wo 2017/019286 A1 |1 1F 1 00 O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/019286 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

2 February 2017 (02.02.2017) WIPOIPCT
International Patent Classification: (81)
GO6F 9/44 (2006.01)
International Application Number:

PCT/US2016/041762

International Filing Date:
11 July 2016 (11.07.2016)

Filing Language: English
Publication Language: English
Priority Data:

14/810,361 27 July 2015 (27.07.2015) US
Applicant: SONY INTERACTIVE ENTERTAIN-

MENT AMERICA LLC [US/US]; 2207 Bridgepointe
Parkway, San Mateo, California 94404 (US).

Inventors: CERNY, Mark Evan; c/o Sony Interactive En-
tertainment America LLC, 2207 Bridgepointe Parkway,
San Mateo, California 94404 (US). SIMPSON, David; c¢/o
Sony Interactive Entertainment America LLC, 2207
Bridgepointe Parkway, San Mateo, California 94404 (US).

Agent: ISENBERG, Joshua D.; c/o JDI Patent, 809 Cor-
porate Way, Fremont, California 94539 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: BACKWARD COMPATIBILITY BY RESTRICTION OF HARDWARE RESOURCES

n
£=1
t=1

201 Start

210 Application
designed for the new
CPU or legacy CPU?

220 Run
system
normally.

230 Run system in BC
mode

A
3

with latency of

with selected
available
resources
restricted

instruction
execution altered
246

with selected

features disabled

242

with algorithmic
details of

operation altered

248

End

FIG. 2

(57) Abstract: A new device executing an application on a
new central processing unit (CPU), determines whether the
application is for a legacy device having a legacy CPU. When
the new device determines that the application is for the leg-
acy device, it executes the application on the new CPU with
selected available resources of the new device restricted to
approximate or match a processing behavior of the legacy
CPU.

10

15

20

25

30

WO 2017/019286 PCT/US2016/041762

BACKWARD COMPATIBILITY BY RESTRICTION OF HARDWARE
RESOURCES
This application claims the benefit of prior to commonly-assigned, US Provisional
application number 14/810,361, filed July 27, 2015, the entire contents of which are herein
incorporated by reference.
FIELD OF THE DISCLSOURE

Aspects of the present disclosure are related to execution of a computer application on a
computer system. In particular, aspects of the present disclosure are related to a system or a
method that provides backward compatibility for applications/titles designed for older

versions of a computer system.

BACKGROUND
Modern computer systems often use a number of different processors for different computing
tasks. For example, in addition to a number of central processing units (CPUs), a modern
computer may have a graphics processing unit (GPU) dedicated to certain computational
tasks in a graphics pipeline, or a unit dedicated to digital signal processing for audio, all of
which are potentially part of an accelerated processing unit (APU) that may contain other
units as well. These processors are connected to memory of various types, using buses that

may be internal to an APU or externally located on the computer’s motherboard.

It is common that a set of applications are created for a computer system such as a video
game console or smartphone (the “legacy device™), and when a variant or a more advanced
version of the computer system is released (the “new device”) it is desirable for the
applications of the legacy device to run flawlessly on the new device without recompilation
or any modification that takes into account the properties of the new device. This aspect of
the new device, as contained in its hardware architecture, firmware and operating system, is

often referred to as “backwards compatibility.”

Backwards compatibility is often achieved through binary compatibility, where the new
device is capable of executing programs created for the legacy device. However, when the
real time behavior of the category of devices is important to their operation, as is in the case
of video game consoles or smartphones, significant differences in the speed of operation of a
new device may cause it to fail to be backwards compatible with respect to a legacy device. If

the new device is of lower performance than the legacy device, issues that prevent backwards

10

15

20

25

WO 2017/019286 PCT/US2016/041762

compatibility may arise; this is also true if the new device is of higher performance, or has

different performance characteristics when compared to the legacy device.
It is within this context that aspects of the present disclosure arise.

BRIEF DESCRIPTION OF THE DRAWINGS
The teachings of the present disclosure can be readily understood by considering the

following detailed description in conjunction with the accompanying drawings, in which:

FIG. 1 is a block diagram illustrating an example of a central processing unit (CPU) core that
may be configured to operate in a backwards compatibility mode in accordance with aspects

of the present disclosure.

FIG. 2 is a flow diagram illustrating an example of a possible process flow for operating a

CPU in a backwards compatibility mode in accordance with aspects of the present disclosure.

FIG. 3 is a block diagram of a device having a CPU configured to operate in a backwards

compatibility mode in accordance with aspects of the present disclosure.

DESCRIPTION OF THE DRAWINGS
Although the following detailed description contains many specific details for the purposes of
illustration, anyone of ordinary skill in the art will appreciate that many variations and
alterations to the following details are within the scope of the invention. Accordingly, the
exemplary embodiments of the invention described below are set forth without any loss of

generality to, and without imposing limitations upon, the claimed invention.

INTRODUCTION

Even if the CPUs of the new device are binary compatible with the legacy device (i.e. capable
of executing programs created for the legacy device), differences in performance
characteristics between the CPUs of the new device and the CPUs of the legacy device may
cause errors in legacy applications, and as a result the new device will not be backwards

compatible.

If the CPUs of the new device have lower performance than the CPUs of the legacy device,
many errors in a legacy application may arise due to the inability to meet real time deadlines
imposed by display timing, audio streamout or the like. If the CPUs of the new device have

substantially higher performance than the CPUs of the legacy device, many errors in a legacy

10

15

20

25

30

WO 2017/019286 PCT/US2016/041762

application may arise due to the untested consequences of such high speed operation. For
example, in a producer-consumer model, if a consumer of data (e.g. the CPU) operates at
higher speed than originally anticipated, it may attempt to access data before the data
producer (e.g. some other component of the computer) makes it available. Alternatively if the
producer of the data (e.g. the CPU) operates at higher speed than originally anticipated, it
may overwrite data still being used by the data consumer (e.g. some other component of the

computer).

Additionally, as speed of execution of code by a CPU depends on the characteristics of the
specific code being executed, it is possible that the degree of increase of performance of the
CPUs of the new device relative to the legacy device will depend on the specific code being
executed. This may lead to problems in the producer-consumer model described above,
where producer and consumer are both CPUs but are executing the code of the legacy

application at relative speeds not encountered on the legacy hardware.

EMBODIMENTS

Aspects of the present disclosure describe computer systems and methods which may allow

for a higher degree of backwards compatibility with regards to legacy computer systems.

In implementations of the present disclosure, certain resources relating to the CPUs are
restricted and various aspects of the operation of the CPUs are altered when executing in a

backwards compatibility mode (“BC mode™).

Due to the restriction of various resources, the performance of the CPUs in BC mode may
become much closer to that of the legacy CPUs, resulting in fewer errors in legacy

applications due to the unanticipated performance characteristics of the CPUs.

Additionally, certain features of the CPUs that are not present on legacy CPUs may be
disabled in BC mode; the latency of instruction execution of the CPUs may be altered in BC
mode to equal or become closer to the latency of legacy CPUs; and the algorithmic details of
the operation of various units of the CPUs may be altered in BC mode to match or
approximate the algorithmic details of the operation of those units of the legacy CPUs. As a
result, when in BC mode, the performance of the new CPUs may become much closer to that
of the legacy CPUs, resulting in fewer errors in legacy applications due to the unanticipated

performance characteristics of the new CPUs.

10

15

20

25

30

WO 2017/019286 PCT/US2016/041762

The following describes the general architecture of a CPU, and various aspects of the present
disclosure relating to the restriction of specific resources, disabling of features, alteration of

latency, and alteration of algorithmic details of operation when in BC mode.

FIG. 1 depicts a generalized architecture of a CPU core 100. The CPU core 100 typically
includes a branch prediction unit 102, that attempts to predict whether a branch will be taken
or not, and also attempts (in the event that the branch is taken) to predict the destination
address of the branch. To the extent that these predictions are correct the efficiency of
speculatively executed code will be increased; highly accurate branch prediction is therefore
extremely desirable. The branch prediction unit 102 may include highly specialized sub-units
such as a return address stack 104 that tracks return addresses from subroutines, an indirect
target array 106 that tracks the destinations of indirect branches, and a branch target buffer
108 and its associated prediction logic that track past history of branches in order to more

accurately predict their resulting addresses.

According to certain aspects of the present disclosure, in BC mode the size of the indirect
target array 106, the size of the return address stack 104, or the size of the branch target
buffer 108 of the new CPU may be reduced to match, or to more closely approximate, their
respective size for the legacy CPU. To be clear, this reduction takes the form of reducing the
usable portion of the resource, e.g. not allowing usage of a portion of the return address stack,
and thereby reducing the number of calls and associated returns that can be tracked; the full

resource 1s available when not in BC mode.

According to certain aspects of the present disclosure, in BC mode the algorithmic details of
the operation of the branch target buffer 108 of the new CPU and its associated prediction
logic may be altered to match those of the legacy CPU. By way of example and not by way
of limitation, if the legacy CPU is limited in its ability to track the behavior of branch
instructions that are close to each other, then in BC mode the new CPU may match this
legacy CPU behavior; or if the legacy CPU used a substantially different style of branch
prediction logic (e.g. a saturating counter rather than an adaptive predictor) then the new CPU

may include the logic of the legacy CPU and enable it in BC mode.

According to certain aspects of the present disclosure, should the branch target buffer 108 of

the new CPU and its associated prediction logic include a dedicated loop predictor, but no

10

15

20

25

30

WO 2017/019286 PCT/US2016/041762

dedicated loop predictor is present on the legacy CPU, then in BC mode the dedicated loop
predictor of the new CPU may be disabled.

The CPU core 100 typically includes an instruction fetch and decode unit 110, which
includes an instruction fetch unit 112, an instruction byte buffer 114, and an instruction
decode unit 116. The CPU core 100 also typically includes a number of instruction related
caches and instruction translation lookaside buffers (ITLBs) 120. These may include an ITLB
cache hierarchy 124 that caches virtual address to physical address translation information
such as page table entries, page directory entries, and the like. This information is used to
transform the virtual address of the instruction into a physical address so that the instruction
fetch unit 112 can load the instructions from the cache hierarchy. By way of example, and not
by way of limitation, the program instructions may be cached according to a cache hierarchy
that includes a level 1 instruction cache (L1 I-Cache) 122 residing in the core, as well as other
cache levels 176 external to the CPU core 100; using the physical address of the instruction,
these caches are first searched for the program instructions. If the instructions are not found,
then they are loaded from a system memory 101. Depending on the architecture, there may

also be a micro-op cache 126 that contains the decoded instructions, as described below.

In certain aspects of the present disclosure, in BC mode the size or associativity of the L1 I-
cache 124, the micro-op cache 126 or the various levels of the ITLB cache hierarchy 122 may
be changed to match, or to more closely approximate, their respective size and associativity
for the legacy CPU. By way of example, and not by way of limitation, changing, e.g.,
reducing, the size of the ITLB cache hierarchy 124 could involve (1) reducing the number of
levels; or (2) changing the size of one or more levels (e.g., cache size, block size, number of
blocks in a set). Altering the associativity of a cache may involve, e.g., operating a fully
associative cache as a four-way or two-way cache. Although aspects of the present
disclosure include implementations where a size or associativity of an instruction-related
cache or ITLB is reduced, the present disclosure is not limited to such implementations. For
example, it is possible for a legacy CPU has to have a larger cache that is less associative
(e.g., 2-way instead of 4-way) in the legacy CPU. In such a case, the new CPU may run in
BC mode with the corresponding cache size increased and associativity reduced to match or

approximate the behavior of the cache on the legacy CPU.

Once the program instructions have been fetched, they are typically placed in the instruction

byte buffer 114 awaiting processing by the instruction fetch and decode unit 110. Decoding

10

15

20

25

30

WO 2017/019286 PCT/US2016/041762

can be a very complex process; it is difficult to decode multiple instructions each cycle, and
there may be restrictions on instruction alignment or type of instruction that limit how many
instructions may be decoded in a cycle. Decoded instructions may, depending on architecture,
be placed in the micro-op cache 126 (if one is present on the new CPU) so that the decode

stage can be bypassed for subsequent use of the program instructions.

In certain aspects of the present disclosure, in BC mode the algorithmic details of the
operation of the instruction fetch and decode unit 110 of the new CPU may be altered to
match those of the legacy CPU. By way of example, and not by way of limitation, if the
legacy CPU restricted the decode to instructions with opcodes within a specific area in the

instruction byte buffer 114, then the new CPU may similarly restrict the decode.

In certain aspects of the present disclosure, should a micro-op cache 126 be present on the
new CPU and absent on the legacy CPU, then in BC mode the micro-op cache 126 of the new
CPU may be disabled.

Decoded instructions are typically passed to other units for dispatch and scheduling 130.
These units may use retirement queues 132 to track the status of the instructions throughout
the remainder of the CPU pipeline. Also, due to the limited number of general purpose and
SIMD registers available on many CPU architectures, register renaming may be performed,
in which as logical (also known as architectural) registers are encountered in stream of
instructions being executed, physical registers 140 are assigned to represent them. The
physical registers 140 may include Single Instruction Multiple Data (SIMD) register banks
142 and General Purpose (GP) register banks 144, which can be much larger in size than the
number of logical registers available on the particular CPU architecture, and as a result the
performance can be considerably increased. After register renaming 134 is performed,
instructions are typically placed in scheduling queues 136, from which a number of
instructions may be selected each cycle (based on dependencies) for execution by execution

units 150.

In certain aspects of the present disclosure, in BC mode the size of the retirement queues 132,
the size of the scheduling queues 136, or the size of the SIMD 142 or GP register banks 144
of the CPU may be reduced to match, or to more closely approximate, their respective size
for the legacy CPU. To be clear, this reduction takes the form of reducing the usable portion

of the resource, e.g restricting the number of physical registers available to the application in

10

15

20

25

30

WO 2017/019286 PCT/US2016/041762

BC mode; the full register bank would be available for use by applications when not in BC

mode.

The execution units 150 typically include SIMD pipes 152 that perform a number of parallel
operations on multiple data fields contained in 128-bit or wider SIMD registers contained in
the SIMD register bank 142, arithmetic and logic units (ALUs) 154 that perform a number of
logical, arithmetic, and miscellaneous operations on GPRs contained in the GP register bank
144, and address generation units (AGUs) 156 that calculate the address from which memory
should be stored or loaded. There may be multiple instances of each type of execution unit,
and the instances may have differing capabilities, for example a specific SIMD pipe 152 may

be able to perform floating point multiply operations but not floating point add operations.

In certain aspects of the present disclosure, in BC mode the usable number of ALUs, AGUs
or SIMD pipes may be reduced to match, or to more closely approximate, the respective

number of such units that exist on the legacy CPU.

In certain aspects of the present disclosure, in BC mode the latency of instruction execution
of the new CPU may be altered in such a way as to equal or become closer to the latency of
the legacy CPU; for example, in BC mode the latency of a divide operation on the new CPU
could be extended (e.g. by computing the result more slowly or by delaying the transfer of the
result to the subsequent stage of the pipeline) to match, or to more closely approximate, the

latency of a divide operation on the legacy CPU.

Stores and loads are typically buffered in a store queue 162 and a load queue 164 so that
many memory operations can be performed in parallel. To assist in memory operations, the
CPU core 100 usually includes a number of data related caches and data translation lookaside
buffers (DTLBs) 170. A DTLB cache hierarchy 172 caches virtual address to physical
address translation such as page table entries, page directory entries, and the like; this
information is used to transform the virtual address of the memory operation into a physical
address so that data can be stored or loaded from system memory. The data is typically
cached in a level 1 data cache (L1 D-Cache) 174 residing in the core, as well as other cache

levels 176 external to the core 100.

In certain aspects of the present disclosure, in BC mode the size and associativity of the L1
D-cache 174 or the various levels of the DTLB cache hierarchy 172 may be reduced to

match, or to more closely approximate, their respective size and associativity for the legacy

10

15

20

25

30

WO 2017/019286 PCT/US2016/041762

CPU. In certain aspects of the present disclosure, in BC mode the size of the store queue 162
or load queue 164 of the CPU (e.g. the number of allowable outstanding stores or loads) may
be reduced to match, or to more closely approximate, their respective size for the legacy

CPU.

FIG. 2 is a flow diagram illustrating an example of a possible process flow of a method in
accordance with aspects of the present disclosure. The method starts at 201, e.g., by loading
an application onto a system having anew CPU. Via an examination of a software 1D,
software checksum, metadata associated with the software, media type, or other mechanism,
a determination is made if an application is designed for a new CPU or for the prior versions
of the system, as indicated at 210. Such a determination may be implemented in software
running on the system or in hardware of the system. When it is determined that the loaded
application is intended for the new CPU, the system may run normally, as indicated at 220.
For example, the CPU may run normally without restriction on available resources, without
disabling features, altering latency of execution of instructions, or altering algorithmic details

to match or approximate behavior of a legacy CPU.

When it is determined that the loaded application is intended for a legacy CPU, the CPU runs
in BC mode, with selected available resources restricted 242, with selected features not
present on the legacy CPU disabled 244, with latency of execution of instructions altered 246,
or with algorithmic details altered 248 or some combination of two or more of these to match
or approximate behavior of the legacy CPU. Examples of these possibilities are discussed

above.

By way of example, and not by way of limitation to operate the CPU with selected resources
restricted 242, the BC mode may be implemented by suitable configuration of the hardware
of the new CPU, by suitable configuration of an operating system that runs the CPU or some
combination of both. For example, as discussed above, in BC mode the size of the indirect
target array 106, the size of the return address stack 104, or the size of the branch target
buffer 108 of the CPU may be reduced to match, or to more closely approximate, their
respective size for the legacy CPU. By way of example and not by way of limitation, the
relevant hardware may be configured so that in BC mode the operating system or CPU
firmware could reduce the size of the indirect target array 106 to match, or to more closely
approximate, their respective size for the legacy CPU. The following pseudocode illustrates

an example of how this might be implemented:

10

15

20

25

30

WO 2017/019286 PCT/US2016/041762

void function BC _mode indirect target array size
if BC_mode is true {

set indirect_target array size to reduced indirect target array size

b

The size of the return address stack 104, or the size of the branch target buffer 108, or other

available resources may be reduced in similar manner.

In a like manner, to operate the CPU with selected features disabled 244 certain hardware
resources present on the new CPU that are not present on the legacy CPU (e.g., the micro-op
cache 126) may be configured so that they can be disabled by the operating system or CPU
firmware in BC mode. Alternatively, hardware resources present on the new CPU that are
not present on the legacy CPU may be configured so that they are ignored by the application
in BC mode.

By way of example, and not by way of limitation, to operate the CPU with a latency of
instruction execution of the new CPUs altered 246 to match or approximate a latency of the
legacy CPU the hardware of the execution units 150 may be configured to add the equivalent

of “no-op” instructions in BC mode to obtain the desired latency in BC mode.

By way of example, and not by way of limitation, to operate the new CPU with algorithmic
details of operation of one or more units of the new CPU altered 248. By way of example,
and not by way of limitation, the algorithmic details of operation of the branch prediction unit
102 may be altered in BC mode. For example, as discussed above, if the legacy CPU is
limited in its ability to track the behavior of branch instructions that are close to each other,
then in BC mode the branch prediction unit 102 may be configured to match this legacy CPU
behavior in BC mode. Alternatively, if the legacy CPU uses a substantially different style of
branch prediction logic (e.g. a saturating counter rather than an adaptive predictor) then the
branch prediction unit 102 of the new CPU may include the logic of the legacy CPU that can
be enabled in BC mode. In other implementations, the algorithmic details of operation of the
instruction fetch and decode unit 110, dispatch and scheduling unit 130, or execution units
150 of a new CPU may be similarly configured with legacy logic that could be enabled in BC

mode.

Turning now to FIG. 3, an illustrative example of a system 300 configured to operate in

accordance with aspects of the present disclosure is depicted. According to aspects of the

10

15

20

25

30

WO 2017/019286 PCT/US2016/041762

present disclosure, the system 300 may be an embedded system, mobile phone, personal

computer, tablet computer, portable game device, workstation, game console, and the like.

The system 300 generally includes a central processor unit (CPU) 320 which may include a
CPU core and other features of the type depicted in FIG. 1 and discussed above. By way of
example and not by way of limitation, the CPU 320 may be part of an accelerated processing
unit (APU) 310 that includes the CPU 320, and a graphics processing unit (GPU) 330 on a
single chip. In alternative implementations, the CPU 320 and GPU 330 may be implemented

as separate hardware components on separate chips.

The system 300 may also include memory 340. The memory 340 may optionally include a
main memory unit that is accessible to the CPU 320 and GPU 330. The CPU 320 and GPU
330 may each include one or more processor cores, e.g., a single core, two cores, four cores,
eight cores, or more. The CPU 320 and GPU 330 may be configured to access one or more
memory units using a data bus 390, and, in some implementations, it may be useful for the

system 300 to include two or more different buses.

The memory 340 may include one or more memory units in the form of integrated circuits
that provides addressable memory, e.g., RAM, DRAM, and the like. The memory contains
executable instructions configured to implement the method of FIG. 2 upon execution for
determining operate the CPU 320 in a BC mode when running applications originally created
for execution on alegacy CPU. In addition, the memory 340 may include a dedicated
graphics memory for temporarily storing graphics resources, graphics buffers, and other

graphics data for a graphics rendering pipeline.

The CPU 320 may be configured to execute CPU code, which may include operating system
(OS) 321 or an application 322 (e.g., a video game). The OS 321 may be configured to
implement certain features of operating the CPU 320 in the BC mode, as discussed above.
The CPU code may include a graphics application programming interface (API) 324 for
issuing draw commands or draw calls to programs implemented by the GPU 330 based on a
state of the application 322. The CPU code may also implement physics simulations and
other functions. Portions of the code for one or more of the OS 321, application 322, or API
324 may be stored in the memory 340, caches internal or external to the CPU or in a mass

storage device accessible to the CPU 320.

10

10

15

20

25

30

WO 2017/019286 PCT/US2016/041762

The system 300 may also include well-known support functions 350, which may
communicate with other components of the system, e.g., via the bus 390. Such support
functions may include, but are not limited to, input/output (I/O) elements 352, one or more
clocks 356, which may include separate clocks for the CPU and GPU, respectively, and one
or more levels of cache 358, which may be external to the CPU 320. The system 300 may
optionally include a mass storage device 360 such as a disk drive, CD-ROM drive, flash
memory, tape drive, Blu-ray drive, or the like to store programs and/or data. In one example,
the mass storage device 360 may receive a computer readable medium 362 containing a
legacy application originally designed to run on a system having a legacy CPU.
Alternatively, the legacy application 362 (or portions thereof) may be stored in memory 340
or partly in the cache 358.

The device 300 may also include a display unit 380 to present rendered graphics 382
prepared by the GPU 330 to auser. The device 300 may also include a user interface unit
370 to facilitate interaction between the system 100 and a user. The display unit 380 may be
in the form of a flat panel display, cathode ray tube (CRT) screen, touch screen, head
mounted display (HMD) or other device that can display text, numerals, graphical symbols,
or images. The display 380 may display rendered graphics 382 processed in accordance with
various techniques described herein. The user interface 370 may contain one or more
peripherals, such as a keyboard, mouse, joystick, light pen, game controller, touch screen,
and/or other device that may be used in conjunction with a graphical user interface (GUI). In
certain implementations, the state of the application 322 and the underlying content of the
graphics may be determined at least in part by user input through the user interface 370, e.g.,

where the application 322 includes a video game or other graphics intensive application.

The system 300 may also include a network interface 372 to enable the device to
communicate with other devices over a network. The network may be, e.g., a local area
network (LAN), a wide area network such as the internet, a personal area network, such as a
Bluetooth network or other type of network. Various ones of the components shown and
described may be implemented in hardware, software, or firmware, or some combination of

two or more of these.

According to aspects of the present disclosure, the CPU 320 may include hardware
components such as the components of the CPU core 100 of FIG. 1 that can operate in a BC

mode with selected available resources restricted 242, with selected features not present on

11

10

15

20

WO 2017/019286 PCT/US2016/041762

the legacy CPU disabled 244, with latency of execution of instructions altered 246, or with
algorithmic details altered 248 or some combination of two or more of these to match or

approximate behavior of the legacy CPU, as discussed above with respect to FIG. 2.

Aspects of the present disclosure overcome problems with backward compatibility that arise
when programs written for a legacy system run on a more powerful new system. By running
the new CPU in BC mode with selected available resources restricted, with selected features
not present on the legacy CPU disabled, with latency of execution of instructions altered, or
with algorithmic details altered or some combination of two or more of these the new CPU

can match or approximate the behavior of the legacy CPU.

While the above is a complete description of the preferred embodiment of the present
invention, it is possible to use various alternatives, modifications and equivalents. Therefore,
the scope of the present invention should be determined not with reference to the above
description but should, instead, be determined with reference to the appended claims, along
with their full scope of equivalents. Any feature described herein, whether preferred or not,
may be combined with any other feature described herein, whether preferred or not. In the

claims that follow, the indefinite article “A”, or “An” refers to a quantity of one or more of

the item following the article, except where expressly stated otherwise. As used herein, in a
listing of elements in the alternative, the term “or” is used as the inclusive sense, e.g., “X or
Y” covers X alone, Y alone, or both X and Y together, except where expressly stated
otherwise. Two or more elements listed as alternatives may be combined together. The
appended claims are not to be interpreted as including means-plus-function limitations, unless

such a limitation is explicitly recited in a given claim using the phrase “means for.”

12

WD = WD = WD = AN R W N =

n = W N =

f—

WO 2017/019286 PCT/US2016/041762

WHAT IS CLAIMED IS:

A method, comprising:

with a new device executing an application on a new central processing unit (CPU),
determining whether the application is for a legacy device having a legacy CPU; and
when the new device determines that the application is for the legacy device, executing
the application on the new CPU with selected available resources of the new device

restricted to approximate or match a processing behavior of the legacy CPU.

The method of claim 1, wherein executing the application on the new CPU with selected
available resources of the new CPU restricted includes:
reducing a size of an indirect target array of the new CPU to approximate a size of a

corresponding indirect target array of the legacy CPU.

The method of claim 1, wherein executing the application on the new CPU with selected
resources of the new CPU restricted includes reducing a size of a return address stack of
the new CPU to approximate a size of a corresponding return address stack of the legacy

CPU.

The method of claim 1, wherein executing the application on the new CPU with selected
resources of the new device restricted includes reducing a size of a branch target buffer of
the new CPU to approximate a size of a corresponding branch target buffer of the legacy

CPU.

The method of claim 1, wherein executing the application on the new CPU with selected
resources of the new CPU restricted includes changing a size or associativity of an
instruction related cache or translation lookaside buffer of the new CPU to match or
approximate a size or associativity for a corresponding instruction related cache or

translation lookaside buffer of the legacy CPU.

The method of claim 5, wherein the instruction related cache or translation lookaside
buffer of the new CPU is an instruction translation lookaside buffer cache hierarchy, a

level 1 instruction cache, or a micro-op cache.

13

Y S L S N

W =

WO 2017/019286 PCT/US2016/041762

10.

11

12.

13

14.

15.

16.

The method of claim 1, wherein executing the application on the new CPU with selected
resources of the new CPU restricted includes reducing a size a queue of the new CPU to

match or approximate a size of a corresponding queue of the legacy CPU.

The method of claim 7, wherein the queue of the new CPU is a retirement queue or a

scheduling queue.

The method of claim 1, wherein executing the application on the new CPU with selected
resources of the new CPU restricted includes reducing a size a register bank of the new

CPU to match or approximate a corresponding size of a register bank of the legacy CPU.

The method of claim 9, wherein the register bank is a SIMD physical register bank or a
GP physical register bank.

The method of claim 1, wherein executing the application on the new CPU with selected
resources of the new CPU restricted includes reducing a number of usable execution units
of the new CPU to match or approximate an available number of corresponding execution

units of the legacy CPU.

The method of claim 11, wherein the execution units include Arithmetic Logic Units
(ALU), Address Generation Units (AGU) or Single Instruction Multiple Data (SIMD)
pipes.

. The method of claim 1, wherein executing the application on the new CPU with selected

resources of the new CPU restricted includes changing a size or associativity of cache of
the new CPU to match or approximate a corresponding size or associativity of

corresponding cache of the legacy CPU.
The method of claim 13, wherein the cache is an instruction-related cache.

The method of claim 13, wherein the cache is a data translation lookaside buffer (DTLB)

cache hierarchy or alevel 1 data cache.

A system, comprising,
anew central processing unit (CPU) configured to execute instructions of an application,
the new CPU having logic units configured to determine whether the application is for a

legacy device having a legacy CPU, and execute the application with selected available

14

L VS S

f—

WO 2017/019286 PCT/US2016/041762

17.

18.

19.

20.

21.

22.

23.

24.

25.

resources of the new CPU restricted to approximate or match a processing behavior of the

legacy CPU when the application is for the legacy device.

The system of claim 16, wherein the selected available resources of the new CPU are
restricted by reducing a size of an indirect target array of the new CPU to approximate a

size of a corresponding indirect target array of the legacy CPU.

The system of claim 16, wherein the selected available resources of the new CPU are
restricted by reducing a size of a return address stack of the new CPU to approximate a

size of a corresponding return address stack of the legacy CPU.

The system of claim 16, wherein the selected available resources of the new CPU are
restricted by reducing a size of a branch target buffer of the new CPU to approximate a

size of a corresponding branch target buffer of the legacy CPU.

The system of claim 16, wherein the selected available resources of the new CPU are
restricted by changing a size or associativity of an instruction related cache or translation
lookaside buffer of the new CPU to match or approximate a size or associativity for a

corresponding instruction related cache or translation lookaside buffer of the legacy CPU.

The system of claim 20, wherein the instruction related cache or translation lookaside
buffer of the new CPU is an instruction translation lookaside buffer cache hierarchy, a

level 1 instruction cache, or a micro-op cache.

The system of claim 16, wherein the selected available resources of the new CPU are
restricted by reducing a size a queue of the new CPU to match or approximate a size of a

corresponding queue of the legacy CPU.

The system of claim 22, wherein the queue of the new CPU is a retirement queue or a

scheduling queue.

The system of claim 16, wherein the selected available resources of the new CPU are
restricted by reducing a size a register bank of the new CPU to match or approximate a

corresponding size of a register bank of the legacy CPU.

The system of claim 24, wherein the register bank is a SIMD physical register bank or a
GP physical register bank.

15

KR NN N R W

WO 2017/019286

26.

27.

28.

29.

30.

31

PCT/US2016/041762

The system of claim 16, wherein the selected available resources of the new CPU are
restricted by reducing a number of usable execution units of the new CPU to match or

approximate an available number of corresponding execution units of the legacy CPU.

The system of claim 26, wherein the execution units include Arithmetic Logic Units

(ALU), Address Generation Units (AGU) or Single Instruction Multiple Data (SIMD)
pipes.

The system of claim 16, wherein the selected available resources of the new CPU
restricted are restricted by changing a size or associativity of cache of the new CPU to
match or approximate a corresponding size or associativity of corresponding cache of the

legacy CPU.
The system of claim 28, wherein the cache is an instruction-related cache.

The system of claim 28, wherein the cache is a data translation lookaside buffer (DTLB)

cache hierarchy or alevel 1 data cache.

A non-transitory computer readable medium having executable instructions embodied
therein, the instructions being configured to implement a method upon execution of the
instructions, the method comprising:

with a new device executing an application on a new central processing unit (CPU),
determining whether the application is for a legacy device having a legacy CPU; and
when the new device determines that the application is for the legacy device executing the
application on the new CPU with selected available resources of the new device restricted

to approximate or match a processing behavior of the legacy CPU.

16

WO 2017/019286

PCT/US2016/041762

1/3

CPU Core

Branch Predict 102

Fetch and Decode 110

[Return Address Stack 104]

-—

Instruction Fetch Unit 11

Indirect Target Array 106

Branch Target Buffer 108

2
14

-—

Instruction Byte Buffer

Instruction Decode Unit 116

100

Instruction-Related
Caches and TLB 120

Dispatch and Scheduling
130

System
Memory
101

L1 I-Cache 122

Retirement Queues 132

ITLB Cache Hierarchy 124]

SIMD and Int Rename 134

Micro-op cache 126 |

Scheduling Queues 136

. Execution Units_ 150
Physical SIMD _
Registers SIMD Pipes 152
142 ALUs 154
— AGUs 156
Physical GP
Registers Store Load
144 Queue || Queue
Physical Registers 162 164
140
— Data-Related Cache and TLB

170
DTLB Cache Hierarchy 172
L1 D-Cache 174

Other
levels of
cache
(e.q.L2)
176

FIG. 1

WO 2017/019286 PCT/US2016/041762

2/3

200
(201 Start)

210 Application
designed for the new
CPU or legacy CPU?

New

220 Run
system
normally.
230 Run system in BC
mode
) 4
J4R)
\/
A 4 j A 4
with selected Wi_th Iaten_cy of
available with selected lnst_ruct|on
resources features disabled execution altered
restricted 244 246
242 A 4
with algorithmic
details of
operation altered
248
A 4
>< End):

FIG. 2

WO 2017/019286 PCT/US2016/041762

5300
APU 310
/1/390 /\/350
320 T A :
cPu | 352 |
HIETG) |
GPU i i
| 358 i
' | CACHE |
340 MEMORY
321 0S 362
- - ﬁ
322 Application 80
324 Graphics API STORE
372
NETWORK 370
INTERFACE US_ER
INTERFACE
380
DISPLAY
382
Rendered
Graphics

FIG. 3

INTERNATIONAL SEARCH REPORT International application No.
PCT/US 16/41762

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOGF 9/44 (2016.01)
CPC - GO6F8/71.
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification S}'stem followed by classification symbols)
USPC: 717/122; CPC: GO6F8/71; IPC(8). GO6F 9744 (2016.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 717/122; CPC: GO6F8/71, GO6F9/44521, GO6F8/30, GOG6F8/36, GO6F8/66; IPC(8): GO6F 9/44 (2016.01) (keyword limited, terms

below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatBase, Google Patents, IEEE; Search Terms: legacy device; legacy CPU, processor; translation lookaside buffer, TLB, cache; data
translation lookaside buffer (DTLB); hierarchy; emulation, simulation; reducing, restricting, re-sizing; resources; indirect target array;
branch target buffer; retirement, scheduling queue; execution unit; register ba

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2005/0033831 A1 (Rashid) 10 February 2005 (10.02.2005), entire document especially 1, 16, 31

o paras {0064],[0066] |

Y 2-15, 17-30

Y US 2014/0282425 A1 (Zhao et al.) 18 September 2014 (18.09.2014), entire document 2-15, 17-30

especially para [0033]

Y US 2013/0339649 A1 (Hsu et al.) 19 December 2013 (19.12.2013), entire document especially | 10, 25
Abstract, paras [0034], [0042]

A US 2009/0119477 A1 (Plondke et al.) 07 May 2009 (07.05.2009), entire document 1-31
A US 6,772,315 B1 (Perego) 03 August 2004 (03.08.2004), entire document 1-31
A US 2014/0304771 A1 (Reierson et al.) 09 October 2014 (09.10.2014), entire document 1-31
A US 2009/0063772 A1 (Magoshi) 05 March 2009 (05.03.2009), entire document 1-31
I:] Further documents are listed in the continuation of Box C. D
* Special categories of cited documents: “T” later document published after the international filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
“E” earlier application or patent but published on or after the international “X™ document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
“L” d_ocgment w!l';ilqhhmﬁy thrg]_v dqubtf’ on pl;jorityhclaim(s)_or whiciin1 is step when the document is taken alone
cited to establish the publication date of another citation or other wy» 400y ment of parti . p : ;
s particular relevance; the claimed invention cannot be
special reason (a§ specified) . . considered to involve an inventive step when the document is
“Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination

means being obvious to a person skilled in the art

“P” document published prior to the international filing date butlater than «g» 4ocment member of the same patent family
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
01 September 2016 (01.09.2016) 0 5 0 C T 20‘]6
Name and mailing address of the ISA/US Authorized officer:
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Lee W. Young
P.O. Box 1450, Alexandria, Virginia 22313-1450
. PCT Helpdesk: 571-272-4300
Facsimile No. 571-273-8300 PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - wo-search-report

