

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

T3

1 Número de publicación: **2 899 174**

51 Int. Cl.:	
C07K 14/435	(2006.01)
C07H 21/00	(2006.01)
A61K 48/00	(2006.01)
A61K 35/17	(2015.01)

TRADUCCIÓN DE PATENTE EUROPEA				
96) Fecha de presentación y número	o de la solicitud europea:	26.08.2009	E 15188601 (7)	
97) Fecha y número de publicación	de la concesión europea:	06.10.2021	EP 3006459	

54 Título: Método y composiciones para el funcionamiento mejorado del efecto antitumoral de las células T

³⁰ Prioridad:	Titular/es:
 26.08.2008 US 91915 P ⁽⁴⁵⁾ Fecha de publicación y mención en BOPI de la traducción de la patente: 10.03.2022 	CITY OF HOPE (100.0%) 1500 East Duarte Road Duarte, CA 91010, US 72 Inventor/es: JENSEN, MICHAEL
	(74) Agente/Representante:SÁEZ MAESO, Ana

Aviso:En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín Europeo de Patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre Concesión de Patentes Europeas).

DESCRIPCIÓN

Método y composiciones para el funcionamiento mejorado del efecto antitumoral de las células T

5 Declaración sobre investigación patrocinada federalmente

Esta invención se realizó con el apoyo del gobierno en forma de Subvención de Apoyo al Centro de Cáncer núm. P30-CA33572-21 del Departamento de Salud y Servicios Humanos de los Estados Unidos, Institutos Nacionales de Salud. El gobierno de los Estados Unidos tiene ciertos derechos sobre la invención.

Antecedentes de la invención

1. Campo técnico

10

25

- 15 La invención se refiere al campo de la biomedicina y específicamente a métodos útiles para la terapia del cáncer. En particular, la invención se refiere a un receptor de antígeno quimérico (CAR) para estrategias inmunoterapéuticas CTL específicas para el cáncer que incluyen el uso de linfocitos T modificados genéticamente que expresan inmunorreceptores quiméricos en el tratamiento de tumores cerebrales humanos y otros cánceres.
- 20 2. Descripción de la técnica anterior

Se han investigado inmunoterapias basadas en células T específicas de tumor para el tratamiento antitumoral, sin embargo, las células T adolecen del problema de no sobrevivir y permanecer activas in vivo durante un período suficientemente largo. A menudo, las células T transferidas de forma adoptiva no tienen la potencia y duración deseadas para la destrucción de las células tumorales. Por lo tanto, existe una necesidad en la técnica de terapias contra el cáncer específicas de tumores con funcionamiento antitumoral a más largo plazo.

- Las inmunoterapias dirigidas contra el cáncer tradicionalmente se centran en provocar respuestas de CTL CD8⁺. Sin embargo, la estimulación de las respuestas de las células T CD4⁺ (auxiliares) también es importante para una inmunoterapia exitosa contra el cáncer. Las células T CD4⁺ pueden influir en las respuestas CTL específicas de tumores naturales directa o indirectamente, mediante el acondicionamiento de células presentadoras de antígenos profesionales a través de CD40-CD40L y mediante la producción de citocinas como IL2 e IFN-γ. Los mecanismos efectores citocidas utilizados por las células T CD4⁺ están mediados por la liberación de citocinas que activan los receptores de muerte en la superficie de la célula tumoral, o por contacto celular directo donde Fas/FasL, ligando inductor de apoptosis relacionado con TNF (TRAIL) o las rutas dependientes de granzima perforina median la
- 35 inductor de apoptosis relacionado con TNF (TRAIL) o las rutas dependientes de granzima perforina median la apoptosis de las células tumorales. Estas células auxiliares pueden aumentar la expansión clonal temprana y la generación de efectores primarios de CTL CD8⁺, y también pueden afectar tanto la generación como la expansión de las células T CD8⁺ de memoria funcional.
- 40 La activación completa de las células T CD4⁺ naturales requiere una señal específica de antígeno a través del acoplamiento del complejo receptor de células T/CD3 con complejos de péptido/MHC clase II apropiados y señales coestimuladoras. Estas señales coestimuladoras suelen ser entregadas por ligandos que se expresan selectivamente en células especializadas presentadoras de antígenos. Se cree que la coestimulación de células T ayuda a mantener la tolerancia a los autoantígenos normales expresados por tejidos que no envían esta señal secundaria. Debido a que
- 45 la mayoría de las células tumorales, al igual que los tejidos normales, no expresan MHC de clase II o moléculas coestimuladoras, es lógico que tampoco promuevan directamente la estimulación de las células T CD4⁺. Esta teoría está respaldada por varios estudios que han demostrado una mayor inmunidad antitumoral mediada por células T mediante la vacunación con células tumorales que fueron transfectadas con el ligando coestimulador B7-1.
- 50 Aunque alterar la expresión de las células tumorales de moléculas coestimuladoras es una forma de ayudar a impulsar la activación de las células T, serían muy deseables estrategias alternativas, en particular estrategias que implican permitir que las células T reciban y actúen sobre señales coestimuladoras sin la necesidad de un ligando coestimulador real (s).
- 55 El documento WO2008/095141 divulga células T reguladoras redirigidas dotadas de especificidad hacia un antígeno o ligando diana seleccionado y su uso en la supresión de enfermedades autoinmunes. El documento US2003/0171546 A1 se refiere a inmunorreceptores transmembrana quiméricos para redirigir la especificidad antigénica de las células T, con aplicación al tratamiento de una variedad de cánceres. En particular, el documento US2003/0171546 A1 divulga un receptor de antígeno quimérico (CAR) específico de tumor con un dispositivo de señalización coestimuladora de
- 60 CD28. El documento US2005/0113564 A1 divulga un método para potenciar la actividad de un receptor de antígeno quimérico contra un tumor, que comprende añadir un dominio de señalización CD28 o 4-1BB a dicho receptor.

Resumen de la invención

65 De acuerdo con lo anterior, la presente invención proporciona un receptor de antígeno quimérico (CAR) como se reivindica en la reivindicación 1 a continuación, para el funcionamiento efector antitumoral mejorado de las células T

CD4⁺ y CD8⁺ para la inmunoterapia del cáncer. Los inmunorreceptores transmembrana quiméricos (denominados receptores de antígenos quiméricos o "CAR") comprenden un dominio extracelular, una región transmembrana y un dominio de señalización intracelular. El dominio extracelular está formado por un ligando de receptor soluble (que es específico para un antígeno tumoral diana u otra molécula de la superficie de la célula tumoral) unido a una región de

- 5 soporte opcional capaz de unir el dominio extracelular a la superficie celular. El dominio de señalización intracelular contiene el dominio de señalización de la cadena zeta del complejo CD3 humano (CD3ζ) y los dominios de señalización coestimuladores de CD28 y 4-1BB. El dominio extracelular contiene un elemento de reconocimiento que permite al CAR, cuando se expresa en la superficie de una célula T, dirigir la actividad de la célula T a aquellas células que expresan un receptor o ligando para el que este elemento de reconocimiento es específico. Por ejemplo, un CAR que
- 10 contiene un dominio extracelular que contiene un elemento de reconocimiento específico para un antígeno tumoral puede dirigir la actividad de las células T a las células tumorales que portan este antígeno. La región intracelular permite que la célula T reciba señales coestimuladoras. Los dominios de señalización coestimuladores son CD28 y 4-1BB. El receptor quimérico comprende una región transmembrana de CD4 humana, una Fc de IgG4 humana y un receptor o ligando de IL13 que es específico de tumor. La molécula IL13 contiene la mutación E13Y, como en IL13-
- 15 CD28-41BBζ.

Las realizaciones de la invención también abarcan linfocitos T aislados que expresan el CAR discutido en el presente documento. Además, las realizaciones de la invención incluyen métodos de inmunoterapia contra el cáncer que comprenden administrar a un paciente que lo necesite tales linfocitos T, incluidos los tratamientos para cualquiera de los siguientes cánceres: glioblastoma, meduloblastoma, cáncer de mama, cáncer de cabeza y cuello, cáncer de riñón,

cáncer de ovario cáncer, sarcoma de Kaposi, leucemia mielógena aguda y neoplasias malignas de linaje B.

Breve descripción de los dibujos

La Figura 1 es una representación esquemática de las moléculas de proteína del receptor de antígeno quimérico 25 (CAR) ΙΕ13ζ e ΙL13-CD28-41BBζ.

La Figura 2 muestra las ubicaciones de cebadores ejemplares para la construcción de CAR de IE13ζ en la secuencia de IL13 nativa como se indica. Las flechas indican la posición de los cebadores en la secuencia de IL13.

30

35

20

La Figura 3 (proporcionada como Figuras 3A-3C) proporciona una secuencia de nucleótidos que codifica la zetaquina IL13 ejemplar (SEQ ID NO: 5, cadena superior; SEQ ID NO: 6, cadena inferior). Los segmentos de ADN en la secuencia incluyen el péptido señal alfa de GM-CSFR (SEQ ID NO: 7), IL13 (E13Y) (SEQ ID NO: 8), IgG₄ (SmP) (SEQ ID NO: 9), CD4tm (SEQ ID NO: 10) y CD3zeta (SEQ ID NO: 11). La secuencia de aminoácidos completa se proporciona como SEQ ID NO: 4.

La Figura 4 es un mapa del vector IL13zetaquina/HyTK-pMG. En la Figura 5 se proporciona una secuencia ejemplar de dicho vector.

40 La Figura 5 (dada como Figuras 5A-5L) proporciona la secuencia de un ejemplo de vector de ADN plasmídico (SEQ ID NO: 13, cadena superior; SEQ ID NO: 14, cadena inferior). También se indican una secuencia de aminoácidos de IL13zetaquina (SEQ ID NO: 15) y una secuencia de aminoácidos de HyTk (SEQ ID NO: 16). Los segmentos de ADN que componen la secuencia completa incluyen hEFIp (nucleótidos 6-549; SEQ ID NO: 41), IL13zetaquina (nucleótidos 690-2183; SEQ ID NO: 42), sv40pAn tardío (nucleótidos 2230-2498; SEQ ID NO: 43), Ori ColE1 (nucleótidos 2499-3245; SEQ ID NO: 44), SpAn (nucleótidos 3246-3432; SEQ ID NO: 45), hCMV-1Aprom (nucleótidos 3433-4075; SEQ 45 ID NO: 46), HyTK (nucleótidos 4244-6319; SEQ ID NO: 47) y BGh pAna (nucleótidos 6320-6618; SEQ ID NO: 48).

La Figura 6 contiene dos representaciones esquemáticas de construcciones de plásmidos lineales CAR ejemplares. La Figura 6A muestra una construcción IL13ζ y la Figura 6B muestra una construcción IL13-CD28-41BBζ.

50

65

- La Figura 7 muestra el análisis de transferencia Western de lisados celulares derivados de células T CD4+ transfectadas con IL13ζ e IL13-CD28-41BBζ para expresión de CAR usando un mAb específico de CD3ζ antihumano de ratón.
- 55 La Figura 8 es un panel de ocho análisis de citometría de flujo que comparan el fenotipo de la superficie celular de las células CD4⁺ en volumen que expresan IL13ζ e IL13-CD28-41BBζ.

La Figura 9 es un panel de seis gráficos que muestran los resultados de la citometría de flujo de la tinción de la superficie de HLA-A2 y HLA-DR (moléculas MHC), IL13Rα2 y las moléculas coestimuladoras CD80, CD86 y CD137-60 L (4-1BBL) (histogramas rellenos) como se indica, en comparación con controles de isotipo (histogramas abiertos) en células diana de glioma U87.

La Figura 10 es una serie de inmunotransferencias que muestran los resultados de un ensayo de quinasa para determinar la cinética de la activación de JNK y p38 (3A) y AKT (3B), que se mide mediante la fosforilación de sus respectivos sustratos (es decir, P-cJun (protooncogén c-Jun fosforilado), p-GSK3 (glucógeno de sintasa quinasa 3 fosforilada) y P-ATF2 (factor 2 de transcripción activador fosforilado)).

La Figura 11 muestra la polarización Th₁ mejorada de células T IL13-CD28-41BB ζ^+ CD4⁺ en términos de ARNm de citocina Th₁ de células T (Figura 11A) y producción de proteína de citocina Th₁ y Th₂ (Figura 11B).

- La Figura 12A proporciona datos que muestran una actividad citotóxica mejorada de las células T IL13-CD28-41BBζ⁺ CD4⁺ (■) contra las dianas U87 en comparación con la de las células T IL13ζ⁺ CD4⁺ (○) en la relación E: T indicada en un ensayo de citotoxicidad de luciferasa de 4 horas (LCA). La Figura 12B muestra datos similares para las células T IL13-CD28-41BBζ⁺ CD4⁺ (barras negras) y las células T IL13ζ⁺ CD4⁺ (barras blancas) cocultivadas durante 48 horas en una relación E: T de 2: 1, y luego nuevamente co-cultivado durante 48 horas adicionales después de la adición de dianas frescas en la misma proporción E: T. La Figura 12C proporciona datos obtenidos con imágenes de video de
- 10 dianas trescas en la misma proporcion E: 1. La Figura 12C proporciona datos obtenidos con imagenes de video de células T que expresan el CAR indicado cocultivado con células U87 adherentes, lo que indica el número de células viables por imagen.
- La Figura 13 proporciona datos de flujo que muestran un efecto antitumoral sostenido contra xenoinjertos de
 glioblastoma establecidos in vivo por células T IL13-CD28-41BBζ⁺ CD4⁺. También se muestran los resultados observados con células T transfectadas con IL13ζ y simuladamente.

La Figura 14 proporciona la secuencia de IL13-IgG₄-cd28tm-CD28gg-Zeta (CO)(SEQ ID NO: 36).

- 20 La Figura 15 proporciona la secuencia de IL13-IgG4-cd4tm-CD28-4-1BB-Zeta, también denominada en el presente documento IL13-CD28-41BBζ utilizada/discutida anteriormente con respecto a los ejemplos siguientes (SEQ ID NO: 37). Esta secuencia se usó para alterar genéticamente las células T para expresar el CAR de IL13-CD28-41BBζ como se describe y se usa en las Figuras 1, 6, 7, 8, 10, 11, 12 y 13.
- La Figura 16 proporciona la secuencia de IL13-IgG₄-cd28tm-CD28-Ox40-Zeta (SEQ ID NO: 38).

La Figura 17 proporciona la secuencia de IL13-IgG₄-cd28tm-CD28gg-4-1BB-Zeta (SEQ ID NO: 39).

La Figura 18 proporciona la secuencia de H-13-IgG₄-cd28tm-CD28gg^199-4-1BB-Zeta (SEQ ID NO: 40).

Descripción detallada de las realizaciones preferidas

La inmunoterapia adoptiva que utiliza linfocitos T que expresan receptores de antígenos quiméricos (CAR) específicos de tumores puede ser una poderosa estrategia terapéutica para el tratamiento del cáncer. Los CAR están formados por un elemento de reconocimiento específico extracelular (como un receptor que se une a un antígeno tumoral) unido a través de un dominio transmembrana al dominio de señalización citoplásmico CD3ζ. Por lo tanto, estos receptores son capaces tanto de unirse al antígeno como de transducir la activación de las células T, independientemente de la restricción del MHC. Por tanto, los CAR son inmunorreceptores "universales" que pueden tratar una población de pacientes con tumores con antígeno positivo independientemente de su genotipo HLA.

40

30

De acuerdo con las realizaciones de esta invención, los CAR contienen el dominio de señalización para CD3ζ y los dominios de señalización de uno o más receptores coestimuladores que promueven aún más el reciclaje, supervivencia y/o expansión de células transferidas adoptivamente que expresan los CAR, además de receptores que permiten que las células se involucren en objetivos como los tumores. Los dominios de señalización de los receptores coestimuladores son las porciones intracelulares de cada proteína receptora que generan la señal de activación en la

- 45 coestimuladores son las porciones intracelulares de cada proteína receptora que generan la señal de activación en la célula. Son ejemplos los aminoácidos 180-220 de la molécula CD28 nativa y los aminoácidos 214-255 de la molécula 4-1BB nativa. Un CAR especialmente preferido comprende un elemento de reconocimiento extracelular que es específico para un receptor de superficie de células cancerosas único, es estable in vivo y tiene baja inmunogenicidad. La derivación de una molécula de señal celular soluble de origen natural ayuda a lograr estos objetivos.
- 50

El término "CAR" se refiere a un receptor de antígeno quimérico que es una biomolécula recombinante que contiene un dominio de reconocimiento extracelular, una región transmembrana y un dominio de señalización intracelular. El término "antígeno", por lo tanto, no se limita a moléculas que se unen a anticuerpos, sino a cualquier molécula que pueda unirse específicamente a cualquier receptor. Por tanto, "antígeno" se refiere al dominio de reconocimiento del

- 55 CAR. El dominio de reconocimiento extracelular (también denominado dominio extracelular o simplemente por el elemento de reconocimiento que contiene) comprende un elemento de reconocimiento que se une específicamente a una molécula presente en la superficie celular de una célula diana. La región transmembrana ancla el CAR en la membrana. El dominio de señalización intracelular comprende el dominio de señalización de la cadena zeta del complejo CD3 humano y opcionalmente comprende uno o más dominios de señalización coestimuladores.
- Un CAR que contiene el dominio IL13 con la mutación E13Y (IL13 (E13Y)) y el dominio de señalización de la cadena zeta de CD3 se denomina en el presente documento "IL13ζ". Este término incluye cualquier receptor de antígeno quimérico (CAR) que contiene un dominio de reconocimiento extracelular de IL13 (un dominio que reconoce específicamente IL13Rα2 en células tumorales), una región transmembrana y un dominio de señalización intracelular de la cadena do CD3. En las Eiomolos 8.12 so propercionan ciemptos no de talos CAP, una CAP, que

de la cadena zeta de CD3. En los Ejemplos 8-12 se proporcionan ejemplos no limitantes de tales CAR. Un CAR que

contiene IL13 (E13Y) y también contiene los dominios intracelulares coestimuladores opcionales CD28 y 4-1BB se denomina en el presente documento "IL13-CD28-41BBζ".

- Los expertos reconocerán que cualquier secuencia de nucleótidos que codifique IL13 (E13Y) también sería adecuada para este mismo propósito. La secuencia no mutada del dominio de señalización de IL13 también es adecuada. Aquí se puede usar cualquier secuencia que codifique IL13 o IL13 (E13Y), incluidas variantes con 90 %, 95 %, 98 % o 99 % de homología con la secuencia nativa. Tales secuencias que son útiles para reconocer específicamente un antígeno tumoral del receptor de IL13 tal como IL13Rα2, por lo tanto incluyen aquellas codificadas por el ácido nucleico nativo (ver Smernov et al., Gene 155: 277-281, 1995, cuyas descripciones se incorporan aquí por referencia), la misma
- 10 secuencia de ácido nucleico que carece de la mutación E13Y, secuencias que son 95 %, 98 % o 99 % homólogas a estas secuencias, secuencias más largas que comprenden esas secuencias pero que también incluyen nucleótidos adicionales en el extremo 3' o 5', por ejemplo, cualquier número de nucleótidos o codones adicionales, como 3, 6, 9, 12 o más nucleótidos, o hasta aproximadamente 12, 20, 50 o 100 nucleótidos adicionales, y cualquier secuencia que codifique la misma secuencia de aminoácidos que estos ácidos nucleicos debido a la degeneración del código
- 15 genético. En particular, las secuencias que tienen codones optimizados (CO) para la expresión del huésped deseado se contemplan como parte de la invención.

Los elementos de reconocimiento solubles como se usan en esta invención se derivan de polipéptidos sintetizados de novo, como se describe para la secuencia codificante de IL13 (E13Y) en el Ejemplo 1 o de polipéptidos de genotecas combinatorias tales como genotecas de presentación de fagos o genotecas sintetizadas químicamente. Los elementos de reconocimiento solubles preferidos son de origen humano y, por lo tanto, no son inmunogénicos, pero se pueden adaptar en afinidad o especificidad mediante mutagénesis. Tras su expresión en las células T, los elementos de reconocimiento solubles son capaces de unirse a un elemento diana en la célula diana (por ejemplo, una célula tumoral, pero no en un grado apreciable en las células no diana), de tal manera que resulta en células T activación.
 25 Por lo tanto, los elementos de reconocimiento solubles que son adecuados para esta invención tienen ciertas ventajas

- 25 Por lo tanto, los elementos de reconocimiento solubles que son adecuados para esta invención tienen ciertas ventajas sobre los fragmentos de anticuerpos o las moléculas de adhesión celular para la especificidad de la diana en los CAR de la invención, ya que es más probable que sean estables en el entorno extracelular, no antigénicos y más selectivos, y por lo tanto son los preferidos. Los ejemplos de elementos receptores solubles adecuados incluyen factores de crecimiento autocrinos y paracrinos, quimiocinas, citocinas, hormonas y ligandos de moléculas pequeñas artificiales
- 30 manipulados que exhiben la especificidad requerida. Las secuencias de ligandos naturales se pueden diseñar para aumentar su especificidad para una célula diana particular. La selección de un elemento de reconocimiento para su uso en un CAR particular se rige por la naturaleza de la célula diana y las cualidades discutidas anteriormente. En una realización preferida de la invención, el CAR aprovecha la expresión restringida por tumores de IL13Rα2 por glioma maligno, carcinoma de células renales y otros tumores utilizando como elemento de reconocimiento un mutante de
- 35 IL13 (E13Y) para dirigir las células T específicamente a IL13Ra2 que expresan células tumorales. Se pueden crear elementos de reconocimiento análogos que son específicos para cualquiera de una variedad de tipos de células cancerosas que expresan selectivamente antígenos receptores o cualquier molécula específica en sus superficies celulares, para los cuales se conocen o pueden diseñarse elementos de reconocimiento selectivo.
- 40 Los ejemplos de regiones de soporte (transmembrana) adecuadas para su uso con la invención incluyen las regiones constantes (Fc) de inmunoglobinas, CD8a humano y enlazadores artificiales que sirven para alejar la fracción de direccionamiento de la superficie celular para mejorar el acceso y la unión en las células diana. Una región de soporte preferida es la región Fc de una IgG (tal como IgG4). Los ejemplos de dominios transmembrana adecuados incluyen los dominios transmembrana de los marcadores CD de leucocitos, preferiblemente los de CD4 o CD28. Los ejemplos
- 45 de dominios de señalización del receptor intracelular incluyen el complejo de receptor de antígeno de células T, preferiblemente la cadena zeta de CD3, sin embargo, se puede usar cualquier región transmembrana suficiente para anclar el CAR en la membrana. Los expertos conocen numerosas regiones transmembrana y los elementos estructurales (tales como regiones de aminoácidos lipofílicos) que producen dominios transmembrana en numerosas proteínas de membrana y, por lo tanto, pueden sustituir cualquier secuencia conveniente. Los receptores de aminoácidos proteínas de membrana de actividad na expersoa
- 50 señalización coestimuladores de células T adecuados para mejorar la función y actividad de las células que expresan CAR incluyen, pero no se limitan a, CD28 y 4-1BB también conocidos como (CD137) y OX-40.

La señalización a través de CD28 es necesaria para la producción y proliferación de IL2, pero no cumple una función principal en el mantenimiento de la función y actividad de las células T. 4-1BB (un miembro de la familia del receptor del factor de necrosis tumoral expresado después de la activación de CD28) y OX-40 están involucrados en impulsar la supervivencia a largo plazo de las células T y la acumulación de células T. Los ligandos para estos receptores se expresan típicamente en células presentadoras de antígenos profesionales, como células dendríticas y macrófagos activados, pero no en células tumorales. La expresión de un CAR que incorpora dominios de señalización CD28 y/o 4-1BB en las células T CD4⁺ mejora la actividad y la potencia antitumoral de esas células en comparación con las que expresan un CAR que contiene solo el dominio de señalización CD3ζ. Preferiblemente, los CAR de la invención contienen dominios de señalización tanto CD28 como 4-1BB.

Para que el CAR se dirija a las células tumorales, contienen una molécula de unión extracelular que se une a un marcador de superficie tumoral y preferiblemente se une específicamente a una molécula de superficie tumoral única. Algunos cánceres expresan o sobreexpresan moléculas del sistema inmunológico. Los gliomas, por ejemplo, expresan receptores de IL13 y, en particular, receptores de IL13 de alta afinidad. Sin embargo, a diferencia del complejo

trimolecular del receptor de IL13 utilizado por el sistema inmunitario (que consta de IL13R α 1, IL4R β y yc), las células de glioma sobreexpresan una cadena única de IL13R α 2 capaz de unirse a IL13 independientemente del requisito de IL4R β o yc44. Al igual que su homólogo IL4, IL13 tiene actividad inmunorreguladora pleotrópica fuera del SNC. Tanto la IL13 como la IL4 estimulan la producción de IgE por los linfocitos B y suprimen la producción de citocinas proinflamatorias por parte de los macrófagos.

Los estudios detallados que utilizan autorradiografía con IL13 radiomarcada han demostrado una unión abundante de IL13 en casi todos los tejidos de glioma maligno estudiados. Esta unión es muy homogénea dentro de las secciones tumorales y en el análisis de células individuales. Sin embargo, el análisis de sonda molecular específico para ARNm

- 10 de IL13Ra2 no detectó la expresión del receptor específico de glioma por elementos cerebrales normales y la autorradiografía con IL13 radiomarcada tampoco pudo detectar la unión específica de IL13 en el SNC normal. Estos estudios sugieren que el receptor IL13Rα1/IL4β/γc compartido no se expresa de forma detectable en el SNC normal. Por lo tanto, IL13Rα2 es una diana de la superficie celular muy específico para el glioma y es una diana muy adecuada para esta invención. Los expertos conocen otras dianas adecuadas para los CAR, que se expresan o sobreexpresan
- 15 en las células que se van a dirigir y preferiblemente no se expresan, o se expresan en un grado mucho menor, en otras células. Otro ejemplo de una diana específica de tumor adecuada para dirigirse con CAR es el receptor de IL3 (IL3R; por ejemplo, expresado en células de leucemia mieloide aguda (AML).
- Sin embargo, la unión de citotoxinas basadas en IL13 al complejo receptor IL13Pα1/IE4β/γc ampliamente expresado
 tiene el potencial de mediar toxicidades no deseadas en tejidos normales fuera del SNC y, por tanto, limita la administración sistémica de estos agentes. Una sustitución de aminoácidos en la hélice A de IL13 alfa en el aminoácido
 13 de la tirosina por el ácido glutámico nativo reduce selectivamente la afinidad de IL13 por el receptor de IL13Rα1/IL4β/γc. Sin embargo, la unión de este mutante (denominado IL13 (E13Y) a IL13Rα2 aumentó 50 veces en relación con la IL13 de tipo silvestre. Por lo tanto, este análogo de IL13 mínimamente alterado aumenta simultáneamente la especificidad y afinidad de IL13 por las células de glioma. Por lo tanto, la invención emplea una
- 25 simultáneamente la especificidad y afinidad de IL13 por las células de glioma. Por lo tanto, la invención emplea una IL13 que contiene una mutación en el aminoácido 13. Sin embargo, la IL13 que tiene la secuencia natural también puede usarse y puede ser útil, particularmente en situaciones en las que las células T modificadas deben administrarse localmente, como por inyección directamente en una masa tumoral.
- 30 Un tipo preferido de CAR para dirigirse específicamente a tumores que expresan IL13Ra2 se compone de una citoquina mutante de IL13 extracelular en la que la proteína IL13 contiene una sustitución de tirosina por el ácido glutámico natural en el aminoácido 13 de la proteína (denominado IL13 (E13Y) aquí), conectado a una región de soporte del dominio Fc bisagra de IgG₄ humana que se fusiona con un dominio transmembrana de CD4 y una secuencia de señalización de CD3ζ citoplásmica. Vea la Figura 1, lado izquierdo. Este CAR se denomina en el presente documento "IL13ζ CAR". Cuando este CAR también contiene los dominios de señalización CD28 y 4-1BB, se denomina IL13-CD28-41BBζ. Vea la Figura 1, lado derecho.

Un inmunorreceptor de acuerdo con la presente invención se puede producir por cualquier medio conocido en la técnica, aunque preferiblemente se produce usando técnicas de ADN recombinante. Los ácidos nucleicos que codifican las diversas regiones del receptor quimérico se pueden preparar y ensamblar en una secuencia codificante completa mediante técnicas estándar de clonación molecular conocidas en la técnica (cribado de colecciones genómicas, PCR, ligación asistida por cebadores, mutagénesis dirigida al sitio, etc.) como sea conveniente. La región codificante resultante se inserta preferiblemente en un vector de expresión y se usa para transformar una estirpe celular huésped de expresión adecuada, preferiblemente una estirpe celular de linfocitos T, y lo más preferiblemente 45 una estirpe celular de linfocitos T autólogos.

Brevemente, se puede construir un CAR IL13ζ usando métodos conocidos como sigue. El ADN mutante de IL13 IL13 (E13Y) puede sintetizarse mediante PCR con cebadores basados en la secuencia conocida de ARNm de IL13. La secuencia completa del gen IL13 se describe en Smernov et al., "Tandem arrangement of human genes for interleukin-

4 and interleukin-13: resemblance in their organization". Gene 155: 277-281, 1995, cuyas descripciones se incorporan aquí como referencia. La síntesis de novo de IL13 (E13Y) se realizó usando el cebador directo IL13P1 y cuatro cebadores inversos, IL13P2, IL13P3, IL13P4 e IL13P5, que se muestran en la Tabla I, a continuación, y en la Figura 2. Esta secuencia mutante de IL13 puede modificarse luego para que contenga una secuencia líder 5', si se desea. Un ancla transmembrana tal como la transmembrana IgG₄-CD4 humana (IgG₄ -CD4tm) y las secuencias citoplásmicas

55 de la cadena zetacadena CD3 (CD3ζ) también se pueden añadir al extremo 3' mediante técnicas de fusión por PCR o cualquier método conveniente. La secuencia completa de IL13ζ se muestra en la Figura 3 como ejemplo de la invención. Se pueden usar los mismos métodos para construir moléculas equivalentes usando diferentes elementos de reconocimiento. A continuación, la construcción final se puede ligar en cualquier vector de expresión de plásmido adecuado. Un vector de expresión de plásmido preferido es pMG (disponible de Invivogen™).

60

65

5

El CAR que contiene IL13 (E13Y) dirige específicamente a las células T para que se dirijan al receptor de IL13 a2 (denominado aquí IL13Rα2) que expresan células de glioma, células de carcinoma renal y células de cualquier cáncer que exprese IL13Ra2 de una manera independiente de MHC. Se generaron efectores de células T CD4⁺ antitumorales para ser redirigidos para reconocer células tumorales usando un CAR que contiene los dominios de señalización derivados de CD3-ζ, CD28 y 4-1BB. Se transfectó el CAR de IL13ζ o IL13-CD28-41BBζ en células T primarias humanas usando un vector plasmídico no viral (pEK) y métodos de electroporación (Nucleofector Technology de

Amaxa Biosystems_, Gaithersburg, MD). Se compararon las células T CD4⁺ que expresan CAR (IL13ζ o IL13-CD28-41BBζ) en cuanto a su potencial para activar vías de señalización asociadas al efector, producir citocinas, lisar células diana y controlar el crecimiento tumoral in vivo. Los resultados mostraron que la adición de los dominios de señalización CD28 y 4-1BB a IE13ζ mejora las funciones efectoras antitumorales de las células T CD4-T que expresan

5 las células T CAR Efectoras que expresan el inmunorreceptor IL13-CD28-41BBζ fueron capaces de mediar señales coestimuladoras a través de JNK, p38 y AKT quinasas en el entorno tumoral donde se esperaría que la coestimulación fuera limitante. La coestimulación forzada en las células T CD4⁺ primarias humanas apoya la polarización de estas células a un fenotipo Th₁ de una manera que se asocia con una eficacia antitumoral sostenida tanto in vitro como in vivo. Se demostraron las señales efectoras posterior del CAR en las células T CD4⁺. Estas señales efectoras se
 10 correlacionaron con el sesgo Th₁ observado y la actividad efectora antitumoral prolongada de estas células tanto in vitro.

La señalización de CD3ζ por sí sola impulsa la activación de ERK. Esto se correlaciona bien con el hallazgo aquí de que la actividad de ERK no aumenta en las células que expresan IL13-CD28-41BBζ en comparación con los controles que expresan IL13ζ (ambos CAR contienen el dominio de señalización de CD3ζ). La coestimulación de CD3 con CD28 impulsa la activación de JNK y p38; La coestimulación de CD3 mediada por 4-1BB también implica la activación de JNK. Tanto JNK como p38 desempeñan funciones principales en la conducción de las respuestas inmunitarias polarizadas en Th₁ por las células T CD4⁺, incluida su producción de IL2, IFN-γ y TNF-α. La activación de la cinasa AKT, otro componente de señalización descendente tanto de CD28 como de 4-1BB, también participa en la regulación

- 20 al alza de IL2 e INF-γ, pero no de las citocinas Th₂. La asociación de un fenotipo Th₁ pronunciado (ver ejemplos a continuación) con una inducción mejorada de JNK y p38 MAP quinasa y activación sostenida de ATK (ver ejemplos a continuación) en células T que expresan IL13-CD28-41BBζ indica claramente que CD28 y 4-1BB los restos de señalización trabajan con el dominio de señalización de CD3ζ en este receptor quimérico para retener la capacidad de transducir las vías de señalización posterior normalmente asociadas con estos receptores coestimuladores.
- 25 Independientemente de cuán fuerte pueda ser el fenotipo Th₁ activado impulsado por señales de dominio coestimulador, la retención y reciclaje de células T CD4⁺ efectoras antitumorales funcionales dentro del microambiente tumoral ayuda en gran medida a lograr la potencia antitumoral.
- En comparación con la activación mediada por CD3ζ sola, las células T efectoras CD4⁺ que expresan el CAR IL13 CD28-41BBζ exhibieron actividad MAPK y AKT aumentada/sostenida, producción de citocinas Th₁ regulada al alza y potencia citolítica mejorada contra dianas tumorales. Además, tras la estimulación recursiva con el tumor, las células IL13-CD28-41BBζ⁺ CD4⁺ retuvieron/reciclaron su función lítica mientras que las células IL13ζ⁺ CD4⁺ fueron eficaces, pero antes se volvieron anérgicas/agotadas. Estas observaciones in vitro se correlacionaron con un control in vivo mejorado de xenoinjertos de glioma ortotópico del SNC establecido en ratones inmunodeficientes mediados por células
- 35 T CD4⁺ expandidas ex vivo transferidas adoptivamente que expresan el CAR coestimulador. Estos estudios, por lo tanto, demuestran el efecto de integrar la coestimulación con eventos de señalización de CD3ζ para activar completamente CD4⁺ células efectoras antitumorales para una función sostenida en el microambiente tumoral.
- Las señales coestimuladoras de CD28 y 4-1BB mediadas a través de AKT pueden inhibir la muerte celular inducida por activación a través de la regulación al alza de proteínas antiapoptóticas. La activación mejorada de AKT observada en las células T que expresan IL13-CD28-41BBζ se asoció con un mayor reciclaje de la actividad específica del tumor in vitro, así como un control prolongado del crecimiento del tumor in vivo. Por tanto, el CAR coestimulador puede mejorar la duración y/o la retención de la actividad antitumoral de una manera que puede mejorar significativamente la eficacia clínica de los protocolos de terapia adoptiva.

- Los CAR específicos de tumor que contienen sus propios dominios de señalización coestimuladores proporcionan un nuevo enfoque para activar linfocitos T contra una variedad más amplia de tumores sólidos que no expresan estos ligandos coestimuladores. El IL13Rα2, por ejemplo, se ha identificado como un objetivo de la superficie celular sobreexpresado en varios tumores humanos, que incluyen cáncer de mama, cáncer de cabeza y cuello, cáncer de rigión cáncer de activar de Kapezi ací
- 50 riñón, cáncer de ovario y sarcoma de Kaposi, así como gliomas. Por tanto, las células T que expresan un CAR que contiene una zetaquina IL13 y CD28 y 4-1BB pueden usarse para tratar glioblastomas (glioma) y cualquier cáncer, como los enumerados anteriormente, que tengan la diana IL13 en su superficie.
- Los CAR que contienen CD3ζ, CD28 y 4-1BB (y/u otros dominios de señalización coestimuladores) pueden dirigirse a cualquier tumor al incorporar una fracción que se une a una diana tumoral expresada en la superficie celular, por ejemplo, un antígeno. Ejemplos de otros quelantes de diana específicos de tumores incluyen Her2/Neu (ErbB-2), integrina a3, CD20, CD19, EGFRVIII, IL3Ra (CD123), LEA, CD44v6 o cualquier diana específica de un tumor, preferiblemente un tumor sólido que no expresan el dominio de señalización coestimulador que está contenido en el CAR. Por lo tanto, las construcciones para atacar tumores humanos de esta manera pueden incluir aquellas con
- 60 especificidades para Her2/Neu (ErbB-2), integrina α3, CD20, CD19, EGFRVIII, IL3Ra (CD123), LEA, CD44v6 o cualquier antígeno tumoral específico u otro componente de la superficie celular accesible para unirse mediante un receptor de células T quimérico. Los expertos conocen estos antígenos y receptores tumorales específicos que pueden explotarse para dirigirse a un tumor específico, y conocen los tumores que pueden dirigirse de esta manera.
- 65 Las funciones efectoras de las células T CD4⁺ y CD8⁺ pueden activarse a través de estos receptores, por lo tanto, ambos tipos de células T se contemplan para su uso con la invención. Las células T CD8⁺ que expresan los CAR de

IL13 de esta invención pueden usarse para lisar células diana y producir IL2 en presencia de células diana, entre las otras funciones de estas células. La expresión del CAR coestimulador apropiado en cualquiera o ambas células T CD4⁺ y CD8⁺ se usaría para proporcionar la población de células más efectiva para la inmunoterapia adoptiva, que consiste, por lo tanto, en uno o ambas células T citolíticas y auxiliares profesionales que exhiben un aumento y/o largo plazo viabilidad y actividad antitumoral.

Los siguientes ejemplos tienen únicamente el propósito de ilustrar una realización de la invención.

Ejemplos

5

10

Ejemplo 1. Transfección y expresión de receptores quiméricos específicos de IL13Rα2 en linfocitos T humanos primarios.

Para activar tanto el receptor de células T (TCR) como las cascadas de señalización de tipo coestimulador tras la interacción con el antígeno de tumor de glioma IL13Rα2, se integraron elementos de señalización derivados de CD28 y 4-1BB en un receptor de antígeno quimérico de IL13-zetaquina (IL13ζ) (CAR). El IL13ζ CAR preferido está compuesto por la muteína extracelular de IL13 (E13Y), bisagra-Fc de IgG₄ humana unida al CD3ζ citoplásmico humano a través del dominio transmembrana del CD4 humano. Ver figura 1. La síntesis de novo de la secuencia codificante de IL13 (E13Y) se realizó utilizando los cebadores IL13P1, IL13P2, IL13P3, IL13P4 e IL13P5. Consulte la Tabla 1, a

- 20 continuación, ý la Figura 2. La secuencia final (417 pb) se digirió en los extremos con EcoRI-BamHI y se ligó en el plásmido pSK (Stratagene™) como ligación 312#3. La ligadura 312#3 se mutagenizó (kit Stratagene™, según las instrucciones del fabricante) para reparar un nucleótido eliminado usando los cebadores IL13 312#3 mut5-3 e IL13 312#3 mut3-5 y la ligadura 312#3 como plantilla, para formar la ligadura 348#1 (IL13ζ/pSK).
- La secuencia codificante del péptido señal de la cadena alfa de GM-CSFR humana (hsp) se fusionó con el extremo 5' de IL13 (E13Y) mediante extensión de solapamiento de empalme de PCR estándar. La secuencia de hsp se obtuvo a partir de la ligación de plantilla 301#10 (hsp/pSK) usando los cebadores 5': 19hsp5' y 3': hsp-IL13FR. Véase la Tabla 1. La secuencia de IL13 se obtuvo utilizando los cebadores 5': hsp-IL13FF y 3': IL13-IgG4FR, y la ligación 312#3 como plantilla. Ver Tabla 1.
- 30

Se fusionó una secuencia que codifica las regiones citoplasmáticas de IgG4 Fc, CD4 transmembrana y CD3ζ (IgG4m: zeta; nucleótidos 421-1512 de la secuencia completa de IL13ζ de la Figura 3 (SEQ ID NO: 12)) al extremo 3' de la secuencia de fusión de péptido señal humano-IL13 usando los mismos métodos. La secuencia IgG4m: zeta se obtuvo usando los cebadores 5': IL13-IgG4FF y 3': ZetaN3' (ver Tabla 1), usando la secuencia R9.10 (IgG4mZeta/pSK) como

- 35 plantilla. La secuencia IgG4m: zeta de 1119 pb se fusionó con la secuencia de fusión hsp-IL13 utilizando las secuencias respectivas como plantillas, y los cebadores 5': 19hsp5' y 3': ZetaN3' (ver Tabla 1), para producir una secuencia de fusión bp hsp- IL13-IgG4m: zeta. Los extremos se digirieron con Xbal-Notl y se ligaron en pSK como ligación 351#7, para crear el plásmido IL13ζ/pSK (4464 pb) (es decir, la secuencia de IL13ζ de la Figura 3, dentro del vector de clonación pSK.
- 40

Se creó un vector de expresión que contiene la secuencia codificante de IL13ζ digiriendo IL13ζ/pSK con Xbal-Notl y creando extremos romos con Klenow, y ligando el fragmento resultante en el plásmido pMG^Pac (Invitrogen_) (preparado primero abriéndolo con SgrAl, despuntar con Klenow y desfosforilación con SAP), para producir el plásmido IL13ζ/pMG. La región de resistencia a higromicina de IL13ζ/pMG se eliminó mediante digestión con Notl-Nhel y se reemplazó por la fusión de selección/suicidio HyTK, obtenida del plásmido CE7R/HyTK-pMG por digestión con Notl-

- 45 reemplazó por la fusión de selección/suicidio HyTK, obtenida del plásmido CE7R/HyTK-pMG por digestión con Notl-Nhel, para crear el vector de expresión IL13ζ/HyTK-pMG (6785 pb). Este plásmido comprende el promotor del factor de elongación humano-la (hEF1p) en las bases 6-549, la secuencia codificante de IL13ζ en las bases 690-2183, la señal de poliadenilación tardía del virus Simian 40 (Late SV40pAN) en las bases 2230-2498, un origen de replicación de E. coli (Ori CoIE1) en las bases 2499-3245, un poli A sintético y un sitio de pausa (SpAN) en las bases 3246-3432,
- 50 el potenciador/promotor inmediato-temprano de CMV (h CMV-1Aprom) en las bases 3453-4075, la fusión de la región codificadora de timidina quinasa de resistencia a higromicina (HyTK) en las bases 4244-6319, y la señal de poliadenilación de la hormona del crecimiento bovino y una pausa de transcripción (BGh pAn) en las bases 6320-6618. El plásmido tiene un sitio de linealización Pacl en las bases 3233-3240. Los elementos hEF1p, SV40pAN tardío, ori CoIE1, SpAn y hCMV-1Aprom se derivaron del plásmido parental pMG^Pac. En resumen, IL13ζ/HyTK-pMG es un
- 55 esqueleto pMG modificado, que expresa el gen IE13ζ del promotor hEF1 y la fusión HyTK del promotor hCMV-1A. Un mapa del plásmido IL13ζ/HyTK-pMG aparece en la Figura 4. La secuencia de ácido nucleico completa del plásmido se muestra en las Figuras 5A-5L (SEQ ID NO: 13 y 14. La secuencia del inserto IL13ζ también se proporciona en la Figura 3 (SEQ ID NO: 5 y 6).
- 60 La evaluación de la integridad de la construcción expresada se confirmó mediante transferencia Western usando el clon 8D3 de anticuerpo monoclonal anti-CD3ζ humano (BD PharMingen™, San Diego, CA) para sondar lisados de células completas derivados de transfectantes estables de células T Jurkat cocultivados en la presencia o ausencia de tunicamicina, un inhibidor de la glicosilación. Se obtuvieron transfectantes estables de células T Jurkat (estirpe en volumen Jurkat-IL13-pMG) por electroporación de células T Jurkat con el vector de expresión IL13ζ/HyTK-pMG, seguido de selección y expansión de transfectantes positivos. Se sembraron 2 x 10⁶ células de la estirpe en volumen
- 65 seguido de selección y expansión de transfectantes positivos. Se sembraron 2 x 10⁶ células de la estirpe en volumen Jurkat-IL13-pMG por pocillo en una placa de 24 pocillos con o sin 5 μg/ml, 10 μg/ml o 20 μg/ml de tunicamicina. La

placa se incubó a 37 °C durante 22 horas. Se recolectaron células de cada pocillo, y cada muestra se lavó con PBS y se resuspendió en 50 µl de tampón RIPA (PBS, NP40 al 1 %, desoxicolato de sodio al 0.5 %, SDS al 0.1 %) que contenía inhibidor de proteasa (1 tableta/10 ml de cóctel completo de inhibidor de proteasa). Las muestras se incubaron en hielo durante una hora, antes de centrifugarlas a 4 °C durante 20 minutos a 14.000 rpm. Se recolectaron

- 5 muestras de sobrenadante de lisado centrifugado y se hirvieron en un volumen 1: 3 de tampón de muestra en condiciones reductoras, luego se sometieron a electroforesis SDS-PAGE en un gel de acrilamida al 12 %. Después de la transferencia a nitrocelulosa, la membrana se bloqueó en una solución Blotto[™] que contenía leche desnatada en polvo al 4 % en T-TBS (Tween 20 al 0.1 % en solución salina tamponada con Tris pH 8.0) durante 1 hora. A continuación, la membrana se incubó con el anticuerpo monoclonal primario anti-CD3ζ humano de ratón a una
- 10 concentración de 0.5 µg/ml durante una hora, se lavó y luego se incubó con una dilución 1: 3000 (en solución Blotto[™]) de anticuerpo secundario IgG alcalina anti-ratón de cabra conjugado con fosfatasa (kit Bio-Rad[™] ImmunoStar[™]) durante 1 hora. Antes del revelado, la membrana se lavó 4 veces más en T-TBS y luego se incubó con 3 ml de solución de sustrato de fosfatasa (Kit Bio-Rad[™] ImmunoStar[™]) durante 5 minutos a temperatura ambiente. A continuación, la membrana se cubrió con una carpeta de revelado de plástico (Tropix[™]) y se expuso a una película de rayos X. De
- 15 acuerdo con el patrón de glicosilación conocido de la IL13 humana de tipo silvestre, la movilidad electroforética de la zetaquina IL13 (E13Y) expresada indica una proteína muy glicosilada que, cuando se expresa en presencia de tunicamicina, se reduce a una cadena principal de aminoácidos de aproximadamente 54 kDa.

La construcción del CAR coestimulador se inició con una construcción HyTK-2A-IL13ζ-pcDNA3.1 (+), que codifica el gen de fusión de selección/suicidio HyTK, el péptido 2A de la enfermedad de fiebre aftosa autoescindible sintetizada

- de novo (TCTAGAGGAGCATGCCAGCTGTTGAATTTTGACCTTCTTAAGCTTGCGGGAGACGTC GAGTCCAACCCTGGGCCC; SEQ ID NO: 49), y la molécula IL13ζ (Figura 3), clonada en pcDNA3.1 (+) (Invitrogen™). Para conferir resistencia al metotrexato (MTX), el gen HyTK se reemplazó por PCR con un gen de dihidrofolato reductasa (DHFR) (amplificado a partir de una genoteca de ADNc derivada de células mononucleares de sangre periférica (PBMC) que habían sido estimuladas durante tres días con el anticuerpo OKT3 que reconoce la cadena CD3 del receptor de células T que contenía mutaciones L22F y F33S generadas usando un kit de mutagénesis dirigida al sitio QuikChange™ (Stratagene™). La construcción DHFRdm-2A-IL13ζ resultante se cortó luego con Nhel y Notl, se eluyó y se ligó en el vector de expresión de plásmido de mamífero digerido de manera similar pEK. El vector pEK se había modificado originalmente a partir de pcDNA3.1 (+) eliminando el promotor de CMV y el gen de ampicilina y
- 30 reemplazándolos con el gen del promotor del factor de elongación 1α humano (EF1p) derivado de pMG (Invivogen™) para crear el plásmido DHFRdm-2A-IL13ζ_pEK (pJ01275-9). El cDNA CD28 se compró de Invitrogen™ y la región codificante 4-1BB se amplificó mediante PCR a partir de una genoteca de cDNA derivada de p células mononucleares de sangre periférica (PBMC) que habían sido estimuladas durante tres días con el anticuerpo OKT3 (usando los cebadores 41BB5' y 41BB3', ver Tabla 1).

35

20

Las regiones de señalización intracelular de CD28 y 4-1BB (aminoácidos 180-220 y 214-255, respectivamente, de las secuencias nativas de CD28 y 4-1BB) se fusionaron mediante PCR (utilizando los cebadores CD4-CD28F, CD28- 4-1-BBR, CD28-4-1bbF y 41bb93 proporcionados en la Tabla 1) en la unión entre las regiones transmembrana CD4 y CD3ζ citoplásmica (aminoácidos 52-164 de CD3ζ nativa). Véase la Figura 6, que proporciona representaciones

- 40 esquemáticas de ejemplos de construcciones de plásmidos lineales IL13ζ (Figura 6Å) e IL13-CD28-41BBζ (Figura 6B). En Figura 6 se indica la ubicación de la muteína IL13 humana (E13Y), la bisagra-Fc de IgG4 humana (IgG4), la transmembrana CD4 humana (tm), los segmentos citoplásmicos CD3ζ humanos (Zeta), citoplásmicos CD28 (28c) y citoplásmicos 4-1BB (BBc). Los sitios de enzimas de restricción que se usaron para insertar los diferentes fragmentos de PCR también se indican en la Figura 6 (Nhe I, Kpn I, Nsi I, Not I), con sus ubicaciones de pares de bases previstas
- entre paréntesis. Como se muestra en la Figura 6A, el CAR, IL13-CD28-41BBζ, comprende el dominio citoplásmico de CD28 y 4-1BB fusionado al de CD3ζ_. Cada construcción mostrada en la Figura 6A tiene un dominio hulL13 que contiene la mutación E13Y que lo hace específico de IL13Rα2, un dominio bisagra-Fc de IgG₄ humana (huγ₄ Fc), un dominio transmembrana de CD4 humano (huCD4tm) y un dominio citoplásmico de CD3ζ humano (cyt de huCD3ζ); el CAR de IL13-CD28-41BBζ tiene los dominios de señalización (sig) de CD28 y 4-1BB insertados entre los dominios
- 50 transmembrana de CD4 ý citoplásmicos de CD3ζ. Los cebadores de PCR utilizados en la construcción de los plásmidos y utilizados en el análisis de expresión se proporcionan en la Tabla 1.

Los cultivos en volumen de células T CD4⁺ obtenidos por separación MACS[™] usando el protocolo del fabricante (Miltenyi Biotec[™] Inc.) se mantuvieron en medio RPMI con FCS al 10 %, L-glutamina al 1 %, tampón HEPES al 2.5 %, 50 U/ml rhIL2, 10 ng/ml de rhIL15 y MTX 0.1 µM. El aislamiento, activación y electroporación de células T humanas se realizó como sigue. Se aislaron PBMC mediante centrifugación en gradiente de densidad sobre Ficoll-Paque (Pharmacia Biotech[™]) de sangre periférica heparinizada obtenida de donantes sanos que dieron su consentimiento. Las células se resuspendieron en solución de nucleofección usando el kit Nucleofector de células T humanas Amaxa[™] (Amaxa[™] Inc.). Se añadió plásmido (1 µg/5 x 10⁶ células) y las células se electroporaron usando Amaxa[™]
80 Nucleofector I (Amaxa[™] Inc.), programa U-14. Luego, las células se recolectaron en medio sin rojo fenol con FCS al 10 %, se dejaron reposar durante la noche y luego se estimularon con 30 ng/ml de OKT3 y 5 ng/ml de rhIL15 en RPMI con 10 % de FCS durante tres días. Los transfectantes exitosos se seleccionaron usando medios que contenían MTX 0.1 µM y rhIL15 5 ng/ml.

65 La expresión de CAR se evaluó mediante análisis de inmunotransferencia con un anticuerpo específico para CD3ζ. Los lisados de células completas de células T CD4⁺ seleccionadas por MTX en volumen (transfectadas con IL13ζ e

IL13-CD28-41BBζ) se analizaron para determinar la expresión de CAR (CD3ζ quimérico) utilizando métodos conocidos y un anticuerpo monoclonal específico de anti-CD3ζ humano de ratón disponible comercialmente, 1D3. Como era de esperar con proteínas tan altamente glicosiladas, se observaron múltiples bandas dentro de los pesos moleculares esperados. Ver figura 7.

5

35

Los niveles de IL13ζ o IL13-CD28-41BBζ CAR expresados en la superficie de las células T CD4⁺ se examinaron mediante la detección de IL13 unida a la membrana usando citometría de flujo. Ver figura 8. Las PBMC transfectadas con ADNc que codifica IL13ζ o IL13-CD28-41BBζ CAR se propagaron durante un promedio de 10 semanas en concentraciones selectivas de MTX (0.1 μM), se clasificaron magnéticamente para detectar células CD4⁺ mediante

10 separación MACS[™] y se examinaron para determinar la expresión superficial de IL13 que contienen CAR (ejes Y) y CD4, CD8, TCRα/β o CD28 (ejes X) como se indica. Se utilizaron mAb fluorescentes emparejados por isotipo para establecer los cuadrantes. Estas poblaciones de células T genéticamente modificadas no solo eran predominantemente CD4⁺ y CD8-, como se esperaba después de la purificación MACS[™] basada en perlas magnéticas de células CD4⁺, sino que también expresaban niveles altos y equivalentes de TCR endógeno y niveles bajos a indetectables de CD28 coestimulador. Ver figura 8.

La estirpe diana de células tumorales de glioblastoma humano IL13Rα2⁺ usada en estos estudios, U87, también fue fenotipada para confirmar que esas células expresan MHC clase I y clase II en su superficie y no expresan los ligandos coestimuladores CD80/86 o 4-1BBL. Consulte la Figura 9, que muestra la tinción de la superficie de las moléculas de

- 20 MHC HLA-A2 y HLA-DR, IL13R y las moléculas coestimuladoras CD80, CD86 y CD137-L (4-1BBL) (histogramas llenos) como se indica, en comparación con los controles de isotipo (histogramas abiertos) en células diana de glioma U87, analizadas por citometría de flujo.
- El análisis de citometría de flujo implicó evaluar la expresión de la superficie celular de las construcciones IL13-CAR
 mediante tinción con anticuerpos monoclonales anti-IL13 humana conjugados con PE o conjugados con FITC (BD PharMingen™). El fenotipo de la superficie celular de los transfectantes primarios de células T humanas se ensayó con anticuerpos anti-CD4, anti-CD8 y anti-TCR α/β conjugados con FITC o con anticuerpos anti-CD28 conjugados con PE (BD PharMingen™). El fenotipo de la superficie celular de las células de glioma U87 humano se analizó con anticuerpos anti-HLA-A2, anti-HLA-DR y anti-CD80 conjugados con FITC, o con anti-CD86 y anti-CD137-L conjugados con PE (4 -1BBL), en comparación con los controles de isotipo conjugados con FITC y PE (BD PharMingen™). La expresión de IL13Ra2 se ensayó usando anti-IL13Rα2 humano de cabra (R&D Systems™) seguido de IgG anti-cabra de ratón conjugado con FITC (Jackson ImmunoResearch™).

Nombre de cebador	Secuencia de cebador (5'-3')	SEQ ID NO:
IL3P1	TATGAATTCATGGCGCTTTTGTTGACCACGGTCATTGCTCTCACTTGCC TTGGCGGCTTTGCCTCCCCAGGCCCTGTGCCTCCCTCTACAGCCCTCAG GTAC	17
IL3P2	GTTGATGCTCCATACCATGCTGCCATTGCAGAGCGGAGCCTTCTGGTT CTGGGTGATGTTGACCAGCTCCTCAATGAGGTACCTGAGGGCTGTAGA GGGAG	18
IL3P3	CTCTGGGTCTTCTCGATGGCACTGCAGCCTGACACGTTGATCAGGGAT TCCAGGGCTGCACAGTACATGCCAGCTGTCAGGTTGATGCTCCATACC ATGC	19
IL3P4	CCTCGATTTTGGTGTCTCGGACATGCAAGCTGGAAAACTGCCCAGCTG AGACCTTGTGCGGGCAGAATCCGCTCAGCATCCTCTGGGTCTTCTCGA TGGC	20
IL3P5	TCGGATCCTCAGTTGAACCGTCCCTCGCGAAAAAGTTTCTTTAAATGT AAGAGCAGGTCCTTTACAAACTGGGCCACCTCGATTTTGGTGTCTCGG	21
IL13 312#3 mut5-3	CAACCTGACAGCTGGCATGTACTGTGCAGCCCTGGAATC	22
IL13 312#3 mut3-5	GTTGGACTGTCGACCGTACATGACACGTCGGGACCTTAG	23
5': 19hsp5'	ATCTCTAGAGCCGCCACCATGCTTCTCCTGGTGACAAGCCTTC	24
3': hsp-IL13FR	GAGGGAGGCACAGGGCCTGGGATCAGGAGGAATG	25
5': hsp-IL13FF	CATTCCTCCTGATCCCAGGCCCTGTGCCTCCCTC	26

Tabla 1. Cebadores PCR para construcción de CAR.

3': IL13-IgG4FR	GGGACCATATTTGGACTCGTTGAACCGTCCCTCGC	27
5': IL13-IgG4FF	GCGAGGGACGGTTCAACGAGTCCAAATATGGTCCC	28
3': ZetaN3'	ATGCGGCCGCTCAGCGAGGGGGGGGGGG	29
41BB5'	A TCGAA TTCGCCGCCACCA TGGGAAACAGCTGTT ACAAC	30
41BB3'	GATAAGCTTATCGATTCACCACATCCTCCTTCAGTT	31
CD4-CD28F	CATTGGGCTAGGCATCTTCTTCAGGAGTAAGAGGAGCAGGCTC	32
CD28-4-1BBR	GTTTCTTTCTGCCCCGTTTGCCACCTCCGGAGCGATAGGCTGCGAAG	33
CD28-4-1BBF	CTTCGCAGCCTATCGCTCCGGAGGTGGCAAACGGGGCAGAAAGAA	34
4-1BB93'	GTTGCGGCCGCTCACAGTTCACATCCTCCTTCTTCTTC	35

Ejemplo 2. Potenciación de la señalización de JNK y p38 MAPK con señalización sostenida de AKT por IL13-CD28-41BΒζ.

- 5 Se sabe que las células T estimuladas por el acoplamiento del complejo TCR-CD3 junto con los receptores auxiliares CD28 o 4-1BB controlan señales a través de AKT así como las proteínas quinasas activadas por mitógenos (MAPK). Para investigar la capacidad de los CAR coestimuladores para influir en estas vías efectoras descendentes, se utilizaron ensayos de quinasas in vitro para evaluar y comparar la actividad de los miembros de la familia AKT y MAPK ERK, JNK y p38 en IL13ζ- e IL13-CD28-41BBζ que expresan células T CD4⁺ después de la participación de las células
- 10 diana U87. La línea de glioma humano, U87, se obtuvo de ATCC (Rockville, MD). Todas las líneas tumorales son adherentes y se cultivaron en DMEM (Irvine Scientific™) complementado con FCS inactivado por calor al 10 %, HEPES 25 mM y L-glutamina 2 mM. Se incubaron células T CD4⁺ que expresan IL13ζ o IL13-CD28-41BBζ CAR con células de glioma U87 durante los tiempos indicados en la Figura 10 antes del ensayo.
- Después de estimular las células T CD4⁺ que expresan IL13ζ o IL13-CD28-41BBζ con células diana tumorales durante 15 hasta 48 horas (Figura 10A) o 72 horas (Figura 10B), los niveles de la proteína total JNK, p38 y AKT Los sustratos (es decir, cJun, ATF2 y GSK3, respectivamente) y los sustratos fosforilados (P-cJun, P-ATF2 y P-GSK3, respectivamente) se midieron mediante inmunotransferencia Western. El aumento de veces en la fosforilación de cada sustrato, como medida de la actividad quinasa, se indica en la parte inferior de cada grupo en la Figura 10.
- 20

Se realizó un ensavo de quinasa en estado sólido no radiactivo usando un método modificado de Hibi et al., "Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain". Genes Dev. 7: 2135-2148, 1993. Usando lisados de células T que se habían separado de las células diana mediante centrifugación suave (1000 rpm, < 3 minutos), la guinasa seleccionada se inmunoprecipitó durante la noche

- a 4 °C usando anticuerpos específicos para ERK1/2, JNK, p38 y AKT (Cell Signalling Technology Inc.™). Los 25 complejos inmunoprecipitados se lavaron en tampón de lisis (PBS con NP40 al 1 %, SDS al 0.1 % y desoxicolato de sodio al 0.5 %) y tampón de quinasa (Tris 25 mM, pH 7.,5, que contenía MgCl₂ 10 mM y EGTA 2 mM), y se realizó el ensayo a 30 °C durante 30 minutos, usando 1 μg de sustrato en presencia de ATP 10 μM.
- 30 Proteínas de fusión de glutatión S transferasa (GST): GST-ELK, GST-ATF2 y GST-GSK3β (Cell Signaling Technology™ Inc.) y GST-cJun (1-79) (como se describe en Chang et al., Cell 124: 601-613, 2006) como sustratos para los ensayos de quinasa ERK, p38, AKT y JNK, respectivamente. Los productos resultantes se resolvieron en NuPAGE™ al 12 % (Invitrogen™) de acuerdo con métodos estándar y se transfirieron a una membrana de nitrocelulosa usando el Xcell II Blot Module™ (Invitrogen™). Las transferencias se sondaron con anticuerpos para
- fosfo-ELK, ATF2, cJun y GSK3β (Cell Signaling Technology™ Inc.) para detectar proteínas de fusión GST fosforiladas 35 y anticuerpos para GST (BD PharMingen™) para detectar la cantidad total de sustrato. A continuación, las inmunotransferencias se incubaron con anticuerpos específicos de inmunoglobulina de conejo conjugados con IRDye 680 o de ratón conjugados con IRDye800 (LI-COR™). Se usó tampón de bloqueo (adquirido de LI-COR™) para pretratar las transferencias y para la dilución de anticuerpos. Las transferencias se visualizaron y registraron utilizando
- un sistema de imágenes infrarrojas Odyssey™ (LI-COR™) y las intensidades de banda se cuantificaron utilizando el 40 software Odyssey™ v2.0 (LI-COR™). La fosforilación del sustrato, una medida de la actividad quinasa, se cuantificó y normalizó a las cantidades detectadas correspondientes de quinasa inmunoprecipitada y sustrato quinasa total. La actividad quinasa relativa de las células T IL13ζ⁺ CD4⁺ en t = 0 recibió un valor arbitrario de 1.0; los guiones (-) indican diferencias de multiplicidad < 1.0 (ver Figura 10). 45
 - El ensavo de quinasa fue capaz de detectar actividad mejorada de JNK y p38 MAPK y actividad prolongada de quinasa de AKT en células T IL13-CD28-41BBZ⁺ CD4⁺ después de cocultivo con células de glioma U87. Como se muestra en la Figura 10, la activación de JNK y p38 fue más fuerte en las células T CD4⁺ que expresan IL13-CD28-41BBζ que en las que expresan IL13ζ. Ver figura 10. Por el contrario, la activación de otra MAPK, ERK, fue comparable entre los dos tipos de células. La activación de AKT se observó en ambas poblaciones de células T, pero se elevó solo hasta 24

horas en las células IL13ζ⁺ mientras que las células IL13-CD28-41BBζ⁺ mostraron una actividad de AKT elevada durante hasta 72 horas o más. Vea la Figura 10B. Por tanto, ambos CAR fueron eficaces, pero los dominios coestimuladores dentro del CAR de IL13-CD28-41BBζ produjeron una actividad de AKT más sostenida en comparación con la observada con el CAR de IL13ζ.

5

Ejemplo 3. Las señales de coestimulación refuerzan la polarización Th₁ de los efectores CD4⁺ redirigidos por el tumor.

Debido a que se ha detectado actividad de p38 en células Th₁ pero no en células Th₂, y se sabe que la activación de JNK/p38 induce la producción de Th₁ de citocinas de TNF-α e IFN-γ asociadas, el efecto de la función coestimuladora

- de CD28 y 4-1BB en CAR Se investigó la inducción mediada por las citocinas asociadas a Th₁. Se cocultivaron células T CD4⁺ genéticamente modificadas (10⁶ células) que expresan IL13ζ o IL13-CD28-41BBζ en placas de cultivo de tejido de 24 pocillos con diferentes células estimulantes (5 x 10⁵ células) en 2 ml de medio de cultivo. Las células estimuladoras fueron células de glioma U87 (U87), células de mieloma de ratón NS0 parentales (NS0), células NS0 que expresan de manera estable IL13Rα2 de superficie (NS0-IL13Rα2) o células NS0 que expresan de manera estable
 OKT3 unido a membrana (NS0-OKT3) como se indica en la Figura 11A.
 - Se usó RT-PCR cuantitativa en tiempo real (qPCR) para medir los niveles relativos de ARNm después del cultivo. Para el análisis de la expresión génica, se aisló el ARN celular total de los transfectantes de células T CD4⁺ usando un kit RNeasy™ (Qiagen™). Se utilizó transcripción inversa de 5 µg de ARN total en un volumen de 30 ml (que
- 20 contiene 1x de tampón de transcriptasa inversa, oligo dT 2.5 mM, dNTP 0.25 mM, ditiotreitol 0.01 M, 20 U de Rnasina y 200 U de SuperScript™ II RNasa H⁻ transcriptasa inversa (Invitrogen™)) para sintetizar ADNc. Las muestras se incubaron a 42 °C durante 1 hora y luego se inactivó la transcriptasa inversa calentando 5 minutos a 70 °C. El ADNc resultante, equivalente a 0.2 µg de ARN total, se sometió a análisis de qPCR utilizando la mezcla maestra de PCR SYBR Green™ (Applied Biosystems™) y cebadores diseñados por el sistema de detección de PCR en tiempo real
- 25 DNA Engine Opticon 2[™] (MJ Research Inc.[™]). Las secuencias de cebadores de los genes analizados IL2 e IFN-γ son las siguientes: IL2 directo: CAAGAATCCCAAACTCACCAG, SEQ ID NO: 50; IL2 inversa: CGTTGATATTGCTGATTAAGTCC, SEQ ID NO: 51; IFN-γ directo: ATCCCAGTAATGGTTGTCCTGCCT, SEQ ID NO: 52; IFN-γ inverso: TCTTGCTTAGGTTGGCTGCCTAGT, SEQ ID NO: 53. El valor de umbral de ciclo medio (CT) del ARNm de ciclofilina (como se describe en Chang et al., "The E3 ubiquitin ligase itch couples JAK activation to
- 30 TNFalpha-induced cell death by inducing c-FLIP(L) turnover". Cell 124: 601-613, 2006) se utilizó para normalizar los genes probados. Los valores medios de CT se determinaron mediante mediciones de qPCR por triplicado para cada gen en cada condición experimental.
- El ARNm total de células T se recogió a las 0 horas (Figura 11A, barras blancas), 7 horas (Figura 11A, barras negras)
 y 24 horas (Figura 11A, barras sombreadas) para el análisis de qPCR de los ARNm humanos indicados. *indica una p < 0.05 en comparación con los valores de 7 horas de células T CD4⁺ que expresan IL13ζ utilizando una prueba t de Student no apareada. La línea de mieloma de ratón NS0 se sometió a electroporación con IL13Rα2-IMPDH2_pMG (pJ00659), que confiere expresión del antígeno diana IL13Ra2 y resistencia al ácido micofenólico (MPA) o OKT3-IMPDH2_pcDNA3.1 (+) (pJ01056), que confiere expresión de la molécula de OKT3 reticulante con CD3 (y por tanto estimulante de células T) junto con resistencia a MPA, y luego clonada en presencia de ácido micofenólico (MPA) 6
- μM y seleccionada para expresión del transgén de IL13Rα2 humano. Para los experimentos que utilizan células tumorales U87 y NS0-IL13Rα2, n = 3; para el experimento que usa células tumorales NS0-OKT3 y NS0, n = 1.
- Los niveles de ARNm de IL2 e INF-γ fueron mayores en las células T IE13-CD28-41BBζ- que en las células T IL13ζ
 después del cultivo con células de glioblastoma U87. Vea la Figura 11A. No se observó inducción de ARNm de IL2 o INF-γ con ninguna población de células T cuando se cultivaron conjuntamente con células NS0. La estimulación por células NS0 que expresan el transgén IL13Rα2 restauró la inducción de ARNm de IL2 e INF-γ en IL13-CD28-41BBζ- pero no en células T que expresan IL13ζ, lo que indica que los genes de inducción de citocinas eran dependientes de IL13Rα2. Las cantidades relativas de ARNm de IL2 e INF-γ inducidos se correlacionan directamente con los niveles
- 50 de expresión de superficie de IL13Rα2 en células U87 y células NSO que expresan transgenes; el nivel de U87 es más alto que el de las células NSO-IL13Rα2. Por el contrario, la inducción de los genes IL2 e INF-γ en las células T IL13ζ- fue similar a la observada en las células T IL13-CD28-41BBζ- cuando cada población se cocultivó con células NSO que expresaban de manera estable OKT3 unido a la membrana, un agonista Molécula de inmunoglobulina que activa las células T mediante la participación de CD3ε. Estos resultados indican que la menor inducción de ARNm de
- 55 IL2 e INF-γ mediada por el acoplamiento de IL13ζ con IL13Ra2 no se debe a un defecto intrínseco en estas células T, sino a la falta de dominios coestimuladores de CD28 y 4-1BB dentro del CAR.

Para cuantificar las cantidades de proteínas de citocina Th₁ frente a Th₂ liberadas de estas células T que expresan CAR, se ensayó el contenido de citocinas de los sobrenadantes de estos cocultivos. Después de una incubación de 24 horas, se recolectaron los sobrenadantes de cultivo de IL13ζ⁺ (barras blancas) o IL13-CD28-41BBζ⁺ (barras negras) y se analizaron las citocinas Th₁ y Th₂ mediante una matriz de microesferas citométricas múltiples utilizando el kit 17-Plex Panel™ humano según las instrucciones del fabricante (Laboratorios Bio-Rad™). Ver Figura 11B.

 El glioma U87 o las células IL13Rα2⁺ NS0 estimularon más liberación de citocinas Th₁ (IL2, IFN-γ, TNF-α y GM-CSF)
 y menos liberación de citocinas Th₂ (IL5, IL10 e IL13) de las células T IL13-CD28-41BBζ- que de las células T IL13ζ-. Se produjeron niveles equivalentes de citocinas Th₁ y Th₂ mediante células T CD4⁺ que expresan IL13ζ e IL13-CD28-

41BBζ cultivadas con células NS0 que expresan OKT3, lo que indica que estas células permanecen sin polarizar tras la activación policional mediante CD3 endógena. Los niveles de citocinas eran todos de bajos a indetectables cuando las células T se cultivaron con células NS0 parentales. Los niveles de la citoquina Th₂ IL4 también fueron de bajos a indetectables cuando las células T se cultivaron con cualquiera de las estirpes de células tumorales. En general, estos datos muestran que la presencia de dominios coestimuladores CD28 y 4-1BB dentro del CAR ayudan a impulsar la transcripción de células T CD4⁺ y la secreción de citocinas similares a Th₁.

Ejemplo 4. Aumento de la actividad lítica antitumoral de reciclaje en células T IL13-CD28-41BBZ- CD4⁺.

- 10 Para determinar si el CAR coestimulador afectaba a la actividad citotóxica específica del tumor de las células T CD4-T, se realizaron ensayos citolíticos luminiscentes (LCA) para detectar la actividad de luminiscencia del transgén de luciferasa de luciérnaga (ffLuc) de células tumorales in vitro. Este ensayo se realizó como lo describen Brown et al., "Biophotonic cytotoxicity assay for high-throughput screening of cytolytic killing". J. Immunol. Meth. 297: 39-52, 2005, con 0.14 mg/ml de D-luciferina y usando un luminómetro Victor2[™]. Brevemente, la actividad de luminiscencia del
- 15 transgén ffLuc de las células tumorales in vitro se analizó mediante LCA con 0.14 mg/ml de D-luciferina (Xeonogen™) usando un luminómetro Victor2™. Consulte la Figura 12A, que muestra una actividad citotóxica mejorada de las células T IL13-CD28-41BBζ⁺ CD4⁺ (■) contra los objetivos U87 en comparación con las células T IL13ζ⁺ CD4⁺ (○) a la relación E: T indicada después de 4 horas. Se indica la media + EE de valores triplicados; * indica una p < 0.05 utilizando una prueba t de Student para datos no apareados.</p>
 - Después de 4 horas de cocultivo con células diana U87 transfectadas con ffLuc, las células IL13-CD28-41BBζ-_ mostraron una mejora estadísticamente significativa en la actividad lítica en comparación con las células IL13ζ. Si el cocultivo se extendió a 48 horas, no se observó diferencia en la actividad citotóxica entre las células que expresan IL13ζ e IL13-CD28-41BBζ (se alcanzó una lisis específica del 100 % con ambas células). Los datos en la Figura 12B indican lisis específica por ensayo de LCA después de 48 horas de co-cultivo en una relación E: T de 2: 1, y luego
- 25 indican lisis específica por ensayo de LCA después de 48 horas de co-cultivo en una relación E: T de 2: 1, y luego nuevamente después de la adición de nuevos objetivos para otras 48 horas de co-cultivo en una relación E: T de 2: 1. Se indica la media + EE de valores triplicados; * indica una p < 0.05 (prueba t de Student pareada) comparando células T IL13-CD28-41BB ζ^+ CD4⁺ (barras negras) con células T IL13 ζ^+ CD4⁺ (barras blancas) en el cocultivo indicado.
- 30 Los niveles de ARNm de perforina y granzima B se regularon positivamente por igual en las células IL13ζ e IL13-CD28-41BBζ, lo que sugiere que estas células T que expresan CAR pueden usar mecanismos similares de destrucción. Sin embargo, si se añadieron dianas ffLuc- frescas para una segunda ronda de cocultivo de 48 horas con las mismas células T CD4-T que expresan CAR, las células IL13-CD28-41BBζ-_ exhibieron una actividad lítica significativamente mayor que las células IL13ζ- (Figura 12B). Esto sugiere que el CAR coestimulador afecta de manera 35 beneficiosa la duración y/o el reciclaje de la actividad letal de las células T CD4.

Para examinar más a fondo este fenómeno, se analizó la viabilidad de las células tumorales U87 durante el cocultivo con células T IL13ζ- o IL13-CD28-41BBζ-_ utilizando microscopía de lapso de tiempo de video (VTLM) de cocultivos de 6 x 10⁵ células de glioma U87 adherente con 1.2 x 10⁶ células T CD4⁺ que expresan IL13ζ o IL13-CD28-41BBζ. Los cultivos se lavaron 45 horas más tarde y luego se volvieron a cultivar con células de glioma U87 frescas (6 x 10⁵). Se representaron gráficamente los números de células tumorales viables durante 42 horas (la primera destrucción) y de 45 horas a 139 horas (la segunda destrucción). Vea la Figura 12C.

Se tomaron imágenes simultáneamente en una habitación cálida a 37 °C en cuatro microscopios Eclipse TS100[™] (Nikon[™] Inc.), cada uno equipado con una lámpara de tungsteno-halógeno, filtro GIF (verde), condensador ELWD 0.3 NA, Lente objetivo con corrección infinita PhL DL 4x/0.13 Plan Fluor[™], adaptador de montura C sin lente D10NLC 1x (Diagnostic Instruments[™]) y cámara de vídeo CCD de ½" RS-170 B/N VCB-3524 (Sanyo[™] North America Corp.). Para recolectar datos, se añadieron 1.2 x 10⁶ células T (en 200 µl de solución salina equilibrada de Hank suplementada con albúmina de suero humano al 0.1 %) a matraces T-25 que contenían 6 x 10⁵ células U87 adherentes (sembradas 1 día antes a 3 x 10⁵ células/matraz). Se permitió que los matraces se equilibraran en la platina del microscopio durante

- 30 minutos antes de la obtención de imágenes. La velocidad de adquisición por lapso de tiempo fue a intervalos de 2 minutos. Se adquirieron varios fotogramas de células tumorales solas en cada video, seguido de la adición de células T. Las células combinadas luego se registraron continuamente durante 80 horas. Después de agregar las células T, cada matraz se gaseó con 5 % CO₂ durante 10 segundos y sellado con parafilm para asegurar un buen control del pH (bicarbonato en HBSS) y un enfogue estable, respectivamente. Las imágenes se adquirieron utilizando el organizador
- (bicarbonato en HBSS) y un enfoque estable, respectivamente. Las imágenes se adquirieron utilizando el organizador de cámara COH VTLF y se digitalizaron a 640 x 480 píxeles utilizando una placa de captura de fotogramas de 4 canales Matrox™. Se realizaron recuentos de células tumorales viables a intervalos de ≤10 horas usando el comando "Recuento manual de objetos" en MetaMorph™ 6.33 (Universal Imaging/Molecular Devices™ Corp.). Todos los conjuntos de datos se importaron a MetaMorph™ y se guardaron como pilas de MetaMorph™ y películas AVI.

La capacidad de cualquiera de las células T CD4⁺ modificadas genéticamente para destruir células tumorales durante las primeras 42 horas de cocultivo fue sustancialmente la misma (casi el 100 % de las células U87 murieron a las 30 horas). Sin embargo, en el segundo encuentro con las células tumorales U87, las células T IL13-CD28-41BBζrecuperadas retuvieron una mayor actividad citolítica que las células T IL13ζ-. Es importante destacar que la enumeración de las células T antes de la adición de las células U87 por segunda vez reveló que no había diferencias significativas en el número de células. Además, los ensayos basados en CFSE realizados durante 72 horas de

65

40

cocultivo con células U87 no revelaron diferencias en la proliferación de células T IL13ζ o IL13-CD28-41BBζ- in vitro. Esto demuestra que la mayor actividad citolítica tras la adición de nuevos objetivos no se debió a la presencia de más citolíticos, sino a una mayor capacidad de funcionamiento de los citolíticos individuales. Juntos, estos datos muestran que el CAR coestimulador apoya el reciclaje y la retención de la función de las células T CD4.

5

Ejemplo 5. Aclaramiento de tumores in vivo mejorado por células T IL13-CD28-41BBζ- CD4⁺.

Se evaluó la capacidad de los CAR con dominios de señalización CD28 y 4-1BB para mejorar la eficacia antitumoral de las células T CD4⁺ usando tumores U87 establecidos en un modelo de xenoinjerto murino ortotópico. Para los 10 estudios in vivo, las células U87 se transfectaron con ffluc-zeocin_pcDNA3.1 (+) (pJ00778, un plásmido que expresa una fusión de proteínas de la enzima luciferasa de luciérnaga y el gen de resistencia al fármaco zeocina) e IL2 (2) _HyTk-pMG (pJ00976, un plásmido que expresa la citoquina IL2 y el gen de fusión de selección/suicidio HyTK) usando oligofectimina (Invitrogen™) de acuerdo con las instrucciones del fabricante y luego clonado en presencia de 0.2 mg/ml de zeocina y 0.1 mg/ml de higromicina.

15

Para producir el modelo de xenoinjerto de glioma ortotópico, los ratones se trataron como sigue. Un día después de la irradiación con 250 rads, se anestesiaron ratones NOD-scid machos de 6 a 8 semanas de edad, se afeitaron e inmovilizaron en un dispositivo de sujeción estereotáctico Cunningham™ Mouse/Neonatal Rat Adapter (Stoelting™). Luego, los ratones recibieron una invección estereotácticamente guiada de tumor (glioma U87) 2 mM lateral y 0.5 mM

- anterior a Bregma sobre 3-5 mM. Se inyectaron células tumorales U87-ffLucZeo/IL2 + (2 x 105 células/ratón), 20 suspendidas en 2 µl de RPMI sin fenol (Irvine Scientific, Irvine, CA) a una profundidad de 2.5 mM desde la dura. Siete días después de la inoculación del tumor, se administraron 10⁶ células T que expresaban IE13ζ ο IE13-CD28-41BBζ (transferidas adoptivamente) en 2 µl a las coordenadas del tumor en el cerebro. Los animales de control recibieron solo PBS ("control simulado"). Los orificios de las rebabas se sellaron con cera para huesos y la incisión se cerró con
- pegamento Nexaband™. Los animales recibieron una inyección subcutánea de 0.1 mg/kg de Buprenex™ para la 25 recuperación posquirúrgica. En este modelo, los tumores comienzan a retroceder espontáneamente a los 13-14 días después de la inyección debido a la recuperación del sistema inmunológico endógeno, por lo que los experimentos se completaron el día 12.
- 30 El crecimiento de tumores ortotópicos se puede cuantificar de forma no invasiva controlando las señales de flujo de ffLuc derivadas de tumores en células de glioblastoma U87 establecidas que expresan de manera estable luciferasa de luciérnaga (ffLuc) e IL2 humana. La actividad luciferasa in vivo se detectó usando imágenes tumorales biofotónicas in vivo en ratones con el sistema Xenogen™ In Vivo Imaging System (IVIS) como se describió previamente por Kahlon et al. "Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells".
- 35 Cancer Res. 64: 9160-9166, 2004. Brevemente, para monitorizar el flujo de ffLuc, los ratones fueron inyectados intraperitonealmente con 4.29 mg de D-luciferina, anestesiados (1.5 L/min de oxígeno + 4 % de isoflurano) y se midió la emisión de luz durante un tiempo de integración de 1 minuto a los 14 minutos después de la invección de luciferina. El flujo (fotones/segundo) se cuantificó como recuentos totales medidos a lo largo del tiempo en la región de interés. Vea los resultados en la Figura 13. Los valores en el eje Y representan la media I DE que pertenece a los niveles de 40 flujo total de tumores ffLuc⁺ de los grupos simulados y tratados (n = 6 para cada grupo) en los días indicados después
- del injerto del tumor. "Tx" indica tratamiento con células T transferidas adoptivamente.

Antes de la transferencia adoptiva de células T CD4⁺ que expresan CAR, todos los ratones exhibieron niveles crecientes de señales de flujo de ffLuc derivadas de tumores como se esperaba (ver Figura 13; comparar los días 2 y 6 después del injerto del tumor). Dos días después de la transferencia adoptiva (Tx), los niveles de flujo de ffLuc 45 tumoral se redujeron en los ratones tratados con células T que expresan IL13ζ o IL13-CD28-41BBζ, en comparación con los ratones tratados de forma simulada. Sin embargo, 5 días después del tratamiento con células T (día 12 después del injerto), las señales de flujo tumoral en los ratones tratados con células T IL13-CD28-41BBZ- permanecieron bajas, mientras que las señales de flujo de los ratones tratados con células T IL13ζ- habían aumentado a un nivel similar a

50 la del grupo tratado de forma simulada (control). Los dominios de señalización coestimuladores de CD28 y 4-1BB mejoraron y/o prolongaron así el control del crecimiento tumoral por las células T genéticamente redirigidas.

Ejemplo 6. Preparación de células T adecuadas para terapia

55 Se obtuvieron linfocitos T de un paciente mediante leucoféresis, y las células T autólogas se alteraron genéticamente para expresar el CAR, luego se volvieron a administrar al paciente para lograr la terapia anticancerosa.

Para preparar células T IL13ζ⁺ adecuadas para uso terapéutico, las células mononucleares se separaron de la sangre sometida a leucoféresis mediante centrifugación sobre Ficoll™ de grado clínico. Las PBMC se lavaron dos veces en solución salina tamponada con fosfato estéril que contenía EDTA 0.526 mM y luego una vez en PBS estéril, y se 60 suspendieron en medio de cultivo que consistía en RPMI 1640 HEPES, FCS inactivado por calor al 10 % y L-glutamina 4 mM. Las células T presentes en las PBMC del paciente se activaron policionalmente mediante la adición de Orthoclone ™ OKT3 (30 ng/ml) al cultivo. A continuación, los cultivos celulares se incubaron en matraces de cultivo de tejidos T-75 ventilados en la incubadora designada por el sujeto del estudio. Veinticuatro horas después del inicio del cultivo, se añadió rhIL2 a 25 U/ml. Tres días después del inicio del cultivo, se recolectaron PBMC, se centrifugaron y

65 se resuspendieron en tampón de electroporación hipotónica a 20 x 10⁶ células/ml. Se añadieron veinticinco microgramos del plásmido IL13ζ/HyTK-pMG, junto con 400 µl de suspensión celular, a una cubeta de electroporación estéril de 0.2 cm. Cada cubeta se sometió a un único pulso eléctrico de 250 V/40 µs y se incubó de nuevo durante diez minutos a temperatura ambiente. Las células supervivientes se recogieron de cubetas, se agruparon y se resuspendieron en medio de cultivo que contenía 25 U/ml de rhIL2. Los matraces se colocaron en la incubadora de cultivo de tejidos designada por el paciente. Tres días después de la electroporación, se añadió higromicina a las

- 5 células a una concentración final de 0.2 mg/ml. Se cultivaron PBMC electroporadas durante un total de 14 días con medio y suplementación con IL2 cada 48 horas.
- La clonación de CTL CD8⁺ resistentes a higromicina de PBMC de pacientes activadas con OKT3 electroporadas se 10 inició el día 14 de cultivo. Brevemente, se agregaron PBMC de pacientes viables a una mezcla de 100 x 106 PBMC alimentadores irradiados criopreservados y 20 x 106 TM-LCL (células linfoblastoides transformadas con EBV que actúan como células alimentadoras) irradiadas en un volumen de 200 ml de medio de cultivo que contiene 30 ng/ml de OKT3 y 50 U/ml de rhIL2. Esta mezcla se sembró en placas de 0.2 ml en cada pocillo de diez placas de clonación de 96 pocillos. Las placas se envolvieron en papel de aluminio para disminuir la pérdida por evaporación y se colocaron
- 15 en la incubadora de cultivo de tejidos designada por el paciente. El día 19 de cultivo, cada pozo recibió higromicina hasta una concentración final de 0.2 mg/ml. Los pocillos se inspeccionaron visualmente en busca de excrecencia celular en un microscopio invertido el día 30 y los pocillos positivos se marcaron para reestimulación.
- Los contenidos de cada pocillo de clonación con crecimiento celular se transfirieron individualmente a matraces T-25 20 que contenían 50 x 10⁶ PBMC irradiadas, 10 x 10⁶ LCL irradiadas y 30 ng/ml de OKT3 en 25 ml de medio de cultivo de tejidos. En los días 1, 3, 5, 7, 9, 11 y/o 13 después de la reestimulación, los matraces recibieron 50 U/mL de rhIL2 y 15 ml de medio fresco cuando fue necesario. El día 5 del ciclo de estimulación, los matraces también se suplementaron con higromicina 0.2 mg/ml. Catorce días después de la siembra, las células se recolectaron, contaron y reestimularon en matraces T-75 que contenían 100 x 106 PBMC irradiados, 20 x 106 TM-LCL irradiados y 30 ng/ml 25 de OKT3 en 50 ml de medio de cultivo tisular. Los matraces recibieron adiciones al cultivo de rhIL2 e higromicina como se describió anteriormente.

Los CTL seleccionados para la expansión para su posible uso en terapia se analizaron por inmunofluorescencia en un clasificador de células activado por fluorescencia, utilizando anticuerpos monoclonales conjugados con FITC WT/31 30 (aβTCR), Leu 2a (CD8) y OKT4 (CD4) para confirmar el fenotipo del clon (αβTCRd⁺, CD4⁻, CD8⁺ e IL13⁺). Los criterios para la selección de clones para uso clínico incluyeron TCRαβ⁺, CD4⁻, CD8⁺ e IL13⁺ uniformes en comparación con el anticuerpo conjugado con FITC/PE de control de isotipo. Se confirmó un único sitio de integración cromosómica del vector plásmido mediante análisis de transferencia Southern. El ADN de los clones de células T modificadas genéticamente se cribó con una sonda de ADN específica para el vector plasmídico.

35

60

La expresión de IL13-CD28-41BBζ se determinó mediante transferencia Western para detectar la proteína receptora quimérica utilizando el anticuerpo anti-CD3Z de cadena zeta descrito anteriormente de acuerdo con métodos estándar. En resumen, se generaron lisados de células completas de clones de células T transfectadas mediante la lisis de 2 x 10⁷ células lavadas en 1 ml de tampón RIPA (PBS, NP40 al 1 %, desoxicolato de sodio al 0.5 %, SDS al 0.1 %) que

- 40 contenía 1 comprimido/10 ml de Cóctel inhibidor de proteasa completo. Después de una incubación de 80 minutos en hielo, se recogieron alícuotas de sobrenadante de lisado celular completo centrifugado y se hirvieron en un volumen igual de tampón de carga en condiciones reductoras y luego se sometieron a electroforesis SDS-PAGE en un gel de acrilamida al 12 % prefabricado. Después de la transferencia a nitrocelulosa, la membrana se bloqueó en solución Blotto™ que contenía leche desnatada en polvo al 4 % en T-TBS (Tween 20™ al 0.1 % en solución salina tamponada
- con Tris, pH 8.0) durante una hora. Las membranas se lavaron en T-TBS, luego se incubaron con anticuerpo 45 monoclonal primario de ratón anti-CD3ζ humano 8D3 (Pharmingen™) a una concentración de 0.5 µg/ml durante una hora. Después de cuatro lavados adicionales en T-TBS, las membranas se incubaron con una dilución 1: 3000 (en solución Blotto™) de anticuerpo secundario conjugado con fosfatasa alcalina IgG anti-ratón de cabra durante 1 hora. Antes de agregar el sustrato, las membranas se enjuagaron en T-TBS, luego se incubaron con 3 ml de solución de sustrato de fosfatasa (kit Bio-Rad™ ImmunoStar™) de acuerdo con las instrucciones del fabricante.
- 50

Las dosis adecuadas para un efecto terapéutico están entre aproximadamente 10⁶ y aproximadamente 10⁹ células por dosis, preferiblemente en una serie de ciclos de dosificación. Un régimen de dosificación preferido consiste en cuatro ciclos de dosificación de una semana de dosis crecientes, comenzando con aproximadamente 10⁷ células el día 0,

55 aumentando gradualmente hasta una dosis objetivo de aproximadamente 108 células el día 5. Los modos de administración adecuados incluyen administración intravenosa, subcutánea, intracavitaria (por ejemplo, mediante un dispositivo de acceso al reservorio), inyección intraperitoneal y directa en una masa tumoral.

Ejemplo 7. Tratamiento de glioma recidivante intracraneal en pacientes humanos.

El tratamiento de glioma o cualquier otro cáncer como se describe en el presente documento usando células T que expresan IL13-CD28-41BBZ de acuerdo con esta invención se realizó como sigue. Los clones de células T, preferiblemente como se describe en el Ejemplo 6, se seleccionaron por:

65 a. Fenotipo de la superficie celular TCR α/β^+ , CD4⁻, CD8⁺, IL13⁺;

- b. la presencia de una única copia del ADN del vector plasmídico integrado cromosómicamente;
- c. expresión de la proteína IL13-CD28-41BBζ;
- 5 d. lisis específica de dianas IL13Rα2⁺ humanas;
 - e. dependencia de IL2 exógena para el crecimiento in vitro;
 - f. micoplasma, esterilidad fúngica y bacteriana y niveles de endotoxinas inferiores a 5 UE/ml; y
- 10

g. sensibilidad in vitro de clones al ganciclovir.

Las células mononucleares de sangre periférica se obtuvieron del paciente mediante leucoféresis, preferiblemente después de la recuperación de la cirugía de resección inicial y en un momento de al menos tres semanas después de disminuir gradualmente los esteroides y/o su quimioterapia sistémica más reciente. El rendimiento de células mononucleares de leucoféresis diana fue generalmente de 5x10⁹ y el número diana de clones de células T citolíticas resistentes a higromicina fue 25. En general, se identificaron al menos cinco clones que cumplían todos los parámetros de control de calidad para la expansión in vitro. Los clones se criopreservaron y los pacientes se controlaron mediante exámenes clínicos y radiográficos seriados. Cuando se documentó la recurrencia de la progresión de la enfermedad,
los pacientes se sometieron a una nueva resección y/o la colocación de un dispositivo de acceso al reservorio para administrar células T a la cavidad de resección del tumor.

Después de la recuperación de la cirugía y la disminución gradual de los esteroides, si corresponde, el paciente comenzó la terapia con células T de la siguiente manera. El paciente recibió una diana de al menos cuatro ciclos de terapia de una semana. Durante el primer ciclo, el aumento de la dosis celular procedió desde una dosis inicial el día 0 de aproximadamente 10⁷ células, seguida de aproximadamente 5 x 10⁷ células el día 3 hasta una dosis objetivo de aproximadamente 10⁸ células el día 5. El ciclo 2 comenzó tan pronto como una semana después comienzo del ciclo 1. En los días de la administración de células T, los clones expandidos se procesaron asépticamente lavándolos dos veces en 50 cc de PBS y luego se resuspendieron en solución salina normal sin conservantes farmacéuticos en un volumen que dio como resultado la dosis de células para el suministro del paciente en 2 ml. Preferiblemente, las células T se instilaron durante 5 a 10 minutos, seguido de 2 ml de PFNS administrado durante 5 minutos. La respuesta a la terapia se evaluó mediante resonancia magnética +/- gandolinio, con espectroscopia.

En general, las dosis de células fueron al menos un logaritmo menor que las dosis administradas en estudios que
 emplean células LAK intracavitarias (dosis de células individuales de hasta 10⁹ y números de células acumulativas de hasta 2.75 x 10¹⁰), TIL expandidos ex vivo (hasta 10⁹ células/dosis) y linfocitos alorreactivos (dosis celular inicial 10⁸ con dosis celulares acumulativas hasta 51.5 x 10⁸). Se favorece la dosificación repetitiva de dosis baja para evitar respuestas inflamatorias potencialmente peligrosas que podrían ocurrir con instilaciones de un solo gran número de células. Cada infusión consistió preferiblemente en un solo clon de células T, y el mismo clon se administró
 preferiblemente a lo largo del curso de tratamiento de un paciente.

Aquellos pacientes que demuestren regresión tumoral con enfermedad residual en la resonancia magnética pueden tener cursos adicionales de terapia que comiencen no antes de la semana 7, que consisten en la repetición de los ciclos 3 y 4 seguidos de una semana de descanso/reestadificación, siempre que estos tratamientos sean bien tolerados hasta que tiempo en que se documenta la progresión de la enfermedad o se logra una respuesta completa (RC) basada en la evaluación radiográfica. Las toxicidades máximas generalmente aceptadas son inferiores al grado 3, sin embargo, esto queda a criterio del médico tratante.

El tratamiento con ganciclovir conduce a la ablación de los clones CAR⁺ HyTK⁺ CD8⁺ CTL. Por lo tanto, cualquier se fecto secundario asociado con la terapia (dolor de cabeza, fiebre, escalofríos, náuseas, etc.) que pueda ocurrir se puede controlar mediante tratamientos establecidos apropiados para la afección. Por ejemplo, el paciente puede recibir ganciclovir si se observa cualquier nueva toxicidad de grado 3 que progresa a grado 4, o cualquier toxicidad de grado 4 relacionada con el tratamiento que, en opinión del médico tratante, pone al paciente en un peligro médico significativo. El ganciclovir administrado por los padres se dosifica a 10 mg/kg/día divididos cada 12 horas. Los pacientes deben ser hospitalizados durante las primeras 72 horas de tratamiento con ganciclovir con fines de seguimiento. Si los síntomas no responden al ganciclovir dentro de las 48 horas, se pueden agregar agentes inmunosupresores adicionales, incluidos, entre otros, corticosteroides y ciclosporina, a discreción del médico tratante. Si las toxicidades son graves, el decadrón y/u otros fármacos inmunosupresores junto con ganciclovir también pueden usarse a discreción del médico tratante.

60

45

Los estudios preliminares de seguridad que utilizaron el protocolo descrito anteriormente, donde se administraron clones de CTL que expresaban IL13-CAR a pacientes humanos con glioma intracraneal recurrente, indicaron que de los eventos adversos que tenían una posible correlación con la administración intracavitaria de células T, los únicos eventos de grado 3 han sido dolores de cabeza que se produjeron con la administración de 10⁸ células en cada uno de los dos pacientes tratados hasta la fecha. En ningún momento se encontró que los eventos adversos de Grado 4

65 de

o 5 estuvieran asociados con la administración de células T genéticamente alteradas. Por lo tanto, el perfil de seguridad general de esta terapia de transferencia adoptiva aquí fue aceptable.

Ejemplos 8-12. Moléculas de CAR ejemplares. (Comparación)

Las Figuras 14 y 16-18 proporcionan las secuencias de los CAR de comparación.

La Figura 14 proporciona la secuencia de un CAR de IL13-IgG₄-cd28tm-CD28gg-Zeta (CO) (SEQ ID NO: 36). Esta secuencia codifica (1) la molécula de IL13 con la mutación E13Y (que es el ligando para el receptor de la superficie del tumor IL13Rα2 en la superficie del tumor (IL13)), (2) la porción Fc del dominio extracelular de inmunoglobulina isotipo G₄ (IgG₄), (3) la porción transmembrana de la molécula coestimuladora CD28 (cd28tm), (4) el dominio de señalización de CD28 con dos leucinas cambiadas a glicinas con el propósito de aumentar la expresión (CD28gg), y (5) el dominio de señalización de la cadena CD3ζ del receptor de células T (Zeta). Todos los segmentos estaban optimizados por codones (CO) para aumentar la expresión en mamíferos. La parte subrayada de la secuencia es la secuencia codificante de CD28gg.

- La Figura 15, de acuerdo con la presente invención, proporciona la secuencia de un IL13-IgG₄-cd4tm-CD28-4-1BB-Zeta CAR (también denominado en el presente documento IL13-CD28-41BBζ; SEQ ID NO: 37). Esta secuencia codifica (1) la molécula de IL13 con la mutación E13Y (que es el ligando para el receptor de la superficie del tumor IL13Rα2 en la superficie del tumor (IL13)), (2) la porción Fc del dominio extracelular de inmunoglobulina isotipo G₄
- 20 IL13Rα2 en la superficie del tumor (IL13)), (2) la porción Fc del dominio extracelular de inmunoglobulina isotipo G₄ (IgG₄), (3) la porción transmembrana de CD4 (cd4tm); el dominio de señalización de la molécula coestimuladora CD28 (CD28) (4) el dominio de señalización de la molécula coestimuladora 4-1BB (4-1BB), y (5) el dominio de señalización de la cadena CD3ζ del receptor de células T (Zeta). La parte subrayada de la secuencia codifica CD28 y la parte Negrita de la secuencia codifica 4-1BB.
- 25

5

La Figura 16 proporciona la secuencia de un CAR IL13-IgG₄-cd28tm-CD28-Ox40-Zeta (SEQ ID NO: 38). Esta secuencia codifica (1) la molécula de IL13 con la mutación E13Y (que es el ligando para el receptor de la superficie del tumor IL13Rα2 en la superficie del tumor (IL13)), (2) la porción Fc del dominio extracelular de inmunoglobulina isotipo G₄ (IgG₄), (3) la porción transmembrana de la molécula coestimuladora CD28 (cd28tm), (4) el dominio de señalización de CD28 (CD28), (5) el dominio de señalización de la molécula coestimuladora OX-40 (Ox40) y (6) el dominio de señalización de la CD3_chain del receptor de células T (Zeta). La secuencia que codifica cd28tm está subrayada (aminoácidos 364-390); la secuencia que codifica CD28 está en cursiva (aminoácidos 391-431); la secuencia que codifica Ox40 está en negrita (aminoácidos 432-467); y la secuencia que codifica Zeta está subrayada y en cursiva (aminoácidos 468-580).

35

30

La Figura 17 proporciona la secuencia de un CAR de IL13-IgG₄-cd28tm-CD28gg-4-1BB-Zeta (SEQ ID NO: 39). Esta secuencia codifica (1) la molécula de IL13 con la mutación E13Y (que es el ligando para el receptor de la superficie del tumor IL13Rα2 en la superficie del tumor (IL13)), (2) la porción Fc del dominio extracelular de inmunoglobulina isotipo G₄ (IgG₄), (3) la porción transmembrana de la molécula coestimuladora CD28 (cd28tm), (4) el dominio de señalización de CD28 con dos leucinas cambiadas a glicinas con el propósito de aumentar la expresión (CD28gg), (5) el dominio de señalización de la molécula coestimuladora 4-1BB (4-1BB) y (6) el dominio de señalización de la cadena CD3ζ del receptor de células T (Zeta). La parte subrayada de la secuencia codifica CD28gg y la parte en negrita de la secuencia codifica 4-1BB.

- 45 La Figura 18 proporciona la secuencia de un IL13-IgG₄-cd28tm-CD28gg^199-4-1BB-Zeta CAR (SEQ ID NO: 40). Esta secuencia codifica (1) la molécula de IL13 con la mutación E13Y (que es el ligando para el receptor de la superficie del tumor IL13Rα2 en la superficie del tumor (IL13)), (2) la porción Fc del dominio extracelular de inmunoglobulina isotipo G₄ (IgG₄), (3) la porción transmembrana de la molécula coestimuladora CD28 (cd28tm), (4) el dominio de señalización de CD28 con dos leucinas cambiadas a glicinas con el propósito de aumentar la expresión, y su dominio
- 50 quinasa eliminado con el propósito de eliminar su actividad de señalización (es decir, como control negativo para SEQ ID NO: 39) (CD28gg^199), (5) el dominio de señalización de la molécula coestimuladora 4-1BB (4-1BB), y (6) el dominio de señalización de la cadena CD3ζ del receptor de células T (Zeta). La parte subrayada de la secuencia codifica CD28gg^199 y la parte en negrita de la secuencia codifica 4-1BB.
- 55 Listado de secuencias

<110> Jensen, Michael

<120> Método y composición para el funcionamiento mejorado del efector antitumoral de las células T

<130> 1954-504

<150> 61/091,915 <151> 2008-08-26

65

60

<160> 53

<170> PatentIn versión 3.5

<210> 1
5 <211> 132
<212> PRT
<213> Homo sapiens

<400> 1 10 Met Ala Leu Leu Thr Thr Val Ile Ala Leu Thr Cys Leu Gly Gly 15 1 5 10 Phe Ala Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Tyr Leu 20 25 30 Ile Glu Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys 35 40 45 Asn Gly Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys 50 55 60 Ala Ala Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu 65 70 75 80 Lys Thr Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala 85 90 95 Gly Gln Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala 100 105 110 Gln Phe Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu 115 120 125 Gly Arg Phe Asn 130 <210> 2 <211> 416 <212> ADN 15 <213> Homo sapiens <400> 2 60 tatgaattca tggcgctttt gttgaccacg gtcattgctc tcacttgcct tggcggcttt 120 gcctccccag gccctgtgcc tccctctaca gccctcaggt acctcattga ggagctggtc 180 aacatcaccc agaaccagaa ggctccgctc tgcaatggca gcatggtatg gagcatcaac 240 ctgacagctg gcatgtactg tgcagccctg gaatccctga tcaacgtgtc aggctgcagt gccatcgaga agacccagag gatgctgagc ggattctgcc cgcacaaggt ctcagctggg 300 360 cagttttcca gcttgcatgt ccgagacacc aaaatcgagg tggcccagtt tgtaaaggac 20 ctgctcttac atttaaagaa actttttcgc gagggacggt tcaactgagg atccga 416 <210> 3 <211> 416 <212> ADN

<213> Homo sapiens

ES 2 899 174 T3

atacttaagt accgcgaaaa caactggtgc cagtaacgag agtgaacgga accgccgaaa	60
cggaggggtc cgggacacgg agggagatgt cgggagtcca tggagtaact cctcgaccag	120
ttgtagtggg tettggtett eegaggegag aegttaeegt egtaeeatae etegtagttg	180
gactgtegae egtacatgae aegtegggae ettagggaet agttgeaeag teegaegtea	240
cggtagctct tctgggtctc ctacgactcg cctaagacgg gcgtgttcca gagtcgaccc	300
gtcaaaaggt cgaacgtaca ggctctgtgg ttttagctcc accgggtcaa acatttcctg	360
gacgagaatg taaatttett tgaaaaageg eteeetgeea agttgaetee tagget	416
<210> 4 <211> 497 <212> PRT <213> Homo sapiens <400> 4	
Met Leu Leu Val Thr Ser Leu Leu Leu Cys Glu Leu Pro His 1 5 10 15	Pro
Ala Phe Leu Leu Ile Pro Gly Pro Val Pro Pro Ser Thr Ala Leu 20 25 30	Arg
Tyr Leu Ile Glu Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala 35 40 45	Pro
Leu Cys Asn Gly Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly 50 55 60	Met
Tyr Cys Ala Ala Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser 65 70 75	Ala 80

Ile	Glu	Lys	Thr	Gln 85	Arg	Met	Leu	Ser	Gly 90	Phe	Cys	Pro	His	Lys 95	Val
Ser	Ala	Gly	Gln 100	Phe	Ser	Ser	Leu	His 105	Val	Arg	Asp	Thr	Lys 110	Ile	Glu
Val	Ala	Gln 115	Phe	Val	Lys	Asp	Leu 120	Leu	Leu	His	Leu	Lys 125	Lys	Leu	Phe
Arg	Glu 130	Gly	Arg	Phe	Asn	Glu 135	Ser	Lys	Tyr	Gly	Pro 140	Pro	Cys	Pro	Pro
Cys 145	Pro	Ala	Pro	Glu	Phe 150	Leu	Gly	Gly	Pro	Ser 155	Val	Phe	Leu	Phe	Pro 160
Pro	Lys	Pro	Lys	Asp 165	Thr	Leu	Met	Ile	Ser 170	Arg	Thr	Pro	Glu	Val 175	Thr
Cys	Val	Val	Val 180	Asp	Val	Ser	Gln	Glu 185	Asp	Pro	Glu	Val	Gln 190	Phe	Asn
Trp	Tyr	Val 195	Asp	Gly	Val	Glu	Val 200	His	Asn	Ala	Lys	Thr 205	Lys	Pro	Arg
Glu	Glu 210	Gln	Phe	Asn	Ser	Thr 215	Tyr	Arg	Val	Val	Ser 220	Val	Leu	Thr	Val
Leu 225	His	Gln	Asp	Trp	Leu 230	Asn	Gly	Lys	Glu	Туг 235	Lys	Cys	Lys	Val	Ser 240
Asn	Lys	Gly	Leu	Pro 245	Ser	Ser	Ile	Glu	Lys 250	Thr	Ile	Ser	Lys	Ala 255	Lys
Gly	Gln	Pro	Arg 260	Glu	Pro	Gln	Val	Tyr 265	Thr	Leu	Pro	Pro	Ser 270	Gln	Glu
Glu	Met	Thr 275	Lys	Asn	Gln	Val	Ser 280	Leu	Thr	Cys	Leu	Val 285	Lys	Gly	Phe
Tyr	Pro 290	Ser	Asp	Ile	Ala	Val 295	Glu	Trp	Glu	Ser	Asn 300	Gly	Gln	Pro	Glu
Asn 305	Asn	Tyr	Lys	Thr	Thr 310	Pro	Pro	Val	Leu	Asp 315	Ser	Asp	Gly	Ser	Phe 320
Phe	Leu	Tyr	Ser	Arg	Leu	\mathbf{Thr}	Val	Asp	Lys	Ser	Arg	Trp	Gln	Glu	Gly

	325		330		335				
Asn Val Phe S 3	Ser Cys Ser 340	Val Met His 345	Glu Ala Leu	His Asn 350	His Tyr				
Thr Gln Lys S 355	Ser Leu Ser	Leu Ser Leu 360	Gly Lys Met	Ala Leu 365	Ile Val				
Leu Gly Gly V 370	Val Ala Gly	Leu Leu Leu 375	Phe Ile Gly 380	Leu Gly	Ile Phe				
Phe Arg Val I 385	ys Phe Ser 390	Arg Ser Ala	Asp Ala Pro 395	Ala Tyr	Gln Gln 400				
Gly Gln Asn G	Sln Leu Tyr 405	Asn Glu Leu	Asn Leu Gly 410	Arg Arg	Glu Glu 415				
Tyr Asp Val I 4	Leu Asp Lys 20	Arg Arg Gly 425	Arg Asp Pro	Glu Met 430	Gly Gly				
Lys Pro Arg A 435	arg Lys Asn	Pro Gln Glu 440	Gly Leu Tyr	Asn Glu 445	Leu Gln				
Lys Asp Lys M 450	let Ala Glu	Ala Tyr Ser 455	Glu Ile Gly 460	Met Lys	Gly Glu				
Arg Arg Arg G 465	Gly Lys Gly 470	His Asp Gly	Leu Tyr Gln 475	Gly Leu	Ser Thr 480				
Ala Thr Lys A	asp Thr Tyr 485	Asp Ala Leu	His Met Gln 490	Ala Leu	Pro Pro 495				
<210> 5 <211> 1522 <212> ADN <213> Homo sapiens <400> 5									
atctctagag ccgc	caccat gcttct	cctg gtgacaag	cc ttctgctctg t	gagttacca	60				
cacccagcat tect	cctgat cccago	geeet gtgeetee	ct ctacageeet o	aggtacctc	120				
attgaggagc tggt	caacat caccca	ngaac cagaaggc	to ogototgoaa t	ggcagcatg	180				
gtatggagca tcaa	cctgac agctgo	gcatg tactgtgca	ag ccctggaatc o	ctgatcaac	240				
gtgtcaggct gcag	tgccat cgagaa	agacc cagaggat	gc tgagcggatt d	tgcccgcac	300				

aaggteteag etgggeagtt ttecagettg catgteegag acaceaaaat egaggtggee 360 420 cagtttgtaa aggacctgct cttacattta aagaaacttt ttcgcgaggg acggttcaac gagtccaaat atggtccccc atgcccacca tgcccagcac ctgagttcct ggggggacca 480 540 tcagtcttcc tgttcccccc aaaacccaag gacactctca tgatctcccg gacccctgag 600 gtcacgtgcg tggtggtgga cgtgagccag gaagaccccg aggtccagtt caactggtac gtggatggcg tggaggtgca taatgccaag acaaagccgc gggaggagca gttcaacagc 660 720 acgtaccgtg tggtcagcgt cctcaccgtc ctgcaccagg actggctgaa cggcaaggag tacaagtgca aggtctccaa caaaggcctc ccgtcctcca tcgagaaaac catctccaaa 780 840 gccaaagggc agccccgaga gccacaggtg tacaccctgc ccccatccca ggaggagatg accaagaacc aggtcagcct gacctgcctg gtcaaaggct tctaccccag cgacatcgcc 900 960 gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacgcc tcccgtgctg gactccgacg gctccttctt cctctacagc aggctaaccg tggacaagag caggtggcag 1020 gaggggaatg tetteteatg etcegtgatg catgaggete tgeacaacea etacacacag 1080 aagagcetet eeetgtetet gggtaaaatg geeetgattg tgetgggggg cgtegeegge 1140 ctcctgcttt tcattgggct aggcatcttc ttcagagtga agttcagcag gagcgcagac 1200 gcccccgcgt accagcaggg ccagaaccag ctctataacg agctcaatct aggacgaaga 1260 gaggagtacg atgttttgga caagagacgt ggccgggacc ctgagatggg gggaaagccg 1320 agaaggaaga accctcagga aggcctgtac aatgaactgc agaaagataa gatggcggag 1380 1440 gcctacagtg agattgggat gaaaggcgag cgccggaggg gcaaggggca cgatggcctt taccagggtc tcagtacagc caccaaggac acctacgacg cccttcacat gcaggccctg 1500 ccccctcgct aagcggccgc at 1522

5

<212> ADN <213> Homo sapiens

<400> 6

<210> 6 <211> 1522

60	actcaatggt	aagacgagac	cactgttcgg	cgaagaggac	ggcggtggta	tagagatctc	
120	gtccatggag	gatgtcggga	cacggaggga	gggtccggga	aggaggacta	gtgggtcgta	
180	accgtcgtac	gcgagacgtt	gtcttccgag	gtgggtcttg	accagttgta	taactcctcg	
240	ggactagttg	gggaccttag	atgacacgtc	tcgaccgtac	agttggactg	catacctcgt	
300	gacgggcgtg	actcgcctaa	gtctcctacg	gctcttctgg	cgtcacggta	cacagtccga	
360	gctccaccgg	tgtggtttta	gtacaggctc	aaggtcgaac	gacccgtcaa	ttccagagtc	
420	tgccaagttg	aagcgctccc	ttctttgaaa	gaatgtaaat	tcctggacga	gtcaaacatt	

	ctcaggttta	taccaggggg	tacgggtggt	acgggtcgtg	gactcaagga	ccccctggt	480
	agtcagaagg	acaaggggggg	ttttgggttc	ctgtgagagt	actagagggc	ctggggactc	540
	cagtgcacgc	accaccacct	gcactcggtc	cttctggggc	tccaggtcaa	gttgaccatg	600
	cacctaccgc	acctccacgt	attacggttc	tgtttcggcg	ccctcctcgt	caagttgtcg	660
	tgcatggcac	accagtcgca	ggagtggcag	gacgtggtcc	tgaccgactt	gccgttcctc	720
	atgttcacgt	tccagaggtt	gtttccggag	ggcaggaggt	agctcttttg	gtagaggttt	780
	cggtttcccg	tcggggctct	cggtgtccac	atgtgggacg	ggggtagggt	cctcctctac	840
	tggttcttgg	tccagtcgga	ctggacggac	cagtttccga	agatggggtc	gctgtagcgg	900
	cacctcaccc	tctcgttacc	cgtcggcctc	ttgttgatgt	tctggtgcgg	agggcacgac	960
	ctgaggctgc	cgaggaagaa	ggagatgtcg	tccgattggc	acctgttctc	gtccaccgtc	1020
	ctccccttac	agaagagtac	gaggcactac	gtactccgag	acgtgttggt	gatgtgtgtc	1080
	ttctcggaga	gggacagaga	cccattttac	cgggactaac	acgacccccc	gcagcggccg	1140
	gaggacgaaa	agtaacccga	tccgtagaag	aagtctcact	tcaagtcgtc	ctcgcgtctg	1200
	cggggggcgca	tggtcgtccc	ggtcttggtc	gagatattgc	tcgagttaga	tcctgcttct	1260
	ctcctcatgc	tacaaaacct	gttctctgca	ccggccctgg	gactctaccc	ccctttcggc	1320
	tcttccttct	tgggagtcct	tccggacatg	ttacttgacg	tctttctatt	ctaccgcctc	1380
	cggatgtcac	tctaacccta	ctttccgctc	gcggcctccc	cgttccccgt	gctaccggaa	1440
	atggtcccag	agtcatgtcg	gtggttcctg	tggatgctgc	gggaagtgta	cgtccgggac	1500
	gggggagcga	ttcgccggcg	ta				1522
5	<210> 7 <211> 84 <212> ADN <213> Hom	l no sapiens					
	<400> 7						
	atctctagag	ccgccaccat	gcttctcctg	gtgacaagcc	ttctgctctg	tgagttacca	60
10	cacccagcat	tcctcctgat	ccca				84
15	<210> 8 <211> 336 <212> ADN <213> Hom	l no sapiens					
	<400> 8						
	ggccctgtgc	ctccctctac	agccctcagg	tacctcattg	aggagctggt	caacatcacc	60
	cagaaccaga	aggctccgct	ctgcaatggc	agcatggtat	ggagcatcaa	cctgacagct	120
	ggcatgtact	gtgcagccct	ggaatccctg	atcaacgtgt	caggctgcag	tgccatcgag	180
~~	aagacccaga	ggatgctgag	cggattctgc	ccgcacaagg	tctcagctgg	gcagttttcc	240
20	agcttgcatg	tccgagacac	caaaatcgag	gtggcccagt	ttgtaaagga	cctgctctta	300
	catttaaaga	aactttttcg	cgagggacgg	ttcaac			336
	<210> 9 <211> 686						

25 <211

<212> ADN <213> Homo sapiens

	gagtecaaat atggteecee atgeceacea tgeceageae etgagtteet ggggggaeea	60
	tcagtettee tgtteecece aaaacecaag gacactetea tgateteeeg gaceetgag	120
	gtcacgtgcg tggtggtgga cgtgagccag gaagaccccg aggtccagtt caactggtac	180
	gtggatggcg tggaggtgca taatgccaag acaaagccgc gggaggagca gttcaacagc	240
	acgtaccgtg tggtcagcgt cctcaccgtc ctgcaccagg actggctgaa cggcaaggag	300
	tacaagtgca aggtctccaa caaaggcctc ccgtcctcca tcgagaaaac catctccaaa	360
	gccaaagggc agccccgaga gccacaggtg tacaccctgc ccccatccca ggaggagatg	420
	accaagaacc aggtcagcct gacctgcctg gtcaaaggct tctaccccag cgacatcgcc	480
	gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacgcc tcccgtgctg	540
	gacteegaeg geteettett eetetaeage aggetaaeeg tggaeaagag eaggtggeag	600
	gaggggaatg tetteteatg etcegtgatg catgaggete tgeacaaeea etaeaeaeg	660
	aagagcetet eeetgtetet gggtaa	686
5	<210> 10 <211> 67 <212> ADN <213> Homo sapiens	
	<400> 10	
	aatggccctg attgtgctgg ggggggtcgc cggcctcctg cttttcattg ggctaggcat	60
10	cttcttc	67
15	<210> 11 <211> 339 <212> ADN <213> Homo sapiens	
	<400> 11 agagtgaagt tcagcaggag cgcagacgcc cccgcgtacc agcagggcca gaaccagctc	60
	tataacgagc tcaatctagg acgaagagag gagtacgatg ttttggacaa gagacgtggc	120
	cgggaccctg agatgggggg aaagccgaga aggaagaacc ctcaggaagg cctgtacaat	180
	gaactgcaga aagataagat ggcggaggcc tacagtgaga ttgggatgaa aggcgagcgc	240
	cggaggggca aggggcacga tggcctttac cagggtctca gtacagccac caaggacacc	300
20	tacgacgccc ttcacatgca ggccctgccc cctcgctaa	339
	<210> 12 <211> 1092 <212> ADN <213> Secuencia Artificial	
20	<220> <223> vector de plásmido	
	<400> 12	

gagtccaaat	atggtccccc	atgcccacca	tgcccagcac	ctgagttcct	ggggggacca	60	
tcagtcttcc	tgttcccccc	aaaacccaag	gacactctca	tgatctcccg	gacccctgag	120	
gtcacgtgcg	tggtggtgga	cgtgagccag	gaagaccccg	aggtccagtt	caactggtac	180	
gtggatggcg	tggaggtgca	taatgccaag	acaaagccgc	gggaggagca	gttcaacagc	240	
acgtaccgtg	tggtcagcgt	cctcaccgtc	ctgcaccagg	actggctgaa	cggcaaggag	300	
tacaagtgca	aggtctccaa	caaaggcctc	ccgtcctcca	tcgagaaaac	catctccaaa	360	
gccaaagggc	agccccgaga	gccacaggtg	tacaccctgc	ccccatccca	ggaggagatg	420	
accaagaacc	aggtcagcct	gacctgcctg	gtcaaaggct	tctaccccag	cgacatcgcc	480	
gtggagtggg	agagcaatgg	gcagccggag	aacaactaca	agaccacgcc	tcccgtgctg	540	
gactccgacg	gctccttctt	cctctacagc	aggctaaccg	tggacaagag	caggtggcag	600	
gaggggaatg	tcttctcatg	ctccgtgatg	catgaggctc	tgcacaacca	ctacacacag	660	
aagagcctct	ccctgtctct	gggtaaaatg	gccctgattg	tgctgggggg	cgtcgccggc	720	
ctcctgcttt	tcattgggct	aggcatcttc	ttcagagtga	agttcagcag	gagcgcagac	780	
gcccccgcgt	accagcaggg	ccagaaccag	ctctataacg	agctcaatct	aggacgaaga	840	
gaggagtacg	atgttttgga	caagagacgt	ggccgggacc	ctgagatggg	gggaaagccg	900	
agaaggaaga	accctcagga	aggcctgtac	aatgaactgc	agaaagataa	gatggcggag	960	
gcctacagtg	agattgggat	gaaaggcgag	cgccggaggg	gcaagggggca	cgatggcctt	1020	
taccagggtc	tcagtacagc	caccaaggac	acctacgacg	cccttcacat	gcaggccctg	1080	
ccccctcgct	aa					1092	
<210> 13 <211> 6770 <212> ADN <213> Secuencia Artificial							
<220> <223> vector de plásmido							

10

5

<400> 13

tcgaaggatc tgcgatcgct ccggtgcccg tcagtgggca gagcgcacat cgcccacagt 60

ccccgagaag	ttggggggag	gggtcggcaa	ttgaaccggt	gcctagagaa	ggtggcgcgg	120
ggtaaactgg	gaaagtgatg	tcgtgtactg	gctccgcctt	tttcccgagg	gtgggggaga	180
accgtatata	agtgcagtag	tcgccgtgaa	cgttctttt	cgcaacgggt	ttgccgccag	240
aacacagctg	aagcttcgag	gggctcgcat	ctctccttca	cgcgcccgcc	gccctacctg	300
aggccgccat	ccacgccggt	tgagtcgcgt	tctgccgcct	cccgcctgtg	gtgcctcctg	360
aactgcgtcc	gccgtctagg	taagtttaaa	gctcaggtcg	agaccgggcc	tttgtccggc	420
gctcccttgg	agcctaccta	gactcagccg	gctctccacg	ctttgcctga	ccctgcttgc	480
tcaactctac	gtctttgttt	cgttttctgt	tctgcgccgt	tacagatcca	agctgtgacc	540
ggcgcctacg	taagtgatat	ctactagatt	tatcaaaaag	agtgttgact	tgtgagcgct	600
cacaattgat	acggattcat	cgagagggac	acgtcgacta	ctaaccttct	tctctttcct	660
acagctgaga	tcaccctaga	gccgccacca	tgcttctcct	ggtgacaagc	cttctgctct	720
gtgagttacc	acacccagca	ttcctcctga	tcccaggccc	tgtgcctccc	tctacagccc	780
tcaggtacct	cattgaggag	ctggtcaaca	tcacccagaa	ccagaaggct	ccgctctgca	840
atggcagcat	ggtatggagc	atcaacctga	cagctggcat	gtactgtgca	gccctggaat	900
ccctgatcaa	cgtgtcaggc	tgcagtgcca	tcgagaagac	ccagaggatg	ctgagcggat	960
tctgcccgca	caaggtctca	gctgggcagt	tttccagctt	gcatgtccga	gacaccaaaa	1020
tcgaggtggc	ccagtttgta	aaggacctgc	tcttacattt	aaagaaactt	tttcgcgagg	1080
gacggttcaa	cgagtccaaa	tatggtcccc	catgcccacc	atgcccagca	cctgagttcc	1140
tgggggggacc	atcagtcttc	ctgttccccc	caaaacccaa	ggacactctc	atgatctccc	1200
ggacccctga	ggtcacgtgc	gtggtggtgg	acgtgagcca	ggaagacccc	gaggtccagt	1260
tcaactggta	cgtggatggc	gtggaggtgc	ataatgccaa	gacaaagccg	cgggaggagc	1320
agttcaacag	cacgtaccgt	gtggtcagcg	tcctcaccgt	cctgcaccag	gactggctga	1380
acggcaagga	gtacaagtgc	aaggtctcca	acaaaggcct	cccgtcctcc	atcgagaaaa	1440
ccatctccaa	agccaaaggg	cagccccgag	agccacaggt	gtacaccctg	cccccatccc	1500
aggaggagat	gaccaagaac	caggtcagcc	tgacctgcct	ggtcaaaggc	ttctacccca	1560
gcgacatcgc	cgtggagtgg	gagagcaatg	ggcagccgga	gaacaactac	aagaccacgc	1620
ctcccgtgct	ggactccgac	ggctccttct	tcctctacag	caggctaacc	gtggacaaga	1680
gcaggtggca	ggaggggaat	gtcttctcat	gctccgtgat	gcatgaggct	ctgcacaacc	1740
actacacaca	gaagagcctc	tccctgtccc	taggtaaaat	ggccctgatt	gtgctggggg	1800
gcgtcgccgg	cctcctgctt	ttcattgggc	taggcatctt	cttcagagtg	aagttcagca	1860
ggagcgcaga	cgcccccgcg	taccagcagg	gccagaacca	gctctataac	gagctcaatc	1920
taggacgaag	agaggagtac	gatgttttgg	acaagagacg	tggccgggac	cctgagatgg	1980

ggggaaagcc	gagaaggaag	aaccctcagg	aaggcctgta	caatgaactg	cagaaagata	2040
agatggcgga	ggcctacagt	gagattggga	tgaaaggcga	gcgccggagg	ggcaagggggc	2100
acgatggcct	ttaccagggt	ctcagtacag	ccaccaagga	cacctacgac	gcccttcaca	2160
tgcaggccct	gccccctcgc	tgagcggccg	gcgaaggagg	cctagatcta	tcgattgtac	2220
agctagctcg	acatgataag	atacattgat	gagtttggac	aaaccacaac	tagaatgcag	2280
tgaaaaaaat	gctttatttg	tgaaatttgt	gatgctattg	ctttatttgt	gaaatttgtg	2340
atgctattgc	tttatttgta	accattataa	gctgcaataa	acaagttaac	aacaacaatt	2400
gcattcattt	tatgtttcag	gttcaggggg	aggtgtggga	ggtttttaa	agcaagtaaa	2460
acctctacaa	atgtggtaga	tccatttaaa	tgttagcgaa	gaacatgtga	gcaaaaggcc	2520
agcaaaaggc	caggaaccgt	aaaaaggccg	cgttgctggc	gtttttccat	aggctccgcc	2580
cccctgacga	gcatcacaaa	aatcgacgct	caagtcagag	gtggcgaaac	ccgacaggac	2640
tataaagata	ccaggcgttt	ccccctggaa	gctccctcgt	gcgctctcct	gttccgaccc	2700
tgccgcttac	cggatacctg	tccgcctttc	tcccttcggg	aagcgtggcg	ctttctcaat	2760
gctcacgctg	taggtatctc	agttcggtgt	aggtcgttcg	ctccaagctg	ggctgtgtgc	2820
acgaaccccc	cgttcagccc	gaccgctgcg	ccttatccgg	taactatcgt	cttgagtcca	2880
acccggtaag	acacgactta	tcgccactgg	cagcagccac	tggtaacagg	attagcagag	2940
cgaggtatgt	aggcggtgct	acagagttct	tgaagtggtg	gcctaactac	ggctacacta	3000
gaagaacagt	atttggtatc	tgcgctctgc	tgaagccagt	taccttcgga	aaaagagttg	3060
gtagctcttg	atccggcaaa	caaaccaccg	ctggtagcgg	tggtttttt	gtttgcaagc	3120
agcagattac	gcgcagaaaa	aaaggatctc	aagaagatcc	tttgatcttt	tctacggggt	3180
ctgacgctca	gtggaacgaa	aactcacgtt	aagggatttt	ggtcatggct	agttaattaa	3240
gctgcaataa	acaatcatta	ttttcattgg	atctgtgtgt	tggtttttg	tgtgggcttg	3300
ggggaggggg	aggccagaat	gactccaaga	gctacaggaa	ggcaggtcag	agaccccact	3360
ggacaaacag	tggctggact	ctgcaccata	acacacaatc	aacaggggag	tgagctggat	3420
cgagctagag	tccgttacat	aacttacggt	aaatggcccg	cctggctgac	cgcccaacga	3480
cccccgccca	ttgacgtcaa	taatgacgta	tgttcccata	gtaacgccaa	tagggacttt	3540
ccattgacgt	caatgggtgg	agtatttacg	gtaaactgcc	cacttggcag	tacatcaagt	3600
gtatcatatg	ccaagtacgc	cccctattga	cgtcaatgac	ggtaaatggc	ccgcctggca	3660
ttatgcccag	tacatgacct	tatgggactt	tcctacttgg	cagtacatct	acgtattagt	3720
catcgctatt	accatggtga	tgcggttttg	gcagtacatc	aatgggcgtg	gatagcggtt	3780
tgactcacqq	ggatttccaa	gtctccaccc	cattgacgtc	aatgggagtt	tgttttggca	3840

ccaaaatcaa	cgggactttc	caaaatgtcg	taacaactcc	gccccattga	cgcaaatggg	3900
cggtaggcgt	gtacggtggg	aggtctatat	aagcagagct	cgtttagtga	accgtcagat	3960
cgcctggaga	cgccatccac	gctgttttga	cctccataga	agacaccggg	accgatccag	4020
cctccgcggc	cgggaacggt	gcattggaac	gcggattccc	cgtgccaaga	gtgacgtaag	4080
taccgcctat	agagtctata	ggcccaccta	gttgtgaccg	gcgcctagtg	ttgacaatta	4140
atcatcggca	tagtataata	cgactcacta	taggagggcc	accatgtcga	ctactaacct	4200
tcttctcttt	cctacagctg	agatcaccgg	taggagggcc	atcatgaaaa	agcctgaact	4260
caccgcgacg	tctgtcgcga	agtttctgat	cgaaaagttc	gacagcgtct	ccgacctgat	4320
gcagctctcg	gagggcgaag	aatctcgtgc	tttcagcttc	gatgtaggag	ggcgtggata	4380
tgtcctgcgg	gtaaatagct	gcgccgatgg	tttctacaaa	gatcgttatg	tttatcggca	4440
ctttgcatcg	gccgcgctcc	cgattccgga	agtgcttgac	attggggaat	tcagcgagag	4500
cctgacctat	tgcatctccc	gccgtgcaca	gggtgtcacg	ttgcaagacc	tgcctgaaac	4560
cgaactgccc	gctgttctgc	aacccgtcgc	ggagctcatg	gatgcgatcg	ctgcggccga	4620
tcttagccag	acgagcgggt	tcggcccatt	cggaccgcaa	ggaatcggtc	aatacactac	4680
atggcgtgat	ttcatatgcg	cgattgctga	tccccatgtg	tatcactggc	aaactgtgat	4740
ggacgacacc	gtcagtgcgt	ccgtcgcgca	ggctctcgat	gagctgatgc	tttgggccga	4800
ggactgcccc	gaagtccggc	acctcgtgca	cgcggatttc	ggctccaaca	atgtcctgac	4860
ggacaatggc	cgcataacag	cggtcattga	ctggagcgag	gcgatgttcg	gggattccca	4920
atacgaggtc	gccaacatct	tcttctggag	gccgtggttg	gcttgtatgg	agcagcagac	4980
gcgctacttc	gagcggaggc	atccggagct	tgcaggatcg	ccgcggctcc	gggcgtatat	5040
gctccgcatt	ggtcttgacc	aactctatca	gagcttggtt	gacggcaatt	tcgatgatgc	5100
agcttgggcg	cagggtcgat	gcgacgcaat	cgtccgatcc	ggagccggga	ctgtcgggcg	5160
tacacaaatc	gcccgcagaa	gcgcggccgt	ctggaccgat	ggctgtgtag	aagtcgcgtc	5220
tgcgttcgac	caggctgcgc	gttctcgcgg	ccatagcaac	cgacgtacgg	cgttgcgccc	5280
tcgccggcag	caagaagcca	cggaagtccg	cccggagcag	aaaatgccca	cgctactgcg	5340
ggtttatata	gacggtcccc	acgggatggg	gaaaaccacc	accacgcaac	tgctggtggc	5400
cctgggttcg	cgcgacgata	tcgtctacgt	acccgagccg	atgacttact	ggcgggtgct	5460
gggggcttcc	gagacaatcg	cgaacatcta	caccacacaa	caccgcctcg	accagggtga	5520
gatatcggcc	ggggacgcgg	cggtggtaat	gacaagcgcc	cagataacaa	tgggcatgcc	5580
ttatgccgtg	accgacgccg	ttctggctcc	tcatatcggg	ggggaggctg	ggagctcaca	5640
tgccccgccc	ccggccctca	ccctcatctt	cgaccgccat	cccatcgccg	ccctcctgtg	5700
ctacccggcc	gcgcggtacc	ttatgggcag	catgaccccc	caggccgtgc	tggcgttcgt	5760

ggccctcatc	ccgccgacct	tgcccggcac	caacatcgtg	cttggggccc	ttccggagga	5820
cagacacatc	gaccgcctgg	ccaaacgcca	gcgccccggc	gagcggctgg	acctggctat	5880
gctggctgcg	attcgccgcg	tttacgggct	acttgccaat	acggtgcggt	atctgcagtg	5940
cggcgggtcg	tggcgggagg	actggggaca	gctttcgggg	acggccgtgc	cgccccaggg	6000
tgccgagccc	cagagcaacg	cgggcccacg	accccatatc	ggggacacgt	tatttaccct	6060
gtttcgggcc	cccgagttgc	tggcccccaa	cggcgacctg	tataacgtgt	ttgcctgggc	6120
cttggacgtc	ttggccaaac	gcctccgttc	catgcacgtc	tttatcctgg	attacgacca	6180
atcgcccgcc	ggctgccggg	acgccctgct	gcaacttacc	tccgggatgg	tccagaccca	6240
cgtcaccacc	cccggctcca	taccgacgat	atgcgacctg	gcgcgcacgt	ttgcccggga	6300
gatgggggag	gctaactgag	tcgagaattc	gctagagggc	cctattctat	agtgtcacct	6360
aaatgctaga	gctcgctgat	cagcctcgac	tgtgccttct	agttgccagc	catctgttgt	6420
ttgcccctcc	cccgtgcctt	ccttgaccct	ggaaggtgcc	actcccactg	tcctttccta	6480
ataaaatgag	gaaattgcat	cgcattgtct	gagtaggtgt	cattctattc	tggggggtgg	6540
ggtggggcag	gacagcaagg	gggaggattg	ggaagacaat	agcaggcatg	cgcagggccc	6600
aattgctcga	gcggccgcaa	taaaatatct	ttattttcat	tacatctgtg	tgttggtttt	6660
ttgtgtgaat	cgtaactaac	atacgctctc	catcaaaaca	aaacgaaaca	aaacaaacta	6720
gcaaaatagg	ctgtccccag	tgcaagtgca	ggtgccagaa	catttctcta		6770

<210> 14 <211> 6770

<212> ADN

5

<213> Homo sapiens

<400> 14

agcttcctag	acgctagcga	ggccacgggc	agtcacccgt	ctcgcgtgta	gcgggtgtca	60
ggggctcttc	aacccccctc	cccagccgtt	aacttggcca	cggatctctt	ccaccgcgcc	120
ccatttgacc	ctttcactac	agcacatgac	cgaggcggaa	aaagggctcc	caccccctct	180
tggcatatat	tcacgtcatc	agcggcactt	gcaagaaaaa	gcgttgccca	aacggcggtc	240
ttgtgtcgac	ttcgaagctc	cccgagcgta	gagaggaagt	gcgcgggcgg	cgggatggac	300
tccggcggta	ggtgcggcca	actcagcgca	agacggcgga	gggcggacac	cacggaggac	360
ttgacgcagg	cggcagatcc	attcaaattt	cgagtccagc	tctggcccgg	aaacaggccg	420
cgagggaacc	tcggatggat	ctgagtcggc	cgagaggtgc	gaaacggact	gggacgaacg	480
agttgagatg	cagaaacaaa	gcaaaagaca	agacgcggca	atgtctaggt	tcgacactgg	540
ccgcggatgc	attcactata	gatgatctaa	atagtttttc	tcacaactga	acactcgcga	600
gtgttaacta	tgcctaagta	gctctccctg	tgcagctgat	gattggaaga	agagaaagga	660

tgtcgactct	agtgggatct	cggcggtggt	acgaagagga	ccactgttcg	gaagacgaga	720
cactcaatgg	tgtgggtcgt	aaggaggact	agggtccggg	acacggaggg	agatgtcggg	780
agtccatgga	gtaactcctc	gaccagttgt	agtgggtctt	ggtcttccga	ggcgagacgt	840
taccgtcgta	ccatacctcg	tagttggact	gtcgaccgta	catgacacgt	cgggacctta	900
gggactagtt	gcacagtccg	acgtcacggt	agctcttctg	ggtctcctac	gactcgccta	960
agacgggcgt	gttccagagt	cgacccgtca	aaaggtcgaa	cgtacaggct	ctgtggtttt	1020
agctccaccg	ggtcaaacat	ttcctggacg	agaatgtaaa	tttctttgaa	aaagcgctcc	1080
ctgccaagtt	gctcaggttt	ataccagggg	gtacgggtgg	tacgggtcgt	ggactcaagg	1140
acccccctgg	tagtcagaag	gacaagggggg	gttttgggtt	cctgtgagag	tactagaggg	1200
cctgggggact	ccagtgcacg	caccaccacc	tgcactcggt	ccttctgggg	ctccaggtca	1260
agttgaccat	gcacctaccg	cacctccacg	tattacggtt	ctgtttcggc	gccctcctcg	1320
tcaagttgtc	gtgcatggca	caccagtcgc	aggagtggca	ggacgtggtc	ctgaccgact	1380
tgccgttcct	catgttcacg	ttccagaggt	tgtttccgga	gggcaggagg	tagctctttt	1440
ggtagaggtt	tcggtttccc	gtcggggctc	tcggtgtcca	catgtgggac	gggggtaggg	1500
tcctcctcta	ctggttcttg	gtccagtcgg	actggacgga	ccagtttccg	aagatggggt	1560
cgctgtagcg	gcacctcacc	ctctcgttac	ccgtcggcct	cttgttgatg	ttctggtgcg	1620
gagggcacga	cctgaggctg	ccgaggaaga	aggagatgtc	gtccgattgg	cacctgttct	1680
cgtccaccgt	cctcccctta	cagaagagta	cgaggcacta	cgtactccga	gacgtgttgg	1740
tgatgtgtgt	cttctcggag	agggacaggg	atccatttta	ccgggactaa	cacgaccccc	1800
cgcagcggcc	ggaggacgaa	aagtaacccg	atccgtagaa	gaagtctcac	ttcaagtcgt	1860
cctcgcgtct	gcggggggcgc	atggtcgtcc	cggtcttggt	cgagatattg	ctcgagttag	1920
atcctgcttc	tctcctcatg	ctacaaaacc	tgttctctgc	accggccctg	ggactctacc	1980
cccctttcgg	ctcttccttc	ttgggagtcc	ttccggacat	gttacttgac	gtctttctat	2040
tctaccgcct	ccggatgtca	ctctaaccct	actttccgct	cgcggcctcc	ccgttccccg	2100
tgctaccgga	aatggtccca	gagtcatgtc	ggtggttcct	gtggatgctg	cgggaagtgt	2160
acgtccggga	cggggggagcg	actcgccggc	cgcttcctcc	ggatctagat	agctaacatg	2220
tcgatcgagc	tgtactattc	tatgtaacta	ctcaaacctg	tttggtgttg	atcttacgtc	2280
actttttta	cgaaataaac	actttaaaca	ctacgataac	gaaataaaca	ctttaaacac	2340
tacgataacg	aaataaacat	tggtaatatt	cgacgttatt	tgttcaattg	ttgttgttaa	2400
cgtaagtaaa	atacaaagtc	caagtccccc	tccacaccct	ccaaaaaatt	tcgttcattt	2460
tggagatgtt	tacaccatct	aggtaaattt	acaatcgctt	cttgtacact	cgttttccgg	2520

tcgttttccg	gtccttggca	ttttccggc	gcaacgaccg	caaaaaggta	tccgaggcgg	2580
ggggactgct	cgtagtgttt	ttagctgcga	gttcagtctc	caccgctttg	ggctgtcctg	2640
atatttctat	ggtccgcaaa	gggggacctt	cgagggagca	cgcgagagga	caaggctggg	2700
acggcgaatg	gcctatggac	aggcggaaag	agggaagccc	ttcgcaccgc	gaaagagtta	2760
cgagtgcgac	atccatagag	tcaagccaca	tccagcaagc	gaggttcgac	ccgacacacg	2820
tgcttggggg	gcaagtcggg	ctggcgacgc	ggaataggcc	attgatagca	gaactcaggt	2880
tgggccattc	tgtgctgaat	agcggtgacc	gtcgtcggtg	accattgtcc	taatcgtctc	2940
gctccataca	tccgccacga	tgtctcaaga	acttcaccac	cggattgatg	ccgatgtgat	3000
cttcttgtca	taaaccatag	acgcgagacg	acttcggtca	atggaagcct	ttttctcaac	3060
catcgagaac	taggccgttt	gtttggtggc	gaccatcgcc	accaaaaaaa	caaacgttcg	3120
tcgtctaatg	cgcgtctttt	tttcctagag	ttcttctagg	aaactagaaa	agatgcccca	3180
gactgcgagt	caccttgctt	ttgagtgcaa	ttccctaaaa	ccagtaccga	tcaattaatt	3240
cgacgttatt	tgttagtaat	aaaagtaacc	tagacacaca	accaaaaaac	acacccgaac	3300
cccctccccc	tccggtctta	ctgaggttct	cgatgtcctt	ccgtccagtc	tctggggtga	3360
cctgtttgtc	accgacctga	gacgtggtat	tgtgtgttag	ttgtcccctc	actcgaccta	3420
gctcgatctc	aggcaatgta	ttgaatgcca	tttaccgggc	ggaccgactg	gcgggttgct	3480
gggggcgggt	aactgcagtt	attactgcat	acaagggtat	cattgcggtt	atccctgaaa	3540
ggtaactgca	gttacccacc	tcataaatgc	catttgacgg	gtgaaccgtc	atgtagttca	3600
catagtatac	ggttcatgcg	ggggataact	gcagttactg	ccatttaccg	ggcggaccgt	3660
aatacgggtc	atgtactgga	ataccctgaa	aggatgaacc	gtcatgtaga	tgcataatca	3720
gtagcgataa	tggtaccact	acgccaaaac	cgtcatgtag	ttacccgcac	ctatcgccaa	3780
actgagtgcc	cctaaaggtt	cagaggtggg	gtaactgcag	ttaccctcaa	acaaaaccgt	3840
ggttttagtt	gccctgaaag	gttttacagc	attgttgagg	cggggtaact	gcgtttaccc	3900
gccatccgca	catgccaccc	tccagatata	ttcgtctcga	gcaaatcact	tggcagtcta	3960
gcggacctct	gcggtaggtg	cgacaaaact	ggaggtatct	tctgtggccc	tggctaggtc	4020
ggaggcgccg	gcccttgcca	cgtaaccttg	cgcctaaggg	gcacggttct	cactgcattc	4080
atggcggata	tctcagatat	ccgggtggat	caacactggc	cgcggatcac	aactgttaat	4140
tagtagccgt	atcatattat	gctgagtgat	atcctcccgg	tggtacagct	gatgattgga	4200
agaagagaaa	ggatgtcgac	tctagtggcc	atcctcccgg	tagtactttt	tcggacttga	4260
gtggcgctgc	agacagcgct	tcaaagacta	gcttttcaag	ctgtcgcaga	ggctggacta	4320
cgtcgagagc	ctcccgcttc	ttagagcacg	aaagtcgaag	ctacatcctc	ccgcacctat	4380
acaggacgcc	catttatcga	cgcggctacc	aaagatgttt	ctagcaatac	aaatagccgt	4440

gaaacgtagc	cggcgcgagg	gctaaggcct	tcacgaactg	taacccctta	agtcgctctc	4500
ggactggata	acgtagaggg	cggcacgtgt	cccacagtgc	aacgttctgg	acggactttg	4560
gcttgacggg	cgacaagacg	ttgggcagcg	cctcgagtac	ctacgctagc	gacgccggct	4620
agaatcggtc	tgctcgccca	agccgggtaa	gcctggcgtt	ccttagccag	ttatgtgatg	4680
taccgcacta	aagtatacgc	gctaacgact	aggggtacac	atagtgaccg	tttgacacta	4740
cctgctgtgg	cagtcacgca	ggcagcgcgt	ccgagagcta	ctcgactacg	aaacccggct	4800
cctgacgggg	cttcaggccg	tggagcacgt	gcgcctaaag	ccgaggttgt	tacaggactg	4860
cctgttaccg	gcgtattgtc	gccagtaact	gacctcgctc	cgctacaagc	ccctaagggt	4920
tatgctccag	cggttgtaga	agaagacctc	cggcaccaac	cgaacatacc	tcgtcgtctg	4980
cgcgatgaag	ctcgcctccg	taggcctcga	acgtcctagc	ggcgccgagg	cccgcatata	5040
cgaggcgtaa	ccagaactgg	ttgagatagt	ctcgaaccaa	ctgccgttaa	agctactacg	5100
tcgaacccgc	gtcccagcta	cgctgcgtta	gcaggctagg	cctcggccct	gacagcccgc	5160
atgtgtttag	cgggcgtctt	cgcgccggca	gacctggcta	ccgacacatc	ttcagcgcag	5220
acgcaagctg	gtccgacgcg	caagagcgcc	ggtatcgttg	gctgcatgcc	gcaacgcggg	5280
agcggccgtc	gttcttcggt	gccttcaggc	gggcctcgtc	ttttacgggt	gcgatgacgc	5340
ccaaatatat	ctgccagggg	tgccctaccc	cttttggtgg	tggtgcgttg	acgaccaccg	5400
ggacccaagc	gcgctgctat	agcagatgca	tgggctcggc	tactgaatga	ccgcccacga	5460
cccccgaagg	ctctgttagc	gcttgtagat	gtggtgtgtt	gtggcggagc	tggtcccact	5520
ctatagccgg	cccctgcgcc	gccaccatta	ctgttcgcgg	gtctattgtt	acccgtacgg	5580
aatacggcac	tggctgcggc	aagaccgagg	agtatagccc	cccctccgac	cctcgagtgt	5640
acgggggcggg	ggccgggagt	gggagtagaa	gctggcggta	gggtagcggc	gggaggacac	5700
gatgggccgg	cgcgccatgg	aatacccgtc	gtactggggg	gtccggcacg	accgcaagca	5760
ccgggagtag	ggcggctgga	acgggccgtg	gttgtagcac	gaaccccggg	aaggcctcct	5820
gtctgtgtag	ctggcggacc	ggtttgcggt	cgcgggggccg	ctcgccgacc	tggaccgata	5880
cgaccgacgc	taagcggcgc	aaatgcccga	tgaacggtta	tgccacgcca	tagacgtcac	5940
gccgcccagc	accgccctcc	tgacccctgt	cgaaagcccc	tgccggcacg	gcggggtccc	6000
acggctcggg	gtctcgttgc	gcccgggtgc	tggggtatag	cccctgtgca	ataaatggga	6060
caaagcccgg	gggctcaacg	accggggggtt	gccgctggac	atattgcaca	aacggacccg	6120
gaacctgcag	aaccggtttg	cggaggcaag	gtacgtgcag	aaataggacc	taatgctggt	6180
tagcgggcgg	ccgacggccc	tgcgggacga	cgttgaatgg	aggccctacc	aggtctgggt	6240
gcagtggtgg	gggccgaggt	atggctgcta	tacgctggac	cgcgcgtgca	aacgggccct	6300
ctaccccctc	cgattgactc	agctcttaag	cgatctcccg	ggataagata	tcacagtgga	6360
tttacgatct	cgagcgacta	gtcggagctg	acacggaaga	tcaacggtcg	gtagacaaca	6420
aacggggagg	gggcacggaa	ggaactggga	ccttccacgg	tgagggtgac	aggaaaggat	6480
tattttactc	ctttaacgta	gcgtaacaga	ctcatccaca	gtaagataag	accccccacc	6540
ccaccccgtc	ctgtcgttcc	ccctcctaac	ccttctgtta	tcgtccgtac	gcgtcccggg	6600
ttaacgagct	cgccggcgtt	attttataga	aataaaagta	atgtagacac	acaaccaaaa	6660
aacacactta	gcattgattg	tatgcgagag	gtagttttgt	tttgctttgt	tttgtttgat	6720
cgttttatcc	gacaggggtc	acgttcacgt	ccacggtctt	gtaaagagat		6770

5 <210> 15 <211> 497 <212> PRT

<212> PRT <213> Homo sapiens

10 <400> 15

Met 1	Leu	Leu	Leu	Val 5	Thr	Ser	Leu	Leu	Leu 10	Cys	Glu	Leu	Pro	His 15	Pro
Ala	Phe	Leu	Leu 20	Ile	Pro	Gly	Pro	Val 25	Pro	Pro	Ser	Thr	Ala 30	Leu	Arg
Tyr	Leu	Ile 35	Glu	Glu	Leu	Val	Asn 40	Ile	Thr	Gln	Asn	Gln 45	Lys	Ala	Pro
Leu	Cys 50	Asn	Gly	Ser	Met	Val 55	Trp	Ser	Ile	Asn	Leu 60	Thr	Ala	Gly	Met
Tyr 65	Cys	Ala	Ala	Leu	Glu 70	Ser	Leu	Ile	Asn	Val 75	Ser	Gly	Cys	Ser	Ala 80
Ile	Glu	Lys	Thr	Gln 85	Arg	Met	Leu	Ser	Gly 90	Phe	Cys	Pro	His	Lys 95	Val
Ser	Ala	Gly	Gln 100	Phe	Ser	Ser	Leu	His 105	Val	Arg	Asp	Thr	Lys 110	Ile	Glu
Val	Ala	Gln 115	Phe	Val	Lys	Asp	Leu 120	Leu	Leu	His	Leu	Lys 125	Lys	Leu	Phe
Arg	Glu 130	Gly	Arg	Phe	Asn	Glu 135	Ser	Lys	Tyr	Gly	Pro 140	Pro	Cys	Pro	Pro
Cys 145	Pro	Ala	Pro	Glu	Phe 150	Leu	Gly	Gly	Pro	Ser 155	Val	Phe	Leu	Phe	Pro 160

Pro	Lys	Pro	Lys	Asp 165	Thr	Leu	Met	Ile	Ser 170	Arg	Thr	Pro	Glu	Val 175	Thr
Cys	Val	Val	Val 180	Asp	Val	Ser	Gln	Glu 185	Asp	Pro	Glu	Val	Gln 190	Phe	Asn
Trp	Tyr	Val 195	Asp	Gly	Val	Glu	Val 200	His	Asn	Ala	Lys	Thr 205	Lys	Pro	Arg
Glu	Glu 210	Gln	Phe	Asn	Ser	Thr 215	Tyr	Arg	Val	Val	Ser 220	Val	Leu	Thr	Val
Leu 225	His	Gln	Asp	Trp	Leu 230	Asn	Gly	Lys	Glu	Tyr 235	Lys	Cys	Lys	Val	Ser 240
Asn	Lys	Gly	Leu	Pro 245	Ser	Ser	Ile	Glu	Lys 250	Thr	Ile	Ser	Lys	Ala 255	Lys
Gly	Gln	Pro	Arg 260	Glu	Pro	Gln	Val	Tyr 265	Thr	Leu	Pro	Pro	Ser 270	Gln	Glu
Glu	Met	Thr 275	Lys	Asn	Gln	Val	Ser 280	Leu	Thr	Cys	Leu	Val 285	Lys	Gly	Phe
Tyr	Pro 290	Ser	Asp	Ile	Ala	Val 295	Glu	Trp	Glu	Ser	Asn 300	Gly	Gln	Pro	Glu
Asn 305	Asn	Tyr	Lys	Thr	Thr 310	Pro	Pro	Val	Leu	As p 315	Ser	Asp	Gly	Ser	Phe 320
Phe	Leu	Tyr	Ser	Arg 325	Leu	Thr	Val	Asp	Lys 330	Ser	Arg	Trp	Gln	Glu 335	Gly
Asn	Val	Phe	Ser 340	Cys	Ser	Val	Met	His 345	Glu	Ala	Leu	His	Asn 350	His	Tyr
Thr	Gln	Lys 355	Ser	Leu	Ser	Leu	Ser 360	Leu	Gly	Lys	Met	Ala 365	Leu	Ile	Val
Leu	Gly 370	Gly	Val	Ala	Gly	Leu 375	Leu	Leu	Phe	Ile	Gly 380	Leu	Gly	Ile	Phe
Phe 385	Arg	Val	Lys	Phe	Ser 390	Arg	Ser	Ala	Asp	Ala 395	Pro	Ala	Tyr	Gln	Gln 400
Gly	Gln	Asn	Gln	Leu 405	Tyr	Asn	Glu	Leu	Asn 410	Leu	Gly	Arg	Arg	Glu 415	Glu

Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg <210> 16 <211>691 <212> PRT <213> Homo sapiens <400> 16 Met Lys Lys Pro Glu Leu Thr Ala Thr Ser Val Ala Lys Phe Leu Ile Glu Lys Phe Asp Ser Val Ser Asp Leu Met Gln Leu Ser Glu Gly Glu 20 25 30 Glu Ser Arg Ala Phe Ser Phe Asp Val Gly Gly Arg Gly Tyr Val Leu 35 40 45 Arg Val Asn Ser Cys Ala Asp Gly Phe Tyr Lys Asp Arg Tyr Val Tyr Arg His Phe Ala Ser Ala Ala Leu Pro Ile Pro Glu Val Leu Asp Ile Gly Glu Phe Ser Glu Ser Leu Thr Tyr Cys Ile Ser Arg Arg Ala Gln Gly Val Thr Leu Gln Asp Leu Pro Glu Thr Glu Leu Pro Ala Val Leu Gln Pro Val Ala Glu Leu Met Asp Ala Ile Ala Ala Ala Asp Leu Ser

Gln	Thr 130	Ser	Gly	Phe	Gly	Pro 135	Phe	Gly	Pro	Gln	Gly 140	Ile	Gly	Gln	Tyr
Thr 145	Thr	Trp	Arg	Asp	Phe 150	Ile	Cys	Ala	Ile	Ala 155	Asp	Pro	His	Val	Tyr 160
His	Trp	Gln	Thr	Val 165	Met	Asp	Asp	Thr	Val 170	Ser	Ala	Ser	Val	Ala 175	Gln
Ala	Leu	Asp	Glu 180	Leu	Met	Leu	Trp	Ala 185	Glu	Asp	Cys	Pro	Glu 190	Val	Arg
His	Leu	Val 195	His	Ala	Asp	Phe	Gly 200	Ser	Asn	Asn	Val	Leu 205	Thr	Asp	Asn
Gly	Arg 210	Ile	Thr	Ala	Val	Ile 215	Asp	Trp	Ser	Glu	Ala 220	Met	Phe	Gly	Asp
Ser 225	Gln	Tyr	Glu	Val	Ala 230	Asn	Ile	Phe	Phe	Trp 235	Arg	Pro	Trp	Leu	Ala 240
Cys	Met	Glu	Gln	Gln 245	Thr	Arg	Tyr	Phe	Glu 250	Arg	Arg	His	Pro	Glu 255	Leu
Ala	Gly	Ser	Pro 260	Arg	Leu	Arg	Ala	Tyr 265	Met	Leu	Arg	Ile	Gly 270	Leu	Asp
Gln	Leu	туr 275	Gln	Ser	Leu	Val	Asp 280	Gly	Asn	Phe	Asp	Asp 285	Ala	Ala	Trp
Ala	Gln 290	Gly	Arg	Cys	Asp	Ala 295	Ile	Val	Arg	Ser	Gly 300	Ala	Gly	Thr	Val
Gly 305	Arg	Thr	Gln	Ile	Ala 310	Arg	Arg	Ser	Ala	Ala 315	Val	Trp	Thr	Asp	Gly 320
Cys	Val	Glu	Val	Ala 325	Ser	Ala	Phe	Asp	Gln 330	Ala	Ala	Arg	Ser	Arg 335	Gly
His	Ser	Asn	Arg 340	Arg	Thr	Ala	Leu	Arg 345	Pro	Arg	Arg	Gln	Gln 350	Glu	Ala
Thr	Glu	Val 355	Arg	Pro	Glu	Gln	Lys 360	Met	Pro	Thr	Leu	Leu 365	Arg	Val	Tyr
Ile	Asp	Gly	Pro	His	Gly	Met	Gly	Lys	Thr	Thr	Thr	Thr	Gln	Leu	Leu
	370					375					380				
-------------------	--------------------	------------	------------	------------	-------------------	------------	------------	------------	-------------------	------------	-------------------	------------	------------	------------	------------
Val 385	Ala	Leu	Gly	Ser	Arg 390	Asp	Asp	Ile	Val	Tyr 395	Val	Pro	Glu	Pro	Met 400
Thr	Tyr	Trp	Arg	Val 405	Leu	Gly	Ala	Ser	Glu 410	Thr	Ile	Ala	Asn	Ile 415	Tyr
Thr	Thr	Gln	His 420	Arg	Leu	Asp	Gln	Gly 425	Glu	Ile	Ser	Ala	Gly 430	Asp	Ala
Ala	Val	Val 435	Met	Thr	Ser	Ala	Gln 440	Ile	Thr	Met	Gly	Met 445	Pro	Tyr	Ala
Val	Thr 450	Asp	Ala	Val	Leu	Ala 455	Pro	His	Ile	Gly	Gly 460	Glu	Ala	Gly	Ser
Ser 465	His	Ala	Pro	Pro	Pro 470	Ala	Leu	Thr	Leu	Ile 475	Phe	Asp	Arg	His	Pro 480
Ile	Ala	Ala	Leu	Leu 485	Cys	Tyr	Pro	Ala	Ala 490	Arg	Tyr	Leu	Met	Gly 495	Ser
Met	Thr	Pro	Gln 500	Ala	Val	Leu	Ala	Phe 505	Val	Ala	Leu	Ile	Pro 510	Pro	Thr
Leu	Pro	Gly 515	Thr	Asn	Ile	Val	Leu 520	Gly	Ala	Leu	Pro	Glu 525	Asp	Arg	His
Ile	As p 530	Arg	Leu	Ala	Lys	Arg 535	Gln	Arg	Pro	Gly	Glu 540	Arg	Leu	Asp	Leu
Ala 545	Met	Leu	Ala	Ala	Ile 550	Arg	Arg	Val	Tyr	Gly 555	Leu	Leu	Ala	Asn	Thr 560
Val	Arg	Tyr	Leu	Gln 565	Cys	Gly	Gly	Ser	Trp 570	Arg	Glu	Asp	Trp	Gly 575	Gln
Leu	Ser	Gly	Thr 580	Ala	Val	Pro	Pro	Gln 585	Gly	Ala	Glu	Pro	Gln 590	Ser	Asn
Ala	Gly	Pro 595	Arg	Pro	His	Ile	Gly 600	Asp	Thr	Leu	Phe	Thr 605	Leu	Phe	Arg
Ala	Pro 610	Glu	Leu	Leu	Ala	Pro 615	Asn	Gly	Asp	Leu	Tyr 620	Asn	Val	Phe	Ala

	Trp Ala Leu Asp Val Leu Ala Lys Arg Leu Arg Ser Met His Val 625 630 635	Phe 640
	Ile Leu Asp Tyr Asp Gln Ser Pro Ala Gly Cys Arg Asp Ala Leu 645 650 655	Leu
	Gln Leu Thr Ser Gly Met Val Gln Thr His Val Thr Thr Pro Gly 660 665 670	Ser
	Ile Pro Thr Ile Cys Asp Leu Ala Arg Thr Phe Ala Arg Glu Met 675 680 685	Gly
	Glu Ala Asn 690	
5	<210> 17 <211> 102 <212> ADN <213> Homo sapiens	
	<400> 17	
	tatgaattca tggcgctttt gttgaccacg gtcattgctc tcacttgcct tggcggcttt	60
10	geeteeccag geeetgtgee teeetetaca geeeteaggt ac	102
15	<210> 18 <211> 101 <212> ADN <213> Homo sapiens	
	<400> 18	
	gttgatgctc cataccatgc tgccattgca gagcggagcc ttctggttct gggtgatgtt	60
20	gaccagctcc tcaatgaggt acctgagggc tgtagaggga g	101
20	<210> 19 <211> 100 <212> ADN <213> Homo sapiens	
25	<400> 19	
	ctctgggtct tctcgatggc actgcagcct gacacgttga tcagggattc cagggctgca	60
	cagtacatgc cagctgtcag gttgatgctc cataccatgc	100
30	<210> 20 <211> 100 <212> ADN <213> Homo sapiens	
35	<400> 20	
	cctcgatttt ggtgtctcgg acatgcaagc tggaaaactg cccagctgag accttgtgcg	60
	ggcagaatcc gctcagcatc ctctgggtct tctcgatggc	100
40	<210> 21 <211> 96 <212> ADN <213> Homo sapiens	
	<400> 21	

ES 2 899 174 T3

tcggatcctc agttgaaccg tccctcgcga aaaagtttct ttaaatgtaa gagcaggtcc 60 96 tttacaaact gggccacctc gattttggtg tctcgg <210> 22 <211> 39 5 <212> ADN <213> Homo sapiens <400> 22 caacctgaca gctggcatgt actgtgcagc cctggaatc 39 10 <210> 23 <211> 39 <212> ADN <213> Homo sapiens 15 <400> 23 gttggactgt cgaccgtaca tgacacgtcg ggaccttag 39 <210> 24 20 <211>43 <212> ADN <213> Homo sapiens <400> 24 25 atctctagag ccgccaccat gcttctcctg gtgacaagcc ttc 43 <210> 25 <211> 34 <212> ADN 30 <213> Homo sapiens <400> 25 34 gagggaggca cagggcctgg gatcaggagg aatg 35 <210> 26 <211> 34 <212> ADN <213> Homo sapiens 40 <400> 26 cattectect gateccagge cetgtgeete etc 34 <210> 27 <211> 35 45 <212> ADN <213> Homo sapiens <400> 27 gggaccatat ttggactcgt tgaaccgtcc ctcgc 35 50 <210> 28 <211> 35 <212> ADN <213> Homo sapiens 55 <400>28 gcgagggacg gttcaacgag tccaaatatg gtccc 35 <210> 29 60 <211> 26 <212> ADN <213> Homo sapiens <400> 29 65 atgcggccgc tcagcgaggg ggcagg 26

5	<210> 30 <211> 39 <212> ADN <213> Homo sapiens
	<400> 30 atcgaattcg ccgccaccat gggaaacagc tgttacaac 39
10	<210> 31 <211> 36 <212> ADN <213> Homo sapiens
15	<400> 31 gataagetta tegatteace acateeteet teagtt 36
20	<210> 32 <211> 43 <212> ADN <213> Homo sapiens
25	<400> 32 cattgggcta ggcatcttct tcaggagtaa gaggagcagg ctc 43
	<210> 33 <211> 47 <212> ADN <213> Homo sapiens
30	<400> 33 gtttctttct gccccgtttg ccacctccgg agcgataggc tgcgaag 47
35	<210> 34 <211> 47 <212> ADN <213> Homo sapiens
40	<400> 34 cttcgcagcc tatcgctccg gaggtggcaa acggggcaga aagaaac 47
45	<210> 35 <211> 38 <212> ADN <213> Homo sapiens
	<400> 35 gttgcggccg ctcacagttc acatectect tettette 38
50	<210> 36 <211> 1644 <212> ADN <213> Homo sapiens

^{55 &}lt;400>36

atgctgctgc	tggtgaccag	cctgctgctg	tgcgagctgc	cccaccccgc	ctttctgctg	60
atccctggcc	ccgtgccccc	tagcaccgcc	ctgcgctacc	tgatcgagga	actggtgaac	120
atcacccaga	accagaaagc	ccccctgtgc	aacggcagca	tggtgtggag	catcaacctg	180
accgccggca	tgtactgtgc	cgccctggaa	agcctgatca	acgtgagcgg	ctgcagcgcc	240
atcgagaaaa	cccagcggat	gctgtccggc	ttctgccccc	acaaggtgtc	cgccggacag	300
ttcagcagcc	tgcacgtgcg	ggacaccaag	atcgaggtgg	cccagttcgt	gaaggacctg	360
ctgctgcacc	tgaagaagct	gttccgggag	ggccggttca	acgagagcaa	gtacggccct	420
ccctgccccc	cttgccctgc	cccagagttc	ctgggcggac	ccagcgtgtt	cctgttcccc	480
cccaagccca	aggacaccct	gatgatcagc	cggacccctg	aggtgacctg	cgtggtggtg	540
gacgtgagcc	aggaagatcc	tgaggtccag	ttcaattggt	acgtggacgg	cgtggaagtg	600
cacaacgcca	agaccaagcc	cagagaggaa	cagttcaaca	gcacctaccg	ggtggtgtct	660
gtgctgaccg	tgctgcacca	ggactggctg	aacggcaaag	aatacaagtg	caaggtgtcc	720
aacaagggcc	tgcccagcag	catcgaaaag	accatcagca	aggccaaggg	ccagcctcgc	780
gagccccagg	tgtacaccct	gcctccctcc	caggaagaga	tgaccaagaa	ccaggtgtcc	840
ctgacctgcc	tggtgaaggg	cttctacccc	agcgacatcg	ccgtggagtg	ggagagcaac	900
ggccagcctg	agaacaacta	caagaccacc	cctcccgtgc	tggacagcga	cggcagcttc	960
ttcctgtaca	gccggctgac	cgtggacaag	agccggtggc	aggaaggcaa	cgtctttagc	1020
tgcagcgtga	tgcacgaggc	cctgcacaac	cactacaccc	agaagagcct	gagcctgtcc	1080
ctgggcaaga	tgttctgggt	gctggtggtg	gtgggcgggg	tgctggcctg	ctacagcctg	1140
ctggtgacag	tggccttcat	catcttttgg	gtgcggagca	agcggagcag	aggcggccac	1200
agcgactaca	tgaacatgac	ccccagacgg	cctggcccca	cccggaagca	ctaccagccc	1260
tacgccccac	ccagggactt	tgccgcctac	cggtccggcg	gagggcgggt	gaagttcagc	1320
agaagcgccg	acgcccctgc	ctaccagcag	ggccagaatc	agctgtacaa	cgagctgaac	1380
ctgggcagaa	gggaagagta	cgacgtcctg	gataagcgga	gaggccggga	ccctgagatg	1440
ggcggcaagc	ctcggcggaa	gaacccccag	gaaggcctgt	ataacgaact	gcagaaagac	1500
aagatggccg	aggcctacag	cgagatcggc	atgaagggcg	agcggaggcg	gggcaagggc	1560
cacgacggcc	tgtatcaggg	cctgtccacc	gccaccaagg	atacctacga	cgccctgcac	1620
atgcaggccc	tgcccccaag	gtga				1644

5 <210> 37 <211> 1761 <212> ADN <213> Homo sapiens

atgettetee	tggtgacaag	ccttctgctc	tgtgagttac	cacacccagc	attcctcctg	60
atcccaggcc	ctgtgcctcc	ctctacagcc	ctcagggagc	tcattgagga	gctggtcaac	120
atcacccaga	accagaaggc	tccgctctgc	aatggcagca	tggtatggag	catcaacctg	180
acagctggca	tgtactgtgc	agccctggaa	tccctgatca	acgtgtcagg	ctgcagtgcc	240
atcgagaaga	cccagaggat	gctgagcgga	ttctgcccgc	acaaggtctc	agctgggcag	300
ttttccagct	tgcatgtccg	agacaccaaa	atcgaggtgg	cccagtttgt	aaaggacctg	360
ctcttacatt	taaagaaact	ttttcgcgag	ggacggttca	acgagtccaa	atatggtccc	420
ccatgcccac	catgcccagc	acctgagttc	ctggggggac	catcagtctt	cctgttcccc	480
ccaaaaccca	aggacactct	catgatctcc	cggacccctg	aggtcacgtg	cgtggtggtg	540
gacgtgagcc	aggaagaccc	cgaggtccag	ttcaactggt	acgtggatgg	cgtggaggtg	600
cataatgcca	agacaaagcc	gcgggaggag	cagttcaaca	gcacgtaccg	tgtggtcagc	660
gtcctcaccg	tcctgcacca	ggactggctg	aacggcaagg	agtacaagtg	caaggtctcc	720
aacaaaggcc	tcccgtcctc	catcgagaaa	accatctcca	aagccaaagg	gcagccccga	780
gagccacagg	tgtacaccct	gcccccatcc	caggaggaga	tgaccaagaa	ccaggtcagc	840
ctgacctgcc	tggtcaaagg	cttctacccc	agcgacatcg	ccgtggagtg	ggagagcaat	900
gggcagccgg	agaacaacta	caagaccacg	cctcccgtgc	tggactccga	cggctccttc	960
ttcctctaca	gcaggctaac	cgtggacaag	agcaggtggc	aggaggggaa	tgtcttctca	1020
tgctccgtga	tgcatgaggc	tctgcacaac	cactacacac	agaagagcct	ctccctgtct	1080
ctgggtaaaa	tggccctgat	tgtgctgggg	ggcgtcgccg	gcctcctgct	tttcattggg	1140
ctaggcatct	tcttcaggag	taagaggagc	aggctcctgc	acagtgacta	catgaacatg	1200
actccccgcc	gccctgggcc	cacccgcaag	cattaccagc	cctatgcccc	accacgcgac	1260
ttcgcagcct	atcgctccgg	aggtggcaaa	cggggcagaa	agaaactcct	gtatatattc	1320
aaacaaccat	ttatgagacc	agtacaaact	actcaagagg	aagatggctg	tagctgccga	1380
tttccagaag	aagaagaagg	aggatgtgaa	ctgggaggtg	gcagagtgaa	gttcagcagg	1440
agcgcagacg	cccccgcgta	ccagcagggc	cagaaccagc	tctataacga	gctcaatcta	1500
ggacgaagag	aggagtacga	tgttttggac	aagagacgtg	gccgggaccc	tgagatgggg	1560
ggaaagccga	gaaggaagaa	ccctcaggaa	ggcctgtaca	atgaactgca	gaaagataag	1620
atggcggagg	cctacagtga	gattgggatg	aaaggcgagc	gccggagggg	caaggggcac	1680
gatggccttt	accagggtct	cagtacagcc	accaaggaca	cctacgacgc	ccttcacatg	1740
caggccctgc	cccctcgctg	a				1761

5 <210> 38 <211> 1740 <212> ADN <213> Homo sapiens

atgettetee	tggtgacaag	ccttctgctc	tgtgagttac	cacacccagc	attectectg	60
atcccaggcc	ctgtgcctcc	ctctacagcc	ctcaggtacc	tcattgagga	gctggtcaac	120
atcacccaga	accagaaggc	tccgctctgc	aatggcagca	tggtatggag	catcaacctg	180
acagctggca	tgtactgtgc	agccctggaa	tccctgatca	acgtgtcagg	ctgcagtgcc	240
atcgagaaga	cccagaggat	gctgagcgga	ttctgcccgc	acaaggtctc	agctgggcag	300
ttttccagct	tgcatgtccg	agacaccaaa	atcgaggtgg	cccagtttgt	aaaggacctg	360
ctcttacatt	taaagaaact	ttttcgcgag	ggacggttca	acgagtccaa	atatggtccc	420
ccatgcccac	catgcccagc	acctgagttc	ctggggggac	catcagtctt	cctgttcccc	480
ccaaaaccca	aggacactct	catgatctcc	cggacccctg	aggtcacgtg	cgtggtggtg	540
gacgtgagcc	aggaagaccc	cgaggtccag	ttcaactggt	acgtggatgg	cgtggaggtg	600
cataatgcca	agacaaagcc	gcgggaggag	cagttcaaca	gcacgtaccg	tgtggtcagc	660
gtcctcaccg	tcctgcacca	ggactggctg	aacggcaagg	agtacaagtg	caaggtctcc	720
aacaaaggcc	tcccgtcctc	catcgagaaa	accatctcca	aagccaaagg	gcagccccga	780
gagccacagg	tgtacaccct	gcccccatcc	caggaggaga	tgaccaagaa	ccaggtcagc	840
ctgacctgcc	tggtcaaagg	cttctacccc	agcgacatcg	ccgtggagtg	ggagagcaat	900
gggcagccgg	agaacaacta	caagaccacg	cctcccgtgc	tggactccga	cggctccttc	960
ttcctctaca	gcaggctaac	cgtggacaag	agcaggtggc	aggaggggaa	tgtcttctca	1020
tgctccgtga	tgcatgaggc	tctgcacaac	cactacacac	agaagagcct	ctccctgtcc	1080
ctaggtaaat	tttgggtgct	ggtggtggtt	ggtggagtcc	tggcttgcta	tagcttgcta	1140
gtaacagtgg	cctttattat	tttctgggtg	aggagtaaga	ggagcaggct	cctgcacagt	1200
gactacatga	acatgactcc	ccgccgcccc	gggcccaccc	gcaagcatta	ccagccctat	1260
gccccaccac	gcgacttcgc	agcctatcgc	tccagggacc	agaggctgcc	ccccgatgcc	1320
cacaagcccc	ctgggggagg	cagtttccgg	acccccatcc	aagaggagca	ggccgacgcc	1380
cactccaccc	tggccaagat	cagagtgaag	ttcagcagga	gcgcagacgc	ccccgcgtac	1440
cagcagggcc	agaaccagct	ctataacgag	ctcaatctag	gacgaagaga	ggagtacgat	1500
gttttggaca	agagacgtgg	ccgggaccct	gagatggggg	gaaagccgag	aaggaagaac	1560
cctcaggaag	gcctgtacaa	tgaactgcag	aaagataaga	tggcggaggc	ctacagtgag	1620
attgggatga	aaggcgagcg	ccggaggggc	aaggggcacg	atggccttta	ccagggtctc	1680
agtacagcca	ccaaggacac	ctacgacgcc	cttcacatgc	aggccctgcc	ccctcgctga	1740

5 <210> 39 <211> 1779 <212> ADN <213> Homo sapiens

atgettetee	tggtgacaag	ccttctgctc	tgtgagttac	cacacccagc	attcctcctg	60
atcccaggcc	ctgtgcctcc	ctctacagcc	ctcaggtacc	tcattgagga	gctggtcaac	120
atcacccaga	accagaaggc	tccgctctgc	aatggcagca	tggtatggag	catcaacctg	180
acagctggca	tgtactgtgc	agccctggaa	tccctgatca	acgtgtcagg	ctgcagtgcc	240
atcgagaaga	cccagaggat	gctgagcgga	ttctgcccgc	acaaggtctc	agctgggcag	300
ttttccagct	tgcatgtccg	agacaccaaa	atcgaggtgg	cccagtttgt	aaaggacctg	360
ctcttacatt	taaagaaact	ttttcgcgag	ggacggttca	acgagtccaa	atatggtccc	420
ccatgcccac	catgcccagc	acctgagttc	ctggggggac	catcagtctt	cctgttcccc	480
ccaaaaccca	aggacactct	catgatctcc	cggacccctg	aggtcacgtg	cgtggtggtg	540
gacgtgagcc	aggaagaccc	cgaggtccag	ttcaactggt	acgtggatgg	cgtggaggtg	600
cataatgcca	agacaaagcc	gcgggaggag	cagttcaaca	gcacgtaccg	tgtggtcagc	660
gtcctcaccg	tcctgcacca	ggactggctg	aacggcaagg	agtacaagtg	caaggtctcc	720
aacaaaggcc	tcccgtcctc	catcgagaaa	accatctcca	aagccaaagg	gcagccccga	780
gagccacagg	tgtacaccct	gcccccatcc	caggaggaga	tgaccaagaa	ccaggtcagc	840
ctgacctgcc	tggtcaaagg	cttctacccc	agcgacatcg	ccgtggagtg	ggagagcaat	900
gggcagccgg	agaacaacta	caagaccacg	cctcccgtgc	tggactccga	cggctccttc	960
ttcctctaca	gcaggctaac	cgtggacaag	agcaggtggc	aggaggggaa	tgtcttctca	1020
tgctccgtga	tgcatgaggc	tctgcacaac	cactacacac	agaagagcct	ctccctgtcc	1080
ctaggtaaaa	tgttttgggt	gctggtggtg	gttggtggag	tcctggcttg	ctatagcttg	1140
ctagtaacag	tggcctttat	tattttctgg	gtgaggagta	agaggagcag	gggcggacac	1200
agtgactaca	tgaacatgac	tccccgccgc	cctgggccca	cccgcaagca	ttaccagccc	1260
tatgccccac	cacgcgactt	cgcagcctat	cgctccggag	gtggcaaacg	gggcagaaag	1320
aaactcctgt	atatattcaa	acaaccattt	atgagaccag	tacaaactac	tcaagaggaa	1380
gatggctgta	gctgccgatt	tccagaagaa	gaagaaggag	gatgtgaact	gggaggtggc	1440
agagtgaagt	tcagcaggag	cgcagacgcc	cccgcgtacc	agcagggcca	gaaccagctc	1500
tataacgagc	tcaatctagg	acgaagagag	gagtacgatg	ttttggacaa	gagacgtggc	1560
cgggaccctg	agatgggggg	aaagccgaga	aggaagaacc	ctcaggaagg	cctgtacaat	1620
gaactgcaga	aagataagat	ggcggaggcc	tacagtgaga	ttgggatgaa	aggcgagcgc	1680
cggaggggca	aggggcacga	tggcctttac	cagggtctca	gtacagccac	caaggacacc	1740
tacgacgccc	ttcacatgca	ggccctgccc	cctcgctga			1779

5 <210> 40 <211> 1779 <212> ADN <213> Homo sapiens

atgettetee	tggtgacaag	ccttctgctc	tgtgagttac	cacacccagc	attcctcctg	60
atcccaggcc	ctgtgcctcc	ctctacagcc	ctcaggtacc	tcattgagga	gctggtcaac	120
atcacccaga	accagaaggc	tccgctctgc	aatggcagca	tggtatggag	catcaacctg	180
acagctggca	tgtactgtgc	agccctggaa	tccctgatca	acgtgtcagg	ctgcagtgcc	240
atcgagaaga	cccagaggat	gctgagcgga	ttctgcccgc	acaaggtctc	agctgggcag	300
ttttccagct	tgcatgtccg	agacaccaaa	atcgaggtgg	cccagtttgt	aaaggacctg	360
ctcttacatt	taaagaaact	ttttcgcgag	ggacggttca	acgagtccaa	atatggtccc	420
ccatgcccac	catgcccagc	acctgagttc	ctggggggac	catcagtctt	cctgttcccc	480
ccaaaaccca	aggacactct	catgatctcc	cggacccctg	aggtcacgtg	cgtggtggtg	540
gacgtgagcc	aggaagaccc	cgaggtccag	ttcaactggt	acgtggatgg	cgtggaggtg	600
cataatgcca	agacaaagcc	gcgggaggag	cagttcaaca	gcacgtaccg	tgtggtcagc	660
gtcctcaccg	tcctgcacca	ggactggctg	aacggcaagg	agtacaagtg	caaggtctcc	720
aacaaaggcc	teccgtecte	catcgagaaa	accatctcca	aagccaaagg	gcagccccga	780
gagccacagg	tgtacaccct	gcccccatcc	caggaggaga	tgaccaagaa	ccaggtcagc	840
ctgacctgcc	tggtcaaagg	cttctacccc	agcgacatcg	ccgtggagtg	ggagagcaat	900
gggcagccgg	agaacaacta	caagaccacg	cctcccgtgc	tggactccga	cggctccttc	960
ttcctctaca	gcaggctaac	cgtggacaag	agcaggtggc	aggaggggaa	tgtcttctca	1020
tgctccgtga	tgcatgaggc	tctgcacaac	cactacacac	agaagagcct	ctccctgtcc	1080
ctaggtaaaa	tgttttgggt	gctggtggtg	gttggtggag	tcctggcttg	ctatagcttg	1140
ctagtaacag	tggcctttat	tattttctgg	gtgaggagta	agaggagcag	gggcggacac	1200
agtgactaca	tgaacatgac	tccccgccgc	cctgggccca	cccgcaagca	ttaccagccc	1260
tatgccccac	cacgcgactt	cgcagccgga	ggtggcggag	gtggcaaacg	gggcagaaag	1320
aaactcctgt	atatattcaa	acaaccattt	atgagaccag	tacaaactac	tcaagaggaa	1380
gatggctgta	gctgccgatt	tccagaagaa	gaagaaggag	gatgtgaact	gggaggtggc	1440
agagtgaagt	tcagcaggag	cgcagacgcc	cccgcgtacc	agcagggcca	gaaccagctc	1500
tataacgagc	tcaatctagg	acgaagagag	gagtacgatg	ttttggacaa	gagacgtggc	1560
cgggaccctg	agatgggggg	aaagccgaga	aggaagaacc	ctcaggaagg	cctgtacaat	1620
gaactgcaga	aagataagat	ggcggaggcc	tacagtgaga	ttgggatgaa	aggcgagcgc	1680
cggaggggca	aggggcacga	tggcctttac	cagggtctca	gtacagccac	caaggacacc	1740
tacgacgccc	ttcacatgca	ggccctgccc	cctcgctga			1779

- 5 <210> 41 <211> 544 <212> ADN <213> Homo sapiens
- 10 <400> 41

ggatctgcga	tcgctccggt	gcccgtcagt	gggcagagcg	cacatcgccc	acagtccccg	60
agaagttggg	gggaggggtc	ggcaattgaa	ccggtgccta	gagaaggtgg	cgcggggtaa	120
actgggaaag	tgatgtcgtg	tactggctcc	gcctttttcc	cgagggtggg	ggagaaccgt	180
atataagtgc	agtagtcgcc	gtgaacgttc	tttttcgcaa	cgggtttgcc	gccagaacac	240
agctgaagct	tcgaggggct	cgcatctctc	cttcacgcgc	ccgccgccct	acctgaggcc	300
gccatccacg	ccggttgagt	cgcgttctgc	cgcctcccgc	ctgtggtgcc	tcctgaactg	360
cgtccgccgt	ctaggtaagt	ttaaagctca	ggtcgagacc	gggcctttgt	ccggcgctcc	420
cttggagcct	acctagactc	agccggctct	ccacgctttg	cctgaccctg	cttgctcaac	480
tctacgtctt	tgtttcgttt	tctgttctgc	gccgttacag	atccaagctg	tgaccggcgc	540
ctac						544

<210> 42

<211> 1494 <212> ADN

5 <213> Homo sapiens

<400> 42

	atgettetee	tggtgacaag	ccttctgctc	tgtgagttac	cacacccagc	attcctcctg	60
10	atcccaggcc	ctgtgcctcc	ctctacagcc	ctcaggtacc	tcattgagga	gctggtcaac	120
10	atcacccaga	accagaaggc	tccgctctgc	aatggcagca	tggtatggag	catcaacctg	180
	acagctggca	tgtactgtgc	agccctggaa	tccctgatca	acgtgtcagg	ctgcagtgcc	240
	atcgagaaga	cccagaggat	gctgagcgga	ttctgcccgc	acaaggtctc	agctgggcag	300
	ttttccagct	tgcatgtccg	agacaccaaa	atcgaggtgg	cccagtttgt	aaaggacctg	360
	ctcttacatt	taaagaaact	ttttcgcgag	ggacggttca	acgagtccaa	atatggtccc	420
	ccatgcccac	catgcccagc	acctgagttc	ctgggggggac	catcagtctt	cctgttcccc	480
	ccaaaaccca	aggacactct	catgatctcc	cggacccctg	aggtcacgtg	cgtggtggtg	540
	gacgtgagcc	aggaagaccc	cgaggtccag	ttcaactggt	acgtggatgg	cgtggaggtg	600
	cataatgcca	agacaaagcc	gcgggaggag	cagttcaaca	gcacgtaccg	tgtggtcagc	660
	gtcctcaccg	tcctgcacca	ggactggctg	aacggcaagg	agtacaagtg	caaggtctcc	720
	aacaaaggcc	tcccgtcctc	catcgagaaa	accatctcca	aagccaaagg	gcagccccga	780
	gagccacagg	tgtacaccct	gcccccatcc	caggaggaga	tgaccaagaa	ccaggtcagc	840
	ctgacctgcc	tggtcaaagg	cttctacccc	agcgacatcg	ccgtggagtg	ggagagcaat	900
	gggcagccgg	agaacaacta	caagaccacg	cctcccgtgc	tggactccga	cggctccttc	960
	ttcctctaca	gcaggctaac	cgtggacaag	agcaggtggc	aggaggggaa	tgtcttctca	1020
	tgctccgtga	tgcatgaggc	tctgcacaac	cactacacac	agaagagcct	ctccctgtcc	1080
	ctaggtaaaa	tggccctgat	tgtgctgggg	ggcgtcgccg	gcctcctgct	tttcattggg	1140
	ctaggcatct	tcttcagagt	gaagttcagc	aggagcgcag	acgcccccgc	gtaccagcag	1200
	ggccagaacc	agctctataa	cgagctcaat	ctaggacgaa	gagaggagta	cgatgttttg	1260
	gacaagagac	gtggccggga	ccctgagatg	gggggaaagc	cgagaaggaa	gaaccctcag	1320
	gaaggcctgt	acaatgaact	gcagaaagat	aagatggcgg	aggcctacag	tgagattggg	1380
	atgaaaggcg	agcgccggag	gggcaagggg	cacgatggcc	tttaccaggg	tctcagtaca	1440
	gccaccaagg	acacctacga	cgcccttcac	atgcaggccc	tgccccctcg	ctga	1494

<210> 43 <211> 268 <212> ADN

15

20

25

<213> Homo sapiens

<400> 43

gacatgataa	gatacattga	tgagtttgga	caaaccacaa	ctagaatgca	gtgaaaaaaa	60
tgctttattt	gtgaaatttg	tgatgctatt	gctttatttg	tgaaatttgt	gatgctattg	120
ctttatttgt	aaccattata	agctgcaata	aacaagttaa	caacaacaat	tgcattcatt	180
ttatgtttca	ggttcagggg	gaggtgtggg	aggttttta	aagcaagtaa	aacctctaca	240
aatgtggtag	atccatttaa	atgttagc				268

<210> 44 <211> 748 <212> ADN <213> Homo sapiens

60

	ggcgtttttc cataggctcc gcccccct	ga cgagcatcac aaaaatcgac	gctcaagtca 1	20
	gaggtggcga aacccgacag gactataa	ag ataccaggcg tttccccctg	gaagctccct 1	80
	cgtgcgctct cctgttccga ccctgccg	ct taccggatac ctgtccgcct	ttctcccttc 2	40
	gggaagcgtg gcgctttctc aatgctca	cg ctgtaggtat ctcagttcgg	tgtaggtcgt 3	00
	tcgctccaag ctgggctgtg tgcacgaa	cc ccccgttcag cccgaccgct	gcgccttatc 3	60
	cggtaactat cgtcttgagt ccaacccg	gt aagacacgac ttatcgccac	tggcagcagc 4	20
	cactggtaac aggattagca gagcgagg	ta tgtaggcggt gctacagagt	tcttgaagtg 4	80
	gtggcctaac tacggctaca ctagaaga	ac agtatttggt atctgcgctc	tgctgaagcc 5	40
	agttaccttc ggaaaaagag ttggtagc	tc ttgatccggc aaacaaacca	ccgctggtag 6	00
	cggtggtttt tttgtttgca agcagcag	at tacgcgcaga aaaaaaggat	ctcaagaaga 6	60
	tcctttgatc ttttctacgg ggtctgac	gc tcagtggaac gaaaactcac	gttaagggat 7	20
	tttggtcatg gctagttaat taagctgc		7.	48
5	<210> 45 <211> 187 <212> ADN <213> Homo sapiens			
	<400> 45			
10	aataaacaat cattattttc attggatc	tg tgtgttggtt ttttgtgtgg	gcttggggga	60
	gggggggggcc agaatgactc caagagct	ac aggaaggcag gtcagagacc	ccactggaca 1	20
	aacagtggct ggactctgca ccataaca	ca caatcaacag gggagtgagc	tggatcgagc 1	80
	tagagtc		1	87
15	<210> 46 <211> 811 <212> ADN <213> Homo sapiens			
	<400> 46			
	cgttacataa cttacggtaa atggcccg	cc tggctgaccg cccaacgacc	cccgcccatt	60
	gacgtcaata atgacgtatg ttcccata	gt aacgccaata gggactttcc	attgacgtca 1	20
	atgggtggag tatttacggt aaactgcc	ca cttggcagta catcaagtgt	atcatatgcc 1	80
20	aagtacgccc cctattgacg tcaatgac	gg taaatggccc gcctggcatt	atgcccagta 2	40
	catgacetta tgggaettte ctacttgg	ca gtacatctac gtattagtca	tcgctattac 3	00
	catggtgatg cggttttggc agtacatc	aa tgggcgtgga tagcggtttg	actcacgggg 3	60
	atttccaagt ctccacccca ttgacgtc	aa tgggagtttg ttttggcacc	aaaatcaacg 4	20
	ggactttcca aaatgtcgta acaactcc	gc cccattgacg caaatgggcg	gtaggcgtgt 4	80
	acggtgggag gtctatataa gcagagct	cg tttagtgaac cgtcagatcg	cctggagacg 5	40
	ccatccacgc tgttttgacc tccataga	ag acaccgggac cgatccagco	tccgcggccg 6	00
	ggaacggtgc attggaacgc ggattccc	cg tgccaagagt gacgtaagta	ccgcctatag 6	60
	agtctatagg cccacctagt tgtgaccg	gc gcctagtgtt gacaattaat	catcggcata 7	20
	gtataatacg actcactata ggagggcc	ac catgtegaet actaacette	ttctctttcc 7	80
	tacagctgag atcaccggta ggagggcc	at c	8	11
25	<210> 47 <211> 2076 <212> ADN			

gaagaacatg tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct

<212> ADN <213> Homo sapiens <400> 47

atgaaaaagc ctgaactcac	cgcgacgtct	gtcgcgaagt	ttctgatcga	aaagttcgac	60
agcgtctccg acctgatgca	gctctcggag	ggcgaagaat	ctcgtgcttt	cagcttcgat	120
gtaggagggc gtggatatgt	cctgcgggta	aatagctgcg	ccgatggttt	ctacaaagat	180
cgttatgttt atcggcactt	tgcatcggcc	gcgctcccga	ttccggaagt	gcttgacatt	240
ggggaattca gcgagagcct	gacctattgc	atctcccgcc	gtgcacaggg	tgtcacgttg	300
caagacctgc ctgaaaccga	actgcccgct	gttctgcaac	ccgtcgcgga	gctcatggat	360
gcgatcgctg cggccgatct	tagccagacg	agcgggttcg	gcccattcgg	accgcaagga	420
atcggtcaat acactacatg	gcgtgatttc	atatgcgcga	ttgctgatcc	ccatgtgtat	480
cactggcaaa ctgtgatgga	cgacaccgtc	agtgcgtccg	tcgcgcaggc	tctcgatgag	540
ctgatgcttt gggccgagga	ctgccccgaa	gtccggcacc	tcgtgcacgc	ggatttcggc	600
tccaacaatg tcctgacgga	caatggccgc	ataacagcgg	tcattgactg	gagcgaggcg	660
atgttcgggg attcccaata	cgaggtcgcc	aacatcttct	tctggaggcc	gtggttggct	720
tgtatggagc agcagacgcg	ctacttcgag	cggaggcatc	cggagcttgc	aggatcgccg	780
cggctccggg cgtatatgct	ccgcattggt	cttgaccaac	tctatcagag	cttggttgac	840
ggcaatttcg atgatgcagc	ttgggcgcag	ggtcgatgcg	acgcaatcgt	ccgatccgga	900
gccgggactg tcgggcgtac	acaaatcgcc	cgcagaagcg	cggccgtctg	gaccgatggc	960
tgtgtagaag tcgcgtctgc	gttcgaccag	gctgcgcgtt	ctcgcggcca	tagcaaccga	1020
cgtacggcgt tgcgccctcg	ccggcagcaa	gaagccacgg	aagtccgccc	ggagcagaaa	1080
atgcccacgc tactgcgggt	ttatatagac	ggtccccacg	ggatggggaa	aaccaccacc	1140
acgcaactgc tggtggccct	gggttcgcgc	gacgatatcg	tctacgtacc	cgagccgatg	1200
acttactggc gggtgctggg	ggcttccgag	acaatcgcga	acatctacac	cacacaacac	1260
cgcctcgacc agggtgagat	atcggccggg	gacgcggcgg	tggtaatgac	aagcgcccag	1320
ataacaatgg gcatgcctta	tgccgtgacc	gacgccgttc	tggctcctca	tatcgggggg	1380
gaggctggga gctcacatgc	cccgcccccg	gccctcaccc	tcatcttcga	ccgccatccc	1440
atcgccgccc tcctgtgcta	cccggccgcg	cggtacctta	tgggcagcat	gaccccccag	1500
gccgtgctgg cgttcgtggc	cctcatcccg	ccgaccttgc	ccggcaccaa	catcgtgctt	1560
ggggcccttc cggaggacag	acacatcgac	cgcctggcca	aacgccagcg	ccccggcgag	1620
cggctggacc tggctatgct	ggctgcgatt	cgccgcgttt	acgggctact	tgccaatacg	1680
gtgcggtatc tgcagtgcgg	cgggtcgtgg	cgggaggact	ggggacagct	ttcggggacg	1740
gccgtgccgc cccagggtgc	cgagccccag	agcaacgcgg	gcccacgacc	ccatatcggg	1800
gacacgttat ttaccctgtt	tcgggccccc	gagttgctgg	cccccaacgg	cgacctgtat	1860
aacgtgtttg cctgggcctt	ggacgtcttg	gccaaacgcc	tccgttccat	gcacgtcttt	1920
atcctggatt acgaccaatc	gcccgccggc	tgccgggacg	ccctgctgca	acttacctcc	1980
gggatggtcc agacccacgt	caccaccccc	ggctccatac	cgacgatatg	cgacctggcg	2040
cgcacgtttg cccgggagat	gggggaggct	aactga			2076

<210> 48 <211> 299 <212> ADN

10

<213> Homo sapiens

ES 2 899 174 T3

	gtcgagaatt cgctagaggg ccctattcta tagtgtcacc taaatgctag agctcgctga	60								
	tcagcetega etgtgeette tagttgeeag ceatetgttg tttgeeeete eeeegtgeet	120								
	teettgaeee tggaaggtge cacteceact gteettteet aataaaatga ggaaattgea	180								
	tcgcattgtc tgagtaggtg tcattctatt ctggggggtg gggtggggca ggacagcaag	240								
	ggggaggatt gggaagacaa tagcaggcat gcgcagggcc caattgctcg agcggccgc	299								
5	<210> 49 <211> 75 <212> ADN <213> Secuencia Artificial									
10	<220> <223> oligonucleótido con homología con el gen de la fiebre aftosa									
10	<400> 49									
	tctagaggag catgccagct gttgaatttt gaccttctta agcttgcggg agacgtcgag	60								
15	tccaaccctg ggccc	75								
20	<210> 50 <211> 21 <212> ADN <213> Homo sapiens									
	<400> 50 caagaatccc aaactcacca g 21									
25	<210> 51 <211> 23 <212> ADN <213> Homo sapiens									
30	<400> 51 cgttgatatt gctgattaag tcc 23									
35	<210> 52 <211> 24 <212> ADN <213> Homo sapiens									
40	<400> 52 atcccagtaa tggttgtcct gcct 24									
45	<210> 53 <211> 24 <212> ADN <213> Homo sapiens									
45	<400> 53 tcttgcttag gttggctgcc tagt 24									

REIVINDICACIONES

1. Un receptor de antígeno quimérico (CAR) que está codificado por el ADN de SEQ ID NO: 39.

5 2. Un linfocito T aislado que expresa el CAR de la reivindicación 1.

3. Un linfocito T que expresa el CAR de la reivindicación 1 para uso en inmunoterapia contra el cáncer.

4. Un linfocito T de la reivindicación 3, en el que dicho cáncer se selecciona del grupo que consiste en glioblastoma,
meduloblastoma, cáncer de mama, cáncer de cabeza y cuello, cáncer de riñón, cáncer de ovario, sarcoma de Kaposi,
leucemia mielógena aguda y neoplasias malignas de linaje B.

FIG. 2

	IL13P1	
1	M A L L L T T V I A L T C L G G F TATGAATTCA TGGCGCCTTTT GTTGACCACG GTCATTGCTC TCACTTGCCT TGGCGGCTTT ATACTTAAGT ACCGCGAAAA CAACTGGTGC CAGTAACGAG AGTGAACGGA ACCGCCGAAA IL13P1	
	<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	IL13P2	
61	A S P G P V P P S T A L R Y L I E E L V	
0T	CGGAGGGGTC CGGGACACGG AGGGAGATGT CGGGAGTCCA TGGAGTAACT CCTCGACCAG	
	NIT Q N Q K A P L C N G S M V W S I N	
121	AACATCACCC AGAACCAGAA GGCTCCGCTC TGCAATGGCA GCATGGTATG GAGCATCAAC	
	IL13P2	
	<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
181	CTGACAGCTG GCATGTACTG TGCAGCCCTG GAATCCCTGA TCAACGTGTC AGGCTGCAGT	
	GACTGTCGAC CGTACATGAC ACGTCGGGAC CTTAGGGACT AGTTGCACAG TCCGACGTCA	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	AIEKTORMLSGFCPHKVSAG	
241	GCCATCGAGA AGACCCAGAG GATGCTGAGC GGATTCTGCC CGCACAAGGT CTCAGCTGGG	
	CGGTAGCTCT TCTGGGTCTC CTACGACTCG CCTAAGACGG GCGTGTTCCA GAGTCGACCC	
	TL13P3	
	<	
	IL13P4	
201	Q F S S L H V R D T K I E V A Q F V K D	
301	GTCAAAAGGT CGAACGTACA GGCTCTGTGG TTTTAGCTCC ACCGGGTCAA ACATTTCCTG	
	~~~~~~	
	IL13P4	
	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	
	IL13P5	
	LLHLKKLFREGRFN* (SEQID NO:	1)
361	CTGCTCTTAC ATTTAAAGAA ACTTTTTCGC GAGGGACGGT TCAACTGAGG ATCCGA (SEQ ID NO:2	2)
	GACGAGAATG TAAATTTCTT TGAAAAAGCG CTCCCTGCCA AGTTGACTCC TAGGCT (SEQ ID NO::	3)

FIG. 3A

		М	LLL	VTS	LLLC	ELP			
1	ATCTCTAGAG	CCGCCACCAT	GCTTCTCCTG	GTGACAAGCC	TTCTGCTCTG	TGAGTTACCA			
	TAGAGATCTC	GGCGGTGGTA	CGAAGAGGAC	CACTGTTCGG	AAGACGAGAC	ACTCAATGGT			
	н р А	FLLI	PGP	VPP	STAL	RYL			
61	CACCCAGCAT	TCCTCCTGAT	CCCAGGCCCT	GTGCCTCCCT	CTACAGCCCT	CAGGTACCTC			
	GTGGGTCGTA	AGGAGGACTA	GGGTCCGGGA	CACGGAGGGA	GATGTCGGGA	GTCCATGGAG			
	IEE	LVNI	TQN	QKA	P L C N	GSM			
121	ATTGAGGAGC	TGGTCAACAT	CACCCAGAAC	CAGAAGGCTC	CGCTCTGCAA	TGGCAGCATG			
	TAACTCCTCG	ACCAGTTGTA	GTGGGTCTTG	GTCTTCCGAG	GCGAGACGTT	ACCGTCGTAC			
	VWS	I 'N L T	A G M	YCA	ALES	LIN			
181	GTATGGAGCA	TCAACCTGAC	AGCTGGCATG	TACTGTGCAG	CCCTGGAATC	CCTGATCAAC			
	CATACCTCGT	AGTTGGACTG	TCGACCGTAC	ATGACACGTC	GGGACCTTAG	GGACTAGTTG			
	VSG	CSAI	ЕКТ	QRM	LSGF	СРН			
241	GTGTCAGGCT	GCAGTGCCAT	CGAGAAGACC	CAGAGGATGC	TGAGCGGATT	CTGCCCGCAC			
	CACAGTCCGA	CGTCACGGTA	GCTCTTCTGG	GTCTCCTACG	ACTCGCCTAA	GACGGGCGTG			
			a a .						
0.04	K V S	A G Q F	S S L	H V R	DTKI	E V A			
301	AAGGTCTCAG	CTGGGCAGTT	TTCCAGCTTG	CATGTCCGAG	ACACCAAAAA	CGAGGIGGCC			
	TTCCAGAGTC	GACCCGTCAA	AAGGTCGAAC	GTACAGGCTC	TGTGGTTTTA	GUTUCACCGG			
	OFV	кр.т.	т. н. т.	KKI	FPFG	DEN			
361	CAGTTTGTAA	AGGACCTGCT			TTCCCCACCC	ACGGTTCAAC			
201	CTCAAACATT	TCCTGGACGA	CAATGTAAAT	TTCTTTCAAA	AAGCGCTCCC	TCCCAACTTC			
	GICANACAII	TCCTGGACGA	GANIGIAANI	TICITIONAN	ANOCUCICC	1000440110			
	ESK	YGPP	СРР	СРА	PEFL	GGP			
421	GAGTCCAAAT	ATGGTCCCCC	ATGCCCACCA	TGCCCAGCAC	CTGAGTTCCT	GGGGGGACCA			
	CTCAGGTTTA	TACCAGGGGG	TACGGGTGGT	ACGGGTCGTG	GACTCAAGGA	CCCCCCTGGT			
	SVF	LFPP	КРК	DTL	MISR	ТРЕ			
481	TCAGTCTTCC	TGTTCCCCCC	AAAACCCAAG	GACACTCTCA	TGATCTCCCG	GACCCCTGAG			
	AGTCAGAAGG	ACAAGGGGGG	TTTTGGGTTC	CTGTGAGAGT	ACTAGAGGGC	CTGGGGACTC			
	V T C	V V V D	VSQ	EDP	EVQF	N W Y			
541	GTCACGTGCG	TGGTGGTGGA	CGTGAGCCAG	GAAGACCCCG	AGGTCCAGTT	CAACTGGTAC			
	CAGTGCACGC	ACCACCACCT	GCACTCGGTC	CTTCTGGGGC	TCCAGGTCAA	GTTGACCATG			
	VDG	VEVH	N A K	ТКР	REEQ	FNS			
601	GTGGATGGCG	TGGAGGTGCA	TAATGCCAAG	ACAAAGCCGC	GGGAGGAGCA	GTTCAACAGC			
	CACCTACCGC	ACCTCCACGT	ATTACGGTTC	TGTTTCGGCG	CCCTCCTCGT	CAAGTTGTCG			

FIG. 3B

661	T Y R	V V S V	L T V	L H Q	D W L N	G K E
	ACGTACCGTG	TGGTCAGCGT	CCTCACCGTC	CTGCACCAGG	ACTGGCTGAA	CGGCAAGGAG
	TGCATGGCAC	ACCAGTCGCA	GGAGTGGCAG	GACGTGGTCC	TGACCGACTT	GCCGTTCCTC
721	Y K C	K V S N	K G L	P S S	I E K T	I S K
	TACAAGTGCA	AGGTCTCCAA	CAAAGGCCTC	CCGTCCTCCA	TCGAGAAAAC	CATCTCCAAA
	ATGTTCACGT	TCCAGAGGTT	GTTTCCGGAG	GGCAGGAGGT	AGCTCTTTTG	GTAGAGGTTT
781	A K G	Q P R E	P Q V	Y T L	P P S Q	E E M
	GCCAAAGGGC	AGCCCCGAGA	GCCACAGGTG	TACACCCTGC	CCCCATCCCA	GGAGGAGATG
	CGGTTTCCCG	TCGGGGGCTCT	CGGTGTCCAC	ATGTGGGACG	GGGGTAGGGT	CCTCCTCTAC
841	T K N	Q V S L	T C L	V K G	F Y P S	D I A
	ACCAAGAACC	AGGTCAGCCT	GACCTGCCTG	GTCAAAGGCT	TCTACCCCAG	CGACATCGCC
	TGGTTCTTGG	TCCAGTCGGA	CTGGACGGAC	CAGTTTCCGA	AGATGGGGTC	GCTGTAGCGG
901	V E W	E S N G	Q P E	N N Y	K T T P	P V L
	GTGGAGTGGG	AGAGCAATGG	GCAGCCGGAG	AACAACTACA	AGACCACGCC	TCCCGTGCTG
	CACCTCACCC	TCTCGTTACC	CGTCGGCCTC	TTGTTGATGT	TCTGGTGCGG	AGGGCACGAC
961	D S D	G S F F	L Y S	R L T	V D K S	R W Q
	GACTCCGACG	GCTCCTTCTT	CCTCTACAGC	AGGCTAACCG	TGGACAAGAG	CAGGTGGCAG
	CTGAGGCTGC	CGAGGAAGAA	GGAGATGTCG	TCCGATTGGC	ACCTGTTCTC	GTCCACCGTC
1021	E G N	V F S C	S V M	H E A	L H N H	Y T Q
	GAGGGGAATG	TCTTCTCATG	CTCCGTGATG	CATGAGGCTC	TGCACAACCA	CTACACACAG
	CTCCCCTTAC	AGAAGAGTAC	GAGGCACTAC	GTACTCCGAG	ACGTGTTGGT	GATGTGTGTC
1081	K S L	S L S L	G K M	A L I	V L G G	V A G
	AAGAGCCTCT	CCCTGTCTCT	GGGTAAAATG	GCCCTGATTG	TGCTGGGGGG	CGTCGCCGGC
	TTCTCGGAGA	GGGACAGAGA	CCCATTTTAC	CGGGACTAAC	ACGACCCCCC	GCAGCGGCCG
1141	L L L	F I G L	G I F	F R V	K F S R	S A D
	CTCCTGCTTT	TCATTGGGCT	AGGCATCTTC	TTCAGAGTGA	AGTTCAGCAG	GAGCGCAGAC
	GAGGACGAAA	AGTAACCCGA	TCCGTAGAAG	AAGTCTCACT	TCAAGTCGTC	CTCGCGTCTG
1201	A P A	Y Q Q G	Q N Q	L Y N	E L N L	G R R
	GCCCCCGCGT	ACCAGCAGGG	CCAGAACCAG	CTCTATAACG	AGCTCAATCT	AGGACGAAGA
	CGGGGGGCGCA	TGGTCGTCCC	GGTCTTGGTC	GAGATATTGC	TCGAGTTAGA	TCCTGCTTCT
1261	E E Y	D V L D	K R R	G R D	P E M G	G K P
	GAGGAGTACG	ATGTTTTGGA	CAAGAGACGT	GGCCGGGACC	CTGAGATGGG	GGGAAAGCCG
	CTCCTCATGC	TACAAAACCT	GTTCTCTGCA	CCGGCCCTGG	GACTCTACCC	CCCTTTCGGC

FIG. 3C

R R K N P Q E GLY NEL QKDK MAE 1321 AGAAGGAAGA ACCCTCAGGA AGGCCTGTAC AATGAACTGC AGAAAGATAA GATGGCGGAG TCTTCCTTCT TGGGAGTCCT TCCGGACATG TTACTTGACG TCTTTCTATT CTACCGCCTC AYS EIGM KGE RRR GKGH DGL 1381 GCCTACAGTG AGATTGGGAT GAAAGGCGAG CGCCGGAGGG GCAAGGGGCA CGATGGCCTT CGGATGTCAC TCTAACCCTA CTTTCCGCTC GCGGCCTCCC CGTTCCCCGT GCTACCGGAA YQG LSTA т к D ΤΥD ALHM QAL 1441 TACCAGGGTC TCAGTACAGC CACCAAGGAC ACCTACGACG CCCTTCACAT GCAGGCCCTG ATGGTCCCAG AGTCATGTCG GTGGTTCCTG TGGATGCTGC GGGAAGTGTA CGTCCGGGAC * PPR (SEQ ID NO:4) 1501 CCCCCTCGCT AAGCGGCCGC AT (SEQ ID NO:5) GGGGGAGCGA TTCGCCGGCG TA (SEQ ID NO:6) Péptido señal alfa GM-CSFR (nucleótidos 18-84; SEQ ID NO: 7) IL13 (EmY) (nucleótidos 85-420; SEQ ID NO: 8)

IgG4 (SmP) (nucleótidos 421-1107; SEQ ID NO: 9)

CD4tm (nucleótidos 1108-1173; SEQ ID NO: 10)

CD3 zeta (nucleótidos 1174-1512; SEQ ID NO: 11)

FIG. 5A

(hEF1p→)

- TCGAAGGATC TGCGATCGCT CCGGTGCCCG TCAGTGGGCA GAGCGCACAT CGCCCACAGT 1 AGCTTCCTAG ACGCTAGCGA GGCCACGGGC AGTCACCCGT CTCGCGTGTA GCGGGTGTCA
- 61 CCCCGAGAAG TTGGGGGGGAG GGGTCGGCAA TTGAACCGGT GCCTAGAGAA GGTGGCGCGG GGGGCTCTTC AACCCCCCTC CCCAGCCGTT AACTTGGCCA CGGATCTCTT CCACCGCGCC
- GGTAAACTGG GAAAGTGATG TCGTGTACTG GCTCCGCCTT TTTCCCGAGG GTGGGGGGAGA 121 CCATTTGACC CTTTCACTAC AGCACATGAC CGAGGCGGAA AAAGGGCTCC CACCCCCTCT
- ACCGTATATA AGTGCAGTAG TCGCCGTGAA CGTTCTTTTT CGCAACGGGT TTGCCGCCAG 181 TGGCATATAT TCACGTCATC AGCGGCACTT GCAAGAAAAA GCGTTGCCCA AACGGCGGTC
- AACACAGCTG AAGCTTCGAG GGGCTCGCAT CTCTCCTTCA CGCGCCCGCC GCCCTACCTG 241 TTGTGTCGAC TTCGAAGCTC CCCGAGCGTA GAGAGGAAGT GCGCGGGCGG CGGGATGGAC
- 301 AGGCCGCCAT CCACGCCGGT TGAGTCGCGT TCTGCCGCCT CCCGCCTGTG GTGCCTCCTG TCCGGCGGTA GGTGCGGCCA ACTCAGCGCA AGACGGCGGA GGGCGGACAC CACGGAGGAC
- 361 AACTGCGTCC GCCGTCTAGG TAAGTTTAAA GCTCAGGTCG AGACCGGGCC TTTGTCCGGC TTGACGCAGG CGGCAGATCC ATTCAAATTT CGAGTCCAGC TCTGGCCCGG AAACAGGCCG
- GCTCCCTTGG AGCCTACCTA GACTCAGCCG GCTCTCCACG CTTTGCCTGA CCCTGCTTGC 421 CGAGGGAACC TCGGATGGAT CTGAGTCGGC CGAGAGGTGC GAAACGGACT GGGACGAACG
- TCAACTCTAC GTCTTTGTTT CGTTTTCTGT TCTGCGCCGT TACAGATCCA AGCTGTGACC 481 AGTTGAGATG CAGAAACAAA GCAAAAGACA AGACGCGGCA ATGTCTAGGT TCGACACTGG
- 541 GGCGCCTACG TAAGTGATAT CTACTAGATT TATCAAAAAG AGTGTTGACT TGTGAGCGCCT CCGCGGATGC ATTCACTATA GATGATCTAA ATAGTTTTTC TCACAACTGA ACACTCGCGA
- CACAATTGAT ACGGATTCAT CGAGAGGGAC ACGTCGACTA CTAACCTTCT TCTCTTTCCT 601 GTGTTAACTA TGCCTAAGTA GCTCTCCCTG TGCAGCTGAT GATTGGAAGA AGAGAAAGGA

FIG. 5B

(ILl3zetaquina→) MLLL VTS LLL ACAGCTGAGA TCACCCTAGA GCCGCCACCA TGCTTCTCCT GGTGACAAGC CTTCTGCTCT 661 TGTCGACTCT AGTGGGATCT CGGCGGTGGT ACGAAGAGGA CCACTGTTCG GAAGACGAGA CELP HPA FLLI PGP VPP STA 721 GTGAGTTACC ACACCCAGCA TTCCTCCTGA TCCCAGGCCC TGTGCCTCCC TCTACAGCCC CACTCAATGG TGTGGGTCGT AAGGAGGACT AGGGTCCGGG ACACGGAGGG AGATGTCGGG LRYL IEE LVNI TQN QKA ΡL C 781 TCAGGTACCT CATTGAGGAG CTGGTCAACA TCACCCAGAA CCAGAAGGCT CCGCTCTGCA AGTCCATGGA GTAACTCCTC GACCAGTTGT AGTGGGTCTT GGTCTTCCGA GGCGAGACGT NGSM VWS INLT AGM YCA ALE ATGGCAGCAT GGTATGGAGC ATCAACCTGA CAGCTGGCAT GTACTGTGCA GCCCTGGAAT 841 TACCGTCGTA CCATACCTCG TAGTTGGACT GTCGACCGTA CATGACACGT CGGGACCTTA SLIN V S G CSAI EKT ORM LS G 901 CCCTGATCAA CGTGTCAGGC TGCAGTGCCA TCGAGAAGAC CCAGAGGATG CTGAGCGGAT GGGACTAGTT GCACAGTCCG ACGTCACGGT AGCTCTTCTG GGTCTCCTAC GACTCGCCTA K V S AGQF SSL FCPH H V R DT K TCTGCCCGCA CAAGGTCTCA GCTGGGCAGT TTTCCAGCTT GCATGTCCGA GACACCAAAA 961 AGACGGGCGT GTTCCAGAGT CGACCCGTCA AAAGGTCGAA CGTACAGGCT CTGTGGTTTT LHL OFV IEVA KDLL KKL FRE 1021 TCGAGGTGGC CCAGTTTGTA AAGGACCTGC TCTTACATTT AAAGAAACTT TTTCGCGAGG AGCTCCACCG GGTCAAACAT TTCCTGGACG AGAATGTAAA TTTCTTTGAA AAAGCGCTCC GRFN E S K YGPP CPP CPA PEF 1081 GACGGTTCAA CGAGTCCAAA TATGGTCCCC CATGCCCACC ATGCCCAGCA CCTGAGTTCC CTGCCAAGTT GCTCAGGTTT ATACCAGGGG GTACGGGTGG TACGGGTCGT GGACTCAAGG

LG G Ρ S V F L F Ρ Ρ K ΡK D Т L Μ T S 1141 TGGGGGGGACC ATCAGTCTTC CTGTTCCCCC CAAAACCCAA GGACACTCTC ATGATCTCCC ACCCCCCTGG TAGTCAGAAG GACAAGGGGG GTTTTGGGTT CCTGTGAGAG TACTAGAGGG

FIG. 5C

	R	т	Ρ	Е	V	T	С	v	V	V	D	v	s	Q	Е	D	Ρ	Е	V	Q
1201	GGACCCCTGA				GGTC	ICACGTGC GTG				TGGTGGTGG		ACGTGAGCCA			GGAAGACCCC			GAGGTCCAGT		
	CC	rgg	GGA	CT	CCAG	TGC	ACG	CAC	CACCACCACC			TGCACTCGGT			CCTT	GGG	CTCCAGGTCA			
	F	N	W	Y	v	D	G	v	E	v	Н	N	A	K	т	К	Ρ	R	E	E
1261	TCZ	AAC	TGG	TA	CGTG	GAT	GGC	GTG	GAG	GTGC	CA	TAAT	GCC.	AA	GACA	AAG	CCG	CGG	GAG	GAGC
	AG'	ГТG	ACC	AT	GCACCTACCG			CACCTCCACG			G I	TATTACGGTT			CTGTTTCGGC		GCCCTCCTCG			
	Q	F	N	S	T	Y	R	v	v	s	v	L	т	v	L	Н	Q	D	W	L
1321	AG:	FTC	AAC	AG	CACG	TAC	CGT	GTG	GTC	AGCO	JΊ	CCTC	ACC	GΤ	CCTG	CAC	CAG	GAC	TGG	CTGA
	TC	AAG	TTG	тс	GTGC	ATG	GCA	CAC	CAG	TCG	C A	GGAG	TGG	CA	GGAC	GTG	GTC	CTG	ACC	GACT
	Ν	G	K	Ε	Y	К	С	K	V	S	N	K	G	Ľ	P	S	S	I	Е	K
1381	AC	GGC	AAG	GΑ	GTAC	AAG	TGC	AAG	GTC	rcc <i>i</i>	A A	CAAA	GGC	СТ	CCCG	TCC	тсс	ATC	GAG.	АААА
	TG	CCG	TTC	СТ	CATG	TTC	ACG	TTC	CAG	AGG	ΓΊ	GTTT	CCG	GA	GGGC	AGG.	AGG	TAGCTCTTTT		TTTT
	т	Ι	S	К	A	Κ	G	Q	Ρ	R	Е	Ρ	Q	V	Y	Т	L	Ρ	Ρ	S
1441	CC/	ATC	TCC.	AA	AGCC	AAA	GGG	CAG	CCC	CGA	G A	GCCA	CAG	GT	GTAC	ACC	CTG	CCC	CCA	TCCC
	GG'	ragi	AGG	TT	TCGG	TTT	ccc	GTC	GGG(GCT	C I	CGGT	GTC	CA	CATG	GAC	GGG	GGGGGTAGGG		
	Q	Е	Е	М	т	K	N	Q	V	S	L	Т	С	$\mathbf{\Gamma}$	v	К	G	F	Y	Ρ
1501	AG	GAG	GAG.	AT	GACC	AAG	AAC	CAG	GTC	AGC	CI	GACC	TGC	СТ	GGTC	AAA	GGC	TTC	TAC	CCCA
	TC	CTC	CTĊ	TΑ	CTGG	TTC	TTG	GTC	CAG	TCG	G P	CTGG	ACG	GΑ	CCAG	TTT	CCG	AAG	ATG	GGGT
	S	D	I	Α	v	Е	W	E	s	N	G	Q	Ρ	Ε	N	N	Y	К	Τ	т
1561	GÇ	GAC	ATC	GC	CGTG	GAG	TGG	GAG	AGC	AAT	G Q	GCAG	CCG	GA	GAAC	AAC	TAC	AAG	ACC	ACGC
	CG	CTG	TAG	CG	GCAC	CTC.	ACC	CTC	rcg	TTA	СС	CGTC	GGC	СТ	CTTG	TTG	ATG	TTC	TGG	TGCG
	₽	Ρ	v	\mathbf{L}	D	S	D	G	S	F	F	L	Y	S	R	L	Т	v	D	K
1621	CT	CCC	GTG	СТ	GGAC	тсс	GAC	GGC	TCC	TTC	гı	CCTC	TAC	AG	CAGG	СТА	ACC	GTG	GAC	AAGA
	GA	GGG	CAC	GA	CCTG	AGG	CTG	CCG	CCGAGGAAGA AGGAGATGTC			GTCC	GAT	TGG	CAC	CTG	TTCT			
	S	R	W	Q	Ε	G	N	v	F	S	С	S	V	М	Н	E	A	L	Н	N

1681 GCAGGTGGCA GGAGGGGAAT GTCTTCTCAT GCTCCGTGAT GCATGAGGCT CTGCACAACC CGTCCACCGT CCTCCCCTTA CAGAAGAGTA CGAGGCACTA CGTACTCCGA GACGTGTTGG

FIG. 5D

KSL SLSL GKM ΗΥΤQ ALI V L G 1741 ACTACACACA GAAGAGCCTC TCCCTGTCCC TAGGTAAAAT GGCCCTGATT GTGCTGGGGG TGATGTGTGT CTTCTCGGAG AGGGACAGGG ATCCATTTTA CCGGGACTAA CACGACCCCC GVAG FIGL GIF LLL FRV KFS 1801 GCGTCGCCGG CCTCCTGCTT TTCATTGGGC TAGGCATCTT CTTCAGAGTG AAGTTCAGCA CGCAGCGGCC GGAGGACGAA AAGTAACCCG ATCCGTAGAA GAAGTCTCAC TTCAAGTCGT

R S A D A P A Y Q Q G Q N Q L Y N E L N 1861 GGAGCGCAGA CGCCCCGCG TACCAGCAGG GCCAGAACCA GCTCTATAAC GAGCTCAATC CCTCGCGTCT GCGGGGGGCGC ATGGTCGTCC CGGTCTTGGT CGAGATATTG CTCGAGTTAG

L G R R E E Y D V L D K R R G R D P E M 1921 TAGGACGAAG AGAGGAGTAC GATGTTTTGG ACAAGAGACG TGGCCGGGAC CCTGAGATGG ATCCTGCTTC TCTCCTCATG CTACAAAACC TGTTCTCTGC ACCGGCCCTG GGACTCTACC

G G K P R R K N P Q E G L Y N E L Q K D 1981 GGGGAAAGCC GAGAAGGAAG AACCCTCAGG AAGGCCTGTA CAATGAACTG CAGAAAGATA CCCCTTTCGG CTCTTCCTTC TTGGGAGTCC TTCCGGACAT GTTACTTGAC GTCTTTCTAT

K M A E A Y S E I G M K G E R R R G K G 2041 AGATGGCGGA GGCCTACAGT GAGATTGGGA TGAAAGGCGA GCGCCGGAGG GGCAAGGGGC TCTACCGCCT CCGGATGTCA CTCTAACCCT ACTTTCCGCT CGCGGCCTCC CCGTTCCCCG

H D G L Y Q G L S T A T K D T Y D A L H 2101 ACGATGGCCT TTACCAGGGT CTCAGTACAG CCACCAAGGA CACCTACGAC GCCCTTCACA TGCTACCGGA AATGGTCCCA GAGTCATGTC GGTGGTTCCT GTGGATGCTG CGGGAAGTGT

MQALPPR *

2161 TGCAGGCCCT GCCCCTCGC TGAGCGGCCG GCGAAGGAGG CCTAGATCTA TCGATTGTAC ACGTCCGGGA CGGGGGGAGCG ACTCGCCGGC CGCTTCCTCC GGATCTAGAT AGCTAACATG

(Tardía SV40pAn→)

2221 AGCTAGCTCG ACATGATAAG ATACATTGAT GAGTTTGGAC AAACCACAAC TAGAATGCAG TCGATCGAGC TGTACTATTC TATGTAACTA CTCAAACCTG TTTGGTGTTG ATCTTACGTC

FIG. 5E

- 2281 ΤGAAAAAAAT GCTTTATTTG TGAAATTTGT GATGCTATTG CTTTATTTGT GAAATTTGTG ΑCTTTTTTTA CGAAATAAAC ACTTTAAACA CTACGATAAC GAAATAAACA CTTTAAACAC
- 2341 ATGCTATTGC TTTATTTGTA ACCATTATAA GCTGCAATAA ACAAGTTAAC AACAACAATT TACGATAACG AAATAAACAT TGGTAATATT CGACGTTATT TGTTCAATTG TTGTTGTTAA
- 2401 GCATTCATTT TATGTTTCAG GTTCAGGGGG AGGTGTGGGA GGTTTTTTAA AGCAAGTAAA CGTAAGTAAA ATACAAAGTC CAAGTCCCCC TCCACACCCT CCAAAAAATT TCGTTCATTT

(Ori ColEl→)

- 2461 ACCTCTACAA ATGTGGTAGA TCCATTTAAA TGTTAGCGAA GAACATGTGA GCAAAAGGCC TGGAGATGTT TACACCATCT AGGTAAATTT ACAATCGCTT CTTGTACACT CGTTTTCCGG
- 2521 AGCAAAAGGC CAGGAACCGT AAAAAGGCCG CGTTGCTGGC GTTTTTCCAT AGGCTCCGCC TCGTTTTCCG GTCCTTGGCA TTTTTCCGGC GCAACGACCG CAAAAAGGTA TCCGAGGCGG
- 2581 CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG GTGGCGAAAC CCGACAGGAC GGGGACTGCT CGTAGTGTTT TTAGCTGCGA GTTCAGTCTC CACCGCTTTG GGCTGTCCTG
- 2641 TATAAAGATA CCAGGCGTTT CCCCCTGGAA GCTCCCTCGT GCGCTCTCCT GTTCCGACCC ATATTTCTAT GGTCCGCAAA GGGGGACCTT CGAGGGAGCA CGCGAGAGGA CAAGGCTGGG
- 2701 TGCCGCTTAC CGGATACCTG TCCGCCTTTC TCCCTTCGGG AAGCGTGGCG CTTTCTCAAT ACGGCGAATG GCCTATGGAC AGGCGGAAAG AGGGAAGCCC TTCGCACCGC GAAAGAGTTA
- 2761 GCTCACGCTG TAGGTATCTC AGTTCGGTGT AGGTCGTTCG CTCCAAGCTG GGCTGTGTGC CGAGTGCGAC ATCCATAGAG TCAAGCCACA TCCAGCAAGC GAGGTTCGAC CCGACACACG
- 2821 ACGAACCCCC CGTTCAGCCC GACCGCTGCG CCTTATCCGG TAACTATCGT CTTGAGTCCA TGCTTGGGGG GCAAGTCGGG CTGGCGACGC GGAATAGGCC ATTGATAGCA GAACTCAGGT
- 2881 ACCCGGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC TGGTAACAGG ATTAGCAGAG TGGGCCATTC TGTGCTGAAT AGCGGTGACC GTCGTCGGTG ACCATTGTCC TAATCGTCTC
- 2941 CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG GCCTAACTAC GGCTACACTA GCTCCATACA TCCGCCACGA TGTCTCAAGA ACTTCACCAC CGGATTGATG CCGATGTGAT

FIG. 5F

- 3001 GAAGAACAGT ATTTGGTATC TGCGCTCTGC TGAAGCCAGT TACCTTCGGA AAAAGAGTTG CTTCTTGTCA TAAACCATAG ACGCGAGACG ACTTCGGTCA ATGGAAGCCT TTTTCTCAAC
- 3061 GTAGCTCTTG ATCCGGCAAA CAAACCACCG CTGGTAGCGG TGGTTTTTTT GTTTGCAAGC CATCGAGAAC TAGGCCGTTT GTTTGGTGGC GACCATCGCC ACCAAAAAAA CAAACGTTCG
- 3121 AGCAGATTAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC TTTGATCTTT TCTACGGGGT TCGTCTAATG CGCGTCTTTT TTTCCTAGAG TTCTTCTAGG AAACTAGAAA AGATGCCCCA

PacI

~~~~~~

3181 CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATTTT GGTCATGGCT AGTTAATTAA GACTGCGAGT CACCTTGCTT TTGAGTGCAA TTCCCTAAAA CCAGTACCGA TCAATTAATT

(SpAn→)

- 3241 GCTGCAATAA ACAATCATTA TTTTCATTGG ATCTGTGTGT TGGTTTTTTG TGTGGGGCTTG CGACGTTATT TGTTAGTAAT AAAAGTAACC TAGACACACA ACCAAAAAAC ACACCCGAAC
- 3301 GGGGAGGGG AGGCCAGAAT GACTCCAAGA GCTACAGGAA GGCAGGTCAG AGACCCCACT CCCCTCCCCC TCCGGTCTTA CTGAGGTTCT CGATGTCCTT CCGTCCAGTC TCTGGGGTGA
- 3361 GGACAAACAG TGGCTGGACT CTGCACCATA ACACACAATC AACAGGGGAG TGAGCTGGAT CCTGTTTGTC ACCGACCTGA GACGTGGTAT TGTGTGTTAG TTGTCCCCCTC ACTCGACCTA

#### (hCMV-1Aprom-)

- 3421 CGAGCTAGAG TCCGTTACAT AACTTACGGT AAATGGCCCG CCTGGCTGAC CGCCCAACGA GCTCGATCTC AGGCAATGTA TTGAATGCCA TTTACCGGGC GGACCGACTG GCGGGTTGCT
- 3481 CCCCCGCCCA TTGACGTCAA TAATGACGTA TGTTCCCATA GTAACGCCAA TAGGGACTTT GGGGGCGGGT AACTGCAGTT ATTACTGCAT ACAAGGGTAT CATTGCGGTT ATCCCTGAAA
- 3541 CCATTGACGT CAATGGGTGG AGTATTTACG GTAAACTGCC CACTTGGCAG TACATCAAGT GGTAACTGCA GTTACCCACC TCATAAATGC CATTTGACGG GTGAACCGTC ATGTAGTTCA
- 3601 GTATCATATG CCAAGTACGC CCCCTATTGA CGTCAATGAC GGTAAATGGC CCGCCTGGCA CATAGTATAC GGTTCATGCG GGGGATAACT GCAGTTACTG CCATTTACCG GGCGGACCGT

#### FIG. 5G

- 3661 TTATGCCCAG TACATGACCT TATGGGACTT TCCTACTTGG CAGTACATCT ACGTATTAGT AATACGGGTC ATGTACTGGA ATACCCTGAA AGGATGAACC GTCATGTAGA TGCATAATCA
- 3721 CATCGCTATT ACCATGGTGA TGCGGTTTTG GCAGTACATC AATGGGCGTG GATAGCGGTT GTAGCGATAA TGGTACCACT ACGCCAAAAC CGTCATGTAG TTACCCGCAC CTATCGCCAA
- 3781 TGACTCACGG GGATTTCCAA GTCTCCACCC CATTGACGTC AATGGGAGTT TGTTTTGGCA ACTGAGTGCC CCTAAAGGTT CAGAGGTGGG GTAACTGCAG TTACCCTCAA ACAAAACCGT
- 3841 CCAAAATCAA CGGGACTTTC CAAAATGTCG TAACAACTCC GCCCCATTGA CGCAAATGGG GGTTTTAGTT GCCCTGAAAG GTTTTACAGC ATTGTTGAGG CGGGGTAACT GCGTTTACCC
- 3901 CGGTAGGCGT GTACGGTGGG AGGTCTATAT AAGCAGAGCT CGTTTAGTGA ACCGTCAGAT GCCATCCGCA CATGCCACCC TCCAGATATA TTCGTCTCGA GCAAATCACT TGGCAGTCTA
- 3961 CGCCTGGAGA CGCCATCCAC GCTGTTTTGA CCTCCATAGA AGACACCGGG ACCGATCCAG GCGGACCTCT GCGGTAGGTG CGACAAAACT GGAGGTATCT TCTGTGGCCC TGGCTAGGTC
- 4021 CCTCCGCGGC CGGGAACGGT GCATTGGAAC GCGGATTCCC CGTGCCAAGA GTGACGTAAG GGAGGCGCCG GCCCTTGCCA CGTAACCTTG CGCCTAAGGG GCACGGTTCT CACTGCATTC
- 4081 TACCGCCTAT AGAGTCTATA GGCCCACCTA GTTGTGACCG GCGCCTAGTG TTGACAATTA ATGGCGGATA TCTCAGATAT CCGGGTGGAT CAACACTGGC CGCGGATCAC AACTGTTAAT
- 4141 ATCATCGGCA TAGTATAATA CGACTCACTA TAGGAGGGCC ACCATGTCGA CTACTAACCT TAGTAGCCGT ATCATATTAT GCTGAGTGAT ATCCTCCCGG TGGTACAGCT GATGATTGGA

(HyTK→)

M K K P E L 4201 TCTTCTCTTT CCTACAGCTG AGATCACCGG TAGGAGGGGCC ATCATGAAAA AGCCTGAACT AGAAGAGAAA GGATGTCGAC TCTAGTGGCC ATCCTCCCGG TAGTACTTTT TCGGACTTGA

T A T S V A K F L I E K F D S V S D L M 4261 CACCGCGACG TCTGTCGCGA AGTTTCTGAT CGAAAAGTTC GACAGCGTCT CCGACCTGAT GTGGCGCTGC AGACAGCGCT TCAAAGACTA GCTTTTCAAG CTGTCGCAGA GGCTGGACTA

### FIG. 5H

Q L S E G E E S R A F S F D V G G R G Y 4321 GCAGCTCTCG GAGGGCGAAG AATCTCGTGC TTTCAGCTTC GATGTAGGAG GGCGTGGATA CGTCGAGAGC CTCCCGCTTC TTAGAGCACG AAAGTCGAAG CTACATCCTC CCGCACCTAT

V L R V N S C A D G F Y K D R Y V Y R H 4381 TGTCCTGCGG GTAAATAGCT GCGCCGATGG TTTCTACAAA GATCGTTATG TTTATCGGCA ACAGGACGCC CATTTATCGA CGCGGCTACC AAAGATGTTT CTAGCAATAC AAATAGCCGT

F A S A A L P I P E V L D I G E F S E S 4441 CTTTGCATCG GCCGCGCTCC CGATTCCGGA AGTGCTTGAC ATTGGGGAAT TCAGCGAGAG GAAACGTAGC CGGCGCGAGG GCTAAGGCCT TCACGAACTG TAACCCCTTA AGTCGCTCTC

L T Y C I S R R A Q G V T L Q D L P E T 4501 CCTGACCTAT TGCATCTCCC GCCGTGCACA GGGTGTCACG TTGCAAGACC TGCCTGAAAC GGACTGGATA ACGTAGAGGG CGGCACGTGT CCCACAGTGC AACGTTCTGG ACGGACTTTG

E L P A V L Q P V A E L M D A I A A A D 4561 CGAACTGCCC GCTGTTCTGC AACCCGTCGC GGAGCTCATG GATGCGATCG CTGCGGCCGA GCTTGACGGG CGACAAGACG TTGGGCAGCG CCTCGAGTAC CTACGCTAGC GACGCCGGCT

L S Q T S G F G P F G P Q G I G Q Y T T 4621 TCTTAGCCAG ACGAGCGGGT TCGGCCCATT CGGACCGCAA GGAATCGGTC AATACACTAC AGAATCGGTC TGCTCGCCCA AGCCGGGTAA GCCTGGCGTT CCTTAGCCAG TTATGTGATG

W R D F I C A I A D P H V Y H W Q T V M 4681 ATGGCGTGAT TTCATATGCG CGATTGCTGA TCCCCATGTG TATCACTGGC AAACTGTGAT TACCGCACTA AAGTATACGC GCTAACGACT AGGGGTACAC ATAGTGACCG TTTGACACTA

D D T V S A S V A Q A L D E L M L W A E 4741 GGACGACACC GTCAGTGCGT CCGTCGCGCA GGCTCTCGAT GAGCTGATGC TTTGGGCCGA CCTGCTGTGG CAGTCACGCA GGCAGCGCGT CCGAGAGCTA CTCGACTACG AAACCCGGCT

D C P E V R H L V H A D F G S N N V L T 4801 GGACTGCCCC GAAGTCCGGC ACCTCGTGCA CGCGGATTTC GGCTCCAACA ATGTCCTGAC CCTGACGGGG CTTCAGGCCG TGGAGCACGT GCGCCTAAAG CCGAGGTTGT TACAGGACTG

#### FIG. 51

D N G R I T A V I D W S E A M F G D S Q 4861 GGACAATGGC CGCATAACAG CGGTCATTGA CTGGAGCGAG GCGATGTTCG GGGATTCCCA CCTGTTACCG GCGTATTGTC GCCAGTAACT GACCTCGCTC CGCTACAAGC CCCTAAGGGT

Y E V A N I F F W R P W L A C M E Q Q T 4921 ATACGAGGTC GCCAACATCT TCTTCTGGAG GCCGTGGTTG GCTTGTATGG AGCAGCAGAC TATGCTCCAG CGGTTGTAGA AGAAGACCTC CGGCACCAAC CGAACATACC TCGTCGTCTG

R Y F E R R H P E L A G S P R L R A Y M 4981 GCGCTACTTC GAGCGGAGGC ATCCGGAGCT TGCAGGATCG CCGCGGCTCC GGGCGTATAT CGCGATGAAG CTCGCCTCCG TAGGCCTCGA ACGTCCTAGC GGCGCCGAGG CCCGCATATA

L R I G L D Q L Y Q S L V D G N F D D A 5041 GCTCCGCATT GGTCTTGACC AACTCTATCA GAGCTTGGTT GACGGCAATT TCGATGATGC CGAGGCGTAA CCAGAACTGG TTGAGATAGT CTCGAACCAA CTGCCGTTAA AGCTACTACG

A W A Q G R C D A I V R S G A G T V G R 5101 AGCTTGGGCG CAGGGTCGAT GCGACGCAAT CGTCCGATCC GGAGCCGGGA CTGTCGGGCG TCGAACCCGC GTCCCAGCTA CGCTGCGTTA GCAGGCTAGG CCTCGGCCCT GACAGCCCGC

T Q I A R R S A A V W T D G C V E V A S 5161 TACACAAATC GCCCGCAGAA GCGCGGCCGT CTGGACCGAT GGCTGTGTAG AAGTCGCGTC ATGTGTTTAG CGGGCGTCTT CGCGCCGGCA GACCTGGCTA CCGACACATC TTCAGCGCAG

A F D Q A A R S R G H S N R R T A L R P 5221 TGCGTTCGAC CAGGCTGCGC GTTCTCGCGG CCATAGCAAC CGACGTACGG CGTTGCGCCC ACGCAAGCTG GTCCGACGCG CAAGAGCGCC GGTATCGTTG GCTGCATGCC GCAACGCGGG

R R Q Q E A T E V R P E Q K M P T L L R 5281 TCGCCGGCAG CAAGAAGCCA CGGAAGTCCG CCCGGAGCAG AAAATGCCCA CGCTACTGCG AGCGGCCGTC GTTCTTCGGT GCCTTCAGGC GGGCCTCGTC TTTTACGGGT GCGATGACGC

V Y I D G P H G M G K T T T T Q L L V A 5341 GGTTTATATA GACGGTCCCC ACGGGATGGG GAAAACCACC ACCACGCAAC TGCTGGTGGC CCAAATATAT CTGCCAGGGG TGCCCTACCC CTTTTGGTGG TGGTGCGTTG ACGACCACCG

## FIG. 5J

L G S R D D I V Y V P E P M T Y W R V L 5401 CCTGGGTTCG CGCGACGATA TCGTCTACGT ACCCGAGCCG ATGACTTACT GGCGGGTGCT GGACCCAAGC GCGCTGCTAT AGCAGATGCA TGGGCTCGGC TACTGAATGA CCGCCCACGA

G A S E T I A N I Y T T Q H R L D Q G E 5461 GGGGGCTTCC GAGACAATCG CGAACATCTA CACCACAAA CACCGCCTCG ACCAGGGTGA CCCCCGAAGG CTCTGTTAGC GCTTGTAGAT GTGGTGTGTT GTGGCGGAGC TGGTCCCACT

I S A G D A A V V M T S A Q I T M G M P 5521 GATATCGGCC GGGGACGCGG CGGTGGTAAT GACAAGCGCC CAGATAACAA TGGGCATGCC CTATAGCCGG CCCCTGCGCC GCCACCATTA CTGTTCGCGG GTCTATTGTT ACCCGTACGG

Y A V T D A V L A P H I G G E A G S S H 5581 TTATGCCGTG ACCGACGCCG TTCTGGCTCC TCATATCGGG GGGGAGGCTG GGAGCTCACA AATACGGCAC TGGCTGCGGC AAGACCGAGG AGTATAGCCC CCCCTCCGAC CCTCGAGTGT

A P P P A L T L I F D R H P I A A L L C 5641 TGCCCGGCC CCGGCCCTCA CCCTCATCTT CGACCGCCAT CCCATCGCCG CCCTCCTGTG ACGGGGCGGG GGCCGGGAGT GGGAGTAGAA GCTGGCGGTA GGGTAGCGGC GGGAGGACAC

Y P A A R Y L M G S M T P Q A V L A F V 5701 CTACCCGGCC GCGCGGTACC TTATGGGCAG CATGACCCCC CAGGCCGTGC TGGCGTTCGT GATGGGCCGG CGCGCCATGG AATACCCGTC GTACTGGGGG GTCCGGCACG ACCGCAAGCA

A L I P P T L P G T N I V L G A L P E D 5761 GGCCCTCATC CCGCCGACCT TGCCCGGCAC CAACATCGTG CTTGGGGGCCC TTCCGGAGGA CCGGGAGTAG GGCGGCTGGA ACGGGCCGTG GTTGTAGCAC GAACCCCGGG AAGGCCTCCT

R H I D R L A K R Q R P G E R L D L A M 5821 CAGACACATC GACCGCCTGG CCAAACGCCA GCGCCCGGC GAGCGGCTGG ACCTGGCTAT GTCTGTGTAG CTGGCGGACC GGTTTGCGGT CGCGGGGCCG CTCGCCGACC TGGACCGATA

L A A I R R V Y G L L A N T V R Y L Q C 5881 GCTGGCTGCG ATTCGCCGCG TTTACGGGCT ACTTGCCAAT ACGGTGCGGT ATCTGCAGTG CGACCGACGC TAAGCGGCGC AAATGCCCGA TGAACGGTTA TGCCACGCCA TAGACGTCAC

#### FIG. 5K

G G S W R E D W G Q L S G T A V P P Q G 5941 CGGCGGGTCG TGGCGGGAGG ACTGGGGACA GCTTTCGGGG ACGGCCGTGC CGCCCAGGG GCCGCCCAGC ACCGCCCTCC TGACCCCTGT CGAAAGCCCC TGCCGGCACG GCGGGGTCCC

A E P Q S N A G P R P H I G D T L F T L 6001 TGCCGAGCCC CAGAGCAACG CGGGCCCACG ACCCCATATC GGGGACACGT TATTTACCCT ACGGCTCGGG GTCTCGTTGC GCCCGGGTGC TGGGGTATAG CCCCTGTGCA ATAAATGGGA

F R A P E L L A P N G D L Y N V F A W A 6061 GTTTCGGGCC CCCGAGTTGC TGGCCCCCAA CGGCGACCTG TATAACGTGT TTGCCTGGGC CAAAGCCCGG GGGCTCAACG ACCGGGGGTT GCCGCTGGAC ATATTGCACA AACGGACCCG

L D V L A K R L R S M H V F I L D Y D Q 6121 CTTGGACGTC TTGGCCAAAC GCCTCCGTTC CATGCACGTC TTTATCCTGG ATTACGACCA GAACCTGCAG AACCGGTTTG CGGAGGCAAG GTACGTGCAG AAATAGGACC TAATGCTGGT

S P A G C R D A L L Q L T S G M V Q T H 6181 ATCGCCCGCC GGCTGCCGGG ACGCCCTGCT GCAACTTACC TCCGGGATGG TCCAGACCCA TAGCGGGCGG CCGACGGCCC TGCGGGACGA CGTTGAATGG AGGCCCTACC AGGTCTGGGT

V T T P G S I P T I C D L A R T F A R E 6241 CGTCACCACC CCCGGCTCCA TACCGACGAT ATGCGACCTG GCGCGCACGT TTGCCCGGGA GCAGTGGTGG GGGCCGAGGT ATGGCTGCTA TACGCTGGAC CGCGCGTGCA AACGGGCCCT

M G E A N \* (BGh pAn→) 6301 GATGGGGGAG GCTAACTGAG TCGAGAATTC GCTAGAGGGC CCTATTCTAT AGTGTCACCT CTACCCCCTC CGATTGACTC AGCTCTTAAG CGATCTCCCG GGATAAGATA TCACAGTGGA

6361 AAATGCTAGA GCTCGCTGAT CAGCCTCGAC TGTGCCTTCT AGTTGCCAGC CATCTGTTGT TTTACGATCT CGAGCGACTA GTCGGAGCTG ACACGGAAGA TCAACGGTCG GTAGACAACA

6421 TTGCCCCTCC CCCGTGCCTT CCTTGACCCT GGAAGGTGCC ACTCCCACTG TCCTTTCCTA AACGGGGAGG GGGCACGGAA GGAACTGGGA CCTTCCACGG TGAGGGTGAC AGGAAAGGAT

6481 ATAAAATGAG GAAATTGCAT CGCATTGTCT GAGTAGGTGT CATTCTATTC TGGGGGGGTGG TATTTTACTC CTTTAACGTA GCGTAACAGA CTCATCCACA GTAAGATAAG ACCCCCCACC

#### FIG. 5L

- 6541 GGTGGGGCAG GACAGCAAGG GGGAGGATTG GGAAGACAAT AGCAGGCATG CGCAGGGCCC CCACCCCGTC CTGTCGTTCC CCCTCCTAAC CCTTCTGTTA TCGTCCGTAC GCGTCCCGGG
- 6601 AATTGCTCGA GCGGCCGCAA TAAAATATCT TTATTTTCAT TACATCTGTG TGTTGGTTTT TTAACGAGCT CGCCGGCGTT ATTTTATAGA AATAAAAGTA ATGTAGACAC ACAACCAAAA
- 6661 TTGTGTGAAT CGTAACTAAC ATACGCTCTC CATCAAAACA AAACGAAACA AAACAAAACTA AACACACTTA GCATTGATTG TATGCGAGAG GTAGTTTTGT TTTGCTTTGT TTTGTTTGAT
- 6721 GCAAAATAGG CTGTCCCCAG TGCAAGTGCA GGTGCCAGAA CATTTCTCTA (SEQ ID NO:13) CGTTTTATCC GACAGGGGTC ACGTTCACGT CCACGGTCTT GTAAAGAGAT (SEQ ID NO:14)

Secuencia de aminoácidos ILl3zetaquina (SEQ ID NO: 15) Secuencia de aminoácidos HyTK (SEQ ID NO: 16)

.





FIG. 7










FIG. 10







FIG. 12



FIG. 13



|            |                    |            |            | ATGCTGCTGC | TGGTGACCAG |
|------------|--------------------|------------|------------|------------|------------|
| CCTGCTGCTG | TGCGAGCTGC         | CCCACCCCGC | CTTTCTGCTG | ATCCCTGGCC | CCGTGCCCCC |
| TAGCACCGCC | CTGCGCTACC         | TGATCGAGGA | ACTGGTGAAC | ATCACCCAGA | ACCAGAAAGC |
| CCCCCTGTGC | AACGGCAGCA         | TGGTGTGGAG | CATCAACCTG | ACCGCCGGCA | TGTACTGTGC |
| CGCCCTGGAA | AGCCTGATCA         | ACGTGAGCGG | CTGCAGCGCC | ATCGAGAAAA | CCCAGCGGAT |
| GCTGTCCGGC | TTCTGCCCCC         | ACAAGGTGTC | CGCCGGACAG | TTCAGCAGCC | TGCACGTGCG |
| GGACACCAAG | ATCGAGGTGG         | CCCAGTTCGT | GAAGGACCTG | CTGCTGCACC | TGAAGAAGCT |
| GTTCCGGGAG | GGCCGGTTCA         | ACGAGAGCAA | GTACGGCCCT | CCCTGCCCCC | CTTGCCCTGC |
| CCCAGAGTTC | CTGGGCGGAC         | CCAGCGTGTT | CCTGTTCCCC | CCCAAGCCCA | AGGACACCCT |
| GATGATCAGC | CGGACCCCTG         | AGGTGACCTG | CGTGGTGGTG | GACGTGAGCC | AGGAAGATCC |
| TGAGGTCCAG | TTCAATTGGT         | ACGTGGACGG | CGTGGAAGTG | CACAACGCCA | AGACCAAGCC |
| CAGAGAGGAA | CAGTTCAACA         | GCACCTACCG | GGTGGTGTCT | GTGCTGACCG | TGCTGCACCA |
| GGACTGGCTG | AACGGCAAAG         | AATACAAGTG | CAAGGTGTCC | AACAAGGGCC | TGCCCAGCAG |
| CATCGAAAAG | ACCATCAGCA         | AGGCCAAGGG | CCAGCCTCGC | GAGCCCCAGG | TGTACACCCT |
| GCCTCCCTCC | CAGGAAGAGA         | TGACCAAGAA | CCAGGTGTCC | CTGACCTGCC | TGGTGAAGGG |
| CTTCTACCCC | AGCGACATCG         | CCGTGGAGTG | GGAGAGCAAC | GGCCAGCCTG | AGAACAACTA |
| CAAGACCACC | CCTCCCGTGC         | TGGACAGCGA | CGGCAGCTTC | TTCCTGTACA | GCCGGCTGAC |
| CGTGGACAAG | AGCCGGTGGC         | AGGAAGGCAA | CGTCTTTAGC | TGCAGCGTGA | TGCACGAGGC |
| CCTGCACAAC | CACTACACCC         | AGAAGAGCCT | GAGCCTGTCC | CTGGGCAAGA | TGTTCTGGGT |
| GCTGGTGGTG | GTGGGCGGGG         | TGCTGGCCTG | CTACAGCCTG | CTGGTGACAG | TGGCCTTCAT |
| CATCTTTTGG | GTG <u>CGGAGCA</u> | AGCGGAGCAG | AGGCGGCCAC | AGCGACTACA | TGAACATGAC |
| CCCCAGACGG | CCTGGCCCCA         | CCCGGAAGCA | CTACCAGCCC | TACGCCCCAC | CCAGGGACTT |
| TGCCGCCTAC | <u>CGGTCC</u> GGCG | GAGGGCGGGT | GAAGTTCAGC | AGAAGCGCCG | ACGCCCCTGC |
| CTACCAGCAG | GGCCAGAATC         | AGCTGTACAA | CGAGCTGAAC | CTGGGCAGAA | GGGAAGAGTA |
| CGACGTCCTG | GATAAGCGGA         | GAGGCCGGGA | CCCTGAGATG | GGCGGCAAGC | CTCGGCGGAA |
| GAACCCCCAG | GAAGGCCTGT         | ATAACGAACT | GCAGAAAGAC | AAGATGGCCG | AGGCCTACAG |
| CGAGATCGGC | ATGAAGGGCG         | AGCGGAGGCG | GGGCAAGGGC | CACGACGGCC | TGTATCAGGG |
| CCTGTCCACC | GCCACCAAGG         | ATACCTACGA | CGCCCTGCAC | ATGCAGGCCC | TGCCCCCAAG |
| GTGA (SEQ  | ID NO:36)          |            |            |            |            |
|            |                    |            |            |            |            |

|            | ATGCT      | TCTCCTGGTG | ACAAGCCTTC | TGCTCTGTGA         | GTTACCACAC |
|------------|------------|------------|------------|--------------------|------------|
| CCAGCATTCC | TCCTGATCCC | AGGCCCTGTG | CCTCCCTCTA | CAGCCCTCAG         | GGAGCTCATT |
| GAGGAGCTGG | TCAACATCAC | CCAGAACCAG | AAGGCTCCGC | TCTGCAATGG         | CAGCATGGTA |
| TGGAGCATCA | ACCTGACAGC | TGGCATGTAC | TGTGCAGCCC | TGGAATCCCT         | GATCAACGTG |
| TCAGGCTGCA | GTGCCATCGA | GAAGACCCAG | AGGATGCTGA | GCGGATTCTG         | CCCGCACAAG |
| GTCTCAGCTG | GGCAGTTTTC | CAGCTTGCAT | GTCCGAGACA | CCAAAATCGA         | GGTGGCCCAG |
| TTTGTAAAGG | ACCTGCTCTT | ACATTTAAAG | AAACTTTTTC | GCGAGGGACG         | GTTCAACGAG |
| TCCAAATATG | GTCCCCCATG | CCCACCATGC | CCAGCACCTG | AGTTCCTGGG         | GGGACCATCA |
| GTCTTCCTGT | TCCCCCCAAA | ACCCAAGGAC | ACTCTCATGA | TCTCCCGGAC         | CCCTGAGGTC |
| ACGTGCGTGG | TGGTGGACGT | GAGCCAGGAA | GACCCCGAGG | TCCAGTTCAA         | CTGGTACGTG |
| GATGGCGTGG | AGGTGCATAA | TGCCAAGACA | AAGCCGCGGG | AGGAGCAGTT         | CAACAGCACG |
| TACCGTGTGG | TCAGCGTCCT | CACCGTCCTG | CACCAGGACT | GGCTGAACGG         | CAAGGAGTAC |
| AAGTGCAAGG | TCTCCAACAA | AGGCCTCCCG | TCCTCCATCG | AGAAAACCAT         | CTCCAAAGCC |
| AAAGGGCAGC | CCCGAGAGCC | ACAGGTGTAC | ACCCTGCCCC | CATCCCAGGA         | GGAGATGACC |
| AAGAACCAGG | TCAGCCTGAC | CTGCCTGGTC | AAAGGCTTCT | ACCCCAGCGA         | CATCGCCGTG |
| GAGTGGGAGA | GCAATGGGCA | GCCGGAGAAC | AACTACAAGA | CCACGCCTCC         | CGTGCTGGAC |
| TCCGACGGCT | CCTTCTTCCT | CTACAGCAGG | CTAACCGTGG | ACAAGAGCAG         | GTGGCAGGAG |
| GGGAATGTCT | TCTCATGCTC | CGTGATGCAT | GAGGCTCTGC | ACAACCACTA         | CACACAGAAG |
| AGCCTCTCCC | TGTCTCTGGG | TAAAATGGCC | CTGATTGTGC | TGGGGGGCGT         | CGCCGGCCTC |
| CTGCTTTTCA | TTGGGCTAGG | CATCTTCTTC | AGGAGTAAGA | GGAGCAGGCT         | CCTGCACAGT |
| GACTACATGA | ACATGACTCC | CCGCCGCCCT | GGGCCCACCC | GCAAGCATTA         | CCAGCCCTAT |
| GCCCCACCAC | GCGACTTCGC | AGCCTATCGC | TCCGGAGGTG | GCAAACGGGG         | CAGAAAGAAA |
| CTCCTGTATA | TATTCAAACA | ACCATTTATG | AGACCAGTAC | аластастса         | AGAGGAAGAT |
| GGCTGTAGCT | GCCGATTTCC | AGAAGAAGAA | GAAGGAGGAT | <b>GTGAACTG</b> GG | AGGTGGCAGA |
| GTGAAGTTCA | GCAGGAGCGC | AGACGCCCCC | GCGTACCAGC | AGGGCCAGAA         | CCAGCTCTAT |
| AACGAGCTCA | ATCTAGGACG | AAGAGAGGAG | TACGATGTTT | TGGACAAGAG         | ACGTGGCCGG |
| GACCCTGAGA | TGGGGGGAAA | GCCGAGAAGG | AAGAACCCTC | AGGAAGGCCT         | GTACAATGAA |
| CTGCAGAAAG | ATAAGATGGC | GGAGGCCTAC | AGTGAGATTG | GGATGAAAGG         | CGAGCGCCGG |
| AGGGGCAAGG | GGCACGATGG | CCTTTACCAG | GGTCTCAGTA | CAGCCACCAA         | GGACACCTAC |
| GACGCCCTTC | ACATGCAGGC | CCTGCCCCCT | CGCTGA (SI | EQ ID NO:37        | )          |

|                   | AT         | GCTTCTCCTG         | GTGACAAGCC         | TTCTGCTCTG | TGAGTTACCA |
|-------------------|------------|--------------------|--------------------|------------|------------|
| CACCCAGCAT        | TCCTCCTGAT | CCCAGGCCCT         | GTGCCTCCCT         | CTACAGCCCT | CAGGTACCTC |
| ATTGAGGAGC        | TGGTCAACAT | CACCCAGAAC         | CAGAAGGCTC         | CGCTCTGCAA | TGGCAGCATG |
| GTATGGAGCA        | TCAACCTGAC | AGCTGGCATG         | TACTGTGCAG         | CCCTGGAATC | CCTGATCAAC |
| GTGTCAGGCT        | GCAGTGCCAT | CGAGAAGACC         | CAGAGGATGC         | TGAGCGGATT | CTGCCCGCAC |
| AAGGTCTCAG        | CTGGGCAGTT | TTCCAGCTTG         | CATGTCCGAG         | ACACCAAAAT | CGAGGTGGCC |
| CAGTTTGTAA        | AGGACCTGCT | CTTACATTTA         | AAGAAACTTT         | TTCGCGAGGG | ACGGTTCAAC |
| GAGTCCAAAT        | ATGGTCCCCC | ATGCCCACCA         | TGCCCAGCAC         | CTGAGTTCCT | GGGGGGACCA |
| TCAGTCTTCC        | TGTTCCCCCC | AAAACCCAAG         | GACACTCTCA         | TGATCTCCCG | GACCCCTGAG |
| GTCACGTGCG        | TGGTGGTGGA | CGTGAGCCAG         | GAAGACCCCG         | ÅGGTCCAGTT | CAACTGGTAC |
| GTGGATGGCG        | TGGAGGTGCA | TAATGCCAAG         | ACAAAGCCGC         | GGGAGGAGCA | GTTCAACAGC |
| ACGTACCGTG        | TGGTCAGCGT | CCTCACCGTC         | CTGCACCAGG         | ACTGGCTGAA | CGGCAAGGAG |
| TACAAGTGCA        | AGGTCTCCAA | CAAAGGCCTC         | CCGTCCTCCA         | TCGAGAAAAC | CATCTCCAAA |
| GCCAAAGGGC        | AGCCCCGAGA | GCCACAGGTG         | TACACCCTGC         | CCCCATCCCA | GGAGGAGATG |
| ACCAAGAACC        | AGGTCAGCCT | GACCTGCCTG         | GTCAAAGGCT         | TCTACCCCAG | CGACATCGCC |
| GTGGAGTGGG        | AGAGCAATGG | GCAGCCGGAG         | ААСААСТАСА         | AGACCACGCC | TCCCGTGCTG |
| GACTCCGACG        | GCTCCTTCTT | CCTCTACAGC         | AGGCTAACCG         | TGGACAAGAG | CAGGTGGCAG |
| GAGGGGAATG        | TCTTCTCATG | CTCCGTGATG         | CATGAGGCTC         | TGCACAACCA | CTACACACAG |
| AAGAGCCTCT        | CCCTGTCCCT | AGGTAAA <u>TTT</u> | TGGGTGCTGG         | TGGTGGTTGG | TGGAGTCCTG |
| <u>GCTTGCTATA</u> | GCTTGCTAGT | AACAGTGGCC         | TTTATTATTT         | TCTGGGTGAG | GAGTAAGAGG |
| AGCAGGCTCC        | TGCACAGTGA | CTACATGAAC         | ATGACTCCCC         | GCCGCCCCGG | GCCCACCCGC |
| AAGCATTACC        | AGCCCTATGC | CCCACCACGC         | GACTTCGCAG         | CCTATCGCTC | CAGGGACCAG |
| AGGCTGCCCC        | CCGATGCCCA | CAAGCCCCCT         | GGGGGAGGCA         | GTTTCCGGAC | CCCCATCCAA |
| GAGGAGCAGG        | CCGACGCCCA | CTCCACCCTG         | gccaagatc <u>a</u> | GAGTGAAGTT | CAGCAGGAGC |
| GCAGACGCCC        | CCGCGTACCA | GCAGGGCCAG         | AACCAGCTCT         | ATAACGAGCT | CAATCTAGGA |
| CGAAGAGAGG        | AGTACGATGT | TTTGGACAAG         | AGACGTGGCC         | GGGACCCTGA | GATGGGGGGA |
| AAGCCGAGAA        | GGAAGAACCC | TCAGGAAGGC         | CTGTACAATG         | AACTGCAGAA | AGATAAGATG |
| GCGGAGGCCT        | ACAGTGAGAT | TGGGATGAAA         | GGCGAGCGCC         | GGAGGGGCAA | GGGGCACGAT |
| <u>GGCCTTTACC</u> | AGGGTCTCAG | TACAGCCACC         | AAGGACACCT         | ACGACGCCCT | TCACATGCAG |
| <u>GCCCTGCCCC</u> | CTCGCTGA   | (SEQ ID NO:        | 38)                |            |            |

| ATGCTTCTCC | TGGTGACAAG | CCTTCTGCTC | TGTGAGTTAC         | CACACCCAGC         | ATTCCTCCTG |
|------------|------------|------------|--------------------|--------------------|------------|
| ATCCCAGGCC | CTGTGCCTCC | CTCTACAGCC | CTCAGGTACC         | TCATTGAGGA         | GCTGGTCAAC |
| ATCACCCAGA | ACCAGAAGGC | TCCGCTCTGC | AATGGCAGCA         | TGGTATGGAG         | CATCAACCTG |
| ACAGCTGGCA | TGTACTGTGC | AGCCCTGGAA | TCCCTGATCA         | ACGTGTCAGG         | CTGCAGTGCC |
| ATCGAGAAGA | CCCAGAGGAT | GCTGAGCGGA | TTCTGCCCGC         | ACAAGGTCTC         | AGCTGGGCAG |
| TTTTCCAGCT | TGCATGTCCG | AGACACCAAA | ATCGAGGTGG         | CCCAGTTTGT         | AAAGGACCTG |
| CTCTTACATT | TAAAGAAACT | TTTTCGCGAG | GGACGGTTCA         | ACGAGTCCAA         | ATATGGTCCC |
| CCATGCCCAC | CATGCCCAGC | ACCTGAGTTC | CTGGGGGGGAC        | CATCAGTCTT         | CCTGTTCCCC |
| CCAAAACCCA | AGGACACTCT | CATGATCTCC | CGGACCCCTG         | AGGTCACGTG         | CGTGGTGGTG |
| GACGTGAGCC | AGGAAGACCC | CGAGGTCCAG | TTCAACTGGT         | ACGTGGATGG         | CGTGGAGGTG |
| CATAATGCCA | AGACAAAGCC | GCGGGAGGAG | CAGTTCAACA         | GCACGTACCG         | TGTGGTCAGC |
| GTCCTCACCG | TCCTGCACCA | GGACTGGCTG | AACGGCAAGG         | AGTACAAGTG         | CAAGGTCTCC |
| AACAAAGGCC | TCCCGTCCTC | CATCGAGAAA | ACCATCTCCA         | AAGCCAAAGG         | GCAGCCCCGA |
| GAGCCACAGG | TGTACACCCT | GCCCCCATCC | CAGGAGGAGA         | TGACCAAGAA         | CCAGGTCAGC |
| CTGACCTGCC | TGGTCAAAGG | CTTCTACCCC | AGCGACATCG         | CCGTGGAGTG         | GGAGAGCAAT |
| GGGCAGCCGG | AGAACAACTA | CAAGACCACG | CCTCCCGTGC         | TGGACTCCGA         | CGGCTCCTTC |
| TTCCTCTACA | GCAGGCTAAC | CGTGGACAAG | AGCAGGTGGC         | AGGAGGGGAA         | TGTCTTCTCA |
| TGCTCCGTGA | TGCATGAGGC | TCTGCACAAC | CACTACACAC         | AGAAGAGCCT         | CTCCCTGTCC |
| CTAGGTAAAA | TGTTTTGGGT | GCTGGTGGTG | GTTGGTGGAG         | TCCTGGCTTG         | CTATAGCTTG |
| CTAGTAACAG | TGGCCTTTAT | TATTTTCTGG | GTG <u>AGGAGTA</u> | AGAGGAGCAG         | GGGCGGACAC |
| AGTGACTACA | TGAACATGAC | TCCCCGCCGC | CCTGGGCCCA         | CCCGCAAGCA         | TTACCAGCCC |
| TATGCCCCAC | CACGCGACTT | CGCAGCCTAT | <u>CGCTCC</u> GGAG | gtggc <b>aaacg</b> | GGGCAGAAAG |
| AAACTCCTGT | ATATATTCAA | ACAACCATTT | ATGAGACCAG         | TACAAACTAC         | TCAAGAGGAA |
| GATGGCTGTA | GCTGCCGATT | TCCAGAAGAA | GAAGAAGGAG         | GATGTGAACT         | GGGAGGTGGC |
| AGAGTGAAGT | TCAGCAGGAG | CGCAGACGCC | CCCGCGTACC         | AGCAGGGCCA         | GAACCAGCTC |
| TATAACGAGC | TCAATCTAGG | ACGAAGAGAG | GAGTACGATG         | TTTTGGACAA         | GAGACGTGGC |
| CGGGACCCTG | AGATGGGGGG | AAAGCCGAGA | AGGAAGAACC         | CTCAGGAAGG         | CCTGTACAAT |
| GAACTGCAGA | AAGATAAGAT | GGCGGAGGCC | TACAGTGAGA         | TTGGGATGAA         | AGGCGAGCGC |
| CGGAGGGGCA | AGGGGCACGA | TGGCCTTTAC | CAGGGTCTCA         | GTACAGCCAC         | CAAGGACACC |
| TACGACGCCC | TTCACATGCA | GGCCCTGCCC | CCTCGCTGA          | (SEQ ID NO         | :39)       |

|                    |                    |            | ATGCTTCTCC  | TGGTGACAAG | CCTTCTGCTC         |
|--------------------|--------------------|------------|-------------|------------|--------------------|
| TGTGAGTTAC         | CACACCCAGC         | ATTCCTCCTG | ATCCCAGGCC  | CTGTGCCTCC | CTCTACAGCC         |
| CTCAGGTACC         | TCATTGAGGA         | GCTGGTCAAC | ATCACCCAGA  | ACCAGAAGGC | TCCGCTCTGC         |
| AATGGCAGCA         | TGGTATGGAG         | CATCAACCTG | ACAGCTGGCA  | TGTACTGTGC | AGCCCTGGAA         |
| TCCCTGATCA         | ACGTGTCAGG         | CTGCAGTGCC | ATCGAGAAGA  | CCCAGAGGAT | GCTGAGCGGA         |
| TTCTGCCCGC         | ACAAGGTCTC         | AGCTGGGCAG | TTTTCCAGCT  | TGCATGTCCG | AGACACCAAA         |
| ATCGAGGTGG         | CCCAGTTTGT         | AAAGGACCTG | CTCTTACATT  | TAAAGAAACT | TTTTCGCGAG         |
| GGACGGTTCA         | ACGAGTCCAA         | ATATGGTCCC | CCATGCCCAC  | CATGCCCAGC | ACCTGAGTTC         |
| CTGGGGGGGAC        | CATCAGTCTT         | CCTGTTCCCC | ССАААААСССА | AGGACACTCT | CATGATCTCC         |
| CGGACCCCTG         | AGGTCACGTG         | CGTGGTGGTG | GACGTGAGCC  | AGGAAGACCC | CGAGGTCCAG         |
| TTCAACTGGT         | ACGTGGATGG         | CGTGGAGGTG | CATAATGCCA  | AGACAAAGCC | GCGGGAGGAG         |
| CAGTTCAACA         | GCACGTACCG         | TGTGGTCAGC | GTCCTCACCG  | TCCTGCACCA | GGACTGGCTG         |
| AACGGCAAGG         | AGTACAAGTG         | CAAGGTCTCC | AACAAAGGCC  | TCCCGTCCTC | CATCGAGAAA         |
| ACCATCTCCA         | AAGCCAAAGG         | GCAGCCCCGA | GAGCCACAGG  | TGTACACCCT | GCCCCCATCC         |
| CAGGAGGAGA         | TGACCAAGAA         | CCAGGTCAGC | CTGACCTGCC  | TGGTCAAAGG | CTTCTACCCC         |
| AGCGACATCG         | CCGTGGAGTG         | GGAGAGCAAT | GGGCAGCCGG  | AGAACAACTA | CAAGACCACG         |
| CCTCCCGTGC         | TGGACTCCGA         | CGGCTCCTTC | TTCCTCTACA  | GCAGGCTAAC | CGTGGACAAG         |
| AGCAGGTGGC         | AGGAGGGGAA         | TGTCTTCTCA | TGCTCCGTGA  | TGCATGAGGC | TCTGCACAAC         |
| CACTACACAC         | AGAAGAGCCT         | CTCCCTGTCC | CTAGGTAAAA  | TGTTTTGGGT | GCTGGTGGTG         |
| GTTGGTGGAG         | TCCTGGCTTG         | CTATAGCTTG | CTAGTAACAG  | TGGCCTTTAT | TATTTTCTGG         |
| GTG <u>AGGAGTA</u> | AGAGGAGCAG         | GGGCGGACAC | AGTGACTACA  | TGAACATGAC | TCCCCGCCGC         |
| CCTGGGCCCA         | CCCGCAAGCA         | TTACCAGCCC | TATGCCCCAC  | CACGCGACTT | <u>CGCAGCC</u> GGA |
| GGTGGCGGAG         | GTGGC <b>AAACG</b> | GGGCAGAAAG | AAACTCCTGT  | ATATATTCAA | ACAACCATTT         |
| ATGAGACCAG         | тасаластас         | TCAAGAGGAA | GATGGCTGTA  | GCTGCCGATT | TCCAGAAGAA         |
| GAAGAAGGAG         | GATGTGAACT         | GGGAGGTGGC | AGAGTGAAGT  | TCAGCAGGAG | CGCAGACGCC         |
| CCCGCGTACC         | AGCAGGGCCA         | GAACCAGCTC | TATAACGAGC  | TCAATCTAGG | ACGAAGAGAG         |
| GAGTACGATG         | TTTTGGACAA         | GAGACGTGGC | CGGGACCCTG  | AGATGGGGGG | AAAGCCGAGA         |
| AGGAAGAACC         | CTCAGGAAGG         | CCTGTACAAT | GAACTGCAGA  | AAGATAAGAT | GGCGGAGGCC         |
| TACAGTGAGA         | TTGGGATGAA         | AGGCGAGCGC | CGGAGGGGCA  | AGGGGCACGA | TGGCCTTTAC         |
| CAGGGTCTCA         | GTACAGCCAC         | CAAGGACACC | TACGACGCCC  | TTCACATGCA | GGCCCTGCCC         |
| CCTCGCTGA          | (SEQ ID NO:        | :40)       |             |            |                    |