
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0202834 A1

Mandryk et al.

US 20110202834A1

(43) Pub. Date: Aug. 18, 2011

(54)

(75)

(73)

(21)

(22)

(60)

VISUAL MOTION FEEDBACK FOR USER
INTERFACE

Inventors:

Assignee:

Appl. No.:

Filed:

Luciano Baretta Mandryk,
Seattle, WA (US); Jeffrey
Cheng-Yao Fong, Seattle, WA (US)

Microsoft Corporation, Redmond,
WA (US)

12/773,803

May 4, 2010

Related U.S. Application Data

Provisional application No. 61/304,004, filed on Feb.
12, 2010.

Contcint
element
430A

Contcint
element
43OB

Display area
300

Content
element
A30C

Background
layer 450

Publication Classification

(51) Int. Cl.
G06F 3/0 (2006.01)
GO6F 3/033 (2006.01)
GO6F 3/048 (2006.01)

(52) U.S. Cl. 715/701; 715/863; 715/800
(57) ABSTRACT

Aspects of a user interface that provides visual feedback in
response to user input. For example, boundary effects are
presented to provide visual cues to a user to indicate that a
boundary in a movable user interface element (e.g., the end of
a scrollable list) has been reached. As another example, par
allax effects are presented in which multiple parallel or sub
stantially parallel layers in a multi-layer user interface move
at different rates, in response to user input. As another
example, simulated inertia motion of UI elements is used to
provide a more natural feel for touch input. Various combi
nations of features are described. For example, simulated
inertia motion can be used in combination with parallax
effects, boundary effects, or other types of visual feedback.

Contcht Content

layer 430

layer 42

Content Content Content
element element element Layer 44 element

A3 OD
element
43 OE 43 OF 43 OG 43OH

Patent Application Publication Aug. 18, 2011 Sheet 1 of 24 US 2011/0202834 A1

Figure 1A

1
Receive user input 101

indicating motion in UI
element

Determine whether 102
inertia will be applied

Determine whether 103
parallax/boundary

effects will be applied

Render motion in UI 104
element

End

Patent Application Publication Aug. 18, 2011 Sheet 2 of 24 US 2011/0202834 A1

Figure 1B

Receive gesture 111
information

110

1

112
Calculate inertia motion

Calculate post-gesture 113
position based on gesture

info./inertia motion

Determine post-gesture 113
position exceeds

boundary

Calculate distortion 114
effect to indicate

boundary exceeded

End

Patent Application Publication Aug. 18, 2011 Sheet 3 of 24 US 2011/0202834 A1

Figure 1C

120

Receive input indicating 121
motion in UI element
having plural layers

Calculate motion in first 122
layer based on inertia
info. and user input

Calculate parallax 123
motion in Second layer
based on first motion

End

Patent Application Publication Aug. 18, 2011 Sheet 4 of 24 US 2011/0202834 A1

Receive gesture
information 21 O

Figure 2 Apply touch input 212 filtering
2OO

Apply coordinate 220 Space transform

Calculate velocity at
end of gesture 230

1

Yes No Inertia
gesture?

Yes 1 Apply
incrtia?

Compute new position Compute new position
252 based on gesture based on gesture

coordinates -- incrtia coordinates
254

Yes Boundary
feedback? 260

Apply NO
262 boundary

effect

Parallax Yes
feedback?

Apply
parallax
effect

272

Motion complete

Patent Application Publication

Figure 3

e as as as s s is as as as

State
390

v

Contact 1

Contact2

Contact3

Contact4

Contact5

Contact6

Contact/
(X- 352
Contact8
Contact9
f0- 350

-Y Gontact10

Display area
300

Aug. 18, 2011 Sheet 5 of 24

Squeeze
point

State
392

396 su
Contact

Contact2

Contact3

Contact4

Contact5

Contact6

Contact

Contact

Contact9

Contact O

Display area

US 2011/0202834 A1

State
394

v

Contact 1

Contact2

Contact3

Contact4

Contact5

ContactO

Contact/

Contact8

Contact9

COntact 10

-- - A

Display area
300

US 2011/0202834 A1

S.

2.

Patent Applicat

quamuo)

US 2011/0202834 A1 Patent Application Publication

US 2011/0202834 A1 Aug. 18, 2011 Sheet 8 of 24 Patent Application Publication

Patent Application Publication Aug. 18, 2011 Sheet 9 of 24 US 2011/0202834 A1

firror-r Y jet ha-ar

Albums -'l's
Display state

590 C Olient
layer 532

R 8. R &

y y
540 542 544

N ^ 510 g
AAA AAA AAA AAA AAA ra: ity- AAA AA AA AAA AAA AAA AAA AAA AAA s

Display area
300

A- 302
- sa

---... List header

-bums. layer 530
K-Kr K-K..........

Display state Rock & Rock &
592 X RO RO Content

Part Part layer 532

y y
542 544

N -

^Display 3C
300

- s

r List header
S layer 530

Display state
594 Contest

US 2011/0202834 A1 Aug. 18, 2011 Sheet 10 of 24 Patent Application Publication

V9 9 InãII

099

89 0.InãIA

Patent Application Publication

US 2011/0202834 A1

O9 9 InãII

Patent Application Publication

US 2011/0202834 A1 Patent Application Publication

US 2011/0202834 A1 Aug. 18, 2011 Sheet 14 of 24 Patent Application Publication

† 19.13ÁæTI © 19.1988’I

3??***** ****** !!! ;*	 {{9 9 In??a

099

Patent Application Publication Aug. 18, 2011 Sheet 15 of 24 US 2011/0202834 A1

Figure 7A
Gesture

boundary area Gesture
Control position 770 boundary area

position 710 (pT = (x1, yT)) 780 (S.)
A. Control area

''''''' (- - - - - - - - - - - - - - - - - - 720

Min. visible
aca

position 730
Min. visible (py= (Vmin, Prmin)) area 740

Initial gesture
position 750
(q = (X, V))

XT FX -- (VVmin -- Wrmin) m (XA -- WA) FX

y T = V -- (VVmin -- hi/min) M (VA -- h4) = y.

Sp - (h m hvnin WA - Wymin.)

Patent Application Publication Aug. 18, 2011 Sheet 16 of 24 US 2011/0202834 A1

Figure 7B
Gesture

boundary area Gesture
Control position 770 boundary area

position 710 (pr= (x1, 'r)) 780
Control area

'P' ') (? ------------------ 720

Min. Visible

position 730
Min. Visible (py = (XVmin, J'min)) area 740

Initial gesture
position 750
(q = (X, Yg))

v

Post-gesture position 752
(causes boundary feedback)

Patent Application Publication Aug. 18, 2011 Sheet 17 of 24 US 2011/0202834 A1

Figure 8A
Control

prosio k - w -
(PA - (0. 0)) k - wi -

Contact 1

Contact2

Contact3

Contact4
Min. visible

C

Control position 830
C 820 (p Winnin (0, 'Vinin))

Contact5

Contact6

Contact7 Min, visible
area 840

Contact8
h min

Contact9
(X)
Contact10

Initial touch position/gesture
boundary area position 850

(q = (x, y) = p T = (xt, 'T))

Gesture

boundary 88O xt = x. -- (0 -- wVmin) M (0 -- WA) = x,

i VT Pg (VVmin hymin.) (0 h) Vy
ST = (h A m hymin, O)

Patent Application Publication Aug. 18, 2011 Sheet 18 of 24 US 2011/0202834 A1

Figure 8B
Control

position 810
(p = (0, 0))

Contact 1

Contact2

Contact3

Contact4
Min. Visible

Ca Contact5
Control position 830
area 820 (Prmin - (0, yvnin))

Contact6

Min. Visible Contact/
area 840 Post-gesture position 852

COntact8 (causes boundary feedback)

Contact9 Initial touch position/gesture
(x) boundary area position 850

Contact10 (4 ('' ''). P. ('' '')
Post-gesture position 854—-(x)
(no boundary feedback)

Gesture i
boundary 880->

00£00£00£ bºue KeIds!CIbºue KeIdsIGIpou?. KeIds[GI ---+----------------+---------— \---+----------
US 2011/0202834 A1

an an an an an a1

| ----

‘QS JauuunS
'S uOSueu

SuOSueu

Aug. 18, 2011 Sheet 19 of 24

016 eeue Ionuo,)
` – – – – – – – – – – – – –.^` – – – – – – – – – – – – –„^` – – – – – – – – – – – – –„^ ?766Z66066 3181S??e?S3181S

Patent Application Publication

Patent Application Publication Aug. 18, 2011 Sheet 20 of 24 US 2011/0202834 A1

Figure 10
Position

Position curve
1020

1
Boundary

position 1010

Time

Patent Application Publication Aug. 18, 2011 Sheet 21 of 24 US 2011/0202834 A1

1100 Figure 11
Hub module 1110

Styles/
Configuration Hub page declaration
properties (background, title, content)

U
Markup control
generator 1120

1130

Direct
manipulation

eVentS

Motion commands

U
framework

1150

Interaction
module
1154

Rendering Navigation/gesture
requests information

Device OS 1160

Output to
display User input

Patent Application Publication Aug. 18, 2011 Sheet 22 of 24 US 2011/0202834 A1

Figure 12

Input device(s) 1250 Processing
unit 1210 25

Processing unit

Memory 1220 Memory 1225
Output device(s) 1260

:

oo e o o : : Storage 1240 :

Software 1280 implementing described techniques
and tools

Communication
connection(s) 1270

Patent Application Publication Aug. 18, 2011 Sheet 23 of 24 US 2011/0202834 A1

Figure 13 1300

Computing
Services

1312

Computer Mobile device Television

1320A 132ON

Patent Application Publication Aug. 18, 2011 Sheet 24 of 24 US 2011/0202834 A1

Figure 14

Mobile device Non-removable Power supply
memory 1422 1482

()) GPS receiver Rcmovable Accelerometer
1484 memory 1424 1486

Input/output ports Processor Physical connecto1
48O 41 () 1436

Input device(s) Output device(s) Wireless modem
1404 1430 1450 1460

Touchscreen --
1432 Speaker Wi-Fi

1452 1462
Microphone

1434 Display Bluetooth
1464 1454

Camera
1436 Operating system

1412 Physical
keyboard 1438

Trackball Applications 1414
1440

US 2011/0202834 A1

VISUAL MOTION FEEDBACK FOR USER
INTERFACE

CROSS REFERENCE TO RELATED
APPLICATION

0001. This application claims the benefit of U.S. Provi
sional Patent Application No. 61/304,004, filed on Feb. 12,
2010, entitled “MULTI-LAYER USER INTERFACE WITH
FLEXIBLE MOVEMENT,” which is incorporated herein by
reference.

BACKGROUND

0002 The design of an effective user interface poses many
challenges. One challenge is how to provide a user with an
optimal amount of visual information or functionality, given
the space limitations of a display and the needs of a particular
user. This challenge can be especially acute for devices with
Small displays, such as Smartphones or other mobile comput
ing devices. This is because there is often more information
available to a user performing a particular activity (e.g.,
browsing for audio or video files in a library of files) than can
fit on the display. A user can easily become lost unless careful
attention is paid to how information is presented on the lim
ited amount available display space. Visual cues are useful for
indicating, for example, a user's location when browsing a list
or other collection of data, since it is often not possible to
show an entire collection (e.g., a list of contacts stored in a
Smartphone) on a small display.
0003. Another challenge is how to provide a high level of
functionality while maintaining a satisfying and consistent
user experience. As devices have become more complex, and
as consumers have become more demanding, it has become
increasingly difficult to design user interfaces that are conve
nient and pleasing for users, without sacrificing reliability,
flexibility, functionality or performance.
0004 Whatever the benefits of previous techniques, they
do not have the advantages of the techniques and tools pre
sented below.

SUMMARY

0005 Techniques and tools are described that relate to
different aspects of a user interface that provides visual feed
back in response to user input. For example, boundary effects
are presented to provide visual cues to a user to indicate that
a boundary in a movable user interface element (e.g., the end
of a scrollable list) has been reached. As another example,
parallax effects are presented in which multiple parallel or
Substantially parallel layers in a multi-layer user interface
move at different rates, in response to user input. As another
example, simulated inertia motion of UI elements is used to
provide a more natural feel for touch input. Various combi
nations of features are described. For example, simulated
inertia motion can be used in combination with parallax
effects, boundary effects, or other types of visual feedback.
0006. In one aspect, a user interface (UI) system receives
gesture information corresponding to a gesture on a touch
input device. The UI system calculates simulated inertia
motion for a movable user interface element based at least in
part on the gesture information, and potentially on other
inertia information Such as a friction coefficient or a parking
speed coefficient. Based at least in part on the gesture infor
mation and on the simulated inertia motion, the UI System
calculates a post-gesture position of the movable user inter

Aug. 18, 2011

face element. The UI system determines that the post-gesture
position exceeds a gesture boundary of the movable user
interface element, and calculates a distortion effect (e.g., a
Squeeze, compression or squish effect) in the movable user
interface element to indicate that the gesture boundary has
been exceeded. Calculating the distortion effect can include,
for example, determining an extent by which the gesture
boundary has been exceeded, determining a compressible
area of the movable user interface element, determining a
scalefactor for the distortion effect based at least in part on the
compressible area and the extent by which the gesture bound
ary has been exceeded, and Scaling the compressible area
according to the scale factor. The distortion effect can be
calculated based on a distortion point (which, for compres
Sion, can be referred to as a compression point or Squeeze
point), which can indicate the part of the UI element to be
distorted.

0007. In another aspect, user input (e.g., a gesture on a
touch screen) indicates movement in a graphical user inter
face element having plural movable layers. Based at least in
part on inertia information and the user input, a UI System
calculates a first motion having a first movement rate in a first
layer of the plural movable layers, and calculates a parallax
motion in a second layer of the plural movable layers. The
parallax motion is based at least in part on the first motion
(and potentially simulated inertia motion), and the parallax
motion comprises a movement of the second layer at a second
movement rate that differs from the first movement rate. The
parallax motion can be calculated based on, for example, a
parallax constant for the second layer, or an amount of dis
playable data in the second layer.
0008. In another aspect, a UI system receives gesture
information corresponding to a gesture on a touch input
device, the gesture information indicating a movement of a
user interface element having a movement boundary. Based at
least in part on the gesture information, the UI System com
putes a new position of the user interface element. Based at
least in part on the new position, the UI System determines
that the movement boundary has been exceeded. The UI
system determines an extent by which the movement bound
ary has been exceeded, determines a compressible area of the
user interface element, determines a scale factor for a distor
tion effect based at least in part on the compressible area and
the extent by which the movement boundary has been
exceeded, and presents a distortion effect in the user interface
element. The distortion effect comprises a visual compres
sion of content in the compressible area (e.g., text, images,
graphics, video or other displayable content) according to the
scale factor. Depending, for example, on the size of the com
pressible area and the size of the display area, some parts of
the compressible area may not be visible on a display, so the
distortion can be virtual (e.g., in areas that are not visible on
a display) or the distortion can be actually displayed, or some
parts of the distorted content can be displayed while other
parts of the distorted content are not displayed. The visual
compression is in a dimension that corresponds to the move
ment of the user interface element. For example, a vertical
movement in a UI element that exceeds a movement bound
ary can cause content in the UI element to be vertically
compressed or Squeezed.
0009. The foregoing and other objects, features, and
advantages of the invention will become more apparent from

US 2011/0202834 A1

the following detailed description, which proceeds with ref
erence to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

0010 FIGS. 1A-1C and 2 are flow charts showing
example techniques for presenting motion feedback in user
interface elements, according to one or more described
embodiments.
0011 FIG. 3 is a diagram showing a boundary effect,
according to one or Snore described embodiments.
0012 FIGS. 4A-4C are diagrams showing parallax
effects, according to one or more described embodiments.
0013 FIGS. 5 and 6A-6E are diagrams showing parallax
effects and boundary effects inauser interface having parallel
layers, according to one or more described embodiments.
0014 FIGS. 7A, 7B, 8A and 8B are diagrams showing
gesture boundary areas which can be used to determine
whether to present boundary effects, according to one or more
described embodiments.
0015 FIG. 9 is a diagram showing example pinch and
stretch gestures, according to one or more described embodi
mentS.

0016 FIG. 10 is a graph showing changes in position over
time of a UI element that exhibits aboundary feedback effect,
according to one or more described embodiments.
0017 FIG. 11 is a system diagram showing a UI system in
which described embodiments can be implemented.
0018 FIG. 12 illustrates a generalized example of a suit
able computing environment in which several of the
described embodiments may be implemented.
0019 FIG. 13 illustrates a generalized example of a suit
able implementation environment in which one or more
described embodiments may be implemented.
0020 FIG. 14 illustrates a generalized example of a
mobile computing device in which one or more described
embodiments may be implemented.

DETAILED DESCRIPTION

0021 Techniques and tools are described that relate to
different aspects of a user interface that provides visual feed
back in response to user input. For example, boundary effects
are presented to provide visual cues to a user to indicate that
a boundary in a movable user interface element (e.g., the end
of a scrollable list) has been reached. As another example,
parallax effects are presented in which multiple parallel or
Substantially parallel layers in a multi-layer user interface
move at different rates, in response to user input. As another
example, simulated inertia motion of UI elements is used to
provide a more natural feel for touch input. Various combi
nations of features are described. In one implementation, a UI
system that accepts touch input includes detailed motion rules
(e.g., rules for interpreting different kinds of touch input,
rules for presenting inertia motion in UI elements in response
to touch input, rules for determining boundaries in UI ele
ments, etc.). The motion rules can be combined with various
combinations of optional motion features such as parallax
effects, boundary effects, and other visual feedback. The
visual feedback that is presented according to motion rules
and optional motion features in a UI element can depend on
many factors, such as the type of the UI element and the
content of the UI element.
0022 Various alternatives to the implementations
described herein are possible. For example, techniques

Aug. 18, 2011

described with reference to flowchart diagrams can be altered
by changing the ordering of stages shown in the flowcharts,
by repeating or omitting certain stages, etc. As another
example, systems described with reference to system dia
grams can be altered by changing the ordering of processing
stages shown in the diagrams, by repeating or omitting certain
stages, etc. As another example, user interfaces described
with reference to diagrams can be altered by changing the
content or arrangement of user interface features shown in the
diagrams, by omitting certain features, etc. As another
example, although some implementations are described with
reference to specific devices and user input mechanisms (e.g.,
mobile devices with a touchscreen interface), described tech
niques and tools can be used with other devices and/or user
input mechanisms.
0023 The various techniques and tools can be used in
combination or independently. Different embodiments
implement one or more of the described techniques and tools.

I. Overview of Motion Feedback Features for User Interfaces

0024. As devices have become more complex, and as con
Sumers have become Snore demanding, it has become
increasingly difficult to design user interfaces that are conve
nient and pleasing for users, without sacrificing reliability,
flexibility, functionality or performance. The feel of a user
interface (UI) is becoming increasingly important to distin
guish the underlying product from its competitors. An impor
tant contributor to the feel of a UI is how it reacts when a user
interacts with it. This is especially true for touch-based inter
faces.
0025. Accordingly, techniques and tools are described for
providing feedback (e.g., visual cues such as parallax effects,
boundary effects, etc.) to users in response to user input (e.g.,
touch input). In some embodiments, movements in elements
(also referred to as “controls) are based at least in part on
user input (e.g., gestures on a touchscreen) and an inertia
model. For example, a movement in a UI element can be
extended beyond the actual size of a gesture on a touchscreen
by applying inertia to the movement. Applying inertia to a
movement in a UI element typically involves performing one
more calculations using gesture information (e.g., a gesture
start position, a gesture end position, gesture Velocity and/or
other information) and one or more inertia motion values
(e.g., friction coefficients) to determine a post-gesture state
(e.g., a new position) for the UI element. Simulated inertia
motion can be used in combination with other effects (e.g.,
parallax effects, boundary effects, etc.) to provide feedback to
a user. In any of the examples herein, movements in UI
elements can be rendered for display (e.g., depicting calcu
lated distortion, parallax, or other effects, if any).
0026 Movement in UI elements typically depends to
Some extent on user interaction. For example, a user that
wishes to navigate from one part of a UI element to another
(e.g., from the beginning of a scrollable list to the end of the
list) provides user input to indicate a desired movement. The
user input can then cause movement in the UI element and
potentially other elements in the user interface. In some
embodiments, a user causes movement in a display area of a
device by interacting with a touchscreen. The interaction can
include, for example, contacting the touchscreen with a fin
gertip, stylus or other object and moving it (e.g., with a
flicking or Sweeping motion) across the Surface of the touch
screen to cause movement in a desired direction. Alterna
tively, a user can interact with a user interface in some other

US 2011/0202834 A1

way, such as by pressing buttons (e.g., directional buttons) on
a keypad or keyboard, moving a trackball, pointing and click
ing with a mouse, making a voice command, etc.
0027. The actual amount and direction of the user's
motion that is necessary to produce particular movements can
vary depending on implementation or user preferences. For
example, a user interface system can include a default setting
that is used to calculate the amount of motion (e.g., interms of
pixels) as a function of the size or rate of a user movement. As
another example, a user can adjust a touchscreen sensitivity
control. Such that the same motion of a fingertip or stylus on
a touchscreen will produce Smaller or larger movements,
depending on the setting of the control. Gestures can be made
in various directions to cause movement in UI elements. For
example, upward and downward gestures can cause upward
or downward movements, respectively, while rightward and
leftward movements can cause rightward and leftward move
ments, respectively. Upward/downward motion can even be
combined with left/right motion for diagonal movements.
Other kinds of motion, Such as non-linear motion (e.g.,
curves) or bi-directional motion (e.g., pinch or stretch
motions made with multiple contact points on a touchscreen)
also can be used to cause movement in UI elements.

Example 1

Inertia, Boundary Effects and Parallax Effects: Over
view

0028 FIG. 1A is a flow chart showing a general technique
100 for providing motion feedback in a UI. At 101, a device
receives user input indicating motion in a UI element. For
example, a UI System on a mobile device receives gesture
information corresponding to a gesture on a touchscreen on
the mobile device. At 102, the device determines whether
inertia will be applied to the motion indicated by the user
input. For example, a UI System determines based on gesture
information (e.g., gesture start position, gesture end position,
gesture direction, gesture Velocity) whether to apply inertia to
the motion in the UI element. At 103, the device determines
whether visual effects (e.g., boundary effects, parallax
effects, etc.) will be applied to the motion indicated by the
user input. For example, the device determines whether to
apply a distortion effect (e.g., a compression or Squeeze
effect) to indicate that a boundary in the UI element (e.g., a
boundary at the end of a scrollable list) has been reached. As
another example, the device determines whether to apply a
parallax effect (e.g., by moving parallel layers in a multi-layer
UI element at different rates). The applied effects also can be
based on inertia, where inertia is applied to the motion indi
cated by the user input. For example, if a UI System applies
inertia to a movement and calculates, based on the inertia, a
new position for a UI element that is outside a boundary for
the UI element, the UI system can apply a boundary effect to
provide a visual indicator that the boundary has been reached.
At 104, the motion in the UI element is rendered for display.
0029 FIG. 19 is a flow chart showing a technique 110 for
providing boundary effects in combination with inertia
motion. At 111, a UI System receives gesture information
corresponding to a gesture. For example, the UI System
receives gesture coordinates and Velocity information for the
gesture. At 112, the UI System calculates inertia motion based
on the gesture information. For example, the UI System deter
mines that inertia motion is applied based on the Velocity
information, and calculates a duration of inertia motion for

Aug. 18, 2011

the gesture. At 113, the UI System calculates a post-gesture
position based on the gesture information and the inertia
motion. For example, the UI System calculates the post-ges
ture position based on the gesture coordinates and the dura
tion of the inertia motion. At 114, the UI system determines
that a boundary for the UI element has been exceeded. For
example, the UI System compares one or more coordinates
(e.g., vertical or horizontal coordinates) of the post-gesture
position and determines an extent by which the post-gesture
position exceeds the boundary. At 115, the UI system calcu
lates a distortion effect to indicate that the boundary has been
exceeded. For example, the UI System calculates a squeeze or
compression effect in the content of the UI element based on
the extent to which the post-gesture position exceeds the
boundary.
0030 FIG. 1C is a flow chart showing a technique 120 for
providing parallax effects incombination withinertia motion.
At 121, a UI System receives user input indicating motion in
a UI element having plural layers. For example, the UI system
receives gesture coordinates and Velocity information for a
gesture on a touch screen, where the gesture is directed to a
content layer in multi-layer UI. At 122, the UI system calcu
lates motion in a first layer based on inertia information and
the user input. For example, the UI system determines that
inertia motion should be applied to movement in the content
layer based on the Velocity information, and calculates a
duration of inertia motion for the movement. At 123, the UI
system calculates aparallax motion in a second layer based on
the first motion in the first layer. For example, the UI system
calculates the parallax motion in a layer above the content
layer based on the motion in the content layer, with the par
allax motion having a different movement rate than the
motion in the content layer. The parallax motion also can
include inertia motion, or inertia motion can be omitted in the
parallax motion.
0031. In any of the above techniques, any combination of
the inertia, boundary, parallax, distortion, and other effects
described herein can be applied. Depending on implementa
tion and the type of processing desired, processing stages
shown in example techniques 100, 110, 120 can be rear
ranged, added, omitted, split into multiple stages, combined
with other stages, and/or replaced with like stages.

Example 2

Inertia, Boundary Effects and Parallax Effects:
Detailed Technique

0032 FIG. 2 is a flow chart showing a detailed example
technique 200 for providing visual feedback in a UI in
response to a user gesture.
0033. At 210, a UI system on a device receives touch input
information in a touch input stream. For example, the touch
input stream comprises data corresponding to a gesture on a
touchscreen of a mobile device. Data received from the touch
input stream can include, for example, gesture information
Such as a gesture start position, a gesture end position, and
timestamps for the gesture. The touch input stream is typi
cally received from a device operating system, which con
verts raw data received from a touch input device (e.g., a
touchscreen) into gesture information. Alternatively, data
received from the touch input stream can include other infor
mation, or gesture information can be received from some
other source.

US 2011/0202834 A1

0034. At 212, filtering is applied to the touch input stream.
In the filtering stage, one or more algorithms are applied to the
touch input stream coming from the OS to filter out or correct
anomalous data. For example, the filtering stage can correct
misaligned touch data caused by jittering (e.g., values that are
not aligned with previous inputs) or filter out spurious touch
contact points (e.g., incorrect interpretation of a single touch
point as multiple touch points that are close together), etc. As
another example, if only single-touch-point gestures are
allowed, the filtering stage can convert any multi-touch input
into a single-touch input. Alternatively, touch input filtering
can be performed during generating of the touch input stream
(e.g., at the device OS). As another alternative, touch input
filtering can be performed during a coordinate space trans
form stage (e.g., coordinate space transform 220). As another
alternative, touch input filtering can be omitted.
0035. At 220, the UI system applies a coordinate space
transform to data in the touch input stream corresponding to
the gesture. For example, a coordinate space transform is
applied to the data from the touch input stream in order to
account for possible rotations of the device, Scale changes,
influence from other animations, etc., in order to properly
interpret the original input stream. For example, if a UI ele
ment is rotated 90 degrees such that vertical movement in the
UI element becomes horizontal movement (or vice versa), a
Vertical gesture can be transformed to a horizontal gesture (or
vice versa) to account for the rotation of the device. If no
adjustments are necessary, the coordinate space transform
can leave gesture information unchanged. Alternatively the
coordinate space transform state can be omitted.
0036. At 230, the UI system calculates the velocity at the
end of the gesture. For example, the velocity is calculated by
determining a first position near the end of the gesture and an
end position of the gesture, and dividing by the time elapsed
during the movement from the first position near the end of
the gesture to the end position. In one implementation, the
first position is determined by finding the gesture position at
approximately 100 ms prior to the end of the gesture. Mea
Suring Velocity near the end of the gesture can help to provide
a more accurate motion resulting from the gesture than mea
Suring Velocity over the entire course of the gesture. For
example, if a gesture starts slowly and ends with a higher
Velocity, measuring the Velocity at the end of the gesture can
help to more accurately reflect the user's intended gesture
(e.g., a strong flick). Alternatively, the Velocity is calculated
by determining the distance (e.g., in pixel units) between the
start position for the gesture and the end position of the
gesture, and dividing by the time elapsed during the move
ment from the start position to the end position. The time
elapsed can be calculated, for example, by computing the
difference between a timestamp associated with the start posi
tion and a timestamp associated with the end position.
0037. At 240, the UI system determines whether the ges
ture is an inertia gesture. As used herein, an inertia gesture
refers to a gesture, such as a flick gesture, capable of causing
movement in one or more user interface elements to which
inertia can be applied. The UI System candistinguish between
a non-inertia gesture and an inertia gesture by determining
how quickly the user's finger, stylus, etc., was moving when
it broke contact with the touchscreen, and whether the veloc
ity exceeds a threshold. If the gesture ends with a velocity
above the threshold, the gesture can be interpreted as an
inertia gesture. For example, a gesture that starts with panning
motion at a velocity below the threshold and ends with a

Aug. 18, 2011

velocity above the threshold can be interpreted as ending with
a flick that causes movement to which inertia can be applied.
If the gesture ends with a velocity below the threshold, the
gesture can be interpreted as a non-inertia gesture. Exemplary
techniques and tools used in some implementations forges
ture interpretation are described in detail below.
0038 If the gesture is an inertia gesture (e.g., a flick ges
ture), at 250 the UI system determines whether inertia will be
applied to the motion indicated by the gesture. For example,
the UI System determines based on gesture information (e.g.,
end-of-gesture Velocity) and/or other information (e.g., user
preferences) whether to apply inertia to the motion in the UI
element. Despite being considered an inertia gesture, a ges
ture Such as a flick may still not have inertia applied to its
resulting movements, such as when a flick gesture is received
for a UI element that does not support inertia movements, or
for a UI element for which inertia movement has been deac
tivated (e.g., according to user preference).
0039. If inertia is not to be applied (e.g., when the gesture

is not an inertia gesture), at 254 the UI System computes a new
position for the UI element based on gesture information
(e.g., end-of-gesture position coordinates). If inertia is to be
applied, at 252 the UI system computes a new position based
on the gesture information (e.g., end-of-gesture position
coordinates) and simulated inertia. For example, the simu
lated inertia involves treating a UI element, or part of a UI
element, as a physical object of non-Zero mass that moves
according to an approximation of Newtonian physics. The
approximation can include, for example, a friction coefficient
and/or other parameters that control how the movement is
calculated and/or rendered.
0040. When the new position of the UI element has been
computed (with or without simulated inertia), the UI system
determines at 260 whether boundary feedback will be pre
sented. Determining whether boundary feedback will be pre
sented involves determining whether the new position is
within boundaries (if any) of the UI element. For example, in
a scrollable list, the UI system can determine whether the new
position is calculated to be outside the boundaries of the
scrollable list (e.g., below the end of a vertically scrollable
list). Some UI elements may not have boundaries that can be
exceeded by any permitted motion. For example, a UI ele
ment may take the form of a wrappable list, which may have
a default entry position but no beginning or end. If the wrap
pable list is axis-locked (e.g., if movement is only permitted
along a vertical axis for a vertically scrolling list), the list may
have no boundaries that can be exceeded by any permitted
motion. For UI elements without any boundaries, or without
boundaries that can be exceeded by permitted motion, the
determination of whether the new position is within bound
aries can be skipped. Axis locking is described in more detail
below.

0041) If boundary feedback is to be presented, at 262 the
UI system applies a boundary effect to the UI element. For
example, the UI System can apply a visual distortion effect
Such as a 'squish' or compression of text, images or other
visual information in the UI element, to provide a visual cue
that a boundary of the UI element has been reached. Bound
ary effects are described in more detail below.
0042. The UI system determines at 270 whether parallax
feedback will be presented. Determining whether parallax
feedback will be presented involves determining whether the
UI element has multiple parallel layers or substantially par
allel layers that can be moved at different rates based on the

US 2011/0202834 A1

same gesture. If parallax feedback is to be presented, at 272
the UI system applies a parallax effect to the UI element. In
general, a parallax effect involves movement of multiple par
allel layers, or substantially parallel layers, at different rates.
Example parallax effects are described in more detail below.
0043. The processing stages in example technique 200
indicate example flows of information in a UI System.
Depending on implementation and the type of processing
desired, processing stages can be rearranged, added, omitted,
split into multiple stages, combined with other stages, and/or
replaced with like stages.
0044) For example, although example technique 200
shows stages of receiving data from a touch input stream,
applying touch input filtering, applying a coordinate space
transform, calculating a Velocity at the end of a gesture, and
determining whether the gesture is an inertia gesture. Such
processing stages are only exemplary. Gesture information
(e.g., gesture Velocity, position, whether the gesture is a can
didate for simulated inertia, etc.) can be obtained in other
ways. As an example, a module that determines whether to
apply inertia motion and determines whether to apply bound
ary feedback or parallax effects can obtain gesture data from
another source. Such as another module that accepts touch
input and makes calculations to obtain gesture information
(e.g., gesture Velocity, end-of-gesture position).
0045. As another example, although example technique
200 shows a determination of whether to present boundary
feedback occurring before a determination of whether to
present parallax feedback, such an arrangement is only exem
plary. A determination of whether to present boundary feed
back and/or parallax feedback can be performed in other
ways. As examples, once a new position has been calculated,
determinations of whether to present boundary feedback and/
or parallax feedback can occur in parallel, or the determina
tion of whether to present a parallax effect can occur before
the determination of whether to present a boundary effect.
Such arrangements can be useful, for example, where a ges
ture may cause movements in multiple parallel layers of a UI
element prior to reaching a boundary of the element. A UI
system also can determine (e.g., based on characteristics of a
current UI element) whether boundary effects and/or parallax
effects are not available (e.g., for UI elements that do not have
multiple layers or boundaries), and skip processing stages
that are not relevant.

II. Boundary Effects
0046 Boundary feedback can be used to provide visual
cues to a user to indicate that a boundary (e.g., a boundary at
the end, beginning, or other location) in a UI element (e.g., a
data collection such as a list) has been reached. In described
implementations, a UI System presents a boundary effect in a
UI element (or a portion of a UI element) by causing the UI
element to be displayed in a visually distorted State. Such as a
Squeezed or compressed State (i.e., a state in which text,
images or other content is shown to be smaller than normal in
one or more dimensions), to indicate that a boundary of the UI
element has been reached.
0047. Described techniques and tools for presenting
boundary feedback can be applied to any UI element with one
or more boundaries that can be manipulated by moving the
element. For example, described techniques and tools can be
used in an email viewer, Such that text in a scrollable email
message is distorted (e.g., Squeezed or compressed) to indi
cate that the end of the email message has been reached.

Aug. 18, 2011

0048 Boundary effects (e.g., distortion effects) can be
presented in different ways. For example, a boundary effect
can be held in place for different lengths of time depending on
user input and/or design choice. A boundary effect can end,
for example, by returning the UI element to a normal (e.g.,
undistorted) state when a user lifts a finger, stylus or other
object to end an interaction with a touchscreen after reaching
a boundary, or when an inertia motion has completed. As
another example, distortion effects other than a squish,
Squeeze or compression can be used. One alternative distor
tion effect is a visual stretch. A stretch effect can be used, for
example, in combination with a Snap-back animation to indi
cate that boundary has been reached.
0049 Boundary effects can be presented even when it is
possible to continue a movement beyond a boundary. For
example, if a user scrolls to the end of a vertically-oriented
list, causing a distortion of text or images at the end of the list,
further motion can cause the list to wrap past the boundary
and back to the beginning of the list. The UI also can show an
element (or part of an element) at the top of the list to indicate
that further movement can allow the user to wrap back to the
beginning of the list.

Example 3

Boundary Effect: Distortion
0050 FIG. 3 is a diagram showing a graphical user inter
face (GUI) presented by a UI system that uses a distortion
effect to indicate that a boundary of UI element has been
reached. According to the example shown in FIG. 3, a user
302 (represented by the hand icon) interacts with a list com
prising list elements (“Contact1...” “Contact2... etc.). In this
example, distortion effects depend at least in part on the
location of a squeeze point 396. Some list elements with
distortion effects are shown as being outside display area 300.
0051 FIG. 3 shows example states 390-394. In state 390,
user 302 interacts with a touchscreen by making an upward
motion, indicated by an initial gesture position 350 and an
end-of-gesture touch position 352. The interaction can
include, for example, contacting the touchscreen with a fin
gertip, stylus or other object and moving it (e.g., with a
flicking or Sweeping motion) along the Surface of the touch
screen. Although FIG.3 shows user 302 interacting with the
touchscreen at particular locations in the display area 300, the
UI system allows interaction with other parts of the touch
screen to cause movement in the list. Furthermore, although
the example shown in FIG. 3 shows user 302 making an
upward motion to scroll towards the end of the list, user 302
also can make other motions (e.g., downward motions to
scroll towards the beginning of the list). The UI system can
interpret different kinds of upward or downward user move
ments, even diagonal movements extending to the right or left
of the vertical plane, as a valid upward or downward motion.
0.052 From state 390, the upward motion causes a distor
tion effect shown in state 392. In this example, the upward
motion is finger-tracking motion caused by a draggesture, but
distortion effects also can be caused by other motion resulting
from other kinds of gestures. Such as inertia motion caused by
a flick gesture. The distortion effect indicates that a boundary
in the list has been reached. In the example shown in state
FIG.3, the entire list is treated as a single surface, as indicated
by the single dimension line to the right of the list in states
390, 392 and 394, respectively. In state 392, the list has been
Squeezed or compressed in a vertical dimension, as shown by

US 2011/0202834 A1

the reduced length of the dimension to the right of the list. The
text of each list element has been Squeezed or compressed in
a vertical dimension. The elements are distorted proportion
ally. The effect in state 392 is as if all the list elements are
being compressed against a barrier at the squeeze point 396.
0053. In the example shown in state 392, the squeeze point
396 is indicated at the top of a list, outside the display area
300. Other squeeze points are also possible. For example, the
squeeze point could be at the center of a list (e.g., at item 50
in a 100 item list) or at the top of a visible portion of a list. In
this example, the list can be considered as having two parts—
one part above the Squeeze point, and one part below the
Squeeze point—where only one part of the list is Squeezed.
The Squeeze point can change dynamically, depending on the
state of the list and/or display. For example, a squeeze point
can move up or down (e.g., in response to where the center of
the list is) as elements are added to or removed from the list,
or a squeeze point can update automatically (e.g., when the
end of the list has been reached) to be at the top of a visible
portion of the list. As another example, a squeeze point can be
placed outside of a list. This can be useful to provide more
consistent visual feedback, Such as when a UI element does
not fill the visible area.

0054. In state 394, the list has returned to the undistorted
state shown in state 390. For example, the list can return to the
undistorted state after the gesture shown in state 390 is ended
(e.g., when the user breaks contact with the touchscreen).
0055. The upward motion shown in FIG. 3 is only an
example of a possible user interaction. The same motion
and/or other user interactions (e.g., motions having different
sizes, directions, or Velocities) can cause different effects,
different display states, different transitions between display
states, etc. For example, a motion that causes a distortion
effect in a UI element (e.g., at the end of a vertically scrollable
list) also can cause another portion of the UI element (e.g., a
list item at the beginning of a vertically scrollable list) to be
displayed to indicate availability of a wrapping feature in the
list. Further movement can then cause wrapping in the UI
element (e.g., from the end back to the beginning of a verti
cally scrollable list).
0056 States 390-394 are only examples of possible states.
In practice, a UI element can exist in any number of States
(e.g., in intermediate states between example states 390-394,
etc.) in addition to, or as alternatives to, the example states
390-394. For example, it is preferable to show a gradual
transition between an undistorted state (e.g., state 390) and a
distorted state (e.g., state 392), or from a distorted state to an
undistorted state, to provide a more natural feel and avoid the
appearance of abrupt changes in the display. Intermediate
states, such as states that may occur between state 390 and
state 392, or between state 392 and state 394 can show gradu
ally increasing or decreasing degrees of distortion, as appro
priate.

III. Parallax Effects

0057. In described embodiments, a UI system can present
parallel, or substantially parallel, movable layers. The UI
system can present a parallax effect, in which layers move at
different speeds relative to one another. The effect is referred
to as a parallax effect because, in a typical example, a layer
that is of interest to a user moves at a faster rate than other
layers, as though the layer of interest were closer to the user
than the other, slower-moving layers. However, the term “par

Aug. 18, 2011

allax effect as used herein refers more generally to effects in
which layers move at different rates relative to one another.
0058. The rate of movement in each layer can depend on
several factors, including the amount of data to be presented
visually (e.g., text or graphics) in the layers, or the arrange
ment of the layers relative to one another. The amount of data
to be presented visually in a layer can measured by, for
example, determining the length as measured in a horizontal
direction of the data as rendered on a display or as laid out for
possible rendering on the display. Length can be measured in
pixels or by some other Suitable measure (e.g., the number of
characters in a string of text). A layer with a larger amount of
data and moving at a faster rate can advance by a number of
pixels that is greater thana layer with a smalleramount of data
moving at a slower rate. Layer movement rates can be deter
mined in different ways. For example, movement rates in
slower layers can be derived from movement rates in faster
layers, or vice versa. Or, layer movement rates can be deter
mined independently of one another. Layers that exhibit par
allax effects can be overlapping layers or non-overlapping
layers.
0059. When user interaction causes movement in layers,
the movement of the layers is a typically a function of the
length of the layers and the size and direction of the motion
made by the user. For example, a leftward flicking motion on
a touchscreen produces a leftward movement of the layers
relative to the display area. Depending on implementation
and/or user preferences, user input can be interpreted in dif
ferent ways to produce different kinds of movement in the
layers. For example, a UI System can interpret any movement
to the left or right, even diagonal movements extending well
above or below the horizontal plane, as a valid leftward or
rightward motion of a layer, or the system can require more
precise movements. As another example, a UI System can
require that a user interact with a part of a touchscreen cor
responding to the display area occupied by a layer before
moving that layer, or the system can allow interaction with
other parts of the touchscreen to cause movement in a layer.
As another example, a user can use an upward or downward
motion to Scroll up or down in a part of the content layer that
does not appear on the display all at once.
0060. In some embodiments, lock points indicate corre
sponding positions in layers with which a display area of a
device will be aligned. For example, when a user navigates to
a position on a content layer Such that the left edge of the
display area is at a left-edge lock point “A” the left edge of
display area will also be aligned at a corresponding left-edge
lockpoint'A' in each of the other layers. Lockpoints also can
indicate alignmentofa right edge of a display area (right-edge
lock points), or other types of alignment (e.g., center lock
points). Typically, corresponding lockpoints in each layer are
positioned to account for the fact that layers will move at
different speeds. For example, if the distance between a first
lock point and a second lock point in a content layer is twice
as great as the distance between corresponding first and sec
ond lock points in a background layer, the background layer
moves at half the rate of the content layer when transitioning
between the two lock points.
0061. In addition to indicating corresponding positions in
layers, lock points can exhibit other behavior. For example,
lock points can indicate positions in a content layer to which
the layer will move when the part of the layer corresponding
to the lock point comes into view on the display. This can be
useful, for example, when an image, list or other content

US 2011/0202834 A1

element comes partially into view near an edge of the display
area—the content layer can automatically bring the content
element completely into view by moving the layer Such that
an edge of the display area aligns with an appropriate lock
point. A lock animation can be performed at the end of a
gesture. Such as a flick or pangesture, to align the layers with
a particular lock point. As an example, a lock animation can
be performed at the end of a gesture that causes movement of
a content layer to a position between two elements in a con
tent layer (e.g., where portions of two images in a content
layer are visible in a display area). A UI System can select an
element (e.g., by checking which element occupies more
space in the display area) and transition to focus on that
element using the lock animations. This can improve the
overall look of the layers and can be effective in bringing
information or functional elements into view in a display
area. A lock animation also can be used together with simu
lated inertia motion. For example, a lock animation can be
presented after inertia motion stops, or a lock animation can
be blended with inertia motion (such as by extending inertia
motion to a lock point, or ending inertia motion early by
gradually coming to a stop at a lock point) to presenta Smooth
transition to a lock point.
0062. The amounts and rates of movements presented in
parallax effects can be calculated and presented in different
ways. In a detailed example described below, equations are
described for calculating parallax effect movements in which
a parallax constant is used to determine anew position for a
layer after a gesture. As another example, motion in layers
and/or other elements. Such as lists, can be calculated based
on motion ratios. For example, a UI System can calculate
motion ratios for a background layer and a title layer by
dividing the width of the background layer and the width of
the title layer, respectively, by a maximum width of the con
tent layer. Taking into account the widths of the background
layer and the title layer, a system can map locations of lock
points in the background layer and the title layer, respectively,
based on the locations of corresponding lock points in the
content layer.
0063 Movement of various layers can differ depending on
context. For example, a user can navigate left from the begin
ning of a content layer to reach the end of a content layer, and
can navigate right from the end of the content layer to reach
the beginning of a content layer. This wrapping feature pro
vides more flexibility when navigating through the content
layer. Wrapping can be handled by the UI system in different
ways. For example, wrapping can be handled by producing an
animation that shows a rapid transition from the end of layers
Such as title layers or background layers back to the beginning
of Such layers, or Vice-versa. Such animations can be com
bined with ordinary panning movements in the content layer,
or with other animations in the content layer, such as locking
animations. However, wrapping functionality is not required.

Example 4

Parallax Effects: Multiple Layers with Background
Layer

0064 FIGS. 4A-4C are diagrams showing a GUI pre
sented by a UI system with three layers 410, 412,414 and a
background layer 450. In this example, a user 302 (repre
sented by the hand icon) interacts with content layer 414 by
interacting with a touchscreen having a display area 300.

Aug. 18, 2011

0065 Background layer 450 floats behind the other layers.
Data to be presented visually in background layer 450 can
include, for example, an image that extends beyond the
boundaries of display area 300. The content layer 414
includes content elements (e.g., images) 430A-H. Layers
410, 412 include text information (“Category' and “Selected
Subcategory.” respectively). The length of content layer 414
is indicated to be approximately twice the length of layer 412,
which is in turn indicated to be approximately twice the
length of layer 410. The length of background layer 450 is
indicated to be slightly less than the length of layer 412.
0066. In FIGS. 4A-4C, the direction of motion that can be
caused in the layers 410, 412, 414, 450 by user 302 is indi
cated by a left-pointing arrow and a right-pointing arrow.
These arrows indicate possible movements (left or right hori
Zontal movements) of layers 410, 412,414, 450 in response to
user movements. In this example, the system interprets user
movements to the left or right, even diagonal movements
extending above or below the horizontal plane, as a valid
leftward or rightward motion of a layer. Although FIGS.
4A-4C show user 302 interacting with a portion of display
area 300 that corresponds to content layer 414, the system
also allows interaction with other parts of the touchscreen
(e.g., parts that correspond to portions of display area 300
occupied by other layers) to cause movement in layers 410.
412,414, 450.
0067. When user input indicates a motion to the right or

left, the system produces a rightward or leftward movement
of the layers 410,412, 414, 450 relative to display area 300.
The amount of movement of layers 410, 412, 414, 450 is a
function of the data in the layers and the size or rate of the
motion made by the user.
0068. In FIGS. 4A-4C, example left-edge lock points “A.”
“B” and “C” are indicated for layers 410,412.414. 450. The
left-edge lock points indicate the corresponding position of
the left edge of the display area 300 on each layer. For
example, when a user navigates to a position on content layer
414 such that the left edge of display area 300 is at lock point
“A” the left edge of display area 300 will also be aligned at
lock point “A” of the other layers 410, 412,450, as shown in
FIG. 4A. In FIG. 4B, the left edge of display area 300 is at lock
point “B” in each of the layers 410,412,414,450. In FIG. 4C,
the left edge of the display area 300 is at lockpoint “C” in each
of the layers 410, 412, 414, 450.
0069. The lock points shown in FIGS. 4A-4C are not gen
erally representative of a complete set of lock points, and are
limited to lock points “A” “B” and “C” only for brevity. For
example, left-edge lock points can be set for each of the
content elements 430A-430H. Alternatively, fewer lock
points can be used, or lock points can be omitted. As another
alternative, lock points can indicate other kinds of alignment.
For example, right-edge lock points can indicate alignment
with the right edge of display area 300, or center lock points
can indicate alignment with the center of display area 300.
(0070. In this example, layers 410, 412, 414, 450 move
according to the following rules, except during wrapping
animations:

0071 1. Content layer 414 will move at approximately
twice the rate of layer 412, which is approximately half
the length of layer 414.

0.072 2. Layer 412 will move at approximately twice
the rate of layer 410, which is approximately half the
length of layer 412.

US 2011/0202834 A1

0073. 3. Content layer 414 will move at approximately
four times the rate of layer 410, which is approximately
/4 the length of layer 414.

0074. 4. Background layer 450 will move slower than
layer 410. Although background layer 450 is longer than
layer 410, the distance to be moved between neighbor
ing lock points (e.g., lock points 'A' and “B”) in layer
410 is greater than the distance between the correspond
ing lock points in background layer 450.

0075 Movement of layers 410, 412, 414, 450 may differ
from the rules described above in some circumstances. In this
example, wrapping is permitted. User 302 can navigate left
from the beginning of content layer 414 (the position shown
in FIG. 4A), and can navigate right from the end of content
layer 414 (the position shown in FIG. 4C). During a wrapping
animation, Some layers may move faster or slower than dur
ing other kinds of movements. In this example, the image in
background layer 450 and the text in layers 410 and 412
moves faster when user input causes wrapping back to the
beginning of content layer 414. In FIG. 4C, display area 300
shows portions of one and two letters, respectively, in layers
410 and 412, at the end of the respective text strings. Display
area 300 also shows the rightmost portion of the image in
background layer 450. A wrapping animation to return to the
state shown in FIG. 4A can include bringing the leftmost
portion of the image in background layer 450 and the begin
ning of the text in layers 410, 412 into view from the right.
This results in a more rapid movement in layers 410, 412 and
450 than in other contexts, such as the transition from the state
shown FIG. 4A to the state shown in FIG. 4B.

Example 5

Inertia Motion with Parallax Effects and Boundary
Effects

0.076 Parallax effects can be used in combination with
boundary effects and inertia motion. For example, boundary
effects can be used to indicate when a user has reached a
boundary of a layer, or a boundary of an element within a
layer. As another example, inertia motion can be used to
extend motion of UI elements caused by Some gestures (e.g.,
flick gestures). If inertia motion causes movement of a UI
element (e.g., a layer) to extend beyond a boundary, a UI
system can present a boundary effect.
0077 FIG. 5 is a diagram showing two layers 530, 532.
Display area 300 is indicated by a dashed line and has dimen
sions typical of displays on Smartphones or similar mobile
computing devices. The content layer 532 includes content
elements 540-544. In this example, each content element
540-544 comprises an image representing a music album, and
text indicating the title of the respective album. The list header
layer 530 includes a text string (Albums). According to the
example shown in FIG. 5, a user 302 (represented by the hand
icon) interacts with content layer 532 by interacting with a
touchscreen having the display area 300. The interaction can
include, for example, contacting the touchscreen with a fin
gertip, stylus or other object and moving it (e.g., with a
flicking or Sweeping motion) across the Surface of the touch
SCC.

0078 FIG. 5 shows example display states 590–594. In
display state 590, user 302 interacts with a touchscreen by
making a flick gesture 510, which is indicated by a leftward
pointing arrow. The flick gesture 510 causes an inertia motion
in content layer 532, which continues to move after the ges

Aug. 18, 2011

ture 510 has ended. Although FIG. 5 shows user 302 interact
ing with the touchscreen at a particular location in the display
area 300, the UI system allows interaction with other parts of
the touchscreen to cause movement. Furthermore, although
the example shown in FIG. 5 shows user 302 making a left
ward flick gesture, user 302 also can make other motions
(e.g., rightward motions to scroll towards the beginning of the
list). The UI system can interpret different kinds of leftward
or rightward user movements, even diagonal movements
extending below or above the horizontal plane, as a valid
leftward or rightward motion.
(0079. In response to the flick gesture 510, the UI system
produces leftward movement of the layers 530,532 relative to
the display area 300. For example, from display state 590, the
flick gesture 510 causes a leftward movement in the layers
and leads to display state 592, in which element 540 is no
longer visible, and elements 542 and 544 have moved to the
left. The text string (“Albums”) in the list header layer 530
also has moved to the left, but at a slower rate (in terms of
pixels) than the content layer 532. The movement of the
layers 530, 532 is a function of the data in the layers and the
velocity of the flick gesture 510.
0080 From display state 592, the inertia motion causes
continued leftward movement of the layers 530, 532 without
further input from the user 302, and leads to display state 594
in which element 542 is no longer visible. The inertia motion
causes the content layer to extend beyond a boundary (not
shown) to the right of the element 544 in the content layer
532, which results in a distortion effect in which an image and
text in element 544 is squeezed or compressed in a horizontal
dimension. The compression is indicated by the reduced
length of the dimension lines above the image and text (“Rock
& Roll Part in') of element 544, respectively. The text string
(“Albums’) in the list header layer 530 also has moved to the
left, but at a slower rate (in terms of pixels) than the content
layer 532. The text in list header layer 530 is uncompressed.
The distortion effect gives user 302 an indication that the end
of the content layer 532 has been reached.
I0081 Although a motion that is calculated to extend
beyond a boundary may result in a distortion effect, the
boundary need not prevent further movement in the direction
of the motion. For example, if wrapping functionality is avail
able, further movement beyond the boundary can cause the
content layer 530 to wrap back to the beginning (e.g., back to
display state 590). In state 594, element 540 at the beginning
of the collection is partially visible, indicating that wrapping
is available.
I0082. The display can return from display state 594 to
display state 592, transitioning from a display state with a
distortion effect to an undistorted display state. This can
occur, for example, without any additional input by the user.
The length of time that it takes to transition between states can
vary depending on implementation.
I0083) Flick gesture 510 is only an example of a possible
user interaction. The same gesture 510 and/or other user
interactions (e.g., motions having different sizes, directions,
or velocities) can cause different effects, different display
states, different transitions between display states, etc. Some
display states (e.g., display state 594) may occur only if a
gesture results in a post-gesture position that is calculated to
go beyond a boundary for the layer.
I0084 Display states 590–594 are only examples of pos
sible display states. In practice, a display can exist in any
number of States (e.g., in intermediate states between

US 2011/0202834 A1

example states 590-594, in states with different visible UI
elements, etc.) in addition to, or as alternatives to, the example
display states 590–594. For example, it is preferable to show
a gradual transition between an undistorted State (e.g., state
592) and a distorted state (e.g., state 494), or from a distorted
state to an undistorted State, to provide a more natural feel and
avoid the appearance of abrupt changes in the display. Inter
mediate states. Such as states that may occur between State
592 and state 594, can show gradually increasing or decreas
ing degrees of distortion, as appropriate. As another example,
a UI System can provide a boundary effect by compressing the
elements 542 and 544 shown in display state 592 without
moving the elements 542 and 544 to the left in the display area
3OO.

Example 6

Changes in Display Orientation

0085. Described techniques and tools can be used on dis
play screens in different orientations, such as landscape ori
entation. Changes in display orientation can occur, for
example, where a UI has been configured (e.g., by user pref
erence) to be oriented in landscape fashion, or where a user
has physically rotated a device. One or more sensors (e.g., an
accelerometer) in the device can be used to detect when a
device has been rotated, and adjust the display orientation
accordingly.
I0086. In the example shown in FIG.5, the display area 300
is oriented in landscape fashion. Content (e.g., data collection
elements 540-544 in content layer 532) and/or other user
interface features in the display area 300 can be dynamically
adjusted to take into account effects of a reorientation (e.g., a
new effective width of the display area 300, interpreting
directions of user interactions differently, etc.). For example,
distortion effects can be adjusted, such as by compressing
data collection elements in a horizontal dimension instead of
a vertical dimension, to account for display reorientation.
0087 However, such adjustments are not required. For
example, if a display area has equal height and width, reori
entation of the display area to a landscape orientation will not
change the effective width of the display area.

Example 7

Vertical Boundary Effect with Horizontal Parallax
Effect

0088 FIGS. 6A-6E are diagrams showing a content layer
614 that moves in tandem with layer 612 above it. In this
example, a user 302 (represented by the hand icon) navigates
through content layer 614 by interacting with a touchscreen
having the display area 300. The interaction can include, for
example, contacting the touchscreen with a fingertip. Stylus
or other object and moving it (e.g., with a flicking or Sweeping
motion) across or along the Surface of the touchscreen. The
content layer 614 includes game icons 640, 642, 644, lists
650, 652, 654, and avatar 630 (which is described in more
detail below in Example 8). The other layers 610, 612 include
text information (“Games' in layer 610; “Spotlight,” “Xbox
Live, “Requests’ and “Collection” in layer 612).
0089. The direction of motion that can be caused by user
302 is indicated by a left-pointing arrow and a right-pointing
arrow in FIGS. 6A-6E, along with additional up- and down
pointing arrows in FIGS. 6A and 6E. The right-pointing and
left-pointing arrows indicate possible movements (left or

Aug. 18, 2011

right horizontal movements) of the layers 610, 612, 614 in
response to user movements. In addition to movements of
entire layers, a user also can cause movements in elements or
parts of layers, depending on the data in the layer and how the
layer is arranged. For example, a user can cause movements
(e.g., vertical movements) in layer elements (e.g., lists in a
content layer) that are orthogonal to movements (e.g., hori
Zontal movements) that can be caused in a layer as a whole.
Such can include scrolling vertically in a list embedded in a
content layer that moves horizontally. Alternatively, a system
that presents layers that move vertically can allow horizontal
movements in layer elements.
0090 The up-pointing and down-pointing arrows indicate
possible movements of the list 650 in response to user move
ments. The amount of movement of list 650 can be a function
of the size or rate of the motion made by user302, and the data
in list 650. Thus, scrolling of the list 650 can be element-by
element, page-by-page of elements, or something in between
that depends on size or rate of the motion. In this example, list
650 includes only one element that is not visible in the display
area 300, as shown in FIG. 6A, so a range of small or large
downward movements may be enough to Scroll to the end of
list 650. In the example shown in FIG. 6E, an upward user
movement has caused a boundary effect in list 650, in which
the text of elements in the list are Squeezed or compressed in
a vertical dimension. This effect gives user 302 an indication
that the end of the list has been reached.
0091. In this example, the amount of movement in layers
610,612, 614 is a function of the data in the layers and the size
or rate of the motion made by the user. Horizontal movement
in layers 610, 612, 614 proceeds according to the following
rules, except during wrapping animations:

0092] 1. The horizontal movement of content layer 614
is locked to layer 612.

0.093 2. Layers 612 and 614 will each move at approxi
mately three times the rate of layer 610, which is
approximately /3 the length of layers 612 and 614.

(0094) Movement in the layers 610, 612, 614 may differ
from the rules described above in some circumstances. In the
example shown in FIGS. 6A-6E, wrapping is permitted. The
arrows indicate that a user can navigate left from the begin
ning of the content layer 614 (the position shown in FIG.6A
and FIG. 6E), and can navigate right from the end of the
content layer 614 (the position shown in FIG. 6D). During a
wrapping animation, Some layers may move faster or slower
than during other kinds of movements. For example, the text
in layer 610 can move faster when wrapping back to the
beginning of content layer 614. In FIG. 6D, display area 300
shows portions of two letters in layer 610, at the end of the
"Games' text string. A wrapping animation to return to the
state shown in FIG. 6A can include bringing the data in layers
610, 612, 614 (including the text of layer 610) into view from
the right, resulting in a more rapid movement in layer 610
than in other contexts. Such as a transition from the State
shown FIG. 6A to the state shown in FIG. 6B.
(0095. In FIGS. 6A-6E, example lock points “A.” “B,” “C”
and “D” are indicated for layers 610 and 612. In terms of
horizontal motion, content layer 614 is locked to layer 612;
the lock points indicated for layer 612 also apply to layer 614.
The lock points for each layer indicate the corresponding
position of the left edge of the display area 300 on each layer.
For example, when a user navigates to a position on content
layer 614 such that the left edge of the display area 300 is at
lock point “A” the left edge of display area 300 also is aligned

US 2011/0202834 A1

at lock point 'A' of the other layers 610, 612, as shown in
FIGS. 6A and 6E. In FIG. 6B, the left edge of the display area
300 is at lock point “B” in each of the layers 610, 612, 614. In
FIG. 6C, the left edge of the display area 300 is at lock point
“C” in each of the layers 610, 612, 614. In FIG. 6D, the left
edge of the display area 300 is at lock point"D' in each of the
layers 610, 612, 614.
0096. The lock points shown in FIGS. 6A-6E are not gen
erally representative of a complete set of lock points, and are
limited to lock points “A.” “B,” “C” and “D only for brevity.
For example, right-edge lock points can be added to obtain
alignment with the right edge of display area 300, or center
lock points can be added to obtain alignment with the center
of display area 300. Alternatively, fewer lock points can be
used, more lock points can be used, or lock points can be
omitted.
0097. User 302 can move left or right in content layer 614
after making an up or down movement in list 650. The current
position of list 650 can be saved, or the system can revert to a
default position (e.g., the top-of-list position indicated in FIG.
6A) when navigating left or right in content layer 614 from
list 650. Although the arrows in FIGS. 6A-6E (and other
figures) that indicate possible movements are shown for pur
poses of explanation, the display area 300 can itself display
graphical indicators (such as arrows or chevrons) of possible
movements for the layers and/or list.
0098. The system can interpret user movements to the left
or right, even diagonal movements extending above or below
the horizontal plane, as a valid leftward or rightward motion.
Similarly, the system can interpret upward or downward
movements, even diagonal movement extending to the left or
right of the vertical plane, as a valid upward or downward
motion. Although FIGS. 6A-6E show the user302 interacting
with a portion of the display area 300 that corresponds to the
content layer 614, the system also allows interaction with
other parts of the touchscreen (e.g., those that correspond to
display area occupied by other layers) to cause movement in
the layers 610, 612, 614, list 650, or other UI elements.

Example 8

Avatar

0099. In FIGS. 6A-6E, avatar 630 can provide a visual cue
to indicate a relationship between or draw attention to parts of
the content layer 614.
0100. In FIG. 6B, avatar 630 is positioned between list 652
and list 654. In FIG. 6C, avatar 630 floats behind the text of
list 654, but remains completely within display area 300. In
FIG. 6D, avatar 630 is only partially within display area 300:
the part that is within the display area floats behind game
icons 640, 642, 644. The positioning of avatar 630 at the left
edge of display area 300 can indicate to the user 302 that
information associated with avatar 630 is available if the user
302 navigates in the direction of avatar 630. Avatar 630 can
move at varying speeds. For example, avatar 630 moves faster
in the transition between FIGS. 6B and 6C than it does in the
transition between FIGS. 6C and 6D.
0101 Alternatively, avatar 630 can move in different
ways, or exhibit other functionality. For example, a UI system
can presenta distortion effect in avatar 630 to indicate a user's
location in a data collection with which the avatar is associ
ated. Avatar 630 also can be locked to particular position (e.g.,
a lock point) in content layer 614 or in Some other layer. Such
that avatar 630 moves at the same horizontal rate as the layer

Aug. 18, 2011

to which it is locked. As another alternative, avatar 630 can be
associated with a list that can be scrolled up or down, Such as
list 650, and move up or down as the associated list is scrolled
up or down.

IV. Detailed Implementation
0102. In this section, a detailed implementation is
described comprising aspects of motion feedback including
boundary effects and parallax effects, with reference to the
following detailed example.

Example 9

Detailed Example
0103) In this detailed example, a set of equations, coeffi
cients and rules are described that can allow a UI System (e.g.,
a UI System provided as part of a mobile device operating
system) to interpret user input such as touch gestures (includ
ing multi-touch gestures with more than one touch contact
point) and generate motion feedback in response to user
input. Features described in this detailed example include
inertia movement, panning and Zooming operations, bound
ary effects, parallax effects, and combinations thereof.
Described features can help to provide natural-looking,
Smooth motion in response to user input (e.g., touch ges
tures).
0104. In this detailed example, processing tasks can be
handled by different software modules. For example, a mod
ule called “ITouchSession’ provides coefficients, gesture
positions, and gesture Velocity information, and a dynamic
motion module in a mobile device operating system uses
information provided by ITouchSession to generate motion
feedback (e.g., parallax effects, boundary effects, etc.). Pref
erably, gesture information provided to the dynamic motion
module is accurate (e.g., with minimaljitter in position infor
mation), detailed (e.g., with time stamps on touch input), and
low-latency (e.g., under 30 ms). The information (e.g.,
motion feedback information) generated by the dynamic
motion module can be used by other modules, as well. For
example, web browsers or other applications that run on the
mobile device operating system can use information gener
ated by the dynamic motion module.
0105. In this detailed example, the dynamic motion result
ing from user interaction is defined by a set of motion rules.
The motion rules define how different visual elements react
on screen in response to different gestures. For example,
Some rules apply to finger-tracking gestures such as panning
or dragging gestures, some rules apply to flick or toss ges
tures, and some rules apply to pinch or stretch gestures. Addi
tionally, Some rules, such as inertia rules, may apply to more
than one type of gesture. The specific motion rules that apply
to different UI elements (or “controls) are determined by
factors such as the control type and control content; not all
motion rules will apply to all UI elements. For example, rules
for pinch and stretch gestures do not apply to UI elements
where pinch and stretch gestures are not recognized. The
motion resulting from the application of motion rules to the
input stream generated by the user can be further refined by an
optional set of modifiers, which are collectively called
“optional motion features.”
0106. In this detailed example, touch input interactions
that result in dynamic motion comply with the motion rules.
Additionally, different UI elements (or “controls”) can apply
Zero or more optional motion features, which can be deter

US 2011/0202834 A1

mined by factors such as the desired motion, control type and
control content. For example, a list control may opt to
enhance motion feedback with boundary effects, while a pan
orama control may apply a parallax feature to Some of its
layers.
0107. In addition, when a user interacts with a UI element,

it can be helpful to provide some immediate (or substantially
immediate) visual feedback to the user (e.g., a change in
movement in the UI element, or some other effect such as a tilt
or highlight). Immediate or Substantially immediate feedback
helps the user to know that the user interface is responsive to
the user's actions.
0108. In this detailed example, the following motion rules
apply in UI elements where the rules (e.g., rules relating to
finger-tracking gestures, inertia, boundaries, pinch/stretch
gestures) are relevant to the types of motion that are permitted
in the respective UI elements. The motion rules can be modi
fied for some UI elements, such as where optional motion
features apply to a UI element.

Motion Rule: Finger Tracking
0109 For finger tracking movements (e.g., movements
caused by dragging or panning gestures), the content at the
initial gesture point moves in direct correspondence to the
gesture. For example, content under the user's finger at an
initial touch point moves with the user's finger during the
gesture. The current position of a visual element is given by
the following equation:

(Eq. 1)

where p is the (x,y) vector that represents the current position
of the visual element, po is the (Xo yo) vector that represents
the visual element position at the beginning of the gesture, q
is the (x, y) vector that represents the current touch contact
position, and q is the (x, y) vector that represents the touch
contact position at the beginning of the gesture.

Motion Rule: Inertia

0110. In a UI element that allows inertia movement (e.g.,
a scrolling list), when the user finishes a gesture (e.g., by
lifting a finger or other object to end the interaction with the
touchscreen), a Velocity and direction for that movement is
identified, and the motion initially continues in the same
direction and speed as the gesture, as if the visual element was
a real, physical object with a non-Zero mass. If the motion is
not stopped for some other, permissible reason (e.g., where
the UI element reaches a boundary or is stopped by another
user gesture), the motion gradually decelerates over time,
eventually coming to a stop. The deceleration proceeds
according to a combination of equations and coefficients,
which can vary depending on implementation. Default sys
tem-wide coefficient values can be made available. Default
system-wide coefficients can help to maintain a consistent
feeling across all controls. Alternatively, different equations
or coefficients can be used, such as where a particular control
has its own friction coefficient for modeling different kinds of
motion.
0111. The velocity (e.g., in pixels/second) at the end of the
gesture is computed by the following equation:

(Eq. 2)

where v is the (v, V.) velocity vector that represents the
inertia Velocity at the end of the gesture, q is the (x, y) vector
that represents the touch contact position at the end of the

Aug. 18, 2011

gesture, qo is the (Xo yo) vector that represents the touch
contact position at the time to t is the timestamp of the last
touch input of the gesture, and to is the timestamp of the least
recent touch input that happened within some fixed period of
time from the last touch input. Alternatively, the velocity can
be calculated in another way. For example, a weighted Sum of
velocities at different time instances can be calculated, with
greater weighting for Velocities at the end of the gesture. In
this detailed example, calculating the Velocity is the respon
sibility of ITouchSession. However, velocity calculations can
be handled by other modules.
0112 The duration of the inertia motion can be computed
according to the following equation:

In-Y- (Eq. 3)
1. = -rol
* T in a

where t is the duration of the inertia motion, Ivo is the
magnitude of the initial Velocity vector (VoIDY), L is a friction
coefficient (e.g., MotionParameter Friction, 0<u>1), and y is
a parking speed coefficient (e.g., MotionParameter Parking
Speed, 0<y<Ivo) that is used to indicate a threshold velocity,
below which inertia motion will stop. In one implementation,
the friction coefficient is 0.4, and the parking speed coeffi
cient is 60.0. The duration is computed at the start of the
inertia motion, and need not be computed again.
0113. The following equation will compute the current
Velocity vector V at any given time t.

v=Vof (Eq. 4).

0114. The new position p' for the visual element can be
computed based on its last known position p and the time
elapsed since the last position update (At), as shown in the
following equation:

The motion stops once the Velocity reaches a value Smaller
than Y.
0115 The actual calculation of values relating to inertia
motion (e.g., Velocity, etc.) can differ depending on imple
mentation.
Motion Rule: Interacting with an Element in Inertia Motion
0116. If a new gesture begins while a UI element is in
inertia motion, the inertia motion is immediately interrupted.
Depending on the new gesture, the motion in the UI element
may be stopped, or a new motion may start. If the new gesture
causes a new motion in the UI element, the new gesture
controls the UI element's motion. The previous gesture and
any consequent inertia do not affect the motion generated by
the new gesture. Handling of new gestures during inertia
motion can be different depending on implementation. For
example, new gestures can be ignored during inertia motion
or can have different effects on inertia motion.

Motion Rule: Gesture Boundaries

0117 The motion of some UI elements is limited by ges
ture boundaries. The dimensions of gesture boundaries and
the effects of exceeding gesture boundaries can differ
depending on several factors, such as the content of a UI
element and/or a minimum visible area of the UI element. For
example, lists which don't wrap around indefinitely may only
be able to scroll a certain distance based on the number of

US 2011/0202834 A1

items in the list and a minimum amount of visible items (e.g.,
an amount of items that occupies most or all of a display area).
0118. In this detailed example, for an element Ahaving a
width W, heighth, total area S and position p(x, y).
with a minimum visible area St., (width W. height
ht) currently at position pri, (x, y), a gesture that
begins at an initial position q(x, y) has a rectangulargesture
boundary area S (width w, heighth) at position p(X,
y). The minimum visible area indicates a minimum visible
amount of the control (e.g., a minimum number of list items
in a scrollable list), but does not require any particular part of
the control to be visible. Therefore, the content of the mini
mum visible area for a particular control can vary depending
on, for example, the control's current state (e.g., whether the
end or beginning of a scrollable list is currently visible).
0119 Conceptually, the position p of the gesture bound
ary area can be defined according to the following equation:

p T-4+(print-Svini,)-(p-it-S4) (Eq. 6).

I0120. The X and y coordinates of the position p of the
gesture boundary area are defined according to the following
equations:

y Tyat(yvninthvini,)-(yatha) (Eq. 8).

0121 The dimensions of the gesture boundary area are
defined according to the following equation:

ST-SA-Svini,(ha-hvin, WA-Wvin) (Eq. 9).

0122) If the new position of the UI element, resulting from
user interaction or simulated inertia or some combination,
falls outside the area defined by p--S, a boundary has been
exceeded. An appropriate boundary feedback modifier can be
applied or the new position can be clamped (i.e., kept within
the allowed boundaries).
0123 FIG. 7A shows an example boundary diagram for a
control having a position 710 and area 720. The control has a
minimum visible area 740 (at position 730). For example, the
position 730 of the minimum visible area can be located at the
top left of a display area. Based on an initial gesture position
750, a gesture boundary at position 770 and having area 780
is calculated.
(0.124. In FIG.7B, example post-gesture positions 752,754
are shown. Post-gesture position 752 is outside the gesture
boundary area 780, and causes boundary feedback. Post
gesture position 754 is inside the gesture boundary 780, and
does not cause boundary feedback.
0.125 FIG. 8A shows an example boundary diagram for a
control corresponding to the scrollable list shown in FIG.3. In
FIG. 8A, the control at position 810 has a control area 820
(width W, heighth). In this detailed example, the coordi
nates of the control position are considered to be (0, 0). The
control has a minimum visible area 840 (at position 830). For
example, the position 830 of the minimum visible area 840
can be at the top left of a display area. Based on an initial
gesture position 850, a gesture boundary at position 850 (the
same position as the initial gesture position) is calculated. In
this detailed example, the gesture boundary 880 has a height
of h-hit, and a width of 0. (Due to space limitations, the
boundary 880 as shown in FIG. 8A is not to scale.) Therefore,
the gesture boundary 880 is actually a vertical line. Although
a control having a gesture boundary area with no width could
cause a boundary feedback effect with any horizontal move
ment, boundary feedback can be enabled or disabled on an

Aug. 18, 2011

axis basis (e.g., permitting boundary feedback for Vertical
movements but not for horizontal movements). Such a control
also can be a candidate for axis locking, to allow only vertical
movements and remove any need for boundary feedback for
horizontal movements. Axis locking is explained in more
detail below.
I0126. In FIG. 8B, example post-gesture positions 852,854
are shown. Post-gesture position 852 is outside the gesture
boundary area 880, and causes boundary feedback. For
example, referring again to FIG. 3, a UI System can present a
Squeeze or compression effect to indicate that the post-ges
ture position is outside the gesture boundary area, as shown in
state 392. Post-gesture position 854 is inside the gesture
boundary area 880, and does not cause boundary feedback.
I0127. The actual calculation of values relating to motion
boundaries and the effects of motion boundaries can differ
depending on implementation. For example, if a wrapping
feature is available in a UI element, a boundary can indicate a
position at which a boundary effect will be presented (e.g., to
indicate that the end of a list has been reached) without
preventing further movement beyond the boundary (e.g.,
wrapping movement from the end of the list back to the
beginning of the list).

Motion Rule: Pinch/Stretch

I0128 Pinch gestures and stretch gestures are gestures that
can change the scale (Zoom) of the Subject area of a control
(e.g., a map or image with Zoom capability). Pinch gestures
and stretch gestures are considered to be multi-touch gestures
because they typically have multiple points of interaction. In
a typical pinch or stretch gesture scenario, a user places two
fingers some distance apart from each other on a touchscreen,
and either increases (for a stretch gesture) or decreases (for a
pinch gesture) the distance between them.
I0129 FIG. 9 is a diagram showing example pinch and
stretch gestures. On a device having a display area 300, a user
302 (represented by a hand icon) interacts with a control (e.g.,
a map with Zoom features) having a control area 910. From
display state 990, the user 302 performs a pinch gesture
beginning at touch points 950,960 and ending at touch points
952, 962. This results in a Zoomed-out version of the map
(relative to display state 990) in control area 910 in state 992.
From display state 992, the user 302 performs a stretch ges
ture beginning at touch points 970, 980 and ending at touch
points 972,982. This results in a Zoomed-in version of the
map (relative to display state 992) in control area 910 in state
994. Alternatively, a pinch or stretch gesture can begin or end
at other touch points (e.g., with a greater or lesser distance
between beginning and ending touch points) or can use a
differentorientation of touchpoints (e.g., horizontal or diago
nal).
0.130. The scale adjustment caused by a pinch or stretch
gesture can be represented as follows. Let qAo(Xoyo) and
qBo (Xo yo) be the positions for initial touch points A and
B. The distance do between the two points represents a 100%
scale factor, and can be calculated according to the following
equation:

do-IgAo-q Bol

0131 The distance do includes a horizontal componentxo
and a Vertical component yo.
I0132) Let qA and qB be updated positions for touch points
A and B, and let d(x, y) be the distance between them,
calculated in a similar manner. The distanced also includes a

(Eq. 10).

US 2011/0202834 A1

horizontal component X and a vertical component y. The
scale factors to apply to the UI element can be calculated
according to the following equation:

d Wd yd (Eq. 11)
soon = , = (). O Wi0 ydo

Note that in Equation 11, the scale S is not isometric, i.e., the
X and Y axes will be scaled differently. For isometric scaling,
the following equation can be used instead:

(Eq. 12) i 2, 2 x + y,
Szoom - .

| 2 2 X0 y0

In this case, S is a scalar, so the same factor is applied to
both X and Y components.
0.133 Alternatively, a scale factor can be calculated in
different ways. For example, inertia can be applied to a pinch
or stretch gesture (such as when the gesture ends with a
velocity above a threshold), and the scale factor can be based
at least in part on the inertia of the gesture (e.g., increasing the
scale of the Zoom when a stretch gesture ends with a Velocity
above a threshold).
0134) To make Zooming feel natural, the scale factor can
be applied to a Zooming point (e.g., a center point between
touch points qA and qB). The Zooming point c=(x, y) can
be calculated by averaging the two touch contact positions, as
shown in the following equation:

(Eq. 13)

Alternatively, a Zooming point can be calculated in a different
way, or a calculation of a Zooming point can be omitted.
0135 A pinch/stretch gesture can also produce position
changes (panning) in addition to scale changes. Panning posi
tion changes can occur simultaneously with scale changes.
The Zooming point calculation in Equation 13 is used when
simultaneous panning is not allowed. If simultaneous pan
ning is allowed, the Zooming point is calculated using the
initial touch contact positions qA and qBo rather than the
updated touch contact positions qA and qB. Ifco is the initial
Zooming point and c is the updated Zooming point, the dis
tance d(x, y) between the two Zooming points
represents a panning offset to be applied to the UI element, as
shown in the following equation:

(Eq. 14).

Alternatively, a panning offset can be calculated in a different
way, or a panning offset can be omitted.

Optional Motion Features: Overview
0136. Optional motion features can be used (e.g., when
requested by a control) to refine or add visual feedback to
motion generated by gestures. Optional motion features can
depend on control type and content. For example, some con
trols (e.g., a scrolling list) may use an optional axis locking
feature that is appropriate for the orientation of the control

Aug. 18, 2011

(e.g., allowing only vertical movements in a vertically scroll
ing list). Optional motion features can be used in combination
with each other and with various motion rules. For example,
a vertically scrolling list can use an axis locking feature and a
boundary effect feature, while following rules for inertia
motion and finger tracking motion. Different UI elements can
use different combinations of rules and optional motion fea
tures, even when the different UI elements are visible at the
same time. For example, a movable layer can use parallax
effects but omit boundary effects, while a vertically scrolling
list in the movable layer can use boundary effects but omit
parallax effects. UI elements of the same basic type can use
different sets of optional motion features. For example, a first
pair of movable layers can use parallax effects and move at
different rates relative to one another, while a third layer
parallel to the first pair remains stationary.
0.137 When present, optional motion features act like fil

ters, modifying the values generated according to other
motion rules, such as the motion rules described above.

Optional Motion Features: Axis Locking

0.138. For some controls, it may make sense to permit
movement only along a particular axis. For example, it can be
useful to restrict movement of a movable, horizontal UI layer
(sometimes referred to as a panorama control) to movements
along the X axis, or to restrict movement of a vertically
scrolling list to movements along the Y axis. In such cases,
axis locking can be used as an optional motion feature.
0.139. In this detailed example, axis locking is applied to a
UI element by using the relevant equations in the motion rules
described above, but only applying an X or Y component (as
appropriate) to the motion of the axis-locked UI element.
Changes to the other component are ignored and not applied
to the UI element's motion.
0140 Alternatively, axis locking can be performed in
another way. For example, in a UI element such as a wheel
element that moves about an axis Such as a Z axis, axis
locking can be used to permit only rotational motion about the
axis. As another alternative, axis locking can be omitted.

Optional Motion Features: Parallax Effects
0141 Parallax effects can be applied to controls that
present multiple layers of content. In a parallax effect, mul
tiple layers are animated differently (e.g., moving at different
speeds), but the movements of the layers are based on the
same input stream generated by the user.
0142. In a parallax effect, layers that are animated in
response to a gesture move at different speeds relative to one
another. The layer that the user is interacting with directly
(e.g., a content layer) is considered to be the top layer on a Z
axis, that is, the layer that is closest to the user. Other layers
are considered to be lower layers on a Z axis, that is, further
away from the user. Examples of a parallax effects can be seen
in FIG. 5 and in FIGS. 6A-6D.
0143. In this detailed example, a top layer reacts directly to
the gesture, and the other layers move at increasingly lower
speeds the further they are from the top layer along the Z axis.
Mathematically speaking, that can be accomplished by
applying a scaling factor to the delta between an initial ges
ture position and an updated gesture position. The updated
gesture position can be obtained directly from user interac
tion (e.g., in a finger tracking gesture Such as a panning
gesture) or from a gesture with simulated inertia (e.g., a flick

US 2011/0202834 A1

gesture). If k is the constant parallax Scaling factor to be
applied for a particular layer Latinitial position p(x, y,).
then the parallaxed position p(x, y) can be computed
according to the following equation:

where q is the (x, y) vector that represents the current, post
gesture position (e.g., after the gesture and application of any
simulated inertia), and q is the (x, y) vector that represents
the touch contact position at the beginning of the gesture. The
parallax constant k can vary depending on the application,
scenario and/or content of the control. For example, layers
with different lengths can have different parallax constants.
0144. Alternatively, parallax effects can be presented in
different ways. For example, parallel layers can move accord
ing to the model shown in Equation 18 for Some movements
or parts of a movement and move according to other models
in other movements or parts of a movement. Referring again
to FIGS. 4A-4C, parallel layers that exhibit parallax effects
can move according to the model shown in Equation 18 in
transitions from FIG. 4A to FIG. 4B, and from FIG. 4B to 4C,
and then move according to a specialized wrapping animation
if a gesture to the right from the state shown in FIG. 4C, or
inertia motion from an earlier gesture, causes a wrap back to
the state shown in FIG. 4A. As another alternative, parallax
effects can be omitted.

Optional Motion Features: First Example Boundary Feed
back Model

0145 When the boundary feedback motion feature is
applied, a boundary feedback effect can be applied whenever
a gesture would move the UI element past a boundary, either
directly (e.g., by a dragging or panning gesture) or indirectly
(e.g., by inertia motion generated by a flick gesture). In this
first example boundary feedback model, once the UI element
hits a boundary the content is compressed in the direction of
the motion (e.g., a vertical compression for a vertical motion)
up to a certain threshold. If the compression is caused by
inertia, the content compresses up to a certain amount based
on the velocity at the time the boundary is hit, then decom
presses to the original size. If the compression is caused
directly (e.g., by dragging), the compression can be held as
long as the last touch contact point is held and decompress
when the user breaks contact, or decompress after a fixed
length of time.
0146 In this first example boundary feedback model, the
compression effect is achieved by applying a scale factor and
dynamically placing a compression point to ensure that the
effect looks the same regardless of the size of the list. In order
to properly compute the motion and Scale for the boundary
effect, the first step is to identify that a boundary has been
crossed and by how much. The boundary motion rule
described above illustrates how to compute a boundary posi
tion in this first example boundary feedback model, and in the
second example boundary feedback model described below.
I0147 Let q (x,y) be the unmodified, post-gesture posi
tion resulting from an active finger tracking gesture (e.g., a
dragging gesture) or from simulated inertia (e.g., from a flick
gesture), let X be the left boundary, let X be the right bound
ary, let y be the top boundary, and let y be the bottom

Aug. 18, 2011

boundary. Let r (r, r) represent how far the post-gesture
position exceeds the boundaries with respect to {x1, x, y,
ya):

r, max(x-x.0.x-XR) (Eq. 16)

r, max(VT-10.JPB) (Eq. 17)

In cases where only a vertical or horizontal boundary applies
(e.g., in axis-locked elements), r may be calculated in only a
Vertical or horizontal dimension, as appropriate, while omit
ting a calculation of the other dimension of r.
0148 Let S be the compressible area with dimensions
(wh), which is some area equal to or greater than the visible
area, depending on the value of coefficients k'/6 and k, where
ko, is the compression percentage coefficient (e.g., Motion
Parameter CompressPercent (ko.20)), and k is the com
pression offset coefficient (e.g., MotionParameter
CompressOffset{X,Y} (k20)). If k =0, then the
compressible area matches the size of the visible area and the
visual result is that only the visible part of the control is being
compressed. If ko-1, the compressible area matches the
entire control area. k (wh) allows an increase in the
compressible area by a fixed amount, regardless of the control
area size. In this detailed example, the compressible area can
be calculated according to the following equation:

where S is the control area with dimensions (W, h), and
Sr., is the visible area with dimensions (wh). In one imple
mentation, the compression percentage coefficient is 0.0 and
the compression offset coefficient is 0.5*S.
0149. If the user is actively dragging the content, the com
pression scale factor S. (S. S.) to apply to the
target UI element can be computed according to the following
equations:

S. - k r (Eq. 19)
Scomp Sc

we - k r. (Eq. 20)
Scompx We

he -k, ry (Eq. 21)
Scompy h

where k is the compression factor coefficient (e.g., Motion
Parameter CompressFactor (Osks 1)), and rsS. In one
implementation, the compression factor coefficient is 0.2.
Alternatively, the scale factor and/or the compressible area
can be calculated in different ways. For example, different
ranges of compression coefficients can be used.
0150. In words, what is being done here is to find the
difference between the compressible area (e.g., in the hori
Zontal or vertical dimensions) and the amount by which the
gesture is compressing the compressible area, then calculat
ing the scale factor based on that difference. The compression
factork, if it is less than 1, limits how much the value ofr (the
amount by which the post-gesture position has exceeded the
boundary) will cause the compressible area to be compressed.
A UI System can then place a distortion point (which can also
be referred to as a “squeeze point’ or “compression point
when applying compression effects) at the other side of the
compressible area (i.e., the side of the compressible area

US 2011/0202834 A1

opposite the side where the gesture is being made) and apply
that scale factor, resulting in a compression effect.
0151. Once the user ends the dragging gesture (e.g., by
lifting a finger from the touchscreen), and if no wrap-around
functionality is available or if the threshold for wrap-around
hasn't been reached, the content in the compressible area
returns to a decompressed State. In this first example bound
ary effects model, decompression proceeds according to the
appropriate equations set forth below.
0152. In this first example boundary effects model, if a
boundary is exceeded during inertia motion, the following
equations are used to compute how far off the boundaries the
current position is (r) over time, based on the velocity at the
time the boundary was crossed (v) and how far off the bound
ary the position is (r) when the following equations are
applied:

min(ri, S.) (Eq. 22)
iO = ks

vi (Eq. 23)
C S

2-max(r. 0.001)
a. t? (Eq. 24)

r = ro + V, t- --.

If r<0, the motion is complete. Note that r, can come either
frominertia or from an active drag, Such as when a user drags
the content into a compressed state, then flicks, generating
inertia.

0153
compx, S

The compression scale factor Serien (se
inertiacomey) to apply during inertia compression can be

computed according to the following equations:

Se-r (Eq. 25)
Sinertiacomp S

C

we - ry (Eq. 26)
Sinertiacompx :

C

he -ry (Eq. 27)
Sinertiacompy -

C

Note that these equations are similar to the case when drag
ging the content (see Equations 19-21, above), except that the
coefficient k (the compression factor coefficient) has already
been applied in this case in Equations 22 and 23. Alterna
tively, the scale factor can be calculated in a different way. For
example, constants such as the compression factor coefficient
k or the value 0.001 in Equation 23 can be replaced with other
constants depending on implementation.
0154) In this first example boundary effects model, in
addition to computing the scale factor to apply to the target UI
element, a compression point C (c. c.) is cal
culated in order to generate the expected visual effect. In
practice, a compression point can be at different positions in
a UI element. For example, a compression point can be
located at or near the center of a UI element, such that half (or
approximately half) of the content in the UI element will be
compressed. As another example, a compression point can be
located at or near a border of UI element, such that all (or
approximately all) of the content in the UI element will be

Aug. 18, 2011

compressed. The compression point can vary for different UI
elements. Using different compression points can be helpful
for providing a consistent amount of distortion in the content
of UI elements of different sizes. The compression point
position can be computed according to the following equa
tions:

left = 1 - e. (Eq. 28)
WA

Compx ight c rights WA

none => 0.5

h (Eq. 29)
top => 1 - -

hA
h C compy bottom => - -
hA

none => 0.5

Alternatively, compression points can be calculated in a dif
ferent way, or the calculation of compression points can be
omitted.

Optional Motion Features: Second Example Boundary Feed
back Model

0.155. In this second example boundary feedback model,
the appearance of the boundary feedback can be controlled in
finer detail by using more coefficients. Also, regardless of
whether the compression is caused directly (e.g., by drag
ging) or by inertia, the same calculations are used for the
compression effects
I0156 Let q (x,y) be the unmodified, post-gesture posi
tion resulting from an active finger tracking gesture (e.g., a
dragging gesture) or from simulated inertia (e.g., from a flick
gesture), let X, be the left boundary, let X be the right bound
ary, let y be the top boundary, and let y be the bottom
boundary. Let r=(w, h) represent how far the post-gesture
position exceeds the boundaries with respect to {x1, x, y,
ya):

w, max(x-x.0.x-xr) (Eq. 30)

h. max(v1-3.0}-ye) (Eq. 31)

In cases where only a vertical or horizontal boundary applies
(e.g., in axis-locked elements), r may be calculated in only a
Vertical or horizontal dimension, as appropriate, while omit
ting a calculation of the other dimension of r.
I0157. As in the first example boundary effects model, Sis
the compressible area with dimensions (wh), calculated as
shown in Equation 18. However, in this second example
boundary effects model, given r=(w, h) and a compressible
area S. (wh), the compression scale factors (s.

) to apply to the target UI element is computed accord Scom
ing to the following equations:

d = (min(wr, we), min(hy, he)) (Eq. 32)

F = k . de (Eq. 33)

r' = d - F. (1 - kt). At (Eq. 34)

r' = max(0, min(kL, r)) (Eq. 35)

US 2011/0202834 A1

-continued
S-r' (Eq. 36)

Scomp S

w-w (Eq. 37)
Scompx ve

he -h" (Eq. 38)
Scompy he

where k is a spring factor coefficient (e.g., Motion Param
eter SpringFactor (k0)), k is a spring power coefficient
(e.g., MotionParameter SpringPower (k0)), k is a damper
factor coefficient (e.g., Motion Parameter DamperFactor
(0sks 1)), k is a compression limit coefficient (e.g.,
MotionParameter CompressionLimit (k-0)), and At is the
time interval since the last iteration of the simulation (Ate0).
The equation for r" imposes limits on the movement in the UI
element during boundary feedback. If r"=0, the motion is
considered to be complete.
0158. In this second example boundary effects model, the
spring factor coefficient k is a number that specifies how
much resistance will counteract the inertia force, and the
spring power coefficient k shapes the curve of the resistance.
For example, a spring power coefficient of 1 indicates linear
resistance, where resistance increases at a constant rate as
compression increases. A spring power coefficient greater
than 1 means that the resistance will increase at an increasing
rate at higher compression, and less than 1 means that the
resistance will increase, but at a decreasing rate, at higher
compression. The damper factor coefficient k represents a
percentage of energy absorbed by the system and taken away
from the inertia. The damper factor coefficient can be used to
smooth out the boundary effect and avoid a repeated cycle of
compression and decompression. The time interval At can
vary depending on the number of frames per second in the
animation of the boundary feedback, hardware speed, and
other factors. In one implementation, the time interval is
about 16 ms between each update. Varying the time interval
can alter the effect of the boundary effect. For example, a
smaller time interval can result in more fluid motion.

0159. Alternatively, the scale factor and/or the compress
ible area can be calculated in different ways. For example,
different ranges or values of coefficients can be used.
0160 FIG. 10 is a graph of position changes in a UI ele
ment over time according to the second example boundary
effects model. According to the graph shown in FIG. 10, a
compression effect occurs during the time that the position of
the UI element exceeds the boundary position indicated by
the dashed line 1010 in FIG. 10). The compression line can
indicate the position of a boundary in a UI element.
0161 The shape of the position curve 1020 can be modi
fied in different ways, such as by adjusting coefficients. For
example, by adjusting the spring power coefficient, the upper
most tip of the boundary effect curve 1020 can be made to go
higher (e.g., up to a configurable limit) or lower for a particu
lar initial Velocity. A higher tip of the curve can indicate a
greater compression effect, and a lower tip can indicate a
lesser compression effect. As another example, by adjusting
the spring factor coefficient, the duration of the compression

16
Aug. 18, 2011

can be adjusted to be shorter or longer. In FIG. 10, the dura
tion is represented by the distance between the points at which
the line 1010 is crossed by the curve 1020. As another
example, by adjusting the damper factor coefficient the right
hand tail of the curve (e.g., the part of the curve 1020 after the
boundary position line 1010 is crossed for the second time)
can be moved up or down, resulting in a more gradual or more
abrupt end to the compression effect. Coefficients can be
adjusted in combination or independently, and other values
besides those indicated can be adjusted as well, to cause
changes in position. Different combinations of adjustments
can be used to obtain specific shapes in the position curve
102O.

0162. In this second example boundary effects model, a
currentinertia Velocity Vanda current touch contact position
q can be updated to reflect the physics interaction of the
boundary effect. For example, the updated velocity v' and
updated touch contact position q are calculated according to
the following equations:

r' - kt. (Eq. 39)
max 0, v - (F, kd +max 0, At)

p v, r' > 0 (Eq. 40)

v={ . r' g O
p q - r", r > 0 (Eq. 41)

4.- . r' < 0

0163 Various alternatives to the boundary feedback mod
els described above are possible. For example, if wrapping
beyond a boundary (e.g., wrapping back to the beginning of a
list after the end of the list has been reached) is permitted, if
the compression is caused by dragging, the list can wrap
around once a threshold compression has been reached. As
another alternative, boundary effects can be omitted.

Reference Values:

0164. A UI System can provide programmatic access to
system-wide values e.g., (inertia values, boundary effect val
ues). Using system-wide values can help in maintaining con
sistent UI behavior across components and frameworks, and
can allow adjustments to the behavior in multiple UI elements
at once. For example, inertia effects in multiple UI elements
can be changed by adjusting system-wide inertia values.
0.165. In one implementation, in order to provide frame
works with access to the reference values of each coefficient,
an API is included the ITouchSession module (HRESULT
GetMotion ParameterValue(IN MotionParameter ID, OUT
float value)). In one implementation, the identifiers and
default values for the coefficients whose values are accessible
through the ITouchSession::GetMotionParameterValue()
API are as follows:

enum MotionParameter

Motion Parameter Friction,
Motion Parameter ParkingSpeed,
Motion Parameter MaximumSpeed,
Motion Parameter SpringFactor,
Motion Parameter SpringPower,

default: 0.4f
default: 60. Of
default: 20000. Of
default: 48. Of
default: 0.75f

US 2011/0202834 A1

-continued

default: 0.09f
default: 300. Of
default: 0.0f
default: 720. Of
default: 1200. Of

Motion Parameter DamperFactor,
Motion Parameter CompressLimit,
Motion Parameter CompressPercent,
Motion Parameter CompressOffsetX,
Motion Parameter CompressOffsetY.

The values that are accessible through the API can vary
depending on implementation. For example, a UI System that
uses the first example boundary effects model described
above can omit values such as spring factor, spring power, and
damper factor values. Or, a UI System can use additional
values or replace the listed default values with other default
values. Values can be fixed or adjustable, and can be updated
during operation of the system (e.g., based on system settings
or user preferences).

Example 10

UI System

0166 FIG. 11 is a system diagram showing an example UI
system 1100 that presents a UI on a device (e.g., a Smartphone
or other mobile computing device). In this example, the UI
system 1100 is a multi-layer UI system that presents motion
feedback (e.g., parallax effects, boundary effects, etc.). Alter
natively, the system 1100 presents motion feedback in UIs
that do not have multiple UI layers. The system 1100 can be
used to implement functionality described in other examples,
or other functionality.
0167. In this example, the system 1100 includes a hub
module 1110 that provides a declarative description of a hub
page to UI control 1120, which controls display of UI layers.
UI control 1120 also can be referred to as a “panorama” or
“pano' control in a multi-layer UI system. Such a description
can be used, for example, when the UI layers move in a
panoramic, or horizontal, fashion. Alternatively, UI control
1120 controls UI layers that move vertically, or in some other
fashion. UI control 1120 includes markup generator 1130 and
motion module 1140.
0168 The declarative description of the hub page includes
information that defines UI elements. In a multi-layer UI
system, UI elements can include multiple layers, such as a
background layer, a title layer, a section header layer, and a
content layer. The declarative description of the hub page is
provided to markup generator 1130, along with other infor
mation Such as style information and/or configuration prop
erties. Markup generator 1130 generates markup that can be
used to render the UI layers. Motion module 1140 accepts
events (e.g., direct UI manipulation events) generated in
response to user input and generates motion commands. The
motion commands are provided along with the markup to a UI
framework 1150. In the UI framework 1150, the markup and
motion commands are received in layout module 1152, which
generates UI rendering requests to be sent to device operating
system (OS) 1160. The device OS 1160 receives the render
ing requests and causes a rendered UI to be output to a display
on the device. System components such as hub module 1110.
UI control 1120, and UI framework 1150 also can be imple
mented as part of device OS 1160. In one implementation, the
device OS 1160 is a mobile computing device OS.
0169. A user (not shown) can generate user input that
affects how the UI is presented. In the example shown in FIG.

17
Aug. 18, 2011

11, the UI control 1120 listens for direct UI manipulation
events generated by UI framework 1150. In UI framework
1150, direct UI manipulation events are generated by inter
action module 1154, which receives gesture messages (e.g.,
messages generated in response to panning or flick gestures
by a user interacting with a touchscreen on the device) from
device OS 1160. Interaction module 1154 also can acceptand
generate direct UI manipulation events for navigation mes
sages generated in response to other kinds of user input. Such
as Voice commands, directional buttons on a keypad or key
board, trackball motions, etc. Device OS 1160 includes func
tionality for recognizing user gestures and creating messages
that can be used by UI framework 1150. UI framework 1150
translates gesture messages into direction UI manipulation
events to be sent to UI control 1120.

(0170 The system 1100 can distinguish between different
gestures on the touchscreen, Such as draggestures, panges
tures and flick gestures. The system 1100 can also detect a tap
or touch gesture, such as where the user touches the touch
screen in a particular location, but does not move the finger,
stylus, etc. before breaking contact with the touchscreen. As
an alternative, Some movement is permitted, within a small
threshold, before breaking contact with the touchscreen in a
tap or touch gesture.
0171 The system 1100 interprets an interaction as a par
ticular gesture depending on the nature of the interaction with
the touchscreen. The system 1100 obtains one or more dis
crete inputs from a user's interaction. A gesture can be deter
mined from a series of inputs. For example, when the user
touches the touchscreen and begins a movement in UI ele
ment in a horizontal direction while maintaining contact with
the touchscreen, the system 1100 can fire a pan input and
begin a horizontal movement in the UI element. The system
1100 can continue to tire pan inputs while the user maintains
contact with the touchscreen and continues moving. For
example, the system 1100 can fire a new pan input each time
the user moves N pixels while maintaining contact with the
touch screen. In this way, a continuous physical gesture on a
touchscreen can be interpreted by the system 1100 as a series
of pan inputs. The system 1100 can continuously update the
contact position and rate of movement. When the physical
gesture ends (e.g., when user breaks contact with the touch
screen), the system 1100 can determine whether to interpret
the motion at the end as a flick by determining how quickly
the user's finger, stylus, etc., was moving when it broke con
tact with the touchscreen, and whether the rate of movement
exceeds a threshold.

0172. The system 1100 can render motion (e.g., motion in
a layer, list, or other UI element) on the display differently
depending on the type of gesture. For example, in the case of
a horizontal draggesture (in which the user is currently main
taining contact with the touchscreen) on a content layer in a
multi-layer UI system, the system 1100 moves the content
layer in a horizontal direction by the same distance as the
horizontal distance of the drag. In a parallax effect, the title
layer and background layer also move in response to the drag.
As another example, in the case of a pangesture (in which the
user has ended the gesture) on the content layer, the system
1100 can move the content layer in the amount of the pan, and
determine whether to perform an additional movement in the
content layer. For example, the system 1100 can perform a
locking animation (i.e., an animation of a movement in the
content layer to Snap to a lock point) and move the content
layer to a left or right lock point associated with an item in the

US 2011/0202834 A1

content layer. The system 1100 can determine which lock
point associated with the current pane is closer, and transition
to the closer lock point. As another example, the system 1100
can move the content layer in order to bring an item in the
content layer that is in partial view on the display area into full
view. Alternatively, the system 1100 can maintain the current
position of the content layer. As another example, in the case
of a flick gesture (e.g., where the user was moving more
rapidly when the user broke contact with the touchscreen) on
the content layer, the system 1100 can use simulated inertia to
determine a post-gesture position for the content layer. Alter
natively, the system 1100 can present some other kind of
motion, such as a wrapping animation or other transition
animation. The threshold velocity for a flick to be detected
(i.e., to distinguisha flick gesture from a pangesture) can vary
depending on implementation.
0173 The system 1100 also can implement edge tap func

tionality. In an edge tap, a user can tap within a given margin
of edges of the display area to cause a transition (e.g., to a next
or previous item in a content layer, a next or previous list
element, etc.). This can be useful, for example, where an
element is partially in view in the display area. The user can
tap near the element to cause the system to bring that element
completely into the display area.

V. Extensions and Alternative Implementations
0174 Various extensions and alternatives to the embodi
ments described herein are possible.
(0175 For example, described examples show different
positions of UI elements (e.g., layers, lists, etc.) that may be of
interest to a user. A user can begin navigation of an element at
the beginning of an element, or use different entry points. For
example, a user can begin interacting in the middle of a
content layer, at the end of a content layer, etc. This can be
useful, for example, where a user has previously exited at a
position other than the beginning of a layer (e.g., the end of a
layer), so that the user can return to the prior location (e.g.,
before and after a user uses an application (Such as an audio
player) invoked by actuating a content image).
0176). As another example, other models can be used to
model inertia and movement. For example, although some
equations are provided in Some examples that approximate
motion according to Newtonian physics, other equations can
be used that model other kinds of motion (e.g., non-Newto
nian physics).
0177. As another example, although controls can share
global parameters, such as a global friction coefficient for
inertia motion, parameters can be customized. For example,
friction coefficients can be customized for specific controls or
content, such as friction coefficients that result in more rapid
deceleration of inertia motion for photos or photo slide
shows.
0.178 As another example, boundary feedback can be
applied to pinch and stretch gestures. Such boundary feed
back can useful, for example, to indicate that a border of the
UI element has been reached.
0179. As another example, additional feedback on ges
tures can be used. For example, visual feedback Such as a
distortion effect can be used to alert a user that a UI element
with Zoom capability (e.g., a map or image) has reached a
maximum or minimum Zoom level.
0180. As another example, boundary effects such as com
pression effects can themselves produce inertia movement.
For example, when a vertically scrolling list is compressed

Aug. 18, 2011

upon reaching the end of the list, and breaking contact with
the touchscreen causes the list decompress, the decompres
sion can be combined with a spring or rebound effect, causing
the list to scroll in the opposite direction of the motion that
originally caused the compression. In this way, the spring
effect could provide boundary feedback to indicate that the
end of list had been reached, while also providing an alterna
tive technique for navigating the list. The spring effect could
be used to cause a movement in the list similar to a flick in the
opposite direction. Inertia motion can applied to motion
caused by the spring effect.

VI. Example Computing Environment

0181 FIG. 12 illustrates a generalized example of a suit
able computing environment 1200 in which several of the
described embodiments may be implemented. The comput
ing environment 1200 is not intended to suggest any limita
tion as to scope of use or functionality, as the techniques and
tools described herein may be implemented in diverse gen
eral-purpose or special-purpose computing environments.
0182. With reference to FIG. 12, the computing environ
ment 1200 includes at least one CPU 1210 and associated
memory 1220. In FIG. 12, this most basic configuration 1230
is included within a dashed line. The processing unit 1210
executes computer-executable instructions and may be a real
or a virtual processor. In a multi-processing system, multiple
processing units execute computer-executable instructions to
increase processing power. FIG. 12 shows a second process
ing unit 1215 (e.g., a GPU or other co-processing unit) and
associated memory 1225, which can be used for video accel
eration or other processing. The memory 1220, 1225 may be
Volatile memory (e.g., registers, cache, RAM), non-volatile
memory (e.g., ROM, EEPROM, flash memory, etc.), or some
combination of the two. The memory 1220, 1225 stores soft
ware 1280 for implementing a system with one or more of the
described techniques and tools.
0183. A computing environment may have additional fea
tures. For example, the computing environment 1200
includes storage 1240, one or more input devices 1250, one or
more output devices 1260, and one or more communication
connections 1270. An interconnection mechanism (not
shown) Such as abus, controller, or network interconnects the
components of the computing environment 1200. Typically,
operating system Software (not shown) provides an operating
environment for other software executing in the computing
environment 1200, and coordinates activities of the compo
nents of the computing environment 1200.
0.184 The storage 1240 may be removable or non-remov
able, and includes magnetic disks, magnetic tapes or cas
settes, CD-ROMs, DVDs, memory cards, or any other
medium which can be used to store information and which
can be accessed within the computing environment 1200. The
storage 1240 stores instructions for the software 1280 imple
menting described techniques and tools.
0185. The input device(s) 1250 may be a touch input
device Such as a keyboard, mouse, pen, trackball or touch
screen, an audio input device Such as a microphone, a scan
ning device, a digital camera, or another device that provides
input to the computing environment 1200. For video, the
input device(s) 1250 may be a video card, TV tuner card, or
similar device that accepts video input in analog or digital
form, or a CD-ROM or CD-RW that reads video samples into
the computing environment 1200. The output device(s) 1260

US 2011/0202834 A1

may be a display, printer, speaker, CD-writer, or another
device that provides output from the computing environment
12OO.
0186 The communication connection(s) 1270 enable
communication over a communication medium to another
computing entity. The communication medium conveys
information such as computer-executable instructions, audio
or video input or output, or other data in a modulated data
signal. A modulated data signal is a signal that has one or
more of its characteristics set or changed in Such a manner as
to encode information in the signal. By way of example, and
not limitation, communication media include wired or wire
less techniques implemented with an electrical, optical, RF,
infrared, acoustic, or other carrier.
0187. The techniques and tools can be described in the
general context of computer-readable media. Computer-read
able media are any available media that can be accessed
within a computing environment. By way of example, and not
limitation, with the computing environment 1200, computer
readable media include memory 1220, 1225, storage 1240,
and combinations thereof.
0188 The techniques and tools can be described in the
general context of computer-executable instructions, such as
those included in program modules, being executed in a com
puting environment on a target real or virtual processor. Gen
erally, program modules include routines, programs, librar
ies, objects, classes, components, data structures, etc. that
perform particular tasks or implement particular abstract data
types. The functionality of the program modules may be
combined or split between program modules as desired in
various embodiments. Computer-executable instructions for
program modules may be executed within a local or distrib
uted computing environment. Any of the methods described
herein can be implemented by computer-executable instruc
tions encoded on one or more computer-readable media (e.g.,
computer-readable storage media or other tangible media).
0189 For the sake of presentation, the detailed description
uses terms like “interpret” and “squeeze' to describe com
puter operations in a computing environment. These terms are
high-level abstractions for operations performed by a com
puter, and should not be confused with acts performed by a
human being. The actual computer operations corresponding
to these terms vary depending on implementation.

VII. Example Implementation Environment
0.190 FIG. 13 illustrates a generalized example of a suit
able implementation environment 1300 in which described
embodiments, techniques, and technologies may be imple
mented.
0191 In example environment 1300, various types of ser
vices (e.g., computing services 1312) are provided by a cloud
1310. For example, the cloud 1310 can comprise a collection
of computing devices, which may be located centrally or
distributed, that provide cloud-based services to various types
of users and devices connected via a network Such as the
Internet. The cloud computing environment 1300 can be used
in different ways to accomplish computing tasks. For
example, with reference to described techniques and tools,
Some tasks. Such as processing user input and presenting a
user interface, can be performed on a local computing device,
while other tasks. Such as storage of data to be used in Sub
sequent processing, can be performed elsewhere in the cloud.
(0192. In example environment 1300, the cloud 1310 pro
vides services for connected devices with a variety of screen

Aug. 18, 2011

capabilities 1320A-N. Connected device 1320A represents a
device with a mid-sized screen. For example, connected
device 1320A could be a personal computer such as desktop
computer, laptop, notebook, netbook, or the like. Connected
device 1320B represents a device with a small-sized screen.
For example, connected device 1320B could be a mobile
phone, Smart phone, personal digital assistant, tablet com
puter, and the like. Connected device 1320N represents a
device with a large Screen. For example, connected device
1320N could be a television (e.g., a smart television) or
another device connected to a television or projector Screen
(e.g., a set-top box or gaming console).
0193 A variety of services can be provided by the cloud
1310 through one or more service providers (not shown). For
example, the cloud 1310 can provide services related to
mobile computing to one or more of the various connected
devices 1320A-N. Cloud services can be customized to the
screen size, display capability, or other functionality of the
particular connected device (e.g., connected devices 1320A
N). For example, cloud services can be customized for mobile
devices by taking into account the screen size, input devices,
and communication bandwidth limitations typically associ
ated with mobile devices.

VIII. Example Mobile Device
0194 FIG. 14 is a system diagram depicting an exemplary
mobile device 1400 including a variety of optional hardware
and Software components, shown generally at 1402. Any
components 1402 in the mobile device can communicate with
any other component, although not all connections are shown,
for ease of illustration. The mobile device can be any of a
variety of computing devices (e.g., cell phone, Smartphone,
handheld computer, personal digital assistant (PDA), etc.)
and can allow wireless two-way communications with one or
more mobile communications networks 1404. Such as a cel
lular or satellite network.
0.195. The illustrated mobile device can include a control
ler or processor 1410 (e.g., signal processor, microprocessor,
ASIC, or other control and processing logic circuitry) for
performing Such tasks as signal coding, data processing,
input/output processing, power control, and/or other func
tions. An operating system 1412 can control the allocation
and usage of the components 1402 and Support for one or
more application programs 1414. The application programs
can include common mobile computing applications (e.g.,
email applications, calendars, contact managers, web brows
ers, messaging applications), or any other computing appli
cation.
0196. The illustrated mobile device can include memory
1420. Memory 1420 can include non-removable memory
1422 and/or removable memory 1424. The non-removable
memory 1422 can include RAM, ROM, flash memory, a disk
drive, or other well-known memory storage technologies.
The removable memory 1424 can include flash memory or a
Subscriber Identity Module (SIM) card, which is well known
in GSM communication systems, or other well-known
memory storage technologies, such as Smart cards. The
memory 1420 can be used for storing data and/or code for
running the operating system 1412 and the applications 1414.
Example data can include web pages, text, images, Sound
files, video data, or other datasets to be sent to and/or received
from one or more network servers or other mobile devices via
one or more wired or wireless networks. The memory 1420
can be used to store a subscriber identifier, Such as an Inter

US 2011/0202834 A1

national Mobile Subscriber Identity (IMSI), and an equip
ment identifier, such as an International Mobile Equipment
Identifier (IMEI). Such identifiers can be transmitted to a
network server to identify users and equipment.
0197) The mobile device can support one or more input
devices 1430, such as a touchscreen 1432, microphone 1434,
camera 1436, physical keyboard 1438 and/or trackball 1440
and one or more output devices 1450, such as a speaker 1452
and a display 1454. Other possible output devices (not shown)
can include a piezoelectric or other haptic output device.
Some devices can serve more than one input/output function.
For example, touchscreen 1432 and display 1454 can be
combined in a single input/output device.
0198 Touchscreen 1432 can accept input in different
ways. For example, capacitive touchscreens detect touch
input when an object (e.g., a fingertip or stylus) distorts or
interrupts an electrical current running across the Surface. As
another example, touchscreens can use optical sensors to
detect touch input when beams from the optical sensors are
interrupted. Physical contact with the surface of the screen is
not necessary for input to be detected by some touchscreens.
0199. A wireless modem 1460 can be coupled to an
antenna (not shown) and can Support two-way communica
tions between the processor 1410 and external devices, as is
well understood in the art. The modem 1460 is shown generi
cally and can include a cellular modem for communicating
with the mobile communication network 1404 and/or other
radio-based modems (e.g., Bluetooth or Wi-Fi). The wireless
modem 1460 is typically configured for communication with
one or more cellular networks, such as a GSM network for
data and Voice communications within a single cellular net
work, between cellular networks, or between the mobile
device and a public switched telephone network (PSSTN).
0200. The mobile device can further include at least one
input/output port 1480, a power supply 1482, a satellite navi
gation system receiver 1484. Such as a Global Positioning
System (GPS) receiver, an accelerometer 1486, a transceiver
1488 (for wirelessly transmitting analog or digital signals)
and/or a physical connector 1490, which can be a USB port,
IEEE 1494 (firewall) port, and/or RS-232 port. The illustrated
components 1402 are not required or all-inclusive, as com
ponents can be deleted and other components can be added.
0201 In view of the many possible embodiments to which
the principles of the disclosed invention may be applied, it
should be recognized that the illustrated embodiments are
only preferred examples of the invention and should not be
taken as limiting the scope of the invention. Rather, the scope
of the invention is defined by the following claims. We there
fore claim as our inventionall that comes within the scope and
spirit of these claims.

We claim:
1. In a computer system, a method comprising:
receiving gesture information corresponding to a gesture

on a touch input device;
calculating simulated inertia motion for a movable user

interface element based at least in part on the gesture
information;

based at least in part on the gesture information and on the
simulated inertia motion, calculating a post-gesture
position of the movable user interface element;

determining that the post-gesture position exceeds a ges
ture boundary of the movable user interface element;
and

20
Aug. 18, 2011

calculating a distortion effect in the movable user interface
element to indicate that the gesture boundary has been
exceeded.

2. The method of claim 1 wherein calculating the distortion
effect comprises:

determining an extent by which the gesture boundary has
been exceeded;

determining a compressible area of the movable user inter
face element; and

determining a scale factor for the distortion effect based at
least in part on the compressible area and the extent by
which the gesture boundary has been exceeded.

3. The method of claim 2 further comprising scaling the
compressible area according to the scale factor.

4. The method of claim 2 wherein calculating the distortion
effect further comprises determining a distortion point for the
distortion effect.

5. The method of claim 4 further comprising scaling the
compressible area according to the scale factor and the dis
tortion point.

6. The method of claim 1 wherein the distortion effect is a
Squeeze effect.

7. The method of claim 1 further comprising:
displaying a portion of the movable user interface element

to indicate availability of a wrapping feature in the mov
able user interface element.

8. The method of claim 1, wherein the gesture information
comprises gesture coordinates.

9. The method of claim 1 wherein calculating the post
gesture position comprises interrupting the simulated inertia
motion when new gesture information corresponding to a
new gesture is received.

10. The method of claim 1 wherein calculating simulated
inertia motion is further based on inertia information com
prising an inertia Velocity.

11. The method of claim 10, wherein the inertia velocity is
based at least in part on a friction coefficient.

12. The method of claim 10 wherein calculating simulated
inertia motion comprises:

comparing the inertia Velocity with a parking speed coef
ficient; and

determining whether to stop the inertia motion based on the
comparing.

13. The method of claim 1 wherein the movable user inter
face element is an axis-locked user interface element.

14. In a computer system, a method comprising:
receiving user input that indicates movement in a graphical

user interface element having plural movable layers;
based at least in part on inertia information and the user

input, calculating a first motion having a first movement
rate in a first layer of the plural movable layers; and

calculating a parallax motion in a second layer of the plural
movable layers, wherein the parallax motion is based at
least in part on the first motion, and wherein the parallax
motion comprises a movement of the second layer at a
second movement rate that differs from the first move
ment rate.

15. The method of claim 14 wherein calculating the paral
lax motion is based at least in part on a parallax constant for
the second layer.

16. The method of claim 14 wherein calculating the paral
lax motion is based at least in part on an amount of display
able data in the second layer.

US 2011/0202834 A1

17. The method of claim 14 wherein calculating the first
motion comprises applying simulated inertia motion based at
least in part on the inertia information.

18. The method of claim 14 wherein the user input is a
gesture on a touch screen.

19. The method of claim 18 wherein the inertia information
comprises a Velocity of the gesture.

20. A computer readable medium having stored thereon
computer-executable instructions operable to cause a com
puter to perform a method comprising:

receiving gesture information corresponding to a gesture
on a touch input device, the gesture information indicat
ing a movement of a user interface element having a
movement boundary;

based at least in part on the gesture information, computing
a new position of the user interface element;

Aug. 18, 2011

based at least in part on the new position, determining that
the movement boundary has been exceeded;

determining an extent by which the movement boundary
has been exceeded;

determining a compressible area of the user interface ele
ment;

determining a scale factor for a distortion effect based at
least in part on the compressible area and the extent by
which the movement boundary has been exceeded; and

presenting a distortion effect in the user interface element,
wherein the distortion effect comprises a visual com
pression of content in the compressible area according to
the scale factor, wherein the visual compression is in a
dimension that corresponds to the movement of the user
interface element.

