
(12) United States Patent
Ramalingam

US008539584B2

US 8,539,584 B2
Sep. 17, 2013

(10) Patent No.:
(45) Date of Patent:

300

FOREIGN PATENT DOCUMENTS

CN 101.042719. A 9, 2007

OTHER PUBLICATIONS

Douglas Ray Wampler, Methods For Detecting Kernel Rootkits, Dec.
2007. Department of Computer Engineering and Computer Science,
University of Louisville, Kentucky, pp. 6-29.*
AntiHook: Host Intrusion Prevention System by Info Process Pty
Ltd.; Aug. 29, 2006; 13 pages.
Andrew Conry-Murray; Rootkit Detection: Finding the Enemy
Within. online). 4 pages. retrieved on Apr. 23, 2010). Retrieved
from the Internet:< URL: http://www.eetimes.com/showArticle.
jhtml?articleID=196500 101 >.
Vasisht, Vikas R. and Lee, Hsien-Hsin S.; SHARK: Architectural
Support for Autonomic Protection Against Stealth by Rootkit
Exploits; 2008; 11 pages.

(Continued)

Primary Examiner — Jung Kim
Assistant Examiner — Adrian Stoica
(74) Attorney, Agent, or Firm — Schmeiser, Olsen & Watts;
John Pivnichny

(57) ABSTRACT

A rootkit monitoring agent (RMA) built into an operating
system (OS) kernel for detecting a kernel-based rootkit and
preventing subsequent effects of the rootkit. The RMA is
activated as a kernel process Subsequent to the OS initializa
tion and stores a good State of OS kernel data structures
including the System Service Descriptor Table (SSDT) and
Interrupt Descriptor Table (IDT). The RMA monitors the
SSDT and IDT and detects that a hook previously stored in
the good State is changed by an installation of Suspect soft
ware. The RMA determines the suspect software is a kernel
based rootkit by determining a whitelist does not indicate the
changed hook. The RMA restores the changed hook to its
good state. The RMA updates a blacklist to reference the
changed hook.

19 Claims, 4 Drawing Sheets

302
Main Routine

(54) ROOTKIT MONITORINGAGENT BUILT
INTO AN OPERATING SYSTEM KERNEL

(75) Inventor: Jayakrishnan Ramalingam, Bangalore
(IN)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 275 days.

(21) Appl. No.: 12/871,103

(22) Filed: Aug. 30, 2010

(65) Prior Publication Data

US 2012/OO54868A1 Mar. 1, 2012

(51) Int. Cl.
G06F 2/14 (2006.01)

(52) U.S. Cl.
USPC 726/24; 726/22; 726/23: 713/187;

713/188

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,571.482 B2 8/2009 Polyakov et al.
7,802,300 B1* 9/2010 Liu et al. T26/23
8,225,405 B1* 7/2012 Peterson et al. T26/24

2005/0229250 A1 10/2005 Ring et al.
2007/0283192 A1* 12/2007 Shevchenko T14? 39
2007/0289015 A1 12/2007 Repasi et al.
2008.0015808 A1 1/2008 Wilson et al. TO2,123
2008.0034429 A1* 2, 2008 Schneider T26/23
2008/O127114 A1* 5/2008 Vasudevan 717/129
2009/0064329 A1 3f2009 Okumura et al. 726/22
2009/0205045 A1 8, 2009 Horvath et al.
2009/0217377 A1* 8/2009 Arbaugh et al. T26/23
2011/0320797 A1* 12/2011 Wilson et al. 713/2

118 SSDT Monitor 304

White
list
--

120 308

5. "is"

308

SSOT Restore

312 18
DTMonitor

White
list

314
120

instalT
Handlers Black

list

38

IOT Restore

310

Update Black list

Black
120

U.S. Patent Sep. 17, 2013 Sheet 1 of 4 US 8,539,584 B2

1 OO

1 O2

COMPUTER SYSTEM

104
USER SPACE MEMORY

106
KERNELSPACE MEMORY

OPERATING SYSTEM KERNEL

11 O

KERNELDATASTRUCTURE KERNELDATASTRUCTURE
THAT INCLUDES POINTERS FOR RESPONDING TO
TO FUNCTIONS AND/OR INTERRUPTS AND

METHODS OF SYSTEM CALLS EXCEPTIONS
(E.G., SYSTEM SERVICE (E.G., INTERRUPT

DESCRIPTOR TABLE (SSDT)) DESCRIPTORTABLE (IDT))

116 114

ROOTKIT ROOTKIT MONITORINGAGENT (RMA)

WHITE BLACK
LIST LIST

FIG, 1

U.S. Patent Sep. 17, 2013 Sheet 2 of 4 US 8,539,584 B2

DETECTING KERNEL-LEVEL ROOTKITS BY A 200
ROOTKIT MONITORINGAGENT (RMA) BUILT INTO AN

OPERATING SYSTEM KERNEL

20

START BOOTING OPERATING SYSTEM

204

INVOKERMA MAIN ROUTINE

20
MONITOR MEMORY FOR SYSTEM SERVICE DESCRIPTOR TABLE (SSDT) AND/OR

INTERRUPT DESCRIPTORTABLE (IDT) HOOKING

2

6

TIMER
INTERVAL
ELAPSES2

BAD
HOOKING2

RESTORE PREVIOUS GOOD STATE

UPDATE BLACKLIST

RESET TIMER

FIG 2

212

214

U.S. Patent Sep. 17, 2013 Sheet 3 of 4 US 8,539,584 B2

3O2

118
SSDTMOnitor

Instal SSDT
HandlerS

3O8

SSDT RestOre

3

Update Black List

12O

DTMOnitor

314

Instal IDT
Handlers

316

DT ReStOre

1 O

120

FIG, 3

U.S. Patent Sep. 17, 2013 Sheet 4 of 4 US 8,539,584 B2

1 O2

COMPUTER SYSTEM

MEMORY
114

ROOTKIT MONITORINGAGENT (RMA)

414

KERNELDATASTRUCTURES

406

I/O INTERFACE

STORAGE
UNIT

I/O DEVICES

FIG. 4

US 8,539,584 B2
1.

ROOTKT MONITORNGAGENT BUILT
INTO AN OPERATING SYSTEM KERNEL

TECHNICAL FIELD

The present invention relates to a data processing method
and system for detecting malicious Software, and more par
ticularly to a technique that detects rootkits executing in an
operating system kernel.

BACKGROUND

A rootkit is malicious software used to install and hide
other malicious programs inside a computer system. Rootkits
are programmed so that is very difficult to detect the rootkits
through standard anti-virus or anti-spyware scans on the oper
ating system. A rootkit can be categorized as one of the
following five types depending upon the location in the com
puter system in which the rootkit executes: (1) firmware, (2)
hypervisor, (3) kernel, (4), library, and (5) application. As one
example, a kernel-level rootkit adds additional code or
replaces portions of an operating system, including both the
kernel and associated device drivers. Most operating systems
support kernel-mode device drivers that execute with the
same privileges as the operating system itself. As such, many
kernel-level rootkits are developed as device drivers or load
able kernel modules. Code added or replaced by a kernel
level rootkit may have serious impacts on the stability of the
entire computer system if bugs are present in the code.
Because kernel-level rootkits operate at the same security
level as the operating system itself, they are able to intercept
or subvert operations performed by the operating system,
including operations of anti-virus Software running on the
compromised system. Known techniques for detecting and
preventing rootkits degrade system performance and have
limited detection and prevention capabilities because they
operate only at later stages of the booting of the operating
system. Furthermore, because known kernel-level rootkit
detection and prevention tools are provided by third parties
and reside outside the operating system, a customer who is
purchasing an operating system and wants detection and pre
vention of rootkits is subject to the separate costs of the
operating system's purchase price and a licensing fee for the
third party's rootkit detection and prevention tool. Thus, there
exists a need to overcome at least one of the preceding defi
ciencies and limitations of the related art.

BRIEF SUMMARY

Embodiments of the present invention provide a computer
implemented method of detecting a kernel-level rootkit. The
method comprises:

a rootkit monitoring agent (RMA) storing a first state of
data structures of a kernel of an operating system of a com
puter system, the data structures including a System Service
Descriptor Table (SSDT) and an Interrupt Descriptor Table
(IDT), the first state based on the SSDT and the IDT refer
encing a first plurality of hooks indicated in a white list and
that are not the result of any kernel-level rootkit being
installed on the computer system, and the first state including
an entry of the SSDT or the IDT, wherein the RMA is built
into the operating system and is activated as a kernel process
of the kernel Subsequent to an initialization of the operating
system by the computer system;

the RMA monitoring the SSDT and the IDT and in
response to monitoring the SSDT and the IDT, detecting a
changed entry in the SSDT or the IDT, wherein the changed

10

15

25

30

35

40

45

50

55

60

65

2
entry results from a change to the entry, the change resulting
from an installation of Suspect Software in the computer sys
tem;

the RMA identifying the changed entry as being unautho
rized based on the change to the entry indicating a hook that
is code, a software application, or a software module that is
not indicated by the white list;

the RMA determining the suspect software is the kernel
level rootkit based on the detected changed entry being iden
tified as unauthorized;

responsive to determining the Suspect Software is the ker
nel-level rootkit, the RMA restoring the changed entry to the
entry included in the first state; and

the RMA updating a black list to reference the hook indi
cated by the change to the entry, wherein the black list refer
ences a second plurality of hooks that result from installations
of kernel-level rootkits on the computer system.
A system, program product and a process for Supporting

computing infrastructure corresponding to the above-Sum
marized method are also described and claimed herein.
Embodiments of the present invention provide a new com

ponent built inside any operating system kernel and that runs
inside kernel space memory to monitor operating system data
structures to detect unauthorized changes by kernel-based
rootkits and to prevent Subsequent negative effects of the
unauthorized changes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system for detecting kernel
level rootkits by a rootkit monitoring agent built into an
operating system kernel, in accordance with embodiments of
the present invention.

FIG. 2 is a flowchart of a process for detecting kernel-level
rootkits by a rootkit monitoring agent built into an operating
system kernel, where the process is implemented by the sys
tem of FIG. 1, in accordance with embodiments of the present
invention.

FIG. 3 is a component diagram of the rootkit monitoring
agent included in the system of FIG. 1, in accordance with
embodiments of the present invention.

FIG. 4 is a block diagram of a computer system that is
included in the system of FIG. 1 and that implements the
process of FIG. 2, in accordance with embodiments of the
present invention.

DETAILED DESCRIPTION

Overview
Embodiments of the present invention provide a software

agent (hereinafter referred to as the Rootkit Monitoring Agent
or RMA) embedded in a kernel of any operating system. The
RMA detects and prevents effects (e.g., attacks) of kernel
level rootkits (i.e., rootkits that execute in an operating system
kernel; a.k.a. kernel-based rootkits) by monitoring changes to
entries in kernel data structures such as the System Service
Descriptor Table (SSDT) and the Interrupt Descriptor Table
(IDT). The RMA may become active in response to the oper
ating system kernel being loaded into the main memory by the
boot-loader program that resides in the boot-sector of the
disk. After detecting an unauthorized change to a kernel data
structure entry, the RMA restores the changed entry to a
previously stored state that is known to be a state unaffected
by a kernel-level rootkit. The RMA also stores the changed
entry to a black list that may be used to subsequently block
further action by the detected kernel-level rootkit and subse

US 8,539,584 B2
3

quently block another kernel-level rootkit from providing the
same change to a kernel data structure entry.
System for Detecting and Preventing Effects of Rootkits

FIG. 1 is a block diagram of a system for detecting rootkits
by a rootkit monitoring agent built into an operating system
kernel, in accordance with embodiments of the present inven
tion. System 100 includes a computer system 102 that
includes a user space memory 104 and a kernel space memory
106. Kernel space memory 106 includes an operating system
kernel 108 (i.e., a kernel of an operating system of computer
system 102) that includes a first kernel data structure 110 and
a second kernel data structure 112. First kernel data structure
110 is a data structure of operating system kernel 108 that
includes pointers to Software applications and/or pointers to
Software modules (e.g., functions and/or methods) of system
calls. Second kernel data structure 112 is a data structure of
operating system kernel 108 that includes pointers to soft
ware applications and/or pointers to software modules called
as a response to hardware interrupts, software interrupts, and
exceptions. In one embodiment, first kernel data structure 110
is a System Service Descriptor Table (SSDT) and second
kernel data structure 112 is an Interrupt Descriptor Table
(IDT).

Operating system kernel 108 also includes a rootkit moni
toring agent (RMA) 114 that monitors the first and second
kernel data structures 110, 112 and detects changes made to
the kernel data structures 110, 112 (e.g., by the installation of
software such as a kernel-level rootkit 116). That is, RMA
114 is built into (i.e., embedded in) operating system kernel
108. Rootkit 116 is executed by operating system kernel 108
and RMA 114 detects change(s) to one or more entries in first
kernel data structure 110 and/or one or more entries in second
kernel data structure 112. The detected change(s) are caused
by the execution of rootkit 116. RMA 114 compares the
detected change(s) to entries in a white list 118 (a.k.a.
whitelist) and a black list 120 (a.k.a. blacklist). RMA 114
determines that the detected change(s) are unauthorized and
places the change(s) in black list 120 to block a subsequent
attempt by a rootkit to make the same change(s) to data
structure 110 and/or data structure 112. The functionality of
the components of FIG. 1 is discussed further below relative
to FIG. 2 and FIG. 3.

Initial values of white list 118 and black list 120 may be
determined during an operating system design stage by a
kernel designer who knows a list of predefined entries in the
kernel data structures 110 and 112. Initial values of white list
118 and black list 120 may then be augmented through intel
ligence gathering (i.e., behavior analysis) by running a wide
range of applications and tools on the kernel.
Process for Detecting and Preventing Effects of Rootkits

FIG. 2 is a flowchart of a process for detecting rootkits by
a rootkit monitoring agent built into an operating system
kernel, where the process is implemented by the system of
FIG. 1, in accordance with embodiments of the present inven
tion. At step 200, the process begins for detecting kernel-level
rootkits by RMA 114 (see FIG. 1), which is built into an
operating system kernel. In the description of FIG. 2 that
follows, references to “SSDT” and “IDT” indicate one
embodiment and may be replaced with references to first and
second kernel data structures 110 and 112 (see FIG. 1),
respectively, to describe one or more other embodiments.

In step 202, computer system 102 initiates a booting of an
operating system of the computer system 102 (see FIG. 1). In
step 204, computer system 102 (see FIG. 1) invokes a main
routine of RMA 114 (see FIG. 1) as a kernel process. In one
embodiment, step 204 is performed by calling the main rou
tine of RMA 114 (see FIG. 1) from the initialization routine

10

15

25

30

35

40

45

50

55

60

65

4
(e.g., the init process) included in the booting of the operating
system of computer system 102 (see FIG. 1), where the call to
the main routine of the RMA is performed after the operating
system is initialized. That is, the RMA becomes active as any
other kernel service in, for example, a Linux or Unix operat
ing System.

In response to invoking the main routine of RMA 114 (see
FIG. 1), the RMA monitors kernel space memory 106 (see
FIG. 1) and determines the starting address and size of the
SSDT and the starting address and size of the IDT. Periodi
cally (e.g., every X seconds as determined by a timer), RMA
114 (see FIG. 1) stores a known good state of the SSDT and
the IDT. As used herein, a known good state of the SSDT and
the IDT is defined as a state in which the entries of the SSDT
and the IDT are known by computer system 102 (see FIG. 1)
to not include a reference to any code, Software application or
Software module resulting from an installation of a kernel
level rootkit on computer system 102 (see FIG.1). The entries
(i.e., “good entries) of the SSDT and the IDT that are in the
known good state are stored by the RMA 114 (see FIG. 1) in
white list 118 (see FIG. 1). In one embodiment, RMA 114
(see FIG. 1) generates normalized hash values of the code,
software applications and/or software modules to which the
good entries of the SSDT and the IDT point, and stores the
normalized hash values in white list 118 (see FIG. 1). The
normalized hash values may be computed by a Secure Hash
Algorithm (SHA), such as the SHA-256 Algorithm.

In step 206, RMA 114 (see FIG. 1) monitors kernel space
memory 106 (see FIG. 1) for hooking to the SSDT and/or the
IDT and detects a hook to the SSDT or the IDT. As used
herein, a hook is defined as code, a Software application or a
software module that is referenced by a pointer included in an
entry of a kernel data structure. Detecting a hook to the SSDT
includes detecting code, a Software application or a software
module referenced by a pointer in an entry of the SSDT,
where the entry is added to or changed in the SSDT as a result
of executing software in operating system kernel 108 (see
FIG. 1). Similarly, detecting a hook to the IDT includes
detecting code, a software application or a software module
referenced by a pointer in an entry of the IDT, where the entry
is added to or changed in the IDT as a result of executing
software in operating system kernel 108 (see FIG. 1).

Step 206 is performed periodically in response to a pre
defined time interval elapsing as determined by a timer
included in computer system 102 (see FIG.1). The predefined
time interval may be specified in computer system 102 (see
FIG. 1) prior to step 202. In one embodiment, the predefined
time interval is 1 second, which may provide for optimal
monitoring of the SSDT and IDT.

In step 208, RMA 114 (see FIG.1) determines whether the
hook detected in step 206 is a result of bad hooking or good
hooking (i.e., whether the hook detected in step 206 is a bad
hook or a good hook). As used herein, a bad hook is defined as
a hook that is referenced in black list 120 (see FIG. 1) and/or
is not referenced in white list 118 (see FIG. 1). A hook that is
not referenced in white list 118 (see FIG. 1) may result from
an installation of a kernel-level rootkit (e.g., rootkit 116 in
FIG. 1) or from executing a software application or module
whose status as a kernel-level rootkit is unknown. As used
herein, a good hook is defined as a hook that is referenced in
white list 118 (see FIG. 1). If step 208 determines that the
hook detected in step 206 is a bad hook, then the Yes branch
of step 208 is taken and step 210 is performed.

In step 210, RMA 114 (see FIG. 1) restores the kernel data
structure entry that references the bad hook to a good state
determined prior to step 208. The good state determined prior
to step 208 is a state in which the entries of the SSDT and IDT

US 8,539,584 B2
5

are known by computer system 102 (see FIG. 1) to not refer
ence any code, Software application and/or software module
provided by a kernel-level rootkit. The kernel data structure
entry restored in step 210 references code, a software appli
cation or a software module that is referenced in white list118
(see FIG. 1).

In step 212, RMA 114 (see FIG. 1) updates black list 120
(see FIG. 1) by including a reference to the bad hook deter
mined in step 208. In one embodiment, RMA 114 (see FIG. 1)
generates a normalized hash value referencing the bad hook
and stores the generated normalized hash value in black list
120 (see FIG. 1). The normalized hash value may be com
puted by a Secure Hash Algorithm, such as the SHA-256
Algorithm.

Step 212 also includes RMA 114 (see FIG. 1) blocking
further action by the kernel-level rootkit (e.g., rootkit 116 in
FIG. 1) that provided the bad hook detected in step 208. In
step 214, computer system 102 (see FIG. 1) resets the timer
for determining when the predefined time interval elapses for
periodic monitoring of the SSDT and IDT (i.e., iterative per
formances of step 206). After resetting the timer in step 214,
the process of FIG. 2 repeats starting at step 206.

Returning to step 208, if RMA 114 (see FIG. 1) determines
that the hook determined in step 206 is a good hook, then the
No branch of step 208 is taken and step 216 is performed. In
step 216, computer system 102 (see FIG. 1) determines if the
aforementioned timer determines that the predefined time
interval has elapsed. If step 216 determines that the pre
defined time interval has elapsed, then the Yes branch of step
216 is taken and the process of FIG. 2 repeats starting at step
206; otherwise, the process of FIG. 2 enters a sleep mode in
step 218. Although not shown in FIG. 2, the process of FIG.2
returns to step 206 from the sleep mode (see step 218) in
response to the aforementioned timer determining that the
predefined time interval has elapsed.
SSDT Monitoring

In one embodiment, the RMA 114 (see FIG. 1) performs
the following steps to monitor the SSDT and prevent attacks
by kernel-level rootkits:

1) Wait for the initialization of the SSDT to happen.
2) Obtain the SSDT count.
3) Set up write triggers for every SSDT entry (see Install
SSDT Handlers 306 in FIG. 3).

4) Make a copy of the entire SSDT (i.e., a known good state
of the SSDT) for restoring entries to a good state if
needed based on an analysis of modified entries.

5) Create a first data structure for keeping track of the
location and size of the SSDT.

6) Initialize and start memory monitors for each SSDT
entry (see step 206 in FIG. 2 and SSDT Monitor 304 in
FIG.3).

7) Create a second data structure for keeping track of
modified SSDT entries

8) Check modified SSDT entries against white list118 (see
FIG. 1) (see step 208 in FIG. 2)

9) If modified SSDT entry is bad, restore SSDT entry to
previously stored good State using the entry number (see
step 210 in FIG. 2).

IDT Monitoring
In one embodiment, the RMA 114 (see FIG. 1) performs

the following steps to monitor the IDT and prevent attacks by
kernel-level rootkits:

1) In response to initializing the IDT, obtain the address of
the IDT.

2) Set up write triggers for every IDT entry (see Install IDT
Handlers 314 in FIG. 3).

10

15

25

30

35

40

45

50

55

60

65

6
3) Make a copy of the entire IDT (i.e., a known good state

of the IDT) for restoring entries to a good state if needed
based on an analysis of modified entries.

4) Create a first data structure for keeping track of the
location and size of the IDT.

5) Initialize and start memory monitors for each IDT entry
(see step 206 in FIG. 2 and IDT Monitor 312 in FIG. 3).

6) Create a second data structure for keeping track of
modified IDT entries

7) Check modified IDT entries against white list 118 (see
FIG. 1) (see step 208 in FIG. 2)

8) If modified IDT entry is bad, restore IDT entry to pre
viously stored good state using the entry number (see
step 210 in FIG. 2).

Rootkit Monitoring Agent
FIG. 3 is a component diagram of the rootkit monitoring

agent included in the system of FIG. 1, in accordance with
embodiments of the present invention. Component diagram
300 depicts the following components (i.e., software mod
ules) of RMA 114 (see FIG. 1): Main Routine 302, SSDT
Monitor 304, Install SSDT Handlers 306, SSDT Restore 308,
Update Black List 310, IDT Monitor 312. Install IDT Han
dlers 314, and IDT Restore 316. The particular names of the
components in diagram 300 are examples only and the
present invention contemplates that the components may be
implemented with modules having other names.
Main Routine 302 is the entry point to RMA 114 (see FIG.

1). Initialization modules of the operating system of computer
system 102 (see FIG. 1) invoke Main Routine 302 in response
to the operating system being initialized. Step 204 (see FIG.
2) may include the invocation of Main Routine 302.
SSDT Monitor 304 monitors kernel space memory 106

(see FIG. 1) for SSDT hooking by software applications and
rootkits. SSDT Monitor 304 detects hooks to the SSDT and
may identify a detected hook as a good hook based on the
detected hook being referenced in whitelist 118 or as a bad
hook based on the detected hook being referenced in blacklist
120 or being not referenced in whitelist 118.

Install SSDT Handlers 306 installs monitor functions (i.e.,
call back functions) for each of the entries in the SSDT. The
installed call back functions are executed in response to a
corresponding entry in the SSDT being invoked or hooked by
a Software application or rootkit.
SSDT Restore 308 stores a known good state of the SSDT

in main memory orina file system residing in a computer data
storage unit. The known good State may be stored in
encrypted form. SSDT Restore 308 also restores SSDT
entries to their previously stored good states if the entries are
modified by unknown applications or rootkits. SSDT Restore
308 blocks rootkits detected by SSDT Monitor 304 from
hooking again into the SSDT and calls Update Black List 310
to update entries in blacklist 120 with references to code,
Software applications and modules that execute as a result of
attacks by the detected rootkits.
IDT Monitor 312 monitors kernel space memory 106 (see

FIG. 1) for IDT hooking by software applications and root
kits. IDT Monitor 312 detects hooks to the IDT and may
identify a detected hook as a good hook based on the detected
hook being referenced in whitelist 118 or as a bad hook based
on the detected hook being referenced in blacklist 120 or
being not referenced in whitelist 118.

Install IDT Handlers 314 installs monitor functions (i.e.,
call back functions) for each of the entries in the IDT. The
installed call back functions are executed in response to a
corresponding entry in the IDT being invoked or hooked by a
Software application or rootkit.

US 8,539,584 B2
7

IDT Restore 316 stores a known good state of the IDT in
main memory or in a file system residing in a computer data
storage unit. The known good State may be stored in
encrypted form. IDT Restore 316 also restores IDT entries to
their previously stored good states if the entries are modified
by unknown applications or rootkits. IDT Restore 316 blocks
rootkits detected by IDT Monitor 312 from hooking again
into the IDT and calls Update Black List 310 to update entries
in blacklist 120 with references to code, software applications
and modules that execute as a result of attacks by the detected
rootkits.

In one embodiment, whitelist 118 is a computer data file
that includes hash values of applications and/or kernel mod
ules that are determined to be genuine (i.e., not rootkits) and
that hook into SSDT and IDT. As one example, whitelist file
118 may include the following entries:

SHA256,052afe9a7e776d037a62eco594f887cc467c
86609bfo7006f8c7e22.c43132a28.2, Windows, XPSP3,
32, USER, ssdt,026.N.Y.
\WINDOWSVSystem32\myapp.exe, Windows,

SHA256.d76bbd14926ae40d6a770642597 f320ebfc
143887941bd02073c86256b8a2960.2, Linux, RHEL 5,
32. USER, ssdt,060.N.Y./myappmodule.kernel,

In one embodiment, blacklist 120 is a computer data file
that includes hash values of rootkits, unknown software mod
ules, and unknown Software applications that hook into the
SSDT and the IDT. As one example, blacklist file 120 may
include the following entries:

SHA256,054afe6a7e776d037a62eco594f887cc467c
86609bfo7006f8c7e22.c43132a28.2, Windows, XPSP3,
32.SYSTEM, ssdt,023.N.M.AWINDOWS\system32\
rootkit 1.exe, Windows, SHA256.d76bbd16926ae
4Od6a77O64259f2Oebfc.143887941bdO2O73c86256b
8a2960.2, Linux, RHEL 5,32,USER, ssdt,060.N.Y./root
kit3.kernel,

Computer System
FIG. 4 is a block diagram of a computer system that

includes the system of FIG. 1 and that implements the process
of FIG. 2, in accordance with embodiments of the present
invention. Computer system 102 generally comprises a cen
tral processing unit (CPU) 402, a memory 404, an I/O inter
face 406, and a bus 408. Further, computer system 102 is
coupled to I/O devices 410 and a computer data storage unit
412. CPU 402 performs computation and control functions of
computer system 102. CPU 402 may comprise a single pro
cessing unit, or be distributed across one or more processing
units in one or more locations (e.g., on a client and server). In
one embodiment, CPU 402 is implemented as hardware.
Memory 404 may comprise any known computer readable

storage medium, which is described below. In one embodi
ment, cache memory elements of memory 404 provide tem
porary storage of at least Some program code (e.g., program
code of rootkit monitoring agent 114) in order to reduce the
number of times code must be retrieved from bulk storage
while instructions of the program code are carried out. More
over, similar to CPU 402, memory 404 may reside at a single
physical location, comprising one or more types of data Stor
age, or be distributed across a plurality of physical systems in
various forms. Further, memory 404 can include data distrib
uted across, for example, a local area network (LAN) or a
wide area network (WAN).

I/O interface 406 comprises any system for exchanging
information to or from an external source. I/O devices 410
comprise any known type of external device, including a
display device (e.g., monitor), keyboard, mouse, printer,

5

10

15

25

30

35

40

45

50

55

60

65

8
speakers, handheld device, facsimile, etc. Bus 408 provides a
communication link between each of the components in com
puter system 102, and may comprise any type of transmission
link, including electrical, optical, wireless, etc.

I/O interface 406 also allows computer system 102 to store
and retrieve information (e.g., data or program instructions
Such as program code of RMA 114) from an auxiliary storage
device Such as computer data storage unit 412 or another
computer data storage unit (not shown). Computer data Stor
age unit 412 may comprise any known computer readable
storage medium, which is described below. For example,
computer data storage unit 412 may be a non-volatile com
puter data storage device. Such as a magnetic disk drive (i.e.,
hard disk drive) or an optical disc drive (e.g., a CD-ROM
drive which receives a CD-ROM disk).
Memory 404 may store computer program code 114 that

provides the logic for a process of detecting kernel-level
rootkits by rootkit monitoring agent 114 built into an operat
ing system kernel 108 (see FIG. 1). The aforementioned
process of detecting kernel-level rootkits is included in the
process in FIG. 2. Further, memory 404 may include other
systems not shown in FIG. 4. Such as an operating system
(e.g., Linux) that runs on CPU 402 and provides control of
various components within and/or connected to computer
system 102. Memory 404 also may include user space
memory 104 (see FIG. 1), kernel space memory 106 (see FIG.
1), and operating system kernel 108 (see FIG. 1). In one
embodiment, white list 118 (see FIG. 1) and black list 120
(see FIG. 1) are stored in memory 404. In another embodi
ment, white list 118 (see FIG. 1) and black list 120 (see FIG.
1) are stored in a computer data storage unit coupled to
computer system 102 (e.g., storage unit 412). In yet another
embodiment, one of white list 118 (see FIG. 1) and black list
120 (see FIG. 1) is stored in memory 404 and the other is
stored in a computer data storage unit coupled to computer
system 102 (e.g., storage unit 412).

In addition to white list 118 (see FIG. 1) and/or black list
120 (see FIG. 1), memory 404 may also store, for example, a
copy of a good state of kernel data structures 110 and 112 (see
FIG. 1), a first data structure for keeping track of the location
and size of kernel data structures 110 and 112 (see FIG. 1),
and/or a second data structure for keeping track of modified
entries in kernel data structures 110 and 112 (see FIG. 1).

Storage unit 412 and/or one or more other computer data
storage units (not shown) that are coupled to computer system
102 may store data used, generated and/or provided by the
process of FIG. 2. For example, storage unit 412 and/or one or
more other computer data storage units coupled to computer
system 102 may store entries in white list 118 (see FIG. 1),
entries in black list 120 (see FIG. 1), copies of a good state of
kernel data structures 110 and 112 (see FIG. 1), a first data
structure for keeping track of the location and size of kernel
data structures 110 and 112 (see FIG. 1), and/or a second data
structure for keeping track of modified entries in kernel data
structures 110 and 112 (see FIG. 1).
As will be appreciated by one skilled in the art, the present

invention may be embodied as a system, method or computer
program product. Accordingly, an aspect of an embodiment
of the present invention may take a form that is entirely
hardware, a form that is entirely software (including firm
ware, resident Software, micro-code, etc.), or a form that is a
combination of software and hardware, where the aforemen
tioned aspect may generally be referred to herein as a “cir
cuit' or “module.” Furthermore, an embodiment of the
present invention may take the form of a computer program
product embodied in one or more computer readable
medium(s) (e.g., memory 404 or computer data storage unit

US 8,539,584 B2
9

412) having computer readable program code (e.g., program
code of RMA 114) embodied or stored thereon.
Any combination of one or more computer readable medi

um(s) (e.g., memory 404 and computer data storage unit 412)
may be utilized. The computer readable medium may be a
computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared or semiconductor system,
apparatus, device or any suitable combination of the forego
ing. In one embodiment, the computer readable storage
medium is hardware. A non-exhaustive list of more specific
examples of the computer readable storage medium includes:
an electrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory (CD
ROM), an optical storage device, a magnetic storage device,
or any suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain or store a program (e.g.,
program 114) for use by or in connection with a system,
apparatus, or device for carrying out instructions.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electromag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with a system, apparatus, or device for
carrying out instructions.

Program code (e.g., program code of RMA 114) embodied
ona computer readable medium may be transmitted using any
appropriate medium, including but not limited to wireless,
wireline, optical fiber cable, RF, etc., or any suitable combi
nation of the foregoing.

Computer program code (e.g., program code of RMA 114)
for carrying out operations for aspects of the present inven
tion may be written in any combination of one or more pro
gramming languages, including an object oriented program
ming language Such as Java R, Smalltalk, C++ or the like and
conventional procedural programming languages, such as the
“C” programming language or similar programming lan
guages. Instructions of the program code may be carried out
entirely on a user's computer, partly on the user's computer,
as a stand-alone software package, partly on the user's com
puter and partly on a remote computer or entirely on the
remote computer or server, where the aforementioned user's
computer, remote computer and server may be, for example,
computer system 102 or another computer system (not
shown) having components analogous to the components of
computer system 102 included in FIG. 4. In the latter sce
nario, the remote computer may be connected to the user's
computer through any type of network (not shown), including
a LAN or a WAN, or the connection may be made to an
external computer (e.g., through the Internet using an Internet
Service Provider).

Aspects of the present invention are described herein with
reference to flowchart illustrations (e.g., FIG. 2) and/or block
diagrams of methods, apparatus (systems) (e.g., FIG. 1 and
FIG. 4), and computer program products according to
embodiments of the invention. It will be understood that each
block of the flowchart illustrations and/or block diagrams,

10

15

25

30

35

40

45

50

55

60

65

10
and combinations of blocks in the flowchart illustrations and/
or block diagrams, can be implemented by computer program
instructions (e.g., program code of RMA 114). These com
puter program instructions may be provided to a processor
(e.g., CPU 402) of a general purpose computer, special pur
pose computer, or other programmable data processing appa
ratus to produce a machine, such that the instructions, which
are carried out via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium (e.g., memory 404 or computer
data storage unit 412) that can direct a computer (e.g., com
puter system 102), other programmable data processing
apparatus, or other devices to function in a particular manner,
Such that the instructions (e.g., program code of RMA 114)
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.
The computer program instructions may also be loaded

onto a computer (e.g., computer system 102), other program
mable data processing apparatus, or other devices to cause a
series of operational steps to be performed on the computer,
other programmable apparatus, or other devices to produce a
computer implemented process such that the instructions
(e.g., program code of RMA 114) which are carried out on the
computer, other programmable apparatus, or other devices
provide processes for implementing the functions/acts speci
fied in the flowchart and/or block diagram block or blocks.
Any of the components of an embodiment of the present

invention can be deployed, managed, serviced, etc. by a ser
Vice provider that offers to deploy or integrate computing
infrastructure with respect to the process of detecting kernel
level rootkits by the RMA 114 built into operating system
kernel 108 (see FIG. 1). Thus, an embodiment of the present
invention discloses a process for Supporting computer infra
Structure, comprising integrating, hosting, maintaining and
deploying computer-readable code (e.g., program code of
RMA 114) into a computer system (e.g., computer system
102), wherein the code in combination with the computer
system is capable of performing a process of detecting kernel
level rootkits by the RMA 114 built into operating system
kernel 108 (see FIG. 1).

In another embodiment, the invention provides a business
method that performs the process steps of the invention on a
Subscription, advertising and/or fee basis. That is, a service
provider, Such as a Solution Integrator, can offer to create,
maintain, Support, etc. a process of detecting kernel-level
rootkits by the RMA 114 built into operating system kernel
108 (see FIG. 1). In this case, the service provider can create,
maintain, Support, etc. a computer infrastructure that per
forms the process steps of the invention for one or more
customers. In return, the service provider can receive pay
ment from the customer(s) under a subscription and/or fee
agreement, and/or the service provider can receive payment
from the sale of advertising content to one or more third
parties.
The flowchart in FIG. 2 and the block diagrams in FIG. 1,

FIG.3 and FIG. 4 illustrate the architecture, functionality, and
operation of possible implementations of systems, methods,
and computer program products according to various
embodiments of the present invention. In this regard, each
block in the flowchart or block diagrams may represent a
module, segment, or portion of code (e.g., program code of
RMA 114), which comprises one or more executable instruc

US 8,539,584 B2
11

tions for implementing the specified logical function(s). It
should also be noted that, in Some alternative implementa
tions, the functions noted in the block may occur out of the
order noted in the figures. For example, two blocks shown in
Succession may, in fact, be performed Substantially concur- 5
rently, or the blocks may sometimes be performed in reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustrations, and combinations of blocks in the block
diagrams and/or flowchart illustrations, can be implemented 10
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.

While embodiments of the present invention have been
described herein for purposes of illustration, many modifica- 15
tions and changes will become apparent to those skilled in the
art. Accordingly, the appended claims are intended to encom
pass all Such modifications and changes as fall within the true
spirit and scope of this invention.

2O

What is claimed is:
1. A computer-implemented method of detecting a kernel

level rootkit, said method comprising:
a computer system building a rootkit monitoring agent
(RMA) into a kernel of an operating system of the com- 25
puter system;

subsequent to said building said RMA into said kernel of
said operating system, said computer system booting
said operating system by:
said computer system performing an initialization rou- 30

tine as an initial process in said booting said operating
system, said performing said initialization routine
including:
said computer system loading said kernel of said oper

ating system into random access memory (RAM) 35
of said computer system by executing a boot-loader
program residing in a boot-sector of a disk of said
computer system;

said computer system completing an initialization of
said operating system; and 40

Subsequent to said completing said initialization of
said operating system, said computer system
invoking said RMA from within said initial process
in said booting said operating system; and

in response to said loading said kernel into said RAM by 45
said executing said boot-loader program residing in
said boot-sector of said disk, said completing said
initialization of said operating system, and said invok
ing said RMA, said computer system activating said
RMA as a service of said kernel; 50

said computer system storing a first state of data structures
of said kernel of said operating system of said computer
system, said data structures including a System Service
Descriptor Table (SSDT) and an Interrupt Descriptor
Table (IDT), said first state based on said SSDT and said 55
IDT referencing a first plurality of hooks indicated in a
white list and that are not the result of any kernel-level
rootkit being installed on said computer system, and said
first state including an entry of said SSDT or said IDT.

said computer system monitoring said SSDT and said IDT 60
and responsive thereto, detecting a changed entry in said
SSDT or said IDT, wherein said changed entry results
from a change to said entry, said change resulting from
an installation of suspect Software in said computer sys
tem; 65

said computer system determining a hook indicated by said
changed entry and determining said hook indicated by

12
said changed entry is not referenced by said white list,
said hook being code, a Software application, or a soft
ware module;

in response to the step of determining said hook is not
referenced by said white list, said computer system
updating a black list to include a reference to said hook
indicated by said changed entry and said computer sys
tem determining said Suspect software is said kernel
level rootkit based on said hook indicated by said
changed entry not being referenced by said white list,
wherein said reference to said hook included in said
black list indicates said hook results from an installation
of said kernel-level rootkit on said computer system; and

in response to the steps of updating said black list to include
said reference to said hook and determining said Suspect
Software is said kernel-level rootkit, said computer sys
tem restoring said changed entry to said entry included
in said first state.

2. The method of claim 1, further comprising:
Subsequent to the step of restoring said changed entry to

said entry included in said first state, said computer
system detecting a second changed entry in said SSDT
or said IDT, wherein said second changed entry results
from a second change to a second entry included in said
first state of said SSDT and said IDT, said second change
resulting from a second installation of second Suspect
Software in said computer system;

said computer system determining said hook is indicated
by said second changed entry;

based on the step of updating said black list to include said
reference to said hook, said computer system determin
ing said black list references said hook;

said computer system identifying said second changed
entry as being unauthorized based on said hook being
referenced by said black list;

said computer system determining said second Suspect
software is a second kernel-level rootkit based on said
detected second changed entry being identified as unau
thorized; and

responsive to said determining said second Suspect Soft
ware is said second kernel-level rootkit, said computer
system restoring said second changed entry to said sec
ond entry included in said first state of said SSDT and
said IDT.

3. The method of claim 1, further comprising said com
puter system preventing Subsequent actions by said kernel
level rootkit based on said changed entry being restored to
said entry included in said first state.

4. The method of claim 1, further comprising:
said computer system storing said first state in a copy of

said SSDT and said IDT.
said computer system storing a first address and a first

length of said SSDT and a second address and a second
length of said IDT; and

responsive to said detecting said changed entry, said com
puter system determining and storing a location of said
changed entry based on said first address and said first
length if said changed entry is included in said SSDT or
based on said second address and said second length if
said changed entry is included in said IDT.

wherein said computer system restoring said changed entry
to said entry included in said first state includes:
said computer system locating said entry in said copy

based on said location of said changed entry;
Subsequent to said locating said entry in said copy, said

computer system retrieving said entry from said copy;
and

US 8,539,584 B2
13

Subsequent to said retrieving said entry from said copy,
said computer system replacing said changed entry
with said retrieved entry.

5. The method of claim 1, further comprising:
said computer system repeating said monitoring said
SSDT and said IDT periodically at predefined time
intervals determined by a timer of said computer system;
and

Subsequent to said determining said Suspect Software is
said kernel-level rootkit, said computer system resetting
said timer.

6. The method of claim 1, further comprising:
prior to said detecting said changed entry, said computer

system installing a corresponding call back function for
said entry in said SSDT or said IDT, and

said computer system executing said corresponding call
back function in response to said entry being changed to
said changed entry by said installation of said Suspect
Software, wherein a result of said executing said corre
sponding call back function is said detecting said
changed entry.

7. A computer system comprising:
a processor; and
a computer-readable memory unit coupled to said proces

Sor, said memory unit containing instructions that are
carried out by said processor to implement a method of
detecting a kernel-level rootkit, said method compris
ing:
said computer system building a rootkit monitoring

agent (RMA) into a kernel of an operating system of
the computer system;

Subsequent to said building said RMA into said kernel of
said operating system, said computer system booting
said operating system by:
said computer system performing an initialization

routine as an initial process in said booting said
operating system, said performing said initializa
tion routine including:
said computer system loading said kernel of said

operating system into random access memory
(RAM) of said computer system by executing a
boot-loader program residing in a boot-sector of
a disk of said computer system;

said computer system completing an initialization
of said operating system; and

Subsequent to said completing said initialization of
said operating system, said computer system
invoking said RMA from within said initial pro
cess in said booting said operating system; and

in response to said loading said kernel into said RAM
by said executing said boot-loader program resid
ing in said boot-sector of said disk, said completing
said initialization of said operating system, and

5

10

15

25

30

35

40

45

50

said invoking said RMA, said computer system
activating said RMA as a service of said kernel; 55

said computer system storing a first state of data struc
tures of said kernel of said operating system of said
computer system, said data structures including a
System Service Descriptor Table (SSDT) and an
Interrupt Descriptor Table (IDT), said first state based 60
on said SSDT and said IDT referencing a first plural
ity of hooks indicated in a white list and that are not
the result of any kernel-level rootkit being installed on
said computer system, and said first state including an
entry of said SSDT or said IDT; 65

said computer system monitoring said SSDT and said
IDT and responsive thereto, detecting a changed entry

14
in said SSDT or said IDT, wherein said changed entry
results from a change to said entry, said change result
ing from an installation of Suspect Software in said
computer system;

said computer system determining a hook indicated by
said changed entry and determining said hook indi
cated by said changed entry is not referenced by said
white list, said hook being code, a Software applica
tion, or a Software module;

in response to the step of determining said hook is not
referenced by said white list, said computer system
updating a black list to include a reference to said
hook indicated by said changed entry and said com
puter system determining said Suspect Software is said
kernel-level rootkit based on said hook indicated by
said changed entry not being referenced by said white
list, wherein said reference to said hook included in
said black list indicates said hook results from an
installation of said kernel-level rootkit on said com
puter system; and

in response to the steps of updating said black list to
include said reference to said hook and determining
said Suspect Software is said kernel-level rootkit, said
computer system restoring said changed entry to said
entry included in said first state.

8. The computer system of claim 7, wherein said method
further comprises:

Subsequent to the step of restoring said changed entry to
said entry included in said first state, said computer
system detecting a second changed entry in said SSDT
or said IDT, wherein said second changed entry results
from a second change to a second entry included in said
first state of said SSDT and said IDT, said second change
resulting from a second installation of second Suspect
Software in said computer system;

said computer system determining said hook is indicated
by said second changed entry;

based on the step of updating said black list to include said
reference to said hook, said computer system determin
ing said black list references said hook;

said computer system identifying said second changed
entry as being unauthorized based on said hook being
referenced by said black list;

said computer system determining said second Suspect
software is a second kernel-level rootkit based on said
detected second changed entry being identified as unau
thorized; and

responsive to said determining said second Suspect Soft
ware is said second kernel-level rootkit, said computer
system restoring said second changed entry to said sec
ond entry included in said first state of said SSDT and
said IDT.

9. The computer system of claim 7, wherein said method
further comprises said computer system preventing Subse
quent actions by said kernel-level rootkit based on said
changed entry being restored to said entry included in said
first state.

10. The computer system of claim 7, wherein said method
further comprises:

said computer system storing said first state in a copy of
said SSDT and said IDT.

said computer system storing a first address and a first
length of said SSDT and a second address and a second
length of said IDT; and

responsive to said detecting said changed entry, said com
puter system determining and storing a location of said
changed entry based on said first address and said first

US 8,539,584 B2
15

length if said changed entry is included in said SSDT or
based on said second address and said second length if
said changed entry is included in said IDT.

wherein said computer system restoring said changed entry
to said entry included in said first state includes:
said computer system locating said entry in said copy

based on said location of said changed entry;
Subsequent to said locating said entry in said copy, said

computer system retrieving said entry from said copy;
and

Subsequent to said retrieving said entry from said copy,
said computer system replacing said changed entry
with said retrieved entry.

11. The computer system of claim 7, wherein said method
further comprises:

said computer system repeating said monitoring said
SSDT and said IDT periodically at predefined time
intervals determined by a timer of said computer system;
and

Subsequent to said determining said Suspect Software is
said kernel-level rootkit, said computer system resetting
said timer.

12. A computer program product, comprising:
a computer-readable, tangible storage device; and
a computer-readable program code stored on the computer

readable, tangible storage device, said computer-read
able program code containing instructions that are car
ried out by a processor of a computer system to
implement a method of detecting a kernel-level rootkit,
said method comprising:
said computer system building a rootkit monitoring

agent (RMA) into a kernel of an operating system of
the computer system;

subsequent to said building said RMA into said kernel of
said operating system, said computer system booting
said operating system by:
said computer system performing an initialization

routine as an initial process in said booting said
operating system, said performing said initializa
tion routine including:
said computer system loading said kernel of said

operating system into random access memory
(RAM) of said computer system by executing a
boot-loader program residing in a boot-sector of
a disk of said computer system;

said computer system completing an initialization
of said operating system; and

Subsequent to said completing said initialization of
said operating system, said computer system
invoking said RMA from within said initial pro
cess in said booting said operating system; and

in response to said loading said kernel into said RAM
by said executing said boot-loader program resid
ing in said boot-sector of said disk, said completing
said initialization of said operating system, and
said invoking said RMA, said computer system
activating said RMA as a service of said kernel;

said computer system storing a first state of data struc
tures of said kernel of said operating system of said
computer system, said data structures including a
System Service Descriptor Table (SSDT) and an
Interrupt Descriptor Table (IDT), said first state based
on said SSDT and said IDT referencing a first plural
ity of hooks indicated in a white list and that are not
the result of any kernel-level rootkit being installed on
said computer system, and said first state including an
entry of said SSDT or said IDT;

10

15

25

30

35

40

45

50

55

60

65

16
said computer system monitoring said SSDT and said
IDT and responsive thereto, detecting a changed entry
in said SSDT or said IDT, wherein said changed entry
results from a change to said entry, said change result
ing from an installation of Suspect Software in said
computer system;

said computer system determining a hook indicated by
said changed entry and determining said hook indi
cated by said changed entry is not referenced by said
white list, said hook being code, a Software applica
tion, or a Software module;

in response to the step of determining said hook is not
referenced by said white list, said computer system
updating a black list to include a reference to said
hook indicated by said changed entry and said com
puter system determining said Suspect Software is said
kernel-level rootkit based on said hook indicated by
said changed entry not being referenced by said white
list, wherein said reference to said hook included in
said black list indicates said hook results from an
installation of said kernel-level rootkit on said com
puter system; and

in response to the steps of updating said black list to
include said reference to said hook and determining
said Suspect Software is said kernel-level rootkit, said
computer system restoring said changed entry to said
entry included in said first state.

13. The program product of claim 12, wherein said method
further comprises:

Subsequent to the step of restoring said changed entry to
said entry included in said first state, said computer
system detecting a second changed entry in said SSDT
or said IDT, wherein said second changed entry results
from a second change to a second entry included in said
first state of said SSDT and said IDT, said second change
resulting from a second installation of second Suspect
Software in said computer system;

said computer system determining said hook is indicated
by said second changed entry;

based on the step of updating said black list to include said
reference to said hook, said computer system determin
ing said black list references said hook;

said computer system identifying said second changed
entry as being unauthorized based on said hook being
referenced by said black list;

said computer system determining said second Suspect
software is a second kernel-level rootkit based on said
detected second changed entry being identified as unau
thorized; and

responsive to said determining said second Suspect Soft
ware is said second kernel-level rootkit, said computer
system restoring said second changed entry to said sec
ond entry included in said first state of said SSDT and
said IDT.

14. The program product of claim 12, wherein said method
further comprises said computer system preventing Subse
quent actions by said kernel-level rootkit based on said
changed entry being restored to said entry included in said
first state.

15. The program product of claim 12, wherein said method
further comprises:

said computer system storing said first state in a copy of
said SSDT and said IDT.

said computer system storing a first address and a first
length of said SSDT and a second address and a second
length of said IDT; and

US 8,539,584 B2
17

responsive to said detecting said changed entry, said com
puter system determining and storing a location of said
changed entry based on said first address and said first
length if said changed entry is included in said SSDT or
based on said second address and said second length if 5
said changed entry is included in said IDT.

wherein said computer system restoring said changed entry
to said entry included in said first state includes:
said computer system locating said entry in said copy

based on said location of said changed entry;
Subsequent to said locating said entry in said copy, said

computer system retrieving said entry from said copy;
and

Subsequent to said retrieving said entry from said copy,
said computer system replacing said changed entry
with said retrieved entry.

16. A process for Supporting computing infrastructure, said
process comprising providing at least one Support service for
at least one of creating, integrating, hosting, maintaining, and
deploying computer-readable code in a computer system
comprising a processor, wherein said processor carries out
instructions contained in said code causing said computer
system to perform a method of detecting a kernel-level root
kit, wherein said method comprises:

said computer system building a rootkit monitoring agent
(RMA) into a kernel of an operating system of the com
puter system;

subsequent to said building said RMA into said kernel of
said operating system, said computer system booting
said operating system by:
said computer system performing an initialization rou

tine as an initial process in said booting said operating
system, said performing said initialization routine
including:
said computer system loading said kernel of said oper

ating system into random access memory (RAM)
of said computer system by executing a boot-loader
program residing in a boot-sector of a disk of said
computer system;

said computer system completing an initialization of
said operating system; and

Subsequent to said completing said initialization of
said operating system, said computer system
invoking said RMA from within said initial process
in said booting said operating system; and

in response to said loading said kernel into said RAM by
said executing said boot-loader program residing in
said boot-sector of said disk, said completing said
initialization of said operating system, and said invok
ing said RMA, said computer system activating said
RMA as a service of said kernel;

said computer system storing a first state of data structures
of said kernel of said operating system of said computer
system, said data structures including a System Service
Descriptor Table (SSDT) and an Interrupt Descriptor
Table (IDT), said first state based on said SSDT and said
IDT referencing a first plurality of hooks indicated in a
white list and that are not the result of any kernel-level
rootkit being installed on said computer system, and said
first state including an entry of said SSDT or said IDT.

said computer system monitoring said SSDT and said IDT
and responsive thereto, detecting a changed entry in said
SSDT or said IDT, wherein said changed entry results
from a change to said entry, said change resulting from 65
an installation of suspect Software in said computer sys
tem;

10

15

25

30

35

40

45

50

55

60

18
said computer system determining a hook indicated by said

changed entry and determining said hook indicated by
said changed entry is not referenced by said white list,
said hook being code, a Software application, or a soft
ware module;

in response to the step of determining said hook is not
referenced by said white list, said computer system
updating a black list to include a reference to said hook
indicated by said changed entry and said computer sys
tem determining said Suspect software is said kernel
level rootkit based on said hook indicated by said
changed entry not being referenced by said white list,
wherein said reference to said hook included in said
black list indicates said hook results from an installation
of said kernel-level rootkit on said computer system; and

in response to the steps of updating said black list to include
said reference to said hook and determining said Suspect
Software is said kernel-level rootkit, said computer sys
tem restoring said changed entry to said entry included
in said first state.

17. The process of claim 16, wherein said method further
comprises:

Subsequent to the step of restoring said changed entry to
said entry included in said first state, said computer
system detecting a second changed entry in said SSDT
or said IDT, wherein said second changed entry results
from a second change to a second entry included in said
first state of said SSDT and said IDT, said second change
resulting from a second installation of second Suspect
Software in said computer system;

said computer system determining said hook is indicated
by said second changed entry;

based on the step of updating said black list to include said
reference to said hook, said computer system determin
ing said black list references said hook;

said computer system identifying said second changed
entry as being unauthorized based on said hook being
referenced by said black list;

said computer system determining said second Suspect
software is a second kernel-level rootkit based on said
detected second changed entry being identified as unau
thorized; and

responsive to said determining said second Suspect Soft
ware is said second kernel-level rootkit, said computer
system restoring said second changed entry to said sec
ond entry included in said first state of said SSDT and
said IDT.

18. The process of claim 16, wherein said method further
comprises said computer system preventing Subsequent
actions by said kernel-level rootkit based on said changed
entry being restored to said entry included in said first state.

19. The process of claim 16, wherein said method further
comprises:

said computer system storing said first state in a copy of
said SSDT and said IDT.

said computer system storing a first address and a first
length of said SSDT and a second address and a second
length of said IDT; and

responsive to said detecting said changed entry, said com
puter system determining and storing a location of said
changed entry based on said first address and said first
length if said changed entry is included in said SSDT or
based on said second address and said second length if
said changed entry is included in said IDT.

wherein said computer system restoring said changed entry
to said entry included in said first state includes:

US 8,539,584 B2
19

said computer system locating said entry in said copy
based on said location of said changed entry;

Subsequent to said locating said entry in said copy, said
computer system retrieving said entry from said copy;
and 5

Subsequent to said retrieving said entry from said copy,
said computer system replacing said changed entry
with said retrieved entry.

k k k k k

20

