing
excessively large numbers of files, such as millions of files or
more. Accordingly, the systems and methods described
herein enable very large numbers of blocks of data to be
stored without regard to limitations of the file system of the
cloud storage site 115.
0208 Another advantage is that the data storage system
enables a reduction in the amount of blocks of data stored on
the cloud storage sites 115, while still maintaining at least one
instance of each block of data in primary data. In examples
where the data storage system stores a variable number of
instances of blocks of data, blocks of data can be distributed
across two or more cloud storage sites 115, thereby adding a
further aspect of redundancy.
0209 Another advantage is that the metadata files 806,
807, the metadata index files 808, 809, the container files 810,
811, 813, and/or the container index files 812, 814 could be
used to replicate the data stored in the deduplication database

Dec. 30, 2010

297, or to reconstruct the deduplication database 297 if the
data of the deduplication database 297 is ever lost and/or
corrupted.
0210. The storage of data blocks in the container files may
create additional complexities when it comes time to prune
(delete) data blocks that the data storage system no longer
need retain. This is because the data blocks are not stored as
files on the file system on the cloud storage site 115 and thus
cannot be directly referenced by the file system. As described
in detail herein, the media file system agent 240 uses the
container index files 812, 814 to keep track of which blocks of
data are referenced and thus which blocks are not prunable
(deletable).
0211. In some examples, the use of the container index
files 812, 814, the metadata index files 808, 809, and/or the
primary and secondary tables 700, 750 to track data acts as a
driver, agent oran additional file system that is layered on top
of the existing file system of the cloud storage site 115. This
driver/agent/additional file system allows the data storage
system to efficiently keep track of very large numbers of
blocks of data, without regard to any limitations of the file
systems of the cloud storage sites 115. Accordingly, the data
storage system can store very large numbers of blocks of data.
0212. Accordingly, the data structures illustrated in FIG. 8
and the techniques described herein enable the performance
of multiple storage operations cumulatively involving very
large amounts of data, while still allowing for recovery of
space on the cloud storage site 115 when storage of certain
data blocks is no longer required. For example, the data of
numerous clients 130 can be protected without having to store
redundant copies or instances of data blocks. Space on the
cloud storage site 115 can also be recovered when it is no
longer necessary to store certain data blocks. Accordingly,
storage operations involving very large amounts of data are
enabled and optimized by the techniques described herein.
0213 Deduplication Databases to Enable Containerized
Deduplication to Cloud-Based Storage
0214. In some embodiments, the deduplication database
297 may maintain a primary block table and a secondary
block table. The primary table may include an identifier col
umn in which a data block identifier is stored, a location
column in which a location of the data blockina container file
is stored, an offset column indicating the offset within the
container file corresponding to the location of the data block,
and a reference count column, which contains a reference
count of the number of links that refer to the data block. The
location column may include URLs that indicate storage
locations on cloud storage sites 115A-N. An example primary
block table is shown below in Table 1.

TABLE 1

Primary Block Table

Reference
Identifier Location Offset Count

OxA1B3FG http://www.storecloud.com/ 10 2
company name? V 3? Chunk 1,
Container File 001

OxFG329A http://www.storecloud.com/ 6 O
company name? V 1. Chunk 5.
Container File 002

US 2010/0332401 A1

TABLE 1-continued

Primary Block Table

Reference
Identifier Location Offset Count

OxC13804 http://www.storecloud.com/ 38 1
company name? V 2/Chunk 1,
Container File 001

0215 For example, row 1 includes information about a
data block for which the identifier is “OXA1B3FG. This data
block is located in the container file that is indicated in the
location column, at an offset of 10 within the container file. As
shown, the URL indicates a cloud storage site (“storecloud.
com') used to store the container file. As indicated in the
reference count column, this data block is referred to twice,
meaning that there are two links that refer to the data block. As
another example, row 2 includes information about a data
block for which the identifier is “OXC13804. The location of
this data block is indicated in the location column at an offset
of 38 within the container file, and it is referred to one other
time, by one link.
0216 A secondary block table includes information about
links that refer to data blocks. The secondary block table
includes an identifier column, a referring location column,
and an offset column. The referring location column may
include URLs that indicate storage locations on cloud storage
sites 115A-N. An example secondary block table is shown
below in Table 2.

TABLE 2

Secondary Block Table

Identifier Referring Location Offset

OXA1B3FG http://www.storecloud.com company name? 5
V 3? Chunk 1 MetaDataFile 001

OXA1B3FG http://www.2ndCloud.com/co name? 15
V 4 Chunk 18 MetaDataFileO03

OxC13804 http://www.storecloud.com company name? 19
V 3? Chunk 2 MetaDataFileOO1

0217 For example, the first row includes information
about a reference to the data block having the identifier of
“OXA1B3FG” (the first row in the primary block table). The
location of the link (within a first cloud storage site) is indi
cated in the second column, at an offset of five within the
indicated metadata file. As another example, the second row
includes information about another reference to the data
block having the identifier of “OXA1B3FG.” This location of
the link (within a second cloud storage site "2ndCloud') is
indicated in the second column, at an offset of 15 within the
indicated metadata file. As another example, the third row
includes information about a reference to the block for which
the identifier is “OXC13804 (the second row in the primary
block table). The location of the link is indicated in the second
column, at an offset of 19 within the indicated metadata file.
0218. The system may maintain similar primary and sec
ondary tables to facilitate object-level and/or sub-object level
deduplication processes. For example, a deduplication data
base 297 may maintain a primary object table and a secondary
object table having similar fields to those shown in Tables 1

22
Dec. 30, 2010

and 2, respectively. In Such an example, each entry in a
primary object table corresponds to a stored data object. Each
entry in a primary object table corresponds to a reference to a
stored data object.
0219 Pruning Block-Level Deduplicated Data
0220 FIG. 9 is a flow diagram of another process 900 for
pruning deduplicated data blocks that may be employed in
some examples. The process 900 is described as being per
formed by the media file system agent 240, although those of
skill in the art will understand that aspects of the process 900
may be performed by any of the entities described herein. The
process 900 begins at step 905 when the media file system
agent 240 receives instructions to prune data corresponding to
a storage operation (job). Additionally or alternatively, one or
more files can be selected to be pruned, and/or one or more
data blocks can be selected to be pruned. This selection of a
job or other data to be deleted can be made manually, Such as
by an administrator, or automatically, such as by the job, files,
and/or data blocks aging out by a retention policy.
0221. As previously noted, the data structures illustrated
in FIG. 8 may have been created as a result of two jobs
involving two clients 130. For example, a first job on a first
client 130 could result in the creation of the first chunk folder
804, and a second job on a second client 130 could result in
the creation of the second chunk folder 805. The process 900
is described using this example. More specifically, the pro
cess 900 is described below as pruning the data created as a
result of the first job. Of course, a similar process may be used
to delete other jobs, or even smaller increments of data or data
objects, such as individual files or blocks.
0222. At step 907 the media file system agent 240 deter
mines the file, e.g., archive file, and the volume folders 802
and chunk folder 804 corresponding to the job to be pruned.
The media file system agent 240 may do so, for example, by
analyzing various data structures to determine this informa
tion. At step 910 the media file system agent 240 deletes the
metadata file 806 and the metadata index file 808 in the chunk
folder 804. The media file system agent 240 can delete the
metadata file 806 and the metadata index file 808 in this
example because these files include data that is not referenced
by any other data.
0223) At step 915 the media file system agent 240 accesses
the container file 810 and the container index file 812 in the
chunk folder 804. The media file system agent 240 begins
iterating through the data blocks in the container files 810. At
step 920, beginning with a first block in the container file 810,
the media file system agent 240 accesses the primary block
table in the deduplication database 297. The media file system
agent 240 determines from the primary block table whether
the reference count of a data block in the container file 810 is
equal to Zero. If so, this indicates that there are no references
to the data block. The process 900 then continues at step 925,
where the media file system agent 240 sets the entry in the
container index file 812 corresponding to the data block equal
to Zero, thus indicating that there are no references to the data
block, and it is therefore prunable.
0224. If the reference count of a data block is not equal to
Zero, then the data block is not prunable, and the process 900
continues at step 930. At this step, the media file system agent
240 determines whether there are more data blocks in the
container file 810. If so, the process 900 returns to step 920,
where it accesses the next data block. If there are no more data
blocks in the container file 810, the process 900 continues at
step 932, where the media file system agent 240 determines

US 2010/0332401 A1

whether all the entries in the container index file 812 corre
sponding to the container file 810 are equal to Zero. As illus
trated in FIG. 8, the second index entry in the container index
file 812 is not equal to zero, thus indicating that the corre
sponding block in container file 810 is referenced (by data in
the chunk folder 805, as earlier described). Accordingly, the
container file 810 cannot be deleted.

0225. However, if the container file 810 did not contain
any referenced data blocks, then at step 933, the media file
system agent 240 would delete the container file 810. The
process would then continue at step 935, where the media file
system agent 240 determines whether there are more con
tainer files. According to the example as illustrated in FIG. 8,
there is an additional container file 811. The process 900 then
returns to step 915, where it performs the same steps 920-933
for container file 811. As a result of performing these steps,
the media file system agent 240 would also determine that the
container file 811 cannot be deleted, because it contains a data
block that is referenced (by data in the chunk folder 805, as
earlier described).
0226. After processing container files 810, 811, the pro
cess 900 continues at step 940, where the media file system
agent 240 determines whether to free up storage space in the
container files 810, 811. The media file system agent 240 may
do so using various techniques. For example, if the operating
system of the media file system agent 240 Supports sparse
files, then the media file system agent 240 may free up space
by Zeroing out the bytes in the container files corresponding to
the space to be freed up. For a number of contiguous blocks
(e.g., a threshold number of contiguous blocks, such as three
contiguous blocks) for which the corresponding entries in the
container index file 812 indicate that the blocks are not being
referred to, then the media file system agent 240 may mark
these portions of the container files 810,811 as available for
storage by the operating system or the file system. The media
file system agent 240 may do so by calling an API of the
operating system to mark the unreferenced portions of the
container files 810, 811 as available for storage.
0227. The media file system agent 240 may use certain
optimizations to manage the number of times portions of the
container file are marked as available for storage. Such as only
Zeroing out bytes in container files when a threshold number
of unreferenced contiguous blocks is reached (e.g., three
unreferenced contiguous blocks). These optimizations may
result in less overhead for the operating system because it
reduces the number of contiguous ranges of Zero-value bytes
in the container files 810, 811 that the operating system must
keep track of (e.g., it reduces the amount of metadata about
portions of the container files 810, 811 that are available for
storage).
0228 If the operating system of the media file system
agent 240 does not Support sparse files, then the media file
system agent 240 may free up space by truncating either the
beginning or the end of the container files 810, 811 (removing
or deleting data at the beginning or end of the container files
810, 811). The media file system agent 240 may do so by
calling an API of the operating system, or by operating
directly on the container files 810, 811. For example, if a
certain number of the last blocks of the container file are not
being referred to, the media file system agent 240 may trun
cate these portions of the container files 810, 811. Other
techniques may be used to free up space in the container files
810, 811 for storage of other data. At step 945 the media file

Dec. 30, 2010

system agent 240 frees up space in the container files 810,
811. The process 900 then concludes.
0229. As a result of the process 900, the chunk folder 804
would contain only the container files 810, 811 and the con
tainer index file 812. At a later time, when the chunk folder
805 is pruned (when the job that created this chunk folder is
selected to be pruned), then the container files 810, 811 in the
chunk folder 804 can be deleted, because they no longer
contain data blocks that are referenced by other data. There
fore, pruning data corresponding to a job may also result in
pruning data corresponding to an earlier job, because the data
corresponding to the earlier job is no longer referenced by the
later job.
0230. Although the process 900 is described with refer
ence to the pruning of data corresponding to jobs (one or more
storage operations), other data can also be pruned. For
example, an administrator may wish to delete deduplicated
data but retain non-deduplicated data. In Such case, the
administrator may instruct the media file system agent 240 to
delete the container files 810,811,813 but retain the metadata
files 806, 807 and metadata index files 808, 809. As another
example, an administrator or storage policy may delete one or
more specific files. In Such case, the media file system agent
240 deletes the data blocks in the container files 810,811, 813
corresponding to the specific files but retains other data
blocks. The process 900 may include fewer or more steps than
those described herein to accommodate these other pruning
examples. Those of skill in the art will understand that data
can be pruned in various fashions and, therefore, that the
process 900 is not limited to the steps described herein.
0231 Containerizing Deduplicated Data for Storage in the
Cloud
0232. During a storage operation that utilizes deduplica
tion, it may be desirable to determine a suitable container file
size, particularly if the storage operation will result in the
container files being Stored on a target cloud storage site
115A-N. As described previously, a single storage operation
that utilizes deduplication may result in as few as three con
tainer files being created in a secondary cloud storage site
115. Such as three for each company storing data to that cloud
storage site. The contents of the few container files may
reflect the content of thousands of data objects and/or mil
lions of data blocks in primary storage. By containerizing the
objects or blocks, the system reduces the strain on the file
system namespace of the secondary cloud storage site 115,
since it reduces the number of files stored on the file system of
the cloud storage site 115. The fewer container files used per
storage operation, the less strain there is on the file system
namespace of the secondary cloud storage site 115. Thus, by
using larger container files, the system may reduce
namespace strain on the secondary cloud storage site 115.
0233. When creating or writing container files to a target
cloud storage site 115A-N used as a secondary cloud storage
site, the characteristics of the WAN network connection used
to transfer the container files from the media file system agent
140 to the cloud storage site 115A-N may impose other
restrictions upon the size of container files used. For example,
the bandwidth of the network connection may impose an
upper limit on the size of container files that may be used (e.g.,
an upper limit of approximately 1000 blocks). If the network
connection has low bandwidth, the upload of large container
files to the cloud storage site may prove prohibitively slow.
Also, the restoration of a particular data object or block may
require the retrieval of the entire container file comprising

US 2010/0332401 A1

that data object/block from the cloud storage site; if the con
tainer file is too large for a low-bandwidth network, then
restoration times may become prohibitively slow. As another
example, the latency of the network connection may impose
a lower limit on the size of container files that may be used.
This is because the total time needed to perform a storage
operation may be increased if for each container file created
and transferred to the target cloud storage site, the system
must slowly transmit the container file and/or await a
response from the cloud storage site 115A-N before process
ing the next container file in the storage operation.
0234. Other factors may also affect the choice of size for
container files. For example, some cloud storage sites
115A-N may not support sparse files and thus not support
sparsification of container files. In this situation, Smaller con
tainer files may be desirable, because then it becomes more
likely the system will be able to prune entire container files
from the cloud storage site 115A-N, even if it cannot prune
out individual blocks/objects using sparsification techniques.
As another example, a particular cloud storage site 115A-N
may have a pricing structure that charges both for the total
amount of storage used (e.g., total gigabytes or petabytes
used) and the number of files or directories used on the site. If
the cloud storage site 115A-N bases its charges on the number
of files or directories used on the site, larger container files
may be desirable. In some embodiments, the system may also
additionally impose an absolute upper or lower limit on the
size of container files used. For example, the system may
impose an upper limit on the size of container files in order to
minimize the amount of time it takes the system to traverse a
container file during data restoration. For example, in some
embodiments, the system may impose an absolute 100 block
size upon container files, even if the network bandwidth
would theoretically allow for larger container files. As
another example, the system may impose an absolute lower
limit on the size of container files used, since there may be
overhead costs (e.g., processing time and/or memory used)
for each additional container file used in a storage operation.
0235 Thus, the deduplication module 299 or another sys
tem component may perform the following process to estab
lish a container size for a storage operation. The deduplica
tion module 299 or system may (1) determine the average
latency and bandwidth of the network connection between the
target cloud storage site 115A-N and the media file system
agent 240 (or similar metrics regarding the network connec
tion, e.g., maximum latency and minimum bandwidth), (2)
determine any namespace restrictions imposed by the target
cloud storage site 115A, (3) determine whether the target
cloud storage site 115A-N supports the sparsification of data
files, (4) determine the pricing structure used by the target
cloud storage site, (5) determine any caps set by the system
upon container file size, and (6) perform an optimization to
establish a container size for the storage operation reflecting
one or more of these determined factors and/or other factors
(e.g., Such as user input).
0236 Alternatively, the system may permit a user to select
the container size that will be used for one or more storage
operations. Still alternatively, the user or the system may
establish for all storage operations, the container size that will
be used for a particular cloud storage site or all cloud storage
sites.
0237 Indexing of Data
0238. As noted above for FIG. 3B, the system may index
data to be stored at a cloud storage site. Such as before the data

24
Dec. 30, 2010

is sent to the cloud storage site. Some details on Suitable
content indexing techniques will now be presented. Further
details may be found in the assignee's U.S. Patent Publication
No. 2009-0287665, filed Jul. 29, 2009, entitled METHOD
AND SYSTEM FOR SEARCHINGSTORED DATA (Attor
ney Docket No. 60693.8038US4). FIG. 10 is a flow diagram
that illustrates the processing of a content indexing compo
nent 205 for later searching, according to one embodiment.
The component is invoked when new content is available or
additional content is ready to be added to the content index. In
step 1010, the component selects a copy of the data to be
indexed. For example, the copy may be a secondary copy of
the data, a data Snapshot, or data stored or being stored in an
archive copy. In step 1020, the component identifies content
within the copy of the data. For example, the component may
identify data files such as word processing documents,
spreadsheets, and presentation slides within the secondary
data store. The system may check the data against previously
indexed data, and only index new or additional data. In step
1030, the component updates an index of the content to make
the identified content available for searching. The system may
parse, process, and store the data. For example, the compo
nent may add information Such as the location of the content,
keywords found within the content, and other Supplemental
information about the content that may be helpful for locating
the content during a search. In one example, the content
indexing component updates a content index stored within the
SS index 261, SS light index 247 and/or the management light
index 245 and/or management index 211. After step 1030,
these steps conclude.
0239 FIG. 11 illustrates some of the data structures used
by the system to facilitate content indexing. While the term
“field' and “record are used herein when describing certain
data structures, the system described herein may employ any
type of data structure. For example, relevant data can have
preceding headers, or other overhead data preceding (or fol
lowing) the relevant data. Alternatively, relevant data can
avoid the use of any overhead data, such as headers, and
simply be recognized by a certain byte or series of bytes
within a serial data stream. Any number of data structures and
types can be employed herein.
0240 FIG. 11 illustrates a data structure containing entries
of a content index. In some embodiments, a copy of the
content index shown (or a copy of a Subset of the content
index shown) may be stored within the SS index 261, SS light
index 247 and/or the management light index 245 and/or
management index 211. The offline content indexing system
uses this and similar data structures to provide more intelli
gent content indexing. For example, the offline content index
ing system may index multiple copies of data and data avail
able from the multiple copies using a secondary copy of data
stored on media with a higher availability based on the loca
tion or other attributes indicated by the data structure
described below. As another example, the offline content
indexing system may prefer an unencrypted copy of the data
to an encrypted copy to avoid wasting time unnecessarily
decrypting the data.
0241 The table 1100 contains a location column 1110, a
keywords column 1120, a user tags column 1130, an appli
cation column 1140, and an available column 1150. The table
1100 contains five sample entries. The first entry 1160 speci
fies that the location of a file is on a corporate intranet by using
a web universal resource locator (“URL). The entry 1160
contains keywords “finance.” “profit,” and “loss that identify

US 2010/0332401 A1

content within the file. The entry 1160 contains tags added by
a user that specify that the content comes from the accounting
department and is confidential. The entry 1160 indicates that
a spreadsheet program typically consumes the content, and
that the entry is immediately available.
0242 Another entry 1170 specifies that data is stored on a
local tape that is a personal email, and can be available in
about an hour. Another entry 1180 specifies an offsite tape
holds a presentation related to a cancelled project. The entry
1180 refers to offsite data that is available within one week
due to the delay of retrieving the archived data from the offsite
location. Another entry 1190 specifies that the location of a
word processing document containing data relating to CEO
compensation is in a cloud storage site by using a URL that
points to a deduplicated archive file that may be implemented
by a data structure similar to those shown in FIGS. 5A-D
and/or FIG. 8. As shown, the estimated retrieval time from
this cloud storage site is 15 minutes. Another entry 1195
specifies that the location of a personal email relating to a
medical condition is stored in a second cloud storage site by
using another URL that points to a deduplicated archive file
that may be implemented by a data structure similar to those
shown in FIGS.5A-D and/or FIG.8. As shown, the estimated
retrieval time from this cloud storage site is 1 hour.
0243 Policy-Driven Storage of Data Across Cloud Stor
age Sites
0244 Referring again to FIG. 3B, at step 330, the system
stores deduplicated data (or “dehydrated data') in secondary
cloud storage by utilizing the media file system agent 240 to
perform file system operations (such as a “write operation)
on a target cloud storage site 115A. To determine which target
cloud storage site the media file system agent 240 should
write to, the media file system agent 240 may retrieve an
applicable storage policy (described previously with respect
to FIG. 2) and act in accordance therewith. For example, the
media file system agent 240 may retrieve a storage policy
stored in management index 211 that specifies that all email
objects (and blocks contained therein) should be stored on
cloud storage site 115A, while document objects (and blocks
contained therein) should be stored on cloud storage site
115B. As another example, the storage policy stored in man
agement index 211 may specify that all objects related to a
particular client 130 or particular user (e.g., a company CEO)
should be stored on a more expensive or reliable cloud storage
site 115A while all other objects for all other clients 130
and/or users should be stored on a less expensive or less
reliable cloud storage site 115B. As yet another example, at
block 330, the system may review the historical performance
achieved by various target cloud storage sites 115A-N to
determine which sites have historically achieved the desired
performance metrics mandated by a storage policy. Addition
ally, the system may select a cloud storage site that has better
historical performance than other sites.
0245. As another example, a storage policy may specify
that a first type of files should be retained for one year in a first
target cloud storage site 115A, that a second type of files
should be retained for seven years in a second cloud storage
site 115B, and that a third type of files should be retained
indefinitely in a third cloud storage site 115N. As yet another
example, a storage policy may specify that a first type of files
(e.g., secondary disk copies needed for rapid disaster recov
ery) be stored only in storage sites 115, including cloud
storage sites 115A-N, that can provide sufficient bandwidth,
network capacity or other performance to ensure that the time

Dec. 30, 2010

needed to recover a file from the storage device 115 (e.g.,
cloud storage site 115A-N) is less a specified recovery time
objective.
0246 Restoring Dehydrated Data Objects from Cloud
Storage Sites
0247. After a storage operation has resulted in the storage
of dehydrated data on a cloud storage site 115A-N, it may be
necessary to later restore some or all of the original data files,
objects, sub-objects, or blocks that were archived during the
storage operation. For example, a user or customer of a cloud
storage site may wish to retrieve a file that was copied to the
cloud storage site in dehydrated form if a primary copy of that
file is no longer available on the user's client 130. As another
example, to comply with an electronic discovery request, it
may be necessary to retrieve an archived version of a particu
lar file. Some details on suitable techniques for restoring files
and objects from dehydrated data will now be presented.
Further details may be found in the assignee's U.S. patent
application Ser. No. 12/565,576, filed Sep. 23, 2009, entitled
SYSTEMS AND METHODS FOR MANAGING SINGLE
INSTANCING DATA (Attorney Docket No.
60692.8067US1)
0248 FIG. 12 is a flow diagram illustrating a process 1200
for restoring or retrieving data from chunk folders in an
archive file format on secondary storage. This process may be
utilized to restore data objects stored on cloud storage sites
115A-N. In order to do so, the system identifies the cloud
storage site 115, the archive file on that cloud storage site, the
chunk file within that archive file, and further the location of
the data object within that chunk file. At step 1205 a selection
of a data object to restore is received. Such as from an admin
istrator via agraphical interface. The process of restoring data
that has been deduplicated may be referred to herein as “rehy
drating deduplicated data.”
0249. At step 1210 the media file system agent 240 is
consulted to determine an archive file ID and an offset of the
data object to be restored. The media file system agent 240
can determine this information from a data structure, such as
a tree index (for example, a c-tree may be used, which, in
Some examples, is a type of self-balancing b-tree), that it
maintains for each archive file. For example, an archive file
may be based on files 1 through n, with file 1 at offset 1, file
2 at offset 2, file natoffset n, and so on. The media file system
agent 240 maintains one tree index perfull storage operation
cycle. (A Storage operation cycle consists of a cycle from one
full storage operation of a set of data, including any interven
ing incremental storage operations, until another full storage
operation is performed.) FIG. 13A illustrates an example data
structure 1300 that the media file system agent 240 maintains.
The data structure 1300 includes an archive file ID item 1310
that contains the identifier of archive files, a file or data object
item 1320 that contains the identifier of the file or data object,
and an offset 1330 containing the offset of the file or data
object within the archive file or cloud container.
0250. The media file system agent 240 may also maintain
a multiple-part identifier, Such as a five-part identifier, that
includes an enterprise or domain identifier (e.g., an identifier
of a company/customer, a grouping of clients/companies,
etc.), a client identifier to identify a particular company, cus
tomer or host computer to connect to at the customer, an
application type (e.g. if all Microsoft Word documents are
stored together), a storage operation set identifier to identify
when the storage operation data was obtained, and a Sub
client identifier to provide a further level of granularity within

US 2010/0332401 A1

an enterprise to identify an origin, location, or the use of the
data (e.g., a file system on a client could be a sub-client, or a
database on a client could be a Sub-client).
0251. Using the data structure maintained for the archive

file, the media file system agent 240 determines the archive
file ID and offset within the archive file of the data object to be
restored. The media file system agent 240 then needs to deter
mine which chunk contains the data object. To do so, the
media file system agent 240 consults another server, such as a
storage manager 105 (discussed below), that has a data struc
ture that maps the archive file ID and offset to the specific
media (as well as the specific chunk file within the specific
media, optionally). For example, the storage manager may
maintain a database table that maps the archive file ID to
specific media, to a URL indicating the cloud storage site
location, or to a bar code number for a magnetic tape cartridge
storing that archive file.
0252 FIG. 13B illustrates an example data structure 1350
that the storage manager 109 maintains. The data structure
1350 includes an archive file ID item 1370 identifying a
client, a storage operation job, a cycle, and an archive file ID.
a media chunk item 1380 containing an identification of the
media containing the archive file and the chunk on the media
that contains the archive file, and a start item 1390 that con
tains the archive file ID, an offset, and a size. When utilizing
a cloud storage site, some or all of the entries in the media
chunk column 1380 may comprise a URL (e.g., a URL like
https://www.cloudstorage.com/company name/C/J/Y/1/C
1.xml) that reflects the location of the archive file within a
specific cloud storage site and/or reflects a website where the
system may otherwise access the archive file. The media file
system agent 240 then can consult a deduplication database
297 to determine the specific chunk that corresponds to the
data object to be restored.
0253) At step 1215, the cloud storage server accesses a
particular secondary storage device and the specific media,
Such as a specific folder within a disk at a cloud storage site
(indicated by a URL) or a specific tape cartridge in an auto
mated tape library, is accessed. At step 1220 the cloud storage
server opens the specific chunk folder, and the metadata file is
accessed. At step 1225, the metadata file is parsed until the
stream header corresponding to the data object or block to be
restored is accessed. At step 1230, the cloud storage server
determines the location of the file from the stream data. The
stream data indicates the location of the data object to be
restored, which is either in a container file in the chunk folder
or within a container file in another chunk folder. At step 1235
the data object is retrieved or opened, and the data object is
read and streamed back to restore it for the requesting client/
host/customer (block 1240). Each data object may have a
piece of data appended to it (e.g., an EOF marker) that indi
cates to the reader when to stop reading the data object. A
similar piece of data may be prepended (e.g., a BOF marker)
to the data object. The process 1200 then concludes.
0254. Although the process of FIG. 12 and the data struc
tures of FIG. 13 were described with respect to object-level
restoration and retrieval, one having skill in the art will appre
ciate that a system may employ a similar process and similar
data structures to restore and retrieve individual blocks or
Sub-objects archived within a system.
0255 Local Searching of Data Stored on Remote Cloud
Storage Sites
0256. As described previously, during the process of FIG.
3B, the system may generate one or more copies of a content

26
Dec. 30, 2010

index as shown in FIG. 11 within the SS index 261, SS light
index 147, the management light index 245 and/or manage
ment index 211. Using this content index information, the
system may provide local search capabilities. Some details on
suitable searching techniques will now be presented. Further
details may be found in the assignee's U.S. Patent Publication
No. 2008-009 1655, filed Mar. 30, 2007, entitled METHOD
AND SYSTEM FOR OFFLINE INDEXING OF CONTENT
AND CLASSIFYING STORED DATA (Attorney Docket
No. 60692.8046US). For example, the storage manager 105
may receive and process a request to search the management
index 211 for files matching certain search criteria, and then
return matching files. By providing local searching of the
content index information, the system may provide more
cost-effective and/or faster searches of data archived or stored
on a remote cloud storage site 115A-N, since local searches of
a local content index typically do not require file system calls
to a cloud storage site other than to retrieve identified files
stored therein.

0257 FIG. 14 is a flow diagram that illustrates the pro
cessing of a search request by the system, in one embodiment.
In step 1410, the system receives a search request specifying
criteria for finding matching target content. For example, the
search request may specify one or more keywords that will be
found in matching documents. The search request may also
specify boolean operators, regular expressions, and other
common search specifications to identify relationships and
precedence between terms within the search query. In step
1420, the system searches the content index to identify
matching content items that are added to a set of search
results. For example, the system may identify documents
containing specified keywords or other criteria and add these
to a list of search results. In step 1425, the system generates
search results based on the content identified in the content
index. In step 1430, the system selects the first search result.
In decision step 1440, if the search result indicates that the
identified content is archived, then the system continues at
step 1450, else the system continues at step 1455. For
example, the content may be archived because it is on a
remote cloud storage site.
0258. In step 1450, the system retrieves the archived con
tent, which may utilize the data restoration methods discussed
herein. Additionally or alternatively, the system may provide
an estimate of the time required to retrieve the archived con
tent and add this information to the selected search result. In
decision step 1455, if there are more search results, then the
system loops to step 1430 to get the next search results, else
the system continues at step 1460. In step 1460, the system
provides the search results in response to the search query. For
example, the user may receive the search results through a
web page that lists the search results, or the search results may
be provided to another system for additional processing
through an API. The system may also perform additional
processing of the search results before presenting the search
results to the user. For example, the system may order the
search results, rank them by retrieval time, and so forth. After
step 1460, these steps conclude.
(0259 Collaborative Searching
0260. In some implementations, a cloud storage site may
be integrated with a collaborative search system and collabo
rative document management system to facilitate collabora
tive searching, data retrieval, and discovery. Some details on
collaborative searching are provided below; further details
may be found in the assignee's U.S. Patent Publication No.

US 2010/0332401 A1

US-2008-0222108-A1, filed Oct. 17, 2007, entitled
METHOD AND SYSTEM FOR COLLABORATIVE
SEARCHING (Attorney Docket No. 60692-8047 US01).
Referring to FIG. 25, a block diagram 2500 illustrating an
architecture for integrating a collaborative search system with
a collaborative document management system is shown. A
browser 2505 is used by collaborative participants as an inter
face to access the integrated system. A collaborative partici
pant Submits queries, receives results, and performs other
collaborative tasks through the browser 2505. The browser
2505 is connected to a collaborative document management
system 2510, such as the Microsoft SharePoint Server. The
collaborative document management system 2510 provides a
web-based portal for collaboration between collaborative
participants. The collaborative document management sys
tem 2510 is connected to a collaborative search system 2520.
The collaborative search system 2520 integrates with the
collaborative document management system 2510 and adds
additional components, such as web components and content
parsers, and provides access to cloud storage content. The
collaborative search system 2520 is connected to not only one
or more cloud storage sites 115, but also to local storage (e.g.
a storage operation cell 150), as well as to a security system
2540, and a document retention system 2550.
0261 The storage operation cell 150, as shown in FIG. 2,
provides fast access to content from various computer sys
tems within an enterprise. The security system 2540 provides
users and groups that are meaningful to a particular enterprise
to facilitate searching. The security system 2540 also
enforces access rights to collaborative content. The document
retention system 2550 places a legal hold on documents
related to a document retention request.
0262. In some examples, the collaborative search system
receives criteria for a search through a collaborative process.
For example, one collaborative participant may create a new
query for responding to a discovery request regarding a prod
uct made by the company that employs the collaborative
participant. The first collaborative participant may add search
criteria including the product name and then Submit the
search criteria to the collaborative document management
system 2510 as a collaborative document. Another collabo
rative participant may open the collaborative document and
add additional search criteria, Such as instructions to narrow
the list of departments from which documents should be
searched. For example, the second participant may include
the engineering, marketing, and sales teams that worked on
the product. The collaborative search system 2520 may also
add additional criteria inferred from the criteria added by the
collaborative participants. For example, based on the compa
ny's indexed data the collaborative search system may deter
mine that two employees, one in a department already within
the search criteria and another outside of the current search
criteria, frequently send email about projects. Based on this
information, the collaborative search system may add the user
that is outside of the current search criteria to the search
criteria, or it may promptone of the collaborative participants
to consider adding the user to the search criteria.
0263. Alternatively or additionally, the system may pro
vide further features. For example, the system may add addi
tional search criteria inferred from dynamic changes made to
the search criteria. The system may use heuristics type infor
mation when determining search criteria. The collaborative
search system 2520 may defines workflows that define the set
of steps that are part of completing a task. The collaborative

27
Dec. 30, 2010

search system 2520 may create a collaborative document
based on a set of search results. The collaborative document
provides a mechanism for multiple collaborative participants
to contribute to steps within a workflow subsequent to the
search process. In the example of a discovery request, the
steps of performing various levels of review of found docu
ments can consume the majority of the time spent responding
to the discovery request, and a collaborative participant may
reviewing each document and flagging the document if it
contains privileged content or directly add comments to docu
ments within the search results. The collaborative search sys
tem 2520 provides a user interface through which a collabo
rative participant may select from a set of templates that
define common search tasks, such as a Sarbanes-Oxley tem
plate that initiates a search for materials required to be dis
closed under the Sarbanes-Oxley Act.
0264. The user interface of the collaborative search system
2520 may include custom-developed web components to
assist with the integration with the collaborative document
management system. For example, Microsoft SharePoint
Server provides an object model and API for accessing col
laborative features such as workflows and a search front-end
that can be invoked from custom web pages using the Active
Server Page Framework (“ASPX). The collaborative search
system 2520 provides a user interface that does not require
specialized software to be installed on the searching client
system. The collaborative search system may also provide a
set of parsers for viewing content from many different
Sources. Such as received in a list of search results, as web
content. For example, the collaborative search system may
provide a parser for converting a word processing document
into a Hypertext Markup Language (“HTML') web page.
Other parsers may convert spreadsheet content, database
tables, instant messaging conversation logs, email, or other
structured or unstructured content into a web page format
accessible via a collaborative participant's browser. In this
way, heterogeneous data from many different applications is
available through a unified search user interface.
0265 FIG. 26 illustrates the integration of parsers with the
collaborative document management system. The collabora
tive document management system 2510 contains a configu
ration database 2630, a schema file 2640, one or more
dynamic web pages 2620, and one or more generated web
pages 2610. When a collaborative participant accesses the
collaborative document management system 2510, the col
laborative document management system 2510 consults the
configuration database to determine what to display to the
collaborative participant based on factors such as the identity
of the user, the particular web address the collaborative par
ticipant requested, the access rights of the collaborative par
ticipant, the state of previous requests by the collaborative
participant to the collaborative document management sys
tem, and so on. Based on the determined information to
display, the collaborative document management system con
sults the schema file 2640 to determine the layout of the
information for display to the collaborative participant. The
schema file 2640 may include instructions based on predeter
mined layouts, dynamically determined layouts, templates to
be included in the layout, and so on. At this point, one or more
parsers 2650 may be consulted to migrate data from one or
more document types (e.g., 2660 and 2670) to an XML or
other common format. The schema data is passed to an ASPX
or other dynamic page 2620 that may use Scripts and an object
model provided by the collaborative document management

US 2010/0332401 A1

system to identify, parse data types, and dynamically build a
page with the content that will be displayed to the collabora
tive participant. For example, the system may present one or
more templates described above. After the scripts are run, the
dynamic page 2620 generates an HTML or other generic
formatted page 2610 that is sent to the collaborative partici
pant's browser/GUI that will be displayed to the collaborative
participant.
0266 The collaborative search system 2520 may integrate
components for searching data from multiple operating sys
tems and multiple data formats from multiple cloud storage
sites. For example, file system data on a Microsoft Windows
computer system may be stored differently from file system
data on a Linux computer system, but the collaborative search
system may make both types of file system data available for
searching. Data may be gathered from each of these types of
disparate data sources and forwarded to a uniform database
where the data can be collected, tagged with various classifi
cations, and indexed for searching. The system may then
display the data on differently formatted browsers.
0267. Other implementations may integrate a collabora

tive document management system 2510 and collaborative
search system 2520 with another type of storage system that
provides content indexing and search capabilities comparable
to the storage operation cell 150 shown FIG. 2. For example,
an implementation may integrate a collaborative document
management system and collaborative search system with a
system shown in FIG. 15, FIG.21 and/or FIG.22, which are
described in greater detail herein.
0268. In some examples, the collaborative search system
2520 integrates information from the security system 2540.
For example, the collaborative search system may use
Microsoft Windows Active Directory to determine users
whose content should be searched as part of a discovery
request. Active Directory contains all of the users in an orga
nization and organizes the users into groups. The security
system may provide restrictions on access to content retrieved
in response to a search. For example, a temporary worker
hired to find documents for a sales pitch might not have access
to documents associated with executives or documents that
contain confidential company information. The collaborative
search system can manage a workflow that contains steps
performed by collaborative participants with varying levels of
access to content. For example, a company officer may be the
only collaborative participant allowed to search for a particu
lar set of documents as part of a search request, while other
collaborative participants may be allowed to search for less
restricted documents.
0269. Cloud Gateway
0270. As shown in FIG. 15, the system can include a
"cloudgateway' 1540, which may include a network attached
storage (“NAS) filer 1505 or NAS head with a limited
amount of local storage, and which advertises CIFS/NFS
interfaces out to clients 130 and cloud storage sites 115A-N.
The local storage of the NAS filer 1505 of the cloudgateway
1540 provides a way to satisfy incoming data writes from
clients 130 quickly, and to buffer or spool data before it is
transferred to cloud storage sites 115A-N or other cloud stor
age sites 115 (not shown). The cloud gateway 1540 may
include functionality to de-duplicate locally stored data
before being written up to cloud storage sites 115A-N, both of
which may be done on a fairly rapid or aggressive schedule.
0271 In addition to providing REST-based methods to
input and output data from the system, the cloud gateway

28
Dec. 30, 2010

1540 may also provide conventional methods of accessing
data via a NAS filer 1505 Such as via Web-based Distributed
Authoring and Versioning (WebDAV) and CIFS/NFS meth
ods, thus making it easy for users and applications to read and
write data to cloud storage sites 115A-N without significant
changes to their current mode of working.
0272. Overall, users and applications can specify param
eters (e.g., under a storage policy) that dictate to the cloud
gateway 1540 the handling of their content i.e., how long it
is retained, should it be encrypted/compressed, should it be
deduplicated, should it be indexed and searchable, should it to
be replicated and if so, how many copies and to where, etc.
The cloud gateway 1540 may facilitate the cloud storage
system by allowing for metadata to be specified on a per
file/object basis or on a data container or bucket basis. Fur
ther, the system permits data to be replicated on demand to
selected geographies based on access usage patterns, etc.
(0273 Cloud Gateway Architecture
0274 FIG. 16 shows a block diagram illustrating a suit
able environment for the cloudgateway 1540 that can include
a filer or NAS filer 1505 configured to perform data migration
to cloud storage sites and other secondary storage. Some
details on Suitable systems and methods for performing data
migration using a NAS filer 1505 will now be presented.
Further details may be found in the assignee's U.S. patent
application Ser. No. 12/558,640, filed Sep. 14, 2009, entitled
DATA TRANSFERTECHNIQUES WITHIN DATA STOR
AGE DEVICES, SUCH AS NETWORK ATTACHED
STORAGE PERFORMING DATA MIGRATION (Attorney
Docket No. 606928.066 US 1).
(0275 While the examples below discuss a NAS filer 1505,
any architecture or networked data cloud storage site employ
ing the following principles may be used, including a proxy
computer coupled to the NAS filer 1505. The computing
system 1600 includes a data storage system 1610, such as
storage operation cell 150. Client computers 1620, including
computers 1622 and 1624, are associated with users or serv
ers that generate data to be stored in secondary storage. The
client computers 1622 and 1624 communicate with the data
storage system 1610 over a network 1630, such as a private
network Such as an intranet, a public network Such as the
Internet, and so on. The networked computing system 1600
includes network-attached storage. Such as the cloudgateway
1540.

0276. The cloud gateway 1540 includes NAS-based stor
age or memory. Such as a cache 1644, for storing data received
from the network, such as data from client computers 1622
and 1624. (The term “cache' is used generically herein for
any type of storage, and thus the cache 1644 can include any
type of storage for storing data files within the NAS filer 1505,
Such as magnetic disk, optical disk, semiconductor memory,
or other known types of storage such as magnetic tape or
types of storage hereafter developed.) The cache 1644 may
include an index or other data structure in order to track where
data is eventually stored (e.g., location in the cloud), or the
index may be stored elsewhere, such as on the proxy com
puter. The index may include information associating the data
with information identifying a secondary cloud storage site
that stored the data, or other information. For example, as
described in detail below, the index may include both an
indication of which blocks have been written to secondary
storage (and where they are stored in secondary storage), and
a lookup table that maps blocks to individual files stored
within the cloud gateway 1540.

US 2010/0332401 A1

0277. The cloudgateway 1540 also includes a data migra
tion component 1642 that performs data migration on data
stored in the cache 1644. While shown in FIG. 16 as being
within the NAS filer 1505, the data migration component
1642 may be on a proxy computer coupled to the NAS filer. In
Some cases, the data migration component 1642 is a device
driver or agent that performs block-level, sub-object-level, or
object-level data migration of data stored in the cache, or a
combination of two or more types of data migration, depend
ing on the needs of the system. During data migration, the
NAS filer 1505 not only transfers data from the cache of the
device to one or more cloud storage sites 115A-N located on
the network 1630, but also to other secondary storage loca
tions 1650, such as magnetic tapes 1652, optical disks 1654,
or other secondary storage 1656. Importantly, the cloudgate
way 1540 may also retrieve data from these other secondary
storage devices and transfer it to the cloud storage sites
115A-N (under ILMorother storage policies). The NAS filer
1505 may include various data storage components that are
used when identifying and transferring data from the cache
1644 to the secondary cloud storage sites 1650. These com
ponents will now be discussed.
0278 Referring to FIG. 17, a block diagram illustrating
the components of the NAS filer 1505 component of the cloud
gateway 1540, configured to perform data migration, is
shown. In addition to the data migration component 1642 and
cache or data store 1644, the cloudgateway 1540 may include
an input component 1710, a data reception component 1720,
a file system 1730, and an operating system 1740. The input
component 1710 may receive various inputs. Such as via an
iSCSI protocol. That is, the cloud gateway may receive com
mands or control data from a data storage system 1610 over IP
channels. For example, the data storage system 1610 may
send commands to a cloud gateway's IP address in order to
provide instructions to the NAS filer 1505. The data reception
component 1720 may receive data to be stored over multiple
protocols, such as NFS, CIFS, and so on. For example, a
UNIX-based system may send data to be stored on the NAS
filer 1505 overan NFS communication channel, while a Win
dows-based system may send data to be stored on the NAS
filer over a CIFS communication channel.

0279 Additionally, the cloudgateway 1540 may include a
number of data storage resources, such as a data storage
engine 1760 to direct reads from and writes to the data store
1644, and one or more media agents 1770. The media agents
1770 may be similar to the secondary storage computing
devices 165 described herein and may similarly be commu
nicatively coupled to one or more SS indices (e.g., SS index
261 and SS light index 204) and deduplication database 297.
The media agents 1770 may comprise components similar to
those of the secondary storage computing devices 165. Such
as deduplication module 299, content indexing component
205, network agent 235, media file system agent 240 (includ
ing cloud storage Submodule 236), as described previously. In
Some cases, the cloudgateway 1540 may include two or more
media agents 1770, such as multiple media agents 1770 exter
nally attached to the cloud gateway. The cloud gateway 1540
may expand its data storage capabilities by adding media
agents 1770, as well as other components.
0280. As discussed herein, the cloud gateway 1540
includes a data migration component 1642 capable of trans
ferring some or all of the data stored in the cache 1644. In
Some examples, the data migration component 1642 requests
and/or receives information from a callback layer 1750, or

29
Dec. 30, 2010

other intermediate component, within the cloud gateway.
Briefly, the callback layer 1750 intercepts calls for data
between the file system 1730 and the cache 1644 and tracks
these calls to provide information to the data migration com
ponent 1642 regarding when data is changed, updated, and/or
accessed by the file system 1730. Further details regarding the
callback layer 1750 and other intermediate components will
now discussed.

0281. In some examples, the cloudgateway 1540 monitors
the transfer of data from the file system 1730 to the cache
1644 via the callback layer 1750. The callback layer 1750 not
only facilitates the migration of data portions from data Stor
age on the cloud gateway to secondary storage, but also
facilitates readback or callback of that data from the second
ary storage back to the cloud gateway. While described at
times herein as a device driver or agent, the callback layer
1750 may be a layer, or additional file system, that resides on
top of the file system 1730. The callback layer 1750 may
intercept data requests from the file system 1730, in order to
identify, track, and/or monitor data requested by the file sys
tem 1730, and may store information associated with these
requests in a data structure. Thus, the callback layer stores
information identifying when a data portion is accessed by
tracking calls from the file system 1730 to the cache 1730.
0282 For example, adding the cloud gateway 1540
described herein to an existing networked computing system
can provide the computing system with expanded storage
capabilities, but can also provide the computing system with
other data storage functionality. In some examples, the cloud
gateway 1540 not only provides the storage benefits of a NAS
filer 1505, but also includes a data storage engine (e.g., a
common technology engine, or CTE, provided by Com
mvault Systems, Inc. of Oceanport, N.J.), or other function
ality. For example, the cloud gateway may perform various
data storage functions normally provided by a backup server,
Such as single instancing, data classification, mirroring, con
tent indexing, data backup, encryption, compression, and so
on. Thus, in some examples, the cloud gateway described
herein acts as a fully functional and independent device that
an administrator can attach to a network to perform virtually
any data storage function.
0283 Cloud Gateway for Cloud Storage Sites and Dedu
plication and Policy-Driven Data Migration
0284 As described herein, in some examples, the cloud
gateway 1540 leverages block-level, sub-object-level, or
object-level data migration in order to provide expanded Stor
age capabilities to a networked computing system. After
selecting data for migration, but prior to data migration, the
cloud gateway may perform block-level. Sub-object-level.
and/or object-level deduplication using the methods and/or
data structures described previously with respect to FIGS.
1-9. To do so, the cloud gateway 1540 may utilize compo
nents or modules within the data storage system 1610 (e.g., a
deduplication module 299 and/or a deduplication database
297) and/or utilize components within the cloud gateway
itself (e.g., data migration components 1652). In this manner,
the cloudgateway may avoid creating unnecessary additional
instances of the selected data within secondary storage (e.g.,
additional instances within cloud storage sites). Additionally,
the cloud gateway, may access and apply storage policies as
described previously with respect to the system of FIG. 1 to
determine to which cloud storage site 115A-N or other cloud
storage sites the cloud gateway should migrate the data.

US 2010/0332401 A1

0285 For example, in accordance with a storage policy,
the cloud gateway 1540 may utilize more expensive cloud
storage sites to store critical documents, and less expensive
cloud storage site to store personal emails. As another
example, the cloud gateway may implement a storage policy
that specifies that a first type offiles should be retained for one
yearina first target cloud storage site 115A, that a second type
of files should be retained for seven years in a second cloud
storage site 115B, and that a third type of files should be
retained indefinitely in a third cloud storage site 115N. As yet
another example, the cloudgateway may implement a storage
policy that specifies that a first type of files (e.g., secondary
disk copies needed for rapid disaster recovery) be stored only
in storage sites 115, including cloud storage sites 115A-N.
that can provide sufficient bandwidth, network capacity or
other performance to ensure that the time needed to recover a
file from the storage device 115 (e.g., cloud storage site 115A
N) is less a specified recovery time objective. As another
example, certain data may be migrated or copied only to
cloud storage sites 115A-N having sufficient fault tolerance:
for example, certain data may be migrated or copied to cloud
storage sites that replicate data to various geographic loca
tions to prevent data loss in the event of a natural disaster or
similar catastrophic event. For brevity, the full details of such
deduplication and policy-driven storage methods are not
repeated here.
0286 The system can perform file system data migration
at a file or block level. Block-level migration, or block-based
data migration, involves migrating disk blocks from the data
store or cache 1644 to secondary media, Such as secondary
cloud storage sites 1650. This migration process works par
ticularly well with large files spanning many blocks, and is
described in detail below. While not shown, file level migra
tion employs similar processes, but is much simpler. Using
block-level migration, the cloud gateway 1540 transfers
blocks from the cache 1644 that have not been recently
accessed from secondary storage, freeing up space on the
cache. By tracking migrated blocks, the system can also
restore data at the block level, which may avoid cost and time
issues commonly associated with restoring data at the file
level.
0287 Alternatively or additionally, a cloud gateway 1540
and associated techniques described herein may make sec
ondary disk copies to disaster recovery (DR) locations using
auxiliary copy or replication technologies. Additionally or
alternatively, a cloud gateway and associated techniques
described herein may be used on copies of data created by
replication operations such as CDR (Continuous Data Repli
cation) and DDR (Discrete Data Replication).
0288 Referring to FIG. 18, a flow diagram illustrating a
routine 1800 for performing block-level data migration in a
cloud gateway 1540 is shown. In step 1810, the cloud gate
way, via the data migration component 1642, identifies data
blocks within a cache that satisfy a certain criteria. The data
migration component 1642 may compare some or all of the
blocks (or, information associated with the blocks) in the
cache 1644 with predetermined criteria. The predetermined
criteria may be time-based criteria within a storage policy or
data retention policy.
0289. In some examples, the data migration component
1642 identifies blocks set to be “aged off from the cache.
That is, the data migration component 1642 identifies blocks
created, changed, or last modified before a certain date and
time. For example, the system may review a cache for all data

30
Dec. 30, 2010

blocks that satisfy a criterion or criteria. The data store may be
an electronic mailbox or personal folders (pst) file for a
Microsoft Exchange user, and the criterion may define, for
example, all blocks or emails last modified or changed 30
days ago or earlier. The data migration component 1642 com
pares information associated with the blocks, such as meta
data associated with the blocks, to the criteria, and identifies
all blocks that satisfy the criteria. For example, the data
migration component 1642 identifies all blocks in the pst file
not modified within the past 30 days. The identified blocks
may include all the blocks for Some emails and/or a portion of
the blocks for other emails. That is, for a given email (or data
object), a first portion of the blocks that include the email may
satisfy the criteria, while a second portion of the blocks that
include the same email may not satisfy the criteria. In other
words, a file or data object can be divided into parts or por
tions where only some of the parts or portions change.
0290. To determine which blocks have changed, and
when, the cloudgateway 1540 can monitor the activity of the
file system 1730 via the callback layer 1750. The cloudgate
way may store a data structure. Such as a bitmap, table, log,
and so on within the cache 1644 or other memory in the NAS
filer 1505 or elsewhere, and update the data structure when
ever the file system calls the cache 1644 to access, update, or
change the data blocks within the cache 1644. The callback
layer 1750 traps commands to the cache 1644, where that
command identifies certain blocks on a disk for access or
modifications, and writes to the data structure the changed
blocks and the time of the change. The data structure may
include information Such as the identification of the changed
blocks and the date and time that the blocks were changed.
The data structure, which may be a table, bitmap, or group of
pointers, such as a Snapshot, may also include other informa
tion, such as information that maps file names to blocks,
information that maps sub-objects to blocks and/or file
names, and so on, and identify when accesses/changes were
made.

0291. In step 1820, the cloud gateway 1540 transfers data
within the identified blocks from the cache 1644 to a media
agent 1770 to be stored in a different data store. The system
may perform some or all of the processes described with
respect to the system of FIG. 1 when transferring the data to
the media agent. For example, before transferring data, the
system may review a storage policy as described herein to
select a media agent, such as secondary storage computing
device 165, based on instructions within the storage policy. In
step 1825, the system optionally updates an allocation table,
such as a file allocation table (“FAT) for the file system 1730
associated with the cloud gateway to indicate the data blocks
that no longer contain data and are now free to receive and
store data from the file system.
0292. In step 1830, via the media agent 1770, the cloud
gateway 1540 stores data from the blocks to a different data
store. In some cases, the cloud gateway, via the media agent
1770, stores the data from the blocks to a secondary cloud
storage site, such as a cloud storage site 115A-N. For
example, the cloud gateway may store the data from the
blocks in secondary copies of the data store. Such as a backup
copy, an archive copy, and so on. Although not shown, prior to
storing the data from the blocks to a different data store, the
cloudgateway, via the media agent 1770, may perform block
level deduplication and/or content indexing, using the meth
ods and data structures described previously with respect to
the system of FIG. 1.

US 2010/0332401 A1

0293 Although not shown, prior to storing data from the
blocks to a different data store, the cloud gateway 1540 may
encrypt and/or compress data as described previously with
respect to FIG. 3B. The cloud gateway may create, generate,
update, and/or include an allocation table, (such as a table for
the data store) that tracks the transferred data and the data that
was not transferred. The table may include information iden
tifying the original data blocks for the data, the name of the
data object (e.g., file name), the location of any transferred
data blocks (including, e.g., offset information), and so on.
The location of the transferred data blocks may comprise a
URL to a file located on cloud storage site 115A-N. For
example, Table 3 provides entry information for an example
pst file:

TABLE 3

Name of Data
Object Location of data

Email1 C:fusers blocks 1-100
Email2.1 C:fusers blocks 101-120
(body of email)
Email2.2 http://www.cloudstoragesite.com company name?
(attachment) remov1 blocks 1-250
Email3 http://www.cloudstoragesite.com company name?

remov2 blockS300-500

0294. In the above example, the data for “Email2 is stored
in two locations, the cache (C:/) and an offsite data store
located on a cloud storage site 115A-N (http://www.
cloudstoragesite.com/company name?). The system main
tains the body of the email, recently modified or accessed, at
a location within a data store associated with a file system,
“C:/users/blocks 101-120.” The system stores the attachment,
not recently modified or accessed, in a separate data store,
"http://www.cloudstoragesite.com/company name/remov1/
blocksb 1-250. Of course, the table may include other infor
mation, fields, or entries not shown. For example, when the
system stores data to tape, the table may include tape identi
fication information, tape offset information, and so on.
0295 Sub-object-based file migration, or sub-object
based data migration, involves splitting a data object into two
or more portions of the data object, creating an index that
tracks the portions, and storing the data object to secondary
storage via the two or more portions. The nature of Sub
objects was described previously with respect to the descrip
tion of deduplication module 299. As described above, in
Some examples the cloud gateway 1540 migrates Sub-objects
of data (sets of blocks) that comprise a data object from the
cache 1644 to another storage location, Such as to a cloud
storage site. In some cases, the data migration component
1642 may include a division component that divides data
objects into Sub-objects. The division component may per
form in a substantially similar fashion to the object division
component described previously with respect to the dedupli
cation module 299. The division component may receive files
to be stored in the cache 1644, divide the files into two or more
sub-objects, and store the files as two or more sub-objects in
the cache. The division component may update more or more
indexes that maintains information to associate particular
files with their corresponding sub-objects for that file, the data
blocks of the Sub-objects, and soon.
0296. The division component may perform different pro
cesses when determining how to divide a data object. For
example, the division component may include indexing,

Dec. 30, 2010

header, and other identifying information or metadata in a
first sub-object, and include the payload in other sub-objects.
The division component may identify and/or retrieve file
format or schema information from an index, FAT, NFS, or
other allocation table in the file system to determine where
certain sub-objects of a data object reside (such as the first or
last Sub-object of a large file). The division component may
follow a rules-based process when dividing a data object,
where the rules may define a minimum or maximum data size
for a sub-object, a time of creation for data within a sub
object, a type of data within a Sub-object, and so on.
0297 For example, the division component may divide a
user mailbox (such as a pstfile) into a number of sub-objects,
based on various rules that assign emails within the mailbox
to sub-objects based on the metadata associated with the
emails. The division component may place an index of the
mailbox in a first sub-object and the emails in other sub
objects. The division component may then divide the other
Sub-objects based on dates of creation, deletion or reception
of the emails, size of the emails, sender of the emails, type of
emails, and so on. Thus, as an example, the division compo
nent may divide a mailbox as follows:

User1/Sub-object1 Index
User1/Sub-object2 Sent emails
User1/Sub-object3 Received emails
User1/Sub-object4 Deleted emails
User1/Sub-object5 All Attachments

Of course, other divisions are possible. Sub-objects may not
necessarily fall within logical divisions. For example, the
division component may divide a data object based on infor
mation or instructions not associated with the data object,
Such as information about data storage resources, information
about a target secondary cloud storage site, historical infor
mation about previous divisions, and so on.
0298 Referring to FIG. 19, a flow diagram illustrating a
routine 1900 for performing sub-object-level data migration
in a cloud gateway 1540 is shown. In step 1910, the system
identifies sub-objects of data blocks within a data store that
satisfy one or more criteria. The data store may store large
files (>50 MB), such as databases associated with a file sys
tem, SQL databases, Microsoft Exchange mailboxes, virtual
machine files, and so on. The system may compare some orall
of the sub-objects (or, information associated with the sub
objects) of the data store with predetermined and/or dynamic
criteria. The predetermined criteria may be time-based crite
ria within a storage policy or data retention policy. The system
may review an index with the division component 815 when
comparing the Sub-objects with applicable criteria.
0299. In step 1920, the cloudgateway 1540 transfers data
within the identified sub-objects from the data store to a
media agent 1770, to be stored in a different data store. The
cloud gateway may perform some or all of the processes
described with respect to FIG. 1 when transferring the data to
the media agent. For example, the cloud gateway may review
a storage policy assigned to the data store and select a media
agent based on instructions within the storage policy. In step
1925, the system optionally updates an allocation table, such
as a FAT for a file system associated with the cloud gateway,
to indicate the data blocks that no longer contain data and are
now free to receive and store data from the file system.

US 2010/0332401 A1

0300 Instep 1930, via one or more media agents 1770, the
cloud gateway 1540 transfers or stores the data from the
Sub-objects to a different data store. In some cases, the sys
tem, via the media agent, stores the data to the cloud storage
sites 115A-N, and/or to secondary storage 1650, such as
magnetic tape 1652 or optical disk 1654. For example, the
system may store the data as secondary copies, such as
backup copies, archive copies, and so on. Although not
shown, prior to storing the data from the Sub-objects to a
different data store, the cloud gateway, via the media agent
1770, may perform sub-object-level or block-level dedupli
cation and/or content indexing, using the methods and data
structures described herein.
0301 Data Recovery in Cloud Storage Sites via Cloud
Gateway Device
0302) A data storage system, using a cloud gateway 1540
leveraging the block-based or Sub-object-based data migra
tion processes described herein, is able to restore not only
files, but also portions of files, such as individual blocks or
sub-objects that comprise portions of the files. Referring to
FIG. 20, a flow diagram illustrating a routine 2000 for block
based or Sub-object-based data restoration and modification
is shown. While not shown, file level data restoration employs
similar processes, but is much simpler. In step 2010, the
system, via a restore or data recovery component, receives a
request to modify a file located in a cache of a NAS filer 1505
or in secondary storage in communication with a cloud gate
way. For example, a user Submits a request to a file system to
provide an old copy of a large PowerPoint presentation so the
user can modify a picture located on slide 5 of 200 of the
presentation.
0303. In step 2020, the system identifies one or more
blocks or one or more Sub-objects associated with the request.
For example, the callback layer 1750 of the system looks to an
index or table similar to Table 3, identifies blocks associated
with page 5 of the presentation and blocks associated with a
table of contents of the presentation, and contacts the cloud
gateway 1540 that stored or migrated the blocks on secondary
Storage.
0304. In step 2030, the system, via the cloud gateway
1540, retrieves the identified blocks or sub-objects from the
secondary storage and presents them to the user. For example,
the system only retrieves page 5 and the table of contents of
the presentation and presents the pages to the user. If some or
all of the identified blocks or sub-objects were previously
deduplicated prior to being transferred the secondary storage,
in order to retrieve the identified blocks or sub-objects, the
cloud gateway may utilize the media agent 1770, to “rehy
drate' the deduplicated data using the methods described
previously with respect to FIG. 12.
0305. In step 2040, the system receives input from a user to
modify the retrieved blocks or sub-objects. For example, the
user updates the PowerPoint presentation to include a differ
ent picture. In step 2050, the system transfers data associated
with the modified blocks or sub-objects back to the cloud
gateway 1540, where it remains in a cache or is transferred to
secondary storage, and updates the table/index. Thus, the
system, leveraging block-based or Sub-object-based data
migration in a cloud gateway, restores only portions of data
objects required by a file system.
0306 For example, a user submits a request to the system
to retrieve an old email stored in a secondary copy on remov
able media via a cloud gateway 1540. The system identifies a
portion of a-pst file associated with the user that contains a list

32
Dec. 30, 2010

of old emails in the cache of the cloud gateway, and retrieves
the list. That is, the system has knowledge of the sub-object
that includes the list (e.g., a division component may always
include the list in a first Sub-object of a data object), accesses
the sub-object, and retrieves the list. The other portions (e.g.,
all the emails with the pst file), were transferred from the
cloud gateway 1540 secondary storage. The user selects the
desired email from the list. The cloudgateway, via an index in
the cache that associates Sub-objects with data or files (such as
an index similar to Table 3), identifies the sub-object that
contains the email, and retrieves the sub-object from the
associated secondary storage for presentation to the user.
Thus, the cloud gateway is able to restore the email without
restoring the entire mailbox (-pst file) associated with the
USC.

(0307 As noted above, the callback layer 1750 maintains a
data structure that not only tracks where a block or sub-object
resides on secondary storage, but also which file was affected
based on the migration of that block or sub-object. Portions of
large files may be written to secondary storage to free up
space in the cache or data store 1644 of the NAS filer 1505.
Thus, to the network, the total data storage of the cloud
gateway is much greater than that actually available within
the cache or data store 1644. For example, while the cache or
data store 1644 may have only a 100-gigabyte capacity, its
capacity may actually appear as over 20terabytes, with Stor
age over 100 gigabytes being migrated to cloud-based Stor
age.

0308 System Configurations to Provide Data Storage and
Management Software as a Service
0309 Alternatively or additionally, the functionality and
components of the system described previously may move
into the cloud. This solution may be used for software as a
service (“SaaS), for application service providers (ASPs), or
for a managed services provider to host and provide data
storage and management as an offering, although it can also
easily be utilized by a large enterprise to build on top of a
private network or cloud. A software as a service (SaaS)
model permits a client 130 to utilize a unified and rich set of
value-added data management services (e.g. compression,
deduplication, content-indexing/search, encryption, etc.) that
may be fully independent of which cloud storage providers
actually hosting the client's data. It also provides a mecha
nism for a client 130 to readily transfer data between various
cloud storage sites 115 without being tied to a single cloud
storage vendor. A Software as a service model also permits
clients 130 to utilize data management services and cloud
storage on a capacity or utilization basis (e.g., per-gigabyte
pricing), without fixed capital expenditures (e.g., expendi
tures for a set of vendor-specific cloud boxes or a software or
hardware license). Under a SaaS arrangement, administrative
functions move off-site, since there is no local secondary
storage or other hardware at a client's site and the software
(and any software updates) may be pushed to the client 130 as
needed and configured on demand. Furthermore, remote
monitoring techniques may be employed to further reduce
administrative overhead of operating SaaS systems. FIG. 21
illustrates an example of an arrangement 2102 of resources in
a computing network that may provide data storage Software
as a service. As shown, in this arrangement 2102, the storage
manager 105 and secondary storage computing devices 165
are in the cloud (e.g., separated from the clients 130 by a
network, such as a public WAN, like the Internet). The on
premises components need only include one or more data

US 2010/0332401 A1

agents 195 and network client agents 255, which may reside
on clients 130. The arrangement 2102 may permit multiple
“tenants’ to use a single SAAS system 2102 since the various
clients 130 may be associated with different entities (e.g.,
different companies). Data agents 195 utilize network client
agents 255 (including HTTP client subagents) to communi
cate effectively with the storage manager 105 and secondary
storage computing devices 165 via their HTTP Subagents
located within network agents 235.
0310. As described previously, the transport mechanism
provided between the HTTP client subagent and HTTP Sub
agents may be cloud-aware and cloud-capable. The HTTP
client subagent and HTTP Subagents may further be config
ured to work via firewalls and/or to configure firewalls appro
priately. Details regarding managing firewall connections
may be found in the assignee's U.S. patent application Ser.
No. 12/643,653, filed Dec. 21, 2009, entitled Managing Con
nections in a Data Storage System (Attorney Docket No.
60692-807OUS 1). Alternatively or additionally, data agents
195 may utilize proprietary protocol client subagents config
ured to facilitate a virtual private network connection running
over an HTTPS protocol, or another type of open/secure pipe
wrapped in an HTTPS protocol to communicate effectively
with storage manager 105 and secondary storage computing
devices 165 via their proprietary protocol subagents.
0311. In this arrangement, as described previously, media

file system agent 240 may comprise one or more cloud stor
age Submodules 236 that permit the media file system agent
240 to open, read, write, close, and delete data files stored on
cloud storage sites and/or otherwise direct cloud storage sites
to perform data storage operations.
0312. In this sample arrangement, an on-premises user
controlling only the client 130 may benefit from all or some of
the system functionalities described previously (e.g., dedu
plication, content indexing, searching, archiving of data) and
yet remain insulated from the details of maintaining and
monitoring the data storage architecture on a day to day basis.
Those details may move entirely into the domain of the SaaS
provider or other network-based or cloud-based service pro
vider, and explained herein.
0313. Object Store
0314. Alternatively or additionally, most or all elements of
the system described previously may move into the cloud and
be re-configured to allow a cloud storage provider to utilize
the system as a data store, such as an object store 2250 shown
in FIG. 22. A large enterprise could also use this system to
provide cloud storage and data management to clients within
the enterprise and/or outside the enterprise. By exposing
REST or other web-based interfaces via a web service layer,
users can read, write and manipulate data in an object store
225O.

0315. In many respects, the object store 2250 provides
similar functionality to the systems described previously and
may provide additional features. An object store 2250 system
may provide value-added services such as retention, dedupli
cation, compression, encryption, content indexing and
search, and collaborative searching. An object store 2250 may
also provide tiered storage and information life cycle man
agement services. The object store 2250, like the systems
described previously, may also utilize other cloud storage
sites as target cloud storage sites 115 that may be used as
additional tiers of storage that provide extensible storage
capacity.

Dec. 30, 2010

0316. An operator of the object store 2250 may charge the
user of a client 2202 and/or associated entities (e.g., the
employer of a user, or another operator or owner of the client
2202) on a subscription basis, volume basis, a mixed sub
Scription/volume basis, or another pricing structure. For
example, an operator may charge a monthly Subscription fee
to a company for unlimited uploads and downloads to an
object store performed by its associated users or clients, so
long as the total amount of data stored within the data store at
any time during a month does not exceed a certain limit.
0317. As another example, an operator may employ a vol
ume pricing scheme and charge an entity whena user or client
that is affiliated with the entity performs various actions using
the data store 2250. The operator may charge an entity a first
rate for each unit of data uploaded to the site, and/or a second
rate for each unit of data stored in the site for a unit of time (the
rate may vary by the type of data cloud storage site used to
store the data) and/or a third rate for conducting a content
based search of data stored therein that retrieves information
about various objects (e.g., file name, user name, content
tags), a fourth rate for conducting a collaborative search
operation upon data stored therein, and/or a fifth rate for each
unit of data retrieved and/or restored and served back to a
client. As a third example, an operator may charge a flat
monthly Subscription fee to keep a user's account active and
additionally charge one or more Volume-based rates when the
user performs various actions using data store 2250.
0318 FIG. 22 is a block diagram illustrating components
of the object store 2250. As shown in FIG.22, the object store
2250 may comprise a storage manager 105, one or more
object server nodes 2208, one or more secondary storage
computing devices 165, one or more deduplication databases
297, and one or more SS indices 261. An object store 2250
may be communicatively coupled to clients 2202 over a net
work such as a LAN, MAN, WAN or other network. Clients
2202 may differ from the clients 130 shown in FIG. 1 in that
they may not run a dedicated data agent 195 and/or network
client agent 255 configured to communicate with the object
store 2250, but instead communicate using existing client
based software components, such as LAN protocols (e.g.
Ethernet, SCSI, etc.), WAN protocols (e.g., FTP/HTTP), etc.
An object store is communicatively coupled via its secondary
storage computing devices 165 to cloud storage sites 115,
including various cloud storage sites 115A-N, either via
LAN, WAN, etc.
0319. As shown in FIG.22, each object server node 2208
may comprise an object server agent 2210, an ingestion data
base 2212, and a primary data store 2214. An object server
agent 2210 may be built on Linux for performance and to
make it economical to Scale the number of object server nodes
2208 as needed. An object server agent 2210 provides a REST
interface or other web-based interface to clients 2202 to write,
read, retrieve, and manipulate data ingested by the object
server node 2208, and stored therein or in associated second
ary cloud storage sites 115.
0320 Each object server agent 2210 exposes one or more
sub-clients of an object server node 2208. Sub-clients are
containers on which default storage policy parameters may be
set to dictate the handling or management of data within that
container. Individual object-level parameters that a user
specifies and provides along with a file/object could option
ally override these defaults parameters. Within each sub
client, a number of storage sites can be created, each of which
corresponds to a logical point of data ingestion via the REST

US 2010/0332401 A1

interface, and may correspond to a particular cloud storage
site (e.g., a URL or web directory dedicated to a cloud storage
site serving a particular customer or company). Object store
2250 may maintain a system-level (and/or tiered node-level)
file system of all data stored within the object store 2250
and/or associated storage devices (cloud storage sites 115).
However, object store 2250 may expose to each particular
client (or a particular customer or company) only the Subset of
the larger file system that corresponds to the client's objects
(or a customer's or company's objects). As described herein,
object store 2250 may implement these effectively separate
file systems in part by utilizing Access Control Lists and/or
Access Control Entries.

0321. As an example, a cloud vendor who operates an
object store 2250 might assign an entire sub-client to a Web
2.0 customer, who in turn might partition it up into several
sites and allocate one to each of its customers. More object
server nodes 2208 can be added to the system to scale up the
capacity of the object store 2250 and its ability to respond to
storage operation requests, while still preserving the ability to
address any given site's namespace in the same way. The
particular object server node 2208 utilized for the storage of a
certain file may be chosen on the basis of the file type and/or
other characteristics of the file (e.g. the type of application
that created the file). Thus, certain object server nodes may be
specific to types of applications (e.g. text-based applications
Such as word processing applications on one node, image
based applications such as digital image applications on a
second node, audio-based applications on a third node, video
based application on fourth node, etc.) As another example,
various object server agents 2210 and/or various sub-clients
within an object server agent 2210 may each be configured to
each handle a different type of object; for example, a first
object server agent 2210 may be configured to handle docu
ments, a second object serveragent 2210 configured to handle
email objects, and a third configured to handle media objects,
Such as image files and video.
0322. Object server agents 2210 run a web server (such as
an Apache or Microsoft IIS web server) and expose a REST
interface or other web-based interface to clients 2202. The
object server agents 2210 provide data ingestion or upload
points to the object store 2250 for each storage site within
each sub-client. Data ingested from a client 2202 by an object
server agent 2208 may be temporarily stored, cached, or
spooled on a primary data store 2214.
0323. An ingestion database 2212 records information
about each data objectingested by its associated object server
node 2208, such as an associated URI or other token that
identifies the particular data object, the sub-client and/or site
associated with the object, the client 2202 and/or user asso
ciated with the object, the time the object was created within
the data store, the location(s) of instance(s) of the data object
within a primary data store 2214 and/or cloud storage sites
115, location(s) of deduplication and/or content indexing
information pertaining to the object (e.g., deduplication data
base(s) 297 or SS indices 261 having related information),
metadata (including security metadata), default and/or
object-level storage policy parameters (such as parameters
affecting retention, security, compression, encryption, and
content indexing), and an identifier (e.g., a hash). In some
examples, the ingestion database may also store content
information within the ingestion database 2212 to provide
content indexing capability at the object server node. In some
examples, the ingestion database 2212 schema comprises

34
Dec. 30, 2010

tables for sites (e.g. registered sites), security (e.g., document
orfolder-level security information), objects (or documents),
document or object versions, document or object version
audit information, deleted document or object versions, Stor
age locations, a document or object cache, and/or archFil
eReferences. In one example, the ingestion database 2212 is
implemented using PostgreSQL, but other examples utilize
Oracle, OpenLink Virtuoso, or a similar database manage
ment system.
0324. As described previously, data ingested by the object
server agent 2210 may be temporarily stored, cached, or
spooled on the primary data store 2214. In one implementa
tion, an ingestion process at the object server node 2008 may
run on a prescribed schedule (according to a schedule policy
described previously) to process data stored in primary data
store 2214. Using policy parameters, metadata, and/or other
information stored in ingestion database 2212, the object
server node 2208 may form logical groups of data objects and
request that a secondary cloud storage computing device 165
copy or migrate each logical group of data objects into an
archive file or other type of secondary storage format via a
secondary storage computing device 165; each data object in
the group is stored in association with related metadata (in
cluding Access Control List data and/or other security-related
data). Logical groups typically comprise objects having simi
lar retention policies (e.g., similar secondary storage media
requirements, similar retention times) and/or similar object
types (e.g., all objects in the group are emails; all objects were
created using the same application). Logical groups may be
formed by applying additional and/or different criteria, Such
as groups reflecting specific ingestion site(s), user(s) associ
ated with the object, or a company or entity associated with
the object. Logical groupings may also be based on policy
parameters provided by a client or customer of the object
store. Thus, a customer of the object store may provide policy
parameters that dictate the logical groupings used. For
example a customer might specify that they want a new logi
cal grouping for each back-up cycle performed on their data.
As another example, a customer of an object store may
specify that they do not want their data commingled with the
data of other customers (e.g. the system may consolidate all of
that customers data for a particular job or back-up cyclef
window to be stored in new containers for that job/cycle/
window). In some implementations, an object server node
2208 (or secondary storage computing device 165) may
divide objects into sub-objects (as described previously),
form logical groups of data Sub-objects, and copy or migrate
logical groups of data Sub-objects.
0325 As a first example, an object server node 2208 may
query an ingestion database 2212 to identify all recently
ingested email objects currently stored in primary data store
2214. Object server node 2209 may then request a secondary
storage computing device 165 to process this group of email
objects into an archive file stored on a particular cloud storage
site 115. As another example, an object server node 2208 may
query ingestion database 2212 to identify all recently
ingested objects that are to be stored for 7 years on high
quality tape storage. Object server node 2208 may then
request a secondary storage computing device 165 to process
this group of objects into an archive file stored on a cloud
storage site 115 that provides suitable tape storage.
0326 Unless explicitly proscribed by applicable storage
policy parameters, an object server node 2208 may form a
logical group that includes data objects from various clients

US 2010/0332401 A1

2202, each of whom may utilize a different cloud storage site
and/or may be affiliated with different entities. In one illus
trative example, clients 2202A1, 2202A2 are affiliated with a
Company A and both utilize a first storage site on a first
sub-client of a first object server node 2208. Clients 2202B1
and 2202B2 are affiliated with a Company B and both utilize
a second storage site also hosted on the first Sub-client of the
first object server node 2208. Assuming the default storage
policy parameters of the first sub-client specify that email
messages are to be retained on tape for 1 year, then all email
objects ingested from all four of these clients may be com
mingled in a logical group and then stored in a commingled
fashion within a single archival tape file scheduled for a one
year retention period. The only email objects from these
clients that would not be so stored are individual email objects
that are associated with different user-specified storage policy
parameters (e.g., if a user specified that emails related to or
from the finance department should be stored in cloud storage
(not tape) and/or stored for a 7 year retention period (not a 1
year period)).
0327 In some implementations, when a secondary storage
computing device 165 receives a request to process a logical
group of data objects and the metadata associated with these
objects, it may handle the request in accordance with the
process of FIG. 3B. That is, the secondary storage computing
device 165 may content index each object in the group, per
form object-level, sub-object level and/or block-level dedu
plication on the group, and/or encrypt the data and metadata.
As a result of the processing, the secondary storage comput
ing device 165 will also store each of the various objects in
logical association with its related metadata (including ACL
or other security metadata). During this process, described
previously, the secondary storage computing device 165 may
build indexing information within a content index or another
index (e.g., SS index 261) and/or deduplication information
(e.g., within deduplication database 297). By storing objects
with similar retention policies in logically grouped archival
files, the system may efficiently prune or eliminate data from
the object store 2250 and/or more efficiently perform ILM
within the Object store 2250, since the various objects within
each archival file may have similar dates for deletion or
migration.
0328. During the deduplication processing of a logical
group, the secondary storage computing device 165 may per
form lookups on one, some, or all of the deduplication data
bases 297 within the object store 2250. In one example,
during deduplication, a secondary storage computing device
165 only performs lookups on one deduplication database
297, which may decrease the time required for deduplication
(and/or pruning and/or data restoration) but increase the Vol
ume of data stored within the data store. In another example,
during deduplication, a secondary storage computing device
165 performs lookups on all deduplication databases 297
within an object store 2250, which may increase the time
required for deduplication (and/or pruning and/or object res
toration) but decrease the volume of data stored within the
data store.

0329. Note that deduplication of data objects in a logical
group may occur across clients 2202 and/or across various
companies. Returning the prior example, if client 2202A1
and client 2202B2 (from two different companies) both
receive a particular email message and associated large
attachment, secondary cloud storage site 165 may store only
one instance of the email data object and attachment (al

Dec. 30, 2010

though it stores and associates the instance with two different
sets of metadata, one set for client 2202A1 and one set for
client 2202B2). Thus, by storing data received from multiple
clients, even associated with different and independent com
panies, the system can realized greater deduplication over
what either client would realize individually. Once cross
client or cross-company deduplication occurs, if a particular
client or company requests the deletion of a shared object (or
shared sub-object or block), the system will not necessarily
delete the physical copy of the shared object (or sub-object or
block). Instead, the system may simply update one or more
indices or databases such as a deduplication database (e.g., by
removing a link, URL or other pointer to a physical copy),
delete the file name from a file allocation table (FAT) or
similar file system data structure, etc. In this way the client or
customer who “deleted the object no longer has access to the
object and no longer sees the object as part of the file system
that is exposed to them by the object store.
0330. Additionally in this example, under the deduplica
tion processes described previously, even if the two identical
email objects were ingested by an object server node 2208 at
different times (e.g., a month apart), when a second copy
eventually reaches a secondary storage computing device
165, it still might not resultina second instance being created.
This result occurs because during the deduplication process,
a deduplication module 299 on a secondary storage comput
ing device 165 might detect an instance of the object in a
deduplication database 297. However, the system may alter
natively determine that the first version, while identical, is too
old and could have been stored on storage medium that may
be degrading, and thus the system may store the second ver
sion it receives years later.
0331. As described previously, when a media file system
agent 240 performs the process shown in FIG. 3B it will
typically result in the storage of one or more aggregated or
containerized archive files. The individual data objects of a
logical group are not stored as individual files on a file system
of a cloud storage site 115. As described previously, by con
tainerizing data, the object store 2250 may thus reduce the
limitations posed by file system scalability by reducing the
strain on the namespace of the object store 2250. The genera
tion of these archive files also generates catalogs (e.g., dedu
plication databases 297, SS indices 261, and/or other infor
mation) that makes it easier to access, search for, retrieve, or
restore a single object even from the aggregated archive form.
Further details on archive files may be found in the assignee's
U.S. Patent Publication No. 2008-0229037, filed Dec. 4,
2007, entitled SYSTEMS AND METHODS FOR CREAT
ING COPIES OF DATA, SUCH ASARCHIVE COPIES.
0332. When a client 2202 or application running on a
client 2202 checks in or stores an object into an object store
2250, an object server node 2208 may serve it a unique
Universal Resource Identifier (“URI) or token that points to
or identifies the object, which the client 2202 or application
may store locally on the client side. This token or URI may be
globally unique to all objects within the object store 2250.
Alternatively, it may be unique with respect to all objects
stored by a single client 2202, ingested by a particular object
server node 2208, sub-client and/or site, and/or unique with
respect to another factor. In this way, the URI in conjunction
with other information (e.g., a user's login information) may
still uniquely identify a particular data object.
0333. To provide verification to a user of the integrity of
files stored in an object store 2250, an object store can option

US 2010/0332401 A1

ally generate a unique identifier Such as a hash (or probabi
listically unique identifier) using a particular identifier-gen
eration algorithm for each data objectingested and return that
identifier to a calling application on a client 2202 at the time
of ingestion. When an application on the client 2202 later
retrieves the same data object, a client-side application can
use the same identifier-generated algorithm to compute a
hash for the retrieved object. If this newly computed identifier
matched the identifier returned during ingestion, it would
assure the client that the data object had not been modified
since it was originally ingested. In addition, an object store
2250 may run similar periodic data verification processes
within the object store 2250 asynchronously to ensure the
integrity of the data stored therein. Further details may be
found in the assignee's U.S. Patent Publication No. 2009
0319534, filed Jun. 24, 2008, entitled APPLICATION
AWARE AND REMOTE SINGLE INSTANCE DATA
MANAGEMENT (Attorney Docket No. 60692-8057US).
0334 Optionally, data objects may be ingested inline into
multiple archive files on separate object server nodes 2208
(for redundancy or other reasons). Also, in one example,
geographically separate replication may be configured per
cloud storage site, which allows the system to serve up objects
from a remote location (which may include continuous data
replication technology), for fault tolerance (because separate
power grids, long-haul communication links, etc. would be
used), etc.
0335 An object store 2250 may also optionally make a
copy of data on removable media such as tape to enable secure
offline storage. Alternatively or additionally, an object store
may make secondary disk copies to disaster recovery (DR)
locations using auxiliary copy or replication technologies as
noted herein.

0336 Each site within an object store 2250 may be pro
tected via security policies that limit which users or clients
2202 have access to the site (and/or to particular objects
stored within the site). As described previously, a system may
include mechanisms to permit authentication (e.g., by the use
of registered username and password combinations and/or
similar known authentication methods). A system may also
enable customers to specify and store access privileges,
including privileges for object access within the object store
2250. As described previously, user-level security and other
metadata may be provided and stored along with the object.
0337 For example, an object may be stored with a pro
vided ACL containing Access Control Entries (ACE). An
ACL contains a list of users and/or groups that are allowed to
access a data object, type of data object, or resource contain
ing a data object. Each ACE may specify a user, group, or
other entity that has access to the data object associated with
the ACL. In some embodiments, an ACL may contain a list of
users or groups that are specifically denied access to a data
object. To implement user-level security, whena user, system,
or process attempts to access a data object on an object store
2250 (or related information or metadata, such as a file name),
the object store 2250 may access and parse an ACL and any
associated ACEs or other security data related to the data
object to determine whether the user has the appropriate
access level to access the object or its related information.
Further details on Such security and access control may be
found in the assignee's U.S. Patent Publication No. 2008
0243855, filed Mar. 28, 2008, entitled SYSTEM AND
METHOD FOR STORAGE OPERATION ACCESS SECU
RITY (Attorney Docket No. 60692-8042US1).

36
Dec. 30, 2010

0338 When an application running on a client 2202
requests the retrieval of a data object stored in the object store
2250, the client may presenta URI (or other token) back to the
object server node 2208. Before the object server 2250
returns the data object (and/or provides other related infor
mation or metadata to the user, such as the file name of the
data object), the object server (e.g., via the object server agent
2210) may parse the ACL or other security information to
confirm that returning the object (or providing other informa
tion) is in conformance with the object's security settings
and/or previously defined policies stored in the storage man
ager. If the user of the client 2202 is properly authenticated,
and the user has sufficient access rights to the object (as
determined by the ACL or other security information stored in
conjunction with the object), the user will be able to retrieve
the data object. In this manner, the object store 2250 ensures
sufficient privacy between various clients 2202A1, despite
the fact that their objects may be commingled in the primary
data store 2214 and cloud storage sites 115.
0339. A web-based portal may be provided by the object
store to readily allow a user to authenticate interactively and
browse, view, and restore their data as well. For example, a
web-based portal may permit a user to log on to the system,
and may then present a user with an interface that presents to
them various data objects associated with the user. For
example, it may present objects that were ingested from the
user's client 2202, and/or objects ingested from some clients
from the user's entity, and/or objects associated with a col
laborative search in which the user is a participant. The inter
active interface will also support search capabilities, end-user
tagging of data, and the ability to classify data into folders
(“review sets’) for future reference.
0340 Data indexing capabilities, described above, may be
incorporated into an object store 2250 to permit policy-based
searches of content or other information relating to data
objects, that have been indexed. Such data indexing and clas
sification permits the object store 2250 to offer “active man
agement of the data to an administrator of the system. For
example, an administrator can define the actions to be per
formed on databased on criteria pertaining to the data—e.g.,
tag, check into an ECM System, restore into a review set for a
knowledge worker to review later, etc. In one example, index
ing capabilities may also permit users to conduct collabora
tive searching and collaborative document management of
objects within the object store 2250 as described previously.
(0341 Object Store Methods
0342. In one implementation, an object store 2250 may
avoid the system costs associated with uploading and storing
an unnecessarily duplicative copy of an object during a data
storage request by a client 2202. FIG. 23 shows a first process
2300 for managing a request to store an object within an
object store 2250, including apportioning the storage cost of
the object. The process 2300 may result when a calling appli
cation on a client 2202 requests that an object server agent
2210 store a particular object.
(0343. The process 2300 begins in block 2305 where an
object server node 2208 receives an identifier (e.g., a token,
URI or hash) for an object and metadata associated with the
object (including, e.g., object-level security, content tags,
and/or storage policy parameters). For example, a calling
application on the client 2202 may generate a hash identifier
for an object and send that identifier to object store 2250 along
with metadata. At optional block 2310 the object server node
2208 performs a lookup of the received identifier in one or

US 2010/0332401 A1

more deduplication database(s) 297 to ascertain whether the
object has already been ingested and processed by object
store 2250 (or ingested or processed by particular object
server node(s) 2208, particular storage site(s), or particular
secondary storage computing device(s) 165. Such as those
secondary storage computing device(s) 165 associated with a
particular object server node 2208). Alternatively or addition
ally, an object server node 2208 performs a lookup of the
received identifier in one or more ingestion databases 2212
within data store 2250 to ascertain whether the object has
already been ingested by object store 2250 (or ingested by
particular object server node(s) 2208, particular sub-client(s),
or particular storage site(s)). Alternatively or additionally, the
object server node sends the received identifier to one or more
cloud storage sites to see if a copy of the object has already
been stored therein.
0344. At optional decision block 2315, the system uses the
information acquired at block 2310 to determine if the system
currently has the object stored in a manner that is consistent
with the storage policy parameters applicable to the object. If
it does, the process proceeds to block 2355, otherwise it
proceeds to block 2320. For example, if the system has only
one copy of the object stored in tape storage, but the calling
application on the client 2202 has specified that the object
should be stored on disk storage, the process may proceed to
block 2320.
(0345. If object store 2250 already has the object stored in
an appropriate manner, at block 2355, the object server node
2208 updates deduplication database 297 to reflect how the
new request refers to previously stored blocks. For example,
the system may increase reference counts in a primary block
table and may add additional entries to a secondary block
table within deduplication database 297 to reflect how the
new request refers to previously stored blocks. In some imple
mentations, the system may additionally or alternatively
update an object-level deduplication database 297 (e.g., by
incrementing an object-level reference count in an object
level index within the deduplication database).
(0346. At block 2355, the object store 2250 may not request
a new copy of the object, saving the time and system cost
associated with uploading the object anew, and may instead
simply update a deduplication database 297. For example, if
a cloud storage site already has a copy of an object stored
therein, at step 2355, the object store may add a link or URL
to a previously stored copy in the deduplication database 297
and/or elsewhere. The process then proceeds to block 2325.
(0347 If optional blocks 2305-2315 are not performed by
the system, the process begins instead at block 2320.
(0348. At block 2320, object server node 2208 requests the
object from client 2202. If object server node 2208 has not
already received metadata, it also requests metadata from
client 2202 at block 2320. The process then proceeds to block
2325. Alternatively, if at decision block 2315, the object
server node 2208 determines that the object store 2250 cur
rently has the object in storage, but it is stored in a manner that
is inconsistent with applicable storage policy parameters,
object server node 2208 may instead retrieve or request a copy
of the object from another system component (e.g., a primary
data store 2214 or a cloud storage site 115) and if necessary,
request metadata from client 2202.
(0349. At block 2325, after receiving the object and/or its
metadata, the system stores these in the primary data store
2214. If object store 2250 already has a copy of the object
stored in an appropriate manner, at block 2325 the system

37
Dec. 30, 2010

may store one or more pointers, links, or references to the
object and/or its constituent blocks (e.g., a pointer to a dehy
drated instance of the object within object store 2250 or cloud
storage site 115, or a pointer or reference to an entry in a
deduplication database 297) in the primary data store 2214
instead of storing a copy of the object. At block 2325, an
object server node 2208 may also generate a URI for the
object, update an ingestion database 2212 to reflect informa
tion about data object (as described previously), and may
return a URI or other token to client 2202. Additionally or
alternatively, an object server node 2008 may also generate
and return an identifier (e.g., a hash) for the object to provide
later validation to the client 2202. Object server node 2208
may also store an identifier for the object in ingestion data
base 2212 and/or deduplication database 297.
0350. At block 2330, during a scheduled ingestion process
described previously, object server node 2208 may associate
the object (and its metadata) with a logical group of objects
(logical groupings are described further herein). Object
server node 2208 may further request a secondary storage
computing device 165 to process the logical group by copying
or migrating each logical group of data objects into a com
pressed, deduplicated or “dehydrated archive file that may
employ data structures such as those shown in FIGS. 5 and 8.
0351. At block 2335, a secondary storage computing
device 165 performs content indexing of the object in the
manner described previously with respect to FIG. 10. At
block 2340, a secondary storage computing device 165 per
forms deduplication of the object using one or more of the
deduplication methods and data structures described previ
ously. In one example, deduplication may be file or block
level deduplication. In other examples, the deduplication may
be object-level or sub-object level deduplication. During
deduplication at block 2340, the system may perform lookups
on or otherwise examine one, several, or all deduplication
databases 297 within object store 2250 to determine the num
ber of instances of the object that are currently stored and/or
the number of instances of each block in the object that are
current stored. Thus, the scope of deduplication within an
object store 2250 may be quite limited or quite broad. In one
example, a deduplication process only utilizes deduplication
databases 297 associated with the same object server node
2208 that received or ingested the object. A deduplication
database 297 is associated with an object server node 2208 if
the deduplication database has any entries reflecting a storage
operation initiated by the same object server node 2208.
0352. At block 2345 the system stores a dehydrated form
of the object within an archive file, which may also comprise
data relating to any orall of the objects in the logical group. As
illustrated previously, the precise dehydrated form of an
object within an archive file will depend on the type of dedu
plication performed and whether some or all of the object's
content had previously been stored. For example, if block
level deduplication is performed upon the object and a prior
instance of the object was already appropriately archived, the
dehydrated form of the object may be represented within the
archive file by metadata and one or more pointers or similar
references. For example, during deduplication, if a cloud
storage site already has a copy of an object stored therein, at
step 2345, the object store may store in a container file, a link,
URL or other pointer to a previously stored copy. If instead,
block-level deduplication is performed upon the object but a
prior instance of the object was not already appropriately
archived, the dehydrated form of the object within the archive

US 2010/0332401 A1

file may comprise metadata, pointers/references to some
blocks stored previously, and new copies of some other
blocks within the object.
0353 At optional block 2360, the system may apportion
the cost of storing the object between one or more clients or
their related entities. Stated conversely, at block 2360, the
system may attempt to apportion any cost savings resulting
from the avoidance of unnecessary storage within the data
store and/or unnecessary uploads to the object store 2250. For
example, if two different clients 2202 from two different
companies both request that an object store 2250 provide
storage of the same data object, the two companies may
receive adjusted pricing for their requests to reflect the cost
savings realized by the system during deduplication. As
described previously with respect to FIG.22, in the event that
some or all of the blocks of the data object were previously
stored appropriately within the storage operation cell 2250,
the deduplication at block 2340 may reduce the amount of
data needed to process a new request to store the same data
object. Thus, block 2340 may reduce the amount of data
storage needed to accommodate a storage request. Addition
ally, if the system performs the optional identifier lookup
shown in blocks 2305-2315 and the process proceeds to block
2355, the system avoids the cost of receiving the data object
(e.g., ingestion bandwidth of an object server agent 2210 used
and/or the system resources needed to transfer the object into
and out of a primary data store 2214).
0354) To apportion cost savings, the system may utilize or
mine the data stored in deduplication databases 297, SS index
261, management index 211, and/or ingestion databases
2212. As described previously, these databases correlate cli
ent 2202 information with data ingested into and stored by the
object store 2250, such as the time of creation, deduplication
information, deletion dates, and storage locations. Thus, the
system may use these databases to determine which storage
requests initiated by a particular client 2202 were processed
via direct ingestion of an object from the client 2202, in
contrast to those storage requests initiated by the client that
were able to utilize previously stored instances of an object or
Some of its blocks. Such a determination permits the system
to determine where cost savings have occurred. When appor
tioning costs, the system may utilize a sliding ratio that is
selected using criteria Such as the size of a shared data object,
the quantity and/or quality of total data stored on the object
store by a particular company or client, the terms of a service
contract or agreement between a particular company and an
operator of an object store, the storage policy for the com
pany, and/or any other Suitable criteria.
0355. In one example, a first client 2202A associated with
a first company uploads a new object to an object store 2250,
and later a second client 2202C associated with a second
company sends an identifier (hash) of the same object to the
object store and requests storage of that object. In this
example, a second upload of the object itself may be avoided
(i.e., the process of FIG. 23 proceeds to block 2355) and a
second copy of the object within the object store 2250 may be
avoided. In this example, the system may initially charge the
first company a first non discounted rate for the upload of the
object (e.g., a rate based on its size) and a second non dis
counted rate for the storage of that object (e.g., a rate based on
the object's size and the duration and quality of storage used
to store it). At a later time, the system may charge the second
company a third discounted rate for their requested upload of
the object (e.g., a rate based on its size) and a fourth dis

Dec. 30, 2010

counted rate for the storage of that object (e.g., a rate based on
the object's size and the duration and quality of storage used
to store it).
0356. Additionally or alternatively, the first company may
receive a creditor rebate to its account to reflect some or all of
the cost savings realized from avoiding a second upload; this
credit or rebate may be for an amount that is different from
(e.g. less than) the second client's third rate. Additionally,
after the second client requests storage, so long as both the
first and second clients have effective access to the data object
(e.g., their “virtual copy’ of the object has not been elimi
nated due to a retention policy and the client has not requested
its deletion), one or both companies may receive a discounted
or reduced storage rate. For example, the first company may
receive a storage rate lower than the second non-discounted
rate that was originally charged.
0357. In a second example, a first client 2202A associated
with a first company uploads a first object that is new to the
object store 2250, and later a second client 2202C associated
with a second company sends an identifier (e.g., a hash) of a
similar second object and requests storage of the object. A
second object is similar to a first object if it shares one or more
blocks in common with the first object. In this example, a
second upload of the object itself is not avoided (e.g., the
process proceeds to block 2320), since the two objects have
different identifiers. However, block-level deduplication
(e.g., at block 2340) may reduce the amount of new data
needed to store the second object. After the second client
requests storage, so long as both clients have effective access
to the common blocks (e.g., their “virtual copy’ of the blocks
has not been eliminated due to retention policies and the client
has not requested deletion), one or both of the two companies
may receive a reduced storage rate for the common blocks.
0358. In a third example, cost apportionment is not tied to
aparticular storage request, but rather occurs in an aggregated
way. For example, the system may periodically (e.g.,
monthly) determine what percentage of blocks uploaded
directly from a first company's clients 2202 are referenced by
another company's deduplication database entries. The sys
tem might then provide a rebate to the first company's
account, offer lower rates to the first company for another
future period (e.g., the next month), apportion costs that
month between the two companies so that each company's
bill is less that what it would have been if each had stored its
own copy, etc.
0359. In a second implementation, an object store 2250
may avoid the system costs associated with uploading and
storing unnecessary duplicate copies of data blocks when
processing a data storage request by a client 2202. FIG. 24
shows a second process 2400 for managing a request to store
an object within an object store 2250, including apportioning
the storage cost of the object. The process 2400 of FIG. 24 is
similar to process 2300 of FIG. 23, however, in process 2400,
the system may avoid the costs associated with uploading
redundant blocks, not just redundant objects, by performing
block-level deduplication at substantially the same time as
data ingestion. In this implementation, during process 2400
the system may cache or store a logical group of objects in an
archive file stored in the primary data store 2214 that reflects
a dehydrated form of the objects (i.e., an archive file that
utilizes data structures similar to those shown in FIGS. 5 and
8). Later, during a scheduled ingestion process, the archive
file may be transferred or copied to one or more secondary
cloud storage sites 115.

US 2010/0332401 A1

0360 Alternatively, during process 2400, the object store
2250 may write a dehydrated form of data objects directly to
an archive file located in a secondary data store 115 by uti
lizing secondary storage computing device 165. As described
previously, an archive file may comprise one or more Volume
folders 802 that further comprise one or more chunk files 804,
805. The chunk folders may further comprise one or more of
each of the following: metadata files 806, metadata index files
808, container files 810, 811, and container index files 812.
0361. The process 2400 begins at block 2405, where the
system receives object metadata, identifies a logical group,
and identifies an archive file for storing a dehydrated form of
the object. At block 2405, the system may identify a logical
group for the object by using the received metadata (e.g.,
reflecting the type of object, the storage policy parameters,
and/or security information), and/or other information (e.g.,
the identity of the client 2202 making the storage request) to
identify a logical group of objects having similar storage
policy parameters, similar object types, and/or other similari
ties. Once a logical group is identified, the system identifies
an archive file utilized by the system to store the logical group
in a dehydrated form. The archive file may be located in
primary data store 2214 or on a secondary cloud storage site
115. If a suitable archive file does not already exist in primary
data store 2214 (e.g., because archive files were recently
migrated from primary data store 2214 to secondary cloud
storage sites 115), the system may create a new archive file in
primary data store 2214 for the logical group. Alternatively,
the system may create a new archive file in a secondary cloud
storage site 115 for the logical group.
0362. At optional blocks 2407-2415, the system receives
an object identifier and performs a lookup of the object in
deduplication database(s) 297 to determine whether the
object store 2250 already has a copy of the object appropri
ately stored within the object store. Blocks 2407-2415 are
performed in the same manner as blocks 2305-2315
described previously with respect to FIG. 23. If optional
blocks 2407-2415 are not performed, the process 2400 pro
ceeds directly to block 2435.
0363 Ifat decision block 2415 the system determines that
object store 2250 does have a copy of the object appropriately
stored therein, then at block 2420 the system updates one or
more deduplication databases 297 to reflect how the identified
archive file refers to previously stored blocks. For example,
the system may increase reference counts in a primary block
table. As another example, the system may add additional
entries to a secondary block table within deduplication data
base 297. For example, if a cloud storage site already has a
copy of an object stored therein, at step 2415, the object store
may add in a deduplication database 297 and/or elsewhere,
links or URLs to previously stored blocks. At block 2425, the
system may content index the object. To do so, the system
may associate the new storage request with content indexing
information previously derived and/or associate the new stor
age request with metadata provided. Alternatively or addi
tionally, the system may restore all or part of the data object
using the processes described previously and content index a
restored data object and/or a restored portion of the data
object. The system may store some or all of the content index
information in the SS index 261 and/or ingestion database
2212. The process then proceeds to block 2430.
0364. At block 2430, the system updates the identified
archive file to reflect the storage request. To do so, the system
may (1) add the received metadata to a metadata file (2) add

39
Dec. 30, 2010

links, references, or pointers within the metadata file that
point or refer to previously stored blocks, and (3) update a
metadata index file. If all of the blocks in the object were
previously stored in an appropriate manner, the system may
not need to add any additional blocks to a container file. For
example, ifa cloud storage site already has a copy of an object
stored therein, at step 2345, the object store may store in a
metadata file, metadata index file, or another container file,
links or URLs to previously stored blocks.
0365. If optional blocks 2407-2415 are not performed or

if, at decision block 2415, the object store does not have a
copy of the object appropriately stored therein, the process
proceeds to the loop shown at block 2450, where the system
performs blocks 2440-2470 for each block within the object.
At block 2440, the system receives a block identifier. At
decision block 2445 the system determines if the system
already has an appropriately stored copy of the block by
querying one or more deduplication databases 297. During
block 2445, the system may perform lookups on or otherwise
examine one, several, or all deduplication databases 297
within object store 2250 to determine the number of instances
of the block that are appropriately stored. Alternatively or
additionally, the system sends the received block identifier to
one or more cloud storage sites to see ifa copy of the block has
already been stored therein. Thus, the scope of block-level
deduplication within an object store 2250 may be limited or
broadened.
0366. If the system does have a copy of the block appro
priately stored, then the system at block 2450 updates dedu
plication databases 297 to associate the current storage
request with that block. For example, the system may incre
ment a reference count in a primary block table and add an
additional entry to a secondary block table. The process then
continues to block 2455, where the system updates the iden
tified archive file by (1) adding received metadata to a meta
data file and/or (2) adding a link, reference, or pointer within
the metadata file that points or refers to a previously stored
copy of the block. For example, if a cloud storage site already
has a copy of a block stored therein, at step 2325, the object
store may add in a metadata file or another container file, a
link or URL to a previously stored copy. The process then
proceeds to decision block 2470.
0367 If the system does not have a copy of the block
appropriately stored therein, then the system proceeds to
block 2460, where the system requests a copy of the block
from the client 2202. Once the block is received, at block
2465, the system stores the block in a container file within the
identified archive file and otherwise updates the archive file.
For example, the system may update a metadata file 806 with
a link to the newly stored block and with received metadata.
The system may further update deduplication databases 297
by adding a new entry to a primary block table and/or adding
an additional entry to a secondary block table.
0368. As shown at decision block 2470, the sub-process of
blocks 2440-2465 repeats so long as there are additional
blocks within the object that require processing by the sys
tem

0369. The process 2400 then proceeds to block 2475,
where the system content indexes the object. During content
indexing, the system may simply index the object using
received metadata (e.g., using content tags provided as meta
data by a user). Alternatively or additionally, the system may
restore all or part of the data object using the processes
described previously and content index a restored data object

US 2010/0332401 A1

and/or a restored portion of the data object. The system may
store some or all of the index information in the SS index 261
and/or ingestion database 2212 before proceeding to block
2480.

0370. At block 2480, the system updates ingestion data
base 2212 to reflect the processed storage request and
received metadata, and returns a URI to the requesting client
2202.

0371. At optional block 2485, the system may apportion
costs among clients or their related entities in a manner simi
lar to that described previously with respect to FIG. 23. When
apportioning costs, the system may utilize a sliding ratio that
is selected using criteria Such as the size of a shared data
object/block, the quantity and/or quality of total data stored
on the object store by a particular company or client, the terms
of a service contract or agreement between a particular com
pany and an operator of an object store, storage policy
requirements, and/or any other Suitable criteria. In one
example, a first client 2202A associated with a first company
uploads a first object that is new to the object store 2250, and
later a second client 2202C associated with a second company
sends an identifier (e.g., a hash) of a similar second object and
requests storage of the object. The second object is similar to
a first object because it shares a set of blocks in common with
the first object. In this example, via the process 2400 shown in
FIG. 24, a second upload of the common blocks is avoided.
Furthermore, block-level deduplication (e.g., at blocks 2440
2465) may reduce the amount of new data needed to store the
second object. In this example, the system may initially
charge the first company a non discounted first rate for both
the upload of the object (e.g., based on its size) and a non
discounted second rate for the storage of that object (e.g.,
based on the object's size and the duration and quality of
storage used to store it). Atalater time, the system may charge
the second company a reduced third rate for its request to
upload the object to reflect cost savings realized by avoiding
a second upload of common blocks. Additionally or alterna
tively, the first company may receive a credit or rebate to its
account to reflect Some or all of the cost savings realized from
avoiding a second upload; this credit or rebate may be for an
amount that is different from the second client's third rate or
discount. After the second client requests storage of the sec
ond object, so long as both clients have effective access to the
common blocks (e.g., their "virtual copy’ of the common
blocks has not been eliminated due to retention policies and
the client has not requested deletion of an associated object),
one or both of the two companies may receive a reduced
storage rate for the common blocks.
0372 Process for Cost-Balancing Cloud Storage
0373 FIG.27 is a flow diagram illustrating a process 2700
for identifying Suitable storage locations for a set of data
objects subject to a storage policy. Process 2700 may be
performed by the systems of FIGS. 1, 2, 15, 16, 21, and 22
and/or other suitable systems. The process 2700 begins at
block 2705 when the system accesses the storage policy
applicable to the set of data objects. This storage policy may
define different classes of storage devices 115. For example,
the storage policy might define “first-class storage' as any
local storage device having magnetic disk or otherwise faster
access storage media and a first cloud storage site that satisfies
certain criteria (e.g., has high bandwidth for faster uploads
and/or downloads and/or utilizes RAID or similar methods
that improve the fault-tolerance of the site), and “second
class storage' as a second cloud storage site that may have

40
Dec. 30, 2010

greater latencies or lower fault-tolerance and any local Stor
age device having magnetic tape or otherwise slower data
storage. Additionally, the storage policy may also define dif
ferent categories of data objects (e.g. functional categories
Such as email objects, audio objects, video objects, database
objects, document objects, etc.) and may require different
classes of storage for each.
0374. At block 2710, the system logically groups the vari
ous data objects and determines the storage requirements of
each group. Typically the system groups the set of data
objects so that each group requires a particular class of Stor
age. However, the system may group the various data objects
by any other logical grouping Such as groups based around
functional categories, or to improve the possibility of realiz
ing deduplication benefits. The particular grouping used by
the system will be chosen to conform to the storage policy.
Logical groupings are described in greater detail herein.
0375. The system may first utilize the storage policy and
the management light index 245, the management index 211,
the SS index 261, the SS light index 247, deduplication data
base 297 and/or metabase 270 to determine the number of
bytes, kilobytes, gigabytes, terabytes or similar units required
to store each individual data object, and any other require
ments necessary to conform to the storage policy. For
example, the system might determine that a particular data
object requires 25 megabytes of first-class storage. The sys
tem may next determine the aggregate storage requirements
for each group of data objects. For example, the system may
determine that a first group of data objects requires an aggre
gate 200 gigabytes of first-class storage and a second group of
data objects requires an aggregate 450 gigabytes of second
class storage. The aggregate storage requirements determined
by the system may reflect the effect of deduplication; for
example, the system may utilize deduplication database 297
to determine the size of an archive file created in part by
block-level deduplication.
0376. The system then performs blocks 2712-2740 for
each group of data objects to determine the appropriate Stor
age location of the various data objects in the group. At block
2712, the system identifies the storage devices 115 (including
cloud storage sites 115A-N) that may be suitably employed to
store the group of data objects. To determine the list of poten
tial storage devices 115 (referred to as “candidates'), the
system may access storage device class definitions in the
storage policy. The system may also access data regarding
storage devices 115 Stored in the management index 211,
secondary storage computing devices 265 and/or storage
devices 115. For example, if the group of data objects requires
first-class storage, the system may query the management
index 211 to determine which local magnetic storage devices
115 have sufficient storage capacity to accommodate the
group of data objects.
0377. At block 2715, the system may transmit a request for
quotes to candidate cloud storage sites (which may be oper
ated by independent organizations) identified at block 2712
(or other appropriate types of data storage service providers
accessible via the network). To do so, the system may initiate
communications via the network agent 235. For example, the
system will request a quote from each cloud storage site by
initiating an HTTP connection with the cloud storage site and
sending the request via one or more HTTP messages. This
request for quotes may include information Such as: the
amount of storage space required, a unique identifier associ
ated with the request, an identifier associated with a prior

US 2010/0332401 A1

request made or a quote received from the site (e.g., in the case
of a counter offer), information that identifies the system
making the request (or identifies a related entity, Such as a
billing party), how the data will be accessed once stored or
how often (i.e., accessibility of data, including desired data
transferrates), a Suggested or required upload time window or
deadline, estimated storage lifetime of the objects, Suggested
pricing rate(s), the type of storage medium desired (e.g., tape
or optical or magnetic media), maximum pricing rate(s), Sug
gested download, upload, and/or storage pricing rates (and/or
a promotional code or similar indicator of a pricing rate
package), and/or any other information Suitable for request
ing a storage quote.
0378. Alternatively, or additionally, the system may obtain
estimated storage costs for one or more cloud storage sites by
sending similar requests for quotes to one or more third-party
sites that provide binding, non-binding and/or informational
storage quotes (e.g., a website operated by a data storage
dealer-broker or a site that aggregates information regarding
cloud storage costs). The format and content of the request
may be customized to each site and may be dictated by an API
set utilized by a particular cloud storage or third-party site.
Alternatively or additionally, the system may estimate the
storage costs for a candidate cloud storage site by accessing
historical, projected or other cost information stored within
the storage manager 105 or elsewhere in the storage operation
cell 150.

0379 At block 2720, the system may receive one or more
quotes from one or more cloud storage and/or third-party
sites. For each cloud storage site, the system may receive no
quote, a single quote, or several quotes covering various Stor
age options. Each quote may include information Such as: one
or more pricing rates, the accessibility of stored data, identi
fiers or tokens associated with the quote, time windows dur
ing which data may be transmitted or retrieved, an acceptance
window during which the quote would be honored by the site,
etc. The quote may provide various pricing rates for different
types of data operations. For example, the quote may specify
a first rate for an initial upload to the site, a second rate for
downloads from the site, and a third rate for searching or
accessing the data, a fourth rate for continued storage and
maintenance of the data on the site (e.g., a rate charged for
each gigabyte stored per month), maximum storage space
allotted, maximum or minimum storage lifetime; and so
forth. The format and content of the quote may be different for
each cloud storage or third-party site and may be dictated by
an API set (or similar) utilized by a particular cloud storage or
third-party site. The system may perform additional blocks,
Such as data extraction, to create a uniform set of data for all
of the received quotes.
0380 At optional block 2725, the system may access other

historical or projected data pertaining to storage device can
didates, including optical, tape or magnetic disk storage
device candidates located locally within the storage operation
cell 150. In some embodiments, the system may access his
torical or projected operating costs of each candidate that may
be stored in management index 211, secondary storage com
puting devices 265, or elsewhere in the storage operation cell
150. In still other embodiments, the system may access data
relating to: current or projected power consumption, current
or projected power rates, acquisition cost of the storage
devices, mean operating time, mean repair time, mean data
access rates, or similar performance and cost metrics that may

Dec. 30, 2010

be stored in the management index 211, secondary storage
computing devices 265 or elsewhere.
0381 At block 2730, the system may evaluate the cost of
storing the group of data objects on some or all of the storage
device candidates (the 'storage cost'). The storage cost asso
ciated with a particular storage device may refer simply to the
estimated monetary expense associated with uploading the
group of data objects to the storage device and/or maintaining
it there for its estimated lifetime (or other time period).
0382 Alternatively or additionally, the “storage cost of a
certain storage device candidate may refer more generally to
the value of a numerical cost function that may take into
account several variables. Non-exclusive examples of cost
function variables include: historical or projected informa
tion pertaining to storage device candidates; any quoted pric
ing rates; the amount of storage required; the network load
associated with uploading and/or downloading the data to a
site; projected data access costs; other accessibility metrics;
site reliability, quality or reputation; geographical location of
a candidate; mean operating time; mean repair time; mean
data access rates; or similar performance and cost metrics.
Some of these variables may be a single value variable, still
others may be set or matrix variables. In some embodiments,
the system may evaluate or calculate one or more storage
related metrics as described in the commonly assigned U.S.
patent application Ser. No. 11/120,662, now U.S. Pat. No.
7,346,751, entitled “SYSTEMS AND METHODS FOR
GENERATING ASTORAGE-RELATED METRIC (Attor
ney Docket No. 60692-8018US), U.S. application Ser. No.
1 1/639,830, filed Dec. 15, 2006, entitled “System and method
for allocation of organizational resources’ (Attorney Docket
No. 606928019US2), U.S. application Ser. No. 1 1/825,283,
filed Jul. 5, 2007, entitled “System and method for allocation
of organizational resources’ (Attorney Docket No.
606928019US3), which are hereby incorporated herein in
their entirety. which is hereby incorporated by reference in its
entirety. Such storage metrics may also be utilized as vari
ables within a cost function.
0383. The system may evaluate a cost function as follows.
First, the system may mathematically transform the cost func
tion variables to create a second set of intermediate variables
(e.g., to normalize the variables). Each variable may be Sub
jected to a different transformation. The transformations may
be a linear transformation (including an identity transforma
tion) or non-linear transformation. The transformations may
also be invertible or non-invertible transformations. Non
exhaustive examples of transformations include:

0384 scaling the variable (by a constant);
0385 raising the variable to a power;
0386 taking a logarithm of the variable;
0387 applying a ceiling or floor mapping to the variable

(i.e., quantization);
0388 reducing a set variable to its mean value, variance
or other moment.

The transformation applied to a cost function variable may
also merge a number of these Suitable transformations. Sec
ond, the system may evaluate the cost function by mathemati
cally combining the various intermediate variables. The com
bination may be a linear combination or a non-linear
combination. Non-exclusive examples of combinations
include any polynomial of the intermediate variables, includ
ing a simple Summation of the various intermediate variables.
Often, a cost function is a weighted Summation of various cost
function variables.

US 2010/0332401 A1

0389. The system evaluates the same cost function for
each storage device candidate and each group of data objects.
However in other embodiments, the system may utilize dif
ferent cost functions for different groups of data objects. In
still other embodiments, the system may utilize different cost
functions for different types of storage devices (e.g., there
may be one cost function for optical media devices, another
for tape media devices, and yet another for cloud storage
sites). The cost function(s) and their associations with par
ticular groups or storage media types may be defined in the
storage policy or elsewhere.
0390 At block 2735, the system compares the costs asso
ciated with the various candidate storage devices. For
example, the system compares these various costs to identify
one or more candidates (“identified devices” or “sites”) hav
ing an associated cost that is lower than the other candidates.
If more than one storage site is identified, the system may
divide the group of data into one or more Subgroups, and
associate each with an identified site. However, in some
embodiments, the system may also compare these costs to
make other types of determinations. For example, the system
may select identified sites using criteria other than minimiz
ing associated cost. As another example, the system may
compare the costs to ensure that at least one candidate satis
fies a particular criteria, Such having an associated cost that
falls below a specified maximum value (that may be defined
in the storage policy). Depending on the results of these
determinations, the system may repeat some or all of blocks
2710-2735using different quote parameters, different group
ings, and/or different cost functions and/or may take other
actions such as notifying an administrator. For example, in
some embodiments, the system may repeat block 2715 by
making another round of quote requests to some cloud Stor
age sites that includes lower Suggested or maximum rates
(counteroffers to the first set of quotes).
0391 At block 2740, the system may transmit instructions
to the jobs agent 220 (or other component) regarding the
identified storage location of the group of data objects (or if
the group has been Subdivided, the identified storage location
of each subgroup of data objects). For example, the system
transmits instructions to the jobs agent 220 to migrate or
transfer the data objects of the group or subgroup to its iden
tified storage location. In some embodiments, the system may
also transmit other information to the jobs agent 220 regard
ing the migration/transfer of the data objects. For example,
the system may transmit a token or other identifier associated
with a winning quote and/or may transmit information
regarding the schedule of data migration/transfer. In some
embodiments, the system may instead instruct a secondary
storage computing device 265 or other system component
regarding the identified storage location of a group or Sub
group of data objects.
0392 Process for Scheduling Cloud Storage Requests
0393 FIG.28 is a flow diagram illustrating a process 2800
for scheduling cloud storage requests received from auction
clients; the process 2800 may be performed by an auction
service component (not shown) forming part of a cloud stor
age site 115A-N or any other Suitable system (e.g., a compo
nent of a cloud storage brokerage site). An auction client may
be a component of a storage manager 105, a secondary Stor
age computing device 165, or any other device seeking cloud
storage. For simplicity, the process refers to requests for an
upload of data from an auction client (or related device) to a
cloud storage site 115A-N; however, auction clients may

42
Dec. 30, 2010

make requests for any type of cloud storage operation that
requires system resources from a cloud storage site (e.g.,
downloading data or searching the contents of stored data).
0394. In this process 2800, the auction service evaluates
requests from auction clients to upload data to the cloud
storage site. The auction service may respond to Some or all
auction clients with a quote for their requested upload (“a
quoted job). Those requests that do not receive a quote in
response may be queued for additional evaluation later
("queued requests'). If a quote is accepted by an auction
client, the upload may be added to a list of “scheduled jobs.”
Once a job is scheduled, other components within the cloud
storage site (e.g., file servers) may accept the associated
upload during its scheduled upload window.
0395. The process 2800 begins at block 2805, when the
auction service determines the current system capacity and
applicable quotation policies. In particular, auction service
may access capacity policies, scheduled or quoted jobs,
queued requests, quotation policies, and/or other information
about system capacity and pricing. A “capacity policy is
generally a data structure or other information Source that
includes a set of preferences and other criteria associated with
allocating system resources. The preferences and criteria may
include, the system resources (e.g., data transfer Volume or
bandwidth) available for auction during specified periods,
scheduled maintenance windows, and the current storage
capacity available on particular servers or devices. The auc
tion service may also determine the system resources
required for jobs already scheduled or quoted. Using this
information, the auction service may determine the available
system resources available for providing new quotations.
0396 The auction service may also access a quotation
policy. A “quotation policy is generally a data structure or
other information Source that includes a set of preferences
and other criteria associated with generating a quote in
response to auction client requests. The preferences and cri
teria may include, but are not limited to: a revenue function;
a pricing function; pricing rate tables; codes and Schedules
associated with marketing promotions; a list of preferred
and/or disfavored auction clients; current system capacity;
classes or quality of storage; retention policies; upload time
periods; data characteristics; compression or encryption
requirements; the estimated or historic cost of storage, includ
ing the cost of power. A “revenue function' is generally a
description of how the auction service may numerically
evaluate the projected revenue (and/or other benefits) that
would be generated by one or more auction client requests. A
“pricing function' is generally a description of how the auc
tion service may generate the various values (e.g., pricing
rates) associated with a responsive quote.
0397. At block 2810, the auction service may receive one
or more new requests from auction clients seeking cloud
storage. The request may include various information Such
as: a unique identifier that the auction client has associated
with the request; an identifier associated with a prior request
made or a quote received from the site (e.g., in the case of a
counter offer); information that identifies the auction client
making the request (or identifies a related entity, Such as a
billing party); the amount of Storage space desired; how the
data will be accessed once stored (e.g., accessibility of data,
including desired data transfer rates); Suggested or required
upload window; estimated Storage lifetime of data; the type of
storage medium desired (e.g., tape or optical or magnetic
media); Suggested download, upload, and/or storage pricing

US 2010/0332401 A1

rates (and/or a promotional code or similar indicator of a
pricing rate package); and/or any other information Suitable
for requesting cloud storage. The format and content of the
request will typically conform to a specified API or similar
convention employed by the auction service.
0398 Although not shown, during block 2810, the auction
service may authenticate each of the requests and/or auction
clients to ensure that each request is from a valid auction
client. This authentication may happen via any acceptable
method, including the use of passwords or security certifi
cates. Those requests that cannot be authenticated may be
discarded by the auction service without further consider
ation.

0399. At block 2815, the auction service evaluates queued
and new requests (collectively the “pending requests”) and
generates responsive quotes. To do so, the auction service
may first identify those requests that either (1) do not satisfy
minimum requirements specified by the quotation policy, or
(2) cannot be accommodated due to a lack of system
resources. Typically, the auction service will reject Such
requests by removing them from the list of pending requests.
However, the auction service may also (1) send a quote with
terms different from those requested (e.g., with higher rates or
with a different scheduled upload window) in order to con
form to the quotation policy, (2) send an explicit rejection of
the request to the auction client, (3) queue the request for later
evaluation, and/or (4) take another appropriate action.
0400. At 2815, the auction service may next identify
which remaining pending requests should receive quotes and
generate quotes. The auction service will apply the prefer
ences and criteria specified in the quotation policy described
previously to determine which “winning requests should
receive responsive quotes. In some embodiments, the auction
service will choose the set of requests that results in a maxi
mum combined value of a revenue function. Those pending
requests that do not receive quotes will typically be queued by
the auction service for later evaluation, but the auction service
may also (1) send an explicit rejection of a request to the
auction client, (2) remove it from the list of pending requests,
and/or (3) take another appropriate action.
04.01 For each winning request, the auction service will
generate a responsive quote. Quotes generated may specify:
the unique identifier that the auction client has associated
with the request; various pricing rates for different types of
data operations (e.g., a first rate for an initial upload to the site,
a second rate for downloads from the site, and a third rate for
searching or accessing the data, a fourth rate for continued
storage and maintenance of the data on the site (e.g., a rate
charged for each gigabyte stored per month)); maximum
storage space allotted; maximum or minimum storage life
time; the accessibility of stored data; time windows during
which data may be transmitted to the site or retrieved; etc.
Each quote will typically include a token or other identifier
associated with the quote and may specify an acceptance
window during which the quotation will be honored by the
site. The auction service generally applies the preferences and
criteria specified in the quotation policy described previously
(including a pricing function) to determine the values given in
the quotes. For example, the pricing function may require the
auction service to specify upload and storage rates associated
with a marketing promotion, even if the client request pro
posed higher pricing rates. However, in Some embodiments,
the auction service may simply utilize in its quote some or all
of the values proposed in the request.

Dec. 30, 2010

0402. At block 2820, the auction service sends a copy of
the generated quotes to auction clients. In response, each
auction client may send another request (e.g. a "counterof
fer”), may send an indication of acceptance of the quote
and/or may take no action in response.
0403. At block 2825, the auction service may receive an
indication of acceptance of one or more quotes. For each
accepted quote, the auction service may add the associated
upload to the list of scheduled jobs so that other system
components will accept the upload. For example, the auction
service only adds an upload to the list of scheduled jobs if the
acceptance is received within the specified acceptance win
dow. If the acceptance is received outside of this window, the
auction service may treat the acceptance as it would a new
request and repeat Some or all of the previous blocks.
0404 Process for Encrypting Files within Cloud Storage
(0405. As described previously with respect to FIG. 3B,
when a system migrates or copies data to secondary storage,
including secondary cloud storage, the system may encrypt
the data before or after a secondary copy or archival copy is
created. When data is encrypted prior to migrating or copying
data to secondary storage, the encryption enhances the "at
rest' security of files stored within a cloud storage site 115A
N, by reducing the risk of unauthorized access to the files
content. In Such implementations, it may be desirable to store
encryption keys (and/or other information necessary to
decrypt files) within the storage operation cell 150, not within
the cloud storage site 115A-N used to store the encrypted
files. In this way, even an operator of a cloud storage site may
not breach the security of an encrypted file. If local encryption
occurs within the storage operation cell 150 prior to copying
or migrating data to a cloud storage site 115A-N, the encryp
tion keys or similar encryption information may easily be
stored within storage operation cell (e.g., within a local index
or database of the storage operation cell or a different storage
device 115). Alternatively, if local encryption is performed
within a storage operation cell 150, the storage operation cell
150 may “scramble' encryption keys and store the scrambled
keys with the encrypted files. This method provides some
level of protection against intrusions, even intrusions by the
operator of a cloud storage site. Further details may be found
in U.S. Patent Publication No. US2008-0320319A1 refer
enced above.
0406. In some circumstances, however, decrypted files
may be stored withina cloud storage site 115A-N without first
encrypting the files within the storage operation cell 150. In
Such circumstances, it may be desirable to later encrypt the
files stored on the cloud storage site to protect those files
thereafter.
(0407 FIG. 29 illustrates a process 2900 for encrypting
files stored within a cloud storage site 115A-N. The process
may be performed by cloud storage submodule 236, or any
other Suitable system component. The process begins at block
2910, when cloud storage submodule 236 receives a request
to encrypt a file located on a target cloud storage site. For
example, cloud storage Submodule 236 may receive an indi
cation of which target files within a target cloud storage site
should be encrypted. Cloud storage submodule 236 may also
receive an indication of which encryption method should be
utilized, one or more encryption keys and/or additional infor
mation.

(0408. At block 2915, cloud storage submodule 236 deter
mines if the type of encryption method requested is Supported
by the API provided by the operator of the target cloud storage

US 2010/0332401 A1

site 115A-N. If it is not, the process proceeds to block 2940.
Otherwise, the process 2900 proceeds to block 2930, where
cloud storage Submodule utilizes the mapping described
herein to generate vendor-specific API calls to encrypt the
original file. The process then returns.
04.09 If the target cloud storage site API does not support
the desired type of encryption, the process 2900 proceeds
instead to block 2940. At block 2940, cloud storage submod
ule 236 utilizes its mapping described herein to generate and
send a vendor-specific API call to download the file to the
cloud storage Submodule, or another component of the Stor
age operation cell 150. At block 2945, the downloaded file is
encrypted locally (e.g., by a component of storage operation
cell 150 configured to perform encryption, such as a second
ary storage computing device 165). At block 2950 cloud
storage Submodule utilizes its mapping described herein to
generate and send vendor-specific API calls to overwrite the
original file with an encrypted version. For example, cloud
storage submodule may utilize vendor-specific API calls that
open the original file for writing, write the contents of the
encrypted version of the file to the original file, and close the
original file. Alternatively, cloud storage submodule 236 may
utilize vendor-specific API calls to create a new file on the
target cloud storage site 115A-N, write the contents of the
encrypted version of the original file to the new file, close the
new file, and delete the original file.
0410 Protecting Remote Office and Branch Office
(ROBO) Data
0411. In one example, the systems described herein may
be utilized to protect remote office and branch office (ROBO)
data. In some implementations, a subset of clients 130 may be
“remote clients' who are geographically separated from other
components of an associated Storage operation cell 150.
Remote clients 130 may only be connected to other compo
nents of an associated storage operation cell 150 via a WAN
Such as the Internet due to a physical separation between the
remote client 130 and other system components. One intui
tive example of a remote client 130 is a laptop computer
utilized by a traveling employee: when the employee is trav
eling, she will be geographically separated from their com
pany's main storage operation cell 150.
0412. In such implementations, a remote client 130 may
include a media file system agent 240, including a cloud
storage submodule 236, to permit data agents 195 on the
remote client to directly write data to a cloud storage site
115A-N (e.g., over a network connection established by an
HTTP client subagent). For example, in this manner a remote
client 130 may directly mirror data to cloud-based storage for
disaster recovery purposes and/or to comply with other sys
tem-level data retention policies. In accordance with system
wide storage and scheduling policies, other system compo
nents (e.g., jobs agent 220) may instruct a remote client 130
regarding when and how to perform a remote storage opera
tion. Additionally, a remote client 130 may provide informa
tion regarding a storage operation made in this manner to
other system components, so that those system components
may update the various system-wide indices and databases to
reflect the storage operation. For example, client 130 may
provide storage manager 105 with information that is suffi
cient for storage manager 105 to update management index
211, management light index 245, SS index 261, SS light
index 247, and deduplication database 297.
0413. In such implementations, the system may avoid
routing data slated for cloud storage through a secondary

44
Dec. 30, 2010

storage computing device 165, thereby conserving system
resources (e.g., the bandwidth of a secondary storage com
puting device). Such implementations preserve the ability of
the storage cell 150 to perform upon all data, including data
generated by remote clients 130: policy-driven storage, ILM.
content indexing, data restoration, and searching.
0414. In some implementations, a group of clients 130
may be geographically separated from most of the system
components of an associated storage operation cell 150 but
may not be geographically separated from one or more
locally accessible secondary storage computing devices 165.
For example, a group of clients (e.g. a group of clients asso
ciated with a particular branch office of a company) may be
connected to a locally accessible secondary storage comput
ing device 165 over a LAN, but may be connected to other
components (e.g. storage manager 105, storage devices 115,
other secondary storage computing devices 165) only over a
WAN like the Internet. In such implementations, the group of
clients 130 may copy or migrate data to a locally accessible
secondary storage computing device, which may in turn write
this data to a cloud storage site 115A-N in accordance with
applicable system-wide storage and scheduling policies.
0415 Thus the locally accessible secondary storage com
puting device 165 may mirror data from a branch office
directly to cloud-based storage for disaster recovery purposes
and/or to comply with other data retention policies, without
first routing that data over a WAN to other system compo
nents. Additionally, a locally accessible secondary storage
computing device 165 may provide information regarding a
storage operation made in this manner to other system com
ponents, so that those system components may update the
various system-wide indices and databases to reflect the Stor
age operation. For example, a locally accessible secondary
storage computing device 165 may provide storage manager
105 with information that is sufficient for storage manager
105 to update management index 211, management light
index 245, SS index 261, SS light index 247, and deduplica
tion database 297. Such implementations preserve the ability
of the storage cell 150 to perform upon all data, including data
generated by remote clients 130: policy-driven storage, ILM.
content indexing, data restoration, and searching.
0416 Alternatively or additionally, a group of clients may
be connected to a locally accessible cloud gateway 1540 over
a LAN, but may be connected to other system components
only over a WAN. In such implementations, the locally acces
sible cloudgateway 1540 may provide the same functionality
of a locally accessible secondary storage computing device
165 described in this section, in addition to other cloud gate
way functionality described herein.

CONCLUSION

0417 IT organizations continue to deal with massive
unstructured data growth, stronger regulatory requirements
and reduced budgets. To meet the needs of more stringent data
retention requirements and faster RTO’s, many users have
over provisioned low-cost disk storage which, combined with
non-integrated data management products, creates inefficient
storage infrastructures resulting in high operating costs. In
fact, many data centers have reached a limit where there is no
power or real estate left to continue expanding.
0418 Today's IT organizations are struggling to keep pace
with multiple factors that are starting to severely impact the
ways that they protect, manage and recover their business
critical data, data that is increasingly located in remote offices

US 2010/0332401 A1

and on user laptops/desktops, outside of core IT facilities.
Relentless, ongoing data growth across the enterprise, often
growing at 30-50% per year ensures that some storage teams
are looking at a doubling of capacity requirements every 18
months. Increased government regulation around data reten
tion policies adds to the burden, often requiring that critical
data be kept for years or even decades. Further, many IT
organizations worldwide are being forced to justify not only
incremental spending, but also justify their existing expenses
and/or headcount in the face of potential budget cuts.
0419 Cloud storage sites represent an increasingly viable
option to manage the growing bodies of data. They promise
lower costs through better utilization and management of the
underlying storage infrastructure. Cloud-based storage also
eliminates the need to buy lots of spare capacity in anticipa
tion of future storage growth, enabling companies to “pay as
you grow”. Further cloud-based storage enables IT organiza
tions to minimize investment in new Data Center capacity,
and extends the life of their existing investment in both build
ing and computing infrastructure.
0420 However leveraging cloud-based storage can be
challenging for some organizations for a variety of reasons.
First is the inherent complexity associated with managing two
sets of infrastructure, one physical and on-premise and
another online in the virtual storage cloud. This duplication of
effort extends across a number of crucial aspects of data
management including: Backup, Archive, Reporting and
search/eDiscovery. There are challenges often associated
with taking full-advantage of cloud-based storage. The first is
complexity associated with moving data into and out of the
cloud. Gateway appliances are often expensive, complex and
represent a short-term fix that can aggravate infrastructure
management challenges as the use of cloud-based storage
grows. A related concern is the amount of data being moved
to and managed within cloud storage. This not only impacts
the ongoing service charges, which are often priced on a
per-GB basis but also impacts the ability to meet backup
windows over limited bandwidth. Data security and reliabil
ity are critical both from a data integrity perspective as well as
to ensure that a company's critical data is not accessed by
unauthorized parties, even including individuals working for
a cloud-storage provider. Further, companies don’t want to be
locked into a single vendor when it comes to data stored in the
cloud. So data portability becomes critical, along with the
ability to choose from among a variety of providers for spe
cific performance and pricing requirements.
0421. The systems herein permit policy-driven storage
that defines what data stays on-premise and what moves to the
cloud. Storage policies may consider “data value' determined
from factors such as (a) access requirements, (b) latency
requirements, and (c) corporate requirements including: how
recently was the data accessed, how often was the data
required over a given time period. Such as the last 12 months,
how many end-users/applications required access to the data
in the last 12 months, how quickly will the data need to be
restored, what downstream applications/processing are
dependent on the data, whether the data needs to be identified
and pulled in?put on Legal Hold for an eDiscovery request,
whether the data contains corporate trade secrets or IP.
whether the data might be considered highly sensitive (e.g.,
legal communication, or social security numbers).
0422 The systems and methods described herein provide
integrated data management platforms that address a wide
variety of data management needs. The systems and methods

Dec. 30, 2010

herein may deliver unified data management from a single
console. When combined with cloud storage, a seemingly
unlimited storage pool, these systems and methods may offer
users lower operating costs, ensure disaster recovery, while
improving long-term compliance management.
0423. The systems described herein provide a unified data
management platform that may be built on a single codebase
or as a unified application, with modules or agents forbackup
and recovery, archive, replication, reporting, and search/
eDiscovery. These systems may provide automated, policy
based data movement from local, deduplicated copies into
and out of cloud storage environments—all from the same
centralized console. This incremental approach to data man
agement may permit organizations to leverage the economics
of cloud-based storage.
0424 The systems and methods described herein may
result in various other performance advantages. For example,
these systems and methods may reduce administrative and
storage overhead for infrequently-accessed data in a data
center by automatically tiering older/infrequently-accessed
data in a data center to more efficient, lower-cost cloud-based
storage, freeing up existing capacity to accommodate ongo
ing data growth.
0425 Integrated deduplication ensures that unique (or
semi-unique) data segments are stored “in the cloud', mini
mizing costs associated with redundant data across backups
and archive. Block-based data deduplication and replication
reduce network bandwidth requirements to minimize net
work costs and backup windows. Deduplication also reduces
ongoing storage costs up to 75%, minimizing operational
expenses across the entire lifespan of the data being retained
0426. The systems described herein may permit a better
data encryption approach to meet applicable requirements. A
user may protect data starting from the source with in-stream
encryption, and then extend encryption to data "at-rest'. This
ensures that not only is a userprotected during data migration,
but also from unwarranted access of data already on the cloud.
Because the data encryptions are controlled by a company's
IT team, data is safe even from unintentional access by a
cloud storage providers IT staff.
0427 By providing encryption of data in-flight and at-rest
data, the systems and methods help protect data, even from
cloud storage site operators. Built-in data encryption and
Verification technology ensures data has been securely and
safely written to the cloud without errors. Encryption of data
at-rest helps ensures that only appropriate personnel have full
access to readable data, no matter where it's stored.
0428 The systems herein are designed to work with a wide
variety of storage partners, both physical and a growing num
ber of cloud-based storage providers. Today these include
Amazon's S3, Microsoft AZure, Nirvanix SDN with upcom
ing Support for Iron Mountain and RackSpace. This open
approach ensures that additional cloud-storage vendors will
continue to be added in the future to increase the choices
available.
0429. The systems described herein may deliver a seam
less solution for data-aware movement into cloud storage to
help reduce overall complexity and costs. Lack of a native
cloud-storage connector often requires complex Scripting,
adding both time and risk to moving data into the cloud. Using
gateway appliances can present an ongoing and growing
management burden as cloud-storage use increases. An inte
grated approach Such as that described herein eliminates the
costs and risk associated with either approach. Integrated data

US 2010/0332401 A1

management of both local storage and cloud storage from a
single console minimizes administrative overhead and the
need for specialized gateway appliances. The systems
described may also be readily configured to Support an
expanding list of industry-leading cloud providers to provide
flexibility and choice for how to host cloud-based data imme
diately and in the future. Native integration with REST/HTTP
protocols seamlessly extends data management to the cloud
without the need for Scripting or specialized vendor-specific
gateway appliances.
0430. A highly efficient platform automates the movement
of data across systems from a variety of storage vendors, and
across different types of storage devices including disk, tape,
CAS, VTL, optical—and now cloud storage. By integrating
these functions together, users can leverage one interface to
manage one data management Suite across a virtual shared
storage environment. Moving data into and out of the cloud
using the systems herein is as easy as moving data between
any 2 data storage tiers. For existing users, this can be done in
as little as 3 steps: choosing one or more cloud-storage sites,
setting up a storage service similar to what a user would do to
add disk-based storage, and adding the new cloud-based Stor
age to existing backup and/or archive policies and data paths.
0431 AS data management expands to beyond a physical
infrastructure, and into the cloud, legal and reporting require
ments continue to grow as well. The systems described herein
may offer at least four key benefits for search/eDiscovery:
0432 1. Indexes of all data retained can be kept
on-premise. This enables a user to retain control of the most
critical and sensitive aspects of information management, and
ensures that content indexes are accessible only to designated
personnel within an organization.
0433 2. Since the indexes are searchable locally, there is
no latency with regards to data that may be retained in the
cloud over a number of years or even decades. This reduces
the amount of time and data required by a company's legal
and/or IT teams.
0434 3. Only the specific data required for eDiscovery
requests is restored back from the cloud. This saves on band
width, the time needed for data restore and minimizes the data
retrieval costs charged by a cloud-storage vendor.
0435 4. Global indexing of all relevant data, from the Data
Center to remote sites, mobiles users and cloud-based data.
This ensures that a company has a global view of all their data,
so that a company can also avoid the legal and financial risks
associated with incomplete responses to eDiscovery requests
0436 Integrated content indexing done prior to tiering to
the cloud, ensures that administrators can do fast searches on
a local index and retrieve only specific data that meets the
search criteria.
0437. A variety of data reduction techniques can also be
used to minimize the amount of data sent to the cloud, and
minimize the cloud-based capacity usage. Block-based dedu
plication reduces backup and archive times and data Volumes
by filtering out redundant data before it reaches the cloud.
This can be done in a data center or even at remote sites,
depending on the system configuration. Additional data man
agement approaches such as incremental backups and data
compression at the source can further reduce the amount of
data in-transit and at-rest.

0438 AS data Volumes continue to increase, many com
panies find themselves bumping up against the capacity, cool
ing or power limitations of their existing data centers. Mean
while they're now required to keep every-growing amount of

46
Dec. 30, 2010

data as mandated by their corporate legal staff, acting under
the aegis of governmental regulation. This 3-way balancing
act between capacity, compliance and cost requires a flexible
approach to data management that requires a multi-tier
approach that extends to cloud-based storage. The systems
described herein may be used for an end-to-end approach to
tiering a combination of data from within the data center,
from remote offices and from individual employees world
wide.
0439 A second use case of the described systems centers
around protecting data outside of the Data Center and storing
it in the cloud. This enables the central IT team to control the
movement and management of data along with defining the
appropriate data retention and recovery policies.
0440 Data from remote offices (and even end-users/em
ployees if configured) can be backed up directly to cloud
based storage, eliminating the need to migrate the data to the
data center first, and then migrating the data again to the
cloud. In other cases, data may be mirrored to cloud-based
storage for Disaster Recovery purposes as well for long-term
data retention. As data ages past retention requirements it can
be automatically deleted in the cloud, creating ongoing Sav
ings in capacity utilization charges.
0441 Because data is managed just the same as if were
stored in a core data center, Storage Reporting and Manage
ment (SRM) can be easily used to monitor, analyze and moni
tor data across the enterprise regardless of whether it stored in
the cloud, in a core data center or in remote offices or other
locations.
0442. The systems and methods described herein may pro
vide the following benefits and features, interalia:

0443 Ensuring data security when: data is in transit,
both to and from the cloud and when data is at-rest
(including security from Service-provider personnel).

0444 Portability, by permitting a user to easily move
data back from the cloud if required, and to move data
quickly between cloud-based storage providers, to
improve price and performance.

0445 Restoring data quickly and directly from any
physical or cloud-based storage tier.

0446 Configuring data management policies so that
most frequently accessed data is more easily and quickly
retrieved when required.

0447. Matching network bandwidth capacities to data's
RTO (recovery time objective) requirements.

0448 Archiving data to the cloud, including setting up
automated retention and deletion policies.

0449 Easily configurable global reporting of all data
(physical and in-the-cloud).

0450 Easily and securely extending cloud-based data
management to include search/eDiscovery.

0451. Unless the context clearly requires otherwise,
throughout the detailed description and the claims, the words
“comprise.” “comprising.” and the like are to be construed in
an inclusive sense (i.e., to say, in the sense of “including, but
not limited to'), as opposed to an exclusive or exhaustive
sense. As used herein, the terms “connected.” “coupled, or
any variant thereof means any connection or coupling, either
direct or indirect, between two or more elements. Such a
coupling or connection between the elements can be physical,
logical, or a combination thereof. Additionally, the words
“herein.” “above.” “below, and words of similar import,
when used in this application, refer to this application as a
whole and not to any particular portions of this application.

US 2010/0332401 A1

Where the context permits, words in the above Detailed
Description using the singular or plural number may also
include the plural or singular number respectively. The word
“or in reference to a list of two or more items, covers all of
the following interpretations of the word: any of the items in
the list, all of the items in the list, and any combination of the
items in the list.
0452. The above Detailed Description of examples of the
invention is not intended to be exhaustive or to limit the
invention to the precise form disclosed above. While specific
examples for the invention are described above for illustrative
purposes, various equivalent modifications are possible
within the scope of the invention, as those skilled in the
relevant art will recognize. While processes or blocks are
presented in a given order in this application, alternative
implementations may perform routines having blocks or
steps performed in a different order, or employ systems hav
ing blocks in a different order. Some processes or blocks may
be deleted, moved, added, subdivided, combined, and/or
modified to provide alternative or subcombinations. Also,
while processes or blocks are at times shown as being per
formed in series, these processes or blocks may instead be
performed or implemented in parallel, or may be performed at
different times. Further any specific numbers noted herein are
only examples. It is understood that alternative implementa
tions may employ differing values or ranges.
0453 The various illustrations and teachings provided
herein can also be applied to systems other than the system
described above. The elements and acts of the various
examples described above can be combined to provide further
implementations of the invention. Some alternative imple
mentations of the invention may include not only additional
elements to those implementations noted above, but also may
include fewer elements.
0454 All patents and applications and other references
noted above, including any that may be listed in accompany
ing filing papers, are incorporated herein by reference in their
entireties. Aspects of the invention can be modified, if neces
sary, to employ the systems, functions, and concepts included
in such references to provide further implementations of the
invention.
0455 These and other changes can be made to the inven
tion in light of the above Detailed Description. While the
above description describes certain examples of the inven
tion, and describes the best mode contemplated, no matter
how detailed the above appears in text, the invention can be
practiced in many ways. Details of the system may vary
considerably in its specific implementation, while still being
encompassed by the invention disclosed herein. As noted
above, particular terminology used when describing certain
features or aspects of the invention should not be taken to
imply that the terminology is being redefined herein to be
restricted to any specific characteristics, features, or aspects
of the invention with which that terminology is associated. In
general, the terms used in the following claims should not be
construed to limit the invention to the specific examples dis
closed in the specification, unless the above Detailed Descrip
tion section explicitly defines Such terms. Accordingly, the
actual scope of the invention encompasses not only the dis
closed examples, but also all equivalent ways of practicing or
implementing the invention under the claims.

I/We claim:
1. A method for identifying storage locations for a set of

data files Subject to a storage policy, wherein the set of data

47
Dec. 30, 2010

files is generated within a storage operation cell that has
multiple client computers, and wherein the storage operation
cell is coupled to multiple cloud storage sites via a network,
the method comprising:

grouping the data files into at least one logical group of data
files using a storage policy, wherein the storage policy
defines classes of storage locations on which the set of
data files may be stored;

determining aggregate storage requirements of a logical
group of data files based at least in part on the storage
policy;

identifying two or more candidate cloud storage sites to
store a copy of the logical group of data files,
wherein each of the two or more candidate cloud storage

sites are operated by independent organizations;
generating a request for quotes for storing a copy of the

logical group of data files on one of the candidate cloud
storage sites,
wherein the request for quotes includes the aggregate

storage requirements of the logical group of data files;
transmitting the request for quotes to the two or more

candidate cloud storage sites:
receiving one or more quotes from each of the two or more

candidate cloud storage sites,
wherein the received quotes include a price;

identifying a target cloud storage site from the two or more
candidate cloud storage sites by evaluating, based at
least in part on the received quotes, storage costs of
storing a copy of the logical group of data files; wherein
the storage costs include estimated monetary expenses
associated with storing the logical group of data objects;
and

transmitting for storage at least Some of the logical group of
data files from a client computer to the target cloud
storage site.

2. The method of claim 1, wherein the storage policy
defines classes of storage locations of cloud storage sites at
least in part by a fault-tolerance and an access speed.

3. The method of claim 1, wherein the storage policy
defines different categories of data files and classes of storage
locations on which the different categories of data files may
be stored.

4. The method of claim 1, wherein grouping the data files
comprises grouping the set of data files based at least in part
on a particular class of storage location.

5. The method of claim 1, wherein a quote received from a
candidate cloud storage site further comprises at least two of

a first pricing rate for an initial upload to the candidate
cloud storage site;

a second pricing rate for downloads from the candidate
cloud storage site;

a third pricing rate for searching or accessing the candidate
cloud storage site; and

a fourth pricing rate for continued storage and maintenance
of data on the candidate cloud storage site.

6. The method of claim 1, wherein a quote received from a
candidate cloud storage site further comprises a time window
during which the logical group of data files are to be trans
mitted to the candidate cloud storage site.

7. The method of claim 1, further comprising transmitting
the request for quotes to at least one of a data storage dealer
broker, and a site that aggregates information related to cloud
Storage costs.

US 2010/0332401 A1

8. The method of claim 1, further comprising accessing
information related to local storage devices within the storage
operation cell, including information related to at least two of
current or projected power consumption of the storage
devices, current or projected power rates, acquisition cost of
the storage devices, mean operating time of the storage
devices, mean repair time of the storage devices, and mean
data access rates of the storage devices.

9. The method of claim 1 further comprising transmitting
another round of counteroffer quote requests.

10. A non-transitory computer-readable medium storing
instructions that when , executed by a processor perform a
method, the method comprising:

requesting, from two or more cloud storage sites, a quote
for storing a copy of a set of data objects on a cloud
storage site;

receiving two or more quotes from respective two or more
cloud storage sites, wherein each quote reflects a pricing
rate for storing a copy of the set of data objects on a cloud
storage site;

calculating estimated costs of storing a copy of the set of
data objects on two or more cloud storage sites using the
received two or more quotes;

choosing a target cloud storage site that has a lowest cal
culated estimated cost; and

storing a copy of the set of data objects on the target cloud
storage site.

11. The computer-readable medium of claim 10, wherein
calculating estimated costs of storing a copy of the set of data
objects on two or more cloud storage sites further comprises
accessing historical or projected cost information related to
the two or more cloud storage sites.

12. The computer-readable medium of claim 10, wherein
requesting a quote includes specifying at least three of the
following:

an amount of storage space required;
a unique identifier associated with a request;
a desired data transfer rate;
an upload time window or deadline;
an estimated Storage lifetime;
a suggested pricing rate; and
a type of storage medium desired.
13. The computer-readable medium of claim 10, wherein

calculating estimated costs of storing a copy of the set of data
objects on two or more cloud storage sites further comprises
evaluating a multi-variable numerical cost function that ulti
lizes one or more of the following:

a quoted pricing rate;
a total amount of storage required;
a networkload associated with uploading or downloading

data;
a projected data access cost;
information related to site reliability, quality or reputation;
a geographical location of a cloud storage site; and
a mean data access rate.
14. The computer-readable medium of claim 10, wherein

storing a copy of the set of data objects on the target cloud
storage site comprises transmitting:

instructions regarding an identity of the target cloud stor
age site;

an identifier associated with a quote received from the
target cloud storage site; and

information regarding a schedule for storing a copy of the
set of data objects.

48
Dec. 30, 2010

15. A method for scheduling storage operations on a cloud
storage site, comprising:

determining a current capacity of the cloud storage site by
accessing information relating to at least one of a capac
ity policy, a scheduled job, a quoted job, one or more
queued requests, and a quotation policy that includes a
set of preferences and criteria associated with generating
a quote in response to auction client requests;

receiving multiple new requests for cloud storage from one
or more auction clients;

identifying one or more winning requests that will receive
responsive quotes by evaluating pending requests by
applying preferences and criteria specified in the
accessed quotation policy, wherein pending requests
comprise the received new requests and the one or more
queued requests:

generating one or more responsive quotes for winning
requests by applying preferences and criteria specified
in the accessed quotation policy, wherein the responsive
quotes include one or more pricing values;

sending the one or more responsive quotes to one or more
auction clients; and

receiving from one or more auction clients an indication of
acceptance of one or more responsive quotes.

16. The method of claim 15, wherein, the capacity policy
specifies system resources available for auction during speci
fied periods, scheduled maintenance windows and current
storage capacity available on servers.

17. The method of claim 15, further comprising determin
ing system resources required for storage operations already
scheduled or quoted.

18. The method of claim 15, wherein the quotation policy
specifies at least three of:

a revenue function;
a pricing function;
a pricing rate table;
information associated with marketing promotions;
a list of preferred auction clients:
a list of disfavored auction clients;
classes of storage;
retention policies;
upload time periods;
data characteristics;
compression or encryption requirements; and
estimated or historic cost of storage, including a cost of

power.
19. The method of claim 15, wherein the quotation policy

specifies a revenue function that describes a method for
numerically evaluating a projected revenue generated by the
received requests.

20. The method of claim 15, wherein the quotation policy
specifies a pricing function that describes a method for gen
erating various pricing values for a responsive quote.

21. The method of claim 15, wherein identifying one or
more winning requests further comprises identifying
received requests that either do not satisfy minimum require
ments specified by the quotation policy or cannot be accom
modated due to a lack of system resources.

22. The method of claim 15, further comprising at least one
of the following:

sending a responsive quote having at least one term that is
different from a term in a received request;

sending an explicit rejection of a received request; and
queuing a received request for later evaluation.

US 2010/0332401 A1 Dec. 30, 2010
49

23. The method of claim 15, wherein identifying one or
more winning requests further comprises identifying a set of

28. A system for identifying storage locations for a set of
data files Subject to a storage policy, wherein the set of data

requests that results in a maximum combined value of a
revenue function.

24. The method of claim 15, wherein identifying one or
more winning requests further comprises identifying a set of
requests that results in a combined value of a revenue function
that is Sufficient to satisfy the quotation policy.

25. A system for storing data from client computers at a
cloud storage site, wherein the cloud storage site is coupled
among multiple client computers via a network, the system
comprising:

a reception module configured to receive a request to per
form a storage operation at the cloud storage site from
one of the client computers, wherein the request includes
at least an aggregate size of data to be stored from the one
client computer;

a quote module configured to identify and generate a
responsive quote, wherein the responsive quote specifies
at least a price for storing the aggregate size of data and
a time window during which a storage operation for the
aggregate size of data is to be performed by the cloud
storage site; and

a transmission module configured to send the responsive
quote to the one client computer.

26. The system of claim 25, further comprising an authen
tication module configured to authenticate the request to
ensure that that the request is from a valid client computer.

27. The system of claim 25, wherein a responsive quote
further specifies at least two of:

a first pricing rate for an initial upload of data;
a second pricing rate for download of data;
a third pricing rate for searching or accessing data; and
and a fourth pricing rate for continued storage of data.

files is generated within a storage operation cell that has
multiple client computers, and wherein the storage operation
cell is coupled to multiple cloud storage sites via a network,
the system comprising:
means for grouping the data files into at least one logical

group of data files using a storage policy, wherein the
storage policy defines classes of storage locations on
which the set of data files may be stored;

means for determining aggregate storage requirements of a
logical group of data files based at least in part on the
storage policy;

means for identifying two or more candidate cloud storage
sites to store a copy of the logical group of data files,
wherein each of the two or more candidate cloud storage

sites are operated by independent organizations;
means for generating a request for quotes for storing a copy

of the logical group of data files on one of the candidate
cloud storage sites,
wherein the request for quotes includes the aggregate

storage requirements of the logical group of data files;
means for identifying a target cloud storage site from the
two or more candidate cloud storage sites by evaluating,
based at least in part on received quotes, storage costs of
storing a copy of the logical group of data files; wherein
the storage costs include estimated monetary expenses
associated with storing the logical group of data objects;
and

means for transmitting for storage at least Some of the
logical group of data files from a client computer to the
target cloud storage site.

c c c c c

