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(57) ABSTRACT 

Aspects of a user interface that provides visual feedback in 
response to user input. For example, boundary effects are 
presented to provide visual cues to a user to indicate that a 
boundary in a movable user interface element (e.g., the end of 
a scrollable list) has been reached. As another example, par 
allax effects are presented in which multiple parallel or sub 
stantially parallel layers in a multi-layer user interface move 
at different rates, in response to user input. As another 
example, simulated inertia motion of UI elements is used to 
provide a more natural feel for touch input. Various combi 
nations of features are described. For example, simulated 
inertia motion can be used in combination with parallax 
effects, boundary effects, or other types of visual feedback. 
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Figure 1B 
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Figure 1C 
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VISUAL MOTION FEEDBACK FOR USER 
INTERFACE 

CROSS REFERENCE TO RELATED 
APPLICATION 

0001. This application claims the benefit of U.S. Provi 
sional Patent Application No. 61/304,004, filed on Feb. 12, 
2010, entitled “MULTI-LAYER USER INTERFACE WITH 
FLEXIBLE MOVEMENT,” which is incorporated herein by 
reference. 

BACKGROUND 

0002 The design of an effective user interface poses many 
challenges. One challenge is how to provide a user with an 
optimal amount of visual information or functionality, given 
the space limitations of a display and the needs of a particular 
user. This challenge can be especially acute for devices with 
Small displays, such as Smartphones or other mobile comput 
ing devices. This is because there is often more information 
available to a user performing a particular activity (e.g., 
browsing for audio or video files in a library of files) than can 
fit on the display. A user can easily become lost unless careful 
attention is paid to how information is presented on the lim 
ited amount available display space. Visual cues are useful for 
indicating, for example, a user's location when browsing a list 
or other collection of data, since it is often not possible to 
show an entire collection (e.g., a list of contacts stored in a 
Smartphone) on a small display. 
0003. Another challenge is how to provide a high level of 
functionality while maintaining a satisfying and consistent 
user experience. As devices have become more complex, and 
as consumers have become more demanding, it has become 
increasingly difficult to design user interfaces that are conve 
nient and pleasing for users, without sacrificing reliability, 
flexibility, functionality or performance. 
0004 Whatever the benefits of previous techniques, they 
do not have the advantages of the techniques and tools pre 
sented below. 

SUMMARY 

0005 Techniques and tools are described that relate to 
different aspects of a user interface that provides visual feed 
back in response to user input. For example, boundary effects 
are presented to provide visual cues to a user to indicate that 
a boundary in a movable user interface element (e.g., the end 
of a scrollable list) has been reached. As another example, 
parallax effects are presented in which multiple parallel or 
Substantially parallel layers in a multi-layer user interface 
move at different rates, in response to user input. As another 
example, simulated inertia motion of UI elements is used to 
provide a more natural feel for touch input. Various combi 
nations of features are described. For example, simulated 
inertia motion can be used in combination with parallax 
effects, boundary effects, or other types of visual feedback. 
0006. In one aspect, a user interface (UI) system receives 
gesture information corresponding to a gesture on a touch 
input device. The UI system calculates simulated inertia 
motion for a movable user interface element based at least in 
part on the gesture information, and potentially on other 
inertia information Such as a friction coefficient or a parking 
speed coefficient. Based at least in part on the gesture infor 
mation and on the simulated inertia motion, the UI System 
calculates a post-gesture position of the movable user inter 
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face element. The UI system determines that the post-gesture 
position exceeds a gesture boundary of the movable user 
interface element, and calculates a distortion effect (e.g., a 
Squeeze, compression or squish effect) in the movable user 
interface element to indicate that the gesture boundary has 
been exceeded. Calculating the distortion effect can include, 
for example, determining an extent by which the gesture 
boundary has been exceeded, determining a compressible 
area of the movable user interface element, determining a 
scalefactor for the distortion effect based at least in part on the 
compressible area and the extent by which the gesture bound 
ary has been exceeded, and Scaling the compressible area 
according to the scale factor. The distortion effect can be 
calculated based on a distortion point (which, for compres 
Sion, can be referred to as a compression point or Squeeze 
point), which can indicate the part of the UI element to be 
distorted. 

0007. In another aspect, user input (e.g., a gesture on a 
touch screen) indicates movement in a graphical user inter 
face element having plural movable layers. Based at least in 
part on inertia information and the user input, a UI System 
calculates a first motion having a first movement rate in a first 
layer of the plural movable layers, and calculates a parallax 
motion in a second layer of the plural movable layers. The 
parallax motion is based at least in part on the first motion 
(and potentially simulated inertia motion), and the parallax 
motion comprises a movement of the second layer at a second 
movement rate that differs from the first movement rate. The 
parallax motion can be calculated based on, for example, a 
parallax constant for the second layer, or an amount of dis 
playable data in the second layer. 
0008. In another aspect, a UI system receives gesture 
information corresponding to a gesture on a touch input 
device, the gesture information indicating a movement of a 
user interface element having a movement boundary. Based at 
least in part on the gesture information, the UI System com 
putes a new position of the user interface element. Based at 
least in part on the new position, the UI System determines 
that the movement boundary has been exceeded. The UI 
system determines an extent by which the movement bound 
ary has been exceeded, determines a compressible area of the 
user interface element, determines a scale factor for a distor 
tion effect based at least in part on the compressible area and 
the extent by which the movement boundary has been 
exceeded, and presents a distortion effect in the user interface 
element. The distortion effect comprises a visual compres 
sion of content in the compressible area (e.g., text, images, 
graphics, video or other displayable content) according to the 
scale factor. Depending, for example, on the size of the com 
pressible area and the size of the display area, some parts of 
the compressible area may not be visible on a display, so the 
distortion can be virtual (e.g., in areas that are not visible on 
a display) or the distortion can be actually displayed, or some 
parts of the distorted content can be displayed while other 
parts of the distorted content are not displayed. The visual 
compression is in a dimension that corresponds to the move 
ment of the user interface element. For example, a vertical 
movement in a UI element that exceeds a movement bound 
ary can cause content in the UI element to be vertically 
compressed or Squeezed. 
0009. The foregoing and other objects, features, and 
advantages of the invention will become more apparent from 
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the following detailed description, which proceeds with ref 
erence to the accompanying figures. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0010 FIGS. 1A-1C and 2 are flow charts showing 
example techniques for presenting motion feedback in user 
interface elements, according to one or more described 
embodiments. 
0011 FIG. 3 is a diagram showing a boundary effect, 
according to one or Snore described embodiments. 
0012 FIGS. 4A-4C are diagrams showing parallax 
effects, according to one or more described embodiments. 
0013 FIGS. 5 and 6A-6E are diagrams showing parallax 
effects and boundary effects inauser interface having parallel 
layers, according to one or more described embodiments. 
0014 FIGS. 7A, 7B, 8A and 8B are diagrams showing 
gesture boundary areas which can be used to determine 
whether to present boundary effects, according to one or more 
described embodiments. 
0015 FIG. 9 is a diagram showing example pinch and 
stretch gestures, according to one or more described embodi 
mentS. 

0016 FIG. 10 is a graph showing changes in position over 
time of a UI element that exhibits aboundary feedback effect, 
according to one or more described embodiments. 
0017 FIG. 11 is a system diagram showing a UI system in 
which described embodiments can be implemented. 
0018 FIG. 12 illustrates a generalized example of a suit 
able computing environment in which several of the 
described embodiments may be implemented. 
0019 FIG. 13 illustrates a generalized example of a suit 
able implementation environment in which one or more 
described embodiments may be implemented. 
0020 FIG. 14 illustrates a generalized example of a 
mobile computing device in which one or more described 
embodiments may be implemented. 

DETAILED DESCRIPTION 

0021 Techniques and tools are described that relate to 
different aspects of a user interface that provides visual feed 
back in response to user input. For example, boundary effects 
are presented to provide visual cues to a user to indicate that 
a boundary in a movable user interface element (e.g., the end 
of a scrollable list) has been reached. As another example, 
parallax effects are presented in which multiple parallel or 
Substantially parallel layers in a multi-layer user interface 
move at different rates, in response to user input. As another 
example, simulated inertia motion of UI elements is used to 
provide a more natural feel for touch input. Various combi 
nations of features are described. In one implementation, a UI 
system that accepts touch input includes detailed motion rules 
(e.g., rules for interpreting different kinds of touch input, 
rules for presenting inertia motion in UI elements in response 
to touch input, rules for determining boundaries in UI ele 
ments, etc.). The motion rules can be combined with various 
combinations of optional motion features such as parallax 
effects, boundary effects, and other visual feedback. The 
visual feedback that is presented according to motion rules 
and optional motion features in a UI element can depend on 
many factors, such as the type of the UI element and the 
content of the UI element. 
0022 Various alternatives to the implementations 
described herein are possible. For example, techniques 
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described with reference to flowchart diagrams can be altered 
by changing the ordering of stages shown in the flowcharts, 
by repeating or omitting certain stages, etc. As another 
example, systems described with reference to system dia 
grams can be altered by changing the ordering of processing 
stages shown in the diagrams, by repeating or omitting certain 
stages, etc. As another example, user interfaces described 
with reference to diagrams can be altered by changing the 
content or arrangement of user interface features shown in the 
diagrams, by omitting certain features, etc. As another 
example, although some implementations are described with 
reference to specific devices and user input mechanisms (e.g., 
mobile devices with a touchscreen interface), described tech 
niques and tools can be used with other devices and/or user 
input mechanisms. 
0023 The various techniques and tools can be used in 
combination or independently. Different embodiments 
implement one or more of the described techniques and tools. 

I. Overview of Motion Feedback Features for User Interfaces 

0024. As devices have become more complex, and as con 
Sumers have become Snore demanding, it has become 
increasingly difficult to design user interfaces that are conve 
nient and pleasing for users, without sacrificing reliability, 
flexibility, functionality or performance. The feel of a user 
interface (UI) is becoming increasingly important to distin 
guish the underlying product from its competitors. An impor 
tant contributor to the feel of a UI is how it reacts when a user 
interacts with it. This is especially true for touch-based inter 
faces. 
0025. Accordingly, techniques and tools are described for 
providing feedback (e.g., visual cues such as parallax effects, 
boundary effects, etc.) to users in response to user input (e.g., 
touch input). In some embodiments, movements in elements 
(also referred to as “controls) are based at least in part on 
user input (e.g., gestures on a touchscreen) and an inertia 
model. For example, a movement in a UI element can be 
extended beyond the actual size of a gesture on a touchscreen 
by applying inertia to the movement. Applying inertia to a 
movement in a UI element typically involves performing one 
more calculations using gesture information (e.g., a gesture 
start position, a gesture end position, gesture Velocity and/or 
other information) and one or more inertia motion values 
(e.g., friction coefficients) to determine a post-gesture state 
(e.g., a new position) for the UI element. Simulated inertia 
motion can be used in combination with other effects (e.g., 
parallax effects, boundary effects, etc.) to provide feedback to 
a user. In any of the examples herein, movements in UI 
elements can be rendered for display (e.g., depicting calcu 
lated distortion, parallax, or other effects, if any). 
0026 Movement in UI elements typically depends to 
Some extent on user interaction. For example, a user that 
wishes to navigate from one part of a UI element to another 
(e.g., from the beginning of a scrollable list to the end of the 
list) provides user input to indicate a desired movement. The 
user input can then cause movement in the UI element and 
potentially other elements in the user interface. In some 
embodiments, a user causes movement in a display area of a 
device by interacting with a touchscreen. The interaction can 
include, for example, contacting the touchscreen with a fin 
gertip, stylus or other object and moving it (e.g., with a 
flicking or Sweeping motion) across the Surface of the touch 
screen to cause movement in a desired direction. Alterna 
tively, a user can interact with a user interface in some other 
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way, such as by pressing buttons (e.g., directional buttons) on 
a keypad or keyboard, moving a trackball, pointing and click 
ing with a mouse, making a voice command, etc. 
0027. The actual amount and direction of the user's 
motion that is necessary to produce particular movements can 
vary depending on implementation or user preferences. For 
example, a user interface system can include a default setting 
that is used to calculate the amount of motion (e.g., interms of 
pixels) as a function of the size or rate of a user movement. As 
another example, a user can adjust a touchscreen sensitivity 
control. Such that the same motion of a fingertip or stylus on 
a touchscreen will produce Smaller or larger movements, 
depending on the setting of the control. Gestures can be made 
in various directions to cause movement in UI elements. For 
example, upward and downward gestures can cause upward 
or downward movements, respectively, while rightward and 
leftward movements can cause rightward and leftward move 
ments, respectively. Upward/downward motion can even be 
combined with left/right motion for diagonal movements. 
Other kinds of motion, Such as non-linear motion (e.g., 
curves) or bi-directional motion (e.g., pinch or stretch 
motions made with multiple contact points on a touchscreen) 
also can be used to cause movement in UI elements. 

Example 1 

Inertia, Boundary Effects and Parallax Effects: Over 
view 

0028 FIG. 1A is a flow chart showing a general technique 
100 for providing motion feedback in a UI. At 101, a device 
receives user input indicating motion in a UI element. For 
example, a UI System on a mobile device receives gesture 
information corresponding to a gesture on a touchscreen on 
the mobile device. At 102, the device determines whether 
inertia will be applied to the motion indicated by the user 
input. For example, a UI System determines based on gesture 
information (e.g., gesture start position, gesture end position, 
gesture direction, gesture Velocity) whether to apply inertia to 
the motion in the UI element. At 103, the device determines 
whether visual effects (e.g., boundary effects, parallax 
effects, etc.) will be applied to the motion indicated by the 
user input. For example, the device determines whether to 
apply a distortion effect (e.g., a compression or Squeeze 
effect) to indicate that a boundary in the UI element (e.g., a 
boundary at the end of a scrollable list) has been reached. As 
another example, the device determines whether to apply a 
parallax effect (e.g., by moving parallel layers in a multi-layer 
UI element at different rates). The applied effects also can be 
based on inertia, where inertia is applied to the motion indi 
cated by the user input. For example, if a UI System applies 
inertia to a movement and calculates, based on the inertia, a 
new position for a UI element that is outside a boundary for 
the UI element, the UI system can apply a boundary effect to 
provide a visual indicator that the boundary has been reached. 
At 104, the motion in the UI element is rendered for display. 
0029 FIG. 19 is a flow chart showing a technique 110 for 
providing boundary effects in combination with inertia 
motion. At 111, a UI System receives gesture information 
corresponding to a gesture. For example, the UI System 
receives gesture coordinates and Velocity information for the 
gesture. At 112, the UI System calculates inertia motion based 
on the gesture information. For example, the UI System deter 
mines that inertia motion is applied based on the Velocity 
information, and calculates a duration of inertia motion for 
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the gesture. At 113, the UI System calculates a post-gesture 
position based on the gesture information and the inertia 
motion. For example, the UI System calculates the post-ges 
ture position based on the gesture coordinates and the dura 
tion of the inertia motion. At 114, the UI system determines 
that a boundary for the UI element has been exceeded. For 
example, the UI System compares one or more coordinates 
(e.g., vertical or horizontal coordinates) of the post-gesture 
position and determines an extent by which the post-gesture 
position exceeds the boundary. At 115, the UI system calcu 
lates a distortion effect to indicate that the boundary has been 
exceeded. For example, the UI System calculates a squeeze or 
compression effect in the content of the UI element based on 
the extent to which the post-gesture position exceeds the 
boundary. 
0030 FIG. 1C is a flow chart showing a technique 120 for 
providing parallax effects incombination withinertia motion. 
At 121, a UI System receives user input indicating motion in 
a UI element having plural layers. For example, the UI system 
receives gesture coordinates and Velocity information for a 
gesture on a touch screen, where the gesture is directed to a 
content layer in multi-layer UI. At 122, the UI system calcu 
lates motion in a first layer based on inertia information and 
the user input. For example, the UI system determines that 
inertia motion should be applied to movement in the content 
layer based on the Velocity information, and calculates a 
duration of inertia motion for the movement. At 123, the UI 
system calculates aparallax motion in a second layer based on 
the first motion in the first layer. For example, the UI system 
calculates the parallax motion in a layer above the content 
layer based on the motion in the content layer, with the par 
allax motion having a different movement rate than the 
motion in the content layer. The parallax motion also can 
include inertia motion, or inertia motion can be omitted in the 
parallax motion. 
0031. In any of the above techniques, any combination of 
the inertia, boundary, parallax, distortion, and other effects 
described herein can be applied. Depending on implementa 
tion and the type of processing desired, processing stages 
shown in example techniques 100, 110, 120 can be rear 
ranged, added, omitted, split into multiple stages, combined 
with other stages, and/or replaced with like stages. 

Example 2 

Inertia, Boundary Effects and Parallax Effects: 
Detailed Technique 

0032 FIG. 2 is a flow chart showing a detailed example 
technique 200 for providing visual feedback in a UI in 
response to a user gesture. 
0033. At 210, a UI system on a device receives touch input 
information in a touch input stream. For example, the touch 
input stream comprises data corresponding to a gesture on a 
touchscreen of a mobile device. Data received from the touch 
input stream can include, for example, gesture information 
Such as a gesture start position, a gesture end position, and 
timestamps for the gesture. The touch input stream is typi 
cally received from a device operating system, which con 
verts raw data received from a touch input device (e.g., a 
touchscreen) into gesture information. Alternatively, data 
received from the touch input stream can include other infor 
mation, or gesture information can be received from some 
other source. 
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0034. At 212, filtering is applied to the touch input stream. 
In the filtering stage, one or more algorithms are applied to the 
touch input stream coming from the OS to filter out or correct 
anomalous data. For example, the filtering stage can correct 
misaligned touch data caused by jittering (e.g., values that are 
not aligned with previous inputs) or filter out spurious touch 
contact points (e.g., incorrect interpretation of a single touch 
point as multiple touch points that are close together), etc. As 
another example, if only single-touch-point gestures are 
allowed, the filtering stage can convert any multi-touch input 
into a single-touch input. Alternatively, touch input filtering 
can be performed during generating of the touch input stream 
(e.g., at the device OS). As another alternative, touch input 
filtering can be performed during a coordinate space trans 
form stage (e.g., coordinate space transform 220). As another 
alternative, touch input filtering can be omitted. 
0035. At 220, the UI system applies a coordinate space 
transform to data in the touch input stream corresponding to 
the gesture. For example, a coordinate space transform is 
applied to the data from the touch input stream in order to 
account for possible rotations of the device, Scale changes, 
influence from other animations, etc., in order to properly 
interpret the original input stream. For example, if a UI ele 
ment is rotated 90 degrees such that vertical movement in the 
UI element becomes horizontal movement (or vice versa), a 
Vertical gesture can be transformed to a horizontal gesture (or 
vice versa) to account for the rotation of the device. If no 
adjustments are necessary, the coordinate space transform 
can leave gesture information unchanged. Alternatively the 
coordinate space transform state can be omitted. 
0036. At 230, the UI system calculates the velocity at the 
end of the gesture. For example, the velocity is calculated by 
determining a first position near the end of the gesture and an 
end position of the gesture, and dividing by the time elapsed 
during the movement from the first position near the end of 
the gesture to the end position. In one implementation, the 
first position is determined by finding the gesture position at 
approximately 100 ms prior to the end of the gesture. Mea 
Suring Velocity near the end of the gesture can help to provide 
a more accurate motion resulting from the gesture than mea 
Suring Velocity over the entire course of the gesture. For 
example, if a gesture starts slowly and ends with a higher 
Velocity, measuring the Velocity at the end of the gesture can 
help to more accurately reflect the user's intended gesture 
(e.g., a strong flick). Alternatively, the Velocity is calculated 
by determining the distance (e.g., in pixel units) between the 
start position for the gesture and the end position of the 
gesture, and dividing by the time elapsed during the move 
ment from the start position to the end position. The time 
elapsed can be calculated, for example, by computing the 
difference between a timestamp associated with the start posi 
tion and a timestamp associated with the end position. 
0037. At 240, the UI system determines whether the ges 
ture is an inertia gesture. As used herein, an inertia gesture 
refers to a gesture, such as a flick gesture, capable of causing 
movement in one or more user interface elements to which 
inertia can be applied. The UI System candistinguish between 
a non-inertia gesture and an inertia gesture by determining 
how quickly the user's finger, stylus, etc., was moving when 
it broke contact with the touchscreen, and whether the veloc 
ity exceeds a threshold. If the gesture ends with a velocity 
above the threshold, the gesture can be interpreted as an 
inertia gesture. For example, a gesture that starts with panning 
motion at a velocity below the threshold and ends with a 
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velocity above the threshold can be interpreted as ending with 
a flick that causes movement to which inertia can be applied. 
If the gesture ends with a velocity below the threshold, the 
gesture can be interpreted as a non-inertia gesture. Exemplary 
techniques and tools used in some implementations forges 
ture interpretation are described in detail below. 
0038 If the gesture is an inertia gesture (e.g., a flick ges 
ture), at 250 the UI system determines whether inertia will be 
applied to the motion indicated by the gesture. For example, 
the UI System determines based on gesture information (e.g., 
end-of-gesture Velocity) and/or other information (e.g., user 
preferences) whether to apply inertia to the motion in the UI 
element. Despite being considered an inertia gesture, a ges 
ture Such as a flick may still not have inertia applied to its 
resulting movements, such as when a flick gesture is received 
for a UI element that does not support inertia movements, or 
for a UI element for which inertia movement has been deac 
tivated (e.g., according to user preference). 
0039. If inertia is not to be applied (e.g., when the gesture 

is not an inertia gesture), at 254 the UI System computes a new 
position for the UI element based on gesture information 
(e.g., end-of-gesture position coordinates). If inertia is to be 
applied, at 252 the UI system computes a new position based 
on the gesture information (e.g., end-of-gesture position 
coordinates) and simulated inertia. For example, the simu 
lated inertia involves treating a UI element, or part of a UI 
element, as a physical object of non-Zero mass that moves 
according to an approximation of Newtonian physics. The 
approximation can include, for example, a friction coefficient 
and/or other parameters that control how the movement is 
calculated and/or rendered. 
0040. When the new position of the UI element has been 
computed (with or without simulated inertia), the UI system 
determines at 260 whether boundary feedback will be pre 
sented. Determining whether boundary feedback will be pre 
sented involves determining whether the new position is 
within boundaries (if any) of the UI element. For example, in 
a scrollable list, the UI system can determine whether the new 
position is calculated to be outside the boundaries of the 
scrollable list (e.g., below the end of a vertically scrollable 
list). Some UI elements may not have boundaries that can be 
exceeded by any permitted motion. For example, a UI ele 
ment may take the form of a wrappable list, which may have 
a default entry position but no beginning or end. If the wrap 
pable list is axis-locked (e.g., if movement is only permitted 
along a vertical axis for a vertically scrolling list), the list may 
have no boundaries that can be exceeded by any permitted 
motion. For UI elements without any boundaries, or without 
boundaries that can be exceeded by permitted motion, the 
determination of whether the new position is within bound 
aries can be skipped. Axis locking is described in more detail 
below. 

0041) If boundary feedback is to be presented, at 262 the 
UI system applies a boundary effect to the UI element. For 
example, the UI System can apply a visual distortion effect 
Such as a 'squish' or compression of text, images or other 
visual information in the UI element, to provide a visual cue 
that a boundary of the UI element has been reached. Bound 
ary effects are described in more detail below. 
0042. The UI system determines at 270 whether parallax 
feedback will be presented. Determining whether parallax 
feedback will be presented involves determining whether the 
UI element has multiple parallel layers or substantially par 
allel layers that can be moved at different rates based on the 
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same gesture. If parallax feedback is to be presented, at 272 
the UI system applies a parallax effect to the UI element. In 
general, a parallax effect involves movement of multiple par 
allel layers, or substantially parallel layers, at different rates. 
Example parallax effects are described in more detail below. 
0043. The processing stages in example technique 200 
indicate example flows of information in a UI System. 
Depending on implementation and the type of processing 
desired, processing stages can be rearranged, added, omitted, 
split into multiple stages, combined with other stages, and/or 
replaced with like stages. 
0044) For example, although example technique 200 
shows stages of receiving data from a touch input stream, 
applying touch input filtering, applying a coordinate space 
transform, calculating a Velocity at the end of a gesture, and 
determining whether the gesture is an inertia gesture. Such 
processing stages are only exemplary. Gesture information 
(e.g., gesture Velocity, position, whether the gesture is a can 
didate for simulated inertia, etc.) can be obtained in other 
ways. As an example, a module that determines whether to 
apply inertia motion and determines whether to apply bound 
ary feedback or parallax effects can obtain gesture data from 
another source. Such as another module that accepts touch 
input and makes calculations to obtain gesture information 
(e.g., gesture Velocity, end-of-gesture position). 
0045. As another example, although example technique 
200 shows a determination of whether to present boundary 
feedback occurring before a determination of whether to 
present parallax feedback, such an arrangement is only exem 
plary. A determination of whether to present boundary feed 
back and/or parallax feedback can be performed in other 
ways. As examples, once a new position has been calculated, 
determinations of whether to present boundary feedback and/ 
or parallax feedback can occur in parallel, or the determina 
tion of whether to present a parallax effect can occur before 
the determination of whether to present a boundary effect. 
Such arrangements can be useful, for example, where a ges 
ture may cause movements in multiple parallel layers of a UI 
element prior to reaching a boundary of the element. A UI 
system also can determine (e.g., based on characteristics of a 
current UI element) whether boundary effects and/or parallax 
effects are not available (e.g., for UI elements that do not have 
multiple layers or boundaries), and skip processing stages 
that are not relevant. 

II. Boundary Effects 
0046 Boundary feedback can be used to provide visual 
cues to a user to indicate that a boundary (e.g., a boundary at 
the end, beginning, or other location) in a UI element (e.g., a 
data collection such as a list) has been reached. In described 
implementations, a UI System presents a boundary effect in a 
UI element (or a portion of a UI element) by causing the UI 
element to be displayed in a visually distorted State. Such as a 
Squeezed or compressed State (i.e., a state in which text, 
images or other content is shown to be smaller than normal in 
one or more dimensions), to indicate that a boundary of the UI 
element has been reached. 
0047. Described techniques and tools for presenting 
boundary feedback can be applied to any UI element with one 
or more boundaries that can be manipulated by moving the 
element. For example, described techniques and tools can be 
used in an email viewer, Such that text in a scrollable email 
message is distorted (e.g., Squeezed or compressed) to indi 
cate that the end of the email message has been reached. 
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0048 Boundary effects (e.g., distortion effects) can be 
presented in different ways. For example, a boundary effect 
can be held in place for different lengths of time depending on 
user input and/or design choice. A boundary effect can end, 
for example, by returning the UI element to a normal (e.g., 
undistorted) state when a user lifts a finger, stylus or other 
object to end an interaction with a touchscreen after reaching 
a boundary, or when an inertia motion has completed. As 
another example, distortion effects other than a squish, 
Squeeze or compression can be used. One alternative distor 
tion effect is a visual stretch. A stretch effect can be used, for 
example, in combination with a Snap-back animation to indi 
cate that boundary has been reached. 
0049 Boundary effects can be presented even when it is 
possible to continue a movement beyond a boundary. For 
example, if a user scrolls to the end of a vertically-oriented 
list, causing a distortion of text or images at the end of the list, 
further motion can cause the list to wrap past the boundary 
and back to the beginning of the list. The UI also can show an 
element (or part of an element) at the top of the list to indicate 
that further movement can allow the user to wrap back to the 
beginning of the list. 

Example 3 

Boundary Effect: Distortion 
0050 FIG. 3 is a diagram showing a graphical user inter 
face (GUI) presented by a UI system that uses a distortion 
effect to indicate that a boundary of UI element has been 
reached. According to the example shown in FIG. 3, a user 
302 (represented by the hand icon) interacts with a list com 
prising list elements (“Contact1...” “Contact2... etc.). In this 
example, distortion effects depend at least in part on the 
location of a squeeze point 396. Some list elements with 
distortion effects are shown as being outside display area 300. 
0051 FIG. 3 shows example states 390-394. In state 390, 
user 302 interacts with a touchscreen by making an upward 
motion, indicated by an initial gesture position 350 and an 
end-of-gesture touch position 352. The interaction can 
include, for example, contacting the touchscreen with a fin 
gertip, stylus or other object and moving it (e.g., with a 
flicking or Sweeping motion) along the Surface of the touch 
screen. Although FIG.3 shows user 302 interacting with the 
touchscreen at particular locations in the display area 300, the 
UI system allows interaction with other parts of the touch 
screen to cause movement in the list. Furthermore, although 
the example shown in FIG. 3 shows user 302 making an 
upward motion to scroll towards the end of the list, user 302 
also can make other motions (e.g., downward motions to 
scroll towards the beginning of the list). The UI system can 
interpret different kinds of upward or downward user move 
ments, even diagonal movements extending to the right or left 
of the vertical plane, as a valid upward or downward motion. 
0.052 From state 390, the upward motion causes a distor 
tion effect shown in state 392. In this example, the upward 
motion is finger-tracking motion caused by a draggesture, but 
distortion effects also can be caused by other motion resulting 
from other kinds of gestures. Such as inertia motion caused by 
a flick gesture. The distortion effect indicates that a boundary 
in the list has been reached. In the example shown in state 
FIG.3, the entire list is treated as a single surface, as indicated 
by the single dimension line to the right of the list in states 
390, 392 and 394, respectively. In state 392, the list has been 
Squeezed or compressed in a vertical dimension, as shown by 
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the reduced length of the dimension to the right of the list. The 
text of each list element has been Squeezed or compressed in 
a vertical dimension. The elements are distorted proportion 
ally. The effect in state 392 is as if all the list elements are 
being compressed against a barrier at the squeeze point 396. 
0053. In the example shown in state 392, the squeeze point 
396 is indicated at the top of a list, outside the display area 
300. Other squeeze points are also possible. For example, the 
squeeze point could be at the center of a list (e.g., at item 50 
in a 100 item list) or at the top of a visible portion of a list. In 
this example, the list can be considered as having two parts— 
one part above the Squeeze point, and one part below the 
Squeeze point—where only one part of the list is Squeezed. 
The Squeeze point can change dynamically, depending on the 
state of the list and/or display. For example, a squeeze point 
can move up or down (e.g., in response to where the center of 
the list is) as elements are added to or removed from the list, 
or a squeeze point can update automatically (e.g., when the 
end of the list has been reached) to be at the top of a visible 
portion of the list. As another example, a squeeze point can be 
placed outside of a list. This can be useful to provide more 
consistent visual feedback, Such as when a UI element does 
not fill the visible area. 

0054. In state 394, the list has returned to the undistorted 
state shown in state 390. For example, the list can return to the 
undistorted state after the gesture shown in state 390 is ended 
(e.g., when the user breaks contact with the touchscreen). 
0055. The upward motion shown in FIG. 3 is only an 
example of a possible user interaction. The same motion 
and/or other user interactions (e.g., motions having different 
sizes, directions, or Velocities) can cause different effects, 
different display states, different transitions between display 
states, etc. For example, a motion that causes a distortion 
effect in a UI element (e.g., at the end of a vertically scrollable 
list) also can cause another portion of the UI element (e.g., a 
list item at the beginning of a vertically scrollable list) to be 
displayed to indicate availability of a wrapping feature in the 
list. Further movement can then cause wrapping in the UI 
element (e.g., from the end back to the beginning of a verti 
cally scrollable list). 
0056 States 390-394 are only examples of possible states. 
In practice, a UI element can exist in any number of States 
(e.g., in intermediate states between example states 390-394, 
etc.) in addition to, or as alternatives to, the example states 
390-394. For example, it is preferable to show a gradual 
transition between an undistorted state (e.g., state 390) and a 
distorted state (e.g., state 392), or from a distorted state to an 
undistorted state, to provide a more natural feel and avoid the 
appearance of abrupt changes in the display. Intermediate 
states, such as states that may occur between state 390 and 
state 392, or between state 392 and state 394 can show gradu 
ally increasing or decreasing degrees of distortion, as appro 
priate. 

III. Parallax Effects 

0057. In described embodiments, a UI system can present 
parallel, or substantially parallel, movable layers. The UI 
system can present a parallax effect, in which layers move at 
different speeds relative to one another. The effect is referred 
to as a parallax effect because, in a typical example, a layer 
that is of interest to a user moves at a faster rate than other 
layers, as though the layer of interest were closer to the user 
than the other, slower-moving layers. However, the term “par 
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allax effect as used herein refers more generally to effects in 
which layers move at different rates relative to one another. 
0058. The rate of movement in each layer can depend on 
several factors, including the amount of data to be presented 
visually (e.g., text or graphics) in the layers, or the arrange 
ment of the layers relative to one another. The amount of data 
to be presented visually in a layer can measured by, for 
example, determining the length as measured in a horizontal 
direction of the data as rendered on a display or as laid out for 
possible rendering on the display. Length can be measured in 
pixels or by some other Suitable measure (e.g., the number of 
characters in a string of text). A layer with a larger amount of 
data and moving at a faster rate can advance by a number of 
pixels that is greater thana layer with a smalleramount of data 
moving at a slower rate. Layer movement rates can be deter 
mined in different ways. For example, movement rates in 
slower layers can be derived from movement rates in faster 
layers, or vice versa. Or, layer movement rates can be deter 
mined independently of one another. Layers that exhibit par 
allax effects can be overlapping layers or non-overlapping 
layers. 
0059. When user interaction causes movement in layers, 
the movement of the layers is a typically a function of the 
length of the layers and the size and direction of the motion 
made by the user. For example, a leftward flicking motion on 
a touchscreen produces a leftward movement of the layers 
relative to the display area. Depending on implementation 
and/or user preferences, user input can be interpreted in dif 
ferent ways to produce different kinds of movement in the 
layers. For example, a UI System can interpret any movement 
to the left or right, even diagonal movements extending well 
above or below the horizontal plane, as a valid leftward or 
rightward motion of a layer, or the system can require more 
precise movements. As another example, a UI System can 
require that a user interact with a part of a touchscreen cor 
responding to the display area occupied by a layer before 
moving that layer, or the system can allow interaction with 
other parts of the touchscreen to cause movement in a layer. 
As another example, a user can use an upward or downward 
motion to Scroll up or down in a part of the content layer that 
does not appear on the display all at once. 
0060. In some embodiments, lock points indicate corre 
sponding positions in layers with which a display area of a 
device will be aligned. For example, when a user navigates to 
a position on a content layer Such that the left edge of the 
display area is at a left-edge lock point “A” the left edge of 
display area will also be aligned at a corresponding left-edge 
lockpoint'A' in each of the other layers. Lockpoints also can 
indicate alignmentofa right edge of a display area (right-edge 
lock points), or other types of alignment (e.g., center lock 
points). Typically, corresponding lockpoints in each layer are 
positioned to account for the fact that layers will move at 
different speeds. For example, if the distance between a first 
lock point and a second lock point in a content layer is twice 
as great as the distance between corresponding first and sec 
ond lock points in a background layer, the background layer 
moves at half the rate of the content layer when transitioning 
between the two lock points. 
0061. In addition to indicating corresponding positions in 
layers, lock points can exhibit other behavior. For example, 
lock points can indicate positions in a content layer to which 
the layer will move when the part of the layer corresponding 
to the lock point comes into view on the display. This can be 
useful, for example, when an image, list or other content 
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element comes partially into view near an edge of the display 
area—the content layer can automatically bring the content 
element completely into view by moving the layer Such that 
an edge of the display area aligns with an appropriate lock 
point. A lock animation can be performed at the end of a 
gesture. Such as a flick or pangesture, to align the layers with 
a particular lock point. As an example, a lock animation can 
be performed at the end of a gesture that causes movement of 
a content layer to a position between two elements in a con 
tent layer (e.g., where portions of two images in a content 
layer are visible in a display area). A UI System can select an 
element (e.g., by checking which element occupies more 
space in the display area) and transition to focus on that 
element using the lock animations. This can improve the 
overall look of the layers and can be effective in bringing 
information or functional elements into view in a display 
area. A lock animation also can be used together with simu 
lated inertia motion. For example, a lock animation can be 
presented after inertia motion stops, or a lock animation can 
be blended with inertia motion (such as by extending inertia 
motion to a lock point, or ending inertia motion early by 
gradually coming to a stop at a lock point) to presenta Smooth 
transition to a lock point. 
0062. The amounts and rates of movements presented in 
parallax effects can be calculated and presented in different 
ways. In a detailed example described below, equations are 
described for calculating parallax effect movements in which 
a parallax constant is used to determine anew position for a 
layer after a gesture. As another example, motion in layers 
and/or other elements. Such as lists, can be calculated based 
on motion ratios. For example, a UI System can calculate 
motion ratios for a background layer and a title layer by 
dividing the width of the background layer and the width of 
the title layer, respectively, by a maximum width of the con 
tent layer. Taking into account the widths of the background 
layer and the title layer, a system can map locations of lock 
points in the background layer and the title layer, respectively, 
based on the locations of corresponding lock points in the 
content layer. 
0063 Movement of various layers can differ depending on 
context. For example, a user can navigate left from the begin 
ning of a content layer to reach the end of a content layer, and 
can navigate right from the end of the content layer to reach 
the beginning of a content layer. This wrapping feature pro 
vides more flexibility when navigating through the content 
layer. Wrapping can be handled by the UI system in different 
ways. For example, wrapping can be handled by producing an 
animation that shows a rapid transition from the end of layers 
Such as title layers or background layers back to the beginning 
of Such layers, or Vice-versa. Such animations can be com 
bined with ordinary panning movements in the content layer, 
or with other animations in the content layer, such as locking 
animations. However, wrapping functionality is not required. 

Example 4 

Parallax Effects: Multiple Layers with Background 
Layer 

0064 FIGS. 4A-4C are diagrams showing a GUI pre 
sented by a UI system with three layers 410, 412,414 and a 
background layer 450. In this example, a user 302 (repre 
sented by the hand icon) interacts with content layer 414 by 
interacting with a touchscreen having a display area 300. 
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0065 Background layer 450 floats behind the other layers. 
Data to be presented visually in background layer 450 can 
include, for example, an image that extends beyond the 
boundaries of display area 300. The content layer 414 
includes content elements (e.g., images) 430A-H. Layers 
410, 412 include text information (“Category' and “Selected 
Subcategory.” respectively). The length of content layer 414 
is indicated to be approximately twice the length of layer 412, 
which is in turn indicated to be approximately twice the 
length of layer 410. The length of background layer 450 is 
indicated to be slightly less than the length of layer 412. 
0066. In FIGS. 4A-4C, the direction of motion that can be 
caused in the layers 410, 412, 414, 450 by user 302 is indi 
cated by a left-pointing arrow and a right-pointing arrow. 
These arrows indicate possible movements (left or right hori 
Zontal movements) of layers 410, 412,414, 450 in response to 
user movements. In this example, the system interprets user 
movements to the left or right, even diagonal movements 
extending above or below the horizontal plane, as a valid 
leftward or rightward motion of a layer. Although FIGS. 
4A-4C show user 302 interacting with a portion of display 
area 300 that corresponds to content layer 414, the system 
also allows interaction with other parts of the touchscreen 
(e.g., parts that correspond to portions of display area 300 
occupied by other layers) to cause movement in layers 410. 
412,414, 450. 
0067. When user input indicates a motion to the right or 

left, the system produces a rightward or leftward movement 
of the layers 410,412, 414, 450 relative to display area 300. 
The amount of movement of layers 410, 412, 414, 450 is a 
function of the data in the layers and the size or rate of the 
motion made by the user. 
0068. In FIGS. 4A-4C, example left-edge lock points “A.” 
“B” and “C” are indicated for layers 410,412.414. 450. The 
left-edge lock points indicate the corresponding position of 
the left edge of the display area 300 on each layer. For 
example, when a user navigates to a position on content layer 
414 such that the left edge of display area 300 is at lock point 
“A” the left edge of display area 300 will also be aligned at 
lock point “A” of the other layers 410, 412,450, as shown in 
FIG. 4A. In FIG. 4B, the left edge of display area 300 is at lock 
point “B” in each of the layers 410,412,414,450. In FIG. 4C, 
the left edge of the display area 300 is at lockpoint “C” in each 
of the layers 410, 412, 414, 450. 
0069. The lock points shown in FIGS. 4A-4C are not gen 
erally representative of a complete set of lock points, and are 
limited to lock points “A” “B” and “C” only for brevity. For 
example, left-edge lock points can be set for each of the 
content elements 430A-430H. Alternatively, fewer lock 
points can be used, or lock points can be omitted. As another 
alternative, lock points can indicate other kinds of alignment. 
For example, right-edge lock points can indicate alignment 
with the right edge of display area 300, or center lock points 
can indicate alignment with the center of display area 300. 
(0070. In this example, layers 410, 412, 414, 450 move 
according to the following rules, except during wrapping 
animations: 

0071 1. Content layer 414 will move at approximately 
twice the rate of layer 412, which is approximately half 
the length of layer 414. 

0.072 2. Layer 412 will move at approximately twice 
the rate of layer 410, which is approximately half the 
length of layer 412. 
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0073. 3. Content layer 414 will move at approximately 
four times the rate of layer 410, which is approximately 
/4 the length of layer 414. 

0074. 4. Background layer 450 will move slower than 
layer 410. Although background layer 450 is longer than 
layer 410, the distance to be moved between neighbor 
ing lock points (e.g., lock points 'A' and “B”) in layer 
410 is greater than the distance between the correspond 
ing lock points in background layer 450. 

0075 Movement of layers 410, 412, 414, 450 may differ 
from the rules described above in some circumstances. In this 
example, wrapping is permitted. User 302 can navigate left 
from the beginning of content layer 414 (the position shown 
in FIG. 4A), and can navigate right from the end of content 
layer 414 (the position shown in FIG. 4C). During a wrapping 
animation, Some layers may move faster or slower than dur 
ing other kinds of movements. In this example, the image in 
background layer 450 and the text in layers 410 and 412 
moves faster when user input causes wrapping back to the 
beginning of content layer 414. In FIG. 4C, display area 300 
shows portions of one and two letters, respectively, in layers 
410 and 412, at the end of the respective text strings. Display 
area 300 also shows the rightmost portion of the image in 
background layer 450. A wrapping animation to return to the 
state shown in FIG. 4A can include bringing the leftmost 
portion of the image in background layer 450 and the begin 
ning of the text in layers 410, 412 into view from the right. 
This results in a more rapid movement in layers 410, 412 and 
450 than in other contexts, such as the transition from the state 
shown FIG. 4A to the state shown in FIG. 4B. 

Example 5 

Inertia Motion with Parallax Effects and Boundary 
Effects 

0.076 Parallax effects can be used in combination with 
boundary effects and inertia motion. For example, boundary 
effects can be used to indicate when a user has reached a 
boundary of a layer, or a boundary of an element within a 
layer. As another example, inertia motion can be used to 
extend motion of UI elements caused by Some gestures (e.g., 
flick gestures). If inertia motion causes movement of a UI 
element (e.g., a layer) to extend beyond a boundary, a UI 
system can present a boundary effect. 
0077 FIG. 5 is a diagram showing two layers 530, 532. 
Display area 300 is indicated by a dashed line and has dimen 
sions typical of displays on Smartphones or similar mobile 
computing devices. The content layer 532 includes content 
elements 540-544. In this example, each content element 
540-544 comprises an image representing a music album, and 
text indicating the title of the respective album. The list header 
layer 530 includes a text string (Albums). According to the 
example shown in FIG. 5, a user 302 (represented by the hand 
icon) interacts with content layer 532 by interacting with a 
touchscreen having the display area 300. The interaction can 
include, for example, contacting the touchscreen with a fin 
gertip, stylus or other object and moving it (e.g., with a 
flicking or Sweeping motion) across the Surface of the touch 
SCC. 

0078 FIG. 5 shows example display states 590–594. In 
display state 590, user 302 interacts with a touchscreen by 
making a flick gesture 510, which is indicated by a leftward 
pointing arrow. The flick gesture 510 causes an inertia motion 
in content layer 532, which continues to move after the ges 
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ture 510 has ended. Although FIG. 5 shows user 302 interact 
ing with the touchscreen at a particular location in the display 
area 300, the UI system allows interaction with other parts of 
the touchscreen to cause movement. Furthermore, although 
the example shown in FIG. 5 shows user 302 making a left 
ward flick gesture, user 302 also can make other motions 
(e.g., rightward motions to scroll towards the beginning of the 
list). The UI system can interpret different kinds of leftward 
or rightward user movements, even diagonal movements 
extending below or above the horizontal plane, as a valid 
leftward or rightward motion. 
(0079. In response to the flick gesture 510, the UI system 
produces leftward movement of the layers 530,532 relative to 
the display area 300. For example, from display state 590, the 
flick gesture 510 causes a leftward movement in the layers 
and leads to display state 592, in which element 540 is no 
longer visible, and elements 542 and 544 have moved to the 
left. The text string (“Albums”) in the list header layer 530 
also has moved to the left, but at a slower rate (in terms of 
pixels) than the content layer 532. The movement of the 
layers 530, 532 is a function of the data in the layers and the 
velocity of the flick gesture 510. 
0080 From display state 592, the inertia motion causes 
continued leftward movement of the layers 530, 532 without 
further input from the user 302, and leads to display state 594 
in which element 542 is no longer visible. The inertia motion 
causes the content layer to extend beyond a boundary (not 
shown) to the right of the element 544 in the content layer 
532, which results in a distortion effect in which an image and 
text in element 544 is squeezed or compressed in a horizontal 
dimension. The compression is indicated by the reduced 
length of the dimension lines above the image and text (“Rock 
& Roll Part in') of element 544, respectively. The text string 
(“Albums’) in the list header layer 530 also has moved to the 
left, but at a slower rate (in terms of pixels) than the content 
layer 532. The text in list header layer 530 is uncompressed. 
The distortion effect gives user 302 an indication that the end 
of the content layer 532 has been reached. 
I0081 Although a motion that is calculated to extend 
beyond a boundary may result in a distortion effect, the 
boundary need not prevent further movement in the direction 
of the motion. For example, if wrapping functionality is avail 
able, further movement beyond the boundary can cause the 
content layer 530 to wrap back to the beginning (e.g., back to 
display state 590). In state 594, element 540 at the beginning 
of the collection is partially visible, indicating that wrapping 
is available. 
I0082. The display can return from display state 594 to 
display state 592, transitioning from a display state with a 
distortion effect to an undistorted display state. This can 
occur, for example, without any additional input by the user. 
The length of time that it takes to transition between states can 
vary depending on implementation. 
I0083) Flick gesture 510 is only an example of a possible 
user interaction. The same gesture 510 and/or other user 
interactions (e.g., motions having different sizes, directions, 
or velocities) can cause different effects, different display 
states, different transitions between display states, etc. Some 
display states (e.g., display state 594) may occur only if a 
gesture results in a post-gesture position that is calculated to 
go beyond a boundary for the layer. 
I0084 Display states 590–594 are only examples of pos 
sible display states. In practice, a display can exist in any 
number of States (e.g., in intermediate states between 
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example states 590-594, in states with different visible UI 
elements, etc.) in addition to, or as alternatives to, the example 
display states 590–594. For example, it is preferable to show 
a gradual transition between an undistorted State (e.g., state 
592) and a distorted state (e.g., state 494), or from a distorted 
state to an undistorted State, to provide a more natural feel and 
avoid the appearance of abrupt changes in the display. Inter 
mediate states. Such as states that may occur between State 
592 and state 594, can show gradually increasing or decreas 
ing degrees of distortion, as appropriate. As another example, 
a UI System can provide a boundary effect by compressing the 
elements 542 and 544 shown in display state 592 without 
moving the elements 542 and 544 to the left in the display area 
3OO. 

Example 6 

Changes in Display Orientation 

0085. Described techniques and tools can be used on dis 
play screens in different orientations, such as landscape ori 
entation. Changes in display orientation can occur, for 
example, where a UI has been configured (e.g., by user pref 
erence) to be oriented in landscape fashion, or where a user 
has physically rotated a device. One or more sensors (e.g., an 
accelerometer) in the device can be used to detect when a 
device has been rotated, and adjust the display orientation 
accordingly. 
I0086. In the example shown in FIG.5, the display area 300 
is oriented in landscape fashion. Content (e.g., data collection 
elements 540-544 in content layer 532) and/or other user 
interface features in the display area 300 can be dynamically 
adjusted to take into account effects of a reorientation (e.g., a 
new effective width of the display area 300, interpreting 
directions of user interactions differently, etc.). For example, 
distortion effects can be adjusted, such as by compressing 
data collection elements in a horizontal dimension instead of 
a vertical dimension, to account for display reorientation. 
0087 However, such adjustments are not required. For 
example, if a display area has equal height and width, reori 
entation of the display area to a landscape orientation will not 
change the effective width of the display area. 

Example 7 

Vertical Boundary Effect with Horizontal Parallax 
Effect 

0088 FIGS. 6A-6E are diagrams showing a content layer 
614 that moves in tandem with layer 612 above it. In this 
example, a user 302 (represented by the hand icon) navigates 
through content layer 614 by interacting with a touchscreen 
having the display area 300. The interaction can include, for 
example, contacting the touchscreen with a fingertip. Stylus 
or other object and moving it (e.g., with a flicking or Sweeping 
motion) across or along the Surface of the touchscreen. The 
content layer 614 includes game icons 640, 642, 644, lists 
650, 652, 654, and avatar 630 (which is described in more 
detail below in Example 8). The other layers 610, 612 include 
text information (“Games' in layer 610; “Spotlight,” “Xbox 
Live, “Requests’ and “Collection” in layer 612). 
0089. The direction of motion that can be caused by user 
302 is indicated by a left-pointing arrow and a right-pointing 
arrow in FIGS. 6A-6E, along with additional up- and down 
pointing arrows in FIGS. 6A and 6E. The right-pointing and 
left-pointing arrows indicate possible movements (left or 
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right horizontal movements) of the layers 610, 612, 614 in 
response to user movements. In addition to movements of 
entire layers, a user also can cause movements in elements or 
parts of layers, depending on the data in the layer and how the 
layer is arranged. For example, a user can cause movements 
(e.g., vertical movements) in layer elements (e.g., lists in a 
content layer) that are orthogonal to movements (e.g., hori 
Zontal movements) that can be caused in a layer as a whole. 
Such can include scrolling vertically in a list embedded in a 
content layer that moves horizontally. Alternatively, a system 
that presents layers that move vertically can allow horizontal 
movements in layer elements. 
0090 The up-pointing and down-pointing arrows indicate 
possible movements of the list 650 in response to user move 
ments. The amount of movement of list 650 can be a function 
of the size or rate of the motion made by user302, and the data 
in list 650. Thus, scrolling of the list 650 can be element-by 
element, page-by-page of elements, or something in between 
that depends on size or rate of the motion. In this example, list 
650 includes only one element that is not visible in the display 
area 300, as shown in FIG. 6A, so a range of small or large 
downward movements may be enough to Scroll to the end of 
list 650. In the example shown in FIG. 6E, an upward user 
movement has caused a boundary effect in list 650, in which 
the text of elements in the list are Squeezed or compressed in 
a vertical dimension. This effect gives user 302 an indication 
that the end of the list has been reached. 
0091. In this example, the amount of movement in layers 
610,612, 614 is a function of the data in the layers and the size 
or rate of the motion made by the user. Horizontal movement 
in layers 610, 612, 614 proceeds according to the following 
rules, except during wrapping animations: 

0092] 1. The horizontal movement of content layer 614 
is locked to layer 612. 

0.093 2. Layers 612 and 614 will each move at approxi 
mately three times the rate of layer 610, which is 
approximately /3 the length of layers 612 and 614. 

(0094) Movement in the layers 610, 612, 614 may differ 
from the rules described above in some circumstances. In the 
example shown in FIGS. 6A-6E, wrapping is permitted. The 
arrows indicate that a user can navigate left from the begin 
ning of the content layer 614 (the position shown in FIG.6A 
and FIG. 6E), and can navigate right from the end of the 
content layer 614 (the position shown in FIG. 6D). During a 
wrapping animation, Some layers may move faster or slower 
than during other kinds of movements. For example, the text 
in layer 610 can move faster when wrapping back to the 
beginning of content layer 614. In FIG. 6D, display area 300 
shows portions of two letters in layer 610, at the end of the 
"Games' text string. A wrapping animation to return to the 
state shown in FIG. 6A can include bringing the data in layers 
610, 612, 614 (including the text of layer 610) into view from 
the right, resulting in a more rapid movement in layer 610 
than in other contexts. Such as a transition from the State 
shown FIG. 6A to the state shown in FIG. 6B. 
(0095. In FIGS. 6A-6E, example lock points “A.” “B,” “C” 
and “D” are indicated for layers 610 and 612. In terms of 
horizontal motion, content layer 614 is locked to layer 612; 
the lock points indicated for layer 612 also apply to layer 614. 
The lock points for each layer indicate the corresponding 
position of the left edge of the display area 300 on each layer. 
For example, when a user navigates to a position on content 
layer 614 such that the left edge of the display area 300 is at 
lock point “A” the left edge of display area 300 also is aligned 
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at lock point 'A' of the other layers 610, 612, as shown in 
FIGS. 6A and 6E. In FIG. 6B, the left edge of the display area 
300 is at lock point “B” in each of the layers 610, 612, 614. In 
FIG. 6C, the left edge of the display area 300 is at lock point 
“C” in each of the layers 610, 612, 614. In FIG. 6D, the left 
edge of the display area 300 is at lock point"D' in each of the 
layers 610, 612, 614. 
0096. The lock points shown in FIGS. 6A-6E are not gen 
erally representative of a complete set of lock points, and are 
limited to lock points “A.” “B,” “C” and “D only for brevity. 
For example, right-edge lock points can be added to obtain 
alignment with the right edge of display area 300, or center 
lock points can be added to obtain alignment with the center 
of display area 300. Alternatively, fewer lock points can be 
used, more lock points can be used, or lock points can be 
omitted. 
0097. User 302 can move left or right in content layer 614 
after making an up or down movement in list 650. The current 
position of list 650 can be saved, or the system can revert to a 
default position (e.g., the top-of-list position indicated in FIG. 
6A) when navigating left or right in content layer 614 from 
list 650. Although the arrows in FIGS. 6A-6E (and other 
figures) that indicate possible movements are shown for pur 
poses of explanation, the display area 300 can itself display 
graphical indicators (such as arrows or chevrons) of possible 
movements for the layers and/or list. 
0098. The system can interpret user movements to the left 
or right, even diagonal movements extending above or below 
the horizontal plane, as a valid leftward or rightward motion. 
Similarly, the system can interpret upward or downward 
movements, even diagonal movement extending to the left or 
right of the vertical plane, as a valid upward or downward 
motion. Although FIGS. 6A-6E show the user302 interacting 
with a portion of the display area 300 that corresponds to the 
content layer 614, the system also allows interaction with 
other parts of the touchscreen (e.g., those that correspond to 
display area occupied by other layers) to cause movement in 
the layers 610, 612, 614, list 650, or other UI elements. 

Example 8 

Avatar 

0099. In FIGS. 6A-6E, avatar 630 can provide a visual cue 
to indicate a relationship between or draw attention to parts of 
the content layer 614. 
0100. In FIG. 6B, avatar 630 is positioned between list 652 
and list 654. In FIG. 6C, avatar 630 floats behind the text of 
list 654, but remains completely within display area 300. In 
FIG. 6D, avatar 630 is only partially within display area 300: 
the part that is within the display area floats behind game 
icons 640, 642, 644. The positioning of avatar 630 at the left 
edge of display area 300 can indicate to the user 302 that 
information associated with avatar 630 is available if the user 
302 navigates in the direction of avatar 630. Avatar 630 can 
move at varying speeds. For example, avatar 630 moves faster 
in the transition between FIGS. 6B and 6C than it does in the 
transition between FIGS. 6C and 6D. 
0101 Alternatively, avatar 630 can move in different 
ways, or exhibit other functionality. For example, a UI system 
can presenta distortion effect in avatar 630 to indicate a user's 
location in a data collection with which the avatar is associ 
ated. Avatar 630 also can be locked to particular position (e.g., 
a lock point) in content layer 614 or in Some other layer. Such 
that avatar 630 moves at the same horizontal rate as the layer 
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to which it is locked. As another alternative, avatar 630 can be 
associated with a list that can be scrolled up or down, Such as 
list 650, and move up or down as the associated list is scrolled 
up or down. 

IV. Detailed Implementation 
0102. In this section, a detailed implementation is 
described comprising aspects of motion feedback including 
boundary effects and parallax effects, with reference to the 
following detailed example. 

Example 9 

Detailed Example 
0103) In this detailed example, a set of equations, coeffi 
cients and rules are described that can allow a UI System (e.g., 
a UI System provided as part of a mobile device operating 
system) to interpret user input such as touch gestures (includ 
ing multi-touch gestures with more than one touch contact 
point) and generate motion feedback in response to user 
input. Features described in this detailed example include 
inertia movement, panning and Zooming operations, bound 
ary effects, parallax effects, and combinations thereof. 
Described features can help to provide natural-looking, 
Smooth motion in response to user input (e.g., touch ges 
tures). 
0104. In this detailed example, processing tasks can be 
handled by different software modules. For example, a mod 
ule called “ITouchSession’ provides coefficients, gesture 
positions, and gesture Velocity information, and a dynamic 
motion module in a mobile device operating system uses 
information provided by ITouchSession to generate motion 
feedback (e.g., parallax effects, boundary effects, etc.). Pref 
erably, gesture information provided to the dynamic motion 
module is accurate (e.g., with minimaljitter in position infor 
mation), detailed (e.g., with time stamps on touch input), and 
low-latency (e.g., under 30 ms). The information (e.g., 
motion feedback information) generated by the dynamic 
motion module can be used by other modules, as well. For 
example, web browsers or other applications that run on the 
mobile device operating system can use information gener 
ated by the dynamic motion module. 
0105. In this detailed example, the dynamic motion result 
ing from user interaction is defined by a set of motion rules. 
The motion rules define how different visual elements react 
on screen in response to different gestures. For example, 
Some rules apply to finger-tracking gestures such as panning 
or dragging gestures, some rules apply to flick or toss ges 
tures, and some rules apply to pinch or stretch gestures. Addi 
tionally, Some rules, such as inertia rules, may apply to more 
than one type of gesture. The specific motion rules that apply 
to different UI elements (or “controls) are determined by 
factors such as the control type and control content; not all 
motion rules will apply to all UI elements. For example, rules 
for pinch and stretch gestures do not apply to UI elements 
where pinch and stretch gestures are not recognized. The 
motion resulting from the application of motion rules to the 
input stream generated by the user can be further refined by an 
optional set of modifiers, which are collectively called 
“optional motion features.” 
0106. In this detailed example, touch input interactions 
that result in dynamic motion comply with the motion rules. 
Additionally, different UI elements (or “controls”) can apply 
Zero or more optional motion features, which can be deter 
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mined by factors such as the desired motion, control type and 
control content. For example, a list control may opt to 
enhance motion feedback with boundary effects, while a pan 
orama control may apply a parallax feature to Some of its 
layers. 
0107. In addition, when a user interacts with a UI element, 

it can be helpful to provide some immediate (or substantially 
immediate) visual feedback to the user (e.g., a change in 
movement in the UI element, or some other effect such as a tilt 
or highlight). Immediate or Substantially immediate feedback 
helps the user to know that the user interface is responsive to 
the user's actions. 
0108. In this detailed example, the following motion rules 
apply in UI elements where the rules (e.g., rules relating to 
finger-tracking gestures, inertia, boundaries, pinch/stretch 
gestures) are relevant to the types of motion that are permitted 
in the respective UI elements. The motion rules can be modi 
fied for some UI elements, such as where optional motion 
features apply to a UI element. 

Motion Rule: Finger Tracking 
0109 For finger tracking movements (e.g., movements 
caused by dragging or panning gestures), the content at the 
initial gesture point moves in direct correspondence to the 
gesture. For example, content under the user's finger at an 
initial touch point moves with the user's finger during the 
gesture. The current position of a visual element is given by 
the following equation: 

(Eq. 1) 

where p is the (x,y) vector that represents the current position 
of the visual element, po is the (Xo yo) vector that represents 
the visual element position at the beginning of the gesture, q 
is the (x, y) vector that represents the current touch contact 
position, and q is the (x, y) vector that represents the touch 
contact position at the beginning of the gesture. 

Motion Rule: Inertia 

0110. In a UI element that allows inertia movement (e.g., 
a scrolling list), when the user finishes a gesture (e.g., by 
lifting a finger or other object to end the interaction with the 
touchscreen), a Velocity and direction for that movement is 
identified, and the motion initially continues in the same 
direction and speed as the gesture, as if the visual element was 
a real, physical object with a non-Zero mass. If the motion is 
not stopped for some other, permissible reason (e.g., where 
the UI element reaches a boundary or is stopped by another 
user gesture), the motion gradually decelerates over time, 
eventually coming to a stop. The deceleration proceeds 
according to a combination of equations and coefficients, 
which can vary depending on implementation. Default sys 
tem-wide coefficient values can be made available. Default 
system-wide coefficients can help to maintain a consistent 
feeling across all controls. Alternatively, different equations 
or coefficients can be used, such as where a particular control 
has its own friction coefficient for modeling different kinds of 
motion. 
0111. The velocity (e.g., in pixels/second) at the end of the 
gesture is computed by the following equation: 

(Eq. 2) 

where v is the (v, V.) velocity vector that represents the 
inertia Velocity at the end of the gesture, q is the (x, y) vector 
that represents the touch contact position at the end of the 
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gesture, qo is the (Xo yo) vector that represents the touch 
contact position at the time to t is the timestamp of the last 
touch input of the gesture, and to is the timestamp of the least 
recent touch input that happened within some fixed period of 
time from the last touch input. Alternatively, the velocity can 
be calculated in another way. For example, a weighted Sum of 
velocities at different time instances can be calculated, with 
greater weighting for Velocities at the end of the gesture. In 
this detailed example, calculating the Velocity is the respon 
sibility of ITouchSession. However, velocity calculations can 
be handled by other modules. 
0112 The duration of the inertia motion can be computed 
according to the following equation: 

In-Y- (Eq. 3) 
1. = -rol 
* T in a 

where t is the duration of the inertia motion, Ivo is the 
magnitude of the initial Velocity vector (VoIDY), L is a friction 
coefficient (e.g., MotionParameter Friction, 0<u>1), and y is 
a parking speed coefficient (e.g., MotionParameter Parking 
Speed, 0<y<Ivo) that is used to indicate a threshold velocity, 
below which inertia motion will stop. In one implementation, 
the friction coefficient is 0.4, and the parking speed coeffi 
cient is 60.0. The duration is computed at the start of the 
inertia motion, and need not be computed again. 
0113. The following equation will compute the current 
Velocity vector V at any given time t. 

v=Vof (Eq. 4). 

0114. The new position p' for the visual element can be 
computed based on its last known position p and the time 
elapsed since the last position update (At), as shown in the 
following equation: 

The motion stops once the Velocity reaches a value Smaller 
than Y. 
0115 The actual calculation of values relating to inertia 
motion (e.g., Velocity, etc.) can differ depending on imple 
mentation. 
Motion Rule: Interacting with an Element in Inertia Motion 
0116. If a new gesture begins while a UI element is in 
inertia motion, the inertia motion is immediately interrupted. 
Depending on the new gesture, the motion in the UI element 
may be stopped, or a new motion may start. If the new gesture 
causes a new motion in the UI element, the new gesture 
controls the UI element's motion. The previous gesture and 
any consequent inertia do not affect the motion generated by 
the new gesture. Handling of new gestures during inertia 
motion can be different depending on implementation. For 
example, new gestures can be ignored during inertia motion 
or can have different effects on inertia motion. 

Motion Rule: Gesture Boundaries 

0117 The motion of some UI elements is limited by ges 
ture boundaries. The dimensions of gesture boundaries and 
the effects of exceeding gesture boundaries can differ 
depending on several factors, such as the content of a UI 
element and/or a minimum visible area of the UI element. For 
example, lists which don't wrap around indefinitely may only 
be able to scroll a certain distance based on the number of 
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items in the list and a minimum amount of visible items (e.g., 
an amount of items that occupies most or all of a display area). 
0118. In this detailed example, for an element Ahaving a 
width W, heighth, total area S and position p(x, y). 
with a minimum visible area St., (width W. height 
ht) currently at position pri, (x, y), a gesture that 
begins at an initial position q(x, y) has a rectangulargesture 
boundary area S (width w, heighth) at position p(X, 
y). The minimum visible area indicates a minimum visible 
amount of the control (e.g., a minimum number of list items 
in a scrollable list), but does not require any particular part of 
the control to be visible. Therefore, the content of the mini 
mum visible area for a particular control can vary depending 
on, for example, the control's current state (e.g., whether the 
end or beginning of a scrollable list is currently visible). 
0119 Conceptually, the position p of the gesture bound 
ary area can be defined according to the following equation: 

p T-4+(print-Svini,)-(p-it-S4) (Eq. 6). 

I0120. The X and y coordinates of the position p of the 
gesture boundary area are defined according to the following 
equations: 

y Tyat(yvninthvini,)-(yatha) (Eq. 8). 

0121 The dimensions of the gesture boundary area are 
defined according to the following equation: 

ST-SA-Svini,(ha-hvin, WA-Wvin) (Eq. 9). 

0122) If the new position of the UI element, resulting from 
user interaction or simulated inertia or some combination, 
falls outside the area defined by p--S, a boundary has been 
exceeded. An appropriate boundary feedback modifier can be 
applied or the new position can be clamped (i.e., kept within 
the allowed boundaries). 
0123 FIG. 7A shows an example boundary diagram for a 
control having a position 710 and area 720. The control has a 
minimum visible area 740 (at position 730). For example, the 
position 730 of the minimum visible area can be located at the 
top left of a display area. Based on an initial gesture position 
750, a gesture boundary at position 770 and having area 780 
is calculated. 
(0.124. In FIG.7B, example post-gesture positions 752,754 
are shown. Post-gesture position 752 is outside the gesture 
boundary area 780, and causes boundary feedback. Post 
gesture position 754 is inside the gesture boundary 780, and 
does not cause boundary feedback. 
0.125 FIG. 8A shows an example boundary diagram for a 
control corresponding to the scrollable list shown in FIG.3. In 
FIG. 8A, the control at position 810 has a control area 820 
(width W, heighth). In this detailed example, the coordi 
nates of the control position are considered to be (0, 0). The 
control has a minimum visible area 840 (at position 830). For 
example, the position 830 of the minimum visible area 840 
can be at the top left of a display area. Based on an initial 
gesture position 850, a gesture boundary at position 850 (the 
same position as the initial gesture position) is calculated. In 
this detailed example, the gesture boundary 880 has a height 
of h-hit, and a width of 0. (Due to space limitations, the 
boundary 880 as shown in FIG. 8A is not to scale.) Therefore, 
the gesture boundary 880 is actually a vertical line. Although 
a control having a gesture boundary area with no width could 
cause a boundary feedback effect with any horizontal move 
ment, boundary feedback can be enabled or disabled on an 
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axis basis (e.g., permitting boundary feedback for Vertical 
movements but not for horizontal movements). Such a control 
also can be a candidate for axis locking, to allow only vertical 
movements and remove any need for boundary feedback for 
horizontal movements. Axis locking is explained in more 
detail below. 
I0126. In FIG. 8B, example post-gesture positions 852,854 
are shown. Post-gesture position 852 is outside the gesture 
boundary area 880, and causes boundary feedback. For 
example, referring again to FIG. 3, a UI System can present a 
Squeeze or compression effect to indicate that the post-ges 
ture position is outside the gesture boundary area, as shown in 
state 392. Post-gesture position 854 is inside the gesture 
boundary area 880, and does not cause boundary feedback. 
I0127. The actual calculation of values relating to motion 
boundaries and the effects of motion boundaries can differ 
depending on implementation. For example, if a wrapping 
feature is available in a UI element, a boundary can indicate a 
position at which a boundary effect will be presented (e.g., to 
indicate that the end of a list has been reached) without 
preventing further movement beyond the boundary (e.g., 
wrapping movement from the end of the list back to the 
beginning of the list). 

Motion Rule: Pinch/Stretch 

I0128 Pinch gestures and stretch gestures are gestures that 
can change the scale (Zoom) of the Subject area of a control 
(e.g., a map or image with Zoom capability). Pinch gestures 
and stretch gestures are considered to be multi-touch gestures 
because they typically have multiple points of interaction. In 
a typical pinch or stretch gesture scenario, a user places two 
fingers some distance apart from each other on a touchscreen, 
and either increases (for a stretch gesture) or decreases (for a 
pinch gesture) the distance between them. 
I0129 FIG. 9 is a diagram showing example pinch and 
stretch gestures. On a device having a display area 300, a user 
302 (represented by a hand icon) interacts with a control (e.g., 
a map with Zoom features) having a control area 910. From 
display state 990, the user 302 performs a pinch gesture 
beginning at touch points 950,960 and ending at touch points 
952, 962. This results in a Zoomed-out version of the map 
(relative to display state 990) in control area 910 in state 992. 
From display state 992, the user 302 performs a stretch ges 
ture beginning at touch points 970, 980 and ending at touch 
points 972,982. This results in a Zoomed-in version of the 
map (relative to display state 992) in control area 910 in state 
994. Alternatively, a pinch or stretch gesture can begin or end 
at other touch points (e.g., with a greater or lesser distance 
between beginning and ending touch points) or can use a 
differentorientation of touchpoints (e.g., horizontal or diago 
nal). 
0.130. The scale adjustment caused by a pinch or stretch 
gesture can be represented as follows. Let qAo(Xoyo) and 
qBo (Xo yo) be the positions for initial touch points A and 
B. The distance do between the two points represents a 100% 
scale factor, and can be calculated according to the following 
equation: 

do-IgAo-q Bol 

0131 The distance do includes a horizontal componentxo 
and a Vertical component yo. 
I0132) Let qA and qB be updated positions for touch points 
A and B, and let d(x, y) be the distance between them, 
calculated in a similar manner. The distanced also includes a 

(Eq. 10). 
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horizontal component X and a vertical component y. The 
scale factors to apply to the UI element can be calculated 
according to the following equation: 

d Wd yd (Eq. 11) 
soon = , = ( ). O Wi0 ydo 

Note that in Equation 11, the scale S is not isometric, i.e., the 
X and Y axes will be scaled differently. For isometric scaling, 
the following equation can be used instead: 

(Eq. 12) i 2, 2 x + y, 
Szoom - . 

| 2 2 X0 y0 

In this case, S is a scalar, so the same factor is applied to 
both X and Y components. 
0.133 Alternatively, a scale factor can be calculated in 
different ways. For example, inertia can be applied to a pinch 
or stretch gesture (such as when the gesture ends with a 
velocity above a threshold), and the scale factor can be based 
at least in part on the inertia of the gesture (e.g., increasing the 
scale of the Zoom when a stretch gesture ends with a Velocity 
above a threshold). 
0134) To make Zooming feel natural, the scale factor can 
be applied to a Zooming point (e.g., a center point between 
touch points qA and qB). The Zooming point c=(x, y) can 
be calculated by averaging the two touch contact positions, as 
shown in the following equation: 

(Eq. 13) 

Alternatively, a Zooming point can be calculated in a different 
way, or a calculation of a Zooming point can be omitted. 
0135 A pinch/stretch gesture can also produce position 
changes (panning) in addition to scale changes. Panning posi 
tion changes can occur simultaneously with scale changes. 
The Zooming point calculation in Equation 13 is used when 
simultaneous panning is not allowed. If simultaneous pan 
ning is allowed, the Zooming point is calculated using the 
initial touch contact positions qA and qBo rather than the 
updated touch contact positions qA and qB. Ifco is the initial 
Zooming point and c is the updated Zooming point, the dis 
tance d(x, y) between the two Zooming points 
represents a panning offset to be applied to the UI element, as 
shown in the following equation: 

(Eq. 14). 

Alternatively, a panning offset can be calculated in a different 
way, or a panning offset can be omitted. 

Optional Motion Features: Overview 
0136. Optional motion features can be used (e.g., when 
requested by a control) to refine or add visual feedback to 
motion generated by gestures. Optional motion features can 
depend on control type and content. For example, some con 
trols (e.g., a scrolling list) may use an optional axis locking 
feature that is appropriate for the orientation of the control 

Aug. 18, 2011 

(e.g., allowing only vertical movements in a vertically scroll 
ing list). Optional motion features can be used in combination 
with each other and with various motion rules. For example, 
a vertically scrolling list can use an axis locking feature and a 
boundary effect feature, while following rules for inertia 
motion and finger tracking motion. Different UI elements can 
use different combinations of rules and optional motion fea 
tures, even when the different UI elements are visible at the 
same time. For example, a movable layer can use parallax 
effects but omit boundary effects, while a vertically scrolling 
list in the movable layer can use boundary effects but omit 
parallax effects. UI elements of the same basic type can use 
different sets of optional motion features. For example, a first 
pair of movable layers can use parallax effects and move at 
different rates relative to one another, while a third layer 
parallel to the first pair remains stationary. 
0.137 When present, optional motion features act like fil 

ters, modifying the values generated according to other 
motion rules, such as the motion rules described above. 

Optional Motion Features: Axis Locking 

0.138. For some controls, it may make sense to permit 
movement only along a particular axis. For example, it can be 
useful to restrict movement of a movable, horizontal UI layer 
(sometimes referred to as a panorama control) to movements 
along the X axis, or to restrict movement of a vertically 
scrolling list to movements along the Y axis. In such cases, 
axis locking can be used as an optional motion feature. 
0.139. In this detailed example, axis locking is applied to a 
UI element by using the relevant equations in the motion rules 
described above, but only applying an X or Y component (as 
appropriate) to the motion of the axis-locked UI element. 
Changes to the other component are ignored and not applied 
to the UI element's motion. 
0140 Alternatively, axis locking can be performed in 
another way. For example, in a UI element such as a wheel 
element that moves about an axis Such as a Z axis, axis 
locking can be used to permit only rotational motion about the 
axis. As another alternative, axis locking can be omitted. 

Optional Motion Features: Parallax Effects 
0141 Parallax effects can be applied to controls that 
present multiple layers of content. In a parallax effect, mul 
tiple layers are animated differently (e.g., moving at different 
speeds), but the movements of the layers are based on the 
same input stream generated by the user. 
0142. In a parallax effect, layers that are animated in 
response to a gesture move at different speeds relative to one 
another. The layer that the user is interacting with directly 
(e.g., a content layer) is considered to be the top layer on a Z 
axis, that is, the layer that is closest to the user. Other layers 
are considered to be lower layers on a Z axis, that is, further 
away from the user. Examples of a parallax effects can be seen 
in FIG. 5 and in FIGS. 6A-6D. 
0143. In this detailed example, a top layer reacts directly to 
the gesture, and the other layers move at increasingly lower 
speeds the further they are from the top layer along the Z axis. 
Mathematically speaking, that can be accomplished by 
applying a scaling factor to the delta between an initial ges 
ture position and an updated gesture position. The updated 
gesture position can be obtained directly from user interac 
tion (e.g., in a finger tracking gesture Such as a panning 
gesture) or from a gesture with simulated inertia (e.g., a flick 
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gesture). If k is the constant parallax Scaling factor to be 
applied for a particular layer Latinitial position p(x, y,). 
then the parallaxed position p(x, y) can be computed 
according to the following equation: 

where q is the (x, y) vector that represents the current, post 
gesture position (e.g., after the gesture and application of any 
simulated inertia), and q is the (x, y) vector that represents 
the touch contact position at the beginning of the gesture. The 
parallax constant k can vary depending on the application, 
scenario and/or content of the control. For example, layers 
with different lengths can have different parallax constants. 
0144. Alternatively, parallax effects can be presented in 
different ways. For example, parallel layers can move accord 
ing to the model shown in Equation 18 for Some movements 
or parts of a movement and move according to other models 
in other movements or parts of a movement. Referring again 
to FIGS. 4A-4C, parallel layers that exhibit parallax effects 
can move according to the model shown in Equation 18 in 
transitions from FIG. 4A to FIG. 4B, and from FIG. 4B to 4C, 
and then move according to a specialized wrapping animation 
if a gesture to the right from the state shown in FIG. 4C, or 
inertia motion from an earlier gesture, causes a wrap back to 
the state shown in FIG. 4A. As another alternative, parallax 
effects can be omitted. 

Optional Motion Features: First Example Boundary Feed 
back Model 

0145 When the boundary feedback motion feature is 
applied, a boundary feedback effect can be applied whenever 
a gesture would move the UI element past a boundary, either 
directly (e.g., by a dragging or panning gesture) or indirectly 
(e.g., by inertia motion generated by a flick gesture). In this 
first example boundary feedback model, once the UI element 
hits a boundary the content is compressed in the direction of 
the motion (e.g., a vertical compression for a vertical motion) 
up to a certain threshold. If the compression is caused by 
inertia, the content compresses up to a certain amount based 
on the velocity at the time the boundary is hit, then decom 
presses to the original size. If the compression is caused 
directly (e.g., by dragging), the compression can be held as 
long as the last touch contact point is held and decompress 
when the user breaks contact, or decompress after a fixed 
length of time. 
0146 In this first example boundary feedback model, the 
compression effect is achieved by applying a scale factor and 
dynamically placing a compression point to ensure that the 
effect looks the same regardless of the size of the list. In order 
to properly compute the motion and Scale for the boundary 
effect, the first step is to identify that a boundary has been 
crossed and by how much. The boundary motion rule 
described above illustrates how to compute a boundary posi 
tion in this first example boundary feedback model, and in the 
second example boundary feedback model described below. 
I0147 Let q (x,y) be the unmodified, post-gesture posi 
tion resulting from an active finger tracking gesture (e.g., a 
dragging gesture) or from simulated inertia (e.g., from a flick 
gesture), let X be the left boundary, let X be the right bound 
ary, let y be the top boundary, and let y be the bottom 
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boundary. Let r (r, r) represent how far the post-gesture 
position exceeds the boundaries with respect to {x1, x, y, 
ya): 

r, max(x-x.0.x-XR) (Eq. 16) 

r, max(VT-10.JPB) (Eq. 17) 

In cases where only a vertical or horizontal boundary applies 
(e.g., in axis-locked elements), r may be calculated in only a 
Vertical or horizontal dimension, as appropriate, while omit 
ting a calculation of the other dimension of r. 
0148 Let S be the compressible area with dimensions 
(wh), which is some area equal to or greater than the visible 
area, depending on the value of coefficients k'/6 and k, where 
ko, is the compression percentage coefficient (e.g., Motion 
Parameter CompressPercent (ko.20)), and k is the com 
pression offset coefficient (e.g., MotionParameter 
CompressOffset{X,Y} (k20)). If k =0, then the 
compressible area matches the size of the visible area and the 
visual result is that only the visible part of the control is being 
compressed. If ko-1, the compressible area matches the 
entire control area. k (wh) allows an increase in the 
compressible area by a fixed amount, regardless of the control 
area size. In this detailed example, the compressible area can 
be calculated according to the following equation: 

where S is the control area with dimensions (W, h), and 
Sr., is the visible area with dimensions (wh). In one imple 
mentation, the compression percentage coefficient is 0.0 and 
the compression offset coefficient is 0.5*S. 
0149. If the user is actively dragging the content, the com 
pression scale factor S. (S. S.) to apply to the 
target UI element can be computed according to the following 
equations: 

S. - k r (Eq. 19) 
Scomp Sc 

we - k r. (Eq. 20) 
Scompx We 

he -k, ry (Eq. 21) 
Scompy h 

where k is the compression factor coefficient (e.g., Motion 
Parameter CompressFactor (Osks 1)), and rsS. In one 
implementation, the compression factor coefficient is 0.2. 
Alternatively, the scale factor and/or the compressible area 
can be calculated in different ways. For example, different 
ranges of compression coefficients can be used. 
0150. In words, what is being done here is to find the 
difference between the compressible area (e.g., in the hori 
Zontal or vertical dimensions) and the amount by which the 
gesture is compressing the compressible area, then calculat 
ing the scale factor based on that difference. The compression 
factork, if it is less than 1, limits how much the value ofr (the 
amount by which the post-gesture position has exceeded the 
boundary) will cause the compressible area to be compressed. 
A UI System can then place a distortion point (which can also 
be referred to as a “squeeze point’ or “compression point 
when applying compression effects) at the other side of the 
compressible area (i.e., the side of the compressible area 
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opposite the side where the gesture is being made) and apply 
that scale factor, resulting in a compression effect. 
0151. Once the user ends the dragging gesture (e.g., by 
lifting a finger from the touchscreen), and if no wrap-around 
functionality is available or if the threshold for wrap-around 
hasn't been reached, the content in the compressible area 
returns to a decompressed State. In this first example bound 
ary effects model, decompression proceeds according to the 
appropriate equations set forth below. 
0152. In this first example boundary effects model, if a 
boundary is exceeded during inertia motion, the following 
equations are used to compute how far off the boundaries the 
current position is (r) over time, based on the velocity at the 
time the boundary was crossed (v) and how far off the bound 
ary the position is (r) when the following equations are 
applied: 

min(ri, S.) (Eq. 22) 
iO = ks 

vi (Eq. 23) 
C S 

2-max(r. 0.001) 
a. t? (Eq. 24) 

r = ro + V, t- --. 

If r<0, the motion is complete. Note that r, can come either 
frominertia or from an active drag, Such as when a user drags 
the content into a compressed state, then flicks, generating 
inertia. 

0153 
compx, S 

The compression scale factor Serien (se 
inertiacomey) to apply during inertia compression can be 

computed according to the following equations: 

Se-r (Eq. 25) 
Sinertiacomp S 

C 

we - ry (Eq. 26) 
Sinertiacompx : 

C 

he -ry (Eq. 27) 
Sinertiacompy - 

C 

Note that these equations are similar to the case when drag 
ging the content (see Equations 19-21, above), except that the 
coefficient k (the compression factor coefficient) has already 
been applied in this case in Equations 22 and 23. Alterna 
tively, the scale factor can be calculated in a different way. For 
example, constants such as the compression factor coefficient 
k or the value 0.001 in Equation 23 can be replaced with other 
constants depending on implementation. 
0154) In this first example boundary effects model, in 
addition to computing the scale factor to apply to the target UI 
element, a compression point C (c. c.) is cal 
culated in order to generate the expected visual effect. In 
practice, a compression point can be at different positions in 
a UI element. For example, a compression point can be 
located at or near the center of a UI element, such that half (or 
approximately half) of the content in the UI element will be 
compressed. As another example, a compression point can be 
located at or near a border of UI element, such that all (or 
approximately all) of the content in the UI element will be 
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compressed. The compression point can vary for different UI 
elements. Using different compression points can be helpful 
for providing a consistent amount of distortion in the content 
of UI elements of different sizes. The compression point 
position can be computed according to the following equa 
tions: 

left = 1 - e. (Eq. 28) 
WA 

Compx ight c rights WA 

none => 0.5 

h (Eq. 29) 
top => 1 - - 

hA 
h C compy bottom => - - 
hA 

none => 0.5 

Alternatively, compression points can be calculated in a dif 
ferent way, or the calculation of compression points can be 
omitted. 

Optional Motion Features: Second Example Boundary Feed 
back Model 

0.155. In this second example boundary feedback model, 
the appearance of the boundary feedback can be controlled in 
finer detail by using more coefficients. Also, regardless of 
whether the compression is caused directly (e.g., by drag 
ging) or by inertia, the same calculations are used for the 
compression effects 
I0156 Let q (x,y) be the unmodified, post-gesture posi 
tion resulting from an active finger tracking gesture (e.g., a 
dragging gesture) or from simulated inertia (e.g., from a flick 
gesture), let X, be the left boundary, let X be the right bound 
ary, let y be the top boundary, and let y be the bottom 
boundary. Let r=(w, h) represent how far the post-gesture 
position exceeds the boundaries with respect to {x1, x, y, 
ya): 

w, max(x-x.0.x-xr) (Eq. 30) 

h. max(v1-3.0}-ye) (Eq. 31) 

In cases where only a vertical or horizontal boundary applies 
(e.g., in axis-locked elements), r may be calculated in only a 
Vertical or horizontal dimension, as appropriate, while omit 
ting a calculation of the other dimension of r. 
I0157. As in the first example boundary effects model, Sis 
the compressible area with dimensions (wh), calculated as 
shown in Equation 18. However, in this second example 
boundary effects model, given r=(w, h) and a compressible 
area S. (wh), the compression scale factors (s. 

) to apply to the target UI element is computed accord Scom 
ing to the following equations: 

d = (min(wr, we), min(hy, he)) (Eq. 32) 

F = k . de (Eq. 33) 

r' = d - F. (1 - kt). At (Eq. 34) 

r' = max(0, min(kL, r)) (Eq. 35) 
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-continued 
S-r' (Eq. 36) 

Scomp S 

w-w (Eq. 37) 
Scompx ve 

he -h" (Eq. 38) 
Scompy he 

where k is a spring factor coefficient (e.g., Motion Param 
eter SpringFactor (k0)), k is a spring power coefficient 
(e.g., MotionParameter SpringPower (k0)), k is a damper 
factor coefficient (e.g., Motion Parameter DamperFactor 
(0sks 1)), k is a compression limit coefficient (e.g., 
MotionParameter CompressionLimit (k-0)), and At is the 
time interval since the last iteration of the simulation (Ate0). 
The equation for r" imposes limits on the movement in the UI 
element during boundary feedback. If r"=0, the motion is 
considered to be complete. 
0158. In this second example boundary effects model, the 
spring factor coefficient k is a number that specifies how 
much resistance will counteract the inertia force, and the 
spring power coefficient k shapes the curve of the resistance. 
For example, a spring power coefficient of 1 indicates linear 
resistance, where resistance increases at a constant rate as 
compression increases. A spring power coefficient greater 
than 1 means that the resistance will increase at an increasing 
rate at higher compression, and less than 1 means that the 
resistance will increase, but at a decreasing rate, at higher 
compression. The damper factor coefficient k represents a 
percentage of energy absorbed by the system and taken away 
from the inertia. The damper factor coefficient can be used to 
smooth out the boundary effect and avoid a repeated cycle of 
compression and decompression. The time interval At can 
vary depending on the number of frames per second in the 
animation of the boundary feedback, hardware speed, and 
other factors. In one implementation, the time interval is 
about 16 ms between each update. Varying the time interval 
can alter the effect of the boundary effect. For example, a 
smaller time interval can result in more fluid motion. 

0159. Alternatively, the scale factor and/or the compress 
ible area can be calculated in different ways. For example, 
different ranges or values of coefficients can be used. 
0160 FIG. 10 is a graph of position changes in a UI ele 
ment over time according to the second example boundary 
effects model. According to the graph shown in FIG. 10, a 
compression effect occurs during the time that the position of 
the UI element exceeds the boundary position indicated by 
the dashed line 1010 in FIG. 10). The compression line can 
indicate the position of a boundary in a UI element. 
0161 The shape of the position curve 1020 can be modi 
fied in different ways, such as by adjusting coefficients. For 
example, by adjusting the spring power coefficient, the upper 
most tip of the boundary effect curve 1020 can be made to go 
higher (e.g., up to a configurable limit) or lower for a particu 
lar initial Velocity. A higher tip of the curve can indicate a 
greater compression effect, and a lower tip can indicate a 
lesser compression effect. As another example, by adjusting 
the spring factor coefficient, the duration of the compression 

16 
Aug. 18, 2011 

can be adjusted to be shorter or longer. In FIG. 10, the dura 
tion is represented by the distance between the points at which 
the line 1010 is crossed by the curve 1020. As another 
example, by adjusting the damper factor coefficient the right 
hand tail of the curve (e.g., the part of the curve 1020 after the 
boundary position line 1010 is crossed for the second time) 
can be moved up or down, resulting in a more gradual or more 
abrupt end to the compression effect. Coefficients can be 
adjusted in combination or independently, and other values 
besides those indicated can be adjusted as well, to cause 
changes in position. Different combinations of adjustments 
can be used to obtain specific shapes in the position curve 
102O. 

0162. In this second example boundary effects model, a 
currentinertia Velocity Vanda current touch contact position 
q can be updated to reflect the physics interaction of the 
boundary effect. For example, the updated velocity v' and 
updated touch contact position q are calculated according to 
the following equations: 

r' - kt. (Eq. 39) 
max 0, v - (F, kd +max 0, At ) 

p v, r' > 0 (Eq. 40) 

v={ . r' g O 
p q - r", r > 0 (Eq. 41) 

4.- . r' < 0 

0163 Various alternatives to the boundary feedback mod 
els described above are possible. For example, if wrapping 
beyond a boundary (e.g., wrapping back to the beginning of a 
list after the end of the list has been reached) is permitted, if 
the compression is caused by dragging, the list can wrap 
around once a threshold compression has been reached. As 
another alternative, boundary effects can be omitted. 

Reference Values: 

0164. A UI System can provide programmatic access to 
system-wide values e.g., (inertia values, boundary effect val 
ues). Using system-wide values can help in maintaining con 
sistent UI behavior across components and frameworks, and 
can allow adjustments to the behavior in multiple UI elements 
at once. For example, inertia effects in multiple UI elements 
can be changed by adjusting system-wide inertia values. 
0.165. In one implementation, in order to provide frame 
works with access to the reference values of each coefficient, 
an API is included the ITouchSession module (HRESULT 
GetMotion ParameterValue(IN MotionParameter ID, OUT 
float value)). In one implementation, the identifiers and 
default values for the coefficients whose values are accessible 
through the ITouchSession::GetMotionParameterValue( ) 
API are as follows: 

enum MotionParameter 

Motion Parameter Friction, 
Motion Parameter ParkingSpeed, 
Motion Parameter MaximumSpeed, 
Motion Parameter SpringFactor, 
Motion Parameter SpringPower, 

default: 0.4f 
default: 60. Of 
default: 20000. Of 
default: 48. Of 
default: 0.75f 
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-continued 

default: 0.09f 
default: 300. Of 
default: 0.0f 
default: 720. Of 
default: 1200. Of 

Motion Parameter DamperFactor, 
Motion Parameter CompressLimit, 
Motion Parameter CompressPercent, 
Motion Parameter CompressOffsetX, 
Motion Parameter CompressOffsetY. 

The values that are accessible through the API can vary 
depending on implementation. For example, a UI System that 
uses the first example boundary effects model described 
above can omit values such as spring factor, spring power, and 
damper factor values. Or, a UI System can use additional 
values or replace the listed default values with other default 
values. Values can be fixed or adjustable, and can be updated 
during operation of the system (e.g., based on system settings 
or user preferences). 

Example 10 

UI System 

0166 FIG. 11 is a system diagram showing an example UI 
system 1100 that presents a UI on a device (e.g., a Smartphone 
or other mobile computing device). In this example, the UI 
system 1100 is a multi-layer UI system that presents motion 
feedback (e.g., parallax effects, boundary effects, etc.). Alter 
natively, the system 1100 presents motion feedback in UIs 
that do not have multiple UI layers. The system 1100 can be 
used to implement functionality described in other examples, 
or other functionality. 
0167. In this example, the system 1100 includes a hub 
module 1110 that provides a declarative description of a hub 
page to UI control 1120, which controls display of UI layers. 
UI control 1120 also can be referred to as a “panorama” or 
“pano' control in a multi-layer UI system. Such a description 
can be used, for example, when the UI layers move in a 
panoramic, or horizontal, fashion. Alternatively, UI control 
1120 controls UI layers that move vertically, or in some other 
fashion. UI control 1120 includes markup generator 1130 and 
motion module 1140. 
0168 The declarative description of the hub page includes 
information that defines UI elements. In a multi-layer UI 
system, UI elements can include multiple layers, such as a 
background layer, a title layer, a section header layer, and a 
content layer. The declarative description of the hub page is 
provided to markup generator 1130, along with other infor 
mation Such as style information and/or configuration prop 
erties. Markup generator 1130 generates markup that can be 
used to render the UI layers. Motion module 1140 accepts 
events (e.g., direct UI manipulation events) generated in 
response to user input and generates motion commands. The 
motion commands are provided along with the markup to a UI 
framework 1150. In the UI framework 1150, the markup and 
motion commands are received in layout module 1152, which 
generates UI rendering requests to be sent to device operating 
system (OS) 1160. The device OS 1160 receives the render 
ing requests and causes a rendered UI to be output to a display 
on the device. System components such as hub module 1110. 
UI control 1120, and UI framework 1150 also can be imple 
mented as part of device OS 1160. In one implementation, the 
device OS 1160 is a mobile computing device OS. 
0169. A user (not shown) can generate user input that 
affects how the UI is presented. In the example shown in FIG. 
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11, the UI control 1120 listens for direct UI manipulation 
events generated by UI framework 1150. In UI framework 
1150, direct UI manipulation events are generated by inter 
action module 1154, which receives gesture messages (e.g., 
messages generated in response to panning or flick gestures 
by a user interacting with a touchscreen on the device) from 
device OS 1160. Interaction module 1154 also can acceptand 
generate direct UI manipulation events for navigation mes 
sages generated in response to other kinds of user input. Such 
as Voice commands, directional buttons on a keypad or key 
board, trackball motions, etc. Device OS 1160 includes func 
tionality for recognizing user gestures and creating messages 
that can be used by UI framework 1150. UI framework 1150 
translates gesture messages into direction UI manipulation 
events to be sent to UI control 1120. 

(0170 The system 1100 can distinguish between different 
gestures on the touchscreen, Such as draggestures, panges 
tures and flick gestures. The system 1100 can also detect a tap 
or touch gesture, such as where the user touches the touch 
screen in a particular location, but does not move the finger, 
stylus, etc. before breaking contact with the touchscreen. As 
an alternative, Some movement is permitted, within a small 
threshold, before breaking contact with the touchscreen in a 
tap or touch gesture. 
0171 The system 1100 interprets an interaction as a par 
ticular gesture depending on the nature of the interaction with 
the touchscreen. The system 1100 obtains one or more dis 
crete inputs from a user's interaction. A gesture can be deter 
mined from a series of inputs. For example, when the user 
touches the touchscreen and begins a movement in UI ele 
ment in a horizontal direction while maintaining contact with 
the touchscreen, the system 1100 can fire a pan input and 
begin a horizontal movement in the UI element. The system 
1100 can continue to tire pan inputs while the user maintains 
contact with the touchscreen and continues moving. For 
example, the system 1100 can fire a new pan input each time 
the user moves N pixels while maintaining contact with the 
touch screen. In this way, a continuous physical gesture on a 
touchscreen can be interpreted by the system 1100 as a series 
of pan inputs. The system 1100 can continuously update the 
contact position and rate of movement. When the physical 
gesture ends (e.g., when user breaks contact with the touch 
screen), the system 1100 can determine whether to interpret 
the motion at the end as a flick by determining how quickly 
the user's finger, stylus, etc., was moving when it broke con 
tact with the touchscreen, and whether the rate of movement 
exceeds a threshold. 

0172. The system 1100 can render motion (e.g., motion in 
a layer, list, or other UI element) on the display differently 
depending on the type of gesture. For example, in the case of 
a horizontal draggesture (in which the user is currently main 
taining contact with the touchscreen) on a content layer in a 
multi-layer UI system, the system 1100 moves the content 
layer in a horizontal direction by the same distance as the 
horizontal distance of the drag. In a parallax effect, the title 
layer and background layer also move in response to the drag. 
As another example, in the case of a pangesture (in which the 
user has ended the gesture) on the content layer, the system 
1100 can move the content layer in the amount of the pan, and 
determine whether to perform an additional movement in the 
content layer. For example, the system 1100 can perform a 
locking animation (i.e., an animation of a movement in the 
content layer to Snap to a lock point) and move the content 
layer to a left or right lock point associated with an item in the 
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content layer. The system 1100 can determine which lock 
point associated with the current pane is closer, and transition 
to the closer lock point. As another example, the system 1100 
can move the content layer in order to bring an item in the 
content layer that is in partial view on the display area into full 
view. Alternatively, the system 1100 can maintain the current 
position of the content layer. As another example, in the case 
of a flick gesture (e.g., where the user was moving more 
rapidly when the user broke contact with the touchscreen) on 
the content layer, the system 1100 can use simulated inertia to 
determine a post-gesture position for the content layer. Alter 
natively, the system 1100 can present some other kind of 
motion, such as a wrapping animation or other transition 
animation. The threshold velocity for a flick to be detected 
(i.e., to distinguisha flick gesture from a pangesture) can vary 
depending on implementation. 
0173 The system 1100 also can implement edge tap func 

tionality. In an edge tap, a user can tap within a given margin 
of edges of the display area to cause a transition (e.g., to a next 
or previous item in a content layer, a next or previous list 
element, etc.). This can be useful, for example, where an 
element is partially in view in the display area. The user can 
tap near the element to cause the system to bring that element 
completely into the display area. 

V. Extensions and Alternative Implementations 
0174 Various extensions and alternatives to the embodi 
ments described herein are possible. 
(0175 For example, described examples show different 
positions of UI elements (e.g., layers, lists, etc.) that may be of 
interest to a user. A user can begin navigation of an element at 
the beginning of an element, or use different entry points. For 
example, a user can begin interacting in the middle of a 
content layer, at the end of a content layer, etc. This can be 
useful, for example, where a user has previously exited at a 
position other than the beginning of a layer (e.g., the end of a 
layer), so that the user can return to the prior location (e.g., 
before and after a user uses an application (Such as an audio 
player) invoked by actuating a content image). 
0176). As another example, other models can be used to 
model inertia and movement. For example, although some 
equations are provided in Some examples that approximate 
motion according to Newtonian physics, other equations can 
be used that model other kinds of motion (e.g., non-Newto 
nian physics). 
0177. As another example, although controls can share 
global parameters, such as a global friction coefficient for 
inertia motion, parameters can be customized. For example, 
friction coefficients can be customized for specific controls or 
content, such as friction coefficients that result in more rapid 
deceleration of inertia motion for photos or photo slide 
shows. 
0.178 As another example, boundary feedback can be 
applied to pinch and stretch gestures. Such boundary feed 
back can useful, for example, to indicate that a border of the 
UI element has been reached. 
0179. As another example, additional feedback on ges 
tures can be used. For example, visual feedback Such as a 
distortion effect can be used to alert a user that a UI element 
with Zoom capability (e.g., a map or image) has reached a 
maximum or minimum Zoom level. 
0180. As another example, boundary effects such as com 
pression effects can themselves produce inertia movement. 
For example, when a vertically scrolling list is compressed 

Aug. 18, 2011 

upon reaching the end of the list, and breaking contact with 
the touchscreen causes the list decompress, the decompres 
sion can be combined with a spring or rebound effect, causing 
the list to scroll in the opposite direction of the motion that 
originally caused the compression. In this way, the spring 
effect could provide boundary feedback to indicate that the 
end of list had been reached, while also providing an alterna 
tive technique for navigating the list. The spring effect could 
be used to cause a movement in the list similar to a flick in the 
opposite direction. Inertia motion can applied to motion 
caused by the spring effect. 

VI. Example Computing Environment 

0181 FIG. 12 illustrates a generalized example of a suit 
able computing environment 1200 in which several of the 
described embodiments may be implemented. The comput 
ing environment 1200 is not intended to suggest any limita 
tion as to scope of use or functionality, as the techniques and 
tools described herein may be implemented in diverse gen 
eral-purpose or special-purpose computing environments. 
0182. With reference to FIG. 12, the computing environ 
ment 1200 includes at least one CPU 1210 and associated 
memory 1220. In FIG. 12, this most basic configuration 1230 
is included within a dashed line. The processing unit 1210 
executes computer-executable instructions and may be a real 
or a virtual processor. In a multi-processing system, multiple 
processing units execute computer-executable instructions to 
increase processing power. FIG. 12 shows a second process 
ing unit 1215 (e.g., a GPU or other co-processing unit) and 
associated memory 1225, which can be used for video accel 
eration or other processing. The memory 1220, 1225 may be 
Volatile memory (e.g., registers, cache, RAM), non-volatile 
memory (e.g., ROM, EEPROM, flash memory, etc.), or some 
combination of the two. The memory 1220, 1225 stores soft 
ware 1280 for implementing a system with one or more of the 
described techniques and tools. 
0183. A computing environment may have additional fea 
tures. For example, the computing environment 1200 
includes storage 1240, one or more input devices 1250, one or 
more output devices 1260, and one or more communication 
connections 1270. An interconnection mechanism (not 
shown) Such as abus, controller, or network interconnects the 
components of the computing environment 1200. Typically, 
operating system Software (not shown) provides an operating 
environment for other software executing in the computing 
environment 1200, and coordinates activities of the compo 
nents of the computing environment 1200. 
0.184 The storage 1240 may be removable or non-remov 
able, and includes magnetic disks, magnetic tapes or cas 
settes, CD-ROMs, DVDs, memory cards, or any other 
medium which can be used to store information and which 
can be accessed within the computing environment 1200. The 
storage 1240 stores instructions for the software 1280 imple 
menting described techniques and tools. 
0185. The input device(s) 1250 may be a touch input 
device Such as a keyboard, mouse, pen, trackball or touch 
screen, an audio input device Such as a microphone, a scan 
ning device, a digital camera, or another device that provides 
input to the computing environment 1200. For video, the 
input device(s) 1250 may be a video card, TV tuner card, or 
similar device that accepts video input in analog or digital 
form, or a CD-ROM or CD-RW that reads video samples into 
the computing environment 1200. The output device(s) 1260 



US 2011/0202834 A1 

may be a display, printer, speaker, CD-writer, or another 
device that provides output from the computing environment 
12OO. 
0186 The communication connection(s) 1270 enable 
communication over a communication medium to another 
computing entity. The communication medium conveys 
information such as computer-executable instructions, audio 
or video input or output, or other data in a modulated data 
signal. A modulated data signal is a signal that has one or 
more of its characteristics set or changed in Such a manner as 
to encode information in the signal. By way of example, and 
not limitation, communication media include wired or wire 
less techniques implemented with an electrical, optical, RF, 
infrared, acoustic, or other carrier. 
0187. The techniques and tools can be described in the 
general context of computer-readable media. Computer-read 
able media are any available media that can be accessed 
within a computing environment. By way of example, and not 
limitation, with the computing environment 1200, computer 
readable media include memory 1220, 1225, storage 1240, 
and combinations thereof. 
0188 The techniques and tools can be described in the 
general context of computer-executable instructions, such as 
those included in program modules, being executed in a com 
puting environment on a target real or virtual processor. Gen 
erally, program modules include routines, programs, librar 
ies, objects, classes, components, data structures, etc. that 
perform particular tasks or implement particular abstract data 
types. The functionality of the program modules may be 
combined or split between program modules as desired in 
various embodiments. Computer-executable instructions for 
program modules may be executed within a local or distrib 
uted computing environment. Any of the methods described 
herein can be implemented by computer-executable instruc 
tions encoded on one or more computer-readable media (e.g., 
computer-readable storage media or other tangible media). 
0189 For the sake of presentation, the detailed description 
uses terms like “interpret” and “squeeze' to describe com 
puter operations in a computing environment. These terms are 
high-level abstractions for operations performed by a com 
puter, and should not be confused with acts performed by a 
human being. The actual computer operations corresponding 
to these terms vary depending on implementation. 

VII. Example Implementation Environment 
0.190 FIG. 13 illustrates a generalized example of a suit 
able implementation environment 1300 in which described 
embodiments, techniques, and technologies may be imple 
mented. 
0191 In example environment 1300, various types of ser 
vices (e.g., computing services 1312) are provided by a cloud 
1310. For example, the cloud 1310 can comprise a collection 
of computing devices, which may be located centrally or 
distributed, that provide cloud-based services to various types 
of users and devices connected via a network Such as the 
Internet. The cloud computing environment 1300 can be used 
in different ways to accomplish computing tasks. For 
example, with reference to described techniques and tools, 
Some tasks. Such as processing user input and presenting a 
user interface, can be performed on a local computing device, 
while other tasks. Such as storage of data to be used in Sub 
sequent processing, can be performed elsewhere in the cloud. 
(0192. In example environment 1300, the cloud 1310 pro 
vides services for connected devices with a variety of screen 
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capabilities 1320A-N. Connected device 1320A represents a 
device with a mid-sized screen. For example, connected 
device 1320A could be a personal computer such as desktop 
computer, laptop, notebook, netbook, or the like. Connected 
device 1320B represents a device with a small-sized screen. 
For example, connected device 1320B could be a mobile 
phone, Smart phone, personal digital assistant, tablet com 
puter, and the like. Connected device 1320N represents a 
device with a large Screen. For example, connected device 
1320N could be a television (e.g., a smart television) or 
another device connected to a television or projector Screen 
(e.g., a set-top box or gaming console). 
0193 A variety of services can be provided by the cloud 
1310 through one or more service providers (not shown). For 
example, the cloud 1310 can provide services related to 
mobile computing to one or more of the various connected 
devices 1320A-N. Cloud services can be customized to the 
screen size, display capability, or other functionality of the 
particular connected device (e.g., connected devices 1320A 
N). For example, cloud services can be customized for mobile 
devices by taking into account the screen size, input devices, 
and communication bandwidth limitations typically associ 
ated with mobile devices. 

VIII. Example Mobile Device 
0194 FIG. 14 is a system diagram depicting an exemplary 
mobile device 1400 including a variety of optional hardware 
and Software components, shown generally at 1402. Any 
components 1402 in the mobile device can communicate with 
any other component, although not all connections are shown, 
for ease of illustration. The mobile device can be any of a 
variety of computing devices (e.g., cell phone, Smartphone, 
handheld computer, personal digital assistant (PDA), etc.) 
and can allow wireless two-way communications with one or 
more mobile communications networks 1404. Such as a cel 
lular or satellite network. 
0.195. The illustrated mobile device can include a control 
ler or processor 1410 (e.g., signal processor, microprocessor, 
ASIC, or other control and processing logic circuitry) for 
performing Such tasks as signal coding, data processing, 
input/output processing, power control, and/or other func 
tions. An operating system 1412 can control the allocation 
and usage of the components 1402 and Support for one or 
more application programs 1414. The application programs 
can include common mobile computing applications (e.g., 
email applications, calendars, contact managers, web brows 
ers, messaging applications), or any other computing appli 
cation. 
0196. The illustrated mobile device can include memory 
1420. Memory 1420 can include non-removable memory 
1422 and/or removable memory 1424. The non-removable 
memory 1422 can include RAM, ROM, flash memory, a disk 
drive, or other well-known memory storage technologies. 
The removable memory 1424 can include flash memory or a 
Subscriber Identity Module (SIM) card, which is well known 
in GSM communication systems, or other well-known 
memory storage technologies, such as Smart cards. The 
memory 1420 can be used for storing data and/or code for 
running the operating system 1412 and the applications 1414. 
Example data can include web pages, text, images, Sound 
files, video data, or other datasets to be sent to and/or received 
from one or more network servers or other mobile devices via 
one or more wired or wireless networks. The memory 1420 
can be used to store a subscriber identifier, Such as an Inter 



US 2011/0202834 A1 

national Mobile Subscriber Identity (IMSI), and an equip 
ment identifier, such as an International Mobile Equipment 
Identifier (IMEI). Such identifiers can be transmitted to a 
network server to identify users and equipment. 
0197) The mobile device can support one or more input 
devices 1430, such as a touchscreen 1432, microphone 1434, 
camera 1436, physical keyboard 1438 and/or trackball 1440 
and one or more output devices 1450, such as a speaker 1452 
and a display 1454. Other possible output devices (not shown) 
can include a piezoelectric or other haptic output device. 
Some devices can serve more than one input/output function. 
For example, touchscreen 1432 and display 1454 can be 
combined in a single input/output device. 
0198 Touchscreen 1432 can accept input in different 
ways. For example, capacitive touchscreens detect touch 
input when an object (e.g., a fingertip or stylus) distorts or 
interrupts an electrical current running across the Surface. As 
another example, touchscreens can use optical sensors to 
detect touch input when beams from the optical sensors are 
interrupted. Physical contact with the surface of the screen is 
not necessary for input to be detected by some touchscreens. 
0199. A wireless modem 1460 can be coupled to an 
antenna (not shown) and can Support two-way communica 
tions between the processor 1410 and external devices, as is 
well understood in the art. The modem 1460 is shown generi 
cally and can include a cellular modem for communicating 
with the mobile communication network 1404 and/or other 
radio-based modems (e.g., Bluetooth or Wi-Fi). The wireless 
modem 1460 is typically configured for communication with 
one or more cellular networks, such as a GSM network for 
data and Voice communications within a single cellular net 
work, between cellular networks, or between the mobile 
device and a public switched telephone network (PSSTN). 
0200. The mobile device can further include at least one 
input/output port 1480, a power supply 1482, a satellite navi 
gation system receiver 1484. Such as a Global Positioning 
System (GPS) receiver, an accelerometer 1486, a transceiver 
1488 (for wirelessly transmitting analog or digital signals) 
and/or a physical connector 1490, which can be a USB port, 
IEEE 1494 (firewall) port, and/or RS-232 port. The illustrated 
components 1402 are not required or all-inclusive, as com 
ponents can be deleted and other components can be added. 
0201 In view of the many possible embodiments to which 
the principles of the disclosed invention may be applied, it 
should be recognized that the illustrated embodiments are 
only preferred examples of the invention and should not be 
taken as limiting the scope of the invention. Rather, the scope 
of the invention is defined by the following claims. We there 
fore claim as our inventionall that comes within the scope and 
spirit of these claims. 

We claim: 
1. In a computer system, a method comprising: 
receiving gesture information corresponding to a gesture 

on a touch input device; 
calculating simulated inertia motion for a movable user 

interface element based at least in part on the gesture 
information; 

based at least in part on the gesture information and on the 
simulated inertia motion, calculating a post-gesture 
position of the movable user interface element; 

determining that the post-gesture position exceeds a ges 
ture boundary of the movable user interface element; 
and 
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calculating a distortion effect in the movable user interface 
element to indicate that the gesture boundary has been 
exceeded. 

2. The method of claim 1 wherein calculating the distortion 
effect comprises: 

determining an extent by which the gesture boundary has 
been exceeded; 

determining a compressible area of the movable user inter 
face element; and 

determining a scale factor for the distortion effect based at 
least in part on the compressible area and the extent by 
which the gesture boundary has been exceeded. 

3. The method of claim 2 further comprising scaling the 
compressible area according to the scale factor. 

4. The method of claim 2 wherein calculating the distortion 
effect further comprises determining a distortion point for the 
distortion effect. 

5. The method of claim 4 further comprising scaling the 
compressible area according to the scale factor and the dis 
tortion point. 

6. The method of claim 1 wherein the distortion effect is a 
Squeeze effect. 

7. The method of claim 1 further comprising: 
displaying a portion of the movable user interface element 

to indicate availability of a wrapping feature in the mov 
able user interface element. 

8. The method of claim 1, wherein the gesture information 
comprises gesture coordinates. 

9. The method of claim 1 wherein calculating the post 
gesture position comprises interrupting the simulated inertia 
motion when new gesture information corresponding to a 
new gesture is received. 

10. The method of claim 1 wherein calculating simulated 
inertia motion is further based on inertia information com 
prising an inertia Velocity. 

11. The method of claim 10, wherein the inertia velocity is 
based at least in part on a friction coefficient. 

12. The method of claim 10 wherein calculating simulated 
inertia motion comprises: 

comparing the inertia Velocity with a parking speed coef 
ficient; and 

determining whether to stop the inertia motion based on the 
comparing. 

13. The method of claim 1 wherein the movable user inter 
face element is an axis-locked user interface element. 

14. In a computer system, a method comprising: 
receiving user input that indicates movement in a graphical 

user interface element having plural movable layers; 
based at least in part on inertia information and the user 

input, calculating a first motion having a first movement 
rate in a first layer of the plural movable layers; and 

calculating a parallax motion in a second layer of the plural 
movable layers, wherein the parallax motion is based at 
least in part on the first motion, and wherein the parallax 
motion comprises a movement of the second layer at a 
second movement rate that differs from the first move 
ment rate. 

15. The method of claim 14 wherein calculating the paral 
lax motion is based at least in part on a parallax constant for 
the second layer. 

16. The method of claim 14 wherein calculating the paral 
lax motion is based at least in part on an amount of display 
able data in the second layer. 
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17. The method of claim 14 wherein calculating the first 
motion comprises applying simulated inertia motion based at 
least in part on the inertia information. 

18. The method of claim 14 wherein the user input is a 
gesture on a touch screen. 

19. The method of claim 18 wherein the inertia information 
comprises a Velocity of the gesture. 

20. A computer readable medium having stored thereon 
computer-executable instructions operable to cause a com 
puter to perform a method comprising: 

receiving gesture information corresponding to a gesture 
on a touch input device, the gesture information indicat 
ing a movement of a user interface element having a 
movement boundary; 

based at least in part on the gesture information, computing 
a new position of the user interface element; 
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based at least in part on the new position, determining that 
the movement boundary has been exceeded; 

determining an extent by which the movement boundary 
has been exceeded; 

determining a compressible area of the user interface ele 
ment; 

determining a scale factor for a distortion effect based at 
least in part on the compressible area and the extent by 
which the movement boundary has been exceeded; and 

presenting a distortion effect in the user interface element, 
wherein the distortion effect comprises a visual com 
pression of content in the compressible area according to 
the scale factor, wherein the visual compression is in a 
dimension that corresponds to the movement of the user 
interface element. 


