(19)

DANMARK (10 DK/EP 2825964 T3

(12) Overseettelse af
europaeisk patentskrift

Patent- og
Varemeaerkestyrelsen

(51)
(45)

(80)

(74)

(54)

Int.CI.: G 06 F 11/36 (2006.01) G 06 F 9/30(2018.01)
Oversaettelsen bekendtgjort den: 2021-10-18

Dato for Den Europaeiske Patentmyndigheds
bekendtgerelse om meddelelse af patentet: 2021-09-15

Europaeisk ansggning nr.: 13761846.8

Europaeisk indleveringsdag: 2013-03-01

Den europaeiske ansggnings publiceringsdag: 2015-01-21
International ansggning nr.: JP2013001264

Internationalt publikationsnr.: WO2013136704

Prioritet: 2012-03-16 US 201213422546

Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV
MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Patenthaver: International Business Machines Corporation, New Orchard Road, Armonk, New York 10504, USA

Opfinder: FARRELL, Mark S., IBM Corporation, 2455 South Road, Poughkeepsie, New York 12601, USA
GAINEY JR., Charles W., IBM Corporation, Intellectual Property Law, 2455 South Road, Poughkeepsie, New
York 12601, USA

MITRAN, Marcel, IBM Canada Ltd, 8200 Warden Avenue, Toronto Lab, Markham, Ontario L6G 1C7, Canada
SHUM, Chung-Lung Kevin, IBM Corporation, 2455 South Road, Poughkeepsie, New York 12601, USA
SLEGEL, Timothy J., IBM Corporation, Poughkeepsie, New York 12601, USA

SMITH, Brian Leonard, IBM Corporation, Intellectual Property Law, 2455 South Road, Poughkeepsie, New York
12601, USA

STOODLEY, Kevin A, IBM Canada Ltd, 8200 Warden Avenue, Toronto Lab, Markham, Ontario L6G 1C7,
Canada

Fuldmaegtig i Danmark: Plougmann Vingtoft A/S, Strandvejen 70, 2900 Hellerup, Danmark

Benasvnelse: STYRING AF DRIFT AF EN KORSELSTIDS-INSTRUMENTERINGSANORDNING FRA EN MINDRE
PRIVILEGERET TILSTAND

Fremdragne publikationer:
JP-A- HO1 145 736

US-A- 5 768 500

US-A- 6 163 840

US-A1- 2003 005 423
US-A1-2003 154 430
US-A1-2004 019 886
US-A1- 2007 261 032
US-A1-2010 242 025
None

Fortseettes ...

DK/EP 2825964 T3

DK/EP 2825964 T3

DESCRIPTION

Technical Field

[0001] The present invention relates generally to processing within a computing environment,
and more specifically, to controlling operation of a run-time instrumentation facility from a
lesser-privileged state.

Background Art

[0002] Computer processors execute transactions using increasingly complex branch
prediction and instruction caching logic. These processes have been introduced to increase
instruction throughput, and therefore processing performance. The introduction of logic for
improving performance makes it difficult to predict with certainty how a particular software
application will execute on the computer processor. During the software development process
there is often a balance between functionality and performance. Software is executed at one or
more levels of abstraction from the underlying hardware that is executing the software. When
hardware is virtualized, an additional layer of abstraction is introduced. With the introduction of
performance enhancing logic, and the various layers of abstraction it is difficult to have a
thorough understanding of what is actually occurring at the hardware level when a program is
executing. Without this information, software developers use more abstract methods, such as
execution duration, memory usage, number of threads, etc., for optimizing the software
application. United States Patent Application Publication Number US 2007/0261032 A1
presents concepts for hardware assisted profiling of code. United States Patent Application
Publication Number 2003/0154430 A1 discloses an electronic control unit including a state
machine which functions to selectively capture information on an internal bus on a cycle-by-
cycle basis.

Summary of Invention

Technical Problem

[0003] When hardware specific information is available, it is typically provided to a developer
after the fact and it is provided in aggregate, at a high level, and/or interspersed with the
activity of other programs, and the operating system, making it difficult to identify issues that
may be impacting the efficiency and accuracy of the software application.

Solution to Problem

DK/EP 2825964 T3

[0004] Embodiments include a computer program product, method and system for enabling
and disabling execution of a run-time instrumentation facility on a processor. According to an
aspect of the invention, there is provided a method according to claim 1. According to another
aspect of the invention, there is provided a system according to claim 8 and a computer
program product according claim 12.

[0005] Additional features and advantages are realized through the techniques of the present
invention. Other embodiments and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better understanding of the invention with
advantages and features, refer to the description and to the drawings.

[0006] The subject matter which is regarded as the invention is particularly pointed out and
distinctly claimed in the claims at the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from the following detailed description
taken in conjunction with the accompanying drawings in which:

Brief Description of Drawings

[0007] Embodiments of the invention will now be described, by way of example only, with
reference to the accompanying drawings in which:

FIG. 1A is a diagram depicting an example host computer system in an embodiment;

FIG. 1B is a diagram depicting an example emulation host computer system in an
embodiment;

FIG. 1C is a diagram depicting an example computer system in an embodiment;
FIG. 2 is a diagram depicting an example computer network in an embodiment;
FIG. 3 is a diagram depicting elements of a computer system in an embodiment;
FIG. 4A depicts detailed elements of a computer system in an embodiment;
FIG. 4B depicts detailed elements of a computer system in an embodiment;
FIG. 4C depicts detailed elements of a computer system in an embodiment;

FIG. 5 depicts a schematic diagram of a system for run-time instrumentation of a processor in
accordance with an embodiment;

FIG. 6 depicts a portion of a run-time instrumentation control block (RICCB) including controls
that are settable by a privileged state in an embodiment;

FIG. 7 depicts a portion of a RICCB control block when the semi-privileged bit (K) is setto 1 in

DK/EP 2825964 T3

an embodiment;
FIG. 8 depicts a collection buffer in accordance with an embodiment;
FIG. 9 depicts a reporting group in accordance with an embodiment;

FIG. 10 depicts a process flow for implementing a run-time instrumentation facility in
accordance with an embodiment;

FIG. 11 depicts a run-time instrumentation off (RIOFF) instruction in accordance with an
embodiment;

FIG. 12 depicts a process flow of an RIOFF instruction in accordance with an embodiment;

FIG. 13 depicts a run-time instrumentation on (RION) instruction in accordance with an
embodiment;

FIG. 14 depicts a process flow of an RION instruction in accordance with an embodiment; and

FIG. 15 illustrates a computer program product in accordance with an embodiment.

Description of Embodiments

[0008] A run-time instrumentation facility allows a processor to collect hardware event data into
a rolling history buffer, sample the history buffer, and store data from the history buffer into
application accessible storage. It is generally desirable to limit sampling to a subset of the
execution trace of an application as there may be elements in the execution path that may not
be of interest. For example, if data collected by the run-time instrumentation facility will be used
to enhance a program that was compiled by a compiler, then data related to the run-time
environment and the operating system services may not be useful (e.g., because the complier
may have no ability to affect the run-time environment or the operating system services).
Additionally, by limiting the range of the execution path that is sampled, the run-time
instrumentation facility can reduce the cost of having to manage, buffer, and reduce the
collected instrumentation data, thus keeping the overhead of the instrumentation mechanism
to a minimum. Embodiments described here allow the run-time instrumentation to be turned off
(disabled) and on (enabled) based on instructions from an application.

[0009] As described in embodiments herein, a first instruction, referred to as a run-time
instrumentation on (RION) instruction designates a starting point for a sub-trace of the
execution path to be sampled. Also as described herein, a second instruction, referred to as a
run-time instrumentation off (RIOFF) instruction designates an ending point of the execution
path to be sampled. These instructions may be inserted into an instruction stream at transition
points between the compiled code and the run-time environment. In addition, the RION and
RIOFF instructions may be inserted by the compiler into the instruction stream to focus the

DK/EP 2825964 T3

sampling mechanism on specific areas of the compiled code.

[0010] A bit in a program status word (PSW) is used, in accordance with embodiments, to
designate the state of the run-time instrumentation facility. The bit in the PSW indicates
whether the current execution point is inside of a sampling interval (i.e., the run-time
instrumentation facility is turned on and collecting data) or outside of a sampling interval (i.e.,
the run-time instrumentation facility is turned off and not collecting data) of the executing trace.
As the PSW is saved and restored across context switches, the state of the sampling
mechanism is naturally maintained across dispatches of the executing thread.

[0011] An embodiment of the present invention is a hardware based run-time instrumentation
facility for managed run-times. As used herein the term "managed run-time" refers to an
environment that encapsulates a state and manages resources used to execute a program or
application (e.g., Java(R) virtual machine or "JVM", operating system, middleware, etc.).
Embodiments of the run-time instrumentation facility enable a program to collect information
about program execution, including central processing unit (CPU) data. The collected
information allows the manager run-time environment to acquire insights about the program
from which the information is collected. Embodiments of the run-time instrumentation facility
include a hardware facility for collecting sequences of events (e.g., taken branches, register
values, etc.) in a collection buffer. The collection buffer (or a subset of the collection buffer
containing the most recent records) is copied into a program buffer in the application's address
space (for example the address space of a JVM) upon a programmable set of sample
triggering events such as, but not limited to: a software directive in the form of an instruction
inserted into the instruction stream; an interval of executed instructions are completed, a given
elapsed time since the last sample expires, and/or a given hardware event such as data or
instruction cache miss is observed.

[0012] Dynamic compilers exploit runtime information, such as that collected by the hardware
based run-time instrumentation facility described herein to perform online feedback directed
optimizations. For example, information about important execution paths, profiled values and
preferred branch directions can be used by a dynamic compiler to perform optimizations that
specialize or version code, direct in-lining, re-order execution paths, and straighten branches.
Data generated by embodiments described herein may also be used for other forms of
optimization such as data reorganization.

[0013] FIG. 1A, depicts the representative components of a host computer system 50 in an
embodiment. Other arrangements of components may also be employed in a computer
system. The representative host computer system 50 comprises one or more processors 1 in
communication with main store (computer memory) 2 as well as I/O interfaces to storage
devices 11 and networks 10 for communicating with other computers or SANs and the like. The
processor 1 is compliant with an architecture having an architected instruction set and
architected functionality. The processor 1 may have dynamic address translation (DAT) 3 for
transforming program addresses (virtual addresses) into a real address in memory. A DAT 3
typically includes a translation lookaside buffer (TLB) 7 for caching translations so that later

DK/EP 2825964 T3

accesses to the block of computer memory 2 do not require the delay of address translation.
Typically a cache 9 is employed between the computer memory 2 and the processor 1. The
cache 9 may be hierarchical having a large cache available to more than one CPU and
smaller, faster (lower level) caches between the large cache and each CPU. In some
embodiments, the lower level caches are split to provide separate low level caches for
instruction fetching and data accesses. In an embodiment, an instruction is fetched from the
computer memory 2 by an instruction fetch unit 4 via the cache 9. The instruction is decoded in
an instruction decode unit 6 and dispatched (with other instructions in some embodiments) to
instruction execution units 8. Typically several instruction execution units 8 are employed, for
example an arithmetic execution unit, a floating point execution unit and a branch instruction
execution unit. The instruction is executed by the instruction execution unit 8, accessing
operands from instruction specified registers or the computer memory 2 as needed. If an
operand is to be accessed (loaded or stored) from the computer memory 2, the load store unit
5 typically handles the access under control of the instruction being executed. Instructions may
be executed in hardware circuits or in internal microcode (firmware) or by a combination of
both.

[0014] In FIG. 1B, depicts an emulated host computer system 21 is provided that emulates a
host computer system of a host architecture, such as the host computer system 50 of FIG. 1.
In the emulated host computer system 21, a host processor (CPU) 1 is an emulated host
processor (or virtual host processor) 29, and comprises a native processor 27 having a
different native instruction set architecture than that of the processor 1 of the host computer
system 50. The emulated host computer system 21 has memory 22 accessible to the native
processor 27. In an embodiment, the memory 22 is partitioned into a computer memory 2
portion and an emulation routines memory 23 portion. The computer memory 2 is available to
programs of the emulated host computer system 21 according to the host computer
architecture. The native processor 27 executes native instructions of an architected instruction
set of an architecture other than that of the emulated processor 29, the native instructions
obtained from the emulation routines memory 23, and may access a host instruction for
execution from a program in the computer memory 2 by employing one or more instruction(s)
obtained in a sequence & access/decode routine which may decode the host instruction(s)
accessed to determine a native instruction execution routine for emulating the function of the
host instruction accessed. Other facilities that are defined for the host computer system 50
architecture may be emulated by architected facilities routines, including such facilities as
general purpose registers, control registers, dynamic address translation and input/output (I/O
) subsystem support and processor cache for example. The emulation routines may also take
advantage of function available in the native processor 27 (such as general registers and
dynamic translation of virtual addresses) to improve performance of the emulation routines.
Special hardware and off-load engines may also be provided to assist the native processor 27
in emulating the function of the host computer system 50.

[0015] In a mainframe, architected machine instructions are used by programmers, usually
today "C" programmers often by way of a compiler application. These instructions stored in the
storage medium may be executed natively in a z/Architecture IBM Server, or alternatively in

DK/EP 2825964 T3

machines executing other architectures. They can be emulated in the existing and in future
IBM mainframe servers and on other machines of IBM (e.g. pSeries(R) Servers and xSeries(R)
Servers). They can be executed in machines running Linux on a wide variety of machines
using hardware manufactured by IBM(R), Intel(R), AMD™ Sun Microsystems and others.
Besides execution on that hardware under a Z/Architecture(R), Linux can be used as well as
machines which use emulation by Hercules, UMX, Fundamental Software, Inc. (FSI) or
Platform Solutions, Inc. (PSI), where generally execution is in an emulation mode. In emulation
mode, emulation software is executed by a native processor to emulate the architecture of an
emulated processor.

[0016] One or more of the components of the emulated host computer system 21 are further
described in "IBM(R) z/Architecture Principles of Operation, " Publication No. SA22-7832-08,
9th Edition, August, 2010 which is hereby incorporated herein by reference in its entirety. IBM
is a registered trademark of International Business Machines Corporation, Armonk, New York,
USA. Other names used herein may be registered trademarks, trademarks or product names
of International Business Machines Corporation or other companies.

[0017] The native processor 27 typically executes emulation software stored in the emulation
routines memory 23 comprising either firmware or a native operating system to perform
emulation of the emulated processor. The emulation software is responsible for fetching and
executing instructions of the emulated processor architecture. The emulation software
maintains an emulated program counter to keep track of instruction boundaries. The emulation
software may fetch one or more emulated machine instructions at a time and convert the one
or more emulated machine instructions to a corresponding group of native machine
instructions for execution by the native processor 27. These converted instructions may be
cached such that a faster conversion can be accomplished. The emulation software maintains
the architecture rules of the emulated processor architecture so as to assure operating
systems and applications written for the emulated processor operate correctly. Furthermore
the emulation software provides resources identified by the emulated processor architecture
including, but not limited to control registers, general purpose registers, floating point registers,
dynamic address translation function including segment tables and page tables for example,
interrupt mechanisms, context switch mechanisms, time of day (TOD) clocks and architected
interfaces to /O subsystems such that an operating system or an application program
designed to run on the emulated processor 29, can be run on the native processor 27 having
the emulation software.

[0018] A specific instruction being emulated is decoded, and a subroutine called to perform the
function of the individual instruction. An emulation software function emulating a function of an
emulated processor 29 is implemented, for example, in a "C" subroutine or driver, or some
other method of providing a driver for the specific hardware as will be within the skill of those in
the art after understanding the description of the preferred embodiment.

[0019] In an embodiment, the invention may be practiced by software (sometimes referred to
licensed internal code, firmware, micro-code, milli-code, pico-code and the like, any of which

DK/EP 2825964 T3

would be consistent with the present invention). Referring to FIG. 1A, software program code
which embodies the present invention is accessed by the processor also known as a CPU
(Central Processing Unit) 1 of the host computer system 50 from the storage device 11 such as
a long-term storage media, a CD-ROM drive, tape drive or hard drive. The software program
code may be embodied on any of a variety of known media for use with a data processing
system, such as a diskette, hard drive, or CD-ROM. The code may be distributed on such
media, or may be distributed to users from the computer memory 2 or storage of one
computer system over a network 10 to other computer systems for use by users of such other
systems.

[0020] Alternatively, the program code may be embodied in the computer memory 2, and
accessed by the processor 1 using a processor bus (not shown). Such program code includes
an operating system which controls the function and interaction of the various computer
components and one or more application programs. Program code is normally paged from a
dense media such as the storage device 11 to computer memory 2 where it is available for
processing by the processor 1. The techniques and methods for embodying software program
code in memory, on physical media, and/or distributing software code via networks are well
known and will not be further discussed herein. Program code, when created and stored on a
tangible medium (including but not limited to electronic memory modules (RAM), flash memory,
compact discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a "computer
program product. " The computer program product medium is typically readable by a
processing circuit preferably in a computer system for execution by the processing circuit.

[0021] FIG. 1C illustrates a representative workstation or server hardware system in which the
present invention may be practiced. The system 100 of FIG. 1C comprises a representative
base computer system 101, such as a personal computer, a workstation or a server, including
optional peripheral devices. The base computer system 101 includes one or more processors
106 and a bus (not shown) employed to connect and enable communication between the one
or more processors 106 and the other components of the base computer system 101 in
accordance with known techniques. The bus connects the processor 106 to memory 105 and
long-term storage 107 which may include a hard drive (including any of magnetic media, CD,
DVD and Flash Memory for example) or a tape drive for example. The base computer system
101 may also include a user interface adapter, which connects the one or more processors
106 via the bus to one or more interface devices, such as a keyboard 104, a mouse 103, a
printer/scanner 110 and/or other interface devices, which may be any user interface device,
such as a touch sensitive screen, digitized entry pad, etc. The bus also connects the one or
more processors to a display device 102, such as an LCD screen or monitor via a display
adapter.

[0022] The base computer system 101 may communicate with other computers or networks of
computers by way of a network adapter capable of communicating 108 with a network 109.
Example network adapters are communications channels, token ring, Ethernet or modems.
Alternatively, the base computer system 101 may communicate using a wireless interface,
such as a cellular digital packet data (CDPD) card. The base computer system 101 may be

DK/EP 2825964 T3

associated with such other computers in a local area network (LAN) or a wide area network
(WAN), or the base computer system 101 may be a client in a client/server arrangement with
another computer, etc.

[0023] FIG. 2 illustrates a data processing network 200 in which the present invention may be
practiced. The data processing network 200 may include a plurality of individual networks, such
as a wireless network and a wired network, each of which may include a plurality of individual
workstations 201, 202, 203, 204 and or the base computer system 101 of FIG. 1C. Additionally,
as those skilled in the art will appreciate, one or more LANs may be included, where a LAN
may comprise a plurality of intelligent workstations coupled to a host processor.

[0024] Programming code 111 may be embodied in the memory 105, and accessed by the
processor 106 using the processor bus. Such programming code includes an operating system
which controls the function and interaction of the various computer components and one or
more application programs 112. Program code is normally paged from long-term storage 107
to high-speed memory 105 where it is available for processing by the processor 106. The
techniques and methods for embodying software programming code in memory, on physical
media, and/or distributing software code via networks are well known and will not be further
discussed herein. Program code, when created and stored on a tangible medium (including but
not limited to electronic memory modules (RAM), flash memory, Compact Discs (CDs), DVDs,
Magnetic Tape and the like is often referred to as a "computer program product’. The
computer program product medium is typically readable by a processing circuit preferably in a
computer system for execution by the processing circuit.

[0025] The cache that is most readily available to the processor (normally faster and smaller
than other caches of the processor) is the lowest (L1 or level one) cache and main store (main
memory) is the highest level cache (L3 if there are 3 levels). The lowest level cache is often
divided into an instruction cache (I-Cache) holding machine instructions to be executed and a
data cache (D-Cache) holding data operands.

[0026] Still referring to FIG. 2, the networks may also include mainframe computers or servers,
such as a gateway computer (client server) 206 or application server (remote server) 208
which may access a data repository and may also be accessed directly from a workstation 205.
A gateway computer 206 serves as a point of entry into each network 207. A gateway is
needed when connecting one networking protocol to another. The gateway computer 206 may
be preferably coupled to another network (the Internet 207 for example) by means of a
communications link. The gateway computer 206 may also be directly coupled to the one or
more workstations 101, 201, 202, 203, and 204 using a communications link. The gateway
computer may be implemented utilizing an IBM eServer™ zSeries(R) z9(R) Server available
from International Business Machines Corporation.

[0027] In an embodiment, software programming code which embodies the present invention
is accessed by the processor 106 of the base computer system 101 from long-term storage
media, such as the long-term storage 107 of FIG. 1C. The software programming code may be

DK/EP 2825964 T3

embodied on any of a variety of known media for use with a data processing system, such as a
diskette, hard drive, or CD-ROM. The code may be distributed on such media, or may be
distributed to users 210 and 211 from the memory or storage of one computer system over a
network to other computer systems for use by users of such other systems.

[0028] Referring to FIG. 3, an exemplary processor embodiment is depicted for processor 106.
One or more levels of cache 303 are employed to buffer memory blocks in order to improve
the performance of the processor 106. The cache 303 is a high speed buffer holding cache
lines of memory data that are likely to be used. Typical cache lines are 64, 128 or 256 bytes of
memory data. In an embodiment, separate caches are employed for caching instructions than
for caching data. Cache coherence (synchronization of copies of lines in memory and the
caches) is often provided by various "snoop" algorithms well known in the art. Main storage,
such as memory 105 of a processor system is often referred to as a cache. In a processor
system having 4 levels of cache 303 memory 105 is sometimes referred to as the level 5 (L5)
cache since it is typically faster and only holds a portion of the non-volatile storage (DASD,
Tape etc) that is available to a computer system. Memory 105 "caches" pages of data paged in
and out of the memory 105 by the operating system.

[0029] A program counter (instruction counter) 311 keeps track of the address of the current
instruction to be executed. A program counter in a z/Architecture processor is 64 bits and may
be truncated to 31 or 24 bits to support prior addressing limits. A program counter is typically
embodied in a program status word (PSW) of a computer such that it persists during context
switching. Thus, a program in progress, having a program counter value, may be interrupted
by, for example, the operating system (i.e., the current context switches from the program
environment to the operating system environment). The PSW of the program maintains the
program counter value while the program is not active, and the program counter (in the PSW)
of the operating system is used while the operating system is executing. In an embodiment, the
program counter is incremented by an amount equal to the number of bytes of the current
instruction. Reduced Instruction Set Computing (RISC) instructions are typically fixed length
while Complex Instruction Set Computing (CISC) instructions are typically variable length.
Instructions of the IBM z/Architecture are CISC instructions having a length of 2, 4 or 6 bytes.
The program counter 311 is modified by either a context switch operation or a branch taken
operation of a branch instruction for example. In a context switch operation, the current
program counter value is saved in the PSW along with other state information about the
program being executed (such as condition codes), and a new program counter value is
loaded pointing to an instruction of a new program module to be executed. A branch taken
operation is performed in order to permit the program to make decisions or loop within the
program by loading the result of the branch instruction into the program counter 311.

[0030] In an embodiment, an instruction fetch unit 305 is employed to fetch instructions on
behalf of the processor 106. The instruction fetch unit 305 either fetches the "next sequential
instructions, " the target instructions of branch taken instructions, or the first instructions of a
program following a context switch. In an embodiment, the instruction fetch unit 305 employs
prefetch techniques to speculatively prefetch instructions based on the likelihood that the

DK/EP 2825964 T3

prefetched instructions might be used. For example, the instruction fetch unit 305 may fetch 16
bytes of instructions that include the next sequential instruction and additional bytes of further
sequential instructions.

[0031] The fetched instructions are then executed by the processor 106. In an embodiment,
the fetched instruction(s) are passed to a decode/dispatch unit 306 of the instruction fetch unit
305. The decode/dispatch unit 306 decodes the instruction(s) and forwards information about
the decoded instruction(s) to appropriate execution units 307, 308, and/or 310. An execution
unit 307 receives information about decoded arithmetic instructions from the instruction fetch
unit 305 and will perform arithmetic operations on operands according to the operation code
(opcode) of the instruction. Operands are provided to the execution unit 307 either from the
memory 105, architected registers 309, or from an immediate field of the instruction being
executed. Results of the execution, when stored, are stored either in memory 105, architected
registers 309 or in other machine hardware (such as control registers, PSW registers and the
like).

[0032] A processor 106 typically has one or more execution units 307, 308, and 310 for
executing the function of the instruction. Referring to FIG. 4A, an execution unit 307 may
communicate with the architected registers 309, the decode/dispatch unit 306, the load/store
unit 310 and other processor units 401 by way of interfacing logic 407. The execution unit 307
may employ several register circuits 403, 404, and 405 to hold information that the arithmetic
logic unit (ALU) 402 will operate on. The ALU 402 performs arithmetic operations such as add,
subtract, multiply and divide as well as logical function such as and, or and exclusive-or (xor),
rotate and shift. In an embodiment, the ALU supports specialized operations that are design
dependent. Other circuits may provide other architected facilities 408 including condition codes
and recovery support logic for example. Typically the result of an ALU operation is held in an
output register circuit 406 which can forward the result to a variety of other processing
functions. In other embodiments, there are many arrangements of processor units, the present
description is only intended to provide a representative understanding of one embodiment.

[0033] An ADD instruction for example would be executed in an execution unit 307 having
arithmetic and logical functionality while a floating point instruction for example would be
executed in a floating point execution unit (not shown) having specialized floating point
capability. Preferably, an execution unit operates on operands identified by an instruction by
performing an opcode defined function on the operands. For example, an ADD instruction may
be executed by an execution unit 307 on operands found in two architected registers 309
identified by register fields of the instruction.

[0034] The execution unit 307 performs the arithmetic addition on two operands and stores the
result in a third operand where the third operand may be a third register or one of the two
source registers. The execution unit 307 preferably utilizes an arithmetic logic unit (ALU) 402
that is capable of performing a variety of logical functions such as shift, rotate, and, or and
XOR as well as a variety of algebraic functions including any of add, subtract, multiply, divide.
Some ALUs 402 are designed for scalar operations and some for floating point. In

DK/EP 2825964 T3

embodiments, data may be big endian (where the least significant byte is at the highest byte
address) or little endian (where the least significant byte is at the lowest byte address)
depending on architecture. The IBM z/Architecture is big endian. Signed fields may be sign and
magnitude, 1's complement or 2's complement depending on architecture. A 2's complement
number is advantageous in that the ALU does not need to design a subtract capability since
either a negative value or a positive value in 2's complement requires only and addition within
the ALU. Numbers are commonly described in shorthand, where a 12 bit field defines an
address of a 4,096 byte block and is commonly described as a 4 Kbyte (Kilobyte) block for
example.

[0035] Referring to FIG. 4B, Branch instruction information for executing a branch instruction is
typically sent to a branch unit 308 which employs a branch prediction algorithm such as a
branch history table 432 to predict the outcome of the branch before other conditional
operations are complete. The target of the current branch instruction will be fetched and
speculatively executed before the conditional operations are complete. VWWhen the conditional
operations are completed the speculatively executed branch instructions are either completed
or discarded based on the conditions of the conditional operation and the speculated outcome.
A typical branch instruction may test condition codes and branch to a target address if the
condition codes meet the branch requirement of the branch instruction, a target address may
be calculated based on several numbers including ones found in register fields or an
immediate field of the instruction for example. In an embodiment, the branch unit 308 may
employ an ALU 426 having a plurality of input register circuits 427, 428, and 429 and an output
register circuit 430. The branch unit 308 may communicate with general registers,
decode/dispatch unit 306 or other circuits 425 for example.

[0036] The execution of a group of instructions may be interrupted for a variety of reasons
including a context switch initiated by an operating system, a program exception or error
causing a context switch, an I/O interruption signal causing a context switch or multi-threading
activity of a plurality of programs (in a multi-threaded environment) for example. In an
embodiment, a context switch action saves state information about a currently executing
program and then loads state information about another program being invoked. State
information may be saved in hardware registers or in memory for example. State information
includes a program counter value pointing to a next instruction to be executed, condition
codes, memory translation information and architected register content. A context switch
activity may be exercised by hardware circuits, application programs, operating system
programs or firmware code (microcode, pico-code or licensed internal code (LIC) alone or in
combination.

[0037] A processor accesses operands according to instruction defined methods. The
instruction may provide an immediate operand using the value of a portion of the instruction,
may provide one or more register fields explicitly pointing to either general purpose registers or
special purpose registers (floating point registers for example). The instruction may utilize
implied registers identified by an opcode field as operands. The instruction may utilize memory
locations for operands. A memory location of an operand may be provided by a register, an

DK/EP 2825964 T3

immediate field, or a combination of registers and immediate field as exemplified by the
z/Architecture long displacement facility wherein the instruction defines a base register, an
index register and an immediate field (displacement field) that are added together to provide
the address of the operand in memory. Location herein implies a location in main memory
(main storage) unless otherwise indicated.

[0038] Referring to FIG. 4C, a processor accesses storage using a load/store unit 310. The
load/store unit 310 may perform a load operation by obtaining the address of the target
operand in memory through the cache/memory interface and loading the operand in an
architected register 309 or another memory location, or may perform a store operation by
obtaining the address of the target operand in memory and storing data obtained from an
architected register 309 or another memory location in the target operand location in memory.
The load/store unit 310 may be speculative and may access memory in a sequence that is out-
of-order relative to the instruction sequence; however the load/store unit 310 maintains the
appearance to programs that instructions were executed in order. A load/store unit 310 may
communicate with architected registers 309, decode/dispatch unit 306, cache/memory
interface or other elements 455 and comprises various register circuits, ALUs 458 and control
logic 463 to calculate storage addresses and to provide pipeline sequencing to keep
operations in-order. Some operations may be out of order but the load/store unit provides
functionality to make the out of order operations appear to the program as having been
performed in order as is well known in the art.

[0039] Preferably addresses that an application program "sees" are often referred to as virtual
addresses. Virtual addresses are sometimes referred to as "logical addresses" and "effective
addresses. " These virtual addresses are virtual in that they are redirected to physical memory
location by one of a variety of DAT technologies such as the DAT 312 of FIG. 3, including, but
not limited to prefixing a virtual address with an offset value, translating the virtual address via
one or more translation tables, the translation tables including at least a segment table and a
page table alone or in combination, preferably, the segment table having an entry pointing to
the page table. In z/Architecture, a hierarchy of translations is provided including a region first
table, a region second table, a region third table, a segment table and an optional page table.
The performance of the address translation is often improved by utilizing a translation look-
aside buffer (TLB) which comprises entries mapping a virtual address to an associated
physical memory location. The entries are created when DAT 312 translates a virtual address
using the translation tables. Subsequent use of the virtual address can then utilize the entry of
the fast TLB rather than the slow sequential translation table accesses. The TLB content may
be managed by a variety of replacement algorithms including least recently used (LRU).

[0040] In the case where the processor 106 is a processor of a multi-processor system, each
processor has responsibility to keep shared resources such as I/O, caches, TLBs and Memory
interlocked for coherency. In an embodiment, "snoop" technologies will be utilized in
maintaining cache coherency. In a snoop environment, each cache line may be marked as
being in any one of a shared state, an exclusive state, a changed state, an invalid state and
the like in order to facilitate sharing.

DK/EP 2825964 T3

[0041] The I/O units 304 of FIG. 3 provide the processor 106 with means for attaching to
peripheral devices including tape, disc, printers, displays, and networks for example. The /O
units 304 are often presented to the computer program by software drivers. In mainframes
such as the z/Series from IBM, channel adapters and open system adapters are 1/O units of
the mainframe that provide the communications between the operating system and peripheral
devices.

[0042] Instrumentation data is data related to the operations of the processor 106. In an
embodiment, access to instrumentation data and other system level metrics may be restricted,
or unavailable. A computer processor operates under a privileged state (or supervisor state),
and a lesser-privileged state (or problem state). In the privileged state, a program may have
access to all system resources via privileged operations (e.g., access to all control registers
and the supervisor memory space). The privileged state is also referred to as privileged mode
or supervisor mode. An operating system executing on the computer processor may be
operating in the privileged state. The lesser-privileged state is a nonprivieged state where
access to system resources is limited. For example, application programs running in lesser-
privileged state may have limited or no access to control registers and may access only user
memory space assigned to the application program by the operating system. The lesser-
privileged state is typically assigned to application programs executed under control of an
operating system, and no privileged operations can be performed in the lesser-privileged state.
The lesser-privileged state is also known as a problem state, problem mode or user mode.

[0043] One such restricted resource that is not write accessible to a program executing in the
lesser-privileged state is the program status word (PSW). The PSW may comprise a program
counter of the next instruction to be executed, a condition code field usable by branch
instructions, an instrumentation control field for indicating whether instrumentation is enabled
or disabled, and other information used to control instruction sequencing and to determine the
state of the computer processor including the privilege state assigned to the program. In a
multithreaded processing environment, multiple programs share, or time slice, the available
computer processor capacity. Each of the programs has context information including an
associated PSW, an origin address of an address translation table for accessing main storage
assigned to the program, a set of general purpose register current values, control registers,
floating point registers, etc. The currently active, or controlling PSW, is called the current PSW.
It governs the program currently being executed. The computer processor has an interruption
capability, which permits the computer processor to context switch rapidly to another program
in response to exception conditions and external stimuli. When an interruption occurs, the
computer processor places the current PSW in an assigned storage location, called the old-
PSW location, for the particular class of interruption. The computer processor fetches a new
PSW from a second assigned storage location. This new context determines the next program
to be executed. In an embodiment, these storage locations are located in a memory location
accessible to the computer processor. VWhen the computer processor has finished processing
the interruption, the program handling the interruption may reload the old context including the
old PSW, making it again the current PSW, so that the interrupted program can continue.

DK/EP 2825964 T3

[0044] The fields of the PSW may be referenced either explicitly (e.g., when instruction
execution reads part of the PSW bits), or implicitly (e.g., in instructions fetching, operand
fetching, address generation calculations, address generation sources, etc.). The explicit
reference is generally performed at execution time, whereas the implicit reference is generally
performed at different stages of the pipeline during instruction execution (i.e., instruction fetch,
instruction decode, execution time and completion time). Individual fields in the PSW may be
referenced or updated independently of each other.

[0045] In an embodiment, by manipulating the context, an operating system controls computer
processing resources, including enabling run-time-instrumentation by the computer processor.
The run-time-instrumentation may be enabled or disabled during the execution of the
operating system, as well as by any software applications executed by the operating system.
The enabled/disabled state of run-time-instrumentation is saved as context information in the
PSW associated with a program.

[0046] A run-time-instrumentation (RI) facility may be incorporated on models implementing
z/Architecture. When the RI facility is installed and enabled, data is collected during program
execution into one or more collection buffers within the CPU and then reported to a program
buffer. Each unit of information stored is called a reporting group. The contents of a reporting
group consist of multiple records whose contents represent events recognized by the CPU
during program execution.

[0047] When the run-time-instrumentation facility is installed in a configuration, a PSW field (RI
bit) enables run-time-instrumentation. Validity of the run-time-instrumentation controls
determines the capability of turning on the RI bit, but when Rl is one, the CPU controls are
valid and run-time-instrumentation is enabled. The run-time-instrumentation facility may
include the following instructions: load run-time-instrumentation controls, modify run-time-
instrumentation controls, run-time-instrumentation emit, run-time-instrumentation next, run-
time-instrumentation off, run-time-instrumentation on, store runtime-instrumentation controls,
and test run-time-instrumentation controls.

[0048] The load run-time-instrumentation controls (LRIC) instruction initializes the runtime-
instrumentation controls that govern run-time-instrumentation. The modify run-time-
instrumentation controls (MRIC) instruction modifies all or a subset of the run-time-
instrumentation controls originally established by LRIC. The run-time-instrumentation emit
(RIEMIT) instruction collects the value of a general register by storing it into a collection buffer.
The run-time-instrumentation next (RINEXT) instruction performs directed sampling of the
next, sequential instruction (NSI) after RINEXT. The run-time-instrumentation off (RIOFF)
instruction disables run-time-instrumentation. The run-time-instrumentation on (RION)
instruction enables run-time-instrumentation. The store run-time-instrumentation controls
(STRIC) instruction places the current values of the run-time-instrumentation controls into a
specified storage location. The test run-time-instrumentation controls (TRIC) instruction
examines the run-time-instrumentation controls. If valid, the state of a controlsaltered indicator
is set.

DK/EP 2825964 T3

[0049] The run-time-instrumentation facility includes the ability for making a measurement-
alert external interruption pending. Some of the information collected by runtime-
instrumentation and reported to a program buffer is model-dependent and thus not defined.
Samples and data provided by the run-time-instrumentation facility are intended for statistical
estimation of performance characteristics, are substantially accurate, and may not be
repeatable. For example, regardless of sampling mode, it is unpredictable if a sample
instruction that caused an exception or is associated with certain system internal activities
would result in the store of a reporting group and, if stored, whether the model-dependent data
included in run-time-instrumentation data is affected.

[0050] A collection buffer is used to capture a set of records whose contents report on events
recognized by the processor during program execution. Examples are: execution of one or
more taken branches, transactional-execution abort events, instruction-fetch cache misses,
data fetch or store cache misses, and an operand of the RIEMIT instruction. Execution of the
RIEMIT instruction collects the value of a general register by storing it into the collection buffer.
Additional data can be collected and/or stored in other buffers, such as an instruction-data
buffer.

[0051] Reporting is subject to reporting controls. VWhen a sample instruction is identified, each
reporting control enables the checking of a corresponding condition. If a corresponding
condition exists, a reporting group is formed and stored. A reporting group is not stored when
no reporting control is enabled or the corresponding condition does not exist for an enabled
reporting control. Data reported about a sample instruction may be acquired from the
instruction-data buffer and other model-dependent sources, and then used to create the
contents of one or more records of the reporting group, one such record being an instruction
record.

[0052] Record types that may be captured in the reporting group store include: filler, extra,
begin, timestamp, instruction, emit, TX abort, call, return, and transfer. Afiller record is used in
a reporting group when the number of valid records in the collection buffer is not sufficient to fill
a reporting group of the current reporting-group size. An extra record may be used in the extra
section of a reporting group. A begin record is the first record of the first reporting group. A
timestamp record is stored as record 0 of every reporting group other than the first reporting
group. An instruction record is created when a reporting group is stored for a sample
instruction as the last record of the reporting group. An emit record is created by successful
execution of RIEMIT. A transaction-execution (TX) mode abort record is created by either an
implicit abort or by execution of a transaction abort instruction. A call record is created by
execution of a branch instruction which is categorized as a call-type branch instruction. A
return record is created by execution of a return-type branch instruction which is categorized
as a return instruction. A transfer record is created by execution of a branch instruction which
meets certain condition code criteria.

[0053] FIG. 5 depicts a schematic diagram of a system for run-time-instrumentation of a

DK/EP 2825964 T3

processor that may be implemented in an embodiment. In an embodiment, the system 500
includes a central processing unit (CPU) such as the processor 106 of FIG. 1. In an
embodiment, the processor 106 is a single processor. In an alternate embodiment, the
processor 106 is a single processing core of a multi-core processor. In an embodiment, the
processor 106 is capable of operating at varying speeds.

[0054] In an embodiment, the processor 106 further includes a register 510. The register 510
is a hardware register capable of storing words of data for use by the processor 106. The
register 510 includes one or more latches for storing bits of data that are accessible by the
processor 106. The register 510 may include general purpose registers and control registers
for example. The processor 106 additionally includes an instrumentation module 506 that is in
communication with the register 510. The instrumentation module 506 is a processing circuit
that controls the instrumentation of the processor 106. The instrumentation module 506 is
configured to collect instrumentation data, such as the execution path of one or more taken
branches, transactional execution abort events, various runtime operands, timestamp
information, etc. directly from the processor 106. The instrumentation module 506 collects the
instrumentation data from the processor 106, and stores the instrumentation data in a
collection buffer 508. In an embodiment, the collection buffer 508 is a circular buffer that
collects data received from the instrumentation module 506, and when the circular buffer is
filled it overwrites the oldest data with new data.

[0055] The processor 106 executes one or more operating systems 516 and one or more
applications 518. The one or more operating systems 516 and one or more applications 518
are stored in a storage 520, such as a hard drive, CD/ROM, flash memory, etc. and are loaded
into a main memory 514 in a runtime memory 504 area reserved for storing one or more active
pieces of the currently executing operating system and/or application, called pages, which are
loaded from the storage 520 into runtime memory 504 as needed. In an embodiment, each of
the operating systems execute as a virtual machine managed by a hypervisor (not shown) and
executed by the processor 106.

[0056] In an embodiment the processor 106 loads a PSW 512 in the register 510 from PSW
data 512 in the main memory 514 for the currently executing operating system or application
from the main memory 514 and sets one or more processor settings in, for example, the
register 510. In an embodiment, the PSW in the register 510, includes one or more bits for
enabling and controlling the instrumentation module 506.

[0057] The one or more applications 518 include software applications compiled to execute on
a specific operating system, interpreted code executing on an interpreter (e.g., Java), or
operating system support threads (e.g., process management, daemons, etc.). Each of the
one or more operating systems 516 and or the one or more applications 518 may execute an
instruction to trigger the instrumentation module 506 to start, or to stop, the collecting
instrumentation data.

[0058] In an embodiment, one of the one or more applications 518 executes an instruction that

DK/EP 2825964 T3

has been determined to be a sample instruction, thereby creating a sample point at the
completion of execution of the sample instruction and that then causes the instrumentation
module 506 to move the application's collected data from the collection buffer 508, to a
program buffer 522 in main memory 514 that is accessible to the application. The main
memory 514 may be any addressable memory known in the art. In an embodiment, the main
memory 514 may include a fast-access buffer storage, sometimes called a cache. Each CPU
may have an associated cache. In an additional embodiment, the main memory 514 is
dynamic random access memory (DRAM). In a yet another embodiment, the main memory is a
storage device, such as a computer hard drive, or flash memory accessible by an application.

[0059] To configure run-time instrumentation controls, the processor 106 supports a load run-
time instrumentation controls (LRIC) instruction. Beyond the specific LRIC fields described
further herein, it will be understood that additional fields can be defined to support other
functionality. The LRIC instruction can be used to load and initially configure run-time
instrumentation and is supported by instrumentation module 506 of FIG. 5. In an embodiment,
the instrumentation module 506, also referred to as run-time instrumentation module 506,
implements run-time-instrumentation controls and reporting controls. A current state of run-
time instrumentation controls can be stored from register 510 of FIG. 5 into main memory 514
using the store run-time controls (STRIC) instruction. The definition of various fields of a
control block loadable as an operand of the LRIC instruction is also used herein to refer to the
state of corresponding values of the run-time-instrumentation controls.

[0060] FIG. 6 depicts a portion of a run-time-instrumentation controls control block (RICCB)
including controls that are settable by a privileged state in an embodiment. The control block
portion 600 may include additional values other than those described in reference to FIG. 6.
Modification to the control block portion 600 may be performed by an LRIC instruction.

[0061] The control block portion includes a validity bit 602 (V bit). The validity bit 602 indicates
the validity of the set of run-time-instrumentation controls in the processor, as they were
previously set by an LRIC instruction.

[0062] The control block also includes an S bit 604, which is used to determine if the lesser-
privileged state program is allowed to execute an MRIC instruction. The K bit 606 indicates if
the lesser-privileged state program is permitted to execute in a semi-privileged state with
regard to the run-time-instrumentation controls, such as the origin address, and the limit
address of the run-time-instrumentation controls. The H bit 608 determines whether the
address controls (i.e., the origin address, limit address, and current address) refer to a primary
virtual address space or a home virtual address space. The 0 bit 610 is ignored and treated as
ao0.

[0063] A lesser-privileged state sample reporting control bit 612 (Ps bit) is used in conjunction
with lesser-privileged state programs. When in the lesser-privileged state and the Ps bit 612 in
the run-time-instrumentation controls is zero, the reporting controls of the run-time-
instrumentation controls are ignored when run-time-instrumentation is enabled, and thus do

DK/EP 2825964 T3

not cause a reporting group to be stored. When in the lesser-privileged state and the Ps bit
612 in the run-time-instrumentation controls is one, the reporting controls are checked and
used according to their defined function.

[0064] A supervisor-state sample reporting control bit 614 (Qs bit) is used in conjunction with
supervisor-state programs. When in the supervisor state and the Qs bit 614 in the runtime-
instrumentation controls is zero, the reporting controls of the run-time-instrumentation controls
are ignored when run-time-instrumentation is enabled, and thus do not cause a reporting
group to be stored. When in the supervisor state and the Qs bit 614 in the run-time-
instrumentation controls is one, the reporting controls are checked and used according to their
defined function.

[0065] The lesser-privileged state collection buffer control bit 616 (Pc bit) controls updates to
the collection buffer 508 of FIG. 5. When in lesser-privileged state and the Pc bit 616 in the
run-time-instrumentation controls is zero, collection buffer controls of the runtime-
instrumentation controls are ignored when run-time-instrumentation is enabled and updates of
the collection buffer 508 are prevented. When in the lesser-privileged state and the Pc bit 616
in the run-time-instrumentation controls is one, the collection buffer controls are checked and
used according to their defined function.

[0066] The supervisor-state collection buffer control bit 618 (Qc bit) controls updates to the
collection buffer 508. When in supervisor state and the Qc bit 618 in the run-time-
instrumentation controls is zero, collection buffer controls of the run-time-instrumentation
controls are ignored when run-time-instrumentation is enabled and the updates to the
collection buffer 508 are prevented. When in supervisor state and the Qc bit 618 in the
runtime-instrumentation controls is one, the indicated collection-buffer controls are checked
and used according to their defined function.

[0067] The G bit 620 is the pending control of a run-time-instrumentation-halted interruption,
also called a halted interruption. WWhen the G bit 620 is zero, a halted interruption is not
pending. When the G bit 602 is one, a halted interruption is pending. When the first reporting
group in a program buffer 522 is written, the G bit 620 is set to zero. That is, when run-time-
instrumentation program-buffer origin address (ROA) 702 equals a run-time-instrumentation
program buffer current address (RCA) 706 of FIG. 7, the G bit 620 is set to zero. VWhen an
attempt to store other than the first reporting group in program buffer 522 is made, the G bit
620 is set to zero if the run-time-instrumentation-halted condition does not exist, and the
reporting group is stored. When an attempt to store other than the first reporting group in
program buffer 522 is made, the G bit 620 is set to one if the run-time-instrumentation-halted
condition does exist, and the reporting group is not stored.

[0068] The U bit 622 is the enablement control for a buffer-full interruption and a halted
interruption. When U bit 622 is zero, generation of an interruption request is disabled and, if
pending, remains pending.

DK/EP 2825964 T3

[0069] The L bit 624 is the pending control of a buffer-full interruption. When L bit 624 is zero,
a buffer-full interruption is not pending. When L bit 624 is one, a buffer-full interruption is
pending.

[0070] The key field 626 is a 4-bit unsigned integer whose value is used as a storageprotect
key for the store of a reporting group. A store of a reporting group is permitted only when the
storage key matches the access key associated with the request for storage access, and a
fetch is permitted when the storage key matches the access key or when a fetchprotection bit
of the storage key is zero. The keys match when the four access control bits of the storage key
are equal to the access key, or when the access key is zero.

[0071] FIG. 7 depicts a portion of an RICCB control block when MRIC is permitted to execute
in semi-privileged mode (i.e., K bit is one). The control block 700 can also be an operand of an
LRIC instruction for initialization of run-time-instrumentation controls. The control block 700
may include additional values other than those described in reference to FIG. 7. In an
embodiment, sections of the MRIC instruction operand that are not otherwise designated are
inaccessible by a lesser-privileged state program. When the semi-privileged mode is permitted,
a run-time-instrumentation program-buffer origin address (ROA) 702 and a run-time-
instrumentation program-buffer limit address (RLA) 704 are set with the MRIC instruction by
the lesser-privileged state program. The ROA 702 is the location of the first byte of the
program buffer 522 of FIG. 5. The RLA 704 indicates the location of the last byte of the
program buffer 522.

[0072] In an embodiment, a run-time-instrumentation program buffer current address (RCA)
706 may be updated by the MRIC instruction. The RCA 706 is the location in the program
buffer 522 of a next reporting group to be stored. The RCA 706 examines the reporting group
size field 744 (RGS field) and affects the number of significant bit positions used to form the
address of the program buffer 522. The 64-bit RCA 706 is word 0, bit positions 0 through 26-
RGS of word 1, and RGS+5 binary zeros appended on the right. This is the starting location in
the program buffer 522 of FIG. 5 of a subsequent reporting group that will be stored in the
program buffer 522. The reporting group is a unit of information that is created by the
instrumentation module 506, and subsequently stored in the program buffer 522. In an
embodiment, when the RGS field 744 specified by the RCA 706 is not equal to the run-time-
instrumentation control's current reporting group size (i.e., the RCA 706 would change the
RGS field 744) then the RCA 706 is set to the ROA 702.

[0073] A remaining sample interval count field 742 (RSIC field) may be updated by the lesser-
privileged program using the MRIC instruction. The RSIC field 742 includes a 64-bit unsigned
integer that indicates a remaining sample interval count. WWhen the value of the RSIC field 742
in the run-time-instrumentation controls is zero or equal to the value in a scaling factor field
740 (SF field), and run-time-instrumentation is enabled, then the next sample interval is a full
interval based on the sampling mode 708 (M) and SF field 740 values. When RSIC field 742 is
nonzero and less than the SF field 740 and run-time-instrumentation is enabled, the next
sample interval is a partial interval. When the RSIC field 742 is nonzero and greater than the

DK/EP 2825964 T3

SF field 740 value and run-time-instrumentation is enabled, the next sample interval is an
extended interval. When an extended interval expires, the next interval is based on the SF field
740 value. When the RSIC field 742 is set to a nonzero value, it is subject to the same model-
dependent maximum limit to which the SF field 740 is also subject. When the original value of
the RSIC field 742 is zero, the sampling mode will dictate whether the RSIC field 742 is set to
the value in the SF field 740 during execution of LRIC and MRIC instructions, or whether it
continues to show as zero until runtime-instrumentation is enabled.

[0074] The SF field 740 contains a 64-bit unsigned integer whose value is a scaling factor
count of units. The dimension of the units is determined from the mode field 708 (M field).
When the value in the RSIC field 742 is zero, the SF field 740 provides an initial value of the
RSIC field 742 that is decremented to zero at which point the current instruction is recognized
as a sample instruction, and the interval count is refreshed from the SF field 740 value. A valid

value of the SF field 740 is in the range one to 254 - 1. If zero is specified, a value of one is
assumed. However, each model may have both a minimum and a maximum value of the SF
field 740. The minimum and maximum values may also be different based on the mode field
708. If a value less than the minimum is specified, the model-dependent minimum value is
loaded. If a value greater than the maximum value is specified, the model-dependent
maximum value is loaded.

[0075] The DC control field 736 is a 4-bit unsigned integer whose value designates a cache-
latency level associated with a data fetch or store cache miss. That is, the sample instruction
encountered a data access cache miss. Unless prohibited by another run-time-instrumentation
control, an attempt is made to store a reporting group representing the sample instruction
whose data access recognized a miss at a cache-latency level numerically greater than or
equal to the level designated by the value of the DC control field 736. The cache structure and
cache-latency level for data access is model dependent. For an instruction with multiple or long
operands, it is model dependent which, if any, operand access is used for reporting control.
Model-dependent behavior may ignore the value of the DC control field 736 and thus not use it
as a reason to store a reporting group.

[0076] The IC field 734 is a 4-bit unsigned integer whose value designates a cache-latency
level associated with an instruction-fetch cache miss. That is, the fetch of the sample
instruction encountered an instruction-fetch cache miss. For both the IC field 734 and DC
control field 736, a cache-latency level is an abstraction of how far a certain cache level access
is from the observing processor. The latency level depends on the combination of the amount
of nested cache levels between the processor and main storage, and how such cache levels
are shared among multiple processors. A larger latency level generally corresponds to a more
time-consuming access. Values in the IC field 734 and DC control field 736 may be thought of
as zero-origin identification of a cache-latency level. For example, a value of zero corresponds
to an L1 cache (i.e., the cache that is closest to the processor). A value of one is therefore the
next layer of cache which may be known as an L2 cache, or even an L1.5 cache in some
machines. Values of 2-15 designate the logical progression of additional cache-latency layers
until main memory is reached, but not including main memory itself. Generally, cache

DK/EP 2825964 T3

structures do not go as deep as fifteen layers. Therefore, a value of 15 in the IC field 734 and
DC control field 736 is interpreted as a special case, meaning that a cache miss on instruction
fetch or data access, respectively and regardless of cache-latency level, is not recognized for
the purpose of generating the store of a reporting group. Unless prohibited by another run-
time-instrumentation control, an attempt is made to store a reporting group representing the
sample instruction whose fetch recognized a miss at a cache-latency level numerically greater
than or equal to the level designated by the value of the IC field 734. The cache structure and
cache-latency level for instruction fetching is model dependent. Model-dependent behavior
may ignore the value of the IC field 734 and thus not use it as a reason to store a reporting

group.

[0077] The cache-latency-level-override reporting control bit 732 (F bit) is for nonbranch
instructions and for branch-prediction controls. VWhen the F bit 732 in the run-time-
instrumentation controls is zero, the cache-reporting controls (IC field 734 and DC control field
736) of the run-time-instrumentation controls are checked and used according to their defined
function. The branch-prediction controls (BPxn 722, BPxt 724, BPti 726, and BPni 728 bits) of
the run-time-instrumentation controls are checked and used according to their defined
function. When the F bit 732 is one, these same controls are ignored and a reporting group is
stored unless prohibited by another control.

[0078] The data-cache-miss control bit 730 (D bit) indicates if a reporting group is to be stored.
If the D bit 730 is one, an extra type record may or may not be placed in the extra section of
the reporting group which contains model dependent data about the sample instruction.

[0079] The MRIC instruction includes branch-prediction (BP) reporting controls (BPxn 722,
BPxt 724, BPti 726, and BPni 728). If a BP reporting control bit in the run-time-instrumentation
controls is zero, the corresponding condition is not checked. If a BP reporting-control bit is one
and the corresponding branch-prediction condition exists, and a reporting group is stored.

[0080] The BPxn bit 722, when one, enables checking of branch-prediction information. Thus,
if the sample branch is incorrectly predicted to be taken but is not taken, a reporting group is
stored.

[0081] The BPxt bit 724, when one, enables checking of the branch-prediction information.
Thus, if the sample branch is incorrectly predicted to be not taken but is taken, a reporting
group is stored.

[0082] The BPti bit 726, when one, enables checking of the branch-prediction information.
Thus, if the sample branch is correctly predicted to be taken, and is taken, but the branch
target is incorrectly predicted, a reporting group is stored.

[0083] The BPni bit 728, when one, enables checking of the branch-prediction information.
Thus, if the sample branch is correctly predicted to not be taken, and is not taken, and the
branch target is incorrectly predicted, a reporting group is stored.

DK/EP 2825964 T3

[0084] The enablement control of transactional-execution-mode records bit 720 (X bit) controls
the collection of transactional-execution-mode abort records. VWhen the X bit 720 in the run-
time-instrumentation controls is zero, transactional-execution-mode abort records are not
collected. When the X bit 720 is one, transactional-execution mode abort records are collected
and placed in the collection buffer 508 of FIG. 5. If a model does not have a transactional-
execution facility installed, the X bit 720 is ignored.

[0085] The RIEMIT instruction control bit 718 (E bit) controls the execution of the RIEMIT
instruction. When the E bit 718 in the run-time-instrumentation controls is zero or ignored and
treated as zero when run-time-instrumentation is enabled, RIEMIT executes a no-operation.
When E bit 718 is one, and not otherwise ignored, RIEMIT is enabled to execute its defined
function.

[0086] The J bit 746 when zero, specifies that the branch on condition (BC) instruction is in the
other-type branch category, regardless of mask value. If the J bit 746 is one, the BC instruction
which specifies a mask of 15 is in the return-type branch category. VWWhen the BC instruction
specifies a mask of 1- 14, it is not affected by the J bit 746 and is always in the other type
branch category. When in the return-type branch category, the R bit 716 controls inclusion into
the collection buffer 508 of FIG. 5. When in the other type branch category, the B bit 748
controls inclusion into the collection buffer 508. The other-type branch category may also be
indicated as the transfer-type branch category.

[0087] The instruction address code bit 714 (C bit) controls the enablement of call type
branches. If the C bit 714 in the run-time-instrumentation controls is one and the instruction is
a call-type branch, the collection buffer 508 is updated. If model-dependent detection of both
call-type and return-type branches is combined, the C bit 714 operates on both types and the
R bit 716 is not effective.

[0088] The R bit 716 is the enablement control of return-type branches. If the R bit 716 in the
run-time-instrumentation controls is one and the instruction is a return-type branch, then the
collection buffer 508 is updated.

[0089] The B bit 748 is the enablement control of branches other than call-type and return-
type branches. If the B bit 748 in the run-time-instrumentation controls is one and the
instruction is an other-type branch recognized by run-time-instrumentation, then the collection
buffer 508 is updated.

[0090] The maximum-address exceeded bit 712 (MAE bit), if set to 1, indicates that, one or
more reporting groups have been stored that have an instruction address code (C field) set to
one. Once the MAE bit 712 is set to one, continuing execution of run-time-instrumentation does
not set it back to zero. Execution of the LRIC instruction or the MRIC instruction which specifies
the MAE bit 712 as zero will set the MAE bit 712 to zero.

DK/EP 2825964 T3

[0091] The run-time-instrumentation next (RINEXT) control bit 710 (N bit) controls the
enablement of the run-time-instrumentation next instruction, which controls the execution of a
sample instruction. When the N bit 710 in the run-time-instrumentation controls is zero or
ignored and treated as zero, RINEXT executes a no-operation. When the N bit 710 is one, and
not otherwise ignored, RINEXT is enabled to execute its defined function.

[0092] The mode field 708 (M field) is a 4-bit unsigned integer whose value in the runtime-
instrumentation controls specifies the sampling mode for the run-time-instrumentation controls.
Supported sampling modes, may include sampling based on counting CPU cycles, counting
instructions, or be directed to sample in response to a sample instruction, such as RINEXT.

[0093] The reporting group size field 744 (RGS) is a 3-bit unsigned integer whose value
specifies the number of records of a reporting group (Rrg). The number of records in a

reporting group may vary from two records, including a begin/timestamp record and an
instruction last record, up to two hundred fifty-six records. In an embodiment, the upper limit
may be model dependent. The number of 16-byte records placed into a reporting group is
2(RGS+1)

[0094] The primary-CPU capability suppression control bit 738 (Y bit) and the secondary-CPU
capability suppression control bit 739 (Z bit) are collectively referred to as the suppression
control. Suppression of the storing of a reporting group means that an attempt to store is not
performed. The suppression control is not effective and no suppression occurs when the CPU
capability of all CPUs in the configuration is the same. In a configuration, if the CPU capability
of a CPU differs from the capability of another CPU, the suppression control is in effect, and at
least one CPU is said to be operating at the CPU capability or primary-CPU capability while at
least one other CPU is said to be operating at the secondary-CPU capability. The primary and
secondary CPU capabilities are different operating speeds. When Y bit 738 and Z bit 739 are
both zero, suppression does not occur. When Y bit 738 is zero and Z bit 739 is one,
suppression occurs if the CPU, e.g., processor 106, is operating at the secondary-CPU
capability. Vwhen Y bit 738 is one and Z bit 739 is zero, suppression occurs if the CPU, e.g.,
processor 106, is operating at the primary-CPU capability. VWhen Y bit 738 and Z bit 739 are
both one, suppression occurs.

[0095] The above fields and bits of FIG. 7 are an example of the placement and naming of the
fields and are provided herein for purposes of clarity. It will be understood that in other
embodiments the only a subset of the fields may be used, fields may be in any order or
position, and/or may be signified by different names.

[0096] When run-time instrumentation is installed and enabled, a number of events and data
can be captured in collection buffer 508. The collection buffer 508 is used to capture a set of
records whose contents report on events recognized by the processor 106 during program
execution. Examples are: execution of one or more taken branches, transactional-execution
abort events, cache-misses, and an operand of a run-time instrumentation emit instruction.
The IC and DC controls fields 734 and 736 set a level at which the program would be

DK/EP 2825964 T3

interested in taking some corrective action to improve instruction or data pre-fetch behavior.
Execution of the RIEMIT instruction collects the value of a general register by storing it into the
collection buffer 508. Additional data can be collected and/or stored in other buffers, such as
an instruction-data buffer (IDB) (not depicted) used to collect model-dependent sample-
instruction data to construct a run-time-instrumentation instruction record.

[0097] Collected run-time-instrumentation information is reported on a sampling basis.
Instructions from the instruction stream are sampled. The instruction that is sampled is called
the sample instruction. A number of modes for determining a sample instruction are defined as
follows when run-time instrumentation is enabled. In cycle-count mode, a count is the number
of CPU cycles specified in either SF 740 or RSIC 742, whichever is used to provide the count
for the current interval. The count is adjusted responsive to an event associated with the
sampling mode. For example, the count may be decremented when the processor 106 is in the
operating state. When the count is decremented to threshold value, such as zero, the current
instruction is recognized as a sample instruction, and the count is reinitialized to the SF 740
value and begins to be decremented with the next cycle. WWhen execution of the sample
instruction completes, reporting is performed, if appropriate.

[0098] In instruction-count mode, a count is specified in either SF 740 or RSIC 742, whichever
is used to provide the count for the current interval. For an instruction which consists of a
single unit of operation, the count is decremented at the completion of the instruction as an
event used to adjust the count. The instruction is a sample instruction when the count is
decremented to a threshold value, such as zero. For an instruction which consists of multiple
units-of-operation, the count may be decremented in one of the following ways:

1.a. For an interruptible instruction, all units of operation through partial completion
represent one counted unit for which the count is decremented.

2.b. For an interruptible instruction, all units of operation since the most-recent partial
completion through final completion represent one counted unit for which the count is
decremented.

3. ¢. For an instruction that completes after performing a CPU-determined subportion of
the processing specified by the parameters of the instruction, the completion represents
one counted unit for which the count is decremented.

4. d. For an instruction that completes after performing multiple units of operation but not in
categories a-c above, completion of the last unit of operation represents one counted
unit for which the count is decremented.

An instruction is a sample instruction when the count is decremented to zero for any counted
unit of the instruction. When a threshold value is reached, such as zero, the count is
reinitialized to the SF 740 value and begins to count down as described in a-d above. In all
cases of the count modes, reporting, if appropriate, occurs after completion of the last unit of
operation of the sample instruction.

[0099] In directed-sampling mode, directed sampling occurs when the N-bit 710 is one and the
RINEXT instruction is executed successfully. The sample instruction is the next, sequential

DK/EP 2825964 T3

instruction (NSI) after the RINEXT instruction. If the next, sequential instruction is an execute-
type instruction, the sample instruction is the target instruction of the execute-type instruction.
Directed sampling may occur when in the cycle-count or instruction-count mode. Count
sampling continues in conjunction with directed sampling and any of its resulting actions, and is
not otherwise affected, except that if the sample instruction determined from count sampling is
the same instruction determined by directed sampling, two reporting groups are not stored.

[0100] Whatever the sampling mode is, when a sample instruction is identified by execution of
the RINEXT instruction, a reporting group is stored. However, the run-time-instrumentation
controls Y 738, Z 739, Qs 614, and Ps 612 continue to be effective.

[0101] Cycle-count and instruction-count sampling each determine an approximate interval
which is subject to an amount of variability based on internal system events and exception
conditions. The countdown begins when run-time instrumentation transitions from disabled to
enabled. Directed sampling is subject to a lesser amount of variability, depending on any event
that can be interposed between completion of RINEXT and the NSI. Of note, an interruption
can cause what was thought to be the NSI to no longer be the NSI.

[0102] Sampling, regardless of the mode, identifies a sample instruction. Once a sample
instruction is identified, collection stops upon completion of execution of the sample instruction
and reporting begins. The various reporting controls that govern reporting then apply.
Collection resumes when store of the reporting group is made pending.

[0103] When not in the transactional-execution mode, store of a reporting group becomes
pending upon completion of execution of a sample instruction. When in the transactional-
execution mode, upon completion of execution of a sample instruction, store of a reporting
group is deferred until the transaction ends and then becomes pending. VWhen the store of a
reporting group is deferred or pending, it may be purged if any of the following interruptions is
recognized: 1) program interruption; 2) exigent machine-check interruption; 3) restart
interruption; and 4) supervisor-call interruption.

[0104] Any pending I/O, external, and repressible machine-check interruption remains pending
until either the reporting group has been stored or the run-time-instrumentation controls
determine that a reporting group is not to be stored.

[0105] Each mode may or may not allow a different set of reporting controls. When the
sampling mode is either instruction count or cycle count, but directed sampling is also used, it
is possible for the same sample instruction to be identified by multiple sampling methods.
When this occurs, and the reporting controls to be used differ according to the sampling mode,
the reporting controls associated with directed sampling apply.

[0106] Precise determination of an interval meant to sample a particular instruction is generally
not feasible, due to asynchronous and unsolicited system events that may occur. Instead, the
RINEXT instruction can be used to more-closely designate a sample instruction.

DK/EP 2825964 T3

[0107] When in cycle-count mode or instruction-count mode, the RINEXT instruction can be
issued in too close a proximity to the sample instruction identified from instruction-count or
cycle-count sampling. The contents of the associated reporting group are as if the sample
instruction were identified as the NSI of the RINEXT instruction and not as if a cycle-count or
instruction-count identification of the sample instruction applied.

[0108] Execution of RINEXT may execute as a no-operation if any one or more of the following
exception conditions is met:

—_

. 1. Run-time-instrumentation controls are not valid.
. 2. In the problem state, Ps 612 of the current run-time-instrumentation controls is zero,
indicating that problem-state reporting is not permitted.
3. 3. In the supervisor state, Qs 614 of the current run-time-instrumentation controls is
zero, indicating that supervisor-state reporting is not permitted.
4. 4. The N-bit 710 of the current run-time-instrumentation controls is zero, indicating that
the RINEXT instruction itself is not permitted.
5. 5. Storage is suppressed.
6. 6. A field in the current PSW indicates that run-time instrumentation is disabled.
7. 7. A model-dependent threshold would be exceeded. The number of times RINEXT has
been issued in a period of time has exceeded a model-dependent limit.
8. 8. A program-buffer-full condition exists.
9. 9. A run-time-instrumentation-halted condition exists.
10. 10. The next, sequential instruction is a start interpretive execution instruction.
11. 11. The next, sequential instruction is a supervisor call instruction.

N

[0109] Turning to FIG. 8, an embodiment of collection buffer 508 is generally shown. As
described previously, when run-time instrumentation is enabled during program execution, run-
time-instrumentation data is collected within the processor 106. In an embodiment, the place
where data is collected within the processor 106 is the collection buffer 508, and optionally an
instruction-data buffer. In an embodiment, the collection buffer 508 is an internal buffer of the
processor 106 that is used to save the most recent records collected. When a sample trigger
point is detected, the records are copied from the collection buffer 508 into the program buffer
522 as part of a reporting group that is written to the program buffer 522. In an embodiment,
the records are copied from the collection buffer in a non-destructive manner.

[0110] The collection buffer 508 may be referred to as a "hardware collection buffer" because
the collection buffer 508 is located in the processor and in an embodiment implemented as an
array of register pairs representing instruction address 802 and event metadata 804 of a given
event. In an embodiment, the instruction-data buffer is also implemented by an array of
register pairs. An example of an event is a taken branch for which the register pair may hold
the instruction address of the branch, and the metadata may hold the target of the branch as
well as information regarding the historic behavior of the branch. In an embodiment, the

DK/EP 2825964 T3

registers pairs are ordered and updated sequentially as events occur in the instruction stream.
A counter is maintained to indicate the index of the most recently updated entry in the array. In
an embodiment the collection buffer 508 is a circular buffer, and when the collection buffer 508
is full, the next event overwrites the first entry in the array, and sequential updating of the
array's register pairs re-starts on subsequent events. As such, assuming an array CB[0] to
CB[N-1] and a counter i indicating the latest updated index, the trace of events captured would
be represented by the sequence CBJi], CB[i-1] ... CB[1], CBJ[0], CB[N-1], CB[N-2] ... CBJ[i+1]. In
another embodiment, two pointers are used: a head pointer pointing to the oldest entry in the
buffer, and a tail/current pointer pointing to the newest entry in the buffer.

[0111] Events that represent a state of the processor 106 at any given execution point are
captured sequentially in the collection buffer 508. The collection buffer 508 is used to capture a
set of records whose contents report on events recognized by the processor 106 during
program execution (e.g., execution of one or more taken branches, transactional-execution
abort events, the operand of a RIEMIT instruction, etc.). In an embodiment the events
recognized depend on the contents of the RICCB shown in FIG. 7. Entries in the embodiment
of the collection buffer 508 shown in FIG. 8 include an event instruction address 802 and other
relevant event metadata 804. Examples of event metadata 804 include, but are not limited to:
the instruction address of a taken branch and its target including some information about the
historic behavior of the branch; the instruction address of a RIEMIT instruction and a
respective register value; and the address of a transaction abort instruction and a respective
transaction recovery entry point.

[0112] The embodiment of the collection buffer 508 shown in FIG. 8 is capable of storing up to
thirty-two entries (i.e., information about thirty-two events), with each instruction address 802
specified by sixty-four bits (e.g., bits 0:63), and event metadata 804 by sixty-four bits (e.g., bits
64:127). The size of the collection buffer (Rcg) is a model dependent count, representing a

number of records. In the embodiment of the collection buffer 508 shown in FIG. 8, the byte
size of the collection buffer is a multiple of the sixteen byte record size. In an embodiment, the
size of the collection buffer is a number of records greater than or equal to the difference
between the count of the largest reporting group (Rrg) of the model and the count of the

records in a reporting group that are not acquired from the collection buffer (Rnc). Thus, in an

embodiment, the size of the collection buffer is expressed as:

Rep 2 (Ryg — Rug).

[0113] In an embodiment, contents of the collection buffer 508 and the instruction data buffer
(if one is used) are purged or otherwise affected by the following events: (1) an interruption; (2)
the PSW bit that turns on and off the run-time instrumentation facility (e.g., bit 24) changes
from a one to a zero; and (3) when a sample instruction is identified when the run-time
instrumentation facility is in a transactional-execution mode (in this case, further update of the
collection data buffer 508 and instruction-data buffer stops and resumes when the transaction
ends, at which time, a store of the reporting group is pending and the collection buffer 508 and
instruction-data buffers are purged.

DK/EP 2825964 T3

[0114] In an embodiment, such as the emulated host computer system shown in FIG. 1B, the
collection buffer 508 is implemented using registers and/or memory. In this embodiment, the
optional instruction-data buffer, if present, is also implemented using registers and/or memory.

[0115] In embodiments, additional capabilities can affect data collection and may be viewed as
providing additional data-collection points while not substantially disturbing the regular
instruction-count or cycle-count sampling described previously. These include execution of a
RIEMIT instruction, which collects the value of a general register by storing it into the collection
buffer 508. In addition, the data-collection control bits in the run-time instrumentation controls
described previously can be used to customize the types of data collected (e.g., the E, C, R,
and B control bits). In this manner, the type of data collected is programmable.

[0116] In an embodiment, an instruction-data buffer is implemented to collect model
dependent sample instruction data that is used to construct a run-time-instrumentation
instruction record. The instruction-data buffer collects data from an instruction in anticipation of
being available when the instruction is identified as a sample instruction. In an embodiment,
the instruction-data buffer is a hardware buffer/storage location in the processor where
information about an instruction that would become the trigger as a sample point is saved, so
that during the log out process, it can be written out together with data from the collection
buffer 508. Similar to the collection buffer 508 it includes the instruction address, and meta-
data associated with that instruction. The metadata in the instruction-data buffer is often
machine dependent and may include, but is not limited to: cache miss related information, and
branch prediction related information.

[0117] In accordance with embodiments, other data collected may not be from the collection
buffer 508 and not from the instruction-data buffer. Examples include data used to form parts
of the following: (1) the first record of a reporting group: timestamp or begin record; and (2)
additional types of records may be created for every reporting group and thus not stored in the
collection buffer 508, such records, when present, may be placed in the extra or machine-
dependent section of a reporting group. These records are referred to herein as "system
information records".

[0118] FIG. 9 depicts a high-level example of a reporting group 900 stored to program buffer
522 at a sample point. The size of a reporting group in records is represented by Rrg, equals

2(RGS*1) 'where RGS is the reporting group size as an exponent. A model-dependent number
of records (Ryc) copied from a location other than the collection buffer 508 may or may not be
copied non-destructively when used in a reporting group. In the example of FIG. 9, Rrg = 8,
Rgs = 2, and Ryc = 4. The example reporting group 900 shown in FIG. 9 includes a header

section 902, a body section 904, an extra records section 906, and a footer section 908.

[0119] The header section 902 may include a begin record or a timestamp record to hold
status, tracking, and/or timing information. A begin record is stored in the header section 902

DK/EP 2825964 T3

for the first reporting group stored in a program buffer (i.e., when the RCA 706 is equal to the
ROA 702). In an embodiment, the begin record includes a record type field of "02", a number
of reporting groups (NRG) field for indicating how many reporting groups are currently stored
in the program buffer, a RGS field to indicate the size of the reporting groups, a stopped (S)
field for indicating whether or not the program buffer 522 is full, a halted (H) field for indicting
whether the run-time instrumentation is halted, and a time of day (TOD) clock field for
indicating when the begin record was written. In an embodiment, at least a subset of the fields
in the begin record are sourced from the Rl control block (e.g., RICCB). An embodiment of the
timestamp record has a record type of "03" and includes a TOD clock field for indicating when
the record was stored. In an embodiment, a timestamp record is stored in the header section
902 for each reporting group other than the first reporting group.

[0120] The body section 904 of the reporting group may include a variety of records for events
and information sampled from collection buffer 508. Events and information may represent, for
example, state information captured by an emit instruction, a transactional-execution abort, a
call, a return, a branch, and filler.

[0121] In an embodiment, an emit record is created and stored in the collection buffer 508
upon a successful execution of a RIEMIT instruction. An embodiment of the emit record
includes a record type field of "10", an instruction address code field to indicate how the
instruction address bit positions of the current PSW are represented in the emit record, an
instruction address field which varies depending on the addressing mode (e.g., 64, 31 or 24
bit) and contains the instruction address of the RIEMIT instruction or execute type instruction if
the RIEMIT was the target of an execute type instruction, and an emit data field for storing the
data from the general register specified by the RIEMIT instruction.

[0122] In an embodiment, a transactional execution mode abort record is created and stored
in the collection buffer 508 by either an implicit abort or by execution of a transaction abort
instruction. An embodiment of the abort record includes a record type field of "1", an
instruction address code field to indicate how the instruction address bit positions of the current
PSW are represented in the transactional-execution abort record, an instruction address field
which varies depending on the addressing mode (e.g., 64, 31 or 24 bit) and contains the
instruction address of the aborted instruction or execute type instruction if the aborted
instruction was the target of an execute type instruction, and a field for any model dependent
data associated with the abort.

[0123] In an embodiment, a call record is created by execution of a call type branch
instruction, such as: BRANCH AND SAVE (BASR) when the R2 field is nonzero, BRANCH AND
SAVE (BAS), BRANCH RELATIVE AND SAVE LONG, BRANCH RELATIVE AND SAVE,
BRANCH AND LINK (BALR) when the R2 field is nonzero, BRANCH AND LINK (BAL), and
BRANCH AND SAVE AND SET MODE when the R2 field is nonzero. An embodiment of the call
record includes a record type field of "12", an instruction address code field to indicate how the
instruction address bit positions of the current PSW are represented in the call record, an
instruction address field which varies depending on the addressing mode (e.g., 64, 31 or 24

DK/EP 2825964 T3

bit) and contains the address of the branch instruction or execute type instruction if the branch
instruction was the target of an execute type instruction, and a well behaved field for indicating
whether or not the branch was correctly predicted, and a target address field containing the
branch target address (also referred to as the "called location").

[0124] Return records and transfer records may have the same format as the call records. In
an embodiment, a return record has a record type field of "13" and is created by execution of a
return type branch instruction such as a BRANCH ON CONDITION (BCR) when the R2 field is
nonzero and the mask is 15. For the return record, the instruction address field contains the
address of the branch instruction or execute type instruction if the branch is the target of an
execute type instruction, and the target address field contains the return location.

[0125] In an embodiment, a transfer record has a record type field of "14" and is created by
execution of a return type branch instruction such as: a. BRANCH ON CONDITION (BCR)
when the R2 field is nonzero and the mask is in the range 1-14; b. BRANCH ON CONDITION
(BC) when the J bit is zero or the mask is in the range 1-14; ¢. BRANCH ON COUNT (BCT,
BCTR, BCTG,BCTGR); d. BRANCH ON INDEX HIGH (BXH, BXHG); e. BRANCH ON INDEX
LOW OR EQUAL(BXLE, BXLEG); f. BRANCH RELATIVE ON CONDITION(BRC); g. BRANCH
RELATIVE ON CONDITION LONG (BRCL); h. BRANCH RELATIVE ON COUNT
(BRCT,BRCTG); i. BRANCH RELATIVE ON COUNT HIGH(BRCTH); j. BRANCH RELATIVE ON
INDEX HIGH(BRXH, BRXHG); k. BRANCH RELATIVE ON INDEX LOW OR EQUAL (BRXLE,
BRXLG); 1. COMPARE AND BRANCH (CRB, CGRB); m. COMPARE AND BRANCH RELATIVE
(CRJ,CGRJ); n. COMPARE IMMEDIATE AND BRANCH(CIB, CGIB); 0. COMPARE IMMEDIATE
AND BRANCH RELATIVE (ClJ, CGlJ); p. COMPARE LOGICAL AND BRANCH(CLRB, CLGRB);
g. COMPARE LOGICAL AND BRANCH RELATIVE(CLRJ, CLGRJ); r. COMPARE LOGICAL
IMMEDIATE AND BRANCH (CLIB, CLGIB); and s. COMPARE LOGICAL IMMEDIATE AND
BRANCH RELATIVE (CLIJ, CLGIJ). The transfer record is created when the branch is taken.
For the transfer record, the instruction address field contains the address of the branch
instruction or execute type instruction if the branch is the target of an execute type instruction,
and the target address field contains the return location.

[0126] A filler record is used in a reporting group when the number of valid records in the
collection buffer 508 is not sufficient to fill a reporting group of the current RGS. An
embodiment of a filler record includes record type field of "00" to indicate that the record is a
filler record and the remaining bytes are undefined.

[0127] The extra records section 906, when present, may contain model-dependent records.
In an embodiment, the format of an extra record is similar to the filler record except for the
record type is set to "01" to indicate that the record is an extra record and the remaining bytes
of the extra record may contain model dependent data.

[0128] The footer section 908 can include an instruction record containing information about
execution of a sample instruction. An instruction record is created when a reporting group is
stored for a sample instruction. An embodiment of the instruction record includes a record type

DK/EP 2825964 T3

field of "04", an instruction address code field to indicate how the instruction address bit
positions of the current PSW are represented in the instruction record, an instruction address
field which varies depending on the addressing mode (e.g., 64, 31 or 24 bit) and contains the
instruction address of the sample instruction or execute type instruction if the sample
instruction was the target of an execute type instruction, and an instruction-data buffer (IDB)
field containing any model dependent data collected from the IDB.

[0129] As described previously, the run-time-instrumentation function is a new facility that may
be used in not only in a laboratory environment, or for off-line analysis, but also in live software
environments within programs at runtime, and under program control. Initially, a privileged
state may set controls of a processor 106 to manage run-time-instrumentation. In an
embodiment, the set of controls are originally loaded by successful execution of the load run-
time-instruction control (LRIC) instruction by the privileged state. The flexibility of the run-time-
instrumentation facility is enhanced by providing the ability to turn the run-time instrumentation
facility on and off from a lesser-privileged state. In this manner, the data collected by the run-
time instrumentation facility can be targeted to particular instructions.

[0130] In accordance with embodiments, both the RIOFF instruction and the RION instruction
may be executed by an application executing in a lesser-privileged state. If the execution of the
RIOFF instruction is successful, then the run-time instrumentation is disabled when execution
of the RIOFF instruction successfully completes, otherwise, if the execution of the RIOFF
instruction is unsuccessful, then the RIOFF instruction will have no impact on the status (e.g.,
enabled or disabled) of the run-time instrumentation facility. Similarly, if the execution of the
RION instruction is successful, then the run-time instrumentation is enabled when execution of
the RION instruction successfully completes, otherwise, if the execution of the RION instruction
is unsuccessful, then the RION instruction will have no impact on the status (e.g., enabled or
disabled) of the run-time instrumentation facility.

[0131] FIG. 11 depicts an RIOFF instruction in accordance with an embodiment. As shown in
FIG. 11, the RIOFF instruction 1100 includes an operation code 1102 and 1104 (also referred
to as "opcode” or "split opcode” in this particular case). The opcode 1102 and 1104 identifies
the RIOFF instruction 1100 to the processor, such as processor 106 of FIG. 5. FIG. 11 depicts
one embodiment of the RIOFF instruction, it will be understood by those of ordinary skill in the
art that the RIOFF instruction may be formatted differently and/or contain different operands
and opcodes in other embodiments.

[0132] FIG. 12 depicts a process flow of an RIOFF instruction in accordance with an
embodiment. In an embodiment, the process flow of FIG. 12 is executed by the
instrumentation module 506 of FIG. 5. At block 1202, an RIOFF instruction issued by a lesser-
privileged state program (e.g. an application 518 executing in the problem state) is fetched
(e.g., from an instruction stream). In an embodiment, a bit of the PSW is examined (e.g., bit
15) to determine whether the program is executing in a supervisory state or a lesser privileged
state (also referred to herein as a "problem state”). At block 1204 it is determined if execution
of the RIOFF instruction is permitted. The run-time-instrumentation S bit in the RICCB

DK/EP 2825964 T3

(controlled only by LRIC) determines if the lesser-privileged state program is allowed to
execute the RIOFF instruction. In an embodiment, if the run-time-instrumentation S bit in the
current run-time instrumentation controls (e.g., in the RICCB) is set to 1, then the lesser
privileged state program is allowed to execute the RIOFF instruction and processing continues
at block 1208. Alternatively, if the S bit is set to 0, then the lesser privileged state program is
not allowed to execute the RIOFF instruction, and processing continues at block 1206. At block
1206, the RIOFF instruction does not change the prior settings, and the runtime controls and
PSW remain at their prior values. In an embodiment, at block 1206, a condition code is set to
two to indicate that lesser-privileged state execution is not enabled.

[0133] At block 1208, it is determined if the validity bit (also referred to as the V bit) of the
current run-time-instrumentation controls (e.g., in the RICCB) is set to 1. The validity bit
indicates the validity of the set of run-time instrumentation controls in the processor, as they
were previously set by an LRIC instruction. If the current run-time instrumentation controls are
not valid, (i.e. the previous LRIC instruction was invalid), then processing continues at block
1201. In an embodiment, at block 1210, a condition code is set to three to indicate that the
current run-time instrumentation controls are not valid.

[0134] If the validity bit is set to 1, indicating that the run-time-instrumentation controls are
valid, then processing continues at block 1212, where the decrementing of the current run-time
RSIC is supressed and the value preserved in anticipation of a subsequent RION instruction.
Processing continues at block 1214, where the RI bit in the PSW (e.g., bit 24) is set to zero. In
an embodiment, if bit 24 of the PSW s already zero, then execution of RIOFF completes and a
condition code is set to zero. In an embodiment, an EXTRACT PSW instruction is executed to
determine a current value of PSW bit 24.

[0135] FIG. 13 depicts a RION instruction in accordance with an embodiment. As shown in
FIG. 13, the RION instruction 1300 includes an operation code 1302 and 1304 (also referred to
as "opcode” or "split opcode” in this particular case). The opcode 1302 and 1304 identifies the
RION instruction 1300 to the processor, such as processor 106 of FIG. 5. FIG. 13 depicts one
embodiment of the RION instruction, it will be understood by those of ordinary skill in the art
that the RION instruction may be formatted differently and/or contain different operands and
opcodes in other embodiments.

[0136] FIG. 14 depicts a process flow of an RION instruction in accordance with an
embodiment. In an embodiment, the process flow of FIG. 14 is executed by the
instrumentation module 506 of FIG. 5. At block 1402, an RION instruction issued by a lesser-
privileged state program (e.g. an application 518 executing in the problem state) is fetched
(e.g., from an instruction stream). In an embodiment, a bit of the PSW is examined (e.g., bit
15) to determine whether the program is executing in a supervisory state or a lesser privileged
state (also referred to herein as a "problem state”). At block 1404 it is determined if execution
of the RION instruction is permitted. The run-time-instrumentation S bit (controlled only by
LRIC) determines if the lesser-privileged state program is allowed to execute the RION
instruction. In an embodiment, if the run-time-instrumentation S bit in the current run-time

DK/EP 2825964 T3

instrumentation controls (e.g., in the RICCB) is set to 1, then the lesser privileged state
program is allowed to execute the RION instruction and processing continues at block 1408.
Alternatively, if the S bit is set to 0, then the lesser privileged state program is not allowed to
execute the RION instruction, and processing continues at block 1406. In an embodiment, at
block 1406, the RION instruction does not change the prior settings, and the runtime controls
and PSW remain at their prior values. In an embodiment, at block 1406, a condition code is set
to two to indicate that lesser-privileged state execution is not enabled.

[0137] At block 1408, it is determined if the validity bit (also referred to as the V bit) of the
current run-time-instrumentation controls (e.g., in the RICCB) is set to 1. The validity bit
indicates the validity of the set of run-time instrumentation controls in the processor, as they
were previously set by an LRIC instruction. If the current run-time instrumentation controls are
not valid, (i.e. the previous LRIC instruction was invalid), then processing continues at block
1410. In an embodiment, at block 1410, a condition code is set to three to indicate that the
current run-time instrumentation controls are not valid.

[0138] If the validity bit is set to 1, indicating that the run-time-instrumentation controls are
valid, then processing continues at block 1412, where the contents of the collection buffer, and
the instruction-data buffer if present, are purged. In an embodiment, the buffers are purged at
block 1412 only when the RI bit in the PSW was previously set to zero. Processing continues at
block 1414, where the RI bit in the PSW (e.g., bit 24) is set to one. In an embodiment, if bit 24
of the PSW is already one, then execution of the RION instruction completes and a condition
code is set to zero. In an embodiment, an EXTRACT PSW instruction is executed to determine
a current value of PSW bit 24.

[0139] In an embodiment, if the run-time instrumentation facility is executing in sampling
modes 0 or 1 (as determined, for example by the RCCB), then a non-zero RSIC is used to
continue the remainder of the interval. If the RSIC is zero, then a new sampling interval is
initialized to the value of the scaling factor and the A bit in the RICCB is set to one.

[0140] As described above, embodiments can be embodied in the form of computer-
implemented processes and apparatuses for practicing those processes. An embodiment may
include a computer program product 1500 as depicted in FIG. 15 on a computer
readable/usable medium 1502 with computer program code logic 1504 containing instructions
embodied in tangible media as an article of manufacture. Exemplary articles of manufacture for
computer readable/usable medium 1502 may include floppy diskettes, CD-ROMs, hard drives,
universal serial bus (USB) flash drives, or any other computer-readable storage medium,
wherein, when the computer program code logic 1504 is loaded into and executed by a
computer, the computer becomes an apparatus for practicing the invention. Embodiments
include computer program code logic 1504, for example, whether stored in a storage medium,
loaded into and/or executed by a computer, or transmitted over some transmission medium,
such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation,
wherein, when the computer program code logic 1504 is loaded into and executed by a
computer, the computer becomes an apparatus for practicing the invention. When

DK/EP 2825964 T3

implemented on a general-purpose microprocessor, the computer program code logic 1504
segments configure the microprocessor to create specific logic circuits.

[0141] Technical effects and benefits include the ability to limit sampling by a run-time
instrumentation facility to a subset of the execution trace of an application. This may lead to a
more focused data set from the instrumentation. In addition, by limiting the sampling to a
subset of the execution trace, the cost of having to manage, buffer, and reduce the
instrumentation data is decreased.

[0142] The terminology used herein is for the purpose of describing particular embodiments
only and is not intended to be limiting of the invention. As used herein, the singular forms "a",
"an" and "the" are intended to include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising,
" when used in this specification, specify the presence of stated features, integers, steps,
operations, elements, and/or components, but do not preclude the presence or addition of one
or more other features, integers, steps, operations, elements, components, and/or groups
thereof.

[0143] The corresponding structures, materials, acts, and equivalents of all means or step plus
function elements in the claims below are intended to include any structure, material, or act for
performing the function in combination with other claimed elements as specifically claimed. The
description of the present invention has been presented for purposes of illustration and
description, but is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art
without departing from the scope and spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the invention and the practical application,
and to enable others of ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the particular use contemplated.

[0144] As will be appreciated by one skilled in the art, aspects of the present invention may be
embodied as a system, method or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-code, etc.) or an embodiment
combining software and hardware aspects that may all generally be referred to herein as a
"circuit, " "module” or "system. " Furthermore, aspects of the present invention may take the
form of a computer program product embodied in one or more computer readable medium(s)
having computer readable program code embodied thereon.

[0145] Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system,
apparatus, or device, or any suitable combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage medium would include the following: an

DK/EP 2825964 T3

electrical connection having one or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus, or device.

[0146] A computer readable signal medium may include a propagated data signal with
computer readable program code embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a variety of forms, including, but not
limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable
signal medium may be any computer readable medium that is not a computer readable
storage medium and that can communicate, propagate, or transport a program for use by or in
connection with an instruction execution system, apparatus, or device.

[0147] Program code embodied on a computer readable medium may be transmitted using
any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

[0148] Computer program code for carrying out operations for aspects of the present invention
may be written in any combination of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk, C++ or the like and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages. The program code may execute entirely on the user's computer,
partly on the user's computer, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the user's computer through any
type of network, including a local area network (LAN) or a wide area network (WAN), or the
connection may be made to an external computer (for example, through the Internet using an
Internet Service Provider).

[0149] Aspects of the present invention are described above with reference to flowchart
illustrations and/or schematic diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the invention. It will be understood that each
block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be implemented by computer program
instructions. These computer program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions, which execute via the processor of
the computer or other programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.

[0150] These computer program instructions may also be stored in a computer readable

DK/EP 2825964 T3

medium that can direct a computer, other programmable data processing apparatus, or other
devices to function in a particular manner, such that the instructions stored in the computer
readable medium produce an article of manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram block or blocks.

[0151] The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other devices to
produce a computer implemented process such that the instructions which execute on the
computer or other programmable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram block or blocks.

[0152] As described above, embodiments can be embodied in the form of computer-
implemented processes and apparatuses for practicing those processes. In embodiments, the
invention is embodied in computer program code executed by one or more network elements.
Embodiments include a computer program product on a computer usable medium with
computer program code logic containing instructions embodied in tangible media as an article
of manufacture. Exemplary articles of manufacture for computer usable medium may include
floppy diskettes, CD-ROMs, hard drives, universal serial bus (USB) flash drives, or any other
computer-readable storage medium, wherein, when the computer program code logic is
loaded into and executed by a computer, the computer becomes an apparatus for practicing
the invention. Embodiments include computer program code logic, for example, whether stored
in a storage medium, loaded into and/or executed by a computer, or transmitted over some
transmission medium, such as over electrical wiring or cabling, through fiber optics, or via
electromagnetic radiation, wherein, when the computer program code logic is loaded into and
executed by a computer, the computer becomes an apparatus for practicing the invention.
When implemented on a general-purpose microprocessor, the computer program code logic
segments configure the microprocessor to create specific logic circuits.

[0153] The flowchart and block diagrams in the Figures illustrate the architecture, functionality,
and operation of possible implementations of systems, methods, and computer program
products according to various embodiments of the present invention. In this regard, each block
in the flowchart or block diagrams may represent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative implementations, the functions
noted in the block may occur out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It will
also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer instructions.

REFERENCES CITED IN THE DESCRIPTION

DK/EP 2825964 T3

Cited references

This list of references cited by the applicant is for the reader's convenience only. It does not
form part of the European patent document. Even though great care has been taken in
compiling the references, errors or omissions cannot be excluded and the EPO disclaims all
liability in this regard.

Patent documents cited in the description

o USZ0070261032A1 [6602]
o USZ0030154430A1 [GGE2T

10

15

20

25

30

DK/EP 2825964 T3

Patentkrav

1. Fremgangsmade til aktivering og deaktivering af udfgrelse af en kgrselstids-

instrumenteringsanordning pa en processor, hvilken fremgangsmade omfatter:

hentning, af en processor (106), af en instruktion til udfgrelse via
processoren i en mindre privilegeret tilstand, af en instruktion af en
kgrselstidsinstrumenteringsanordings-sluk- (RIOFF) instruktion og en
kgrselstidsinstrumenteringsanordnings-taend- (RION) instruktion;

baseret pa bestemmelsen, via processoren, af at kgrselstids-
instrumenteringsanordningen tillader udfgrelse af instruktionen i den
mindre privilegerede tilstand, og at styreenheder associeret med
kgrselstidsinstrumenteringsanordningen er gyldige, at udfgre instruktionen,

idet udfgrelsen omfatter en hvilken som helst af:

deaktivering af kgrselstidsinstrumenteringsanordningen baseret p3, at
instruktionen er RIOFF-instruktionen, idet deaktiveringen inkluderer

opdatering af en kgrselstidsinstrumenteringsanordningstilstandsbit i et
programstatusord (PSW) af processoren for at indikere, at kgrselstids-

instrumenteringsdata ikke skal indsamles af processoren; og

aktivering af kgrselstidsinstrumenteringsanordningen baseret p3, at
instruktionen er RION-instruktionen, idet aktiveringen inkluderer
opdatering af en kgrselstidsinstrumenteringsanordningstilstandsbit i
PSW’en for at indikere, at kgrselstidsinstrumenteringsdata skal indsamles

af processoren,

og kendetegnet ved, at instruktionen er fra en aktuelt udfgrende trad i et
multitraddet miljg, og at PSW’en er associeret med den udfgrende trad, og
en tilstand af kgrselstidsinstrumenteringsanordningen for den udfgrende

trad bibeholdes i PSW’en hen over afsendelser af den udfgrende trad.

2. Fremgangsmaden ifglge krav 1, yderligere omfattende:

hentning, via processoren, af en kgrselstidsinstrumenteringsstyringsblok (RICCB)
som inkluderer en problemtilstandsudfgrelsesstyringsbit tidligere indstillet til en
veerdi af et program, som udfgres i en privilegeret tilstand for at indikere, om
instruktionen kan udfgres i den mindre privilegerede tilstand, hvor bestemmelsen

af at kgrselstidsinstrumenteringsanordningen tillader udfgrelse af instruktionen i

10

15

20

25

30

DK/EP 2825964 T3

2

den mindre privilegerede tilstand er baseret pd vaerdien af problemtilstands-
udfgrelsesstyringsbitten.

3. Fremgangsmaden ifglge krav 1, yderligere omfattende:

hentning, via processoren, af en kgrselstidsinstrumenteringsstyringsblok (RICCB)
som inkluderer en gyldighedsbit tidligere indstillet til en vaerdi af et program, som
udfgres i en privilegeret tilstand for at indikere, om styreenheder associeret med
kgrselstidsinstrumenteringsanordningen er gyldige, hvor bestemmelsen af, om
styreenheder associeret med kgrselstidsinstrumenteringsanordningen er gyldige,
er baseret pa vardien af gyldighedsbitten.

4. Fremgangsmaden ifglge krav 1, yderligere omfattende, baseret pa

aktiveringen:

indsamling, via processoren, af kgrselstidsinstrumenteringsdataet baseret
pa en instruktionsstrgm af instruktioner fra et applikationsprogram, som
udfgres pa processoren, idet indsamlingen omfatter lagring af kgrselstids-

instrumenteringsdataet i en indsamlingsbuffer i processoren;

detektering, via processoren, af en kgrselstidsinstrumenteringsprgve-

punkttrigger; og

kopiering af indholdet fra indsamlingsbufferen i en programbuffer som en
rapporteringsgruppe baseret pa detekteringen af kgrselstids-
instrumenteringsprgvepunkttriggeren, hvor programbufferen er placeret i
hovedlageret i et adresserum, som er tilgeengeligt for applikations-

programmet.

5. Fremgangsmaden ifglge krav 4, yderligere omfattende indsamling, i
indsamlingsbufferen, af instruktionsadresser og metadata svarende til haandelser

detekteret under udfgrelsen af instruktionsstreammen.

6. Fremgangsmaden ifglge krav 4, hvor rapporteringsgruppen inkluderer et
forudbestemt antal af en eller flere instrumenteringsregistreringer omfattende
indhold fra indsamlingsbufferen og systeminformationsregistreringer.

10

15

20

25

30

DK/EP 2825964 T3

3

7. Fremgangsmaden ifglge krav 4, hvor kopieringen inkluderer kopiering af en
rapporteringsgruppe i programbufferen startende fra en aktuel adresse pa
programbufferen, hvor programbufferen er lagret ved en programbuffer-
oprindelsesadresse specificeret af en tilgaengelig instruktionsstyringsblok, som
ogsa specificerer en adresse pa en sidste byte i programbufferen og den aktuelle
adresse i programbufferen.

8. System til aktivering og deaktivering af udfgrelse af en kgrselstids-
instrumenteringsanordning pa en processor, hvilket system omfatter:

en processor, hvilket system er konfigureret til at udfgre en fremgangsmade
omfattende:

hentning, via processoren, af en instruktion til udfgrelse via processoren i
en mindre privilegeret tilstand, af en instruktion af en
kgrselstidsinstrumenteringsanordings-sluk- (RIOFF) instruktion og en
kgrselstidsinstrumenteringsanordnings-taend- (RION) instruktion;

baseret pa bestemmelse, via processoren, af at kgrselstids-
instrumenteringsanordningen tillader udfgrelse af instruktionen i den
mindre privilegerede tilstand, og at styreenheder associeret med
kgrselstidsinstrumenteringsanordningen er gyldige, at udfgre instruktionen,
idet udfgrelsen omfatter en hvilken som helst af:

deaktivering af kgrselstidsinstrumenteringsanordningen baseret p3, at
instruktionen er RIOFF-instruktionen, idet deaktiveringen inkluderer
opdatering af en kgrselstidsinstrumenteringsanordningstilstandsbit i et
programstatusord (PSW) af processoren for at indikere, at kgrselstids-
instrumenteringsdata ikke skal indsamles af processoren; og

aktivering af kgrselstidsinstrumenteringsanordningen baseret p3, at
instruktionen er RION-instruktionen, idet aktiveringen inkluderer
opdatering af en kgrselstidsinstrumenteringsanordningstilstandsbit i
PSW’en for at indikere, at kgrselstidsinstrumenteringsdata skal indsamles

af processoren,

og kendetegnet ved, at instruktionen er fra en aktuelt udfgrende trad i et
multitraddet miljg, og at PSW’en er associeret med den udfgrende trad, og

en tilstand af kgrselstidsinstrumenteringsanordningen for den udfgrende

10

15

20

25

30

DK/EP 2825964 T3

4

trad bibeholdes i PSW’en hen over afsendelser af den udfgrende trad.

9. Systemet ifglge krav 8, hvor fremgangsmaden yderligere omfatter:

hentning, via processoren, af en kgrselstidsinstrumenteringsstyringsblok (RICCB)
som inkluderer en problemtilstandsudfgrelsesstyringsbit tidligere indstillet til en
veerdi af et program, som udfgres i en privilegeret tilstand for at indikere, om
instruktionen kan udfgres i den mindre privilegerede tilstand, hvor bestemmelsen
af at kgrselstidsinstrumenteringsanordningen tillader udfgrelse af instruktionen i
den mindre privilegerede tilstand er baseret pd vaerdien af problemtilstands-
udfgrelsesstyringsbitten.

10. Systemet ifglge krav 8, hvor fremgangsmaden yderligere omfatter:

hentning, via processoren, af en kgrselstidsinstrumenteringsstyringsblok (RICCB)
som inkluderer en gyldighedsbit tidligere indstillet til en vaerdi af et program, som
udfgres i en privilegeret tilstand for at indikere, om styreenheder associeret med
kgrselstidsinstrumenteringsanordningen er gyldige, hvor bestemmelsen af, om
styreenheder associeret med kgrselstidsinstrumenteringsanordningen er gyldige,
er baseret pa vardien af gyldighedsbitten.

11. Systemet ifglge krav 8, hvor fremgangsmaden yderligere omfatter:
baseret pa aktiveringen:

indsamling, via processoren, af kgrselstidsinstrumenteringsdataet baseret
pa en instruktionsstrgm af instruktioner fra et applikationsprogram, som
udfgres pa processoren, idet indsamlingen omfatter lagring af kgrselstids-

instrumenteringsdataet i en indsamlingsbuffer i processoren;

detektering, via processoren, af en kgrselstidsinstrumenteringsprgve-
punkttrigger; og

kopiering af indholdet fra indsamlingsbufferen i en programbuffer som en
rapporteringsgruppe baseret pa detekteringen af kgrselstids-
instrumenteringsprgvepunkttriggeren, hvor programbufferen er placeret i
hovedlageret i et adresserum, som er tilgeengeligt for applikations-

programmet.

10

DK/EP 2825964 T3

12. Computerprogramprodukt til aktivering og deaktivering af udfgrelse af en
kgrselstidsinstrumenteringsanordning pa en processor, hvilket computerprogram-
produkt omfatter:

et handgribeligt lagringsmedium, som kan laeses af et bearbejdningskredslgb, og
lagring af instruktioner til udfgrelse via bearbejdingskredsigbet til udfgrelse af

trinnene af en fremgangsmade ifglge et hvilket som helst af kravene 1 til 7.

DRAWINGS
[Fig. 1A]
Host Computer 50
—
Processor (CPU) .
3
N f
DAT / ardress
TLB
8
ra
LOAD/
STORE UNIT |
4 ¥ ¥ 2
INSTRUGTION G
FETCHUNIT T A y | COMPUTER
¢ \ MEMORY
6 H
INSTRUCTION E (MAIN
DECODE UNIT § 8TORE)
8
INSTRUCTION
_EXEQUTION 1o
- UNIT
e S,

FIG. 1A

V—y
(Network .

A0)

DK/EP 2825964 T3

DK/EP 2825964 T3

[Fig. 1B]
Pl
Ed
Emulated {Virtual)
Host Computer Memory 22
21 2
- p-a
Computer
Memory
{Host)
29
Emulated (Virtual) |
Processor (CPL)) 23
27
Ed Emulation
Processor Routines
Native -
Instruction Set
Architecture 'B'
£

DK/EP 2825964 T3

[Fig. 1C]
. 112
Operating System .
Application 1"
Application 2
Application 3
111
102 Base Computer 101

r
Display \ Memory 495 \
Sl
't Processor
Mouse OCes Storage
O‘J - Meclia
<

103 N
Keyboard Printer/Scanner
104 110 108

FIG. 1C

DK/EP 2825964 T3

[Fig. 2]

Client 1

ltent 2 Client 4
201 Cli

FIG. 2

[Fig. 3]

Processor

Memory

1057

\

Caches _|308.

DK/EP 2825964 T3

Program Counter

311

805

Instruction Fetoh \
308 —= _

Decode/Dispatch

Load/Store Unit

{

™

Unit

—Execution

Brarich
Unit

.

I

307

Registers

9})8

o
309

310

FIG. 3

304

AN

YO Units

DK/EP 2825964 T3

[Fig. 4A]

: 307
Execution Unit L

408
403
i R ,tf
404 N\ £\ ;'74]05
ALU 402
[

/ | 5 AN
Other
401 306
. 308 Decode/Dispatch
Registers
310

FIG. 4A Load/Store Unit

[Fig. 4B]

Branch Unit 30\%\

30
Registers Y

FIG. 4B

306

Decode/Dispatch

DK/EP 2825964 T3

DK/EP 2825964 T3

[Fig. 4C]
L.oad/Store Unit 3@\

463
460 CTL
i
459" 461
AL 258
i N4GR
\
[Fi ‘ N hY I
//] ¥
Other
456 306
309 Decode/Dispaich
Registers
303
Cache/Memory

FIG. 4C interface

[Fig. 5]

:

DK/EP 2825964 T3

Processor
106

w

Module
508

[nstrumentation

Reglster
510

—

508

Collection Buffsr

3

Program
Buffer
522

Maln Meamory
514

PSW Data
512

Runtime | J—b

504

Storage
520

516

Operating System

1

Application

*

518

FI1G. &

DK/EP 2825964 T3

[Fig. 6]

=
Lol
L

FIG. 6

[Fig. 7]
700
Word
0 ! Run-time-Instrumentation Program Buffer
| Current Address (RCA) T
2 Run-time-Instrumentation Program Buffer
I e Origin Address (ROA) LA EFEERL
4 204 Run-time-Instrumentation Program Buffer
5 | Limit Address (RLA) FLLREEELTT T
) e :
7
g8
9
10 ,
N Scaling Factor (SF) 740
12 -
i3 Remaining Sample-Interval Count (RSIC) 742

45 8 0 1011121314 1617181920 222324 2728

FIG. 7

3

DK/EP 2825964 T3

[Fig. 8]

802 804
it {0} 2 2 it (127}
TALD] Rvent (0}
TA[L) Event{1]
IA[2) Bveont{?)
IAL3] Bvant3)
(X2} \/\
508
i
1A[31) ; Bveant [34]
Bt {0} hit(arm)

FIG. 8

DK/EP 2825964 T3

[Fig. 9]

DK/EP 2825964 T3

200
Record No. Recoid Type(s) Section
0 Begin, Timastamp Header
™ 902
K
2 Emit, TX Abort, ol
3 Call, Return, Branch, Filler NN 004
RHG'HNG (=4)
Ree-Phet1 (=5)
Extra, Mocdel-Dependant Extra ~ 906
Rpa-2 (=6)
Rpg-1 [nstruction Footer,_~ gog

FIG. 9

[Fig. 10]

Execute instruction stream

N"1002

¥

Capture run-time
instrumentation datain a
hardware collection buffer

1004

A 4

Detect a sample
trigger point

N 1006

Copy contents of hardware collection
buffer into an application accessible

program buffer

MN1008

FIG. 10

DK/EP 2825964 T3

[Fig. 11]

1102

1104

1100

DK/EP 2825964 T3

IAA!

l3l

0

78

11 12

1516

FIG. 11

31

DK/EP 2825964 T3

[Fig. 12]

VN 1202
Fetch RIQFF instruction

Lesser-
privileged
state
execution
enabled?

1204
N

Set condition code to NN1206
indicate problem state
prohibited

1208
AVAN

Rl controls
valid?

N
>_N‘Oe Set condition code to 1210
indicate invalid Rl controls

MN1212
Save current RI RSIC

NMN1214
Set RI BIT in PSW to zera

FIG. 12

[Fig. 13]

1302

1304

DK/EP 2825964 T3

1300

IAA!

11I

738

11 12

1516

FIG. 13

31

DK/EP 2825964 T3

[Fig. 14]
1402
Fetch RION instruction
1404\/\ Le.sser-
privileged No Set condition code to
statt? —3 indicate problem state
execution prohibited

NMN1406

1408
N

Rt controls
valid?

Set condition code to

indicate invalid Rl controls

M1410

i
_

W

NN1412
Purga callection buffer

1414
Set Rl BIT in PSW to one

FIG. 14

DK/EP 2825964 T3

[Fig. 15]

Computer
Program Product

1500

,,’—~’*“*“-\\\\\\\

Program Code
Lagic
/ 1604
(/
\ Computer
Useable/Readable
\ Medium
1506

-

FIG. 15

	Page 1 - ABSTRACT/BIBLIOGRAPHY
	Page 2 - ABSTRACT/BIBLIOGRAPHY
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - CLAIMS
	Page 41 - CLAIMS
	Page 42 - CLAIMS
	Page 43 - CLAIMS
	Page 44 - CLAIMS
	Page 45 - DRAWINGS
	Page 46 - DRAWINGS
	Page 47 - DRAWINGS
	Page 48 - DRAWINGS
	Page 49 - DRAWINGS
	Page 50 - DRAWINGS
	Page 51 - DRAWINGS
	Page 52 - DRAWINGS
	Page 53 - DRAWINGS
	Page 54 - DRAWINGS
	Page 55 - DRAWINGS
	Page 56 - DRAWINGS
	Page 57 - DRAWINGS
	Page 58 - DRAWINGS
	Page 59 - DRAWINGS
	Page 60 - DRAWINGS
	Page 61 - DRAWINGS
	Page 62 - DRAWINGS
	Page 63 - DRAWINGS

