(12) UK Patent

(19)GB

2980321 1D

(45)Date of B Publication 28.04.2021

(54) Title of the Invention: Register files in a multi-threaded processor

(51) INT CL: GO6F 9/30 (2018.01) GO6F 9/38 (2018.01)

(21) Application No:
(22) Date of Filing:

(43) Date of A Publication

(56) Documents Cited:

GB 2340271 A

US 20180321936 A1
US 20150160981 A1
US 20090063824 A1

(58) Field of Search:

1821301.7

31.12.2018

22.07.2020

WO 1999/054813 A1
US 20160117169 A1
US 20130246761 A1
US 20080195851 A1

As for published application 2580327 A viz:

INT CL GO6F
Other: WPI, EPODOC
updated as appropriate

Additional Fields
Other: None

(72) Inventor(s):

Alan Graham Alexander
Simon Christian Knowles
Mrudula Gore

(73) Proprietor(s):
Graphcore Limited
6th Floor, 11-19 Wine Street, BRISTOL, BS1 2PH,

United Kingdom

(74) Agent and/or Address for Service:

Page White & Farrer
Bedford House, John Street, London, WC1N 2BF,
United Kingdom

d L¢t08%C dO



Time (in slots)

‘80‘81‘82|S3‘80‘S1‘82‘S3|SO|S1|82|S3|

U G

Round n Round n+1 Round n+2

FIG. 2

Time (in rounds)

Slot SO




2/ 11

4
\
Instruction Fetch

5
Instruction bufters I
I I I 1]
nstruction Issue === —"7 B
- - 26V
(CXO0...CXJ-1)

33232
TILE
MEMORY
18M | .
Internal state
===

AUX

ALU | SU IIII_I (FRU)
26CSR
(

CXS,CXO0...CXJ-1)

26W
WRF (CXS)

FIG. 4



100

PR T T T T T T T T . . S S —_—_—_—

I
I
I
|
| .
'
Rl Y
| .
|
|
JEIpS
L o
FIG. 5
104
. 102
104
104

104



4 /11

96 bits

32 bits 32 bits 32 hits
X —m—m—— /F/F ) />

| stride? | stride1 | stride0

10 bits™ " 10 bits™ " 10 bits 21 bits 21 bits 21 bits

FIG. 7

$mStrideA | strideA2 | strideA1 | strideAQ
strideB2 | strideB1 | strideBO0
strideC2 | strideC1 | strideCO

FIG. 8

Input data Output data
Xin Partial sum P Xout

-------------
- Ca
»” e
¢ .~
.

Constituent kernel

(1x1x16) FIG 9



|

<

f1ov4

f16v4

f16v4

f16v4

5/11

Input vector

f1ov4 f1ov4

f1ov4

f16v4
5 —

i U

O ~— ON M| O ©O I~
S O C C | C C C
SESRSET]| SRR

ICh3
ICh9

ICh10

iICh11
iCh12

ICh13

ICh14

ICh15

C‘OI C‘OI C‘OI C‘OI o C‘OI C‘OI C*')I
OI \—I C\lI C”)I < LOI C.OI I\I

I R AR I
C)I \—I C\lI C’OI I LOI (.OI I\-I

Ll o o o g L Ll L

S =S======
QOO0OO0OO0OO0OO0OOO

) O O O O O O O

OI OI OI OI OI OI OI OI
OI \—I C\II C'OI 'd'l LOI CDI I\-I

Ll g o ool L L

S =S ======

O OO 0O0O0OO0OO
D P PP PP P D

SAACC [12]
SAACC [14]

Common weight matrix

Accumulator state

phase3

phaseZ

phaset

phasel

FIG. 10



6/11

AN\
AN N\

g f32 output pixel

INNEERNN
A

VNN

o A 0 O

N U AN SO
| N SO
- NN
_ SN
- S
1N

N DN DN DN DN NN N

E‘F-BN!.N‘N.“‘“.Iﬂﬂ‘.ﬂﬁﬂ-ﬂ‘ﬂ-“!ﬂ-lhk

N-m-m-m-m-m-m-m-“

‘I-num-m‘m-usn-munnnnuu-m‘M-nnn-d!F

F RN AN RNT RN AN RN RN AN\
PSR LY M PSR IR AU NP S AP S LY
I'u | N '\1 | \ '\L I'u AN I\L I N
l |—ﬂ——T—f—|—#—ﬁ—ﬂ——|—f—|—1— e L
| | | | | | | | |
r—%—K—%—1F—F—K—%—K—%-1F-F-k‘+-t—%-1
\ \ \ \ \ \ \ \ \

NN NN N NN

16 x 16 weight values
(x 8 kernels)

8 Output feature maps

FIG. 11

16 Input channels



7111

82 1, 071

¢t 9ld

Thy 8

ey Hx=00y
wfoéﬁ%m
>>o
n_+ MO
£y Lx =2t
%)
>>o
MmO
2>>o.m _y,
ATV VEN
ETVEN
¥ 1,0y Oy by

.0 omw_

0¢ 8y _0C

d
d
d

d
Yy _C

Oy _Cl
Sy _Cl

¢ g N

dnN WYY

8l00VV$

d

62 1, 05y
£S5 e
CSpy Ox= oy

12, 0G, s A8y}
a+ MO X=

m

ca unm uebaq Jeyl suonenwnage 19npoid-1op sAISSa2INS JO 1NSal Loisiald-abuls [eull sy Si cw_

FNW_

S 6x=+oy
€Sy x=EH
“Smos
>>o
oMo
mm>>o.m N
S A Ox=Sy
S0 xSy

d
d

d
ry-Ehy

Oy _tl
Syt

01100VV$

Thy_6

‘Y

S 1405 Ox =5y,

d

0€ a+q@ Mo

NN% MO’

v

>>o y =00y,

>>o
>>o

Oly 22y
600y,
8y _CC

>>ON _vl

“IMo
>>o
oMo
$>>o.m 9y,
C91 1y Ox=Oy
9y =9y

-
-

d
Fyhy

Oy _V}
Sy V)

[21100vV$

Thy_0E

d

9 140917 0y -%

d

;% MO

UwIIMOS S1els JuBiam uowwod ayy st o

10J09A INdUl $AQ 4 UB S| -
u E:m-_m_tmq ndui vorsiaud-aibuis e i d

Chy_}E

>>o Ly €0y,

>>o
>>o

by €0y,

6 mmw_

mmn_+o N>>O.wxu me_

7 g

>>ON _Sl

“Iino9x=ty
>>o d
Mo %=ty
NN
CLpney Tx=ly
Lynyhyly

d
9y _Gl

Sy _5)

L1, 00y Oy Ly

71100vV$

d

mm 743 7NF

1S 0 bl
d"dl "X
6l <8¢ 10|
a dl”'x

%
dl°X
dI’x
dI*x
dl'x
dlx
dl°x
dl*x
@n_ “wn__ox
“4°dlo
“d7dl0
“d“dlo
ddl-0
[00.SE$

%N
“NN
“om
“wv
n@F
“3
&F
“ov



8/11

PO Z | D)o

tmrﬁm 174 d +ono>>o.§xu_wmm_ GC d +o; >>o.mvxnmmm_ 9¢ d +onm>>o.§xuwmw_ 1 d +Qm>>o.mvxu&m_
mrm_nim_ md>>o.:xu$m_ m;>>o.2xutm_ mnm>>o.:xnmvw_ mnm>>o.:xu9w_
Qm&_m Nd>>o.9xu$w_ N;>>o.9xutm_ N~N>>o.9xumvw_ Nnm>>o.9xu2w_
:w_“o_w_ ﬁo>>o.mxn2w_ :>>o.mxutw_ ﬁm>>o.mxuw_w_ ﬁm>>o.mxn2w_
mm“wm 91 d +ono>>o.mxn£w_ /1 d +o; >>O.mxutw_ 8l d +onm>>o.wxu$w_ 6l d +onm>>o.mxn2w_
Nm“@m md>>o.N umw_ m;>>O.N n@w_ mﬁm>>0k novw_ Qm>>o.qu:w_
mw_ “vm_ 20 >>O.@xuww_ Al >>O.@xn@w_ 2 >>O.@xn9w_ A >>Q.@xnv Fw_
mw_ &m_ 10 >>O.mxuww_ L' >>O.mxn@w_ 1°C >>O.mxn9m_ S >>O.mxn_ _w_
SVLLN 8 1+:0 0y Tx=8y 6410y Px=5y 0 . 0200 Py Oy, 08 Px=thy

i m"o>>o.m uom_ ¢l >>o.mxnvw_ mnm>>o.m umw_ mnm>>o.m nmm

) Al >>o.quom A >>o.qu Fm 2'C >>o.quNw_ '€ >>o.anmw_

) _no>>o.£uom ) Eo.vxnvm ﬁm>>o.£umw_ ﬁm>>o;xnmm

] 0 +qo>>o.o -0y, ) L0 >>o.oxu£ ¢ +o_N>>o.o RN € +qm>>o.o N

: - - : [d0IY3d
Olsaes 0]00VV$ AL AL 7IO0OVV$ 9]00VV$



9/11

S[auuey) IndinQ 7

19x1d A0 Z¢J E

D T

NI

(Z X)
[BUISY 91} FXpX],

Sjauueyn ndul




10/ 11

W \\ mu \ m "4 yum uebag ey} suonenwnage 1onpoid-10p SAISSIINS 10 YNSaI LoISIDaId-aiBuIS [eul dU} SI - M
U~ W 3OS 91els Jybiam uowiwoo ay} S| C_E>>o

10J09A Indul pAg L4 UB S| -
u wns-ferued indur voisaid-sibuis e i d

0% 1 ¥x=Ly 0'€py9x =y, 0G) 9=y I >>o 9y -Ehy 4t 1%
0 AAry x=9y 0y 9x=Ly 0SpAy x=5y 0Ly Syt YGRS
0 Px=5y 0€pA =9y 0SpAyPx=Ly 6 4+02pny =5y 6 anw 4["x
0 iy Ex=ty 0y Ex=fy 0GpAyEx=5y L 0Lpp =ty 149 ey
i Qm>>o.mxnvm_ o_m>>o.mxumw_ G d +oM>>O.qumw_ G n_% n__mx

] ] qm>>o;xu£ € +8>>o.£umm € 1< l'x

i i i 10y Ox=ly 40410
[ZloovY$ [9]00VV$ [01100VV$ [71100VV$ [0215ES

99uaNbas ajdwexa yx| ISoSISEAQLL 0G| ¢ 9|qe |

3>>Q.@ umw_ onm>>o.@xu:m_ mvn_+ >>Q@ Qw_ i &_n:@
0 pAy Sx=Ly 0'€pnny Sx=Byg 05 Sx=thy - 4Ol Gy
0 pAyVx=9y 0€pnnyTx=Ly 64+091 x=5y - 6,48 4|Vx
0% pAyEx=fy 0'€pnny Ex=5yg L 05 Ex=ty - RN
0') MY x=by qm>>o.m N 5 +qm>>o.m Sy ] S 1 JIox
- 0€prHx=hy € 1+ 9% x=5y - € 4C4|'x

i i Fn_+ohm>>o.oxuvm_ i _n_“on__ox

[2]00VY$ [9]00VV$ [01102VV$ [71100VV$ 11001SES



PEROYL Ol

11711

mw_%w_ o“o>>o.@xu©w_ onm>>o.@xnww_ on_w>>o.@xu9w_ ¢l d +o~@>>o.@xu§w_
mm&m o“o>>o.mxu_wm oam>>o.mxn@m_ o€>>o.m uwm_ Ol d +o_©>>o.mxu9w_
Fm“om o“o>>o.¢xumw_ oamio.vxnvm o~¢>>o.vxu@m_ 8 d +on©>>o.vxuww_
- qo>>o.mxuow_ onméo.mxumm ohvéo.mxuvm 9 q +q@>>o.mxu@m_
] ] oamzo.mxuom onqéo.mxumw_ v +q©>>o.mxu£
] ] ] on¢>>o.£uov._ .. +q©>>o;xumm
- - - - 0+ m0 %=y
0lsaes 0J00VV$ 7]00OVY$ 8]00VV$ 21L100VV$
Nm“@m o“o>>o.@xuww_ onm>>o.@xu9w_ ¢l d +o_v>>o.@xu§w_ i
mw_%w_ o“o>>o.mxu©w_ onm>>o.m nwm_ 0l d +o_v>>o.mxu9w_ i
mw_&w_ o“ogo.vxuvm onmio.vxu@m 8 d +o_v>>o.¢xuww_ i
Fw_“ow_ o“o>>o.mxumw_ onm>>o.mxuvm_ 9 d +o_v>>o.mxu@w_ i
] qo>>o.mxuom oamzo.mxumm v +o_v>>o.mxu£ ]
] ] qm>>o;xnom 4 a+o_¢>>o.£umw_ ]

- - - 0 ] L0 >>o.oxuow_ -
Oisaes [0100VYV$ 7100VV$ 18100VV$ [21100VV$



10

15

20

25

30

Register Files in a Multi-Threaded Processor

Technical Field

The present disclosure relates to an arrangement of register files for use by machine code

instructions executed in a multi-threaded processor.

Background

There has been increasing interest in developing processors designed for specific
applications, such as graphics processing units (GPUs) and digital signal processors (DSPs).
Another type application-specific processor which has gained interest recently is one
dedicated to machine intelligence applications, dubbed by the applicant as an “IPU”
(intelligence processing unit). These may be employed for example as accelerator

processors arranged to perform work allocated by a host, such as to train or assist in

training a knowledge model such as a neural network, or to perform or assist in performing

predictions or inferences based on such a model.

A machine intelligence algorithm is based around performing iterative updates to a
“knowledge model”, which can be represented by a graph of multiple interconnected
nodes. Each node represents a function of its inputs. Some nodes receive the inputs to the
graph and some receive inputs from one or more other nodes, whilst the output of some
nodes form the inputs of other nodes, and the output of some nodes provide the output of
the graph (and in some cases a given node may even have all of these: inputs to the graph,
outputs from the graph and connections to other nodes). Further, the function at each node
is parameterized by one or more respective parameters, e.g. weights. During a learning
stage the aim is, based on a set of experiential input data, to find values for the various
parameters such that the graph as a whole will generate a desired output for a range of
possible inputs. Various algorithms for doing this are known in the art, such as a back
propagation algorithm based on stochastic gradient descent. Over multiple iterations based
on the input data, the parameters are gradually tuned to decrease their errors, and thus the

graph converges toward a solution. In a subsequent stage, the learned model can then be

1



10

15

20

25

30

used to make predictions of outputs given a specified set of inputs or to make inferences as

to inputs (causes) given a specified set of outputs.

A processor designed for machine intelligence applications may include dedicated
instructions in its instruction set for performing arithmetic operations commonly employed
in machine intelligence applications (the instruction set being the fundamental set of
machine code instruction types which the execution unit of the processor is configured to
recognize, each type defined by a respective opcode and zero or more operands). For
Instance, a common operation required in machine intelligence applications such as neural
networks is the convolution of a kernel over a set of input data, where the kernel represents
the weights of a node in the neural network. To perform the convolution of a significantly
sized kernel over the data, the convolution may be broken down into multiple vector or
matrix products each outputting a partial sum to be accumulated with the output of
subsequent products. Processors already exist which include in their instruction set
arithmetic instructions dedicated to performing vector and matrix multiplication type

operations for use in performing convolutions.

Summary

A processor can also provide support for concurrent execution of multiple program threads.
This support typically comprises a respective set of context registers for each thread,
wherein each set is used to hold the program state (the “context”) of a respective one of a
plurality of threads to be executed concurrently. The program state held in the context
registers of a given thread typically comprises a program counter for that thread, one or
more control state registers recording a state of the thread (e.g. paused, running etc.), and a
plurality of operand registers including arithmetic operand registers for temporarily holding
values to be operated upon and output by arithmetic instructions of the respective thread.
The different concurrent threads are temporally interleaved through a common execution
pipeline in different respective execution time slots, each slot making use of only the

registers of a different respective one of the sets of context registers.
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Conventionally each thread comprises its own respective set of arithmetic operand registers
in a separate arithmetic register file for each thread. When an instruction is executed as part
of a given thread, it is implicit that it always uses the arithmetic operand registers in the

arithmetic register file of that particular thread.

It is identified herein that applications may arise whereby threads may in fact operate on
some of the same operand values but some other operands that are specific to the
individual thread. An example would be a vector or matrix multiplication performed as part
of a convolution, whereby the instruction in each thread multiplies a common set of weights
(shared between threads) with input data that is specific to the individual thread. A
particular example of this can occur in a convolutional neural network where many nodes in
fact comprise the same weights but with different connections. Consider for example a
scenario where each thread is configured to perform the processing of a different respective
node in the neural network, such as convolving a common kernel of weights with respective
input data to detect a certain feature. In such scenarios, it would be advantageous to
provide a mechanism allowing a given arithmetic instruction to operate on a combination of
one or more common weight operands shared between threads and one or more operands
specific to the individual respective thread. The issue is by no means specific to neural

networks and could arise in any application that ends up using some shared operand values

and some thread-specific operands.

According to one aspect disclosed herein, there is provided a processor comprising: one or
more register files; and an execution unit configured to execute instances of instruction
types defined in an instruction set, each instruction in the instruction set consisting of an
opcode and one or more operands. The execution unit is a barrel-threaded execution unit
configured to run a plurality of concurrent threads each in a different respective one of a
repeating sequence of interleaved time slots, and for each of the concurrent threads, the
one or more register files comprise a respective set of context registers arranged to hold a
program state of the respective thread, each set of context registers comprising a respective
set of arithmetic operand registers for use by the respective thread. One of the one or more
register files further comprises a set of shared weights registers common to some or all of

the concurrent threads. The types of instruction defined in the instruction set include an

3
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arithmetic instruction having operands specifying a source and a destination from amongst
the respective set of arithmetic registers of the thread in which the arithmetic instruction is
executed. The execution unit is configured so as, in response to the opcode of the
arithmetic instruction, to perform an operation comprising multiplying an input from said
source by at least one of the weights from at least one of the shared weights registers, and

to place a result in said destination.

In embodiments, said at least one of the shared weights registers may be implicit from the
opcode of the arithmetic instruction, not being specified by any operand of the arithmetic

instruction.

In embodiments, the arithmetic instruction may take a further operand specifying said at

least one of the shared weights registers from amongst the set of shared weights registers.

In embodiments, the input may comprise a vector, and the multiplication may comprise a

dot product of the input with a vector of weights from the shared weights registers.

In embodiments, said at least one of the shared weights registers may comprise a subset of
the shared weights registers from amongst a plurality of subsets, each subset holding a
respective weights vector; and said further operand may select from which subset to take

the weights vector to use in said multiplication.

In embodiments, said arithmetic instruction may comprise one of: a vector dot product
instruction, an accumulating vector dot product instruction, a matrix product instruction, an

accumulating matrix product instruction, or a convolution instruction.

In embodiments, the concurrent threads may comprise a plurality of worker threads and the
execution unit may be further arranged to run, at least at some times, a supervisor

subprogram comprising at least one supervisor thread configured to manage the worker

threads.
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In embodiments, the supervisor subprogram may be configured to write the weights in the

shared weights register file.

In embodiments, the weights in the shared weights registers may be written only by the

supervisor subprogram, and the worker threads may only be able to read the shared

weights registers.

In embodiments, the context registers may comprise a respective one of the sets of context
registers for each of the worker threads that can be executed concurrently, and an

additional set of context registers may be arranged to hold a program state of the

supervisor subprogram.

In embodiments, the supervisor subprogram may be arranged to begin by initially running in
all the slots, and to write the weights before launching the worker threads; wherein the
supervisor subprogram may launch each of the worker threads by relinquishing each of
some or all of the slots in which the supervisor subprogram is initially running to respective

ones of the worker threads.

In embodiments, the instruction set may include a run instruction which, when executed as
part of the supervisor subprogram, causes the slot in which the run instruction is executed

to be relinquished to one of the worker threads such that the worker thread is launched in

that slot in place of the supervisor subprogram.

In embodiments, the instruction set may include an exit instruction which, when executed
as part of one of the worker threads, causes the slot in which the exit instruction is executed
to be handed back to the supervisor subprogram such that the supervisor subprogram

continues running in that slot again in place of the worker thread.

In embodiments, the register files include a separate arithmetic register file for each

concurrent worker thread, the respective arithmetic register file comprising the respective

arithmetic operand registers.
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In embodiments, the register files may include a separate weights register file comprising

the weights registers.

In embodiments, the weights register file may be arranged such that it can be written only

by the supervisor subprogram and the worker threads can only read the weights register

file.

According to another aspect of the present invention, there is provided method of operating
a processor configured according to any of the embodiments above or elsewhere herein,
the method comprising running a program comprising one or more instances of the

arithmetic instruction on the processor through the execution unit.

Brief Description of the Drawings

To assist understanding of embodiments of the present disclosure and to show how such

embodiments may be put into effect, reference is made, by way of example only, to the

accompanying drawings in which:

Figure 1 is a schematic block diagram of an example multi-threaded processor,

Figure 2 schematically illustrates a scheme of interleaved time slots,

Figure 3 schematically illustrates a supervisor thread and plurality of worker threads running

in a plurality of interleaved time slots,

Figure 4 is a schematically illustrates a logical block structure of an example processor,

Figure 5 is a schematic block diagram of a processor comprising an array of constituent

Processors,

Figure 6 is a schematic illustration of a graph used in a machine intelligence algorithm,
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Figure 7 schematically illustrates an address packing scheme for use in implementing a type

of load-store instruction,

Figure 8 schematically illustrates an arrangement of predetermined stride values in a set of

stride registers,

Figure 9 schematically illustrates a convolution of a 3D kernel K with a volume of input data,

Figure 10 schematically illustrates a matrix multiplication performed by a sequence of

phases of an accumulating matrix product instruction,

Figure 11 further illustrates the operation of the accumulating matrix product instructions,

Figure 12 gives an example of a series of loops of a sequences of accumulating matrix

product instructions arranged to perform a convolution,

Figure 13 schematically illustrates the operation of a convolution instruction, and

Figure 14 gives an example of a series of convolution instructions.

Detailed Description of Embodiments

Figure 1 illustrates an example of a processor 4 in accordance with embodiments of the
present disclosure. The processor 4 comprises a multi-threaded processing unit 10 in the
form of a barrel-threaded processing unit, and a local memory 11 (i.e. on the same tile in
the case of a multi-tile array, or same chip in the case of a single-processor chip). A barrel-
threaded processing unit is a type of multi-threaded processing unit in which the execution
time of the pipeline is divided into a repeating sequence of interleaved time slots, each of
which can be occupied by a given thread. This may also be referred to as concurrent
execution, discussed in more detail shortly. The memory 11 comprises an instruction
memory 12 and a data memory 22 (which may be implemented in different addressable

memory units or different regions of the same addressable memory unit). The instruction

7
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memory 12 stores machine code to be executed by the processing unit 10, whilst the data

memory 22 stores both data to be operated on by the executed code and data output by

the executed code (e.g. as a result of such operations).

The memory 12 stores a plurality of different threads of a program, each thread comprising
a respective sequence of instructions for performing a certain task or tasks. Note that an
instruction as referred to herein means a machine code instruction, i.e. an instance of one
of the fundamental instructions of the processor’s instruction set, consisting of a single
opcode and zero or more operands. In embodiments the program comprises a plurality of
worker threads, and a supervisor subprogram which may be structured as one or more

supervisor threads. These will be discussed in more detail shortly.

A multi-threaded processor is a processor which is capable of executing multiple program
threads alongside one another, typically in a concurrent manner. Concurrent execution
means the threads share a common execution pipeline {(or at least a common part of a
pipeline) and different threads are interleaved through this same, shared execution pipeline
in different interleaved time slots in a repeating cycle. This increases performance due to
increased opportunities for hiding pipeline latency. The processor comprises some hardware
that is common to the multiple different threads (e.g. a common instruction memory, data
memory and/or execution unit); but to support the multi-threading, the processor also

comprises some dedicated hardware specific to each thread.

The dedicated hardware comprises a separate set of context registers 26 for at least each of
the threads that can be executed concurrently, i.e. one set per slot in the cycle. A “context”,
when talking about multi-threaded processors, refers to the program state of a respective
one of the threads being executed alongside one another (e.g. program counter value,
status and current operand values). The context registers refer to the respective registers
for representing this program state of the respective thread. Registers in a register file are
distinct from general memory in that register addresses are fixed as bits in instruction

words, whereas memory addresses can be computed by executing instructions.



Within the processing unit 10, multiple different ones of the threads from the instruction
memory 12 can be interleaved through a single execution pipeline 13 (though typically only
a subset of the total threads stored in the instruction memory can be interleaved at any
given point in the overall program). The multi-threaded processing unit 10 comprises a
5  plurality of sets of context registers 26, each set 26 arranged to represent the state

(context) of a different respective one of the threads that can be executed concurrently. The
multi-threaded processing unit 10 also comprises a shared execution pipeline 13 that is
common to the concurrently executed threads, and a scheduler 24 for scheduling the
concurrent threads for execution through the shared pipeline in an interleaved manner, e.g.

10  in a round robin manner. The processing unit 10 is connected to a shared instruction

memory 12 common to the plurality of threads, and a shared data memory 22 that is again

common to the plurality of threads.

The execution pipeline 13 comprises a fetch stage 14, a decode stage 16, and an execution
15  stage 18 comprising an execution unit which may perform arithmetic and logical operations,

address calculations, load and store operations, and other operations, as defined by the

instruction set architecture.

Each set of context registers 26 comprises a respective one or more control registers

20  comprising at least a program counter (PC) for the respective thread (for keeping track of
the instruction address at which the thread is currently executing), and in embodiments also
a set of one or more control state registers (CSRs) recording a current status of the
respective thread (such as whether it is currently running or paused). Each set of context
register files 26 also comprises a respective set of operand registers, for temporarily holding

25  operands of the instructions executed by the respective thread, i.e. values operated upon or
resulting from operations defined by the opcodes of the respective thread’s instructions

when executed. Each set of registers 26 may be implemented in one or more register files.

The fetch stage 14 has access to the program counter (PC) of each of the contexts. For each

30 respective thread, the fetch stage 14 fetches the next instruction of that thread from the
next address in the program memory 12 as indicated by the program counter. The program

counter automatically increments each execution cycle unless branched by a branch
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instruction. The fetch stage 14 then passes the fetched instruction to the decode stage 16 to
be decoded, and the decode stage 16 then passes an indication of the decoded instruction
to the execution unit 18 along with the decoded addresses of any operand registers
specified in the instruction, in order for the instruction to be executed. The execution unit
18 has access to the operand registers and the control state registers, which it may use in
executing the instruction based on the decoded register addresses, such as in the case of an
arithmetic instruction (e.g. by adding, multiplying, subtracting or dividing the values in two
operand registers and outputting the result to another operand register of the respective
thread). Or if the instruction defines a memory access (load or store), the load/store logic of
the execution unit 18 loads a value from the data memory into an operand register of the

respective thread, or stores a value from an operand register of the respective thread into

the data memory 22, in accordance with the instruction.

The fetch stage 14 is connected so as to fetch instructions to be executed from the
instruction memory 12, under control of the scheduler 24. The scheduler 24 is configured to
control the fetch stage 14 to fetch an instruction from each of a set of concurrently
executing threads in turn in a repeating sequence of time slots, thus dividing the resources
of the pipeline 13 into a plurality of temporally interleaved time slots, as will be discussed in
more detail shortly. For example the scheduling scheme could be round-robin or weighted

round-robin. Another term for a processor operating in such a manner is a barrel threaded

processor.

An example of the interleaving scheme implemented by the scheduler 24 is illustrated in
Figure 2. Here the concurrent threads are interleaved according to a round-robin scheme
whereby, within each round of the scheme, the round is divided into a sequence of time
slots SO, S1, S2...5J-1 (e.g. J=4, or J=6), each slot for executing a respective thread. Typically
each slot is one execution cycle long and the different slots are evenly sized, though not
necessarily so in all possible embodiments, e.g. a weighted round-robin scheme is also
possible whereby some threads get more cycles than others per execution round. In general
the barrel-threading may employ either an even round-robin or a weighted round-robin

schedule, where in the latter case the weighting may be fixed or adaptive.
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Whatever the sequence per execution round, this pattern then repeats, each round
comprising a respective instance of each of the time slots. Note therefore that a time slot as
referred to herein means the repeating allocated place in the sequence, not a particular
instance of the time slot in a given repetition of the sequence. Put another way, the
scheduler 24 apportions the execution cycles of the pipeline 13 into a plurality of temporally
interleaved (time-division multiplexed) execution channels, with each comprising a
recurrence of a respective time slot in a repeating sequence of time slots. In the illustrated
embodiment, there are four time slots, but this is just for illustrative purposes and other

numbers are possible. E.g. in one preferred embodiment there are in fact six time slots.

In embodiments, the context registers 26 comprises a respective set of worker context
registers CXO0... CX(J-1) for each of the number J of threads that can be executed
concurrently (J=3 in the example illustrated but this is not limiting), and one additional
supervisor context register file CXS. The worker context register files holds the contexts of
worker threads, and the supervisor context register file holds the context of a supervisor
thread. Note that in embodiments the supervisor context has a different number of
registers than each of the workers. The processing unit 10 thus comprises one more context

register file 26 than there are time slots, i.e. it supports one more context than the number

of interleaved timeslots it is capable of barrel-threading.

Each of the worker contexts CX0...CXJ is used to represent the state of a respective one of a
plurality of worker threads currently assigned to one of the four execution time slots S0...SJ,
for performing whatever application-specific computation tasks are desired by the
programmer (note again this may only be subset of the total number of worker threads of
the program as stored in the instruction memory 12). The additional context CXS is used to
represent the state of a “supervisor thread” (SV) whose role it is to coordinate the execution
of the worker threads, at least in the sense of assigning which of the worker threads W is to

be executed in which of the time slots SO, S1, S2... at what point in the overall program.
Optionally the supervisor thread may have other “overseer” or coordinating responsibilities,
such as performing external exchanges or barrier synchronisations. Note of course that the
illustrated case of J=4 is just one example implementation for illustrative purposes. E.g. in

another implementation J=6 (six time slots, six worker contexts and one supervisor context).
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Referring to Figure 3, in embodiments the supervisor thread SV does not have its own time
slot per se in the scheme of interleaved execution time slots. Nor do the workers as
allocation of slots to worker threads is flexibly defined. Rather, each time slot has its own
set of context registers for storing worker context, which is used by the worker when the
slot is allocated to the worker, but not used when the slot is allocated to the supervisor.
When a given slot is allocated to the supervisor, that slot instead uses the context register
file CXS of the supervisor. The supervisor always has access to its own context and no

workers are able to occupy the supervisor context register file CXS.

The supervisor thread SV has the ability to run in any and all of the time slots SO....S3 (or
more generally S0...5J-1). The scheduler 24 is configured so as, when the program as a whole
starts, to begin by allocating the supervisor thread to all of the time slots, i.e. so the
supervisor SV starts out running in all of S0...SJ-1. However, the supervisor thread is
provided with a mechanism for, at some subsequent point (either straight away or after
performing one or more supervisor tasks), temporarily relinquishing each of the slots in
which it is running to a respective one of the worker threads, e.g. initially workers WO0...W3
in the example shown in Figure 3 (or more generally WO0...WJ-1). This is achieved by the
supervisor thread executing a run instruction, which takes at least address of a worker
thread in the instruction memory 12 as an operand. The worker threads are portions of

code that can be run concurrently with one another, each representing one or more

respective computation tasks to be performed.

The run instruction acts on the scheduler 24 so as to relinquish the current time slot, in
which this instruction is itself executed, to the worker thread specified by the operand. Note
that it is implicit in the run instruction that it is the time slot in which this instruction is
executed that is being relinquished (implicit in the context of machine code instructions
means it doesn’t need an operand to specify this — it is understood implicitly from the

opcode itself). Thus the time slot which is given away is the time slot in which the supervisor

executes the run instruction.
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The supervisor thread SV performs a similar operation in each of one or more others of the
time slots, to give away some or all of its time slots to different respective ones of the
worker threads WO0...WJ-1 (selected from a larger set of possible worker threads in the
instruction memory 12). Once it has done so for the last slot, the supervisor is suspended
(then later will resume where it left off when one of the slots is handed back by a worker
W). The supervisor thread SV is thus able to allocate different worker threads, each
performing one or more tasks, to different ones of the interleaved execution time slots
S0...SJ-1 (e.g. J=4 as illustrated, or J=6). When the supervisor thread determines it is time to
run a worker thread, it uses the run instruction to allocate this worker to the time slot in

which the run instruction was executed.

In some embodiments, the instruction set also comprises a variant of the run instruction,

'}I

“run-all”. This instruction is used to launch a set of more than one worker together, all
executing the same code. In embodiments this launches a worker in every one of the

processing unit’s slots S0...S3 (or more generally SO.... S(J-1)).

Once launched, each of the currently allocated worker threads WO0...WIJ-1 proceeds to
perform the one or more computation tasks defined in the code specified by the respective
run instruction. At the end of this, the respective worker thread then hands the time slot in
which it is running back to the supervisor thread. This is achieved by executing an exit
instruction in the respective worker thread. The exit instruction acts on the scheduler 24 so
as to pass back the current time slot, in which this instruction is itself executed, to the

supervisor thread. In response the scheduler 24 then continues running the supervisor in

that slot.

Figure 4 illustrates further example details of the processor 4 including detail of the
execution unit 18 and context registers 26. The processor comprises a respective instruction
buffer 53 for each of the M threads capable of being executed concurrently. The context
registers 26 comprise a respective main register file (MRF) 26M for each of the worker M
contexts and the supervisor context. The context registers further comprise a respective
auxiliary register file (ARF) 26A for at least each of the worker contexts. The context

registers 26 further comprise a common weights register file (WRF) 26W, which all the
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currently executing worker thread can access to read from. The WRF may be associated with
the supervisor context in that the supervisor thread is the only thread that can write to the
WRF. The context registers 26 may also comprise a respective group of control state
registers 26CSR for each of the supervisor and worker contexts. The execution unit 18
comprises a main execution unit 18M and an auxiliary execution unit 18A. The main
execution unit 18M comprises a load-store unit (LSU) 55 and an integer arithmetic logic unit

(IALU) 56. The auxiliary execution unit 18A comprises at least a floating point arithmetic unit

(FPU).

In each of the J interleaved time slots S0...5J-1, the scheduler 24 controls the fetch stage 14
to fetch at least one instruction of a respective thread from the instruction memory 11, into
the respective one of the J instruction buffers 53 corresponding to the current time slot. In
embodiments each time slot is one execution cycle of the processor, though other schemes
are not excluded (e.g. weighted round- robin). In each execution cycle of the processor 4
(i.e. each cycle of the processor clock which clocks the program counter) the fetch stage 14
fetches either a single instruction or a small “instruction bundle” (e.g. a two-instruction
bundle or four-instruction bundle), depending on implementation. Each instruction is then
issued, via the decode stage 16, into one of the LSU 55 or IALU 56 of the main execution unit
18M or the FPU of the auxiliary execution unit 18A, depending on whether the instruction
(according to its opcode) is a memory access instruction, an integer arithmetic instruction or
a floating point arithmetic instruction, respectively. The LSU 55 and IALU 56 of the main
execution unit 18M execute their instructions using registers from the MRF 26M, the
particular registers within the MRF 26M being specified by operands of the instructions. The
FPU of the auxiliary execution unit 18A performs operations using registers in the ARF 26A
and WRF 26W, where the particular registers within the ARF are specified by operands of
the instructions. In embodiments the registers in the WRF may be implicit in the instruction
type (i.e. pre-determined for that instruction type). The auxiliary execution unit 18A may
also contain circuity in the form of logical latches internal to the auxiliary execution unit 18A
for holding some internal state 57 for use in performing the operations of one or more of

the types of floating point arithmetic instruction.
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In embodiments that fetch and execute instructions in bundles, the individual instructions in
a given instruction bundle are executed simultaneously, in parallel down independent
pipelines 18M, 18A (shown in Figure 4). In embodiments that execute bundles of two
instructions, the two instructions may be executed simultaneously down respective auxiliary
and main pipelines. In this case, the main pipeline is arranged to execute types of instruction
that use the MRF and the auxiliary pipeline is used to execute types of instruction that use
the ARF. The pairing of instructions into suitable complementary bundles may be handled by

the compiler.

Each worker thread context has its own instance of the main register file (MRF) 26M and
auxiliary register file (ARF) 26A (i.e. one MRF and one ARF for each of the barrel-threaded
slots). Functionality described herein in relation to the MRF or ARF is to be understood to
operate on a per context basis. However there is a single, shared weights register file (WRF)
shared between the threads. Each thread can access the MRF and ARF of only its own
context 26. However, all currently-running worker threads can access the common WRF.
The WRF thus provides a common set of weights for use by all worker threads. In

embodiments only the supervisor can write to the WRF, and the workers can only read from

the WREF.

The instruction set of the processor 4 includes at least one type of load instruction whose
opcode, when executed, causes the LSU 55 to load data from the data memory 22 into the
respective ARF, 26A of the thread in which the load instructions was executed. The location
of the destination within the ARF is specified by an operand of the load instruction. Another
operand of the load instruction specifies an address register in the respective MRF, 26M,
which holds a pointer to an address in the data memory 22 from which to load the data. The
instruction set of the processor 4 also includes at least one type of store instruction whose
opcode, when executed, cases the LSU 55 to store data to the data memory 22 from the
respective ARF of the thread in which the store instruction was executed. The location of
the source of the store within the ARF is specified by an operand of the store instruction.
Another operand of the store instruction specifies an address register in the MRF, which
holds a pointer to an address in the data memory 22 to which to store the data. In general

the instruction set may include separate load and store instruction types, and/or at least
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one load-store instruction type which combines the load and store operations in a single
instruction. As will be discussed in more detail shortly, the instruction set may include a
particular type of load-store instruction which performs two loads and one store operation
all in a single instruction. Note that the instruction set of a given processor 4 can include

multiple different varieties of load, store and/or load-store instruction types.

The instruction set of the processor also includes one or more types of arithmetic
instruction for performing arithmetic operations. According to embodiments disclosed
herein, these may include at least one type of arithmetic instruction which makes use of the
common weights register file, WRF, 26W. This type of instruction takes at least one operand
which specifies at least one source of the corresponding arithmetic operation in the
respective ARF, 26A, of the thread in which the arithmetic instruction was executed.
However, at least one other source of the arithmetic instruction is in the common WRF,
common to all the worker threads. In embodiments this source is implicit in the arithmetic
instruction in question (i.e. implicit for this type of arithmetic instruction). implicit in the
sense of a machine code instruction means not requiring an operand to specify. l.e. in this
case, the location of the source in the WRF is inherent from the opcode (predetermined for
that particular opcode). Alternatively in other embodiments, the arithmetic instruction may
take an operand specifying from which set of weight registers to take the weights, from
amongst a few different sets in the WRF. However, the fact that the source of the weights is

found in the WRF (as opposed to, say, the general purpose MRF or ARF) is still implicit.

In response to the opcode of the relevant type of arithmetic instruction, the arithmetic unit
(e.g. FPU) in the auxiliary execution unit 18A performs an arithmetic operation, as specified
by the opcode, which comprises operating upon the values in the specified source
register(s) in the threads’ respective ARF and the source register(s) in the WRF. It also
outputs a result of the arithmetic operation to a destination register in the thread’s

respective ARF as specified explicitly by a destination operand of the arithmetic instruction.

Example types of arithmetic instruction that may employ a source in the common WREF,
26W, may include: one or more vector multiplication instruction types, one or more matrix

multiplication instruction types, one or more accumulating vector multiplication instruction
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types and/or accumulating matrix multiplication instruction types (which accumulate a
result of the multiplication from one instance of the instruction to the next), and/or one or
more convolution instruction types. For example, a vector multiplication instruction type
may multiply an explicit input vector from the ARF, 26A, with a predetermined vector of
weights from the WRF; or a matrix multiplication instruction type may multiply an explicit
input vector from the ARF with a predetermined matrix of weights from the WRF. As
another example, a convolution instruction type may convolve an input matrix from the ARF
with a predetermined matrix from the WRF. Having a shared weights register file, WRF,
common to a plurality of threads, enables each thread to multiply or convolve a common
kernel with its own respective data. This is useful as this is a scenario that comes up a lot in
machine learning applications, e.g. where each thread represents a different node in a
neural network and the common kernel represents a feature being searched or trained for

(for instance an edge or particular shape in an area or volume of graphical data).

In embodiments the values in the WRF, 26W, can be written by the supervisor thread. The
supervisor (which in embodiment begins by running in all the slots S0...SM) first executes a
series of put instructions to write the values of some commune weights into the
predetermined location in the WRF. It then executes run instructions (or a run-all
instruction) to launch a respective worker in some or all of the slots S0...SJ-1. Each worker
then includes one or more instances of one or more arithmetic instructions of the type(s)
discussed above, so as to perform the corresponding arithmetic operation(s) upon their own
respective input data, as loaded into their respective ARF, 26A, but using the common
weights written by the supervisor into the WRF, 26W. When each thread finishes its
respective task it executes an exit instruction to hand its slot back to the supervisor. When
all the launched threads have finished their respective tasks, the supervisor can write new

values to the WRF and launch a new set of threads (or launch a new set to continue to use

the existing values in the WRF).

It will be appreciated that the labels “main”, “auxiliary” and “weights” are not necessarily
limiting. In embodiments they may be any first register file (per worker context), second
register file (per worker context) and shared third register file (e.g. part of the supervisor

context but accessible to all workers). The ARF 26A and auxiliary execution unit 18 may also
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be referred to as the arithmetic register file and arithmetic execution unit since they are
used for arithmetic instructions (or at least the floating point arithmetic). The MRF 26M and
auxiliary execution unit 18 may also be referred to as the memory address register file and
arithmetic execution unit since one of their uses is for accessing memory. The weights
register file (WRF) 26W is so-called because it is used to hold multiplicative weights used in

a certain type or types of arithmetic instruction, to be discussed in more detail shortly. E.g.

these could be used to represent the weights of nodes in a neural network. Seen another
way, the MRF could be called the integer register file as it is used to hold integer operands,
whilst the ARF could be called the floating-point register file as it is used to hold floating-
point operands. In embodiments that execute instructions in bundles of two, the MRF is the

register file used by the main pipeline and the ARF is the register used by the auxiliary

pipeline.

In alternative embodiments however, note that the register space 26 is not necessarily
divided into these separate register files for these different purposes. Instead instructions
executed through the main and auxiliary execution units may be able to specify registers
from amongst the same shared register file (one register file per context in the case of a
multithreaded processor). Also the pipeline 13 does not necessarily have to comprise

parallel constituent pipelines (e.g. aux and main pipelines) for simultaneously executing

bundles of instructions.

The processor 4 may also comprise an exchange interface 51 for exchanging data between
the memory 11 and one or more other resources, e.g. other instances of the processor
and/or external devices such as a network interface or network attached storage (NAS)
device. As illustrated in Figure 5, in embodiments the processor 4 may form one of an array
6 of interconnected processor tiles, each tile running part of a wider program. The individual
processors 4 (tiles) thus form part of a wider processor or processing system 6. The tiles 4
may be connected together via an interconnect subsystem 34, to which they connect via
their respective exchange interface 51. The tiles 4 may be implemented on the same chip
(i.e. die) or on different chips, or a combination (i.e. the array may be formed from multiple

chips each comprising multiple tiles 4). The interconnect system 34 and exchange interface
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51 may therefore comprise an internal (on-chip) interconnect mechanism and/or external

(inter-chip) exchange mechanism, accordingly.

In one exemplary application of a multi-threaded and/or multi-tiled processor or system,
the program run across the multiple threads and/or tiles 4 comprises a machine intelligence
algorithm, such as an algorithm configured to train a neural network and/or to perform
inference based on a neural network. In such embodiments each worker thread, or the part
of the program run on each tile, or each worker thread on each tile, is used to represent a
different node 102 in a neural network (a type of graph); and communications between

threads and/or tiles, accordingly, represent edges 104 between nodes 102 in the graph. This

is illustrated in Figure 6.

Machine intelligence begins with a learning stage where the machine intelligence algorithm
learns a knowledge model. The model comprises a graph of interconnected nodes {i.e.
vertices) 102 and edges (i.e. links) 104. Each node 102 in the graph has one or more input
edges and one or more output edges. Some of the input edges of some of the nodes 102 are
the output edges of some others of the nodes, thereby connecting together the nodes to
form the graph. Further, one or more of the input edges of one or more of the nodes 102
form the inputs to the graph as a whole, and one or more of the output edges of one or
more of the nodes 102 form the outputs of the graph as a whole. Sometimes a given node
may even have all of these: inputs to the graph, outputs from the graph and connections to
other nodes. Each edge 104 communicates a value or more often a tensor (n-dimensional

matrix), these forming the inputs and outputs provided to and from the nodes 102 on their

input and output edges respectively.

Each node 102 represents a function of its one or more inputs as received on its input edge
or edges, with the result of this function being the output(s) provided on the output edge or
edges. Each function is parameterized by one or more respective parameters (sometimes
referred to as weights, though they need not necessarily be multiplicative weights). In
general the functions represented by the different nodes 102 may be different forms of

function and/or may be parameterized by different parameters.
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Further, each of the one or more parameters of each node’s function is characterized by a
respective error value. Moreover, a respective condition may be associated with the error(s)
in the parameter(s) of each node 102. For a node 102 representing a function
parameterized by a single parameter, the condition may be a simple threshold, i.e. the
condition is satisfied if the error is within the specified threshold but not satisfied if the
error is beyond the threshold. For a node 102 parameterized by more than one respective
parameter, the condition for that node 102 having reached an acceptable level of error may
be more complex. For example, the condition may be satisfied only if each of the
parameters of that node 102 falls within respective threshold. As another example, a
combined metric may be defined combining the errors in the different parameters for the
same node 102, and the condition may be satisfied on condition that the value of the
combined metric falls within a specified threshold, but otherwise the condition is not
satisfied if the value of the combined metric is beyond the threshold (or vice versa
depending on the definition of the metric). Whatever the condition, this gives a measure of
whether the error in the parameter(s) of the node falls below a certain level or degree of

acceptability. In general any suitable metric may be used. The condition or metric may be

the same for all nodes, or different for different respective ones of the nodes.

In the learning stage the algorithm receives experience data, i.e. multiple data points
representing different possible combinations of inputs to the graph. As more and more
experience data is received, the algorithm gradually tunes the parameters of the various
nodes 102 in the graph based on the experience data so as to try to minimize the errors in
the parameters. The goal is to find values of the parameters such that the output of the
graph is as close as possible to a desired output for a given input. As the graph as a whole
tends toward such a state, the graph is said to converge. After a suitable degree of
convergence the graph can then be used to perform predictions or inferences, i.e. to predict

an outcome for some given input or infer a cause for some given output.

The learning stage can take a number of different possible forms. For instance, in a
supervised approach, the input experience data takes the form of training data, i.e. inputs
which correspond to known outputs. With each data point, the algorithm can tune the

parameters such that the output more closely matches the known output for the given
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input. In the subsequent prediction stage, the graph can then be used to map an input

query to an approximate predicted output (or vice versa if making an inference). Other
approaches are also possible. For instance, in an unsupervised approach, there is no concept
of a reference result per input datum, and instead the machine intelligence algorithm is left
to identify its own structure in the output data. Or in a reinforcement approach, the
algorithm tries out at least one possible output for each data point in the input experience
data, and is told whether this output is positive or negative (and potentially a degree to
which it is positive or negative), e.g. win or lose, or reward or cost, or such like. Over many
trials the algorithm can gradually tune the parameters of the graph to be able to predict
inputs that will result in a positive outcome. The various approaches and algorithms for

learning a graph will be known to a person skilled in the art of machine learning.

According to an exemplary application of the techniques disclosed herein, each worker
thread is programmed to perform the computations associated with a respective individual
one of the nodes 102 in a machine intelligence graph such as a neural network. In this case
at least some of the edges 104 between nodes 102 correspond to the exchanges of data
between threads, and some may involve exchanges between tiles. In the case of a multi-tile
arrangement 6 with multiple threads per tile 4, each tile 4 runs a subgraph of the graph.
Each subgraph comprises a supervisor subprogram comprising one or more supervisor

threads, and a set of worker threads representing the nodes 102 of the respective subgraph.

In applications such as machine intelligence, it would be desirable to be able to efficiently
stream data to and from the data memory 22 of the processor 4 (e.g. tile). For instance this
would be particularly (but not exclusively) useful to accompany a sequence of complex
arithmetic instructions such as vector dot product instructions, matrix products,
accumulating vector dot products, accumulating matrix products or dedicated convolution

instructions, which pack a high degree of arithmetic complexity into a single arithmetic

instruction.

To address such issues, embodiments provide a type of load-store instruction, in the

instruction set of the processor 4, which performs two load operations and one store

operation and then automatically applies an independent stride to each of the load and
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store addresses, all in response to a single instance of the opcode of the instruction.
Furthermore the instruction uses an efficient packing of addresses in the appropriate
register file (e.g. the MRF 26M), whereby the three addresses (the two load addresses and
one store addresses) are packed into the space of two registers. This enables the three
memory addresses and the stride register to be accessed in a single instruction with only

three ports from the MRF, 26M, to the LSU (one respective port for accessing each of the

three registers).

The instruction may be referred to herein as “Id2xst64pace”, referring to the fact that it
loads two 64-bit values and stores one 64-bit value, with “pace” being a synonym for stride.
However this label or the particular bit widths are not to be taken as necessarily limiting.
The instruction may more generally be referred to as just the load-store instruction (though
this does not imply it is necessarily the only kind of load-store instruction in the processor’s

instruction set), or “ldx2st” (load times two and store). Its syntax is as follows:

ld2xst SaDst, SaSrc, SmAddr, SmStride, Strimm

SaDst refers to one or more operands identifying a destination in the auxiliary (or
arithmetic) register file (ARF) 26A, the destination comprising one or more of the registers in
the ARF. In embodiments each of the registers in the ARF is 32-bits wide, and the
destination SaDst may consist of four such 32-bit registers: $aDst0:Dst0+3. The destination
operand of the ld2xst64pace may specify the location of just one of these destination
registers in the ARF (e.g. the lowest $SaDst0) and the locations of the other(s) may be implicit
relative to this (e.g. the next three contiguous registers in the ARF). Alternatively in other
implementations, it is not excluded that the multiple destination operands could each be

identified explicitly and independently by separate operands (though this would require an

increased instruction width).

SaSrc refers to one or more operands identifying a source in the ARF, 26A, the source
comprising one or more of the registers in the ARF. In embodiments each of the registers in
the ARF is 32-bits wide, and the source $aSrc may consist of two such 32-bit registers:

$aSrc0:Src+1. The source operand of the Id2xst64pace may specify the location of just one
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of these source registers in the ARF (e.g. the lowest SaSrc0) and the location of the other(s)
may be implicit relative to this (e.g. the next contiguous register in the ARF). Alternatively in
other implementations, it is not excluded that the multiple source operands could each be

identified explicitly and independently by separate operands (though this would require an

increased instruction width).

SmAddr refers to one or more operands specifying the location of two registers
SmAddr0:Addr0+1 in the main register file (MRF) 25M, which between them hold three
addresses: two load addresses and one store address. In embodiments each of the registers
in the MRF is 32-bits wide. The memory address operand may specify the location of just
one of these registers in the MRF (e.g. the lowest SmAddr0), the location of the other being
implicit relative to this (e.g. the next contiguous register in the MRF). Alternatively in other
implementations, it is not excluded that the memory address registers could each be

identified explicitly and independently by separate operands (though this would require an

increased instruction width).

Strimm is a set of immediate operands, a respective one for each of the two load and one
store addresses. In the MRF, 26M, there is provided a stride register which comprises a
plurality of fields. Each field holds a different respective one of a predetermined set of
different possible stride values. A stride value is a value by which to increment a memory
address, i.e. a memory address step, typically for use in a series of such steps. For each of
the two loads and one store, the respective immediate stride operand specifies from which
field in the stride register to take the stride value to apply to the respective load or store
address, after performing the respective load or store operation of the present instance of
the instruction. This moves along the address in the MRF, 26M, for the benefit of a

subsequent instance of the load-store instruction.

In embodiments, the load-store unit 55 supports a feature whereby one special value of the
immediate stride operand can directly specify a stride value of 1 (i.e. an increase of one
address unit in the address space used), rather than pointing to a register field. I.e. out of
the range of values the immediate stride operand can take, one of the values specifies a

stride of one, and some or all of the others specify different possible fields in the stride
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register holding programmable stride values. One unit here means the atomic size of the
data access. E.g. if the operand is a 4-element vector of 16-bit floating-point values, the

increment is by 1 atom/unit, which is equivalent to 8-bytes (64-bits).

The stride register is a register in the MRF, 26M. In embodiments the worker itself is
responsible for writing the stride values in the fields of its own stride register (in its own
MRF). Alternatively it is not excluded that in other implementations, the stride values in the

fields of the stride register may be written by the supervisor thread SV, or a combination of

approaches may be used.

The requirement for an operand specifying SmStride is an optional feature of the processor
4 depending on implementation. In embodiments, the load-store instruction takes an
operand specifying the location of the stride register SmStride in the MRF, 26M. Thus the
program is able to select the stride register from amongst a plurality of possible stride
registers, providing even more flexibility in the selection of the stride. However in

alternative implementations it is not excluded that the location of SmStride could be fixed

or implicit and not require an operand in the load-store instruction.

Figure 7 illustrates an example of the packing of three addresses into two 32-bit registers in
the MRF, 26M, each address being 21-bits. Figure 7 also illustrates an example of the
packing of three stride values into one 32-bit register in the MRF, each stride value being 10-
bits (in this case two bits of the register go unused). Thus the load-store instruction can
access three memory addresses via only two 32-bit wide ports of the MRF in a single
instruction. A third 32-bit wide port may be used by the same instruction to access the

stride register, e.g. containing three 10-bit stride values (address deltas) in three 10-bit wide
fields packed into a 32-bit wide stride register in the MRF (leaving 2 bits of that register
unused). Note that the particular packing shown in Figure 7 is just an example. E.g. in

another implementation addr2 may straddle the two registers, rather than addr1.

Figure 8 illustrates an arrangement of multiple stride registers SmStrideA, SmStrideB,
SmStrideC ... in the MRF, 26M. Any of these could be specified as the stride register

SmStride by the corresponding operand of the load-store instruction. Each possible stride
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register comprises a plurality of fields, e.g. in embodiments three (though depending on
implementation there are not necessarily the same number of fields nor stride registers as
there are load and store addresses). For each of the two load and one store addresses, the
respective immediate operand in the set of immediates Strimm can specify one of the
possible fields in the stride register SmStride from which to take a respective stride value
(an address delta to be applied following the respective load or store). For instance, in

embodiments, if the stride operand is 2-bits for each of the two loads and one store, then
three of the possible values specify different ones of the three stride fields, and the other
possible value simply specifies a stride of one without referring to a value held in a register.
E.g. 00 would specify a stride of 1 (atom), whilst 01 would specifies a first field in the stride

register, 10 would specify a second field in the stride register and 11 would specify a third

field in the stride register.

Note that in embodiments, one of the possible values of the stride immediate specifies a

default increment of 1, rather than a field in the stride register SmStride.

In operation, when executed by the execution unit 18, the opcode of the load-store
instruction (after decoding by the decode stage 16) triggers the LSU 55 to perform the
following operations. It loads the values from the two load addresses in the memory 22 as
specified by the address held in SmAddr in the MRF, 26M, into the destination in the ARF,
26A, specified by SaDsc. Further, it stores the value(s) from SaSrc in ARF into the store
address in memory 22 as specified by the address held in SmAddr in the MRF. The LSU 55
then independently post-increments each of the two load and one store addresses by the
respective stride value from the respective field of the stride register SmStride in the MRF as

specified by the respective one of the three immediate operands Strimm.

Note: for each of the two load and one store addresses of the current instance of the load-
store instruction, the stride operation of the current instruction increments the respective
address by the respective stride following each of the load and store operations of the
current load-store operation, respectively. Depending on implementation, this may mean
that all the increments are applied together after both the loads and the store, e.g. load,

load, store, increment, increment, increment. Alternatively the stride operation may
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increment the respective address immediately following each load and the store, e.g. load,
increment, load, increment, store, increment. Indeed the store could also come before one
or both of the loads. What matters is just that the increment of each load address is done
after its respective load, and the increment of the store address is done after the store. The

point is to move along the load and store addresses in the MRF ready for a subsequent

instance of the load-store instruction.

In embodiments the memory 11 (or at least the data memory 22) has only two 64-bit ports
for loading data from memory, and only one 64-bit wide port for storing data to memory. In
embodiments the MRF, 26M (of a given context) has only three 32-bit wide ports to the
load-store unit 55; and the ARF, 26A (of a given context) has only one 64-bit wide port to
the load-store unit 55. (Note: in the illustrated example, the IALU 56 is being used to
retrieve the pointers from the MRF 26M and to compute the addresses from these in order
to pass to the LSU 55, so in effect the IALU 56 is acting as part of the LSU 55. Hence in this
example the three ports from the MRF 26M to the LSU 55 comprise the three ports from the
MRF 26M to the IALU 56. It is also not excluded that in other implementations the LSU 55

could retrieve the pointers from the MRF 26M directly and compute its own addresses

based thereon.)

In embodiments the four 32-bit destination registers SaDst0:Dst0+3 in the ARF (128 bits in
total) may be used to load, from memory 22, e.g. a four-element vector of 16-bit floating
point (f16) values and a two-element vector of 32-bit floating point (f32) values. The two 32-
bit source registers SaSrc0:Src+1 in the ARF (64 bits in total) may be used to store, into

memory 22, e.g. a two-element vector of 32-bit of f32 values.

To use in a program, the load-store instruction is interspersed amongst other types of
instruction such as arithmetic instructions which take inputs from the destinations of the
load instructions, perform operations based thereon, and output results to the sources of
the load-store instruction. l.e. the program comprises instances of the load-store instruction
and instances of at least one arithmetic instruction, such as the vector dot product
instruction, matrix product instruction, accumulating vector dot product instruction,

accumulating matrix product instruction or convolution instruction mentioned previously;
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wherein the destinations of at least some of the load-store instructions are the sources of at
least some of the arithmetic instructions, and the destinations of at least some of the
arithmetic instructions are the sources of at least some of the load-store instructions. Due
to the high semantic density of the load-store instruction, with its two loads and stride
functionality, this enables to the program efficiently work through the data with a small

code overhead expended on the load and store operations.

For instance, the program may comprise a series of instruction pairs, each instruction pair
consisting of an instance of the load-store instruction followed by a corresponding instance
of an arithmetic instruction. In each instruction pair, the source of the load-store instruction
Is set as the destination of the arithmetic instruction from a preceding pair, and the
destinations of the load-store instruction are set as the sources of the corresponding
arithmetic instruction in the current or a subsequent pair. For instance consider an

arithmetic instruction “arith” having the syntax:

arith SaDst, SaSrcA, SaSrcB

where SaDst refers to an operand specifying a destination in the ARF, 26A; and $aSrcA,
SaSrcB refer to operands specifying two sources in the ARF (it will be appreciate that “arith”
is a generic name used here for any arithmetic instruction having at least this syntax). The

program may then be programmed with a series of instruction pairs, for instance:

ldx2st Xin-Pin, Pout, Tripacked, Strides; arith Pout, Xin, Pin;:
ldx2st Xin-Pin, Pout, Tripacked, Strides; arith Pout, Xin, Pin;
ldx2st Xin-Pin, Pout, Tripacked, Strides; arith Pout, Xin, Pin;

ldx2st Xin-Pin, Pout, Tripacked, Strides; arith Pout, Xin, Pin;

or.
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ldx2st Xin-Pin, Pout_A, Tripacked, Strides; arith Pout A, Xin, Pin;
ldx2st Xin-Pin, Pout_B, Tripacked, Strides; arith Pout_B, Xin, Pin;
ldx2st Xin-Pin, Pout_A, Tripacked, Strides; arith Pout A, Xin, Pin;

ldx2st Xin-Pin, Pout_B, Tripacked, Strides; arith Pout_B, Xin, Pin;

etc.

In embodiments, each pair is an instruction bundle, i.e. executed simultaneously down
respective pipelines. E.g. in embodiments the load-store instruction is executed by the main
pipeline using the MRF, 26M, and the arithmetic instruction is executed in parallel by the
auxiliary pipeline using the ARF, 26A. However in alternative realizations it is not excluded

that the load-store and arithmetic instruction could be executed one-after-another through

a single pipeline processing unit.

In the instances of the load-store instruction (ldx2st), Xin-Pin refers to the destinations
SaDsc of the two load operations in the ARF, 26A (e.g. a 4xf16 input vector Xin and a 2xf32
input vector Pin loaded into four 32-bit registers SaDsc0:Dsc0+3); and Pout_A or Pout B
refers to the source of the store in the ARF (e.g. 2 x f32 values stored from two 32-bit
registers $SaSrc0:Src0+1). “Tripacked” refers to the triple-packed address register pair
SmAddr0:Addr0+1 in the MRF, 26M (e.g. holding three 21-bit address pointers in two 32-bit
registers). “Strides” refers to the stride operands SmStride and Strimm, which specify the
stride for each of the two loads and store operation, by reference to a field within the stride
register SmStride in the MRF specified by three immediate values Strimm (see again Figure
8). In the instances of the arithmetic instruction, Xin, Pin refer to the source registers from
which inputs of the arithmetic instruction are taken, which are set to be the same as the
destinations of the load performed by the load-store instruction in the current or a previous
instruction pair. Pout refers to the destination for the output of the arithmetic instruction in
the ARF, which is set to be the same as the source of the store operation of the load-store
instruction in a subsequent instruction pair. In embodiments which execute each pair as a
bundle of two simultaneous instructions, Xin, Pin are set to be the same as the destinations

of the load performed by the load-store instruction in the previous bundle; and Pout is set
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to be the same as the source of the store operation of the ldx2st in the next bundle. This re-
uses the same registers, but because the two instructions are executed in parallel, the input
data for the current arithmetic instruction is what was read by the previous load instruction.

The current ldx2st then reuses those same registers to prepare the input data for the next

arithmetic instruction.

So in each pair, the load-store (ldx2st) stores the output currently found in a register Pout
from a previous arithmetic instruction in a previous instruction previous pair (e.g. bundle),
and also loads values from memory into registers Xin and Pin. The following arithmetic
instruction in the same pair (e.g. bundle) performs an arithmetic operation based on

previously loaded values and outputs to a register Pout for storing by the store operation of

a subsequent load-store instruction in a subsequent pair.

Note that in embodiments the arithmetic instruction has at least a third, implicit source in
the shared WRF, 26W. These may be set by the supervisor thread writing to the WRF. Thus

the supervisor sets common weights to be used implicitly by the arithmetic operations of all

the executing worker threads.

The values of the memory addresses “Tripacked” specifying SmAddrO:Addr0+1 in the MRF,
26M, are also set to some initial values by the respective worker. The stride values in the
fields of each possible stride register SmStride in the MRF are also set by the respective
worker. Each time the load-store instruction is executed, each of the three addresses (two
load addresses and one store address) in the memory address registers SmAddrO:AddrO+1
are post-incremented by the respective stride value. See again Figures 7 and 8. For instance,
say the load-store instruction specifies SmStride = SmStrideA and Strimm = 011000 (first
immediate stride operand = 01, second = 10 and third = 00). This means that after
performing the first load, it increments the first load address by the stride value in field 0 of
SmStrideA; after performing the second load it increments the second load address by the
stride value in field 1 of SmStrideA; and after the store it increments the store address by
the atomic increment (increment by a memory address step of 1 in the address space being
used). Subsequent instances of the load-store instruction may be set to specify the same or

a different value of SmStride, and the same or different values of each of the three
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immediate operands. Thus with each load-store instruction in the series, the locations of the
loads and the store can be moved along in a controllable fashion. Thus the code can
efficiently scan through the input data space in a flexible manner without needing additional

integer arithmetic instructions to compute new addresses.

Figure 9 illustrates an example application where this can be useful, namely performing a
convolution of a kernel K with a multidimensional portion of input data Xin. For instance the
input data may be a 3D volume of input data and the kernel K may be a 3D kernel. The input
data may also be called input channels, and the output data may be called the output
feature channels. Where it is said that the data is multidimensional, this means the data
takes a value at each of a plurality of combinations of coordinates in a two-or-more-
dimensional coordinate system, each dimension (i.e. each axis) representing a different
independent variable (and the value of the data at a given combination of coordinates being

the dependent variable).

An example of this would be in image processing where each data value represents a pixel.
For instance typically 8-bits are used for each of Red, Green and Blue; and those 8-bit
integer values will then be converted to f16 values prior to the convolution operation. Each
R,G,B value is treated as a separate input plane (i.e. separately input channel channel). So
each 2D input image has x, y, z dimensions, with the R, G, B planes populating the z-axis. The
volume of data may for example comprise a sequence of frames, where two dimensions of
the volume represent the spatial x and y axis of the frame area and the third dimension
represents the time axis corresponding to different frames in the sequence. In another
example the three dimensions of the volume may represent three spatial x, v, and z
dimensions of a 3D model or image of a space or object. In another example the data may
be only two dimensional representing the spatial x and y axis of a still image, with the z axis
representing a number of input images to be processed simultaneously. Note that the
applicability of the disclosed techniques is not limited to image or graphics processing, and
data with a higher dimensionality is also not excluded. E.g. the two, three or more
dimensions could represent different aspects of users or their circumstances in an

application learning user behaviour, etc.
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The kernel K is a matrix of predetermined weights. It may represent a certain feature that
the neural network is being trained to recognized, or that is being searched for in a
subsequent inference. For instance in the case of image data the kernel may represent an
edge or some other particular kind of shape. In a machine leaning application, each node in
the neural network may correspond to a respective kernel (though as will be discussed

further later, in many neural networks there are multiple nodes 102 that use the same

kernel values but just have different connections 104). In embodiments each node 102 is
represented by a respective worker thread, so each thread performs a respective
convolution of a kernel K with that thread’s respective input data. At least some of the
worker threads may use the same kernel K whose values are stored in the shared weights
register file (WRF) 26W, but each such thread convolves that kernel with the thread’s own
respective input data which is streamed from and to memory 22 via its own respective

auxiliary (or arithmetic) register file (ARF), 26A.

A discrete convolution (*) in three dimensions may be expressed as:

Xin * K [x,y,z] =Z_xy,2" (K[X"Y,Z’ ]IXin[x-X’, y-y’, z-2'])

A convolution thus comprises scanning the kernel K systematically across some or all of the
possible positions at which the kernel can be overlaid with the input data. At each such
position, each pixel (or data point) in the part of the input data that overlaps with the kernel
is multiplied by the value of the kernel at the corresponding overlaid point, and the results
of each of these individual multiplications are summed to give a scalar output representing
the convolution of the kernel with the input data at that particular overlaid position. This is
then repeated at different scanned positions of the kernel relative to the input data Xin, in
order to give a corresponding volume of output data (one scalar value per kernel position).
For instance in the example illustrated in Figure 9, the kernel K could begin placed in one
corner within the volume of input data Xin, and each kernel value is multiplied by the data
point it overlays when the kernel is at that position. The kernel is then moved along by one
step along the length of the volume and the point multiplications and sum are performed
again, this time with the kernel at the new position, etc. When the kernel has been scanned

along the whole length of the volume, it is shifted to a new coordinate position and the
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lengthways scan is performed again, etc., until the whole volume has been scanned. The
kernel at each given position generates one pixel (one scalar value) of the output data.
Hence the output data Xout will have the same or a similar size to the input data, depending

on the step size of the convolution scan.

In practice this needs to be broken down into smaller operations. This can be done by
splitting the convolution of the data with the kernel at a given position into a number of
individual vector dot products and partial sums. This is illustrated in the middle and right
hand sides of Figure 9. Say for example the kernel is 3x3x16 pixels in size (“pixel” not
necessarily referring to images for the sake of the present discussion). l.e. it consists of 3 by
3 by 16 predetermined weights values. This can be broken down into nine 16-element
vectors CW (also referred to herein as a constituent kernel of the kernel K). First the dot
product (i.e. scalar product) is taken between one of these nine vectors and the input data
at the corresponding position, to give a partial sum P (a scalar). Then the dot product is
taken between another of the nine vectors and accumulated with the first partial sum to
given a second partial sum (also a scalar). Then the dot product is taken between another of
the nine 16-element vectors and the result of this is accumulated with the second partial
sum to give a third partial sum, etc. Once this has been done to accumulate over all nine
vectors, the total accumulation result gives the value of a single point or pixel in the output
data Xout. This is then repeated at each kernel position as the kernel K is scanned over
different positions relative to the volume of input data Xin, thus giving a corresponding

volume of output data Xout (one output data point per kernel position).

In embodiments, to assist with performing computations such as convolutions in an efficient

manner, the instruction set of the processor 4 includes an arithmetic instruction in the form

of an accumulating product (“amp”) instruction. It has the syntax:

amp SaDst, SaSrcA, SaSrcB, Phase

where SaDst again refers to an operand specifying a destination in the ARF, 26A: and
SaSrcA, SaSrcB refer to operands specifying two sources in the ARF. “Phase” is an immediate

operand which specifies a phase of the accumulation. For example in embodiments the
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phase operand is formed of two bits specifying one of four possible phases 0...3. In
embodiments the amp instruction may be referred to as f16v4sisoamp, referring to the fact
that it takes one vector of four half-precision (16-bit) floating point values as a first input,
and a single-precision (32-bit) floating point value as a second input; and outputs a single
precision (32-bit) floating point value (“siso” referring to “single precision input, single
precision output”). In fact in embodiments the second input is a pair of two single-precision
floating point values (2 x 32-bits), as is the output. However it will be appreciated that these

particular values of precision and number of elements are not limiting to all possible

embodiments.

For one or more types of instruction such as the amp, in embodiments the location of the
weights in the WRF is completely implicit. Alternatively or additionally, one or more other
types of instruction may take an additional operand (not shown) specifying which set of

weights to use from amongst a few different sets in the WRF. E.g. an example may be the

slim convolution (“slic”) instruction mentioned later.

Combined with the previously-described load-store instructions (ld2xst), an instruction such
as the amp instruction can be used to efficiently steam data from memory, perform the dot
products and partial sums, and stream the partial sums back into memory. Consider for

example a program comprising a looped sequence of four instruction pairs, as follows.

Loop {
ldx2st Xin-Pin, Pout, Tripacked, Strides; amp Pout, Xin, Pin, Phase=0;
ldx2st Xin-Pin, Pout, Tripacked, Strides; amp Pout, Xin, Pin, Phase=1;
ldx2st Xin-Pin, Pout, Tripacked, Strides; amp Pout, Xin, Pin, Phase=2;

ldx2st Xin-Pin, Pout, Tripacked, Strides; amp Pout, Xin, Pin, Phase=3;

Another example version would be:

Loop {

ldx2st Xin-Pin, Pout_A, Tripacked, Strides; amp Pout A, Xin, Pin, Phase=0;
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ldx2st Xin-Pin, Pout_B, Tripacked, Strides; amp Pout B, Xin, Pin, Phase=1;
ldx2st Xin-Pin, Pout_A, Tripacked, Strides; amp Pout_ A, Xin, Pin, Phase=2;

ldx2st Xin-Pin, Pout_B, Tripacked, Strides; amp Pout B Xin, Pin, Phase=3;

etc.

Again, in embodiments each pair is an instruction bundle, i.e. executed simultaneously

down respective pipelines, e.g. the main and auxiliary pipelines.

Each instruction pair comprises an instance of the load-store instruction followed by an
instance of the accumulating product (amp) instruction. The sources of the amp instruction
are the destination of the two loads performed by the load-store instruction in the same or
a preceding instruction pair. In embodiments which execute each pair as a bundle of two
simultaneous instructions, the sources of the amp (Xin, Pin) are set to be the same as the
destinations of the load performed in the previous bundle. The destination of the amp
instruction is the source of the one store performed by the load-store instruction in a
subsequent instruction pair, e.g. next bundle. One of the sources SaSrcA, SaSrcB of the amp
instruction is used to take an input vector x from the input data Xin. The other is used to
take a partial sum. The amp instruction, when executed, performs a dot product of its input
vector x with a corresponding vector of weights CW from the weights register file WRF, 26W
(this vector CW being a constituent kernel of the overall or 3D kernel K). The phase operand
specifies a phase for the purpose of accumulating the results of the dot products. In each
instruction pair of the sequence in a given instance of the loop, the phase operand is set to a
different respective value specifying a different successive phase of the sequence. Over

these successive phases in the sequence as specified by the phase operand, the effect of the

amp instruction is to accumulate the results of each successive dot products. The

accumulation beings in the first phase in the sequence with an input partial sum.

The stride functionality of the load-store instruction enables the program to automatically
shift along the memory addresses to the next piece of data with each instruction pair,

without needing separate integer arithmetic instructions to compute new memory
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addresses to include in the MRF, 26M. The ability of the described load-store instruction to
select any of a number of preprogramed strides from the stride register SmStride is
especially useful to handle multidimensional data such as illustrated by way of example in
Figure 9. Memory space is one-dimensional but the data may have two, three or even more
dimensions. Depending on the mapping of the 1D memory space to the multidimensional
data space, then as the kernel K is scanned through the input data Xin, it may sometimes be
necessary to make different sized steps through the corresponding memory addresses in
the memory space. For instance as the kernel K is scanned lengthways along one dimension
of the input data Xin then the memory address of the data at each scan position may
increment in atomic steps, but when the scan needs to shift in the perpendicular plane, then
a different sized step in memory address may be needed to get to the next piece or subset
of the input data Xin (and independently, the same process is done for the second input and
output addresses). The different fields in the stride register SmStride, or stride registers (e.g.
SmStrideA, SmStrideB, ...) can advantageously be pre-programmed with different size jumps
in memory space. The programmer or compiler can then set the immediate operands
Strimm to select which jump size to use on a per load-store instruction basis (without

needing separate integer arithmetic instructions to recalculate the next address or the next

step size).

In embodiments the amp instruction is an accumulating matrix product instruction. The
operation of this will be described by reference to Figures 10 to 12. As shown in Figure 10,
the amp instruction, when executed by the FPU, performs a multiplication of an MxN matrix
of weights (from the WRF, 26 W) with an N-element input vector from the input data Xin. In
embodiments M=8 and N=16. Note that each of the M rows of the matrix correspond to a
constituent vector from a different respective kernel KO, K1....KM-1. Hence the amp
instruction is used to perform a component of the convolution of M different kernels K with
the input data in parallel. For instance each of these kernels may correspond to a
convolution of a different respective feature (e.g. different edge or shape) with the input
data. In the case of a convolutional neutral network they are feature filters, each one of the
M kernels attempting to detect the presence of a different feature in the input layers. For a

given kernel K, the amp instruction performs only a dot product and accumulation.
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However, the matrix allows multiple kernels to be efficiently convolved with the data in

parallel.

The N-element input vector is split into N1 segments, each comprising a subvector of N2
elements (so N=N1xN2). In embodiments N1=4 and N2=4. The phase operand of the amp
instruction takes one of N1 different possible values 0....N1-1 corresponding to N1 different
segments. In each instance of the looped sequence, the amp instruction in each successive
pair takes a different value of the phase operand specifying a different successive one of the
phases 0....N1-1. Each phase performs the dot product of a corresponding one of the N1
subvectors of the N-element input vector, and each of the M rows of the matrix (so a part of
the computation for each of the M different kernels K). The FPU in the execution unit 18 (in
embodiments in the auxiliary or arithmetic execution unit 18A) has M accumulator states
SAACC (per thread). In embodiments these are implemented as internal state 57 of the FPU.
However in alternative implementations it is not excluded that they could be implemented
as registers in one of the register files 26 (e.g. the ARF 26A of the respective thread). In the
illustrated example these are the even numbered states SAACC[0], SAACC[2]... SAACC[14];
whilst the odd numbered states SAACC[1], SAACC[3]... SAACC[15] may be used to propagate

values between different loops of the sequence, but this is an implementation detail and

not limiting.

Figure 11 illustrates the operation of the amp instruction diagrammatically. Figure 12 gives
an example of a series of amp instructions. Each is understood to be preceded by a
corresponding load-store instruction of an instruction pair, as shown above. In Figure 12, Pn
is single-precision input partial-sum n, xn is an f16v4 input vector, CWm,n is the common

weight state SCWEI_m_n, and Rn is the final single-precision result of successive dot-

product accumulations that began with Pn.

In operation, in response to the (decoded) opcode of the amp instruction, the FPU of the

execution unit 18 (in embodiments the auxiliary execution unit 18A) performs the following

operations.

 From the register(s) in the ARF 26A specified by one of the source operands of the amp

instruction, it takes a number M/N1 of partial sums and places these temporarily in a
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propagator state for the next loop. This propagator state could be implemented in the
internal state 57 of the FPU, or in alternative implementations it could be another
register in one of the register files 26 (e.g. the ARF). Each phase takes a different subset
of M/N1 partial sums. Over the N1 phases, M such partial sums are taken into the
propagator state. So if M=8 and N1=4, then each amp instruction takes two partial sums
(e.g. two f32 values) as an input and holds these in the propagator state, and over all
four phases then eight partial sums are received.

From the register(s) in the ARF 26A specified by one of the source operands of the amp
instruction, it takes an N2-element segment (subvector) of the input vector xin. For each
of the M rows in the matrix (so each of the M kernels KO...KM-1), it performs a dot
product of this with a corresponding subvector of weights CW from the WRF. Which
column the subvector of weights is taken from depends on the value of the phase
operand. Further, if the phase is the first (i.e. initial) phase in the sequence, then a
corresponding one of the partial sums is also added to each of the M dot products. Note
that because each amp instruction in the previous loop took a respective M/N1 partial
sums, where N1 is the number of phases, then the previous loop will have placed all M
partial sums in the propagator state ready for the current loop.

For each of the M rows, the result of the above calculation is accumulated (summed)
with any value already in a corresponding one of the M accumulator states SAACC, thus
generating a corresponding one of M results RO...RM-1. Over the N1 phases, the amp
instruction will thus perform a dot product of the full N-element input vector with a
corresponding N-element vector of weights from the WRF.

In the current loop, a number M/N1 of results R from the previous loop are output to
the destination register(s) in the ARF specified by the destination operand of the amp
instruction. Each phase outputs a different subset of M/N1 partial sums, and over the N1
phases, M such partial sums are taken into the propagator state. So in embodiments
where M=8 and N1=4, then two results are output per amp instruction (e.g. two f32s),
and all eight results R0O...R7 are output over all four phases.

After the last phase of the current loop (or at the start of the first phase of the next loop
before any results are overwritten), the results R of the current loop are placed

temporarily in a propagator state ready for output in the next loop. This propagator
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state could be implemented in the internal state 57 of the FPU, or in alternative

implementations it could be another register in one of the register files 26 (e.g. the ARF).

To summarize, a single partial sum is: (1) added to the first dot-product result and stored in

the accumulator state (overwriting the previously held value), (2) accumulated with three

more dot-product results, and (3) copied into the temporary propagator state (in which case

that value will be written to the destination operand of a future amp instruction). An

alternative to step (3) is to either write the resulting partial sum straight out of the
accumulator into the destination operand of the amp instruction. Either way, steps (1) and

(3) may be overlapped in the hardware, providing a 4-cycle loop.

In embodiments the accumulator state does not need to be explicitly reset. Since the
starting point for each matrix-vector multiply is the input partial-sum read from memory,
the output volume has every element set to zero at the beginning of the convolution, rather
than resetting the accumulator state. That said, in embodiments the tile 4 does indeed allow

one to zero initialise all of the accumulator state.

Note that the input propagator state of the current amp instruction is held for use in the
next loop. Also, the result output by the amp instruction to the destination register in the
ARF is the existing accumulator state before the accumulation operation of the current amp
is applied - it's the result of a previous short sequence of accumulations, that doesn’t

include the current input.

The program is configured (by the programmer or compiler) so that the results R become
the partial sum inputs P for subsequent loops. The exact relation is down to the
programmer or compiler and depends on the structure of the data and kernel. Typically the

partial sums will have an initial value (in memory) of 0.

Note due to the lag between loops, the sequence requires a warm-up period. There is a
latency between a particular input vector being presented and the result of the 4-phase
calculation being returned by the amp instruction. That latency is fixed and means that the

first M results are invalid, uninteresting or not meaningful, and are discarded in the warm-
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up code. After this warm-up period where no useful result is produced, the code then enters
the repeat-loop which goes ahead and writes the useful results to the required memory
location (64-bits at a time in the illustrated example). There is also a cool-down period after
the inner loop where no new inputs are provided but where the final output values are

stored. Figure 12 illustrates the warm-up period and “result latency” for f16v4sisoamp.

In embodiments the number of kernels M = 8, the number of elements in the input vector N
= 16, and the number of phases N1 = 4. In embodiments each element of the input vector is
an f16 value, and each input partial sum and each result is an f32 value. In such
embodiments the above process can load and process data at a rate of two 32 partial sums
and four f16 elements of the input vector per instruction pair, and can output and store
data at rate of two f32 values per instruction pair. That’s 128 bits of input and 64 bits of
output per instruction pair. This corresponds to the two 64-bit wide load ports and one 64-
bit wide store port between the LSU 55 and the data memory 22 (see again Figure 4). Also,
because of the triple packing of the addresses, the process can be handled via two 32-bit
wide ports from the MRF 26M to the LSU plus another for the strides. Two 64-bit wide ports
are used from the ARF 26A to the FPU in the auxiliary execution unit 18A. Figure 12 shows
that for each 16-element input vector, the loop produces 8 output values (1 output value
per kernel). In this particular scenario, those output values are 32-bits each. The loop above
processes through 16 input values every 4 ticks (4 x f16 input values every instruction). To
sustain that rate of input, the processor 4 therefore has to produce 8 x 32-bit values every 4

tick loop — which amounts to 4 x 64-bit stores per loop, or 1 x 64-bit store per tick.

The weights CW are taken from the shared WRF 26W and are the same for each thread. It
turns out that in applications such as neural networks, there are a lot of scenarios where it is
required to multiply (such as part of a convolution) the same set of weights with different
data. For example some nodes in a neural network may comprise exactly the same weights
but different connections. E.g. each kernel K(m=0...M) may represents a convolution of a
feature (e.g. an edge or shape) with the input data (e.g. an area or volume of graphical
pixels). Therefore the worker threads corresponding to these kernels don’t need separate
weights. Instead there is provided just one copy of the weights state owned by the

supervisor. The use of shared thread operands from shared weights register file thus
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advantageously requires less register space for the weights. Figure 12 shows that for each
16-element input vector, the loop produces 8 output values (1 output value per kernel). In
this particular scenario, those output values are 32-bits each. The loop above works through
16 input values every 4 cycles (4 x 16 input values every instruction). To sustain that rate of
input, the processor 4 therefore produces 8 x 32-bit values every 4 cycle loop — which

amounts to 4 x 64-bit stores per loop, or 1 x 64-bit store per cycle.

In embodiments the odd accumulators SAACC[1], SAACC[3], ..., SAACC[15] are used to
stagger the results (Rx), and to do the same to the partial-sum inputs (Px). The partial inputs
are fed two at a time to the engines at the back — into accumulator registers SAACC[13] and
SAACCI[15]. Each cycle those values move forward, so in this case into SAACC[11] and
SAACC[9]. When they reach the destination AMP unit, they move into the even numbered
accumulators, rather than the odd ones ready for the accumulation. So {SAACC[15],

SAACC[13]} -> {SAACC[11], SAACC[9]} -> {SAACC[7], SAACC[5]} -> {SAACC[2], SAACC[O]}.

Figures 13 and 14 illustrate another type of arithmetic instruction that may benefit from a

load-store instruction of the type described herein, namely a convolution instruction which
convolves the input data streamed via the ARF 26A of the respective thread with a 2D set of
weights from the common weights register file (WRF) 26W. In embodiments this instruction
may take the form of a half precision floating point vector slim convolution (slic instruction),
e.g. “f16vaslic” referring to the fact that it operates on 4-element subvectors of f16 values.
It has one half precision and one single precision input, and a single precision output. slic is
similar and uses the same hardware as amp. However this instruction performs a1 x4 x 4
convolution (which is a true convolution) for each of 2 kernels, ratherthana 1 x 1 x 16

accumulating dot product for each of 8 kernels. In fact in embodiments, it can be configured

to perform a 1 x N x 4 convolution where N is 2,3 or 4.

The accumulating matrix product (“amp”) and slim convolution (“slic”) instructions facilitate
high performance multiply accumulate sequences, for scenarios where weight sharing
across worker contexts is appropriate. In embodiments amp and slic instructions may be

supported for both single-precision and half-precision number formats and operate in the
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same basic manner. The common compute configuration state (comprising the shared
weights in the WRF 26W) is first initialised by the supervisor context. Two streams of input
data are then processed: the input activation (pixel) data, and the partial-sum values
specifying a starting value for a subsequent multiply-accumulate sequence (for convolutions
these are the partially-computed output pixel/activations). A single stream of output data is
produced: the resulting, accumulated partial-sum values. Each partial-sum input value is
subjected to a fixed-length sequence of multiply-accumulate operations, before the final
partial-sum result is presented as an output. Many dot-product and accumulate operations
occur in parallel, performed by compute engines. The first multiplicand is provided by the

input data stream and the second is provided by the common compute configuration state.

The following table lists some example amp and slic instruction variants, any or all of which

may be included in the processor’s instruction set in embodiments.

Instruction Input data format Input pértia!-sum Output partial-sum
format format

fl6v4sisoamp | Half-precision (v4) Single-precision (v2) | Single-precision (v2)
flév4hihoamp Half-precision (v4) | Half-p;ecision (v2) Half-precision (v2)
f16v4sihoan;p Half-precis?on (v4) | Single-precision (v2) Half-precision (v2)
f325isoamp“ Single-prgcision (scalar) | Single-precision (v2) Single-précision (v2)

' f16vAasisoslic 1Half-precision (\;4) Singie-precisioﬁ (v2) Sinéle-precisionm(vzn)
f16vahihoslic | Half-pre;:-ision v4) Half—preci—sion (v2) Half-precision (v2)

fi6vasihoslic Half-precision @4) Single-precisién (v2) HaIf—precisionTvZ)

| £32sisoslic r Single-precisiron (scalar) | Single-precision (v2) gingle-precisfon (v2)

Note: for some types of instruction the location of the weights is completely implicit, but for
others they take an operand selecting which of a number of different sets to use in the WRF.
The f16v4sisoslic instruction for example only requires a quarter of the weight state of
f16va4sisoamp. As a result software is allowed to preload up to 4 sets of weights. The weight-
set selection is specified by two bits of an immediate operand. For f16v4sisoamp on the

other hand, this takes the full weights state and so there is no selection within it.
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It will be appreciated that the above embodiments have been described by way of example

only.

For instance, the scope of the present disclosure is the above-described architecture in
which a separate context is provided for the supervisor thread, or in which the supervisor
thread runs in a slot and then relinquishes its slot to a worker. The supervisor could instead
use a general purpose context. Or In another arrangement for example, the supervisor may
run in its own dedicated slot. Further, the implementation is not limited to specific one of
the threads even having a supervisor role. Further, the scope of the disclosure is not limited

to the processor 4 being a tile in an array of tiles. In alternative embodiments the processor

4 could for example be a stand-alone processor or single-chip processor.

The implementation of the execution unit 18 is not limited to separate main execution unit
18M and auxiliary execution unit 18A; nor separate MRF and ARF. In general the registers

could be from any one or more register files, which could be shared between different

memory access and arithmetic operations, or separated.

The arithmetic instructions which use the shared weights register file are not limited to
matrix product or convolution instructions. More generally the shared weights register file
can be used for any type arithmetic instruction or combination of instructions, e.g. a non-
accumulating matrix product instruction where the accumulation is done in separate
instructions or general purpose code, or other sequences of matrix multiplications other
than convolutions, where the results of previous products are not necessarily the inputs of
subsequent products. Other examples may include vector dot product or accumulating

vector dot product instructions - i.e. the arithmetic instructions don’t’ have to be applying M

different kernels in parallel.

Further, the scope of the present disclosure is not limited to the particular register sizes,
port bit widths, numbers of ports, value precisions, vector sizes or matrix sizes disclosed
above by way of example. Other register and port bit widths are possible, as are other

precisions of values, and other vector or matrix sizes (e.g. in terms of number of elements).
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Further, in other implementations, other packings of the two load and one store address
into two registers are possible, e.g. three 10-bit addresses in two 16-bit registers, or three
42-bit addresses in two 64-bit registers. Also the load and store addresses don’t necessarily
have to be the same length. Further, other packings of the strides values into the stride
register are also possible in alternative implementations, e.g. four 8-bit stride fields in a 32-

bit register, etc.

In yet further variants, the applicability of the disclosure is not limited to image processing.
The term “kernel” as used herein could mean any matrix of weights applied as part of any
process comprising operations such as vector multiplication, matrix multiplication or
convolution, or others (e.g. correlation). Also the application ability is not limited to 3D
volume of data. The input data (and the kernel) could be linear or 2D, or have a greater
multi-dimensionality (>3 independent variables or degrees of freedom). Further, the scope
of the disclosure is not limited to machine learning applications. There are many other
applications where it may be desired to perform an operation on a combination of one or

more operands that are common between concurrent threads and one or more operands

that are specific to each thread.

Other variants or use cases of the disclosed techniques may become apparent to the person
skilled in the art once given the disclosure herein. The scope of the disclosure is not limited

by the described embodiments but only by the accompanying claims.
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Claims

1. A processor comprising:
one or more register files; and
an execution unit configured to execute instances of instruction types defined in an

instruction set, each instruction in the instruction set consisting of an opcode and zero or

more operands;

wherein the execution unit is a barrel-threaded execution unit configured to run a

plurality of concurrent threads each in a different respective one of a repeating sequence of

interleaved time slots, and for each of the concurrent threads, the one or more register files

comprise a respective set of context registers arranged to hold a program state of the

respective thread, each set of context registers comprising a respective set of arithmetic

operand registers for use by the respective thread;

wherein one of the one or more register files further comprises a set of shared

weights registers common to some or all of the concurrent threads;
wherein the types of instruction defined in the instruction set include an arithmetic
instruction having operands specifying a source and a destination from amongst the

respective set of arithmetic registers of the thread in which the arithmetic instruction is

executed; and

wherein the execution unit is configured so as, in response to the opcode of the

arithmetic instruction, to perform an operation comprising multiplying an input from said

source by at least one of the weights from at least one of the shared weights registers, and

to place a result in said destination.

2. The processor of claim 1, wherein said at least one of the shared weights registers is
implicit from the opcode of the arithmetic instruction, not being specified by any operand of

the arithmetic instruction.

3. The processor of claim 1, wherein the arithmetic instruction takes a further operand
specifying said at least one of the shared weights registers from amongst the set of shared

weights registers.
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4. The processor of any preceding claim, wherein the input comprises a vector, and the
multiplication comprises a dot product of the input with a vector of weights from the shared

weights registers.

5. The processor of claim 3 and 4, wherein said at least one of the shared weights

registers comprises a subset of the shared weights registers from amongst a plurality of
subsets, each subset holding a respective weights vector; and wherein said further operand

selects from which subset to take the weights vector to use in said multiplication.

b. The processor of any preceding claim, wherein said arithmetic instruction comprises
one of: a vector dot product instruction, an accumulating vector dot product instruction, a
matrix product instruction, an accumulating matrix product instruction, or a convolution

Instruction.

7. The processor of any preceding claim, wherein the concurrent threads comprise a
plurality of worker threads and the execution unit is further arranged to run, at least at
some times, a supervisor subprogram comprising at least one supervisor thread configured

to manage the worker threads.

8. The processor of claim 7, wherein the supervisor subprogram is configured to write

the weights in the shared weights register file.

0. The processor of claim 8, configured such that the weights in the shared weights

registers can be written only by the supervisor subprogram, and the worker threads can

only read the shared weights registers.

10. The processor of any of claims 7 to 9, wherein the context registers comprise a
respective one of the sets of context registers for each of the worker threads that can be

executed concurrently, and an additional set of context registers arranged to hold a

program state of the supervisor subprogram.
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11. The processor of claim 10, wherein the supervisor subprogram is arranged to begin
by initially running in all the slots, and to write the weights before launching the worker
threads; and wherein the supervisor subprogram launches each of the worker threads by
relinquishing each of some or all of the slots in which the supervisor subprogram is initially

running to respective ones of the worker threads.

12. The processor of claim 11, wherein the instruction set includes a run instruction
which, when executed as part of the supervisor subprogram, causes the slot in which the

run instruction is executed to be relinquished to one of the worker threads such that the

worker thread is launched in that slot in place of the supervisor subprogram.

13. The processor of claim 12, wherein the instruction set includes an exit instruction
which, when executed as part of one of the worker threads, causes the slot in which the exit
instruction is executed to be handed back to the supervisor subprogram such that the

supervisor subprogram continues running in that slot again in place of the worker thread.

14. The processor of any of claims 7 to 13, wherein the register files include a separate
arithmetic register file for each concurrent worker thread, the respective arithmetic register

file comprising the respective arithmetic operand registers.

15. The processor of claim 14, wherein the register files include a separate weights

register file comprising the weights registers.

16. The processor of claim 15, wherein the weights register file is arranged such that it
can be written only by the supervisor subprogram and the worker threads can only read the

weights register file.

17. A method of operating a processor configured according to any of claims 1 to 16, the
method comprising running a program comprising one or more instances of the arithmetic

instruction on the processor through the execution unit.
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