
THE MAIN A LA MILLORA TE CA AM AN A US 20180095777A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0095777 A1

Yang (43) Pub . Date : Apr . 5 , 2018

(54) VIRTUAL MACHINE PROVISIONING
ENGINE

(71) Applicant : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

(52) U . S . CI .
CPC G06F 9 / 45558 (2013 . 01) ; G06F 9 / 44505

(2013 . 01) ; G06F 9 / 5077 (2013 . 01) ; GOOF
2009 / 4557 (2013 . 01) ; G06F 8 / 61 (2013 . 01) ;
G06F 2009 / 45595 (2013 . 01) ; G06F 9 / 45533

(2013 . 01) (72) Inventor : Yingwei Yang , Issaquah , WA (US)

(21) Appl . No . : 15 / 487 , 982
(22) Filed : Apr . 14 , 2017

(57) ABSTRACT

Related U . S . Application Data
(63) Continuation of application No . 14 / 666 , 979 , filed on

Mar . 24 , 2015 , now Pat . No . 9 , 626 , 215 , which is a
continuation of application No . 12 / 971 , 680 , filed on
Dec . 17 , 2010 , now Pat . No . 8 , 990 , 362 .

Publication Classification
(51) Int . Ci .

G06F 9 / 455 (2006 . 01)
G06F 9 / 445 (2006 . 01)
G06F 9 / 50 (2006 . 01)

Embodiments described herein extend to methods , systems ,
and computer program products for setting up , configuring ,
and customizing one or more virtual machines . A scenario
definition file may be accessed and parsed to provide infor
mation to a virtual machine provisioning server . A virtual
machine is provisioned and instantiated according to the
information contained in the scenario definition file . A
virtual machine is instantiated upon a host machine . Upon
instantiation , a virtual machine communicates with a custom
action service to execute an action upon the virtual machine .

200

Client
210

VMM Server
220

VM Host
230

Virtual
Machine 2 222

Local Agent CustomAction Distribution Service
Scenario

Definition File Virtual
Machine 1

Provisioning Service Local Agent
212

214 226 236

Provisioning Engine Virtual Machine Manager SCVMM Local Agent

Patent Application Publication Apr . 5 , 2018 Sheet 1 of 3 US 2018 / 0095777 A1

100

Client 110 Virtual Machine
Manager

120

VM Host (s)
130

150 Processor
Processor Processor

160 - 44 Memory
Memory Memory

Network Data

140

Figure 1

Patent Application Publication Apr . 5 , 2018 Sheet 2 of 3 US 2018 / 0095777 A1

200

Client
210

VMM Server
220 220

VM Host
230

Virtual
Machine 2 222
Local Agent CustomAction Distribution Service

Scenario
Definition File Virtual

Machine 1 5331 Provisioning Service Local Agent
212

232
214 226 236

Provisioning Engine Virtual Machine Manager SCVMM Local Agent

Figure 2

Patent Application Publication Apr . 5 , 2018 Sheet 3 of 3 US 2018 / 0095777 A1

300

310

Access VM Scenario File

Parse Scenario File WOOD Provide Information To
Provisioning Server

w w

340

Communicate with
Custom Action Service

1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3

US 2018 / 0095777 A1 Apr . 5 , 2018

VIRTUAL MACHINE PROVISIONING
ENGINE

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of and claims
benefit of U . S . patent application Ser . No . 14 / 666 , 979 ,
entitled “ VIRTUAL MACHINE PROVISIONING
ENGINE ” , which was filed Mar . 24 , 2015 , which , in turn , is
a continuation of and claims benefit of U . S . patent applica
tion Ser . No . 12 / 971 , 680 , entitled “ VIRTUAL MACHINE
PROVISIONING ENGINE , ” which was filed on Dec . 17 ,
2010 , each of which is incorporated herein by reference in
its entirety .

need to create and provision a new virtual machine , bring it
up , rename it and join its domain manually .
10006] If a user desires to customize a virtual machine to
his / her own needs (e . g . configure a single machine share
point farm) , he or she may have to manually install and
configure each item of software on the virtual machine one
by one . From a point when a user has a clean virtual machine
to the point the virtual machine is fully configured to user ' s
needs , there might be more than 20 steps involved , each one
possibly complicated and / or difficult . If a task required a
user to do this every day , multiple times a day , or with some
regularity , with even slight variations for each configured
and provisioned virtual machine , this can be overwhelming .

BACKGROUND
[0002] Computer systems and related technology are ubiq
uitous and affect many aspects of society . Indeed , the
computer system ' s ability to process information has trans
formed the way we live , work , and play . Computer systems
and applications now commonly perform a host of tasks
such as word processing , scheduling , accounting , etc . , that ,
prior to the advent of the computer system , were performed
manually . Computer systems and applications are also used
in myriad ways in recreation and entertainment such as
music , video , and gaming . Computer systems and applica
tions are used for such diverse applications as the Global
Positioning System (GPS) , determining the correct fuel - to
air mixture for an automobile ' s engine , and for determining
and controlling the efficiency of a home heating system .
[0003) Computer systems have also been coupled to other
computer systems and to other electronic devices to form
both wired and wireless computer networks over which the
computer systems and other electronic devices can transfer
electronic data . Accordingly , the performance of many com
puting tasks are distributed across a number of different
computer systems and / or a number of different computing
environments .
[0004] In development of computer systems and applica
tions , testing is frequently necessary to determine if a
computer system or application operates as designed or
intended . Such testing may be facilitated by configuring ,
provisioning and operating virtual machines . A virtual
machine may be a computer system or application which is
implemented upon another computer system for purposes of
running the target machine (i . e . , the virtual machine) for
testing , development , or other purposes . It may also be
useful to provision a virtual machine upon a host machine so
that a particular computer system or application may be run
or operated without the necessity of a dedicated machine to
host the target system or application .
[0005] Configuring or provisioning a virtual machine may
often be difficult and time - consuming . The process of cre
ating and customizing virtual machines often still involves a
large number of manual steps . Some of these steps may be
complicated and / or difficult , even for seasoned computer
professionals . For one - time or occasional users , overcoming
these difficulties might be tolerable . But for users who need
to create , provision , or customize one or more virtual
machines with some frequency (e . g . , every day or multiple
times per day) , on the other hand , these difficulties may
become overwhelming . Even when there is already a virtual
machine description file a user might reuse , a user may still

BRIEF SUMMARY
[0007] Embodiments of the present invention extend to
methods , systems , and computer program products for set
ting up , configuring , and customizing one or more virtual
and / or physical machines . Embodiments of the invention
extend to a provisioning engine which is a solution designed
to help users setup and customize one or more virtual and / or
physical machines in one embodiment , a provisioning
engine includes a command - line executable and a server
side infrastructure .
[0008] In one embodiment of the invention , a method is
provided for setting up , configuring , and customizing one or
more virtual machines . This method may be performed upon
computing equipment including one or more computer pro
cessors and computer system memory or data storage . The
method includes accessing a virtual machine scenario defi
nition file defining the characteristics of one or more virtual
machines . The method also includes parsing the virtual
machine scenario definition file to determine information
defining a virtual machine . The method also includes pro
viding to a virtual machine provisioning server the infor
mation defining the virtual machine such that the provision
ing server passes a request to a virtual machine host which
instantiates the virtual machine . And the method also
includes communicating with a custom action service of the
virtual machine provisioning server to cause an action to
execute upon the virtual machine .
0009] Embodiments of the invention may also include
computer program products for setting up , configuring , and
customizing one or more virtual machines . Such computer
program products may include computer - readable media
having encoded thereon instructions which may be executed
upon one or more computer processors . When such instruc
tions are executed , they may perform particular acts or steps .
Such acts and / or steps may include accessing a virtual
machine scenario definition file defining the characteristics
of one or more virtual machines . Such acts may also include
parsing the virtual machine scenario definition file to deter
mine information defining a virtual machine . Such acts may
also include providing to a virtual machine provisioning
server the information defining the virtual machine such that
the provisioning server passes a request to a virtual machine
host which instantiates the virtual machine . Such acts may
also include communicating with a custom action service of
the virtual machine provisioning server to cause an action to
execute upon the virtual machine .
10010) Embodiments of the invention may also include
other methods for setting up , configuring , and customizing
one or more virtual machines . These other methods may also
be performed upon computing equipment including one or

US 2018 / 0095777 A1 Apr . 5 , 2018

more computer processors and computer system memory or
data storage . Such a method may include accessing a virtual
machine scenario definition file defining the characteristics
of one or more virtual machines . The method also may
include parsing the virtual machine scenario definition file to
determine information defining a virtual machine , the sce
nario file identifying one or more template files , the template
files defining a particular type of virtual machine and the
template files comprising a pre - configured remoting shell
such that , when a virtual machine has been created from at
least one of the templates , it may be immediately connected
to for communication and / or customization .
[0011 The method also may include providing to a virtual
machine provisioning server the information defining the
virtual machine such that the provisioning server passes a
request to a virtual machine host which instantiates the
virtual machine . And the method may include communicat
ing with a custom action service of the virtual machine
provisioning server to cause an action to execute upon the
virtual machine . The method may also include connecting to
and communicating with the virtual machine .
[0012] This summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description . This Summary is not
intended to identify key features or essential features of the
claimed subject matter , nor is it intended to be used as an aid
in determining the scope of the claimed subject matter .
[0013] Additional features and advantages of the inven
tion will be set forth in the description which follows , and
in part will be obvious from the description , or may be
learned by the practice of the invention . The features and
advantages of the invention may be realized and obtained by
means of the instruments and combinations particularly
pointed out in the appended claims . These and other features
of the present invention will become more fully apparent
from the following description and appended claims , or may
be learned by the practice of the invention as set forth
hereinafter .

ting up , configuring , and customizing one or more virtual
and / or physical machines . Embodiments of the invention
extend to a provisioning engine which is a solution designed
to help users setup and customize one or more virtual and / or
physical machines in one embodiment , a provisioning
engine includes a command - line executable and a server
side infrastructure .
[0019] In one embodiment of the invention , a method is
provided for setting up , configuring , and customizing one or
more virtual machines . This method may be performed upon
computing equipment including one or more computer pro
cessors and computer system memory or data storage . The
method includes accessing a virtual machine scenario defi
nition file defining the characteristics of one or more virtual
machines . The method also includes parsing the virtual
machine scenario definition file to determine information
defining a virtual machine . The method also includes pro
viding to a virtual machine provisioning server the infor
mation defining the virtual machine such that the provision
ing server passes a request to a virtual machine host which
instantiates the virtual machine . And the method also
includes communicating with a custom action service of the
virtual machine provisioning server to cause an action to
execute upon the virtual machine .
[0020] Embodiments of the invention may also include
computer program products for setting up , configuring , and
customizing one or more virtual machines . Such computer
program products may include computer - readable media
having encoded thereon instructions which may be executed
upon one or more computer processors . When such instruc
tions are executed , they may perform particular acts and / or
steps . Such acts may include accessing a virtual machine
scenario definition file defining the characteristics of one or
more virtual machines . Such acts may also include parsing
the virtual machine scenario definition file to determine
information defining a virtual machine . Such acts may also
include providing to a virtual machine provisioning server
the information defining the virtual machine such that the
provisioning server passes a request to a virtual machine
host which instantiates the virtual machine . Such acts may
also include communicating with a custom action service of
the virtual machine provisioning server to cause an action to
execute upon the virtual machine .
[0021] Embodiments of the invention may also include
other methods for setting up , configuring , and customizing
one or more virtual machines . Such other methods may be
performed upon computing equipment including one or
more computer processors and computer system memory or
data storage . Such a method may include accessing a virtual
machine scenario definition file defining the characteristics
of one or more virtual machines . The method also may
include parsing the virtual machine scenario definition file to
determine information defining a virtual machine , the sce
nario file identifying one or more template files , the template
files defining a particular type of virtual machine and the
template files comprising a pre - configured remoting shell
such that , when a virtual machine has been created from at
least one of the templates , it may be immediately connected
to for communication and / or customization .
[0022] The method also may include providing to a virtual
machine provisioning server the information defining the
virtual machine such that the provisioning server passes a
request to a virtual machine host which instantiates the
virtual machine . And the method may include communicat

BRIEF DESCRIPTION OF THE DRAWINGS
[0014] In order to describe the manner in which the
above - recited and other advantages and features of the
invention can be obtained , a more particular description of
the invention briefly described above will be rendered by
reference to specific embodiments thereof which are illus
trated in the appended drawings . Understanding that these
drawings depict only typical embodiments of the invention
and are not therefore to be considered to be limiting of its
scope , the invention will be described and explained with
additional specificity and detail through the use of the
accompanying drawings in which :
[0015] FIG . 1 illustrates an example computer architecture
that facilitates setting up , configuring , and customizing one
or more virtual machines .
[00161 FIG . 2 illustrates an example component architec
ture that facilitates setting up , configuring , and customizing
one or more virtual machines .
[00171 . FIG . 3 illustrates a flow chart of an example
method for setting up , configuring , and customizing one or
more virtual machines .

DETAILED DESCRIPTION
[0018] Embodiments of the present invention extend to
methods , systems , and computer program products for set

US 2018 / 0095777 A1 Apr . 5 , 2018

ing with a custom action service of the virtual machine
provisioning server to cause an action to execute upon the
virtual machine .
[0023] The method may also include connecting to and
communicating with the virtual machine .
[0024] Embodiments of the present invention may connect
a shell with a virtual machine manager and virtual machine
templates . An example may be to connect a Microsoft
PowerShell 2 . 0 remoting feature with System Center Virtual
Machine Manager ' s (SCVMM) virtual machine templates .
The SCVMM virtual machine template may have Power
Shell 2 . 0 installed and configured to allow remoting . When
a new virtual machine has been created using SCVMM , a
provisioning engine will be able to connect to the new
virtual machine immediately and start to do customization
on the virtual machine .
10025] . Embodiments of the present invention may also be
used for provisioning multiple machines in an environment .
For example , as well as (or instead of) provisioning a
number of virtual machines , a system administrator may use
an embodiment of the present invention to provision a
number of actual or physical machines in an office to
comprise a particular operating system , particular configu
ration settings , and a particular suite of productivity soft
ware . In this sense , the virtual machine that is provisioned
may actually be a real office or production machine .
[0026] In the case of provisioning actual machines (such
as , for example , in an office) , the scenario definition file may
comprise information identifying an operating system and a
suite of productivity software which an administrator desires
to be deployed upon each machine in the office environment .
[0027] Embodiments of the present invention may com
prise or utilize a special purpose or general - purpose com
puter including computer hardware , such as , for example ,
one or more processors and system memory , as discussed in
greater detail below . Embodiments within the scope of the
present invention also include physical and other computer
readable media for carrying or storing computer - executable
instructions and / or data structures . Such computer - readable
media can be any available media that can be accessed by a
general purpose or special purpose computer system . Com
puter - readable media that store computer - executable
instructions may be physical storage media . Computer
readable media that carry computer - executable instructions
may be transmission media . Thus , by way of example , and
not limitation , embodiments of the invention can comprise
at least two distinctly different kinds of computer - readable
media : computer storage media and transmission media .
[0028] Computer storage media includes RAM , ROM ,
EEPROM , CD - ROM or other optical disk storage , magnetic
disk storage or other magnetic storage devices , or any other
medium which can be used to store desired program code
means in the form of computer - executable instructions or
data structures and which can be accessed by a general
purpose or special purpose computer .
[0029] A “ network ” is defined as one or more data links
that enable the transport of electronic data between com
puter systems and / or modules and / or other electronic
devices . When information is transferred or provided over a
network or another communications connection (either
hardwired , wireless , or a combination of hardwired or
wireless) to a computer , the computer properly views the
connection as a transmission medium . Transmissions media
can include a network and / or data links which can be used

to carry or desired program code means in the form of
computer - executable instructions or data structures and
which can be accessed by a general purpose or special
purpose computer . Combinations of the above should also
be included within the scope of computer - readable media .
[0030] Further , upon reaching various computer system
components , program code means in the form of computer
executable instructions or data structures can be transferred
automatically from transmission media to computer storage
media (or vice versa) . For example , computer - executable
instructions or data structures received over a network or
data link can be buffered in RAM within a network interface
module (e . g . , a “ NIC ”) , and then eventually transferred to
computer system RAM and / or to less volatile computer
storage media at a computer system . Thus , it should be
understood that computer storage media can be included in
computer system components that also (or even primarily)
utilize transmission media .
[0031] Computer - executable instructions comprise , for
example , instructions and data which , when executed at a
processor , cause a general purpose computer , special pur
pose computer , or special purpose processing device to
perform a certain function or group of functions . The
computer executable instructions may be , for example ,
binaries , intermediate format instructions such as assembly
language , or even source code . Although the subject matter
has been described in language specific to structural features
and / or methodological acts , it is to be understood that the
subject matter defined in the appended claims is not neces
sarily limited to the described features or acts described
above . Rather , the described features and acts are disclosed
as example forms of implementing the claims .
[0032] Those skilled in the art will appreciate that the
invention may be practiced in network computing environ
ments with many types of computer system configurations ,
including , personal computers , desktop computers , laptop
computers , message processors , hand - held devices , multi
processor systems , microprocessor - based or programmable
consumer electronics , network PCs , minicomputers , main
frame computers , mobile telephones , PDAs , pagers , routers ,
switches , and the like . The invention may also be practiced
in distributed system environments where local and remote
computer systems , which are linked (either by hardwired
data links , wireless data links , or by a combination of
hardwired and wireless data links) through a network , both
perform tasks . In a distributed system environment , program
modules may be located in both local and remote memory
storage devices .
[0033] FIG . 1 illustrates an example computer architecture
100 that facilitates setting up , configuring , and customizing
one or more virtual machines . Referring to FIG . 1 , computer
architecture 100 includes a client computer system 110 , a
virtual machine management server 120 and one or more
virtual machine hosts 130 . Each of systems client computer
system 110 , virtual machine management server 120 , and
one or more virtual machine hosts 130 may be separate or
may be combined in any fashion on one or more actual
physical computing machines . Further , the virtual machine
host 130 may be a single machine upon which multiple
virtual machines may be instantiated , hosted , and run , the
virtual machine host 130 may be a single machine upon
which only a single virtual machine may be hosted , or the

US 2018 / 0095777 A1 Apr . 5 , 2018

re

virtual machine host 130 may be any combination of one or
more machines upon which one or more virtual machines
may be hosted .
[0034] Each of the depicted computer systems may be
connected to one another or to other entities or facilities over
(or is part of) a network 140 , such as , for example , a Local
Area Network (“ LAN ”) , a Wide Area Network (“ WAN ”) ,
and even the Internet . Each of the systems may also be
directly connected with one or more of each other . Accord
ingly , each of the depicted computer systems as well as any
other connected computer systems and their components ,
can create message related data and exchange message
related data (e . g . , Internet Protocol (" IP ") datagrams and
other higher layer protocols that utilize IP datagrams , such
as , Transmission Control Protocol (“ TCP ”) , Hypertext
Transfer Protocol (" HTTP ”) , Simple Mail Transfer Protocol
(" SMTP ”) , etc .) over the network .
[0035] Each of systems client computer system 110 , vir
tual machine management server 120 , and one or more
virtual machine hosts 130 may also comprise one or more
computer processors 150 . Further , each of systems client
computer system 110 , virtual machine management server
120 , and one or more virtual machine hosts 130 may also
comprise may comprise computer memory 160 or data
storage . The memory or data storage may be volatile or
non - volatile and / or permanent or non - permanent . The
memory or data storage may be locally resident or may be
remotely accessed from another data store 170 , database , or
similar repository of data . Data may also be accessed from
or stored to a remote data store from any of the computing
entities 110 , 120 , and / or 130 via the network 140 or via a
direct connection . Of course , each of the systems may also
comprise any number of components , both hardware and
software , which are not explicitly depicted in the figure but
which are well known to those practicing in the art .
[0036] FIG . 2 illustrates an example component architec
ture that facilitates setting up , configuring , and customizing
one or more virtual machines . The component architecture
may include a client 210 , a virtual machine manager 220 ,
and a virtual machine host 230 . The client 210 , a virtual
machine manager 220 , and a virtual machine host 230 may
correspond to the systems 110 , 120 , and 130 of FIG . 1 .
However , the components 210 , 220 , and 230 , depicted in
FIG . 2 are depicted in a functional way and may also be
distributed upon other systems or hardware in addition to
that depicted by FIG . 1 . Therefore , FIGS . 1 and / or 2 should
be considered illustrative but should not be considered
limiting .
[0037] FIG . 2 also includes components which be dis
cussed in additional detail throughout . Such components
may include a scenario definition file 212 , a provisioning
engine 214 , an action distribution service 222 , a provision
ing service 224 , a virtual machine manager 226 , one or more
virtual machines 232 and 234 , and a virtual machine man
ager local agent 236 .
[0038] FIG . 3 depicts a method 300 for setting up , con
figuring , and customizing one or more virtual machines .
Method 300 will be described with respect to the architec
ture , components , and data of computer architecture 100 and
components 200 of FIGS . 1 and 2 .
[0039] Method 300 is a method for setting up , configuring ,
and customizing one or more virtual machines . This method
may be performed upon computing equipment including one
or more computer processors and computer system memory

or data storage . The method may include accessing 310 a
virtual machine scenario definition file defining the charac
teristics of one or more virtual machines . In some embodi
ments , a scenario definition file may be an XML schema file .
[0040] A scenario definition file may describe a single
virtual machine or may describe a plurality of virtual
machines . Further , a scenario definition file may describe
one or more dependencies between two or more virtual
machines . Further still , in some embodiments , a scenario file
may identify one or more template files where the template
files define a particular type of virtual machine . A particular
type of virtual machine may comprise particular hardware
(e . g . , CPU and memory configuration) and particular soft
ware (e . g . , a particular operating system (OS) , peripheral
hardware and drivers , and / or application software) .
[0041] In some embodiments , a scenario file may identify
one or more template files . The template files may define a
particular type of virtual machine and the template files may
comprise a pre - configured remoting shell such that , when a
virtual machine has been created from at least one of the
templates , it may be immediately connected to for commu
nication and / or customization .
[0042] The method also may include parsing the virtual
machine scenario definition file 320 to determine informa
tion defining a virtual machine . The method also includes
providing 330 to a virtual machine provisioning server the
information defining the virtual machine such that the pro
visioning server passes a request to a virtual machine host
which instantiates the virtual machine .
[0043] The method may also include communicating 340
with a custom action service of the virtual machine provi
sioning server to cause an action to execute upon the virtual
machine . In some embodiments , communicating 340 with a
custom action service of the virtual machine provisioning
server includes using a Simple Object Access Protocol
(SOAP) based , firewall - friendly protocol . As described
above , a scenario definition file may comprise dependencies .
In some embodiments , a first virtual machine may await a
dependency upon a second virtual machine to be satisfied
before completing a custom action .
[0044] In some embodiments , a custom action service uses
a remoting channel of a remote management service . For
example , a custom action service may comprise using a
remoting channel using Microsoft Windows remote man
agement .
[0045] For example , referring to FIG . 2 , a scenario defi
nition file 212 may be accessed . Once accessed , the scenario
definition file may be parsed and validated by a provisioning
engine 214 . The provisioning engine may then pass one or
more requests to a provisioning service 224 . The provision
ing service may be part of a virtual machine manager server
220 . The requests may include requests such as create , start ,
stop , delete , and take snapshot (of a virtual machine) . The
provisioning engine may also provide data and information
with or in addition to the requests in order to facilitate the
requests .
10046] . The virtual machine manager server may then pass
one or more commands to a virtual machine manager local
agent running upon a virtual machine host 230 . The local
agent may communicate with a local virtual machine man
ager to actually instantiate a virtual machine upon the virtual
machine host . The virtual machine instantiated upon the
virtual machine host would be in accordance with the data
and information contained in the scenario definition file .

m

US 2018 / 0095777 A1 Apr . 5 , 2018

[0047] The provisioning engine 214 may also communi
cate with a custom action distribution service 222 running
on the virtual machine manager server 220 . Such commu
nication may be used to distribute custom actions to a virtual
machine instantiated upon a virtual machine host . The
custom action distribution service may then set up a remot
ing channel with each virtual machine (such as virtual
machine 1 232 or virtual machine 2 234 running within the
virtual machine host 230) . Once the remoting channel is set
up with a virtual machine , the custom action may be
executed upon the virtual machine .
10048] Aprovisioning engine 214 may be a console appli
cation which may execute upon a client machine 210 . The
provisioning engine may understand the format and contents
of a scenario definition file 212 and may control the logic of
creating a virtual machine and running custom actions .
[0049] Steps in an example provisioning process of one
embodiment may include :

[0050] Step 1 : Validate a scenario definition file against
a Scenario Definition template definition file ;

[0051] Step2 : Parse the scenario definition file into an
object model ;

[0052] Step3 : For each machine defined in the scenario
definition file , create a thread to start a provisioning
process (for an actual physical machine , the creation
process may be skipped) ;

[0053] Step4 : Start the machine after it has been created
(for an actual physical machine , this step may be
skipped) ;

[0054] Step5 : Connect to the machine after it has been
started ;

[0055] Step6 : Begin to execute the custom actions
which are defined in the scenario definition file for the
machine . The order of the execution of multiple actions
may depend on the dependencies defined in the sce
nario definition file .

[0056] A provisioning service 224 may be a web service
The provisioning ser ice function may be to provide the
service for end users to create new virtual machines , stop
and start virtual machines , and / or remove virtual machines
from hosts . This web service may call a virtual machine
manager ' s shell commands to perform its tasks . An example
may be Microsoft ' s PowerShell cmdlets .
[0057] A custom action distribution service may also be a
web service . The function of the custom action distribution
service may be to setup connections between a server which
host this service and a virtual machine a user has created .
The custom action distribution service may be responsible to
execute the custom actions a . user has defined in a scenario
definition file on the target virtual machine and collect
results returned from the execution . For example , this web
service may use a Microsoft PowerShell remoting feature to
communicate with other machines .
[0058] A local shell with remoting capability may be used .
This may be used to execute custom actions remotely on a
target virtual machine . A local agent 236 may , by way of
example but not limitation , use Microsoft PowerShell as the
local agent .
[0059] A template may be a sysprepped virtual machine
and a provisioning engine may use a template to create
virtual machines . Before a user employs a provisioning
engine , a system administrator may create several templates
to meet a user ' s requirements . By using templates , a user
may describe in a scenario definition file the custom con

figuration of a template - based virtual machine . This scenario
definition file may then be used to customize and instantiate
a virtual machine according to the user ' s wishes .
[0060] Embodiments of the invention as described herein
may also include computer program products . Such com
puter program products may comprise computer - executable
instructions which are encoded upon physical computer
storage media . Computer program products may also com
prise computer - executable instructions which may be trans
mitted over data transmission media (for example , for stor
age or execution at a remote location) . Such computer
executable instructions , when executed upon one or more
computer processors , may cause the processors to perform
the steps , acts , and / or methods which are described herein .
[0061] Embodiments of the present invention also include
methods for setting up , configuring , and customizing one or
more virtual machines . Such a method may be performed
upon computing equipment including one or more computer
processors and computer system memory or data storage .
The method may include accessing a virtual machine sce
nario definition file defining the characteristics of one or
more virtual machines . The method also may include pars
ing the virtual machine scenario definition file to determine
information defining a virtual machine , the scenario file
identifying one or more template files , the template files
defining a particular type of virtual machine and the tem
plate files comprising a pre - configured remoting shell such
that , when a virtual machine has been created from at least
one of the templates , it may be immediately connected to for
communication and / or customization .
[0062] The method also may include providing to a virtual
machine provisioning server the information defining the
virtual machine such that the provisioning server passes a
request to a virtual machine host which instantiates the
virtual machine . And the method may include communicat
ing with a custom action service of the virtual machine
provisioning server to cause an action to execute upon the
virtual machine . The method may also include connecting to
and communicating with the virtual machine .
[0063] Scenario Definition File
10064] Some embodiments of the present invention utilize
a scenario definition file to facilitate the provisioning of a
virtual machine . A scenario definition file may be created
and / or edited by a user or provided by some other source
such as local storage or a database . A scenario definition file
may also be created and / or supplied by an automated
process .
[0065] A scenario definition file may include some or all
of the following data fields , constructs , or data members :
[0066] Role : role is used to describe a group of virtual
machines that share a common template . Each role may
have a unique name . For physical machines , a role may be
optional .

[0067] Machine : a machine represents a virtual machine
that is going to be created upon a host machine or an
actual physical machine that going to be customized .
Each machine may have a unique name . A user may
provide a machine name that is going to be a real virtual
machine name on the network . (It may be worthwhile to
ensure machine is not providing a duplicated name with
an existing virtual machine .) Each machine may also
reference a certain role . Domain may be the domain
which the virtual machine will join automatically .

US 2018 / 0095777 A1 Apr . 5 , 2018

:

[0068] Host : host is a physical machine that a virtual
machine is going to be created on . A host must be
managed by a provisioning engine infrastructure . A user
should provide a fully qualified domain name (FQDN) for
a host . Host is optional for actual physical machines
(which , for example , may already have an FQDN) .

[0069] Template : the template is a sysprepped virtual
machine . It may be used as a template to create a virtual
machine . Choosing a template to use will dictate the real
operating system which will be instantiated on a machine
and the software that is to be installed on the virtual
machine .

[0070] isVirtual : isVirtual identifies whether a machine is
to be a virtual machine or an actual machine . By default ,
isVirtual is set to true . For actual physical machines ,
is Virtual may be set to false .

[0071] Hardware Profile : Hardware Profile is the hardware
configuration of the target machine . Hardware Profile also
may include cpuCount and cpu Type . epnCount and cpn
Type do not necessarily mean a real CPU that a virtual
machine is going to have . cpuCount and cpuType may be
used as an indicator of how powerful a virtual machine
may be desired to be . Actual performance of a virtual
machine may depend on which host a virtual machine has
been created on , how many virtual machines may be on
that host , and how powerful the host actually is . (For
example , if a " powerful ” virtual machine is configured
and instantiated on a less powerful actual machine , the
virtual machine will get performance only up to the actual
performance of the actual machine acting as the host for
the virtual machine .)

[0072] memoryMB : memoryMB may indicate the real
amount of memory a virtual machine is going to get . The
memoryMB amount should not exceed the host ' s actual
total memory .
[0073] A provisioning engine may provide default set

tings for memory , cpu Type and cpuCount if such
parameters are omitted . For example , cpuCount may be
2 , cpuType may be 2 . 4 GHz Xeon , and memory MB
may be 4096 (4GB) .

[0074] CustomAction : CustomAction is an action desired
to execute on a virtual machine after it has been created
on a host machine . CustomAction may be used to cus
tomize a virtual machine . Each customAction should have
a unique ID for the machine . The real action may be a
shell scriptblock which will be executed on the machine
after having been created . One or more input parameters
may be specified for a scriptblock . One or more custom
actions may be executed in an order as they are defined in
a scenario file .

[0075] Dependencies : each customAction may have
dependencies . A dependency means that the custom
action will not be executed if the dependent custom action
hasn ' t successfully completed yet . To create a depen
dency , it may be specified which machine is depended on
and / or which custom action on that machine is depended
on . An output parameter may be passed from a dependent
custom action to the custom action of a virtual machine as
an input parameter by using parameterMaps .

[0076] In some embodiments , a scenario definition file
may be an organized according to an XML schema . An
example of such an XML schema file may be illustrated by
the following example :

< ? xml version = " 1 . 0 " encoding = " utf - 8 " ? >
- < s : schema

targetNamespace = " http : / / microsoft . com / ProvisioningEngine / 2010
/ 02 / Scenario Definition . xsd " elementFormDefault = " qualified ”
xmlns = " http : / / microsoft . com / ProvisioningEngine / 2010 / 02 /
Scenario Definition . xsd "
xmlns : mstns = " http : / / microsoft . com / ProvisioningEngine / 2010 / 02 /
Scenario Definition . xsd "
xmlns : xs = " http : / / www . w3 . org / 2001 / XMLSchema " >

- < xs : element name = “ scenario ” type = " Scenario Type ” >
- < xs : key name = " roleNameKey " >
< xs : selector xpath = " mstns : role " / >
< xs : field xpath = " mstns : name " / >
< / xs : key >

- < xs : key name = " machineNameKey ” >
< xs : selector xpath = " mstns : machine " >
< xs : field xpath = " mstns : name " >
< / xs : key >

- < xs : keyref name = " machineRoleNameKeyRef " refer = " roleNameKey " >
< xs : selector xpath = " mstns : machine " >
< xs : field xpath = ' mstns : role " / >
< / xs : keyref >
< / xs : element >

- < xs : complexType name = " ScenarioType ” >
- < xs : all >

< xs : element name = " roles " type = " RolesType ” minOccurs = “ 0 ” >
< xs : element name = " machines " type = " MachinesType "
minOccurs = " 1 " / >
< xs : element name = " globalVariables " type = " Global Variables Type ”

minOccurs = “ 0 " / >
< xs : element name = " runAs " type = " RunAsType ” minOccurs = “ 0 ” > >
< / xs : all >
< / xs : complexType >

- < xs : complexType name = " RunAsType " >
- < xs : all >
< xs : element name = " userName " type = " xs : string ” minOccurs = " 1 "

maxOccurs = " 1 " / >
< xs : element name = " password " type = " xs : string ” minOccurs = “ 1 ”

maxOccurs = " 1 " / >
< / xs : all >
< / xs : complexType >

- < xs : complexType name = " GlobalVariables Type ” >
- < s : sequence >
< xs : element name = " globalVariable ” type = " GlobalVariable Type ”

minOccurs = “ 0 ” maxOccurs = “ 50 " / >
< xs : sequence >
< / xs : complexType >

- < xs : complexType name = " Global VariableType " >
- < xs : simpleContent >
- < xs : extension base = " xs : string " >
< xs : attribute name = " name " type = " xs : string ” use = " required ” > >
< / xs : extension >
< / xs : simpleContent >
< / xs : complexType >

- < xs : complexType name = " MachinesType " >
- < s : sequence >

< xs : element name = " machine " type = " Machine Type ” minOccurs = “ 1 ”
maxOccurs = " 50 " / >

< / xs : sequence >
< / xs : complexType >

- < xs : complexType name = " Roles Type ” >
- < s : sequence >
< xs : element name = “ role " type = " RoleType " minOccurs = " 0 "

maxOccurs = " 50 " / >
< / xs : sequence >
< / xs : complexType >

- < xs : complexType name = " Machine Type ” >
- < xs : all >

< xs : element name = " host " type = " Machine Host Type ” minOccurs = " 0 " / >
< xs : element name = " runAs " type = " RunAsType ” minOccurs = " 0 " / >

- < xs : element name = " customActions ” type = “ CustomActionsType "
minOccurs = " 0 " >

- < xs : key name = " customActionIDKey " >
< xs : selector xpath = " mstns : customAction " / >
< xs : field xpath = “ @ id " / >
< / xs : key >
< / xs : element >
< / xs : all >

US 2018 / 0095777 A1 Apr . 5 , 2018

- continued - continued
< xs : attribute name = “ name ” type = " xs : string ” use = " required ” >
< xs : attribute name = " description " type = " xs : string ” use = " optional ”

< xs : attribute name = " domain ” type = " xs : string ” use = " required ” >
< xs : attribute name = " isVirtual ” type = " xs : boolean " default = " true "

use = " optional ” / >
< xs : attribute name = “ role ” type = " xs : string ” use = " optional ” / >
< xs : attribute name = " isDisabled ” type = " xs : boolean ” use = " optional ”

default = " false " / >
< / xs : complexType >

- < xs : complexType name = " Custom Actions Type ” >
- < s : sequence >

< xs : element name = " custom Action ” type = " CustomActionType "
minOccurs = " 0 " maxOccurs = " 50 " >

< xs : sequence >
< xs : attribute name = " isDisabled ” type = " xs : boolean ” default = " false "
< xs : complexType >

- < xs : complexType name = " CustomActionType " >
- < xs : all >

< xs : element name = " run As " type = " RunAsType " minOccurs = " 0 " / >
< xs : element name = " action " type = " Action Type ” minOccurs = “ 1 " / >

- < xs : element name = " inputParameters " type = " InputParameters Type ”
minOccurs = " 0 " >

- < xs : unique name = " inputParameterNameKey " >
< s : selector xpath = " mstns : inputParameter ” > >
< xs : field xpath = " mstns : parameterName " / >
< xs : unique >
< xs : element >
< xs : element name = " dependencies ” type = “ Dependencies Type ”

minOccurs = “ 0 ” / >
< / xs : all >
< xs : attribute name = " id " type = " xs : unsignedInt " use = " required ” > >
< xs : attribute name = " name " type = " xs : string ” use = " required ” >
< xs : attribute name = " isDisabled ” type = " xs : boolean ” use = " optional ”

- < xs : complexType name = " RoleType " >
- < xs : all >

< xs : element name = " hardware Profile " type = " Hardware ProfileType " :
minOccurs = " 0 " / >

< / xs : all >
< xs : attribute name = " name " type = " xs : string ” use = " required ” >
< xs : attribute name = " description " type = " xs : string ” use = " optional ”

>
< xs : attribute name = " template ” type = " xs : string ” use = " required ” / >
< / xs : complexType >

- < xs : complexType name = " Hardware Profile Type ” >
- < xs : all >
< xs : element name = " cpuCount ” type = " CPU CountType ” default = “ 2 ”

minOccurs = “ 0 ” > >
< xs : element name = " cpu Type ” type = " xs : string " default = “ 2 . 40 GHz

Xeon ” minOccurs = “ 0 ” >
< xs : element name = " memoryMB ” type = " MemoryMBType ”

default = “ 4096 ” minOccurs = “ 0 ” >
< xs : all >
< / xs : complexType >

- < xs : complexType name = " Machine HostType " >
- < s : simpleContent >
- < xs : extension base = " xs : string " >
< xs : attribute name = " vmPath " type = " xs : string ” use = " optional " / >
< / xs : extension >
< / xs : simpleContent >
< / xs : complexType >

- < s : simple Type name = " CPUCountType " >
- < xs : restriction base = " xs : integer " >
< xs : minInclusive value = " 1 " / >
< xs : maxInclusive value = " 8 " / >
< / xs : restriction >
< / xs : simple Type >

- < s : simpleType name = " Memory MBType " >
- < xs : restriction base = " xs : integer " >
< xs : minInclusive value = " 512 " >
< xs : maxInclusive value = " 65536 " >
< / xs : restriction >
< / xs : simpleType >

- < xs : complexType name = " Action Type " >
- < xs : choice >
< xs : element name = " execute ” type = " xs : string " / >
< xs : element name = " takeSnapshot ” type = " xs : string ” > >
< xs : element name = " restoreSnapshot ” type = " xs : string " / >
< xs : element name = " reboot " type = " RebootType ” > >
< / xs : choice >
< / xs : complexType >
< xs : complexType name = " Reboot Type ” >
< / xs : schema >

< xs : attribute name = " ignoreFailureAndContinue ” type = " xs : boolean ”
use = " optional " >

< xs : attribute name = " timeOutInSeconds ”
type = " xs : nonNegativeInteger ” default = " 3600 ” use = " optional ” / >

< xs : complexType >
- < xs : complexType name = “ Dependencies Type ” >
- < s : sequence >
< xs : element name = " dependsOn ” type = " DependsOnType "
minOccurs = “ 0 ”

maxOccurs = “ 50 " / >
< / xs : sequence >
< xs : complexType >

- < xs : complexType name = “ DependsOnType " >
- < s : sequence >

< xs : element name = " parameterMap " type = " ParameterMapType "
maxOccurs = “ 10 ” minOccurs = " 0 " / >

< xs : sequence >
< xs : attribute name = " machine ” type = " xs : string ” use = " required ” >
< xs : attribute name = " custom Action ” type = " xs : unsignedInt "

default = “ 0 ” use = " optional ” >
< xs : complexType >

- < xs : complexType name = " ParameterMap Type ” >
< xs : attribute name = " outputParameterName " type = " xs : string "

use = " required ” >
< xs : attribute name = " inputParameterName ” type = " xs : string "

use = " required " / >
< xs : complexType >

- < xs : complexType name = " InputParametersType " >
- < s : sequence >

< xs : element name = " inputParameter ” type = " InputParameterType "
minOccurs = “ 0 ” maxOccurs = “ 50 ” >

< / xs : sequence >
< / xs : complexType >

- < xs : complexType name = " InputParameterType " >
- < xs : simpleContent >
- < xs : extension base = " xs : string " >
< xs : attribute name = " name " type = " xs : string ” use = " required ” > >
< / xs : extension >
< / xs : simpleContent >
< / xs . complexType >

[0077] It should be appreciated that the present invention
may be embodied in other specific forms without departing
from its spirit or essential characteristics . The described
embodiments are to be considered in all respects only as
illustrative and not restrictive . The scope of the invention is ,
therefore , indicated by the appended claims rather than by
the foregoing description . All changes which come within
the meaning and range of equivalency of the claims are to be
embraced within their scope .
What is claimed :
1 . A method for setting up , configuring , and customizing

one or more virtual machines , the method performed at a
computer system including one or more processors and data
storage , the method comprising :

accessing a virtual machine scenario definition file defin
ing the characteristics of one or more virtual machines ,
the virtual machine scenario definition file comprising
data used to describe a group of virtual machines that
share a common template ;

parsing the virtual machine scenario definition file to
determine information defining a virtual machine ;

US 2018 / 0095777 A1 Apr . 5 , 2018

providing to a virtual machine provisioning server the
information defining the virtual machine such that the
provisioning server passes a request to a virtual
machine host which instantiates the virtual machine ;
and

communicating with a custom action service of the virtual
machine provisioning server to cause an action to
execute upon the virtual machine .

* * * * *

