PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/54177
GO6F 17/30, 17/60 A2

’ (43) International Publication Date: 14 September 2000 (14.09.00)

(21) International Application Number: PCT/IB00/00362 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,

(22) International Filing Date: 3 March 2000 (03.03.00) ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,

KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,

MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,

(30) Priority Data: SD, SE, SG, SI, SK, SL, TJ, T™, TR, TT, TZ, UA, UG,
09/263,927 5 March 1999 (05.03.99) Uus UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,

MW, 8D, SL, §Z, TZ, UG, ZW), Eurasian patent (AM, AZ,

BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,

(71) Applicant: AC PROPERTIES B.V. [NL/NL]; Parkstraat 83, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL-2514 JB, ’S Gravenhage (NL). NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,

GN, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors: GERSHMAN, Anatole, Vitaly; 522 W. Barry
Avenue, Chicago, IL 60657 (US). SWAMINATHAN,
Kishore, Sundaram; 6524 Stair Street, Downers Grove, IL | Published
60056 (US). MEYERS, James, L.; 1107 W. Wrightwood Without international search report and to be republished
Apt. #1, Chicago, IL 60614 (US). FANO, Andrew, E.; upon receipt of that report.

1137 Maple Avenue Apt. 1E, Evanston, IL 60202 (US).

(74) Agent: BROWNE, Robin; Urquhart-Dykes & Lord, Tower
House, Merrion Way, Leeds LS2 8PA (GB).

(54) Title: A SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR ADVANCED MOBILE COMMUNICATION

2712

K_‘_____________/

Intelligent agents for
o 2724 service packaging,
2113 responding to customer
needs

\v 274 ¥ 27126

Customer

Tc intelligence
Thin Client(s) 8.8 through data mining
*g % Moblle Portal and .
; pattern recognition
0os S g Setver
ua Customer

Data
2728

Hardware Device

[%3
~3
~N
U

27122

J e p
2716

2730
7 3rd party content & service
providers

(87) Abstract

A system is disclosed that facilitates web—based information retrieval and display system. A wireless phone or similar hand-held
wireless device with Internet Protocol capability is combined with other peripherals to provide a portable portal into the Internet. The
wireless device prompts a user to input information of interest to the user. This information is transmitted a query to a service routine
(running on a Web server). The service routine then queries the Web to find price, shipping and availability information from various Web
suppliers. This information is formatted and displayed on the hand-held device’s screen. The user may then use the hand-held device to
place an order interactively.

AL
AM
AT
AU

BA
BB
BE
BF
BG

BR
BY
CA
CF
CG
CH
CI
CcM
CN
Cu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
TJ
™

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

A SYSTEM, METHOD AND ARTICLE OF MANUFACTURE FOR
ADVANCED MOBILE COMMUNICATION

Field Of The Invention

The present invention relates to agent based systems and more particularly to a mobile

computing environment that accesses the Internet to obtain information for a user.
Background of the Invention

Computer assistance in all environments is increasingly necessary as computer technology
becomes increasingly embedded in society. Mobile computing technology addresses this issue
by allowing the individual to access computer related information at all times and in all

environments.

One of the first major advances in mobile computer technology was the Personal Digital
Assistant (PDA). A PDA allowed a user to access computer related information, yet fitted in the
palm of the hand. Utilizing a PDA the user could organize personal affairs, write notes, calculate
equations, and record contact numbers an address book. In addition, PDAs were usually capable
of interfacing with a desktop computer, typically through a wire connection. The connection
allowed the PDA to download information and upload information, with the desktop computer.
Later developments gave the PDA wireless capabilities. The wireless capabilities allowed the

PDA to interact with other computers that were not physically connected to the PDA.

Wireless PDAs could communicate with computers that were connected to the World Wide Web,
and soon led to PDAs capable of Web browsing. One of the first companies to develop Web
browsing capabilities for PDAs was Intercom. Intercom’s Falcon Mobile Server allowed PDAs
with Web functions to directly connect to a host computcr. Just by installing the sofiwarc onto

the host server, PDA terminals were able to access information through the World Wide Web.

Currently, more integration in mobile computing is desired. Nokia, an Irving Texas company,
has partially addressed the integration issue by developing the Nokia 9000 wireless voice phone.
The Nokia 9000 includes a small keyboard, a specialized Web browser from microbrowser
vendor Unwired Planet, Inc., and a small VGA monitor. Nokia worked with Ericsson Inc,

Motorola Inc. and Unwired Planet to establish the Wireless Application Protocal (WAP), a

10

15

20

25

30

WO 00/54177 PCT/1B00/00362

standardized browser technology and server format. WAP gave manufacturers a standard way to
put data capability into wireless phones, and allowed carriers to do more over-the-air
management. For cxample, if a carrier wanted a ficld trial of a new data service, the carrier
could implement the service on a server, deliver it to a phone through the microbrowser and

adjust the service if they found the service unsatisfactory.

Prior Art Figure 1A is a diagram of prior art mobile computing solutions based on web portal
networks. In the Prior Art, the user 10 must deal separately with each participant of the network.
In the Prior Art mobile computing solution, the user 10 utilizes an Internet service provider (ISP)
12 to gain access to a web portal 14. The web portal 14 accesses third party services 16 which
provide information directly to the user 10. However, in addition to dealing with the Internet
Service Provider 12, the user 10 must purchase the wircless device from the device manufacturcs
or retailers 18. In most cases the user 10 would also have to purchase the browser from the
browser provider 20. Generally, the user would have to pay the wireless communication cost, |
leading to the user needing to deal with the phone company 22. And finally, any web purchases
would lead to the user 10 needing to deal with the credit card company 24. It is obvious that a
coordinated and packaged service would be an ideal mobile computing solution. Furthermore, a

coordinated and packaged service which made use of agents would be highly desired.

Agent based technology has become increasingly important for use with applications designed to
interact with a user for performing various computer based tasks in foreground and background
modes. Agent software comprises computer programs that are set on behalf of users to perform
routine, tedious and time-consuming tasks. To be useful to an individual user, an agent must be
personalized to the individual user’s goals, habits and preferences. Thus, there exists a
substantial requirement for the agent to efficiently and effectively acquire user-specific

knowledge from the user and utilize it to perform tasks on behalf of the user.

The concept of agency, or the user of agents, is well established. An agent is a person authorized
by another person, typically referred to as a principal, to act on behalf of the principal. In this
manner the principal empowers the agent to perform any of the tasks that the principal is
unwilling or unable to perform. For example, an insurance agent may handle all of the insurance
requirements for a principal, or a talent agent may act on behalf of a performer to arrange concert

dates.

10

WO 00/54177 PCT/IB00/00362

With the advent of the computer, a new domain for employing agents has arrived. Significant
advances in the realm of expert systems enable computer programs to act on behalf of computer
users to perform routine, tedious and other time-consuming tasks. These computer programs are

referred to as “software agents.”

Moréover, there has been a recent proliferation of computer and communication networks.

These networks permit a user to access vast amounts of information and services without,
essentially, any geographical boundaries. Thus, a software agent has a rich environment to
perform a large number of tasks on behalf of a user. For eXample, it is now possible for an agent
to make an airline reservation, purchase the ticket, and have the ticket delivered directly to a user.
Similarly, an agent could scan the Internet and obtain information ranging from the latest sports
or news to a particular graduate thesis in applied physics. Current solutions fail to apply agent

technology to provide targeted acquisition of information for a user’s upcoming events.

10

15

20

25

30

WO 00/54177 PCT/1IB00/00362

SUMMARY OF THE INVENTION

A system is disclosed that facilitates web-based information retrieval and display
system. A wireless phone or similar hand-held wireless device with Internet Protocol
capability is combined with other peripherals to provide a portable portal into the
Internet. The wireless device prompts a user to input information of interest to the
user. This information is transmitted a query to a service routine (running on a Web
server). The service routine then queries the Web to find price, shipping and
availability information from various Web suppliers. This information is formatted and
displayed on the hand-held device’s screen. The user may then use the hand-held

device to place an order interactively.

DESCRIPTION OF THE DRAWINGS
The foregoing and other objects, aspects and advantages are better understood from the following
detailed description of a preferred embodiment of the invention with reference to the drawings, in

which:

Prior Art Figure 1A is a diagram of Prior Art mobile computing solutions based on web portal

networks;

Figure 1 is a block diagram of a representative hardware environment in accordance with a

preferred embodiment;
Figure 2 is a flowchart of the system in accordance with a preferred embodiment;

Figure 3 is a flowchart of a parsing unit of the system in accordance with a preferred

embodiment;
Figure 4 is a flowchart for pattern matching in accordance with a preferred embodiment;

Figures 5 is a flowchart for a search unit in accordance with a preferred embodiment;

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 .
Figure 6 is a flowchart for overall system processing in accordance with a preferred embodiment;
Figure 7 is a flowchart of topic processing in accordance with a preferred embodiment;

Figure 8 is a flowchart of meeting record processing in accordance with a preferred embodiment;

Figure 9 is a block diagram of process flow of a pocket bargain finder in accordance with a

preferred embodiment;

Figure 10A and 10B are a block diagram and flowchart depicting the logic associated with

creating a customized content web page in accordance with a preferred embodiment;

Figure 11 is a flowchart depicting the detailed logic associated with retricving user-centric

content in accordance with a preferred embodiment;

Figure 12 is a data model of a user profile in accordance with a preferred embodiment;
Figure 13 is a persona data model in accordance with a preferred embodiment;

Figure 14 is an intention data model in accordance with a preferred embodiment;

Figure 15 is a flowchart of the processing for generating an agent’s current statistics in

accordance with a preferred embodiment;

Figure 16 is a flowchart of the logic that determines the personalized product rating for a uscr in

accordance with a preferred embodiment;

Figure 17 is a flowchart of the logic for accessing the centrally stored profile in accordance with

a preferred embodiment;

Figure 18 is a flowchart of the interaction logic between a user and the integrator for a particular

supplier in accordance with a preferred embodiment;

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 -

Figure 19 is a flowchart of the agent processing for generating a verbal summary in accordance

with a preferred embodiment;

Figure 20 illustrates a display login in accordance with a preferred embodiment;

Figure 21 illustrates a managing daily logistics display in accordance with a preferred

embodiment;

Figure 22 illustrates a user main display in accordance with a preferred embodiment;

Figure 23 illustrates an agent interaction display in accordance with a preferred embodiment;

Figure 24 is a block diagram of an active knowledge management system in accordance with a

preferred embodiment;

Figure 25 is a block diagram of a back end server in accordance with a preferred embodiment;

Figure 26 is a flow chart illustrating how the hardware and software of one embodiment of the

present invention operates;

Figure 27A illustrates a display of the browser mode in accordance with a preferred embodiment;

and

Figure 27B is an illustration of a Mobile Portal platform in accordance with a preferred

embodiment.

DETAILED DESCRIPTION
A preferred embodiment of a system in accordance with the present invention is preferably
practiced in the context of a personal computer such as an IBM compatible personal computer,
Apple Macintosh computer or UNIX based workstation. A representative hardware environment
is depicted in Figure 1, which illustrates a typical hardware configuration of a workstation in
accordance with a preferred embodiment having a central processing unit 110, such as a

microprocessor, and a number of other units interconnected via a system bus 112. The
6

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 -

workstation shown in Figure 1 includes a Random Access Memory (RAM) 114, Read Only
Memory (ROM) 116, an I/O adapter 118 for connecting peripheral devices such as disk storage
units 120 to the bus 112, a user interface adapter 122 for connecting a keyboard 124, a mouse
126, a speaker 128, a microphone 132, and/or other user interface devices such as a touch screen
(not shown) to the bus 112, communication adapter 134 for connecting the workstation to a
communication network (e.g., a data processing network) and a display adapter 136 for
connecting the bus 112 to a display device 138. The workstation typically has resident thereon
an operating system such as the Microsoft Windows NT or Windows/95 Operating System (OS),
the IBM OS/2 operating system, the MAC OS, or UNIX operating system. Those skilled in the
art will appreciate that the present invention may also be implemented on platforms and

operating systems other than those mentioned.

A preferred embodiment is written using JAVA, C, and the C-++ language and utilizes object
oriented programming methodology. Object oriented programming (OOP) has become
increasingly used to develop complex applications. As OOP moves toward the mainstream of
software design and development, various software solutions require adaptation to make use of
the benefits of OOP. A need exists for these principles of OOP to be applied to a messaging
interface of an electronic messaging system such that a set of OOP classes and objects for the

messaging interface can be provided.

OOP is a process of developing computer software using objects, including the steps of
analyzing the problem, designing the system, and constructing the program. An object is a
software package that contains both data and a collection of related structures and procedures.
Since it contains both data and a collection of structures and procedures, it can be visualized as a
self-sufficient component that does not require other additional structures, procedures or data to
perform its specific task. OOP, therefore, views a computer program as a collection of largely
autonomous components, called objects, each of which is responsible for a specific task. This
concept of packaging data, structures, and procedures together in one component or module is

called encapsulation.

In general, OOP components are reusable software modules which present an interface that
conforms to an object model and which are accessed at run-time through a component integration

architecturc. A component intcgration architccturc is a sct of architecture mechanisms which
7

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

allow software modules in different process spaces to utilize each others capabilities or functions.
This is generally done by assuming a common component object model on which to build the

architecture.

It is worthwhile to differentiate between an object and a class of objects at this point. An object
is a single instance of the class of objects, which is often just called a class. A class of objects

can be viewed as a blueprint, from which many objects can be formed.

OOP allows the programmer to create an object that is a part of another object. For example, the
object representing a piston engine is said to have a composition-relationship with the object
representing a piston. In reality, a piston engine comprises a piston, valves and many other
components; the fact that a piston is an element of a piston engine can be logically and

semantically represented in OOP by two objects.

OOP also allows creation of an object that “depends from” another object. If there are two
objects, one representing a piston engine and the other representing a piston engine wherein the
piston is made of ceramic, then the relationship between the two objects is not that of
composition. A ceramic piston engine does not make up a piston engine. Rather it is merely one
kind of piston engine that has one more limitation than the piston enging; its piston is made of
ceramic. In this case, the object representing the ceramic piston engine is called a derived object,
and it inherits all of the aspects of the object representing the piston engine and adds further
limitation or detail to it. The objcct representing the ceramic piston engine “depends from” the
object representing the piston engine. The relationship between these objects is called

inheritance.

When the object or class representing the ceramic piston engine inherits all of the aspects of the
objects representing the piston engine, it inherits the thermal characteristics of a standard piston
defined in the piston engine class. However, the ceramic piston engine object overrides these
ceramic specific thermal characteristics, which are typically different from those associated with
a metal piston. It skips over the original and uscs new functions related to ceramic pistons.
Different kinds of piston engines have different characteristics, but may have the same
underlying functions associated with it (¢.g., how many pistons in the engine, ignition sequences,

lubrication, etc.). To access each of these functions in any piston engine object, a programmer
8

10

15

20

25

30

WO 00/54177 PCT/IB00/00362
would call the same functions with the same names, but each type of piston engine may have
different/overriding implementations of functions behind the same name. This ability to hide
different implementations of a function behind the same name is called polymorphism and it

greatly simplifies communication among objects.

With the concepts of composition-relationship, encapsulation, inheritance and polymorphism, an
object can represent just about anything in the real world. In fact, our logical perception of the
reality is the only limit on determining the kinds of things that can become objects in object-
oriented software. Some typical categories are as follows:

. Objects can represent physical objects, such as automobiles in a traffic-flow simulation,
clectrical components in a circuit-design program, countrics in an cconomics model, or
aircraft in an air-traffic-control system.

o Objects can represent elements of the computer-user environment such as windows,

menus or graphics objects.

-® An object can represent an inventory, such as a personnel file or a table of the latitudes

and longitudes of cities.

‘o An object can represent user-defined data types such as time, angles, and complex

numbers, or points on the plane.

With this enormous capability of an object to represent just about any logically separable
matters, OOP allows the software developer to design and implement a computer program that is
a model of some aspects of reality, whether that reality is a physical entity, a process, a system,
or a composition of matter. Since the object can represent anything, the software developer can

create an object which can be used as a component in a larger software project in the future.

If 90% of a new OOP software program consists of proven, existing components made from -
preexisting reusable objects, then only the remaining 10% of the new software project has to be
written and tested from scratch. Since 90% already came from an inventory of extensively tested
reusable objects, the potential domain from which an error could originate is 10% of the
program. As a result, OOP enables software developers to build objects out of other, previously

built, objects.

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 -

This process closely resembles complex machinery being built out of assemblies and sub-
assemblies. OOP technology, therefore, makes software engineering more like hardware
engineering in that software is built from existing components, which are available to the
developer as objects. All this adds up to an improved quality of the software as well as an

increased speed of its development.

Programming languages are beginning to fully support the OOP principles, such as
encapsulation, inheritance, polymorphism, and composition-relationship. With the advent of the
C++ language, many commercial software developers have embraced OOP. C++ is an OOP
language that offers a fast, machine-executable code. Furthermore, C++ is suitable for both
commercial-application and systems-programming projects. For now, C++ appears to be the
most popular choice among many OOP programmers, but there is a host of other OOP
languages, such as Smalltalk, common lisp object system (CLOS), and Eiffel. Additionally,
OOP capabilities are being added to more traditional popular computer programming languages

such as Pascal.

The benefits of object classes can be summarized, as follows:

o Objects and their corresponding classes break down complex programming problems into

many smaller, simpler problems.

. Encapsulation enforces data abstraction through the organization of data into small,

independent objects that can communicate with each other. Encapsulation protects the
data in an object from accidental damage, but allows other objects to interact with that

data by calling the object’s member functions and structures.

‘o Subclassing and inheritance make it possible to extend and modify objects through

deriving new kinds of objects from the standard classes available in the system. Thus,
new capabilities are created without having to start from scratch.

. Polymorphism and multiple inheritance make it possible for different programmers to
mix and match characteristics of many different classes and create specialized objects that
can still work with related objects in predictable ways.

. Class hierarchies and containment hierarchies provide a flexible mechanism for

modeling real-world objects and the relationships among them.

10

10

15

20

25

30

WO 00/54177

PCT/IB00/00362 -
. Libraries of reusable classes are useful in many situations, but they also have some
limitations. For example:
. Complexity. In a complex system, the class hierarchies for related classes can become
extremely confusing, with many dozens or even hundreds of classes.
o Flow of control. A program written with the aid of class libraries is still responsible for

the flow of control (i.e., it must control the interactions among all the objects created
from a particular library). The programmer has to decide which functions to call at what

times for which kinds of objects.

‘. Duplication of effort. Although class libraries allow programmers to use and reuse many

small pieces of code, each programmer puts those pieces together in a different way.
Two different programmers can usc the same sct of class librarics to writc two programs
that do exactly the same thing but whose internal structure (i.e., design) may be quite
different, depending on hundreds of small decisions each programmer makes along the
way. Inevitably, similar pieces of code end up doing similar things in slightly different

ways and do not work as well together as they should.

Class libraries are very flexible. As programs grow more complex, more programmers are
forced to reinvent basic solutions to basic problems over and over again. A relatively new
extension of the class library concept is to have a framework of class libraries. This framework
is more complex and consists of significant collections of collaborating classes that capture both
the small scale patterns and major mechanisms that implement the common requirements and
design in a specific application domain. They were first developed to free application
programmers from the chores involved in displaying menus, windows, dialog boxes, and other

standard user interface elements for personal computers.

Frameworks also represent a change in the way programrﬁers think about the interaction between
the code they write and code written by others. In the early days of procedural programming, the
programmer called libraries provided by the operating system to perform certain tasks, but
basically the program executed down the page from start to finish, and the programmer was
solely responsible for the flow of control. This was appropriate for printing out paychecks,
calculating a mathcmatical table, or solving other problems with a program that cxccuted in just

one way.

11

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

The development of graphical user interfaces began to turn this procedural programming
arrangement inside out. These interfaces allow the user, rather than program logic, to drive the
program and decide when certain actions should be performed. Today, most personal computer
sofiware accomplishes this by means of an cvent loop which monitors the mousc, keyboard, and
other sources of external events and calls the appropriate parts of the programmer’s code
according to actions that the user performs. The programmer no longer determines the order in
which events occur. Instead, a program is divided into separate pieces that are called at
unpredictable times and in an unpredictable order. By relinquishing control in this way to users,
the developer creates a program that is much easier to use. Nevertheless, individual pieces of the
program written by the developer still call libraries provided by the opepating system to
accomplish certain tasks, and the programmer must still determine the flow of control within

each piece after being called by the event loop. Application code still “sits on top of” the system.

Even event loop programs require programmers to write a lot of code that should not need to be
written separately for every application. The concept of an application framework carries the
event loop concept further. Instead of dealing with all the nuts and bolts of constructing basic
menus, windows, and dialog boxes and then making these things all work together, programmeré
using application frameworks start with working application code and basic user interface
clements in place. Subscquently, they build from there by replacing some of the gencric

capabilities of the framework with the specific capabilities of the intended application.

Application frameworks reduce the total amount of code that a programmer has to write from
scratch. However, because the framework is really a generic application that displays windows,
supports copy and paste, and so on, the programmer can also relinquish control to a greater
degree than event loop programs permit. The framework code takes care of almost all event
handling and flow of control, and the programmer’s code is called only when the framework

needs it (e.g., to create or manipulate a proprietary data structure).

A programmer writing a framework program not only relinquishes control to the user (as is also
true for event loop programs), but also relinquishes the detailed flow of control within the

program to the framework. This approach allows the creation of more complex systems that

12

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 -

work together in interesting ways, as opposed to isolated programs, having custom code, being

created over and over again for similar problems.

Thus, as is explained above, a framework basically is a collection of cooperating classes that

make up a reusable design solution for a given problem domain. It typically includes objects that

provide default behavior (e.g., for menus and windows), and programmers use it by inheriting

some of that default behavior and overriding other behavior so that the framework calls

application code at the appropriate times.

There are three main differences between frameworks and class libraries:

Behavior versus protocol. Class libraries are essentially collections of behaviors that you
can call when you want those individual behaviors in your program. A framework, on
the other hand, provides not only behavior but also the protocol or set of rules that govern
the ways in which behaviors can be combined, including rules for what a programmer is
supposed to provide versus what the framework provides.

Call versus override. With a class library, the code the programmer instantiates objects
and calls their member functions. It’s possible to instantiate and call objects in the same
way with a framework (i.e., to treat the framework as a class library), but to take full
advantage of a framework’s reusable design, a programmer typically writes code that
overrides and is called by the framework. The framework manages the flow of control
among its objects. Writing a program involves dividing responsibilities among the
various pieces of software that are called by the framework rather than specifying how
the different pieces should work together.

Implementation versus design. With class libraries, programmers reuse only
implementations, whereas with frameworks, they reuse design. A framework embodies
the way a family of related programs or pieces of software work. It represents a generic
design solution that can be adapted to a varicty of specific problems in a given domain.
For example, a single framework can embody the way a user interface works, even
though two different user interfaces created with the same framework might solve quite

different interface problems.

13

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 -

Thus, through the development of frameworks for solutions to various problems and
programming tasks, significant reductions in the design and development effort for sofiware can
be achieved. A preferred embodiment of the invention utilizes HyperText Markup Language
(HTML) to implement documents on the Internet together with a general-purpose secure
communication protocol for a transport medium between the client and the Newco. HTTP or
other protocols could be readily substituted for HTML without undue experimentation.
Information on these products is available in T. Berers-Lee, D. Connoly, "RFC 1866: Hypertext
Markup Language - 2.0" (Nov. 1995); and R. Fielding, H, Frystyk, T. Berners-Lee, J. Gettys and
J.C. Mogul, "Hypertext Transfer Protocol -- HTTP/1.1: HTTP Working Group Internet Draft"
(May 2, 1996). HTML is a simple data format used to create hypertext documents that are
portable from one platform to another. HTML documents are SGML documents with generic
semantics that are appropriate for representing information from a wide range of domains.
HTML has been in use by the World-Wide Web global information initiative since 1990. HTML
is an application of ISO Standard 8879:1986 Information Processing Text and Office Systems;
Standard Generalized Markup Language (SGML).

To date, Web development tools have been limited in their ability to create dynamic Web
applications which span from client to server and interoperate with existing computing resources.
Until recently, HTML has been the dominant technology used in development of Web-based

solutions. However, HTML has proven to be inadequate in the following areas:

o Poor performance;

. Restricted user interface capabilities;

. Can only produce static Web pages;
K Lack of interoperability with existing applications and data; and
) Inability to scale.

Sun Microsystem's Java language solves many of the client-side problems by:

o Improving performance on the client side;
. Enabling the creation of dynamic, real-time Web applications; and
® Providing the ability to create a wide variety of user interface components.

14

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 -

With Java, developers can create robust User Interface (UI) components. Custom "widgets" (e.g.,
real-time stock tickers, animated icons, etc.) can be created, and client-side performance is
improved. Unlike HTML, Java supports the notion of client-side validation, offloading
appropriate processing onto the client for improved performance. Dynamic, real-time Web pages
can be created. Using the above-mentioned custom UI components, dynamic Web pages can also

be created.

Sun's Java language has emerged as an industry-recognized language for "programming the
Internet." Sun defines Java as: “a simple, object-oriented, distributed, interpreted, robust,
secure, architecture-neutral, portable, high-performance, multithreaded, dynamic, buzzword-
compliant, general-purpose programming language. Java supports programming for the Internet
in the form of platform-independent Java applets.” Java applets are small, specialized
applications that comply with Sun's Java Application Programming Interface (API) allowing
developers to add "interactive content" to Web documents (e.g., simple animations, page
adornments, basic games, etc.). Applets execute within a Java-compatible browser (e.g.,
Netscape Navigator) by copying code from the server to client. From a language standpoint,
Java's core feature set is based on C-++. Sun's Java literature states that Java is basically "C++,

with extensions from Objective C for more dynamic method resolution”.

Another technology that provides similar function to JAVA is provided by Microsoft and ActiveX
Technologies, to give developers and Web designers wherewithal to build dynamic content for the
Internet and personal computers. ActiveX includes tools for developing animation, 3-D virtual
reality, video and other multimedia content. The tools use Internet standards, work on multiple
platforms, and are being supported by over 100 companies. The group's building blocks are called
ActiveX Controls, small, fast components that enable developers to embed parts of software in
hypertext markup language (HTML) pages. ActiveX Controls work with a variety of programming
languages including Microsoft Visual C-++, Borland Delphi, Microsoft Visual Basic programming
system and, in the future, Microsoft's development tool for Java, code named "Jakarta." ActiveX
Technologies also includes ActiveX Server Framework, allowing developers to create server
applications. Onc of ordinary skill in the art rcadily recognizes that ActiveX could be substituted

for JAVA without undue experimentation to practice the invention.

15

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 -

In accordance with a preferred embodiment, BackgroundFinder (BF) is implemented as an agent
responsible for preparing an individual for an upcoming meeting by helping him/her retrieve
relevant information about the meeting from various sources. BF receives input text in character
form indicative of the target meeting. The input text is generated in accordance with a preferred
embodiment by a calendar program that includes the time of the meeting. As the time of the
meeting approaches, the calendar program is queried to obtain the text of the target event and that
information is utilized as input to the agent. Then, the agent parses the input meeting text to
extract its various components such as title, body, participants, location, time etc. The system
also performs pattern matching to identify particular meeting fields in a meeting text. This
information is utilized to query various sources of information on the web and obtain relevant
stories about the current meeting to send back to the calendaring system. For example, if an
individual has a meeting with Netscape and Microsoft to talk about their vdisputes, and would
obtain this initial information from the calendaring system. It will then parse out the text to
realize that the companies in the meeting are “Netscape” and “Microsoft” and the topic is
“disputes.” Then, the system queries the web for relevant information concerning the topic.
Thus, in accordance with an objective of the invention, the system updates the calendaring
system and eventually the user with the best information it can gather to prepare the user for the
target meeting. In accordance with a preferred embodiment, the information is stored in a file

that is obtained via sclcction from a link imbedded in the calendar system.

PROGRAM ORGANIZATION
A computer program in accordance with apreferrcd embodiment is organized in five distinct
modules: BF.Main, BF.Parse, Background Finder.Error, BF.PatternMatching and BF.Search.
There is also a frmMain which provides a user interface used only for debugging purposes. The
executable programs in accordance with a preferred embodiment never execute with the user
interface and should only return to the calendaring system through Microsoft’s Winsock control.
A preferred embodiment of the system executes in two different modes which can be specified
under the command line sent to it by the calendaring system. When the system runs in simple
mode, it executes a keyword query to submit to external search engines. When executed in
complex mode, the system performs pattern matching before it forms a query to be sent to a

search engine.

16

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 -

DATA STRUCTURES

The system in accordance with a preferred embodiment utilizes three user defined structures:

1. TMeetingRecord;

2. TPatternElement; and

3. TPatternRecord.

The user-defined structure, tMeetingRecord, is used to store all the pertinent information
concerning a single meeting. This info includes userID, an original description of the meeting,
the extracted list of keywords from the title and body of meeting etc. It is important to note that
only one meeting record is created per instance of the system in accordance with a preferred
embodiment. This is because each time the system is spawned to service an upcoming meeting,
it is assigned a task to retrieve information for only one meeting. Therefore, the meeting record
created corresponds to the current meeting examined. ParseMeetingText populates this meeting
record and it is then passed around to provide information about the meeting to other functions.
If GoPatternMatch can bind any values to a particular meeting field, the corresponding entries in
the meeting record is also updated. The structure of tMeetingRecord with each field described

in parentheses is provided below in accordance with a preferred embodiment.

A.l.1.1.1.1 Public Type tMeetingRecord
sUserID As String (user id given by Munin)
sTitleOrig As String (original non stop listed title we need to keep around to send back to
Munin)
sTitleKW As String (stoplisted title with only keywords)
sBodyKW As String (stoplisted body with only keywords)
sCompany() As String (companys identified in title or body through pattern matching)
sTopic() As String (topics identified in title or body through pattern matching)
sPeople() As String (people identified in title or body through pattern matching)
sWhen() As String (time identified in title or body through pattern matching)
sWhere() As String (location identified in title or body through pattern matching)
sLocation As String (location as passed in by Munin)
sTime As String (time as passed in by Munin)
sParticipants() As String (all participants cngaged as passcd in by Munin)
sMeetingText As String (the original meeting text w/o userid)
17

10

15

20

25

WO 00/54177 PCT/IB00/00362 -

End Type

There are two other structures which are created to hold each individual pattern utilized in pattern
matching. The record tAPatternRecord is an array containing all the components / elements of a
pattern. The type tAPatternElement is an array of strings which represent an element in a
pattern. Because there may be many "substitutes" for each element, we need an array of strings
to keep track of what all the substitutes are. The structures of tAPatternElement and

tAPatternRecord are presented below in accordance with a preferred embodiment.

Public Type tAPatternElement
elementArray() As String

End Type

Public Type tAPatternRecord
patternArray() As tAPatternElement

End Type

COMMON USER DEFINED CONSTANTS

Many constants are defined in each declaration section of the program which may need to be
updated periodically as part of the process of maintaining the system in accordance with a
preferred embodiment. The constants are accessible to allow dynamic configuration of the

system to occur as updates for maintaining the code.

Included in the following tables are lists of constants from each module which T thought are most
likely to be modified from time to time. However, there are also other constants used in the code
not included in the following list. It does not mean that these non-included constants will ncever

be changed. It means that they will change much less frequently.

For the Main Module (BF.Main) :

CONSTANT PRESET VALUE | USE

MSGTOMUNIN_TYPE 6 Define the message number used
to identify messages between BF

and Munin

18

WO 00/54177 PCT/IB00/00362

CONSTANT oo PRESET VALUE | USE

IP_ADDRESS_MUNIN ~17"10.2.100.48" Define the IP address of the
machine in which Munin and BF
are running on so they can transfer

data through UDP.

PORT_MUNIN 7777 Define the remote port in which

we are operating on.

TIMEOUT_AV 60 Define constants for setting time

out in inet controls

TIMEOUT_NP 60 Define constants for setting time

out in inet controls

CMD_SEPARATOR " . Define delimiter to tell which part
of Munin's command represents

the beginning of our input meeting

text
OUTPARAM_SEPARAT | ":" Define delimiter for separating out
OR different portions of the output.

The separator is for delimiting the
msg type, the user id, the meeting
title and the beginning of the

actual stories retrieved.

For the Search Module (BF.Search):

CONSTANT CURRENT USE
VALUE
PAST NDAYS 5 Define number of days you want

to look back for AltaVista articles.
Doesn't really matter now because
we aren't really doing a news
search in alta vista. We want all

info.

19

WO 00/54177

PCT/IB00/00362 -
CONSTANT CURRENT USE
VALUE

CONNECTOR_AV_URL | "+AND+" Define how to connect keywords.
We want all our keywords in the
string so for now use AND. If you
want to do an OR or something,
just change connector.

CONNECTOR_NP_URL | "+AND+" Define how to connect keywords.
We want all our keywords in the
string so for now use AND. If you
want to do an OR or somcthing,
just change connector.

NUM_NP STORIES 3 Define the number of stories to
return back to Munin from
NewsPage.

NUM_AV_STORIES 3 Define the number of stories to
return back to Munin from
AltaVista.

For the Parse Module (BF.Parsc):

CONSTANT CURRENT USE

VALUE

PORTION_SEPARATOR

n..n

Define the separator between

different portions of the meeting
text sent in by Munin. For example
in "09::Meet with Chad::about
life::Chad | Denise::::::" "::" is the
separator between different parts

of the meeting text.

20

10

15

20

25

WO 00/54177 : PCT/1B00/00362

CONSTANT CURRENT USE
VALUE

PARTICIPANT_SEPARATOR " Define the separator between each
participant in the participant list
portion of the original meeting

text.

Refer to example above.

For Pattern Matching Module (BFPatternMatch): There are no constants in this module which

require frequent updates.

General Process Flow

The best way to depict the process flow and the coordination of functions between each other is
with the five flowcharts illustrated in Figures 2 to 6. Figure 2 depicts the overall process flow in
accordance with a preferred embodiment. Processing commences at the top of the chart at
function block 200 which launches when the program starts. Once the application is started, the
command line is parsed to remove the appropriate meeting text to initiate the target of the
background find operation in accordance with a preferred embodiment as shown in function
block 210. A global stop list is generated after the target is determined as shown in function
block 220. Then, all the patterns that are utilized for matching operations are generated as
illustrated in function block 230. Then, by tracing through the chart, function block 200 invokes
GoBF 240 which is responsible for logical processing associated with wrapping the correct
search query information for the particular target search engine. For example, function block
240 flows to function block 250 and it then calls GoPatternMatch as shown in function block
260. To see the process flow of GoPatternMatch, we swap to the diagram titled “Process Flow
for BF’s Pattern Matching Unit.”

One key thing to notice is that functions depicted at the same level of the chart are called by in
sequential order from left to right (or top to bottom) by their common parent function. For
example, Main 200 calls ProcessCommandLine 210, then CreateStopListist 220, then
CreatePatterns 230, then GoBackgroundFinder 240. Figures 3 to 6 detail the logic for the entire

program, the parsing unit, the pattern matching unit and the search unit respectively. Figure 6
21

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

details the logic determinative of data flow of key information through BackgroundFinder, and

shows the functions that are responsible for creating or processing such information.

DETAILED SEARCH ARCHITECTURE UNDER THE SIMPLE QUERY MODE

SEARCH ALTA VISTA
(Function block 270 of Figure 2)

The Alta Vista search engine utilizes the identifies and returns general information about topics
related to the current meeting as shown in function block 270 of Figure 2. The system in
accordance with a preferred embodiment takes all the keywords from the titic portion of the
original meeting text and constructs an advanced query to send to Alta Vista. The keywords are
logically combined together in the query. The results are also ranked based on the same set of
keywords. One of ordinary skill in the art will readily comprehend that a date restriction or
publisher criteria could be facilitated on the articles we want to retrieve. A set of top ranking

stories are returned to the calendaring system in accordance with a preferred embodiment.

NEWS PAGE
(Function block 275 of Figure 2)

The NewsPage search system is responsible for giving us the latest news topics related to a target
meeting. The system takes all of the keywords from the title portion of the original meeting text
and constructs a query to send to the NewsPage search engine. The keywords are logically
combined together in the query. Only articles published recently are retrieved. The Newspage
search system provides a date restriction criteria that is setlablc by a user according to the user’s

preference. The top ranking stories are returned to the calendaring system.

Figure 3 is a user profile data model in accordance with a preferred embodiment. Processing
commences at function block 300 which is responsible for invoking the program from the main
module. Then, at function block 310, a wrapper function is invoked to prepare for the keyword
extraction processing in function block 320. After the keywords are extracted, then processing
flows to function block 330 to determine if the delimiters are properly positioned. Then, at

function block 340, the number of words in a particular string is calculated and the delimiters for
22

10

15

20

25

30

WO 00/54177 : PCT/IB00/00362

the particular field are and a particular field from the meeting text is retrieved at function block

350. Then, at function block 380, the delimiters of the string are again checked to assure they are

placed appropriately. Finally, at function block 360, the extraction of each word from the title

and body of the message'is performed a word at a time utilizing the logic in function block 362

which finds the next closest word delimiter in the input phrase, function block 364 which strips

unnecessary materials from a word and function block 366 which determines if a word is on the

stop list and returns an error if the word is on the stop list.

PATTERN MATCHING IN ACCORDANCE WITH A PREFERRED EMBODIMENT

The limitations associated with a simple searching method include the following:

1.

Becausc it relics on a stoplist of unwanted words in order to extract from the meeting text
a set of keywords, it is limited by how comprehensive the stoplist is. Instead of trying to
figure out what parts of the meeting text we should throw away, we should focus on what
parts of the meeting text we want.

A simple search method in accordance with a preferred embodiment only uses the
keywords from a meecting title to form querics to send to Alta Vista and NewsPage. This
ignores an alternative source of information for the query, the body of the meeting notice.
We cannot include the keywords from the meeting body to form our queries because this
often results in queries which are too long and so complex that we often obtain no
meaningful results.

There is no way for us to tell what each keyword represents. For example, we may
extract “Andy” and “Grove” as two keywords. However, a simplistic search has no way
knowing that “Andy Grove” is in fact a person’s name. Imagine the possibilities if we
could somehow intelligently guess that “Andy Grove” is a person’s name. Information
such as where he is employed and currently resides.

In summary, by relying solely on a stoplist to parse out unnecessary words, we suffer

from “information overload”.

PATTERN MATCHING OVERCOMES THESE LIMITATIONS IN ACCORDANCE

WITH A PREFERRED EMBODIMENT

Here is how the pattern matching system can address each of the corresponding issues above in

accordance with a preferred embodiment.

23

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

1. By doing pattern matching, we match up only parts of the meeting text that we want and
extract those parts.

2. By performing pattern matching on the meeting body and extracting only the parts from the
meeting body that we want. Our meeting body will not go to complete waste then.

3. Pattern matching is based on a set of templates that we specify, allowing us to identify people
names, company names and other items from a mecting text.

4. In summary, with pattern matching, we no longer suffer from information overload. Of
course, the big problem is how well our pattern matching works. If we rely exclusively on
artificial intelligence processing, we do not hévc a 100% hit ratc. We are able to identify

about 20% of all company names presented to us.

PATTERNS
A pattern in the context of a preferred embodiment is a template specifying the structure of a
phrase we are looking for in a meeting text. The patterns supported by a preferred embodiment
are selected because they are templates of phrases which have a high probability of appearing in
someone’s meeting text. For example, when entering a meeting in a calendar, many would write
something such as “Meet with Bob Dutton from Stanford University next Tuesday.” A common
pattern would then be something like the word “with” followed by a person’s name (in this
example it is Bob Dutton) followed by the word “from” and ending with an organization’s name

(in this case, it is Stanford University).
PATTERN MATCHING TERMINOLOGY
The common terminology associated with pattern matching is provided below.

¢ Pattern: a pattern is a template specifying the structure of a phrase we want to bind the
meeting text to. It contains sub units.

¢ Element: a pattern can contain many sub-units. These subunits are called elements. For
example, in the pattern “with SPEOPLES$ from SCOMPANY$”, “with” “$SPEOPLES$” “from”
“SCOMPANYS” are all elements.

24

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

¢ Placeholder: a placeholder is a special kind of clement in which we want to bind a valuc
to.Using the above example, “SPEOPLES$” is a placeholder.

¢ Indicator: an indicator is another kind of element which we want to find in a meeting text but
no value needs to bind to it. There may be often more than one indicator we are looking for in
a certain pattern. That is why an indicator is not an “atomic” type.

¢ Substitute: substitutes are a set of indicators which are all synonyms of each other. Finding

any one of them in the input is good.

There are five fields which are identified for each meeting:

¢ Company ($COMPANYS)
¢ People (SPEOPLES)
¢ Location (SLOCATIONS)
¢ Time ($TIMES)
-+ Topic ($TOPIC_UPPERS) or (§TOPIC_ALLS)
In parentheses are the placeholders I used in my code as representation of the corresponding

meeting fields.

Each placeholder has the following meaning:
4 $COMPANYS: binds a string of capitalized words (e.g., Meet with Joe Carter of
<Andersen Consulting >)
¢ S$PEOPLES: binds series of string of two capitalized words potentially connected by
“” “and” or “&” (e.g., Meet with <Joe Carter> of Andersen Consulting, Meet with
<Joe Carter and Luke HughesS of Andersen Consulting)
¢ $LOCATIONS: binds a string of capitalized words (e.g., Meet Susan at <Palo Alto
Square>)
¢ S$TIMES: binds a string containing the format #:## (e.g., Dinner at <6:30 pm>)
¢+ S$TOPIC_UPPERS: binds a string of capitalized words for our topic (e.g., <Stanford
Engineering Recruiting> Meeting to talk about new hires).
¢ S$TOPIC_ALLS$: binds a string of words without really caring if it’s capitalized or not.
(e.g., Meet to talk about <ubiquitous computing>)
Here is a table representing all the patterns supported by BF. Each pattern belongs to a pattern

group. All patterns within a pattern group share a similar format and they only differ from each
25

WO 00/54177 PCT/IB00/00362 -

other in terms of what indicators are used as substitutes. Note that the patterns which are grayed

out are also commented in the code. BF has the capability to support these patterns but we-

decided that matching these patterns is not essential at this point.

PAT PATTERN EXAMPLE
PAT 4
GRP
1 a $PEOPLES of Paul Maritz of Microsoft
$COMPANYS
b $PEOPLES from Bill Gates, Paul Allen and
$COMPANYS Paul Maritz from Microsoft
2 a $TOPIC_UPPERS meeting | Push Technology Meeting
b $TOPIC_UPPERS mtg Push Technology Mtg
c $TOPIC_UPPERS demo Push Technology demo
d $TOPIC_UPPERS Push Technology interview
interview
e $TOPIC_UPPERS Push Technology
presentation presentation
f $TOPIC_UPPERS visit Push Technology visit
g $TOPIC_UPPER$ briefing | Push Technology briefing
h $TOPIC_UPPERS$ Push Technology
discussion discussion
i $TOPIC_UPPERS - Push Technology
workshop workshop
] $TOPIC_UPPERS prep Push Technology prep
k $TOPIC_UPPERS review | Push Te;:hnology review
1 $TOPIC_UPPERS lunch Push Technology lunch
m $TOPIC_UPPERS project | Push Technology project
n $TOPIC_UPPERS projects | Push Technology projects
3 a $COMPANYS corporation | Intel Corporation
b SCOMPANYS corp. IBM Corp.
c $COMPANYS systems Cisco Systems

26

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

FUNLILL VT A

PCT/IB00/00362 -

d $SCOMPANYS limited IBM limited
e $COMPANYS Itd IBM Itd
4 a about $TOPIC_ALLS$ About intelligent agents
technology
b discuss $TOPIC_ALLS$ Discuss intelligent agents
technology
c show $STOPIC_ALLS Show the client our
intelligent agents
technology
d re: STOPIC_ALLS$ re: intelligent agents
technology '
e review $TOPIC_ALLS$ Review intelligent agents
technology
f agenda The agenda is as follows:
--clean up
--clean up
--clean up
g agenda: $TOPIC_ALLS$ Agenda:
--demo client intelligent
agents technology.
--demo ecommerce.
5 a w/$PEOPLES of Mcct w/Joc Carter of
$COMPANY$ Andersen Consulting
b w/$PEOPLES from Meet w/Joe Carter from
$COMPANYS Andersen Consulting
6 a w/$COMPANYS$ per Talk w/Intel per Jason
$PEOPLES Foster
7 a At $STIMES | at 3:00pm o
b Around $STIME$ Around 3:00 pm - .v
8 a At SLOCATIONS At LuLu’s resturant
b In SLOCATIONS in Santa Clara
9 a Per SPEOPLE$ per Susan Butler

27

10

15

20

25

WO 00/54177 PCT/IB00/00362

UL VTR

10 a call w/SPEOPLES Conf call w/John Smith
B call with SPEOPLES$ Conf call with John Smith
11 A prep for STOPIC_ALLS Prep for London meeting
B preparation for Preparation for London
$TOPIC_ALLS meeting

Figure 4 is a detailed flowchart of pattern matching in accordance with a preferred embodiment.
Processing commences at function block 400 where the main program invokes the pattern
matching application and passes control to function block 410 to commence the pattern match
processing. Then, at function block 420, the wrapper function loops through to process each
pattern which includes determining if a part of the text string can be bound to a pattern as shown
in function block 430. Then, at function block 440, various placeholders are bound to values if
they exist, and in function block 441, a list of names separated by punctuation are bound, and at
function block 442 a full name is processed by finding two capitalized words as a full name and
grabbing the next letter after a space after a word to determine if it is capitalized. Then, at
function block 443, time is parsed out of the string in an appropriate manner and the next word
after a blank space in function block 444. Then, at function block 445, the continuous phrases of
capitalized words such as company, topic or location are bound and in function block 446, the
next word after the blank is obtained for further processing in accordance with a preferred
embodiment. Following the match meeting field processing, function block 450 is utilized to
locate an indicator which is the head of a pattern, the next word after the blank is obtained as
shown in function block 452 and the word is checked to determine if the word is an indicator as
shown in function block 454. Then, at function block 460, the string is parsed to locate an
indicator which is not at the end of the pattern and the next word after unnecessary white space
such as that following a line feed or a carriage return is processed as shown in function block 462
and the word is analyzed to determine if it is an indicator as shown in function block 464. Then,
in function block 470, the temporary record is reset to the null set to prepare it for processing the
next string and at function block 480, the mceting record is updated and at function block 482 a
check is performed to determine if an entry is already made to the meeting record before parsing

the meeting record again.

28

10

15

20

25

30

WO 00/54177

T

PCT/1B00/00362

USING THE IDENTIFIED MEETING FIELDS
Now that we have identified fields within the meeting text which we consider important, there
are quite a few things we can do with it. One of the most important applications of pattern
matching is of course to improve the query we construct which eventually gets submitted to Alta
Vista and News Page. There are also a lot of other options and enhancements which exploit the
results of pattern matching that we can add to BF. These other options will be described in the
next section. The goal of this section is to give the reader a good sense of how the results

obtained from pattern matching can be used to help us obtain better search results.

Figure 5 is a flowchart of the detailed processing for preparing a query and obtaining information
from the Internet in accordance with a preferred embodiment. Processing commences at function
block 500 and immediately flows to function block 510 to process the wrapper functionality to
prepare for an Internet search utilizing a web search engine. If the search is to utilize the Alta
Vista search engine, then at function block 530, the system takes information from the meeting
record and forms a query in function blocks 540 to 560 for submittal to the search engine. If the
search is to utilize the NewsPage search engine, then at function block 520, the system takes

information from the meeting record and forms a query in function blocks 521 to 528.

Alta Vista Search Engine
The strength of the Alta Vista search engine is that it provides enhanced flexibility. Using its
advance query method, one can construct all sorts of Boolean queries and rank the search
however you want. However, one of the biggest drawbacks with Alta Vista is that it is not very
good at handling a lafge query and is likely to give back irrelevant results. If we can identify the
topic and the company within a meeting text, we can form a pretty short but comprehensive
query which will hopefully yield better results. We also want to focus on the topics found. It
may not be of much merit to the user to find out info about a company especially if the user
already knows the company well and has had numerous meetings with them. It’s the topics they

want to research on.

News Page Search Engine
The strength of the News Page search engine is that it does a great job searching for the most
recent news if you are able to give it a valid company name. Therefore when we submit a query

to the news page web site, we send whatever company name we can identify and only if we
29

10

WO 00/54177 PCT/1B00/00362 -

cannot find one do we use the topics found to form a query. If neither one is found, then no
search is performed. The algorithmn utilized to form the query to submit to Alta Vista is
illustrated in Figure 7. The algorithmn that we will use to form the query to submit to News

Page is illustrated in Figure 8.

The following table describes in detail each function in accordance with a preferred embodiment.
The order in which functions appear mimics the process flow as closely as possible. When there
are situations in which a function is called several times, this function will be listed after the first

function which calls it and its description is not duplicated after every subsequent function which

calls it.

Procedure Type Called By Description

Name

Main Public None This is the main function

(BF.Main) Sub where the program first
launches. It initializes BF
with the appropriate
parameters(e.g., Internet
time-out, stoplist...) and
calls GoBF to launch the
main part of the program.

ProcessCom | Private Main This function parses the

mandLine Sub ' command line. It assumes

(BF.Main) that the delimiter indicating
the beginning of input from
Munin is stored in the
constant
CMD_SEPARATOR.

CreateStopLi | Private Main This function sets up a stop

st - Function list for future use to parse out

(BF.Main) unwanted words from the
meeting text.

30

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/IB00/00362

Procedure Type Called By Description
Name
There are commas on each
side of each word to enable
straight checking.
CreatePattern Publfc Main This procedure is called once
s Sub when BF is first initialized to
(BF.Pattern create all the potential
Match) patterns that portions of the

meeting text can bind to. A
pattern can contain however
many elements as needed.
There are

two types of elements. The
first type of elements are
indicators. These are real
words which delimit the
potential of a meeting field
(eg company) to follow.
Most of these indicators are
stop words as expected
because

stop words are words
usually common to all
meeting text so it makes
sense they form patterns. The
second type of elements are
special strings which
represent placeholders.

A placeholder is always in
the form of $*$ where * can

be either PEOPLE,

31

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/IB00/00362

Procedure

Name

Type

Called By

Description

COMPANY,
TOPIC_UPPER,
TIME,LOCATION or
TOPIC_ALL. A pattern can
begin with either one of the
two types of elements and
can be however long,
involving however any
number/type of elements.
This procedure dynamically
creates a new pattern record
for

each pattern in the table and
it also dynamically creates
new tAPatternElements for
each element within a
pattern. In addition, there is
the concept of being able to
substitute indicators within a
pattern. For example, the
pattern SPEOPLES of
$COMPANY?S is similar to
the pattern SPEOPLES$ from
$COMPANYS. "from" isa
substitute for "of" . Our
structure should be able to
express such a need for

substitution.

GoBF
(BF .Main)

Public
Sub

Main

This is a wrapper procedurer

that calls both the parsing

32

SUBSTITUTE SHEET (RULE 26)

WO 00/54177 PCT/IB00/00362 -

Procedure Type Called By Description

Name

and the searching subroutines
of the
BF. It is also responsible for

sending data back to Munin.

ParseMeetin | Public GoBackGroundF | This function takes the initial

gText Function | inder meeting text and identifies

(BF Parse) the userID of the record as
well as other parts of the

meeting text including the
title, body, participant list,
location and time. In
addition, we call a helper
function ProcessStopList to
eliminate all the unwanted
words from the original
meeting title and meeting
body so that only keywords
are left. The information
parsed out is stored in the
MeetingRecord structure.
Note that this function does
no error checking and for the
most time assumes that the
meeting text string is
correctly formatted by
Munin.

The important variable is
thisMeeting Record is the
temp holder for all info

regarding current meeting.

33

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/1B00/00362 -

Procedure

Name

Called By

Description

It's eventually returned to

caller.

FormatDelim | Private
itation

(BF .Parse)

ParseMeetingTe
xt,
DetermineNum
Words,
GetAWordFrom
String

There are 4 ways in which
the delimiters can be placed.
We take care of all these
cases by reducing them
down to Case 4 in which
there are no delimiters
around but only between
fields in a string(e.g.,
A::B::C)

DetermineNu | Public
mWords

(BF.Parse)

Function

ParseMeeting
Text,
ProcessStop

List

This functions determines
how many words there are in
a string (stInEvalString) The
function assumes that each
word is separated by a
designated separator as
specified in stSeparator. The
return type is an integer that
indicates how many words
have been found assuming
each word

in the string is separated by
stSeparator. This function is
always used along with
GetAWordFromString and
should be called before
calling GetAWordFrom
String.

GetAWordFr | Public

ParseMeeting

This function extracts the ith

34

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/IB00/00362 -

Procedure

Name

Type

Called By

Description

omString

(BF.Parse)

Function

Text,
ProcessStop

List

word of the
string(stInEvalString)
assuming that each word in
the string is separated by a
designated

separator contained in the
variable stSeparator.

In most cases, use this
function with
DetermineNumWords. The
function returns the wanted
word. This function checks
to make sure that
ilInWordNum is within
bounds so that 1

is not greater than the total
number of words in string or
less than/equal to zero. Ifit
is out of bounds, we return
empty string to indicate we
can't get anything. We try to
make sure this doesn't
happen by calling

DetermineNumWords first.

ParseAndCle
anPhrase
(BF .Parse)

Private

Function

ParseMeetingTe

xt

This function first grabs the
word and send it to
CleanWord in order strip
the stuff that nobody wants.
There are things in

parseWord that will kill

35

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/IB00/00362 -

Procedure

Name

Type

Called By

Description

the word, so we will need a
method of looping through
the body and rejecting
words without killing the
whole function

i guess keep CleanWord and
check a return value

ok, now I have a word so |
need to send it down the
parse chain. This chain goes
ParseCleanPhrase ->
CleanWord ->
EvaluateWord. If the word
gets through the

entire chain without being
killed, it will be added at the
end to our keyword string.
first would be the function
that checks for "/" as a
delimiter and extracts the
parts of that. This I will call
"StitchFace" (Denise is more
normal and calls it
GetAWordFromString)

if this finds words, then each
of these will be sent, in turn,
down the chain. If

these get through the entire
chain without being added or
killed then they will be

36

SUBSTITUTE SHEET (RULE 26)

WO 00/54177 PCT/IB00/00362

Procedure Type Called By Description
Name

added rather than tossed.
FindMin Private ParseAndCleanP | This function takes in 6 input
(BF .Parse) Function | hrase values and evaluates to see

what the minimum non
zero value is. It first creates
an array as a holder so that
we can sort the five

input values in ascending
order. Thus the minimum
value will be the first non
zero value element of the
array. If we go through
entire array without finding
a non zero value, we know
that there is an error and we
exit the function.

CleanWord Private ParseAndCleanP | This function tries to clean

(BF.Parse) Function | hrase up a word in a meeting text.
It first of all determines if the
string is of a valid length. It
then passes it through a
series of tests to see it is
clean and when needed, it
will edit the word and strip
unnecessary characters off of
it. Such tests includes
getting rid of file extensions,
non chars, numbers etc.

EvaluateWor | Private ParseAndCleanP | This function tests to see if

d Function | hrase this word is in the stop list so

37

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/IB00/00362 -

Procedure

Name

Type

Called By

Description

(BF.Parse)

it can determine whether to
eliminate the word from the
original meeting text. If ‘a
word is not in the stoplist, it
should stay around as a
keyword and this function
exits beautifully with no
errors. However, if the
words is a stopword, an error
must be returned. We must
properly delimit the input
test string so we don't
accidentally retrieve sub

strings.

GoPatternMa
tch
(BF.Pattern
Match)

Public
Sub

GoBF

This procedure is called
when our QueryMethod is
set to complex query
meaning we do want to do all
the pattern matching stuff.It
's a simple wrapper function
which initializes some arrays
and then invokes pattern
matching on the title and the
body.

MatchPattern
s

(BF.Pattern
Match)

Public
Sub

GoPattern Match

This procedure loops through
every pattern in the pattern
table-and tries to identify
different fields within a
meeting text specified by
sInEvalString. For

38

SUBSTITUTE SHEET (RULE 26)

WO 00/54177 PCT/IB00/00362 -

Procedure Type Called By Description

Name

debugging purposes it also
tries to tabulate how many
times a certain pattern was
triggered and stores it in
gTabulateMatches to see
whichp pattern fired the
most. gTabulateMatches is
stored as a global because we
want to be able to run a batch
file of 40 or 50 test strings
and still be able to know how

often a pattern was triggered.

MatchAPatte | Private MatchPatterns This function goes through

m Function each element in the current
(BF.Pattern pattern. It first evaluates to
Match) determine whether element is

a placeholder or an indicator.
Ifit is a placeholder, then it
will try to bind the
placeholder with some value.
If it is an indicator, then we
try to locate it. There is a
trick however. Depending on
whether we are at current
element is the head of the
pattern or

not we want to take
different actions. If we are

at the head, we want to

look for the indicator or

39

SUBSTITUTE SHEET (RULE 26)

WO 00/54177 PCT/IB00/00362 -

Procedure Type Called By Description

Name

the placeholder. If we
can't find it, then we
know that the current
pattern doesn't exist and
we quit. However, if it is
not the head, then we
continue looking, because
there may still be a head

somewhere. We retry in

this case.
etingField Private MatchAPattern | This function uses a big
(BF.Pattern | Function switch statement to first
Match) determine what kind of

placeholder we are talking
about and depending on what
type of placeholder, we have
specific requirements

and different binding criteria
as specified in the
subsequent functions called
such as BindNames,
BindTime etc. If binding is
successful we add it to our

guessing record.

BindNames | Private MatchMeetingFi | In this function, we try to
(BF.Pattern | Function | eld match names to the
Match) corresponding placeholder

$PEOPLES. Names are
defined as any consecutive

two words which are

40

SUBSTITUTE SHEET (RULE 26)

WO 00/54177 PCT/IB00/00362

Procedure Type Called By Description

Name

capitalized. We also what to
retrieve a series of names
which are connected by and ,
or & so we look until we
don't see any of these 3
separators anymore. Note
that we don 't want to bind
single word names because it
is probably

too general anyway so we
don't want to produce broad
but irrelevant results. This
function calls
BindAFullName which binds
one name so in a since
BindNames collects all the

results from BindAFullName

BindAFullNa | Private BindNames This function tries to bind a
me Function full name. If the SPEOPLES$
(BF.Pattern placeholder is not the head of
Match) _ : the pattern, we know that it

has to come right at the
beginning of the test string
because we 've been deleting
stuff off the head of the
string all along.

If it is the head, we search
until we find something that
looks like a full name. If we

can't find it, then there's no

41

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/IB00/00362

Procedure Type Called By Description
Name
such pattern in the text
entirely and we quit entirely
from this pattern. This
should eventually return us
to the next pattern in
MatchPatterns.
GetNextWor | Private BindAFull This function grabs the next
dAfterWhite | Function | Name, word in a test string. It looks
Space BindTime, for the next word after white
(BF.Pattern BindCompanyTo | spaces, @ or /. The word is
Match) picLoc defined to end when we
encounter another one of
these white spaces or
separators. ,
BindTime Private MatchMeetingFi | Get the immediate next word
(BF.Pattern | Function | eld and see if it looks like a time
Match) | pattern. If so we've found a
time and so we want to add it
to the record. We probably
should add more time
patterns. But people don't
seem to like to enter the time
in their titles these days
especially since we now have
tools like OutLook.
BindCompan | Private MatchMeetingFi | This function finds a
yTopicLoc Function | eld continuous capitalized string
(BF.Pattern and binds it to stMatch
Match) which is passed by reference

from MatchMeetingField. A

42

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/IB00/00362 -

Procedure Type Called By Description

Name
continous capitalized string
is a sequence of capitalized
words which are not
interrupted
by things like , . etc. There's
probably more stuff we can
add to the list of
interruptions.

LocatePatter | Private MatchAPattern | This function tries to locate

nHead Function an element which is an

(BF.Pattern indicator. Note that this

Match) indicator SHOULD BE AT
THE HEAD of the pattern
otherwise it would have gone
to the function
Locatelndicator instead.
Therefore, we keep on
grabbing the next word until
either there's no word for us
to grab (quit) or if we find
one of the indicators we are
looking for.

ContainlnArr | Private LocatePattern ' This function is really

ay Function | Head, simple. It loops through all

(BF.Pattern LocateIndicator | the elements in the array

Match) ' to find a matching string.

Locatelndicat | Private MatchAPattern | This function tries to locate

or Function an element which is an

(BF.Pattern indicator. Note that this

Match) indicator is NOT at the head

43

SUBSTITUTE SHEET (RULEV 26)

WO 00/54177

PCT/IB00/00362 -

Procedure

Name

Called By

Description

of the pattern otherwise it
would have gone to
LocatePatternHead instead.
Because of this, if our
pattern is to be satisfied, the
next word we grab HAS to
be the indicator or else we
would have failed. Thus we
only grab one word, test to
see if it is a valid indicator

and then return result.

InitializeGue
ssesRecord
(BF .Pattern
Match)

Private

Sub

MatchAPattern

This function reinitializes our
temporary test structure
because we have already
transfered the info to the
permanent structure, we can
reinitialize it so they each

have one element

AddToMeeti
ngRecord
(BF Pattern
Match)

Private

Sub

MatchAPattern

This function is only called
when we know that the
information stored in
tInCurrGuesses is valid
meaning that it represents
legitamate guesses of
meeting fields ready to be
stored in the permanent
record,tInMeetingRecord.
We check to make sure that
we do not store duplicates

and we also what to clean up

44

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/IB00/00362

Procedure

Name

Type

Called By Description

what we want to store so that
there's no clutter such as
punctuation, etc. The reason
why we don't clean up until
now is to save time. We don't
waste resources calling
ParseAndCleanPhrase until
we know for sure that we are

going to add it permanently.

NoDuplicate
Entry
(BF.Pattern
Match)

Private

Function

stored

AddToMeetingR | This function loops through

ecord -each element in the array to

make sure that the test string
aString is not the same as

any of the strings already

in the array. Slightly
different from
ContainlnArray.

SearchAltaVi
sta

(BF.Search)

Public

Function

GoBackGroundF | This function prepares a
inder query to be submited to
AltaVista Search engine. It
submits it and then parses the
returning result in the
appropriate format
containing the title, URL and
body/summary of each story
retrieved. The number of
stories retrieved is specified
by the constant
NUM_AV_STORIES.

45

SUBSTITUTE SHEET (RULE 26)

WO 00/54177 _ PCT/IB00/00362 -

Procedure Type Called By Description

Name

Important variables include
stURLAIltaVista used to store
query to submit
stResultHTML used to store
html from page specified by

stURLAltaVista.
ConstructAlt | Private SearchAltaVista | This function constructs the
aVistaURL | Function URL string for the alta vista
(BF.Search) search engine using the

advanced query search mode.
It includes the keywords to
be used, the language and
how we want to rank the
search. Depending on
whether we want to use the
results of our pattern

matching unit, we construct

our query differently.
ConstructSi | Private ConstructAltaVi | This function marches down
mpleKeyWor | Function | staURI, the list of keywords stored in
d , ConstructNewsP | the stTitleKW or stBodyKW
(BF.Search) ageURL fields of the input meeting

record and links them up into
one string with each keyword
separated by a connector as
determined by the input
variable stinConnector.
Returns this newly

constructed string.

ConstructCo | Private ConstructAltaVi | This function constructs the

46

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/IB00/00362 -

Procedure Type Called By Description
Name
mplexAVKe | Function | staURL keywords to be send to the
yWord AltaVista site. Unlike
(BF.Search) ConstructSimpleKeyWord
which simply takes all the
keywords from the title to
form the query, this function
will look at the resuits of BF
's pattern matching process
and see if we are able to
identify any specific
company names or topics for
constructing
the queries. Query will
include company and topic
identified and default to
simple query if we cannot
identify either company or
topic.
JoinWithCon | Private ConstructCompl | This function simply replaces
nectors Function | exAVKey the spacesbetween the words
(BF.Search) Word,. within the string with a
ConstructComp! | connector which is specified
exNPKey by the input.
Word,
RefineWith
Rank
RefineWithD | Private ConstructAltaVi | This function constructs the
ate (NOT Function | staURL date portion of the alta vista
CALLED query and returns this portion
AT THE of the URL as a string. It

47

SUBSTITUTE SHEET (RULE 26)

WO 00/54177 PCT/IB00/00362

Procedure Type Called By Description

Name

MOMENT) makes sure that alta vista
(BF.Search) searches for articles within

the past PAST_NDAYS.
RefineWithR | Private ConstructAltaVi | This function constructs the

ank Function | staURL string needed to passed to
(BF.Search) Altavista in order to rank an
advanced query search. If
we are constructing the
simple query we will take in
all the keywords from the
title. For the complex query,
we will take in words from
company and topic, much the
same way we formed the
query in
ConstructComplexAVKeyW
ord.

IdentifyBloc | Public SearchAltaVista, | This function extracts the

k Function | SearchNewsPage | block within a string marked
(BF.Parse) by the beginning and the
ending tag given as inputs
starting at a certain
location(iStart). The block
retrieved does not include the
tags themselves. If the block
cannot be identified with the
specified delimiters, we
return unsuccessful through
the parameter

iReturnSuccess passed to use

48

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/1B00/00362

Procedure

Name

Type

Called By

Description

by reference. The return type
is the block retrieved.

IsOpenURL
Error
(BF.Error)

Public

Function

SearchAltaVista,
SearchNewsPage

This function determines
whether the error
encountered is that ofa
timeout error. It restores the
mouse to default arrow and
then returns true if it is a time

out or false otherwise.

SearchNews
Page
(BF.Search)

Public

Function

inder

GoBackGroundF

This function prepares a
query to be submited to
NewsPage Search

engine. It submits it and then
parses the returning result in
the appropriate format
containing the title, URL and
body/summary of each story
retrieved. The number of
stories retrieved is specified
by the constant
UM_NP_STORIES

ConstructNe
wsPageURL
(BF.Search)

Private

Function

SearchNewsPage

This function constructs the
URL to send to the
NewsPage site. It uses the
information contained in the
input meeting record to

determine what keywords to

49

SUBSTITUTE SHEET (RULE 26)

WO 00/54177 PCT/IB00/00362 -

Procedure Type Called By Description

Name

use. Also depending whether
we want simple or complex
query, we call diffent

functions to form strings.

ConstructCo | Private ConstructNewsP | This function constructs the
mplexNPKey | Function | ageURL keywords to be send to the
Word : NewsPage site.

(BF.Search) UnlikeConstruétKeyWordStr

ing which simply takes all
the keywords from the title to
form the query, this function
will look at the results of BF
's pattern matching process
and see if we are able to
identify any specific
company names or topics for
constructing

the queries. Since newspage
works best when we have a
company name, we 'll use
only the company name and
only if there is no company

will we use topic.

ConstructOv | Private GoBackGroundF | This function takes in as
_erallResult Function | inder input an array of strings
(BF.Main) (stInStories) and a

MeetingRecord which stores
the information for the

current meeting. Each

element in the array stores

50

SUBSTITUTE SHEET (RULE 26)

WO 00/54177 PCT/IB00/00362

Procedure Type Called By Description

Name

the stories retrieved from
each information source.
The function simply
constructs the appropriate
output to send to Munin
including a return message
type to let Munin know that
it is the BF responding and
also the original user id and
meeting title so Munin
knows which meeting BF is
talking about.

ConnectAnd | Public GoBackGroundF | This function allows

TransferTo Sub inder Background Finder to
Munin connect to Munin and
(BF.Main) - | eventually transport

information to Munin. We
will be using the UDP
protocol instead of the TCP
protocol so we have to set up
the remote host and port
correctly. We use a global
string to store gResult
Overall because although it
is unecessary with UDP, it is
needed with TCP and if we

ever switch back don't want

to change code.

DisconnectFr | Public
omMuninAn | Sub

51

SUBSTITUTE SHEET (RULE 26)

.10

15

20

WO 00/54177 PCT/IB00/00362

Procedure Type Called By Description
Name

d

Quit
(BF.Main)

Figure 6 is a flowchart of the actual code utilized to prepare and submit searches to the Alta Vista
and Newspage search engines in accordance with a preferred embodiment. Processing
commences at function block 610 where a command line is utilized to update a calendar entry
with specific calendar information. The message is next posted in accordance with function
block 620 and a meeting record is created to store the current meeting information in accordance
with function block 630. Then, in function block 640 the query is submitted to the Alta Vista
search engine and in function block 650, the query is submitted to the Newspage search engine.
When a message is returned from the search engine, it is stored in a results data structure as
shown in function block 660 and the information is processed and stored in summary form in a

file for use in preparation for the meeting as detailed in function block 670. '

Figure 7 provides more detail on creating the query in accordance with a preferred embodiment.
Processing commences at function block 710 where the meeting record is parsed to obtain
potential companies, people, topics, location and a time. Then, in function block 720, at least
one topic is identified and in function block 720, at least one company name is identified and
finally in function block 740, a decision is made on what material to transmit to the file for

ultimate consumption by the user.

Figure 8 is a variation on the query theme presented in Figure 7. A meeting record is parsed in
function block 800, a company is identified in function block 820, a topic is identified in
function block 830 and finally in function block 840 the topic and or the company is utilized in
formulating the query.

52

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

Alternative embodiments for adding various specific features for specific user requirements are

discussed below.

Enhance Target Rate for Pattern Matching

To increase BF’s performance, more patterns/pattern groups are added to the procedure
“CreatePatterns.” The existing code for declaring patterns can be used as a template for future
patterns. Because everything is stored as dynamic arrays, it is convenient to reuse code by
cutting and pasting. The functions BindName, BindTime, BindCompanyLocTopic which are
responsible for associating a value with a placeholder can be enhanced. The enhancement is
realized by increasing the sct of criteria for binding a certain mecting ficld in order to incrcasc
the number of binding values. For example, BindTime currently accepts and binds all values in
the form of ##:## or #:##. To increase the times we can bind, we may want BindTime to also
accept the numbers 1 to 12 followed by the more aesthetic time terminology “o’clock.”
Vocabulary based recognition algorithms and assigning an accuracy rate to each guess BF makes

allowing only guesses which meet a certain threshold to be valid.

Depending on what location the system identifies through pattern matching or alternatively
depending on what location the user indicates as the meeting place, a system in accordance with
a preferred embodiment suggests a plurality of fine restaurants whenever it detects the words
lunch/dinner/breakfast. We can also use a site like company finder to confirm what we got is
indeed a company name or if there is no company name that pattern matching can identify, we
can use a company finder web site as a “dictionary” for us to determine whether certain
capitalized words represent a company name. We can even display stock prices and breaking

news for a company that we have identified.

Wireless Bargain Identification in Accordance With A Preferred Embodiment
Figure 9 is a flow diagram that depicts the hardware and logical flow of control for a device and
a software system designed to allow Web-based comparison shopping in conventional, physical,
non-Web retail environments. A wireless phone or similar hand-held wireless device 920 with
Internet Protocol capability is combined with a miniature barcode rcader 910 (installed cither

inside the phone or on a short cable) and used to scan the Universal Product Code (UPC) bar

53

10

15

20

25

30

WO 00/54177 L PCT/IB00/00362

mySite! Personal Web Site & Intentions Value Network Prototype
mySite! is a high-impact, Internet-based application in accordance with a preferred embodiment
that is focused on the theme of delivering services and providing a personalized experience for
each customer via a personal web site in a buyer-centric world. The services are intuitively
organized around satisfying customer intentions - fundamental life needs or objectives that
require extensive planning decisions, and coordination across several dimensions, such as
financial planning, healthcare, personal and professional development, family life, and other
concerns. Each member owns and maintains his own profile, enabling him to create and browse
content in the system targeted specifically at him. From the time a demand for products or
scrvices is entered, to the complction of payment, intelligent agents are utilized to conduct
research, execute transactions and provide advice. By using advanced profiling and filtering, the
intelligent agents learn about the user, improving the services they deliver. Customer intentions
include Managing Daily Logistics (e.g., email, calendar, contacts, to-do list, bill payment,
shopping, and travel planning); and Moving to a New Community (e.g., finding a place to live,
moving household possessions, getting travel and shipping insurance coverage, notifying
business and personal contacts, learning about the new community). From a consumer
standpoint, mySite! provides a central location where a user can access relevant products and

services and accomplish daily tasks with ultimate ease and convenience.

From a business standpoint, mySite! represents a value-added and innovative way to effectively
attract, service, and retain customers. Intention value networks allow a user to enter through a
personalized site and, and with the assistance of a learning, intelligent agent, seamlessly interact
with network participants. An intention Qalue network in accordance with a preferred
embodiment provides superior value. It provides twenty four hour a day, seven days a week
access to customized information, advice and products. The information is personalized so that
each member views content that is highly customized to assure relevance to the required target

user.

Egocentric Interface

An Egocentric Interface is a user interface crafted to satisfy a particular user’s needs, preferences
and current context. It utilizes the user’s personal information that is stored in a central profile

database to customize the interface. The user can set security permissions on and preferences for
55

10

15

20

25

30

WO 00/54177 PCT/1IB00/00362

interface elements and content. The content integrated into the Egocentric Interface is
customized with related information about the user. When displaying content, the Egocentric
Interface will include the relationship between that content and the user in a way that
demonstrates how the content relates to the user. For instance, when displaying information
about an upcoming ski trip the user has signed up for, the interface will include information
about events from the user’s personal calendar and contact list, such as other people who will be
in the area during the ski trip. This serves to put the new piece of information into a context

familiar to the individual user.

Figure 10A describes the Intention Value Network Architecture implementation for the World
Wide Web. For simplification purposes, this diagram ignores the complexity pertaining to
security, scalability and privacy. The customer can access the Intention‘ Value Network with any
Internet web browser 1010, such as Nefscape Navigator or Microsoft Internet Explorer, running
on a personal computer connected to the Internet or a Personal Digital Assistant with wireless
capability. See Figure 17 for a more detailed description of the multiple methods for accessing
an Intention Value Network. The customer accesses the Intention Value Network through the
unique name or IP address associated with the Integrator’s Web Server 1020. The Integrator
creates the Intention Value Network using a combination of resources, such as the Intention
Database 1030, the Content Database 1040, the Supplier Profile Database 1050, and the
Customer Profile Database 1060.

The Intention Database 1030 stores all of the information about the structure of the intention and
the types of products and services needed to fulfill the intention. Information in this database
includes intention steps, areas of interest, layout templates and personalization templates. The
Content Database 1040 stores all of the information related to the intention, such as advicc,
referral information, personalized content, satisfaction ratings, product ratings and progress

reports.

The Supplier Profile Database 1050 contains information about the product and service providers
integrated into the intention. The information contained in this database provides a link between
the intention framework and the suppliers. It includes product lists, features and descriptions,

and addresses of the suppliers’ product web sites. The Customer Profile Database 1060 contains

personal information about the customers, such as name, address, social security number and
56

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 .

credit card information, personal preferences, behavioral information, history, and web site
layout preferences. The Supplier’s Web Server 1070 provides access to all of the supplier’s

databases necessary to provide information and transactional support to the customer.

The Product Information Database 1080 stores all product-related information, such as features,
availability and pricing. The Product Order Database 1090 stores all customer orders. The
interface to this database may be through an Enterprise Resource Planning application offered by
SAP, Baan, Oracle or others, or it may be accessible directly through the Supplier’s Web Server
or application server. The Customer Information Database 1091 stores all of the customer

information that the supplier needs to complete a transaction or maintain customer records.

Figure 10B is a flowchart providing the logic utilized to create a web page within the Egocentric
Interface. The environment assumes a web server and a web browser connected through a
TCP/IP network, such as over the public Internct or a private Intranct. Possible web servers
could include Microsoft Internet Information Server, Netscape Enterprise Server or Apache.
Possible web browsers include Microsoft Internet Explorer or Netscape Navigator. The client
(i.e. web browser) makes a request 1001 to the server (i.e. web server) for a particular web page.
This is usually accomplished by a user clicking on a button or a link within a web page. The web
server gets the layout and content preferences 1002 for that particular user, with the request to the
database keyed off of a unique user id stored in the client (i.e. web browser) and the User profile
database 1003. The web server then retrieves the content 1004 for the page that has been
requested from the content database 1005. The relevant user-centric content, such as calendar,
email, contact list, and task list items are then retrieved 1006. (See Figure 11 for a more detailed
description of this process.) The query to the database utilizes the user content preferences
stored as part of the user profile in the User profile database 1003 to filter the content that is
returned. The content that is returned is then formatted into a web page 1007 according to the
layout preferences defined in the user profile. The web page is then returned to the client and

displayed to the user 1008.

Figure 11 describes the process of retrieving user-centric content to add to a web page. This
process describes 1006 in Figure 10B in a more detailed fashion. It assumes that the server
already has obtained the user profile and the existing content that is going to be integrated into

this page. The server parses 1110 the filtered content, looking for instances of events, contact
57

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

names and email addresses. If any of these are found, they are tagged and stored in a temporary
holding space. Then, the server tries to find any user-centric content 1120 stored in various
databases. This involves matching the tagged items in the temporary storage space with calendar
items 1130 in the Calendar Database 1140; email items 1115 in the Email Database 1114;
contact items 1117 in the Contact Database 1168; task list items 1119 in the Task List Database
1118; and news items 1121 in the News Database 1120. After retrieving any relevant user-

centric content, it is compiled together and returned 1122.

User Persona

The system allows the user to create a number of different personas that aggregate profile
information into sets that are useful in different contexts. A user may create one persona when
making purchases for his home. This persona may contain his home address and may indicate
that this user is looking to find a good bargain when shopping. The same user may create a
second persona that can be used when he is in a work context. This persona may store the user’s
work address and may indicate that the user prefers certain vendors or works for a certain
company that has a discount program in place. When shopping for work-related items, the user
may use this persona. A persona may also contain rules and restrictions. For instance, the work
persona may restrict the user to making airline reservations with only one travel agent and

utilizing booking rules set up by his employer.

Figure 12 describes the relationship between a user, his multiple personas and his multiple
profiles. At the User Level is the User Profile 1200. This profile describes the user and his
account information. There is one unique record in the database for each user who has an
account. Attached to each user are multiple Personas 1220, 1230 & 1240. These Personas are
used to group multiple profiles into useful contexts. For instance, consider a user who lives in
San Francisco and works in Palo Alto, but has a mountain cabin in Lake Tahoe. He has three
different contexts in which he might be accessing his site. One context is work-rclated. The
other two are home-life related, but in different locations. The user can create a Persona for
Work 1220, a Persona for Home 1230, and a Persona for his cabin home 1240. Each Persona
references a different General Profile 1250, 1260 and 1270 which contains the address for that
location. Hence, there are three General Profiles. Each Persona also references one of two
Travel Profiles. The user maintains a Work Travel Profile 1280 that contains all of the business

rules related to booking tickets and making reservations. This Profile may specify, for instance,
58

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

that this person only travels in Business or First Class and his preferred airline is United Airlines.
The Work Persona references this Work Travel Profile. The user may also maintain a Home
Travel Profile 1290 that specifies that he prefers to travel in coach and wants to find non-
refundable fairs, since they are generally cheaper. Both the Persona for Home and the Persona

for the cabin home point to the Home Travel Profile.

Figure 13 describes the data model that supports the Persona concept. The user table 1310
contains a record for each user who has an account in the system. This table contains a username
and a password 1320 as well as a unique identifier. Each user can have multiple Personas 1330,
which act as containers for more specialized structures called Profiles 1340. Profiles contain the
detailed personal information in Profile Field 1350 records. Attached to each Profile are sets of
Profile Restriction 1360 records. These each contain a Name 1370 and a Rule 1380, which
define the restriction. The Rule is in the form of a pattern like (if x then y), which allows the
Rule to be restricted to certain uses. An example Profile Restriction would be the rule that
dictates that the user cannot book a flight on a certain airline contained in the list. This Profile
Restriction could be contained in the “Travel” Profile of the “Work” Persona set up by the user’s
employer, for instance. Each Profile Field also contains a set of Permissions 1390 that are
contained in that record. These permissions dictate who has what access rights to that particular

Profile Field’s information.

Intention-Centric Interface
Satisfying Customer Intentions, such as Planning for Retirement or Relocating requires a
specialized interface. Customer Intentions require extensive planning and coordination across
many areas, ranging from financial security, housing and transportation to healthcare, personal
and professional development, and entertainment, among others. Satisfying Intentions requires a
network of complementary businesses, working across industries, to help meet consumers’

needs.

An Intention-Centric Interface is a user interface designed to help the user manage personal
Intentions. At any given point, the interface content is customized to show only content that
relates to that particular Intention. The Intention-Centric Interface allows the user to manage the
process of satisfying that particular Intention. This involves a series of discrete steps and a set of

content areas the user can access. At any point, the user can also switch the interface to manage
59

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

a different Intention, and this act will change the content of the interface to include only that

content which is relevant to the satisfaction of the newly selected Intention.

Figure 14 provides a detailed description of the data model needed to support an Intention-
Centric Interface. Each User Persona 1410 (see Figure 13 for a more detailed description of the
Persona data model.) has any number of active User Intentions 1420. Each active User Intention
is given a Nickname 1430, which is the display name the user sees on the screen. Each active
User Intention also contains a number of Data Fields 1440, which contain any user data collected
throughout the interaction with the user. For instance, if the user had filled out a form on the
screen and one of the fields was Social Security Number, the corresponding Data Field would
contain Name = “SSN” 1450, Value = “999-99-9999” 1460. Each User Intention also keeps
track of Intention Step 1470 complection status. The Complction 1480 ficld indicates whether the
user has completed the step. Every User Intention is a user-specific version of a Generic
Intention 1490, which is the default model for that Intention for all users. The Generic Intention
is customized through Custom Rules 1411 and 1412 that are attached to the sub-steps in the
Intention. These Custom Rules are patterns describing how the system will customize the

Intention for each individual user using the individual user’s profile information.

Statistical Agent

An agent keeps track of key statistics for each user. These statistics are used in a manner similar
to the Tamagochi virtual reality pet toy to encourage certain behaviors from the user. The
statistics that are recorded are frequency of login, frequency of rating of content such as news
articles, and activity of agents, measured'by the number of tasks which it performs in a certain
period. This information is used by the system to emotionally appeal to the user to encourage

certain behaviors.

Figure 15 describes the process for generating the page that displays the agent’s current statistics.
When the user requests the agent statistics page 1510 with the client browser, the server retrieves
the users’ statistics 1520 from the users’ profile database 1530. The server then performs the
mathematical calculations necessary to create a normalized set of statistics 1540. The server then
retrieves the formulas 1550 from the content databasc 1560 that will be used to calculate the

user-centric statistics. Graphs are then generated 1570 using the generic formulas and that user’s
60

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

statistics. These graphs are inserted into a template to create the statistics page 1580. This page

is then returned to the user 1590.

Personalized Product Report Service

The system provide Consumer Report-like service that is customized for each user based on a
user profile. The system records and provides ratings from users about product quality and
desirability on a number of dimensions. The difference between this system and traditional
product quality measurement services is that the ratings that come back to the users are
personalized. This service works by finding the people who have the closest match to the user’s
profile and have previously rated the product being asked for. Using this algorithm will help to
ensure that the product reports sent back to the user only contain statistics from people who are

similar to that user.

Figure 16 describes the algorithm for determining the pérsonalized product ratings for a user.
When the user requests a product report 1610 for product X, the algorithm retrieves the profiles
1620 from the profile database 1630 (which includes product ratings) of those users who have
previously rated that product. Then the system retrieves the default thresholds 1640 for the
profile matching algorithm from the content database 1650. It then maps all of the short list of
users along several dimensions specified in the profile matching algorithm 1660. The top n
(specified previously as a threshold variable) nearest neighbors are then determined and a test is
performed to decide if they are within distance y (also specified previously as a threshold
variable) of the user’s profile in the set 1670 using the results from the profile matching
algorithm. If they are not within the threshold, then the threshold variables are relaxed 1680, and
the test is run again. This processing is repeated until the test returns true. The product ratings
from the smaller set of n nearest neighbors are then used to determine a number of product
statistics 1690 along several dimensions. Those statistics are inserted into a product report

template 1695 and returned to the user 1697 as a product report.

Personal Profile and Services Ubiquity

This system provides one central storage place for a person’s profile. This storage place is a
server available through the public Internet, accessible by any device that is connected to the

Internet and has appropriate access. Because of the ubiquitous accessibility of the profile,

61

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

numerous access devices can be used to customize services for the user based on his profile. For
example, a merchant’s web site can use this profile to provide personalized content to the user.
A Personal Digital Assistant (PDA) with Internet access can synchronize the person’s calendar,
email, contact list, task list and notes on the PDA with the version stored in the Internet site.
This enables the person to only have to maintain one version of this data in order to have it

available whenever it is needed and in whatever formats it is needed.

Figure 17 presents the detailed logic associated with the many different methods for accessing
this centrally stored profile. The profile database 1710 is the central storage place for the users’
profile information. The profile gateway server 1720 receives all requests for profile
information, whether from the user himself or merchants trying to provide a service to the user.
The profile gateway server is responsible for ensuring that information is only given out when
the profile owner specifically grants permission. Any device that can access the public Internet
1730 over TCP/IP (a standard network communications protocol) is able to request information
from the profile database via intelligent HTTP requests. Consumers will be able to gain access
to services from devices such as their televisions 1740, mobile phones, Smart Cards, gas meters,
water meters, kitchen appliances, security systems, desktop computers, laptops, pocket
organizers, PDAs, and their vehicles, among others. Likewise, merchants 1750 will be able to
access those profiles (given permission from the consumer who owns each profile), and will be

able to offer customized, personalized services to consumers because of this.

One possible use of the ubiquitous profile is for a hotel chain. A consumer can carry a Smart
Card that holds a digital certificate uniquely identifying him. This Smart Card’s digital
certificate has been issued by the system and it recorded his profile information into the profile
database. The consumer brings this card into a hotel chain and checks in. The hotel employee
swipes the Smart Card and the consumer enters his Pin number, unlocking the digital certificate.
The certificate is sent to the profile gateway server (using a securc transmission protocol) and is
authenticated. The hotel is then given access to a certain part of the consumer’s profile that he
has previously specified. The hotel can then retrieve all of the consumer’s billing information as
well as preferences for hotel room, ctc. The hotel can also access the consumer’s movic and
dining preferences and offer customized menus for both of them. The hotel can offer to send an
email to the consumer’s spouse letting him/her know the person checked into the hotel and is

safe. All transaction information can be uploaded to the consumer’s profile after the hotel checks
62

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

him in. This will allow partners of the hotel to utilize the information about the consumer that

the hotel has gathered (again, given the consumer’s permission).

Intention Value Network

In an Intention Value Network, the overall integrator system coordinates the delivery of products
and services for a user. The integrator manages a network of approved suppliers providing
products and services, both physical and virtual, to a user based on the user’s preferences as
reflected in the user’s profile. The integrator manages the relationship between suppliers and
consumers and coordinates the suppliers’ fulfillment of consumers’ intentions. It does this by
providing the consumer with information about products and suppliers and offering objective

advice, among other things.

Figure 18 discloses the detailed interaction between a consumer and the integrator involving one
supplier. The user accesses a Web Browser 1810 and requests product and pricing information
from the integrator. The request is sent from the user’s browser to the integrator’s
Web/Application Server 1820. The user’s preferences and personal information is obtained from
an integrator’s customer profile databasc 1830 and returned to the Web/Application scrver. The
requested product information is extracted from the supplier’s product database 1840 and
customized for the particular customer. The Web/Application server updates the supplier’s
customer information database 1850 with the inquiry information about the customer. The
product and pricing information is then formatted into a Web Page 1860 and returned to the

customer’s Web Browser.

Suinmary Agent
A suite of software agents running on the application and web servers are programmed to take
care of repetitive or mundane tasks for the user. The agents work according to rules set up by the
user and are only allowed to perform tasks explicitly defined by the user. The agents can take
care of paying bills for the user, filtering content and emails, and providing a summary view of
tasks and agent activity. The user interface for the agent can be modified to suit the particular

User.

Figure 19 discloses the logic in accordance with a preferred embodiment processing by an agent

to generate a verbal summary for the user. When the user requests the summary page 1900, the
63

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

server gets the user’s agent preferences 1920, such as agent type, rules and summary level from
the user profile database 1930. The server gets the content 1940, such as emails, to do list items,
news, and bills, from the content database 1950. The agent parses all of this content, using the
rules stored in the profile database, and summarizes the content 1960. The content is formatted
into a web page 1970 according to a template. The text for the agent’s speech is generated 1980,
using the content from the content database 1990 and speech templates stored in the database.

This speech text is inserted into the web page 1995 and the page is returned to the user 1997.

Trusted Third Party

The above scenario requires the web site to maintain a guarantee of privacy of information
according to a published policy. This system is the consumer’s Trusted Third Party, acting on
his behalf in every case, erring on the side of privacy of information, rather than on the side of
stimulation of commerce opportunities. The Trusted Third Party has a set of processes in place
that guarantee certain complicity with the stated policy.

“meCommerce”
This word extends the word “eCommerce” to mean “personalized electronic commerce.” Figure
20 illustrates a display login in accordance with a preferred embodiment. The display is
implemented as a Microsoft Internet Explorer application with an agent 2000 that guides a user
through the process of interacting with the system to customize and personalize various system
components to gather information and interact with the user’s personal requirements. A user
enters a username at 2010 and a password at 2020 and selects a button 2040 to initiate the login
procedure. As the logo 2030 suggests, the system transforms electronic commerce into a

personalized, so called “me” commerce.

Figure 21 illustrates a managing daily logistics display in accordance with a preferred
embodiment. A user is greeted by an animated agent 2100 with a personalized message 2190.
The user can select from various activities based on requirements, including travel 2110,
household chores 2120, finances 2130 and marketplace activities 2140. Icons 2142 for routine
tasks such as e-mail, calendaring and document preparation are also provided to facilitate rapid
navigation from one activity to another. Direct links 2146 are also provided to allow transfer of
news and other items of interest. Various profiles can be selected based on where the user is
located. For example, work, home or vacation. The profiles can be added 2170 as a user

requires a new profile for another location. Various items 2180 of personal information are
64

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

Information Overload
The term information overload is now relatively understood in both its definition as well as its
implications and consequences. People have a finite amount of attention that is available at any
one time, but there is more and more vying for that attention every day. In short, too much
information and too little time are the primary factors complicating the lives of most knowledge

workers today.

The first attempts to dynamically deal with information overload were primarily focused on the
intelligent filtering of information such that the quantity of information would be lessened.
Rather than simply removing random bits of information, however, most of these approaches
tried to be intelligent about what information was ultimately presented to the user. This was
accomplished by evaluating each document based on the user's interests and discarding the less

relevant ones. It follows, therefore, that the quality was also increased.

Filtering the information is only a first step in dealing with information is this new age.
Arguably, just as important as the quality of the document is having ready access to it. Once you
have entered a meeting, a document containing critical information about the meeting subject
delivered to your office is of little value. As the speed of business continues to increase fueled
by the technologies of interconnectedness, the ability to receive quality information wherever
and whenever you are becomes critical. This new approach is called intelligent information

delivery and is heralding in a new information age.

A preferred embodiment demonstrates the intelligent information delivery theory described
above in an attempt to not only reduce information overload, but to deliver high quality
information where and when users' require it. In other words, the system delivers right

information to the right person at the right time and the right place.

Active Knowledge Management System Description

Figure 24 is a block diagram of an active knowledge management system in accordance with a
preferred embodiment. The system consists of the following parts: back-end 2400 connection to
one or more servers, personal mobile wireless clients (Awareness Machine)2430, 2436, public

clients (Magic Wall) 2410, 2420, web clients 2446, 2448, e-mail clients 2450, 2460.

66

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

collected from the user to support various endeavors. Moreover, permissions 2150 are set for

items 2180 to assure information is timely and current.

Figure 22 illustrates a user main display in accordance with a preferred embodiment. World
2200 and local news 2210 is provided based on a user’s preference. The user has also selected
real estate 2230 as an item to provide direct information on the main display. Also, a different

agent 2220 is provided based on the user’s preference.

Figure 23 illustrates an agent interaction in accordance with a preferred embodiment. The agent
2310 is communicating information 2300 to a user indicating that the user’s life insurance needs
have changed and pointing the user to the chart that best summarizes the information for the user.
Particular tips 2395 are provided to facilitate more detailed information Based on current user
statistics. A chart 2370 of the user’s life insurance needs is also highlighted at the center of the
display to assist the user in determining appropriate action. A button 2380 is provided to
facilitate changing the policy and a set of buttons 2390 are provided to assist a user in selecting

various views of the user’s insurance requirements.

Event Backgrounder

An Event Backgrounder is a short description of an upcoming event that is sent to the user just
before an event. The Event Backgrounder is constantly updated with the latest information
related to this event. Pertinent information such as itinerary and logistics are included, and other
useful information, such as people the user knows who might be in the same location, are also
included. The purpose of the Event Backgrounder is to provide the most up-to-date information
about an event, drawing from a number of resources, such as public web sites and the user’s

calendar and contact lists, to allow the user to react optimally in a given situation.

Vicinity Friend Finder

This software looks for opportunities to tell the user when a friend, family member or
acquaintance is or is going to be in the same vicinity as the user. This software scans the user’s
calendar for upcoming events. It then uses a geographic map to compare those calendar events
with the calendar events of people who are listed in his contact list. It then informs the user of

any matches, thus telling the user that someone is scheduled to be near him at a particular time.

65

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

Back-end Server (2400) Processes

Figure 25 is a block diagram of a back end server in accordance with a preferred embodiment.
The back-end (2400 of Figure 24) is a computer system that has the following software active:
Intelligent Agents Coordinator (Munin) 2580, Information Prioritization Subsystem 2530, a set
of continuously and periodically running information gathering and processing Intelligent Agents
2500, 2502 and 2504, User Profiles Database 2542 and supporting software, Information
Channels Database 2542 and supporting software, communications software 2550, information

transformation software 2560, and auxiliary software.

The Awareness Machine (2446 & 2448 of Figure 24)

e The Awareness Machine is a combination of hardware device and software application. The
hardware consists of handheld personal computer and wireless communications device. The
Awareness Machine reflects a constantly updated state-of-the-owner's-world by continually
receiving a wireless trickle of information. This information, mined and processed by a suite
of intelligent agents, consists of mail messages, news that meets each user’s preferences,
schedule updates, background information on upcoming meetings and events, as well as

weather and traffic.

The Intelligent Agent Coordinator 2580 of Figure 25 is also the user’s “interface” to the system,
in that whenever the user interacts with the system, regardless of the GUI or other end-user
interface, they are ultimately dealing with (asking questions of or sending commands to) the
Intelligent Agent Coordinator. The Intelligent Agent Coordinator has four primary
responsibilities: 1) monitoring user activities, 2) handling information requests, 3) maintaining
each user’s profile, and 4) routing information to and from users and to and from the other

respective agents.

Monitoring User Activities

Anytime a user triggers a sensor the Intelligent Agent Coordinator receives an "environmental
cue." These cues not only enable the Intelligent Agent Coordinator to gain an understanding
where users' are for information delivery purposes, but also to learn the standard patterns (arrival
time, departure time, etc.) of each persons' life. These patterns are constantly being updated and

67

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 .

refined in an attempt to increase the system's intelligence when delivering information. For
instance, today it is not uncommon for a person to have several email accounts (work-based,
home-based, mobile-based, etc.) as well as several different computers involved in the retrieval
process for all of these accounts. Thus, for the Intelligent Agent Coordinator to be successful in
delivering information to the correct location it must take into account all of these accounts and
the times that the user is likely to be accessing them in order to maximize the probability that the

user will see'the information. This will be discussed further in another scction.

Handling Information Requests

The Intelligent Agent Coordinator handles information requests from other agents in order to
personalize information intended for each user and to more accurately reflect each user's interests
in the information they are given. These requests will commonly be related to the user’s profile.
For instance, if an agent was preparing a traffic report for a user it may request the traffic region
(search string) of that user from the Intelligent Agent Coordinator. All access to the user’s

profile data is accessed in this method.

Maintaining User Profiles

User profiles contain extensive information about the users. This information is a blend of user-
specified data and information that the Intelligent Agent Coordinator has learned and
extrapolated from each user’s information and activities. In order to protect the data contained in
the profiles, the Intelligent Agent Coordinator must handle all user information requests. The
Intelligent Agent Coordinator is constantly modifying and updating these profiles by watching
the user’s activities and attempting to learn the patterns of their lives in order to assist in the
more routine, mundane tasks. The Intelligent Agent Coordinator also employs other agents to
glean meaning from each user’s daily activities. These agents mine this data trying to discover
indications of current interests, long-term interests, as well as time delivery preferences for each
type of information. Another important aspect of the Intelligent Agent Coordinator's
observations is that it also tries to determine where each user is physically located throughout the

day for routing purposes.

Information Routing

Most people are mobile throughout their day. The Intelligent Agent Coordinator tries to be

sensitive to this fact by attempting to determine, both by observation (unsupervised learning) and

68

10

i5

20

25

30

WO 00/54177 PCT/IB00/00362

from cues from the environment, where users are or are likely to be located. This is certainly
important for determining where to send the user’s information, but also for determining in
which format to send the information. For instance, if a user were at her desk and using the web
client, the Intelligent Agent Coordinator would be receiving indications of activity from her PC
and would know to send any necessary information there. In addition, because desktop PCs are
generally quite powerful, a full-featured, graphically intense version could be sent. However,
consider an alternative situation: the Intelligent Agent Coordinator has received an indication
(via the keycard reader next to the exit) that you have just left the building. Minutes later the
Intelligent Agent Coordinator also receives notification that you have received an urgent
message. The Intelligent Agent Coordinator, knowing that you have left the building and having
not received any other indications, assumes that you are reachable via your handheld device (for
which it also knows the capabilities) and sends the text of the urgent meséage there, rather than a

more graphically-oriented version.

Inherent Innovations

The Active Knowledge Management system represents some of the most advanced thinking in
the world of knowledge management and human computer interaction. Some of the primary
innovations include the following:

e The Intelligent Agent Coordinator as illustrated above.

o The development, demonstration, and realization of the theory of Intelligent Information

Delivery

e Support for several channels of information delivery, all of which utilize a common back-

end. For instance, if a user is in front of a Magic Wall the information will be presented in a
multimedia-rich form. If the system determines that the user is mobile, the information will
be sent by to their Awareness Machine in standard text. It facilitates delivery of information
whenever and wherever a user requires the information.

¢ Personalization of information based not only on a static user profile, but also by taking into
account history of the user interactions and current real-time situation including “who, where,
and when” awareness.

o Utilization of fast and scalable Information Prioritization Subsystem that takes into account
Intelligent Agents Coordinator opinion, user preferences, and history of user interactions. It

takes the load of mundane decisions off the Intelligent Agents part therefore allowing the

69

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

agents to be much more sophisticated and precise without compromising the system
scalability.

e Speech recognition and speech synthesis in combination with intelligent agent animated
representation and tactile input provides for efficient, intuitive, and emotionally rewarding

interaction with the system.

Client Reporting Subsystem Model

Context

The Reporting subsystem is used by other subsystems on the client to report (read: make a matter
of record) various data. The subsystem makes no assumptions about the type of data it handles —
the data could be fault reports (as part of an architectural service) or lead management
information (as part of an application data service). The Reporting subsystem is in this sense
part of the infrastructure, it is an underlying set of services available everywhere on the client.

The Reporting subsystem uses the Communications subsystem to store and forward data.

Architecture Overview

The Reporting subsystem offers services to every client subsystem. It comprises a mechanism
for messaging within the client application and between the client and the server.The Reporting
mechanism uses the Communications subsystem to store and forward data. The Exceptions use

this Reporting mechanism for reporting information about errors only.

Role

The Reporting subsystem provides a set of infrastructural services which allow architectural
components to report information. The subsystem makes no stipulation about the information
reported, although it does contain components that map to certain types of reported information,
such as system faults or customer interaction information.

Part of the subsystem interface is presented as a set of Exceptions, which allow the automatic

reporting of crror conditions cncountered during proccssing.

The subsystem accepts data and forwards it in an appropriate format to the Communications
subsystem. It is captures and reports Exceptions generated during processing that are the result
of error conditions. It is able to deal with any type of report that needs to be made, from error

logging to sales leads. It is flexible enough to record new types of information as required. Itis
70

10

15

20

WO 00/54177 PCT/IB00/00362

also flexible enough to be able to add new types of report as required. In addition, it is able to

deal with the non-availability of certain information during the logging process.

Responsibilities

The Client Reporting Subsystem is responsible for providing a set of Exceptions for use by all
parts of the application. The Subsystem is also responsible for logging fault reports, user
interaction reports, application heartbeat reports, message receipts, referrals or leads, and

Management Information System entries.

Exclusions

The subsystem is not responsible for gathering information from interface interactions or
elsewhere; neither is it responsible for deciding what of a set of data needs to be reported.

Reporting does not include the printing of reports.

Component Specifications

Client Exception This is a set of Exception classes which, using

Reporting the Client Reporting Component reporting

Component services, stores and sends fault information

Client Reporting This is the mechanism by which information for

Component all reports are collected, formatted, and
submitted to the Client Communications
Subsystem.

Creation, Existence, and Management

The key element of the subsystem is a static class which manages the creation of report objects -
a report factory. This class is instantiated by the Communications subsystem (which manages
client configuration) and is always available. It is a severe error if it is not. Reports are generated

on an ad hoc basis as needed.

Sizing and Capacity

Whatever the requirements of the client architecture, the ‘throughput’ of the Client Reporting
subsystem (understood as the number of reports, of every type, that are requested in a given time)
will not place significant strain on system resources. Most of the capacity requirements for
reports are absorbed by the Communications subsystem, which must arrange for the storage and

transmission of those reports.
71

10

15

20

WO 00/54177 PCT/IB00/00362 .

Nevertheless, the subsystem must be able to deal with whatever throughput is demanded by the
architecture, and the design takes into consideration the estimated workload generated by each

part of the architecture.

Performance

Performance is not critical for the Client Reporting subsystem. Reported data, with a few
exceptions, is stored before transmission, and so a delay before data is sent is anticipated.
Certain types of severe or critical faults nced to be reported at once, but the low bandwidth

required for these transmissions will not present performance problems.

Design Guidelines

The reporting needs of the architecture fluctuate, although a core set of capabilities (fault
reporting, lead management, interaction reporting) always remain requirements. The subsystem
is flexible enough not only to extend or reduce its capabilities, but also to adjust the level of
detail and the nature of data it records for each capability.

Implementation of the system follows the project Java coding standards.

Logical Components

Exceptions within the Client Exception Reporting component call the Client Reporting

component to create fault reports.

Component Descriptions

Client Exception This is a hierarchy of Exception classes

Component structured to assist in the handling and passing
of Exceptions. These Exceptions will accept
information about the Exception event they
represent. With this information and whatever
else the class knows about it’s own event, the
component will use the Client Reporting
Component to crcate fault reports.

Client Reporting A static report factory will accept requests from

Component other components in the form of a signalled
event. Based on this event, the factory will
manufacture a report of a certain type. The
report will then be populated with information

72

10

15

20

25

WO 00/54177 PCT/IB00/00362

supplied by the calling component or reporter.

Submitting a Report

Component A signals the Client Reporting subsystem to indicate that a reportable event has
occurred. The Client Reporting subsystem then requests information about the event and creates
a report. Finally, the Client Reporting subsystem signals to the Client Communication subsystem

that the report is ready to be sent.

Throwing an Exception

First, Component A signals that an exceptional event has occurred by instantiating an appropriate
Exception. Second, Component A passes reportable event relevant information to the Exception.
Third, Component A requests for the Exception to be thrown. Fourth, the Client Exception
Reporting component submits a report to be sent based on the information available using the
Client Reporting component as outlined above. Finally, the Client Exception Reporting

component throws it’s Exception.

Local Content Subsystem Model

Context

The Local Content subsystem provides all content required by the application. This includes
both static and dynamic content. It also provides business services required by the application.
It operates on a “storage and retrieval” basis, storing the data obtained from the user and the
business, and providing mechanisms to retrieve that data. The Local Content subsystem is used
by the ISF subsystem to provide content. It uses the Communication subsystem to receive

business data.

Architecture Overview

Objects in the Local Content subsystem are created by the Initialization subsystem of the
Application Architecture. Services provided by the Local Content subsystem are also accessed

through the Application Architecture, via the Initialization and ISF subsystems.

73

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

The example components of the Local Content subsystem reflect different types of business
knowledge and processes required by the application. User Data and Business Data involve data
collected respectively from the user and the business. The Calculation component performs
complex calculations, and the Product component represents the products used by the business.

The Content Providers component defines static media content.

Role

The Local Content subsystem provides static and dynamic content to the application. It also

provides all business-specific services required by the application.

Responsibilities
The Local Content subsystem provides static and dynamic media to the application. The Local

Content subsystem also stores store user entered details, business data, and performs business

calculations.

Exclusions

All application-specific behaviour is provided through the Application Personality. This
behaviour is defined by Hamlet scripts, which also define navigation between scripts. The

scripts are divided into metaphors, each of which is an embodiment of a style of interaction.

Access to media is provided through the Content Providers component, which belongs to this
subsystem. However, the objects of this component are created automatically by the System

Initialiser component from a contents file defined in the Application Personality.

Creation, Existence, and Management

The Business Data component is created and initialized at the time of System Initialization. It

exist for the life of the system.

The User Data component is available for the entire time a customer is using the system. When a
customer session ends, references to all objects in the User Data component are released so that
the objects can be garbage collected.

74

WO 00/54177 PCT/IB00/00362

Objects in the Local Content subsystem (with the exception of the Business Data Component)
are created and initialized either internally or by the Initialization subsystem. References to these
objects are managed by the ISF subsystem. Business Data objects are created, initialized and

5 managed by the Communications subsystem.

Logical Components

The ISF does not actually know about the Local Content subsystem. The Local Content

10 subsystem implements a set of interfaces defined by the ISF. The Initialization subsystem uses
the scripts defined in the Application Personality to define which objects (implementing those
interfaces) need to be used to retrieve content. The ISF uses the Initializétion component to

create those objects, then manages them.

15 Developers of the Application Personality can easily view their scripts as directly managing the
local content objects. This allows the local content objects to be developed without knowledge

of the Application Architecture layer.

Component Descriptions

User Data Stores and retrieves data entered by the user, and
initiates calculations on stored data.

Business Data Stores and retrieves data provided by the
business.

Calculation Performs complex calculations.

Product Provides access to information associated with
particular marketing products.

Content Provides access to static media. This is an
Providers implementation of an interface and is not
documented as a separate component.

20
Interface Support Framework Subsystem Model

Context
The Interface Support Framework subsystem is part of the Application Architecture Layer. It

provides a rich interactive environment which exploits the full potential of a dynamic, multi-

75

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

media interface. The ISF is built around a theatrical metaphor where every object is expected to

exert dynamic behavior.

Objects within the ISF are initialized by the Application Initialization subsystem within the
Application Architecture Layer and utilize the services of the Content Players, Printing and

Reporting subsystems in the Technical Architecture Layer.

Architecture Overview

Objects within the ISF subsystem are initialized by the Application Initialization Subsystem.
Reporting and Transaction Interface Services are used to log ISF data for the Technical
Architecture layer to report or print. The Content Player subsystem within the Technical

Architecture is used by the ISF to present media to the user.

The ISF subsystem is built upon a layered architecture which follows the Model-View-Controller
pattern. The Factual component contains the object model of the business and definitions of
business media content. The Visual component displays and manipulates media to provide a
view of the business model to thc user. The Behavioral component controls all interactions

between the Visual and Factual components.

Role

The ISF subsystem provides the services for the application to present multimedia content in a
controlled way. It also provides the capability to react to user input and affect changes to the

scene.

Responsibilities

The ISF subsystem displays each scene of the application, and modifies the content of a scene
while it is displayed. In addition, the ISF subsystem enables navigation between scenes, reacts to
user interaction, retrieves business content, performs business functions and calculations, and
provides common user interface constructs. Other responsibilities of the ISF include initiating
print jobs and video conference sessions, reporting on user entry into a scene, duration of a

session, user interaction with a role, user navigation, and reporting on errors occurring within the

76

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 .

ISF. Finally, the ISF manages user sessions, and responds to system level events such as system

start up and shutdown or screen paint requests.

Design Guidelines

The ISF subsystem provides the services for the application to present multimedia content. It is
architecturally layered into three distinct components which parallel the Model-View-Controller
paradigm. This separates the core business objects and their data (the Model), from the visual
representation of this information (the View), from the logic to control and react to changes in
the Model or the View (the Controller). The architecture provides boundaries between the
graphical style of the system (Stage, Roles and Scenes), the operational code (Actors, Scene
Director and Stage Manager), and the underlying Content Providers (Business Objects). These

sections are the Visual, the Behavioral, and the Factual components.

The Factual Layer is not aware of the Visual layer. This allows the visual metaphor to change,
without disrupting the underlying business domain model. The Behavioral level mediates
between the Factual and visual layers and should avoid very complex interactions with either
layer. Where possible, anonymous communications via a Publish/Subscribe pattern is used to

avoid further interdependencies between the layers.

The Stage is identified as the display context. It is able to communicate only with the Locations

it controls. It is hidden behind the StageManager, where all visual requests need to be managed.

The ISF is a layered system. All roles in a scene form a series of visual siblings. These roles
can, in fact, contain and encapsulate other roles. This allows, through recursion, any number of
distinct processing layers. Each child only communicates with its direct parent, surrendering
control of communicating beyond to the parent. This containment relationship is possible in

both the Visual and Behavioral layers.

To assist in navigation, Scene Thumbnails are maintained. The user may touch on a Scene

Thumbnail to return to a previously visited Scene.

Component Descriptions

77

WO 00/54177

PCT/IB00/00362

Visual component user interaction and presentation of multimedia

Behavioral
component

content

application behavior and multimedia content
retrieval

Factual component provides multimedia content and business

Process Control

function services and calculations

This table describes the various key threads which execute within the ISF.

Thread Purpose

AWT Sends windows messages (e.g., screen touches) to
the ProcessController. This thread is created by
the Java Virtual Machine.

Main Initializes the application, then exits. This thread
is created by the Java Virtual Machine.

Processing Performs the actions initiated by the
ProcessController.

Timer Generates and actions time based system events
such as session timeouts.

Video Status | Receives notification of video finish events and
dispatches them to the ProcessController.

Audio Status | Receives notification of audio finish events and
dispatches them to the ProcessController.

User touches Location on Stage

Description:

End users will touch the visible window of the application, the Stage. This will initiate a

response from the application.

Actors: End user Components Involved: Visual

78

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 .
Key Objects Involved: Stage

Stage processes User Touch
Description:

The application window will determine which location is affected by the touched area, and will
notify the corresponding Role of a touch. The stage will also control the visual cue displayed on
the window.

Actors: End user Components Involved: Visual

Key Objects Involved: Timer, User Interaction Reporter, Location, Media Player

Role accepts User Touch Event
Description:

Each role is notified of a user touch. This will force it to request a media change in its
corresponding media, and, once accomplished, to notify its actor of the user interaction.
Actors: Stage

Components Involved: Visual, Behavioral

Key Objects Involved: Actor, Role

Actor activates Event Casting

Description:

The actor will cycle through all of its registered Casting Lists and activate all castings which are
interested in the specific event. Castings behave polymorphically, and therefore the behaviour of
how to respond is actually held in the Casting, not the actor.

Actors: Role, Execute Casting

Components Involved: Behavioral

Key Objects Involved: Actor, Casting, Stage Manager, Scene Director

Stage Manager performs Scene Transition
Description:

The Stage Manager will replace the currently active scene with a new scene, based on the
information in the Navigation Casting. It is important to control how the change occurs, to
preserve the visual illusion of the Kiosk World.

This scenario is also invoked when starting, or restarting, the application. In this case, there is no

current Scene, but the application is told to transition to the first Scene of the application.
79

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

Actor: Navigation Casting, System Initializer
Components Involved: Behavioral, Visual

Key Objects Involved: Stage, Scene Director, Session Manager

Scene Director performs Cast Change
Description:

The Scene Director coordinates the activation of all timings to ensure that any messages to the
Stage Manager are grouped together and engaged at an appropriate time. This will ensure that all
changes to the Roles visible on the scene will occur at the same time.

Actors: Content Casting, Slide Casting

Components Involved: Visual, Behavioral

Key Objects Involved: Scene Director, Stage Manager

Scene Director performs Cast Change with Slide Effect
Description:

The Scene Director must onstage all non-sliding Roles and then display the content of the Slide
Casting along a straight line until its final destination.
Actors: Slide Casting

Components Involved: Visual, Behavioral

Business Object invokes Business Function
Description:

The application may request business information from the Business Domain Model (e.g., return
a Repayment Amount). This interface also supports putting values into the business objects (such
as store a Loan Term Amount). Each business object is provided a generic interface to invoke
behaviors. The desired behaviour is specified in the Business Function Casting, and it capable of
returning information to the Actor associated with the Business Object.

Actors: Business Function Casting

Components Involved: Factual

Stage Manager times out from inactivity
Description:

The application must support a time out facility, in the event that the user walks away from the
application prior to returning to the Attractor Screen. This will protect the privacy of details

entered by users.

80

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 .

Actors: Wait Timer

Components Involved: Behavioral

Session Manager resets application
Description:

During the execution of the application, it may be necessary to reset the Stage to the first scene,
and clear out the session. This may be triggered by system inactivity, or by direct user request
dispatched through a business object.

Actors: Stage Manager’s Wait Timer, Business Object

Components Involved: Behavioral

Reset Session information

Description:

Each session stores information gathered about the user. At the end of a session, or by user
request, it is possible to erase all entered data. This supports privacy.

Actors: Session Manager

Components Involved: Behavioral

Responsive Media displays media

Description:

The Visual component of the ISF is responsible for displaying all media (image, audio, video,
text) to the Stage. It actually interfaces with the underlying media subsystem in the Client
Technical Architecture. Each player is obtained through the Gatekeeper, and supports all code
required to present the media to the user.

Actors: Role

Components Involved: Visual, Behavioral, Factual, Content Players

Key Objects Involved: Responsive Media, Media Player, Stage

Application requests hard copy printout

Description:
The client application may request a print out of static information (check list), or dynamic

information (product explanation including current interest rates and other dynamic components

81

10

15

20

25

30

WO 00/54177 PCT/1B00/00362

of the product, product simulation and/or line graph). This is initiated by the end user, through a
Print Casting.

Actors: Print Casting
Components Involved: Behavioral, Printing

Key Objects Involved: Business Object

Reporting Interface Subsystem Model

Context
The Reporting Interface Subsystem collects information logged by the Application Architecture
Layer and sends it to the Client Reporting Subsystem in the Technical Architecture Layer.

Architecture Overview

The Reporting Interface information is logged by components within the Application
Architecture Layer and sent to the Client Reporting Subsystem in the Technical Architecture
Layer.

Role

The Reporting Interface subsystem provides services to log user-interaction with the kiosk and

report on software and hardware faults which occur within the Application Architecture Layer.

Responsibilities

The Reporting Interface subsystem is responsible for gathering and logging user interaction with
the kiosk by capturing what a user is doing with the system, e.g., which scenes they are visiting,
which visual elements they are interacting with. The Reporting Interface subsystem also Gathers
and logs information related to business products which the customer is interested in, the output
of business functions which the customer has invoked and business data which the customer has
input. Finally, the Reporting Interface subsystem captures information relating to the software
and hardware performance of the kiosk. This information can then be used for error handling

and fault management analysis.

82

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

Exclusions

The Reporting Interface subsystem does not include services to gather and log customer related

information such as the a customer name and telephone numbers.

Systems Management Subsystem Model
Context
Systems Management involves the definition of a combination of automated and manual
procedures. Automation is achieved primarily through the use of Systems Management Server
(SMS). SMS is a tool within the Microsoft backoffice suite of tools which can centrally manage

system software and hardware in a distributed environment.

Systems Management Subsystem architecture
The Systems Management Subsystem architecture consists of two components, the Systems

Management Server (SMS), and Fault Monitoring.

Systems Management Server (SMS)
Systems Management Server (SMS) is a Microsoft tool that can be used to distribute software /
content, take software audits, perform fault diagnosis and take remote control. SMS is

supplemented by a component developed for the architecture, namely the File Transfer Utility.

Fault Monitoring

The Kiosk is monitored real-time through a Heartbeat message system. Heartbeat pulses are sent
from the Kiosk at a configurable rate (say one every minute) and are monitored at a console
running the Kiosk Monitoring Application. If the status of a Kiosk changes to indicate a fault,
monitoring application will initiate the appropriate action. Some errors will be handled through
the existing Opcrations Center. The routing of these errors is covered in the Application Scrvices

Subsystem.

Role
SMS is used for medium sized software distribution (both code and content) and for fault
diagnosis of the remote kiosks. There are a large number of features that make SMS a flexible

and useful support facility. Fault monitoring will provide the means to view the real-time status

83

10

15

WO 00/54177 PCT/IB00/00362

of each kiosk and associated peripherals. When a problem occurs at a particular kiosk (such as
running out of paper), the kiosk will be brought to the attention of a operations representative. It

will be possible to observe the kiosk status to verify the resolution of the problem.

Respounsibilities
The SMS is responsible for software distribution, hardware fault management and diagnosis, and

client remote re-boots. The SMS also provides a user interface to selectively view the status of

all kiosks in the network.

Creation, Existence, and Management

The SMS resides on a dedicated server in accordance with a preferred embodiment and is

available at all times.

Performance

The elapsed time between a fault occurring on an MMT and subsequently being displayed to
operations is dependent upon the frequency of the heartbeat, the ability for the application server
to process the heartbeat and the frequency of refresh on the operations terminal.

An example in accordance with a preferred embodiment is presented below.

Elapsed
Time
(minutes)

A fault occurs immediately after a 1:00
heartbeat message is sént.
The Heartbeat message is sent to the 0:01
Application Server
The Application Server receives and 0:01
processes the heartbeat message \
The operations Fault Monitoring 2:00
Application has just refreshed and is only
refreshing once every 2 minutes.
The Fault Monitoring Application 0:05

84

10

15

20

WO 00/54177 PCT/IB00/00362 -

refreshes it’s kiosk status main window

The Fault Monitoring Application 0:05
refreshes it’s kiosk status view (This time
is for only one view window open. If
there are more than one view windows
open this time should be multiplied by
the number of open view windows)

Total 3:11

If a heartbeat message is not received from a kiosk within five minutes, (configurable) the Fault
monitoring will set the kiosk status to Unknown. This time lag is required to avoid erroneously
reporting MMT machines as unknown when the real problem lies in a slightly slower than

normal processing of a heartbeat message.

Logical Components

An SMS site comprises of two components - a Primary Site and Clients. A primary site is the top
most level in the SMS hierarchy. It contains its own SQL database to store system and inventory
information for itself and other secondary sites underneath it. Clients (kiosks) are administered
from the primary site. The client sends its hardware/software information to SMS server

through the SMS Inventory service.

Fault Monitoring

After a configurable time interval the Client takes a status check of the Machine, Printer and the
Application and sends it to the server in a heartbeat message. The server then places the status

into a Kiosk Status Database that is monitored by operations staff for faults.

Server Communications Subsystem Model

Context
The Server Communications subsystem is part of the Server Technical Architecture.
The Server Communications subsystem handles all communications between clients, the central

server, and the mainframe host.
85

10

15

20

25

WO 00/54177 PCT/IB00/00362 -

Architecture Overview

The Asynchronous Messaging component provides the asynchronous message based
communication between the client and the server, using standard Internet mail protocols, SMTP
and POP3.

The Business Process Access Module component provides the common point to invoke
predefined business functionality such recording interaction information from the MMT. HTTP
is the protocol used to communicate with HTTP servers on the World Wide Web. It is used in the
MMT to distribute small updates of application components and content during the client
configuration process on start-up. Access to mainframe database resident data is done by
replicating the required database tables to corresponding server resident database tables. The
reverse process is used to centrally store the data accumulated on the server to the mainframe
database tables. Generic alerts from the server are transmitted to the mainframe through an

interface to the mainframe’s front end processor.

Role

The role of the Server Communications subsystem is to Provide the server with communications
facilities between the MMT (or Internet) client and the network server and between the network
server and the mainframe systems. In addition, the Server Communication subsystem isolates

and provides access to organization specific functionality.

Responsibilities

The Server Communication subsystem complies with standard Internet protocols, to allow ease
of porting to that delivery channel. In addition, The Server Communication subsystem provides
reliable asynchronous communication between the client and the application server, and
controlled and reliable access to organization specific functionality. Finally, the Server
Communication subsystem provides a facility to deliver updates to the configuration of the

client, such as application components and content, and provides access to the organization’s
s pp p) p g

86

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 -

legacy systems through predefined processes, such as database replication and generic alert

reporting.

Exclusions

Server Communication is confined to invoking modules which conform to the ACT messaging
architecture. If communication to another platform is required, this must be located within the

external systems module using the organizations messaging or access methods.

Transaction Interface Subsystem Model

Architecture Overview '

Transactions are initiated by components within the Application Architecture Layer and sent to
the Client Reporting Subsystem in the Technical Architecture Layer.

The Transaction services identified in this document are not implemented as separate
components in their own right, but are implemented as extensions to existing Application

Architecture components.

Role

The Transaction Interface subsystem is responsible for providing an interface to the application
for storing of contact information about the end-user. These include, but are not limited to
information required to complete a loan, survey-based information on customer demographics,

account balance inquiry, and funds transfer.

Customer Lead Transaction Execution
The customer lead transaction execution application facilitates the Interface Support Framework
and enables the services of the Reporting Subsystem of the Technical Architecture to support the

gathering and storing of information about the end-uscr.
Exclusions

The current usage of the Transaction Interface assumes that only asynchronous communications

are available.

87

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

Server Application Services Subsystem Model

Architecture Overview
The Application Services Sub-system includes a set of definitions for building the MMT server

application and architecture modules.

Role
The Server Application Services sub-system includes the set of services and definitions for

accessing application and architecture functionality. This subsystem defines the structure and
support services for building and executing applications and modules on the Application Server
or Operations workstation platform. The functionality supported includes transaction processing t
to/from the MMT: such as customer referral information, customer interaction information, MIS
information, fault information, product rates and prices information, application configuration

information, message receipt information, and heartbeat status information.

Responsibilities

The Server Application Services sub-system processes application business logic on the server
independently from the underlying database management system. The application business logic
includes customer referral information, customer interaction information, MIS information, fault
information, product rates and prices information, application configuration information,

message receipt information, and heartbeat status information.

The Server Application Services sub-system also provides a common service available to all
server and client applications to log an error, decode a given code (for example, ‘1’ = NSW, 2° =

QLD etc.), and retrieve configuration information from the registry located on each machine.

Finally, the Server Applications Services sub-system invokes a Business Process (BP) for a

given BP message.

Logical Components

The Server Application Services sub-system includes Common Servers, Data-Access Module,
Business Process, and the Business Process Access Module. Definitions of each component are

given in below.

88

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

Server Application Services Subsystem Model

Architecture Overview
The Application Services Sub-system includes a set of definitions for building the MMT server

application and architecture modules.

Role
The Server Application Services sub-system includes the set of services and definitions for

accessing application and architecture functionality. This subsystem defines the structure and
support services for building and executing applications and modules on the Application Server
or Operations workstation platform. The functionality supported includes transaction processing t
to/from the MMT: such as customer referral information, customer interaction information, MIS
information, fault information, product rates and prices information, application configuration

information, message receipt information, and heartbeat status information.

Responsibilities

The Server Application Services sub-system processes application business logic on the server
independently from the underlying database management system. The application business logic
includes customer referral information, customer interaction information, MIS information, fault
information, product rates and prices information, application configuration information,

message receipt information, and heartbeat status information.

The Server Application Services sub-system also provides a common service available to all
server and client applications to log an error, decode a given code (for example, ‘1’ =NSW, 2’ =

QLD etc.), and retrieve configuration information from the registry located on each machine.

Finally, the Server Applications Services sub-system invokes a Business Process (BP) for a

given BP message.

Logical Components

The Server Application Services sub-system includes Common Servers, Data-Access Module,
Business Process, and the Business Process Access Module. Definitions of each component are

given in below.

88

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

Component Descriptions

Definitions
Common Services. Common services to support the development of application functionality

include decoding codes tables, retrieving configuration information from the registry, message

handling, and the support for logging and handling server application errors.

Data Access Module. A data access module (DAM) provides access to data within the

application database. A DAM performs specific data access such as Insert, Delete, Update,
Select, Select All across one or more tables. It is an MFC Extension DLL encapsulating a
Recordset object which uses ODBC to access the underlying DBMS. The DAM definition

outlines how these modules are used and coded.

Business Process. A business process (BP) is the application or architecture functionality that

may be invoked by the Business Process Access Module architecture. A BP is identified by a
message type. A BP accepts a request message defined by the BP and may provide a response
message for synchronous messages. Database access is provided to the BP by DAMS. ABP is
an MFC extension DLL with a defined entry point.

Business Process Access Module. This component is detailed in the communications sub-

system. The Business Process Access Module (BPAM) is the architecture component that
provides access to business processes. The BPAM invokes a BP for a given message type. The
BPAM accesses the message address table to lookup BP module details. This component is

detailed in the communications sub-system.

Wireless Electronic Valet in Accordance With A Preferred Embodiment
One embodiment of the present invention is an a Mobile Portal Platform including a Mobile
Portal and an Electronic Valet. The Electronic Valet is a hand held wireless computer device
executing Thin Client Software. Integrated into the Electronic Valet are various sensors, such as

GPS, Bio-sensors, and Environ-sensors. In addition, recording equipment, such as a camera and
89

10

15

20

25

30

WO 00/54177 : PCT/IB00/00362

auido recorder, is also integrated into the Electronic Valet. The Mobile Portal includes a Mobile
Portal Server which is connected to various third party content and service providers through the

Internet or a Mobile Portal Extranet.

Figure 26 is a flow chart illustrating how the hardware and software of one embodiment of the
present invention operates. An Electronic Valet 2602 receives input data from sensors, GPS,
camera, microphones, and other user inputs 2600 integrated with the wireless hand held device.
The Thin Client application executing on Electronic Valet 2602, as discussed in detail below,
allows the Electronic Valet 2602 to execute many different software applications without the
need for a large amount of internal memory and storage capacity. The Electronic Valet 2602
forms a message based on the data received and the user input. The Electronic Valet 2602 then
transmits the message via antennae 2604 to the Mobile Portal 2606. The Mobile Portal 2606
parses the message received from the Electronic Valet 2602 and forms a new message based on
the message received. The Mobile Portal 2606 then determines the appropriate third party
service provider 2608 to transmit the new message to, based on the content of the message
received from wireless hand held device 2602, and then transmits the new message. The third
party service provider then performs the appropriate service and transmits the result back to the
Mobile Portal 2606. The Mobile Portal then forms a message based on the data received from
the third party service provider 2608 and transmits the message back to the Electronic Valet
2602. The Electronic Valet 2602 then formats and displays the data received. The Electronic

Valet 2602 utilizes a wireless modem such as a Ricochet SE Wireless Modem from Metricom.

Of course, wireless performance isn't nearly as reliable as a traditional dial-up phone cormection.
We were able to get strong connections in several San Francisco locations as long as we stayed
near the windows. But inside CNET's all-brick headquarters, the Ricochet couldn't connect at all.
When you do get online, performance of up to 28.8 kbps is available with graceful degradation to
slower speeds. But even the slower speeds didn't disappoint. Compared to the alternative--
connecting via a cellular modem--the Ricochet is much faster, more reliable, and less expensive
to use. Naturally, the SE Wireless is battery powered. The modem has continuous battery life of

up to 12 hours.

Thus, utilizing the wireless modem, a user may utilize the Mobile Portal 2606 via the Electronic

Valet 2602. Using appropriate key(s), the user may select a service to use in concert with
90

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

appropriate data obtained from sensors, GPS, camera, microphones, and other user inputs 2600.
In certain circumstances, data may be automatically sent to select services based on the type and
value of the data obtained by the Electronic Valet 2602. For example, when an integrated bio-
sensor obtains certain predefined data values, an appropriate emergency care provider would be
automatically contacted. In addition, the data obtaincd from sensors, GPS, camcra, microphoncs,
and other user inputs 2600, may also be combined before being sent to an appropriate service
provider. For example, in the example above, GPS position data may be sent with the bio-sensor
data to the emergency care provider. The emergency care provider would then know the
patient’s biological data and the location of the patient. Appropriate service could then be

provided.

Mobile Portal Platform ‘

The Mobile Portal Platform is a high-impact, server-based application in accordance with a
preferred embodiment that is focused on the theme of delivering services and providing a
personalized experience for each customer via a personal site located on a server. The services
are intuitively organized around satisfying customer intentions - fundamental life needs or
objectives that require extensive planning decisions, and coordination across several dimensions,
such as financial planning, healthcare, personal and professional development, family life, and
other concerns. Each member owns and maintains his own profile, enabling him to create and
browse content in the system targeted specifically at him. From the time a demand for services is
entered, intelligent agents are utilized to conduct research, execute transactions and provide
advice. By using advanced profiling and filtering, the intelligent agents learn about the user,

improving the services they deliver.

A preferred embodiment of a system utilizes a Windows CE PDA equipped with a GPS receiver.
The embodiment is configured for a mall containing a plurality of stores. The system utilizes a
GPS receiver to determine the user’s location. One advantage of the system is that it enables the
retrieval of data for nearby stores without relying on the presence of any special equipment at the
mall itself, Although the accuracy of smaller, inexpensive receivers is limited to approximately
75-100 feet, this has thus far proven to be all that is necessary to identify accurately the
immediately surrounding stores. The system uses generated data rather than actual store ads and
prices. Well structured online catalogs are used. Other embodiments utilize agents that “learn to

shop” at a given store using a relatively small amount of knowledge. Moreover, as retailers
91

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 .

begin to use standard packages to create online catalogs, we can expect the number of differing
formats to decrease, resulting in a tractable number of competing formats. As electronic
commerce progresses, it is not unreasonable to expect standards to evolve governing how

merchandise offerings are represented.

Goal Specification

Before leaving on a shopping trip, a shopper creates a shopping list of items by selecting from a
preexisting set of approximately 85 product categories (e.g. men’s casual pants, women’s formal
shoes, flowers, etc,). They also indicate the shopping venue they intend to visit from a list of

malls.

Initial Store Selection

Upon arriving at the mall, begins by suggesting the closest store that sells at least one item of a
type entered by the user during goal specification. Along with the store name a system in
accordance with a preferred embodiment prepares a list of the specific items available and their
prices. A map of the mall displays both the precise location of the store and the shopper’s
current location. The shopper queries the system to suggest a store at any time based on their

current location.

Browsing

To address the need of many shoppers to visit malls or shop generally without a particular
destination in mind. Figure 27A illustrates a display in accordance with a preferred embodiment
of the invention. The display operates in a browse mode for use by shoppers as they stroll
through the mall. In browse mode the system suggests items of interest for sale in the stores
currently closest to the shopper. An item is considered to be of interest if it matches the
categories entered in the goals screen. If there are no items of interest, the general type of
merchandise sold at that store is displayed, rather than specific items. As the shopper strolis a
map displays his or her precise current location in the mall. If an item displayed is selected by the
shopper while browsing, the system alerts the shopper to the local retailer offering the same
product for the lowest price, or announces the best local price. This search is restricted to the

local mall, as that is the assumed radius the shopper is willing to travel.

Alternatives
92

10

15

20

25

30

WO 00/54177 PCT/1B00/00362

It is worth emphasizing that the current inventive agent will support broader aspects of the
shopping task, for example, it could operate as bi-directional channels. That is, not only can they
provide information to the shopper, but, at the shopper’s discretion, they may provide
information to retailers as well. In this embodiment, the system indicates a shopper’s goals and
preferences to a retailer-based agent, who, in turn, responds with a customized offer that bundles
service along with the product. Enabling the customization of offers is crucial to gaining the
cooperation of retailers who are reluctant to compete solely on price and of value to customers
who base their purchases on criteria other than price. While the preferred embodiment focuses on
location-based filtering primarily in the context of the shopping task, the current invention
provides the basis for “physical task support” agents that provide an information channel to

people engaged in various tasks in the physical world.

The Predictive Value of Location

The present invention is a significant advance over non location based agents because a users
physical location is often very predictive of his or hers current task. If we know someone is at a
bowling alley or a post office we can reasonably infer their current activity. Knowledge of a
user’s current task largely determines the type of information they are likely to find useful.
People are unlikely to concern themselves with postal rates while bowling, or optimal bowling
ball weight while buying stamps. In addition, knowledge of the resources and obstacles present
at a particular location suggest the range of possible and likely actions of someone at that
location. This awareness of a user’s possible and likely actions can be used to further constrain
the type of information a user is likely to find useful. For example, knowledge of a restaurant’s

wine list could be used by a recommended system to constrain the wine advice it presents.

Knowledge of a shopper’s precise location in a shopping mall is valuable because it enables the
identification of the stores immediately surrounding the shopper. The offerings of the stores
closest to the shopper represent the immediate choices available to the shopper. Given that
shoppers place a premium on examining merchandisc first hand and that there is a cost
associated with walking to other stores, the merchandise of the closest surrounding stores
constitute the most likely immediate selections of the shopper. Consequently, among the most
useful information provided at any given time is the availability of merchandise in the

surrounding stores that matches their previously stated goals.

93

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

People tend to move to different locations while performing many of their our tasks. This
suggests that their immediate surroundings do not completely capture the full range of options
they may have. In fact one of the main reasons for leaving a location is to perform an action that
is not possible at the current location. Nevertheless, one does tend to address most tasks within
relatively local areas. Thus while their immediate surroundings suggest the options they have
available at a given point in time, a broader view of a location will often capture the options they
are likely to consider over the course of a task. In the case of mall shopping, for example, the
stores immediately surrounding the shopper represent the options available at that moment. Mall
shoppers, however, are generally willing to travel to any store within the mall. Therefore the
potential options over the entire shopping trip include all the stores in the mall. Accordingly,
information is presented on offerings of interest only from the immediately surrounding stores
because these are the immediately available options. When asked for alternatives, the system
restricts itself to all the stores within the mall — the area within which the shopping task as a
whole is likely to be performed. Being alerted that a store hundreds or thousands of miles away
sells the same merchandise for a few dollars less than the cheapest local alternative is of little
value in cases when shoppers require a first hand examination of the merchandise in question or

are not willing to wait for shipping.

PHYSICAL VS. ONLINE SHOPPING

In addition to the significant advantages over non-location based agents the present invention
over comes disadvantages o online (or web) shopping. It is tempting to argue that online
shopping will soon become the predominant mode of shopping, pending only greater penetration
of home computers, the expansion of online offerings, and better online shopping tools. At first

glance it would therefore appear to be a mistake to begin using location to support an activity

“that will become virtualized. Already we’ve seen the emergence of a number of software agents

that support online shopping. For example, programs that allow users to identify the cheapest
source for a music CD, given a title. Similar programs have been developed for buying books,
such as BargainBot. These systems demonstrate the potential of electronic commerce web
agents to create perfect markets for certain products. The success of these agents will encourage

the development of similar web shopping agents for a greater variety of goods.

The Limitations of Online Shopping

94

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 .

shoppers either haven’t formed preferences or can’t articulate their desires until after they’ve

started shopping and had a chance to examine various examples of the target products.

Shopping is entertainment
People like to shop and do so without having a specific purchase in mind. One study found that
42% of consumers are “non-destination shoppers” that visit the mall primarily for leisure

browsing and socializing.

Shopping is sensory

Even if the user could effectively provide these details most would be unlikely to delegate a
purchasing decision to such an agent. After all, many people are uncomfortable even trusting
spouses to make appropriate purchases on their behalf. Most people want to see and touch first
hand what they’re considering before making a purchase decision. The few preferences they
may provide an agent cannot replace this rich, first-hand experience. At best such preferences

could be used to generate a candidate set for shoppers to consider.

Instant Gratification

Shopping is often a very emotional activity. People arc pleased with their purchases and often
can’t wait to get home to try them out. The inherent delay between online purchases and their
receipt is a significant issue to those who simply must take home their selections as soon as they

see them.

In the end, consumers will continue to engage in physical shopping because of the limitations
listed above. However, the fact that the task can’t completely be delegated to software agents
does not rule out a role for them. First, users find them useful for purchasing commodities when
they know what they want. A second role, however, is to support the physical shopping task
itself, throughout the time that a person is engaged in it. This, of course, is the approach taken in

the SHOPPER’S EYE project.

SHOPPER’S EYE
At first blush it may seem that the current invention is subject to some of the same limitations as

purely web-based agents. After all, why should it be any easier to communicate your goalsto a

96

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

Certainly online shopping will continue to grow and the trend towards more powerful online
shopping agents will continue. Nevertheless, it also seems clear that no matter how sophisticated
web-agents become, traditional physical shopping will continue to dominate the market for the
foreseeable future. Several inherent difficulties of online shopping will ensure the continued

reliance on physical shopping:

Non-fungible goods

Web-based shopping agents have typically enabled users to identify the cheapest price for
fungible products such as books and music CDs. While this capacity to create “perfect markets”
for such commodities is of great benefit to consumers, several difficulties exist that will

complicate applying these approaches to arbitrary products.

Commodities are particularly well suited to shopping agents because it is easy to make
comparisons between competing offers. Because commodities are fungible, one of the very few
dimensions upon which they differ is price. Price therefore becomes the primary, if not sole,

criterion upon which purchasing decisions are made.

As soon as we move beyond commodities, however, several other criteria become important.
For example, how do we compare items such as sweaters, mattresses, or tables? In addition to
price we care about the materials used, the color, how it fits and feels, and the workmanship.

Similar problems apply to most other products.

Imprecise goal specification

A second, related difficulty lies in communicating our desires to an agent. Shopping agents are
great if the user knows the precise commodity he or she wants. Then they can simply enter the
product by name. Unfortunately, if they don’t have a specific item in mind when they shop, then
the problem of conveying what is wanted to an agent becomes more difficult. For example, how

does the user tell an agent what kind of lamp they want for their living room?

Undeveloped preferences
Interfaces that allow shoppers to include descriptive features like price ranges, color, options,

brands, etc, can help address the above problem, but they are not enough. Much of the time

95

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

PDA than it is to a web-based agent? Why would your preferences be any more developed for

purchases supported by a PDA system than a web-based agent?

A key difference between purely web-based agents and the current “physical task support
agents” (i.e. an agent that supports a user engaged in a task in a physical setting) is that web-
based agents are completely responsible for conveying all information that will be considered by
the user. On the other hand, “physical task support” agents in accordance with a preferred
embodiment can augment the approaches of web-based agents by referring to aspects of a user’s
environment. For example, it is not terribly important to convey richly the feeling of a particular
sweater if the sweater is in a store thirty feet away. It need only refer the shopper to the sweater.
The shopper will gain a much better appreciation of the sweater by trying it on than through
anything that can be conveyed by the system. When too many products match an imprecisely
specified goal for a web-based agent, a more restrictive search must be made. However, many
matches simply indicates there is a store that is likely to be of great interest to the shopper and
therefore should be visited. Once inside, narrowing down the merchandise of interest in person
will often be far easier than refining the goals on a web-based agent. Therefore physical task
support agents can assist users to elaborate their preferences and identify specific goals by calling
users’ attention to aspects of their physical environment as a means of conveying information

throughout the entire course of the task.

The Promise of Physical Shopping Agents

It is hardly surprising that physical shopping has been neglected by the agents community. After
all, until very recently there simply was no reliable way to deliver customized information to
individual shoppers in remote locations. However, the explosive growth of PDAs, and their
increasingly sophisticated communications capabilities promise to make them effective channels
of “just in time” information to users wherever they happen to be. The present invention provides
an ituitive, novel agent that supports physical shopping by exploiting the promise of this
developing channel that support all phases of the shopping task and solves the foregoing

problems including:

Specification of goals

97

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 .

Shoppers begin by indicating at least the general category of merchandise they are interested in.
Shopping agents need to enable the specification of goals at various degrees of specificity. With

the present invention these goals may be refined as the task progresses.

Exploration of Product Space

Before shoppers can make a selection, they need to become educated about what is available.
Shopping agents can aid in this task by presenting various classcs of offerings, reviews,
demonstrations, etc. The present inventive Physical shopping agent can augment this by

providing shoppers with a tour of the locally available offerings.

Refinement of preferences
As shoppers learn what is available and examine the offerings their preferences evolve. Agents
need to enable shoppers to refine their preferences over time. The present invention allows the

user to refine their preferences.

Identification and comparison of candidate products

As shoppers begin to understand what they want and what is available they typically compile a
list of candidates that will be considered more carefully. The present inventive agents supports
the construction and maintenance of such lists and facilitates the comparison of candidates within

the list according to various criteria.

Negotiation of offers
The present shopping agent is not restricted to providing the shopper with information. It is

possible to negotiate prices and service options with retailers.

Product Selection, Purchase and Product support
The present invention facilitates the transaction itsclf and can be used as a channel through

which product service can be delivered.

Figure 27B is an illustration of the Mobile Portal platform 2710 including a Mobile Portal 2712
and an Electronic Valet 2713. The Electronic Valet 2713 includes a supporting hardware device
2716, such as a wireless PDA, and a Mobile Portal Thin Client standard 2714 executing on top

of a Thin Client Operating System 2718. The Mobile Portal consist of an encryption and
98

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 .

decryption element 2720, a Mobile Portal Server 2722, intelligent agents 2724, a Customer

intelligence element 2726, and a Customer database 2728.

Thin Client is a generic term used to describe a group of rapidly emerging technologies that
provide a reduction in total cost of ownership through a combination of reduced hardware costs,
reduced maintenance and support costs, reduced LAN/WAN bandwidth requirements, reduced
down time, improved performance and enhanced security. The term "Thin" in Thin Client refers
to the (very small) size of the client operating system. In contrast, traditional PC operating
systems (DOS, Windows 95, etc.) are considered "Fat" Clients due to their large size and
resource requirements. Despite the fact that the Thin Client operating systems are thin, the
capabilities of Thin Clients are robust. Thin Client solutions are deployed today in mission
critical environments and they are providing reliable and responsive access to a myriad of
applications. The Mobile Portal Thin Client 2714 is a Thin Client wherein the majority of the
processing is done on the Mobile Portal Server 2722 and related third party content and service
providers 2730. The user utilizes the Mobile Portal Thin Client application 2714 to select
services and review information provided by the Mobile Portal Platform 2710. The Mobile
Portal Thin Client application 2714 is made more device independent by the use of a Thin Client
Operating System 2718. The Thin Client Operating System 2718 acts as a messenger between
the Mobile Portal Thin Client application 2714 and the supporting hardware 2716. The Thin
Client Operating System 2718 allows the Mobile Portal Thin Client 2714 to make function calls
to the Thin Client Operating System 2718 for low level hardware operations, such as display
calls and user input queries. A separate Thin Client Operating system 2718 can be developed for
each hardware device 2716 used as the supporting hardware for the Electronic Valet 2713. This
allows the Mobile Portal Thin Client application 2714 to run on different supporting hardware

2716 without the need for significant low level design modification.

The Mobile Portal 2712 receives data from the Electronic Valet 2713 via a packet-switched
wireless network 2732. Information received through the packet-switched wireless network is
then decoded by the encryption and decryption element 2720 of the Mobile Portal 2712. Once
the data has been decoded the Mobile Portal server 2722 utilizes intelligent agents 2724,
customer intelligence 2726, and customer data 2728 to obtain the requested data from third party
content and service providers 2730. The Mobile Portal Server 2722 utilizes intelligent software

agents to respond to customer needs. The software agents 2722 utilize customer data 2728 to
99

10

15

20

25

30

WO 00/54177 PCT/IB00/00362 .

determine to personalize their task to the individual user’s goals, habits and preferences. The
customer data 2728 is in turn routinely updated by the customer and by the customer’s actions.
Each time a user uses the Mobile Portal 2712 a log is kept of the user’s queries and other uses of
the Mobile Portal Platform 2710. In this way, the software agents 2724 are able to utilize the

user’s past habits to personalize their task.

In addition to software agents 2724, the Mobile Portal Server 2722 utilizes customer intelligence
2726 to respond to user needs. The user may utilize data-mining and pattern recognition to find
the information he desires. Again, the customer data 2728 is updated to reflect the users data-
mining and pattern recognition uses. Third party content and service providers 2730 are utilized
by the Mobile Portal 2712 to provide the services and information requested by the users. The
third party content and service providers may be accessed through the Internet or through a
Mobile Portal Extranet. The intelligent agent software 2712 search through the third party
providers to determine the one most suitable for the user, taking into consideration the
customer’s profile contained in the customer data 2728. In this way, the user may be less
specific in their queries than they would have to be without a user profile. For example, a user
can request a jacket utilizing the Mobile Portal Platform 2710. The intelligent agents would then
utilize the customer data 2728 to determine more specifically what the customer actually desired. -
In this case, the customer data 2728 may information that this particular user likes denim jackets
as opposed to leather jackets. The intelligent agents 2724 would then search for denim jackets.
Of course the user profile could be overridden by the user in order to obtain information that is
contrary to what is stored in the user’s profile. Some typical services provided include
geographic location information, audio and visual editing, personal news & cntertainment,
personal shopping, personal health & safety, personal organizer, personal finance, and personal

communication.

Geographic location services are typically based on information received from the integrated
Global Positioning System. GPS data is combined with specific user request data to provide
location specific information to the user. For example, the user may be located in San Francisco
and wish obtain information on fine dining in the city. The user would request fine dining
information utilizing the Electronic Valet 2713. Location data obtained from the integrated GPS
receiver would be automatically combined with the user request for fine dining, and the

combined message would then be transmitted to the Mobile Portal 2712. Based on the data
100

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

received, the Mobile Portal would select the appropriate service and transmit the request, in this
case fine dining in San Francisco. The Mobile Portal would then transmit the response received
back to the Electronic Valet 2713. The user is then presented with the requested information,

formatted and displayed on the display device of the Electronic Valet 2713.

Audio and visual editing services are typically based on the data received from the integrated
camera and microphone. The user typically captures images utilizing the integrated digital
camera. However, the user may also obtain digital images from other sources, such as scanners,
e-mail, and web pages. In addition, the user typically captures sound files utilizing the integrated
microphone. However, audio files may also be obtained from other sources, such as e-mail, web
pages, and CDs. The image and/or audio data is combined with specific user request data to
provide image and audio editing capabilities to the user. For example, the user may capture an
image with the integrated digital camera, and then request to edit the image using a specific
photo editor. The image captured by the integrated digital camera is then combined with the
user’s request for photo editing, and the combined message is then transmitted to the Mobile
Portal 2712. Based on the data received, the Mobile Portal 2712 selects the appropriate service
and transmits the request, in this case image editing. The Mobile Portal then transmits the
response received back to the Electronic Valet 2713. The user is then presented with the
requested information, formatted and displayed on the display device of the Electronic Valet
2713. In this case, the user would receive a user interface for image editing. The user would
then use the image editing user interface to edit the image. Changes to the image are treated as
request which the Mobile Portal 2712 passes on to the image editing application, running locally

or on a separate server.

Bio-Medical Sensor Integration in Accordance With A Preferred Embodiment
One embodiment of the present invention is an Electronic Valet including integrated bio-sensors,

such as pressure transducers, respiratory sensors, Volumetric Sensors, and Defibrillators.

Integrated Pressure Transducers to measure blood pressure can be of two types, invasive and
noninvasive. Invasive integrated pressure transducers require the user to imbed part of the unit
into the blood stream, while noninvasive integrated pressure transducers do not need access to
the blood stream. Pressure transducers measure the blood pressure of the patient and report it to

a receiving unit, in this case the Electronic Valet. The Electronic Valet is then able to analyze
101

10

15

20

25

30

WO 00/54177 PCT/IB00/00362

and rout the data received from the pressure transducer utilizing the Mobile Portal Thin Client

and Mortal Portal Server.

Respiratory sensors, such as strain gages and volumetric sensors may also be integrated into the
Electronic Valet. Strain gages worn around the chest region change impedance as the gage
expands and contracts according to the expansion and contraction of the chest during breathing.
Volumetric sensors sense the amount of air pressure passing through the sensor, such as when a
paticnt brecathes into the volumetric sensor. Both strain gages and volumectric scnsors arc able to
wirelessly transmit their corresponding data to the Electronic Valet unit, thus giving the user
greater freedom in their activities. As with data received from pressure transducers, data
received from strain gages and volumetric sensors may be analyzed and routed utilizing the

Mobile Portal Platform.

Defibrillators integrated into the Electronic Valet may be utilized to sense heart functions.
Defibrillators attach to the patient utilizing a saline based gel and track heartbeats through R, T,
and P waves. As with strain gages and volumetric sensors, defibrillators can wirelessly transmit
data to the Electronic Valet, which then analyzes and routs the data utilizing the Mobile Portal

Platform.

The above mentioned bio-sensors can be integrated individually or in combination with other
sensors, such as environ-sensors, other bio-sensors, or a GPS receiver, depending on the need of
the particular user. For example, an elderly user with a history of heart problems could have an
Electronic Valet including an integrated Defibrillator and GPS receiver.

Utilizing the Mobile Portal Platform, the user could stay up-to-date on news and information

about his condition, including various food and drugs that could be harmful.

In addition, the Electronic Valet is capable of sensing problems that may occur because of the
heart condition, regardless of the location of the user. While walking in the park, the user may
feel chest pains, the Electronic Valet would sense that the pains are being caused by difficulties
arising because of the user’s heart condition. This is accomplished utilizing the integrated
defibrillator and the Electronic Valet’s analysis capabilities. In this case, the data received from
the integrated defibrillator will exceed predetermined safety thresholds, thus alerting the

Electronic Valet that an emergency has occurred. Utilizing the Mobile Portal Platform, the
102

10

15

20

25

30

35

40

WO 00/54177 PCT/IB00/00362

Electronic Valet would then notify the appropriate emergency response unit, forward that heart

data to the users physician, and notify the user’s family.

In addition, the Electronic Valet forwards location coordinates, received from the integrated GPS
receiver, to the emergency response unit allowing them to locate and rescue the user. After
treatment at the hospital, the Mobile Portal Platform is able to coordinate the users after-care

program, including tracking his diet and nutrition, as well as his exercise routine and medication.

St)pporting Code in Accordance With A Preferred Embodiment

The following code is written and executed in the Microsoft Active Server Pages environment in
accordance with a preferred embodiment. It consists primarily of Microsoft J script with some

database calls embedded in the code to query and store information in the database.

Intention-Centric Interface

Create an Intention ASP Page (“intention_create.asp”)

<%@ LANGUAGE = "JScript" %>
<%

Response.Buffer = true;
Response.Expires = 0;

%>

<htmls>
<head>

<title>Create An Intention</titles
</head>

<body bgcolor="#FFEID5" style="font-family: Arial" text="#000000">

<%

//Define some variables

upl = Server.CreateObject ("SoftArtisans.FileUp")
intention_name = upl.Form("intention_name")

intention_desc = upl.Form("intention_desc")

//intention_name = Request.Form("intention_ name")

//intention_desc = Request .Form("intention_desc")

//intention_icon = Request.Form("intention_icon")
submitted = upl.Form("submitted")

items = new Enumerator (upl.Form)

103

10

15

20

25

30

35

40

45

WO 00/54177 PCT/1B00/00362.

<%

//Establish connection to the database

objConnection = Server.CreateObject ("ADODB.Connection")
objConnection.Open("Maelstrom")

%>

<%
//Check to see if the person hit the button and do the appropriate thing
if (submitted == "Add/Delete")

{

flag = "false"

//loop through all the inputs
while(!items.atEnd())

{

i = items.item()

//if items are checked then delete them

if (upl.Form(i) == "on")
{
objConnection.Execute ("delete from user_intention where intention_id =" +
i);
objConnection.Execute ("delete from intentions where intention_id =" + i);
objConnection.Execute ("delete from tools to_intention where intention id ="
+ 1)
flag = "true"
}
items.moveNext ()
}
// if items were not deleted then insert whatever is in the text field in the database
if (flag == "false")
{
intention_name_short = intention_name.replace(/ /gi,"")
objConnection.Execute ("INSERT INTO intentions
(intention_name,intentionﬁdesc,intention_icon) values('" + intention_name + "', '" +
intention_desc + "','" + intention_name_short + ".gif" + "')")
Response.write("the intention short name is " + intention_name_short);
upl.SaveAs ("E:development/asp_examples/"+ intention_name_short +1 gif"
}
}
// Query the database to show the most recent items.
rsCustomersList = objConnection.Execute("SELECT * FROM intentions")
%>

<input type="Submit" name="return_to_mcp" value="Go to Main Control Panel"

onclick="location.href="'default.asp'">

104

10

15

20

25

30

35

40

45

WO 00/54177 PCT/IB00/00362

<form method="post" action="intention_create.asp" enctype="multipart/form-data" >
<TABLE border=0>
<tr><td colspan="2">Enter in a new intention</td></tr>

<trs><td>Name:</td> <td><INPUT TYPE="text"
name="intention_name'"></td></tr>
<tr><td><font face="Arial"sDescription:</td><td><TEXTAREA
name="intention_desc"></TEXTAREA></td></tr>
<tr><td>Icon Image:</td><td><INPUT TYPE="file" NAME="intention_icon"
size=40></td></tr>
<tr><td colspan="2"><INPUT type="submit" name="submitted" value="Add/Delete"></td></tr>
</TABLE>
<HR>
<font: face="Arial" size="+1">Current Intentions
<TABLE>
<tr bgcolor=E69780 align="center">
<td>
Delete
</td>
<TD>
Itention
</TD>
<TD>
Description
</TD>
<TD>
Image
</TD>
</tr>

<%
// Loop over the intentions in the list
counter = 0;
while (!rsCustomersList.EOF)
{
%>
<tr bgcolor="white" style="font-size: smaller'>
<td align=center>
<INPUT type="checkbox" name="<%=rsCustomersList ("intention_id")%>">
</TD>
<td>
<%= rsCustomersList ("intention_name") %>
</td>
<td>
<%= rsCustomersList ("intention_desc") %>
</td>
<td>
<img src="../images/<%= rsCustomersList ("intention_icon")%>">

</td>

105

WO 00/54177 PCT/IB00/00362

</tr>

<%

counter++
rsCustomersList.MoveNext () }
%>

</TABLE>

<hr>

Available Tools

</ form>

</BODY>

</HTML>

Retrieve Intentions List ASP Page (“intentions_list.asp”)

<!-- f#include file="include/check_authentication.inc" --»>

<HTML>
<HEAD>
<TITLE>mySite! Intentions List</TITLE>

<SCRIPT LANGUAGE="JavaScript">

function intentionsList () {
this.internalArray = new Array();

<%
// establish connection to the database
objConnection = Server.CreateObject ("ADODB.Connection") ;

objConnection.Open("Maelstrom") ;

// create query
intentionsQuery = objConnection.Execute("SELECT * FROM intentions ORDER BY

intention_name asc");

%>
// write out the options
<%
numOptions = 0
while (!intentionsQuery.EOF) {
intentionName = intentionsQuery("intention_name");
intentionIcon = intentionsQuery("intention_icon");
%>
this.internalArray [<%= numOptions%>] = new Array(2);
this.internalArray (<%= numOptions%>] [0] = "<%= intentionName %>";
this.internalArray (<%= numOptions%>] [1] = "images/<%= intentionIcon %>";
<% numOptions++; intentionsQuery.moveNext () ; %>
<% } %>

106

10

15

20

25

30

35

40

45

WO 00/54177

}

numIntentions = <%= numOptions%>;

PCT/1IB00/00362

intentionArray = new intentionsList().internalArray;

function selectIntention () {

}

</SCRIPT>

</HEAD>

for (i=0;i<numIntentions;i++)

if (IntentionsListSelect.options({i].selected) {

intentionNameTextField.value = intentionArray{i] (0];

//intentionPicture.src

break;

intentionArray[i] [1)];

<BODY BGCOLOR="<%=Session("main_background")%>" style="font-family: Arial"s>

<CENTER>

<t--- <FORM NAME="intention list"> ---»>
<TABLE FRAME="BOX" border=0 CELLPADDING="2" CELLSPACING="2">

<TR><TD COLSPAN="3" STYLE="font: 20pt arial" ALIGN="CENTER">Add a mySite!

Intention</TD></TR>

<TR><TD COLSPAN="3"5> </TD></TR>

<TD width="100">Please Select An Intention You Would Like to Add to Your

<SELECT ID="IntentionsListSelect" NAME="IntentionsListSelect" SIZE="10"

<TR>
List</TD>
<TD colspan=2>
style="font: 9pt Arial;" onClick="selectIntention()">

<%
intentionsQuery.moveFirst () ;

for(j=0;j<numOptions;j++) { %>

<OPTION VALUE="<%= intentionsQuery("intention_ id") %>" <% if (j ==

SELECTED <% } %>>

</TR>

</TD>

<%= intentionsQuery("intention name") %>

<% intentionsQuery.moveNext ()

}

intentionsQuery.moveFirst () ;
%>
</SELECT>

107

) { %>

10

15

20

25

30

35

40

45

WO 00/54177 PCT/1B00/00362

<TR><TD COLSPAN="3"> </TD></TR>

<TR>
<TD width="100">Customize the Intention name</TD>
<TD COLSPAN=2"><INPUT TYPE="text" NAME="intentionNameTextField"
ID="intent ionNameTextField" SIZE="30" VALUE="<%= intentionsQuery("intention_name") %>"></TD>

</TR>
<TR><TD COLSPAN="3"> </TD></TR>

<TR>
<TD COLSPAN="3" ALIGN="CENTER">
<INPUT TYPE="button" NAME="intentionOKButton" VALUE=" OK " SIZE="10"

ID="intentionOKButton" onClick="javaScript:top.opener.top.navframe.addAnIntention();">

<INPUT TYPE="button" NAME=*intentionCancelButton" VALUE="Cancel" SIZE="10"
ID="intentionCancelButton" onClick="self.close();">
</TD>
</TR>
</TABLE>
<l--- </FORM> --->
</CENTER>

<% objConnection.Close(); %>
</BODY>
</HTML>

Display User Intention List ASP Page (excerpted from “navigation.asp”)

<DIV ID="intentionlist" style="position: absolute; width:210; height:95; left: 365pt; top: -5;
visibility: hidden; font-family: Arial; font-color: #000000; font: 8pt Arial ; " >
<DIV style="position: absolute; top:7; left:7; height:78; width:210; =z-index:2; background:
<%=Session("main_background")%>; border: solid 1lpt #000000; padding: 3pt; overflow: auto; alink:
black; link: black;">
<body LINK="#000000" ALINK="#000000" vlink="black">

<%

// create query

intentionsQuery = objConnection.Execute ("SELECT user_intention.* FROM
user_intention, user_intention_to_persona WHERE user_intention_to_persona.user_persona_id = " +
Session ("currentUserPersona") + " AND user_intention_to persona.user_intention_id =
user_intention.user_intention_id");

numintentions = 0;

Response.Write ("<SCRIPT>numintentions=" + intentionsQuery.RecordCount +

"</SCRIPT><TABLE cellpadding='0' width='100%' cellspacing='0'>");

while (!intentionsQuery.EOF)

{
108

WO 00/54177 PCT/IB00/00362

%>

<TR><TD><a href="javascript:changeIntention('<%=
intentionsQuery ("user_intention_id") %>', '<¥=numintentions%$>')" onmouseover="mouseOverTab ()"
onmouseout = "mouseOutO£Tab () "><%=
intentionsQuery ("intention_custom_name") %></TD><TD><IMG align="right"
SRC="images/delete.gif" alt="Delete this intention" onClick="confirmDelete (<%=
intentionsQuery ("user_intention_id") %>)"></TD></TR>
<$numintentions++; intentionsQuery.moveNext (};

%>

<% }
Response.Write("<SCRIPT>numintentions="+numintentions +"</SCRIPT>") ;

%>
<tr><td colspan="2"><hr></td></tr>
<TR><td colspan="2"><a href="javascript:changeIntention('add ...',<%=numintentions%>) ;"

onmouseover="mouseOverTab () " onmouseout="mouseOutOfTab () "><font color="Black" face="arial"

size="-2"sadd ...</td></TR>
</table>

</body>

</DIV>

<DIV style="position: absolute; top:0; left:-5; width: 230; height:105; z-index:1; "
onmouseout="intentionlist.style.visibility='hidden'"
onmouseout="intentionlist.style.visibility='hidden'"
onmouseover="intentionlist.style.visibility='hidden'"></DIV>

</D1V>

</DIV>

While various embodiments have been described above, it should be understood that they have
been presented by way of example only, and not limitation. Thus, the breadth and scope of a
preferred embodiment should not be limited by any of the above described exemplary
embodiments, but should be defined only in accordance with the following claims and their

equivalents.

109

10

15

20

25

wO 00/54177 PCT/IB00/00362

CLAIMS

What is claimed is:

(@)
(b)
©

(d)

A method for creating an information summary on a mobile computing environment,
comprising the steps of:

creating a query based in part on a user input;

querying a network of information utilizing a wireless communication device;
receiving the response to the query from the network of information on the mobile
computing environment; and

displaying the responses to the query on a display utilizing predefined formatting rules.

A method for creating an information summary on a mobile computing environment as
recited in claim 1, including the step of performing a category search and providing

categories of product and service information.

A method for creating an information summary on a mobile computing environment as
recited in claim 1, including the step of providing a list of merchants proximal to the

mobile computing environment.

A method for creating an information summary on a mobile computing environment as
recited in claim 1, including the step of providing a directory of services proximal to the

mobile computing environment.

A method for creating an information summary on a mobile computing environment as
recited in claim 1, including the step of providing one or more advertisements that display

on the mobile computing environment.

A method for creating an information summary on a mobile computing environment as
recited in claim 1, including the step of providing certificates to facilitate payment
processing utilizing the mobile computing environment utilizing the wireless

communication device.

110

10

15

10.

(2)
(b)
(2)
(b)
(©

(d)

WO 00/54177 PCT/IB00/00362

A method for creating an information summary on a mobile computing environment as
recited in claim 1, including support for querying the Internet to obtain pertinent

information.

A method for creating an information summary on a mobile computing environment as

recited in claim 1, including optimizing the query for a particular search engine.

A method for creating an information summary on a mobile computing environment as
recited in claim 1, including the step of querying for product identifiers to obtain

additional pertinent information.

An apparatus that creates an information summary, comprising; |

a processor;

a memory that stores information under the control of the processor;

logic that creates a query based in part on a user input;

logic that queries a network of information utilizing a wireless communication device;
logic that receives the response to the query from the network of information on the
mobile computing environment; and

logic that displays the responses to the query utilizing predefined formatting rules.

111

10

15

20

25

11.

(2)
(b)

(©)

(d)

12.

13.

14.

15.

16.

WO 00/54177 PCT/IB00/00362

A computer program embodied on a computer-readable medium that creates an
information summary, comprising:

a code segment that creates a query based in part on a user input:

a code segment that queries a network of information utilizing a wireless communication
device;

a code segment that receives the response to the query from the network of information
on the mobile computing environment; and

a code segment that displays the responses to the query on a display utilizing predefined

formatting rules.

A computer program embodied on a computer-readable medium that creates an
information summary as recited in claim 11, including a code segment that performs a

category search and providing categories of product and service information.

A computer program embodied on a computer-readable medium that creates an
information summary as recited in claim 11, including a code segment that displays a list

of merchants proximal to the mobile computing environment.

A computer program embodied on a computer-readable medium that creates an
information summary as recited in claim 11, including a code segment that displays a

directory of services proximal to the mobile computing environment.

A computer program embodied on a computer-readable medium that creates an
information summary as recited in claim 11, including a code segment that displays one

or more advertisements that display on the mobile computing environment.

A computer program embodied on a computer-readable medium that creates an
information summary as recited in claim 11, including a code segment that manages
certificates to facilitate payment processing utilizing the mobile computing environment

utilizing the wireless communication device.

112

WO 00/54177 PCT/IB00/00362 .

17. A computer program embodied on a computer-readable medium that creates an
information summary as recited in claim 11, including a code segment that queries the

Internet to obtain pertinent information.

18. A computer program embodied on a computer-readable medium that creates an
information summary as recited in claim 11, including a code segment that optimizes the

query for a particular search engine.
19. A computer program embodied on a computer-readable medium that creates an

information summary as recited in claim 11, including a code segment that prompts for

product identifiers to obtain additional pertinent information.

113

PCT/1B00/00362

WO 00/54177

1/30

I

87l é@ %_

¥3Ldvay
ﬁwmm% VAN @
| CEN]]

8¢l

7 -~ 24
9¢1 (44|

431dvay
NOILYJINNHKOD

431dvay
0/1

WYY HOY nd)

7
123

(S€1) YdOMLIN

\

0Tl

kil 9l 011

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362

WO 00/54177

2/30

{14V Hordd)

V1 9ld 7

(ANYJWOD INOHd)
JUNLONYLSVHANI
SNOILYDINNWINOD

(vsinba)
NERIAE!
WIONVYNIS

44

RERIIEN
ALYVd QHIHL

(dS) ¥3aIn0¥d

14
J0IAY3S 1INH3INI

TVIHO0d g3M

H3SMoYE

(WHO4LY1d T3INIW)
(SIFUNLOVANNYI
ERTE

0¢

8l

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

3/30

PUBLIC SUB
MAIN
(STARTSZ%%OGRAM)

PCT/1B00/00362

PRIVATE SUB
ProcessCommandLine
(PARSE THE COMMAND
LINE FOR ME1ETING TEXT)
210

PRIVATE FUNCTION
CreateStopList
(PREPARES GLOBAL
STOPLIST)

220

PUBLIC SUB
CreatePattems
(PREPARESALL THE
PATTERNS FOR
PATTERN MATCH) 230

GoBackgroundFinder

PUBLIC SUB

(WRAPPER
FUNCTION)
240

FIG.

2

SUBSTITUTE SHEET (RULE 26)

—(EXTRACTS KEYWORDS

—{ (INITIATES PATTERN

— (QUERY AND PARSE

| (PREPARES DATA)

| (SENDS DATATO MUNIN)

PUBLIC FUNCTION
ParseMeetingTest

FROM MEETING
RECORD) 250

PUBLIC FUNCTION
GoPattemMatch

MATCHING)
260

PUBLIC FUNCTION
SearchAltaVista
(PARSE RESULTS)

’ 2

PUBLIC FUNCTION
SearchNewsPage

RESULTS)
215

PRIVATE FUNCTION
ConstructOveralResult

280

PUBLIC SUB
ConnectAndTransferToMunin

20 -

BUILT-IN FUNCTION

Winsock.SendData

— (SENDS DATA

THROUGH UDP)
295

PUBLIC SUB

— (ONCE DATAIS SENT,
CLEAN PROGRAMAND
EXIT) 287

DisconnectFromMuninAndQuit

WO 00/54177

PCT/1B00/00362
4/30
PUBLIC SUB
MAIN
START
300
PUBLIC SUB
GoBackgroundFinder
(WRAPPER FUNCTION)
30
PUBLIC FUNCTION
ParseMeetingText
(EXTRACTS KEYWORDS)
3%0
Il i | |
PRIVATE FUNCTION PUBLIC FUNCTION PRIVATE FUNCTION
FormatDelimitation DetermineNumWords ggg&gggﬁ%{gﬁ ParseAndCleanPhrase
(MAKES SURE THAT | |(RETURN NUMBER OF (GET TTH FIELD FROgM (EXTRACTSAWORD
DELIMITERS ARE PLACED| | WORDS IN STRING INPUT MEETING TEXT) AT ATIME FROM
CORRECTLY) GIVEN SEPARATOR) 30 TITLE AND BODY)
330 340 360
PRIVATE FUNCTION || PRIVATE FUNCTION PRIVATE FUNCTION
FormatDelimitation FormatDelimitation FindMin
(CHECK DELIMITERS) [| (CHECK DELIMITERS) | (FINDSTHE NEXT
310 380 CLOSEST WORD
DELIMITER) 362
PRIVATE FUNCTION
CleanWord
— (STRIPS OUT UNWANTED
CHAR/PUNCTUATION)
364
PRIVATE FUNCTION
EvaluateWord
— (CHECKSTOSEEIFA
WORD IS IN THE STOP
LIST) 366
FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362
5/30
PUBLIC SUB
MAIN
400
1
PUBLIC SUB
GoPattemMatch
40
PUBLIC SUB
MaichPattems
420
PRIVATE FUNCTION
MatchAPattem
430
I 1 . i 1 |
PRIVATE FUNCTION {| PRIVATE FUNCTION |f PRIVATEFUNCTION || PRIVATE SUB PRIVATE SUB
MatchMeetingField || LocatePatiemHead Locatelndicaor ||InitializeGuessesRecord)| AddToMeefingRecord
440 450 460 470 480
PRIVATE FUNCTION PRIVATE FUNCTION PRIVATE FUNCTION l_ PRIVATE FUNCTION
- BindNames | HGetNexiWordAfterWhiteSpace| HHGetNextWordAfterWhiteSpace NoDuplicateEntry
441 452 462 482
PRUATE FUNCTION PRIVATE_FUNCTlOﬂ PRIVATE FUNCTION
GetNextWordAferWhieSpace| | ContaMinAay ContaninAray
442 454 464
PRIVATE FUNCTION
- BindTime
443
l_ PRIVATE FUNCTION
GetNextWordAfterWhiteSpace
444
| PRIVATE FUNCTION
BindCompanyTopicLoc
445
|_ PRIVATE FUNCTION
GetNextWordAfterWhiteSpace
446
FIG. 4

WO 00/54177

PCT/IB00/00362
6/30
PUBLIC SUB
MAIN
500
PUBLIC SUB
GoBackgroundFinder
(WRAPPER FUNCTION)
510
1 . 1
PUBLIC FUNCTION PUBLIC FUNCTION
SearchAltaVista SearchNewsPage
530 520
[I ;
PRIVATE FUNCTION || PUBLIC FUNCTION {{ PUBLIC FUNCTION PRIVATE FUNCTION
ConstructAltaVistaURL || IdenifyBlock IsOpenURLEmor | ConstructNewsPageURL
540 550 560 521
PRIVATE FUNCTION PRIVATE FUNCTION
- ConstructSimpleKeyWord - ConstructSimpleKeyWord
542 522
PRIVATE FUNCTION PRIVATE FUNCTION
— ConstructComplexA VKeyWord — ConstructComplexNPKeyWord
544 524
{ PRIVATE FUNCTION [PRIVATE FUNCTION
JoinWithConnectors JoinWithConnectors
545 526
PRIVATE FUNCTION PUBLIC FUNCTION
- RefineWithRank - IdentifyBlock
546 521
UBLIC FUNCTION
l- PRIVATE FUNCTION i PlsOpenURLError
JoinWithConnectors 508
548
PRIVATE FUNCTION
~ RefineWithDate
549

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/IB00/00362

7/30
610~ COMMAND LINE
"l user_id, meefing title, meeting body, list, location, time"
\
p MESSAGE
620 "user_id, meeting title, meeting body, participant list, time"
Y
MEETING RECORD TO STORE CURRENT MEETING INFORMATION
y StUSERID, sTitleOrig, sTitleKW, sBodyKW, sLocation, sTime,
630 sParticipants(), sMeetingText: original message minus user._id
sCompany, sPeople, sTopic, sWhen, sWhere from GoPattemMatch
\
6401 SUBMIT QUERY TOALTAVISTA
Y
6501 SUBMIT QUERY TO NEWSPAGE
y STORE MESSAGE IN gResultOverall
660 "msg_id, user_id, meeting title concatenated with stories”
\
670-1 PROCESS STORIES FROM ALTA VISTAAND NEWSPAGE

FIG.6

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/IB00/00362

8/30

710~

AMEETING RECORD-POTENTIAL COMPANIES, PEOPLE, TOPICS,

LOCATION AND A TIME ARE IDENTIFIED

Y

120~

AT LEAST ONE TOPIC IS IDENTIFIED

\

730~

AT LEAST ONE COMPANY NAME IS IDENTIFIED

Y

7407

ADECISION IS MADE ON WHAT MATERIAL TO TRANSMIT

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 00/54177 PCT/IB00/00362

9/30

AMEETING RECORD-POTENTIAL COMPANIES, PEOPLE, TOPICS,
800 LOCATION AND A TIME ARE IDENTIFIED

Y
820~ AT LEAST ONE COMPANY NAME IS IDENTIFIED

Y
8301 AT LEAST ONE TOPIC IS IDENTIFIED

Y
8401 USE THE TOPIC AND OR THE COMPANY

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

PCT/1B006/00362

10/30

9001 BOOK OR OTHER PRODUCT WITH VISIBLE UPC BAR CODE
Y
910~ MINIATURE BAR CODE READER
Y
920~ IP WIRELESS PHONE OR OTHER HAND HELD DEVICE
Y
9301 ANTENNAE TRANSMITS SIGNAL
A
940~ | WEB SERVER RUNNING SOFTWARE
\ B
9501 PRODUCT LOOKUP ON THE WEB
Y
9601 BUY PRODUCT ON THE WEB
FIG.9

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362

WO 00/54177

11/30

435M0¥E 93IM S,¥IN0LISM

vol "9Old

]

[

o101

> LINY3INI

YIS IM Y S.4311ddNS

o D

0€01

ENELY
NOIIN3LNI

430435 9IM
<

A 4

=
=
=0
[T
1=

~uooooseh—
(L I5vayLva
— 311044
= Y3IH0LSN)
JE=
0001 |&==

EN AL
NOILYWYO4NI
43HO15NI

43Q40

15vav1va
1)na0Y¥d

vavLva
NOILYKYO1NI
13naoyd

k0l

S

vaviva
INIINOD

svaviva

311104d
43114dNS

0501

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

1001~/ 'USER REQUESTS
CONTENT PAGE

12/30

(START)

Y

PCT/1IB00/00362

1003 1000 !
/ T GETUSER
USER PROFILE] | PREFERENCES
DATABASE
Y 1005
1004~ GET PAGE /
CONTENT CONTENT
} DATABASE
1006~ GET USER-
CENTRIC CONTENT
Y
1007 CREATE PAGE
™ | USING LAYOUT
PREFERENCES
A
1008~ | DISPLAY PAGE
TOUSER
END

SUBSTITUTE SHEET (RULE 26)

WO 00/54177 PCT/IB00/00362

13/30

(START)

Y

PARSE CONTENT
110~ |FOR TIMES, DATES,
CONTACTS

Y

LB GET USER-
CENTRIC CONTENT

Y

112 GET MATCHING
™ | CALENDAR ITEMS CEOR [,
v DATA
1115 GET MATCHING
| o |) EMAL N
DATABASE 1114
Y
117 GET MATCHING
| conTAGT ITEMS | [CONACT | |
TABASE 1116
w DA
1119 GET MATCHING
,\ TASK LIST ITEMS | TASK LIST L
ABASE 1118
I DAT
121 GET MATCHING
| Newsmems | [T NEWS N
DATABASE 120
y
12 RETURN
| cowEnt
Y
END

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362

WO 00/54177

14/30

¢l Ol

(193rg0 F71404d) (193rg0 311H0Yd)
(30HVL) (3noH)
INIWNIVLYIINT INFWNIVLYIINT
(193rg0 31140Yd) (193rg0 311404d) (193rg0 311404d)
(3WOH) SMaN (IWOH) SMaN (HHOM) SMIN
(123rg0 311404d) (193rg0 F1140¥d) (193rg0 3404d)
(IWOH) 13AVYL 06z1”| (GWOH) 13AvyL osz1| (rdom) 1aAviL
(193rg0 FN404d) (193rg0 31408d) (193rg0 F1404d)
(IWOH) IYW3 (3NOH) VI3 {MYOM) TV
(193rd0 37140¥d) (193rg0 371404d) (£93rgo 31404d)
(INOH) LOVINOD (3NOH) LOVINOD (rHoM) LOVINOD
_A(103rg0 F11404d) (193rg0 J1H0¥d) (103rg0 371404d)
0421~ | (30HYL) v¥aNID 092 | oK Tveanan 052"| briom) TvaNzo
k%ﬁmmv comaov cwm__,mov
Vs A YNOS¥3d A ¥NOSY¥3d
072k |(30RvL) QiAva 0E2H" | (awon) aivva 022k | (om) diva
_ T
(Lo3rg0 ¥3sn)
002+~ HLINS QIAYQ

T3A31311H08d

T3AFTHISN

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362

WO 00/54177

15/30

€l ol

mz%m__% e DEEE T NOLLORLSM T 300 ™\ gee
“q3i4 | 37408d JIH0Yd |« N
N ~5E a4 0L€}
;o4 ’
09€} 09¢}
oLiosi -0
o “0EE | 3404
POIEE <06l
IWN_ I gEat—p
zo_%ww,_mo “TEH| wNosu3d
NOEF R
i
JWN |
EE]
JHOMSSYd |- 438 R
e
4 i
0z¢}

SUBSTITUTE SHEET (RULE 26)

PCT/1B00/00362

WO 00/54177

16/30

7l Old

097k~ |
NWA] 4318 ~INOLLT1dW0D
TN o | 0BG || oS [T N
WETE QET
I > < ’
03¢} e N 087}
NOLLdDS3q}~ 1| Nowa
S mw__m_ YNOSY3d SESN [grg L SNVIDION |
> > i3]
i 0z}

et ELLTTIR
=) I Ny g
NOTLNALN ~INOILNOSTa
i HOLdRD
— 0ER
ST
EE
vy [E | SEwo
NOINALN ~INOILdI¥0STa
i 10D
— o
ST
NOUNZLN | O13H°
OaNID [Grg”[NOLdMOSIa
e L3
’

06¥}

13522

il

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

\i
510~/ USER REQUESTS
AGENT STATISTICS
PAGE

17/30

(START)

PCT/IB00/00362

1530 1520 Y
/ T GETUSER
USERPROFILE] [STATISTICS
DATABASE |
1540 NORMALIZE
™ STATISTICS
Y 1560
1550~ | GETSTATISTICS
FORMULAS CONTENT
‘ DATABASE
y
GENERATE
B0~J | GRAPHSWITH
STATISTICS
Y
1580~_ CREATE
'STATISTICS PAGE
Y
1590~ |RETURN STATISTICS
PAGE TO USER
\ i
(END)
FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

18/30

(START)

\
610~/ USER REQUESTS
PRODUCT REPORT
ABOUT PRODUCT X

Y

1630 1620~

USER PROFILE

GET USER PROFILES
OF USERS WHO HAVE
RATED PRODUCT X

DATABASE

Y

1640~_

GET PROFILE
MATCHING ALGORITHM
THRESHOLDS

A

MAP USERS
ACCORDING TO PROFILE

MATCHING ALGORITHM

1680

RELAX THRESHOLD
VARIABLES

1690~_

CALCULATE STATISTICS
FROM n NEAREST
NEIGHBORS (HIGH, LOW,
AVG.) FOR FEATURES

Y

1695~

INSERT STATISTICS INTO
PRODUCT REPORT
TEMPLATE

]

1697~

RETURN PRODUCT

REPORT TO USER

\

END

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362

1650
/

CONTENT
DATABASE

FIG. 16

WO 00/54177 PCT/IB00/00362

19/30
(" SECURE STORAGE ENVIRONMENT) |7@
N
PROFILE MERCHANT
DATABASE
GATEWAY —
MERCHANT'S SERVER
___ SERVER) http)
1730
PUBLIC INTERNET
hitp http
http het
i / T
o
r y
a .
TELEVISION (MOBILE) ~ COMPUTER SMARTCARD LAPTOP POCKET VEHICLE ~ PDA
TELEPHONE COMPUTER ORGANIZER
L CONSUMER ACCESS DEVICES

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362

WO 00/54177

20/30

8l Ol

$13naoyd
TVALYIA
S3IAY3S
JOINQY
181103dS
S0
NOILYIWHOANI
10ndoyd

3Svaviva
10nd0Yd
SYddns

-

0981
/
S¥31ddns
OL STV -
S1H0dTY
SSUO0Yd
JONAY o|
NOILYAMOANI
39Vd
gam zo:zm@
YISMOYE 8IM HIAYIS NOILYOITddY
SYINOLSND J33M SHOLVHOILNI
NOILYWHOINI
/ ¥04 SLSINDI *
018} SYIQHO *| [NOLVAHOANI 028}
SFONFYIJTY » TYNOSHId
SYIQU0 -
SIONFHILA < |

0€8!

3Svaviva
311404d
43no1Snd

SHOLVHOIINI

SONLIVY
NOILOVASILYS o
SY3AH0

SIONFY3I434d
d3INOLSND -

o8l

3Svavivd
NOLLVWHOANI

H3NO0LSND
SY¥3ddNS

058}

SUBSTITUTE SHEET (RULE 26)

WO 00/54177 PCT/IB00/00362

21/30

(START)

\

1900~/ "USER REQUESTS
SUMMARY PAGE

1930 1920~ Y
/ [| GET USERAGENT
USER PROFILE] | PREFERENCES
DATABASE
Y 1950
1940~ GET
CONTENT ‘j CONTENT
l DATABASE
1960 SUMMARIZE
™ CONTENT
&
1970 CREATE PAGE
N | USING LAYOUT
PREFERENCES
{ 1990

1980~ | GENERATE AGENT

SPEECHTEXT | l CONTENT
DATABASE

Y

1995~ | INSERTAGENT
SPEECH TEXT

Y

1997 DISPLAY PAGE
™| TTousR

Y

END

FIG. 19

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362

WO 00/54177

22/30

0¢ 9l4

BUGZ JoUEA [E50] S I il

[>]]

" mo;mEEoOmE OJUI 821803 BuiuIojsuBl) ‘ALoU09d39 8y} JO SPeoISS0ID 8y} Iy,

omom
e[Bo]
| wenes| -PIOMSSE
T — .
omom_czEw rTpieqg| aweulssn
/
010¢
<]
Syl juud el usasos|ng | sjpuueyy AojslH SeluoABd Yoieas aWoH ysaysy dos _ pemod yoeg
ul. £ & Hla o = 8|8 W 8 e
8 : dofj sawosey o5 meA wp3 aid |
Xl @] Jaiojdx3 ysulsju) yosoly - uibo - jaygiw ()

SUBSTITUTE SHEET (RULE 26)

PCT/1B00/00362

WO 00/54177

23/30

0042

¢ Old

[3U0Z yauexul [2307] _ﬂ__ Il | =
- A ARAL AN AVARR /ey EAvARR W Al ia b AN D)]
— O sfemiy © SV O J8A8N sy ® umo 0O JOUMOSWOH
© sRemly O sy O 1oAsN [YOEV6] opo) diz
O shemly ® sV O JeneN [=] sajels pajun| Anuno) abed olqnd
[| O shemiy ® SV O J9nsaN _ <0_ olels saouslsyaid
O shemjy ® SV O 19A8N _ ojlv o[ed | Ao vl SMON
O shemly © Sy O 19A8N _ 00¢ E<_ Z Ssaippv e
O shemiy © XSy O JaaeN [peoy 1 ebed 1991] L ssaippy Apwre
O skemiy © SV O JeneN sjewed O oW © Jopusn i
O shemiy ® dsv O J9AaN _ s _ sweN jse] I s)salaju|
8,
shem - ‘U] SIPPIN %., Yt jeloueuly
o IV © SV O JonsN [l § %
O sAemly ® SV O JoAsN { pieq| SWEN}SsA uoieuLIOju|
_ _ 2, s, & |euosiod
b S
7 08iz7 nokie
05t _n PPV __ & [elyoid swoH A | BWEN djyoid X]
VAT
13AVHL QI0H3SNOH S3ONVNI4 30VId1INIVI Y M P El k] &
yiws “r piaeg
1]3%4 0cie 1)4%4
i9US @
—t1 usamsyng | spuuey) KOs S|juoAB{ yoIeag auwoH ysaley dols _ pemod v_owm _
. . p=] 22) 2 B ® &
IPIABQ YOEQ SWODISM ; doH sauoAB4 of meA WpI e |
1910]dX3 JauIo)U| YOSCIIN - YHWS pire(- joisAw (&

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362

WO 00/54177

24/30

¢¢ 9l

a0z Jauelju| 8207 uﬂ__ i 1l | |

&
b

[£]
[Z]

dnoig) sajadold pesH 0} J8|[EMIOA balo sjuioddy 190 [
e JUSWSbEUEB)y 0] SIoquisyy OM] SOWeN ojelsd [eed TM [

4] |

[w3

ajejs3 |eay |

0czz—"

[€] UGUIEIEIN SAE[o(UORONISUOD PeoY 15

[S] (SIul] SIeaN ooey [BI0RER

[Z] ADo1eNS JUSWObEUB]] Poojd MoN SIdopy AT [

[~wa SmaN [e201 |
0z .

[Z] $3Se5 YIMoID Uohendod PHOM (HodaY > o

[€] SUORO8101d PapuUedxy 10J J[e) SISIAqGo | [EJUSWUOIAUS >

"SouUlpesH 1SolE] Ky

yj|eo} |euosiad
ajeysg |eay
OIsNN @ sHV
sjueyoIsN
ooueUl] Jeuosiad
SMON |20

SMON PHOAM

abed juoi4g

1A

SM3N

L=

SMON PHOAA |
0022~ |
[eoe|djexyews 21U0No8jd auy Ui Spoob |jas pue Ang| v
T3AVHEL GI0H3ISNOH S3ONVYNI4 FOVIdLINYVIN m E @ H _mu %
> B = @
B
Ty = oIS @
a sonsibo] Ajieq buibeuepy
Syul _ juud e usasos|ngd | sjpuueyd AIOSIH SsjuoAed yoleas awoH ysayay dols Pewoj yeg _
al £ & Bl 3a © ©®5 ®B |8 b 8 e
8 de§ sowoney o5 meRA w3 aid |
X & Ja10]dx 3 JauIB)U) YOSOIN - YHWS pireq - [sisiw (F]

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362

WO 00/54177

25/30

d
86€¢

3

Ol

[suozjouenui eoo] %)l [JL | I 1&
06£¢— o)1 | unesH swoH | oinv | meimuenp
(000'09%)
.>o__OQ 1NoA cwMNl/ >0__0n_ GOCNSO _ -pepasu E@Emw‘__:cmm
|9oueD Jo sjusunsnlfpe om_mm obe1enco oN epelered
aew o) uopng ,Aoyjod [18n8 ebe18A0D papuaiwoday B | 000'0528 ISRV PIOUSSTOH v/ Loy
ebuey, ay} ssaid “Ajwe} 000'0Bes TN B
8y} ul yyesp papadxeun oy e Uo7 Juswebeuepy
ue aq aiey} pjnoys v s BE SE IE IZ uonenojlen 8beISACD unosoy
abeueuw o} syesse ybnous <& b muu
Sey mou pjoyasnoy w 3 oSS syousg feroL sjeoo [eoueul
n . 009 S .
sposy coubisul Sy not| [EETSTERS eI F=m g | S e Ao wewsbeueyy
SJUBAS B JUBBS YA X g [zrisess “iequiny Aojiod soueInsU|
d . . wn & e
-1 ipainsui-1aa0 ase nop oo :0dAy. Aatjod —
TIOX Joy ST spaau esueinsu|) s|iejaq Aoljod leoueuly
IONVENSNI AMWWV
[~ U o e aoue|D) B jB 9oueInsuU| 8] JNOA @
BN d q ONINNYd STVO9 xo.Ez@ cee mmz
q PN s34 -0967 “3ivisa INIWITILTY HLTVaH ._<_oz<zm YW Edk] S
B él\.d«)«/ NS °r pineq
11454 .
orgz 06 i9)IS @
- T\ — £ uniy uaapsing | sjpuuey) AOjSIH SajUOAB{ Yoteag aWoH ysaloy dois p1emio yoeg
o o
ueyo sy ‘pabueyo aAey 4 P aQ &> 3 B S & & >
. SPeeU sougmnsul ol) dofi sowoABJ 05 MR W3 g
X & C] 1210]dX3 }2UIB)U| YOSOIOIN - YIWS piAeq jPuSAw &

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362
26/30

WO 00/54177

INII) YH-3 INIIT) V-]
jc———)|
(6 TT—1 o
— Mo [© © | | Tivmamowm
/] S S
094 0551 i 7
INIT) 93M IN3IM 92M
20 .U-,". . UZ\—HND 1r.U“u SRA—
= — O O - ..‘/
N gpit N gppt
INIHOVH INIHIVH
SSINTUYMY SSINTHVMY
ofo _l oo _l
e
: N ggpt : N ogp

1174

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362

WO 00/54177

27/30

(- g0 STANNYH) N N

§311104d SY350

WaIsksans
VXY
NOILYZILIYOI¥d NOLLVHYO4NI NOILYHYOISNVYL
- SNOILYINAHHO) (NINOK)
(/414 YoLYNITiOn)
)
\\ IN3OIMIINI e
015
015t .
bt 10T 0052

SUBSTITUTE SHEET (RULE 26)

WO 00/54177

28/30

GPS, BIOSENSORS,
ENVIRONSENSORS, CAMERA,

2600~ AUDIO, USER REQUEST
Y
2602~ ELECTRONIC VALET
Y
oo~ ANTENNAE TRANSMITS SIGNAL
Y
2606~ MOBIL PORTAL
\
THIRD PARTY SERVICE
2608 1 PROVIDER
FIG. 26

SUBSTITUTE SHEET (RULE 26)

PCT/1B00/00362

PCT/IB00/00362

WO 00/54177

29/30

V.¢ 9l

jsed |jo1}s NoA se sa10}s AqIeau uj }Sals)ul Jo SWa)l 10} MOjeq 8oUB|S) :aSMOIg

‘1selaju] J0 Sway|

suongeng n
R v i,
\\s .:: o
ﬂ._ 10]Ae| pue pioT uoneusseq ©
mcvaﬂ_w '810)G Pajoses aiyarena O
11Xd v -
a S
&l e
Q \ ® I S6'vZ$ 10G Sae ._Mawm.w w_nw.s_ - Sjued - %MI.M o.wf@ P2
S6.5v$ Shiey pajesiy sisyooq ‘ferisel) s U - sjliEd) SHESIRSE /2
36,513 SHed psjesid Sisyoo] et | Ml S m,.m. g3

SUBSTITUTE SHEET (RULE 26)

PCT/IB00/00362

WO 00/54177

30/30

SY3aIAQUd

R

4.¢ Ol

JOINN3S § INTINOD ALYVd Q¥e [oesz

02L2

\

8LLe

{

8eLe
vivd S
43n0LSnd

NOILIN9OJ3Y N3 LIvd
aNy
ONINIW VLva HONOY
JONIOITIALNI ATA

un
\ \ 8112

30IA30 VYMAYVH

V i

L EIEN NOILdA¥O3Q

SO

VIYOd 31190W INOLLJAHONG

(S)HINTIMO NIHL

d3NOLSNO

SA33N vl
43WOLSNO OL ONIGNOJS3Y
'ONIOVMOVd 30IAYIS
d04 SINJOV INIOITIEINI

v/ MR

14714

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

