US 20060112114A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2006/0112114 A1

Yu et al. 43) Pub. Date: May 25, 2006
(54) MODEL-DRIVEN USER INTERVIEW (52) U8 CL s seinceieceieseesies 707/100
(76) Inventors: Jay JieBing Yu, Carlsbad, CA (US);

Kenichi Mori, Carlsbad, CA (US)
57 ABSTRACT
Correspondence Address:
SFLNI‘CV(ggTIiffL‘IYl}]ESS(]éIﬁIﬁ?}ER A framework is presented that can be used to create and
801 CALIFORNIA STREET execute software applications that include a user interview.
MOUNTAIN VIEW. CA 94041 (US The framework includes run-time engines and a data reposi-
’ Us) tory. The run-time engines include an interview driver. The
. data repository includes interview instructions and model
(21) Appl. No.: 117285,930 information. The interview driver generates or modifies an
(22) Filed: Nov. 23. 2005 instantiated data model by using the interview instructions
' T and model information to obtain information from a user.
Related U.S. Application Data The interview instructions include flow control information,
prompts, and user interface (UI) information. The model
(60) Provisional application No. 60/630,812, filed on Nov. information includes a meta-model, a data model, and an
23, 2004. instantiated model. Once an instantiated model has been
created, it can be used to generate an application-specific
Publication Classification document, such as a tax form. Since the application is
executed based on the contents of the repository, the appli-
(51) Int. CL cation can be modified by changing the contents of the
GO6F 7/00 (2006.01) repository.
Ir::’:fur:iiv;l\s Data Model
125 122

Y A 4

Interview Driver
135

A

Y

Instantiated Model

Application Logic

123 400
Y A
Transformer
410
Y
Instqntiqted Document
Application-
! T Renderer
Specific Model
420 0
=
 J
Application-
Specific
Document
440

e

Patent Application Publication May 25, 2006 Sheet 1 of 16 US 2006/0112114 A1

Framework 100

Data Repository 105 Run-time Engines 110

Model Information 120

Interview Driver

Meta-Model : - 135
121

Data Model
122

[Instantiated Model
123

Interview Instructions
125

Flow Control
Information 126 .

Prompts
127

Ul Information
128

FIG. 1

Patent Application Publication May 25, 2006 Sheet 2 of 16 US 2006/0112114 A1

Add anchor 00
specialized entity to
New Entity Queue '/j
210

v

For each specialized entity in NEQ:

Instantiate entity and
add to instantiated
model 123
220

v

For each specializéd relation
which could exist:

Determine whether
relation exists;
annotate entity

accordingly 230

v

If relation exists, add it
to New Relation
Queue
240

Y

For each specialized relation
in NRQ:

Instantiate relation and
add to instantiated
model 123
250

v ‘
Add “target” F I G . 2

specialized entity to
NEQ
260

Patent Application Publication May 25, 2006

Add anchor
instantiated entity to
Update Entity Queue

305

v

Sheet 3 of 16

Foreach instantiated entity in UEQ:

Update entity
310

v

For each relation annotated
in entity as “doesn’t exist” or
“‘unknown”:

Determine whether
relation exists;
annotate entity
accordingly 315

v

If relation exists, add it
to New Relation
Queue
320

v

“exists™:

For each relation annotated in entity as

Determine type of update needed (if

v

If info
update,
update
relation

330

any) 325
v v
If If no update,
termination, add target
remove entity to
relation UEQ
335 340

®

US 2006/0112114 A1

300

—

FIG. 3A

Patent Application Publication May 25, 2006 Sheet 4 of 16

— ¢

300

—

For each specialized relation
in NRQ:

Instantiate relation and
add to instantiated
model 123
345

Y

Add “target”
specialized entity to
NEQ
350

l

For each specialized entity in NEQ:

Instantiate entity and
add to instantiated
model 123
355

Y

For each specialized relation
which could exist:

Repeat
until all
entries in
"both NRQ
and NEQ
have been
processed

FIG. 3B

Determine whether
relation exists;
annotate entity
accordingly 360

v

If relation exists, add it
to New Relation
Queue
365

!

For each specialized relation
in NRQ:

Instantiate relation and
add to instantiated
model 123
370

Y

Add “target”
specialized entity to
NEQ
375

US 2006/0112114 A1

Patent Application Publication May 25,2006 Sheet S of 16 US 2006/0112114 A1

Intervngw Data Model
Instructions 122
125 T

P

Interview Driver

135
Instantiated Model Application Logic
123 400
Transformer
410
Instantiated D
. ocument
Application-
: Renderer
Specific Model 430
420 -
.Application-

FIG. 4 Docament

440

Patent Application Publication May 25,2006 Sheet 6 of 16 US 2006/0112114 A1

{> Tax Deweloper Workbench 1.0.1%

Fis Ve Acions Run Window Help

fhow BREF 2] IS Do O BHOCRSW

:
e
= Marguee (T
Ereres: Riftrs ZoKaa
[0} bata Saction RN Label 5.1
+~ Rektion <y Label 52
ate Linet
P Line2
¥! 1040cx
Retrn
Person LTI Lne2
Titemo Line4
Lesame p—/_ﬁ'_t> BRI as
Mddelritid . bl Lres 1

e s 5 - ;
frstart - Bame - Tine - oo Ot @2

Sy e
O taxon. (GRSTA 11an

o TBza.. < eTDiE L

Patent Application Publication May 25,2006 Sheet 7 of 16 US 2006/0112114 A1

“aava - Reparteee=t b jya - fetipe P

Ar yEow

Is-B&S ieoe ¥R 188100 0 jwTa loslsn altm voas »
1306l o3 - o o Beasen |
3(39“‘““"" _______.__,_ Bnepgmxmrw vid - microsoft Yok EE?X
S4By - @@mmmm&a@ww :
: = :; » ’
iR b
1155 s et o v
1. fggm‘“ :'Use Flow DesignTool -
bR snﬁg’.i:::mm_f i to specify navlgat[or? ;
n z»gmmrnuz . flow graphically
] + =) uotsry10beta3pw - tiape N
17 & B uoetyrorutasteadw L
i} =@ Ocpoyien
|, TG :
iE3e)
-
i
i ' i

L - Define forward

: ; " navigation action:
1 ° " rules (condition),’ :
1. - Define backward-
- .-navigation action:” . """,

o . i) “rules (condition), - -

- B b L AR

ctiars | Jvdoc L Oucheaion | Crscls [0 b Lag 21,

Cezw - Elngo. | [Meco.

Patent Application Publication May 25, 2006 Sheet 8 of 16

[Microsoft FrontPage - D:\Dacuments and Settings\jyu.000\DesktopWext Gen UNMultiple Forms Screen\Sample Ul Template. him

US 2006/0112114 A1

N

<>
<td colspan="1" styles
"width: 93px; pedding-bottom: 6px:” aligns=
"left” valign="top”> Hirst Name</sparo<,/td

<td styles

"pedding-botton: 6px: pedding-left: Spx;”
colspan="1" alim="lefc” valign="top™»
<input styles

“background-color: rgb{255, 255, 204}
"edt1Dlg-00° value="John™ mazlengths!
212437237 Clagsa"rdit” [, @ddod

<td colspans”l” scyles"width: 1&px:”
"left” valigna“top™><1img srcs
"TaxPayerSpouseInfo_files/clear.gif”

<No ID>

First Name <ulohn : Middle Initia) : ;
L astName Doe .,'r §r., Etc. [;
lﬁlﬂh Data owgineer | F8a. BeE Noi {17 456169

b - - 3

G vesion [EIFR] I code Qereview | Fiimed

Ling 484, Cokumn 47

Patent Application Publication May 25,2006 Sheet 9 of 16 US 2006/0112114 A1

¥ Model2Form.mfd - MAPFORCE
% He Edt Iwet Component Connectin Yew Took Heb
jD@Rglo~|smax | JERIBB[we R

&

A

e

--{} COUNTRY ¢

- {) Employer
-~{} Emplogee
«~-{} Salary

o .

"1 {.» {\Mapping Proiect AXSLT) Output /

i stant

¥ ModeEFarm.afd - BT S M 1A

T 2 hetprifick abova.com... | ¥ ORLSEY s

FIG. 8

- i 2} Maforce 2004 Dka ..

Patent Application Publication May 25, 2006 Sheet 10 of 16

Entity Attributes Derived Entities
Person Name
DateOfBirth
Gender
MarriageStatus
Citizenship
SSN
Business Name
DateEstablished
Site
FederallD
_|StatelD
Residence Address Primary
Phone Secondary
Site Address
Phone
Liability Type- Mortgage
OriginalAmount [Car Loan
Balance Equity Loan
Term Personal Loan
Interest '
Asset Type Real Estate (Land, House, Building)
OriginalValue Vehicle
CurrentValue Regular Financial
Interest Retirement Financial
Term
Depreciation
Appreciation
School | Type
Start
End
Site
Charity Type Church
Site Non-profit Organization
Professional Association
Residential Association
Government Type Federal
Site State
Medical Institute |Type Hospital
Site Medical Insurance

FIG. 9

US 2006/0112114 A1

US 2006/0112114 A1

Patent Application Publication May 25, 2006 Sheet 11 of 16

01 *91a .
_] XBj
. ., {e1e18 Jaous . weree
Anunod uBjeso)) ejeoojey uopeZiBINIEN / es.o_omk 8dAL | owwonod| uosied| eaeoey fAeg
: . oto.>>~8”m Bw.__.wm__ : Sepiliqeny| uosied)
[
yeyiod ; Aemy eAIH / [joS BA[808Y / UM / Ang _nwmﬂmﬂ “M“m) i
B . JBOUN|OA 0
8jeuoq
. pu3
0ABOT -ujop velg| Aumuwod]|” uosieg 189JUN|OA]
‘pug
o-.moo_om 9jEJ0|0Yy ueig o)is] sseu|sng uojels
i pu3g
"0 GAOH U] 6A0}y uEIS| esuspjsey| uosieg u) 9A1Y
Sesuedxg A .
; uopny
. ysjul4 pepedxy
. - - f_ ,
$8]0J ,JUBPNMIS,, PUB ,00UDS,] ejenpess) s daig [OIE] oc._mww jooyas| — uosieg uopeanp
sesusdxgy .m
: Sjyeusg
*8S0UISNq 40 od oS
5 I mhao A B 51 Jekoldw3, umopinys Auediio))|
__'$8j0J ,80A0idw3, pue JeAoldws,| /esme)| n ool
P 16 / padld /3IND / Bo-pla 84H 8jilL qor Sseuisng| uossad 104 %iop
10§ woddns jejoueuy sepjaoid Lepuadeq,| - ' " no .
sejaJ uepuadeq, pue ,eapuadeq,| -eacpy/ uoddng jepueuly dojg UFOAON / Uoddng _ancm:_u uels ejoy voﬁ_mm_ :m&m.m uosiad! Juepuedsq
*8jqed|jdde eq jou , . - — 25 .
Aew e|ns eousseu) o6e oy uojum U ‘pliyo
-doIs 81 .pljyd, uay ‘Auo eBewep, eia
Peusiiqeise s uopees J ‘syuens Luopdopy,
10 .ypig, Aq paysiiqeise s uopejes
8y :ocs.z_m_oanmo "WPilYO, uey} topjo §j .)
«Jusied, Ajjensn “seja1..pjyD, pue Jusiey, InS Me/ Yyieeg eBeuap / uopdopy / yuig 8joy uosied| uosied| piyOAuBIEd
"UGSI0d O[ewaZ 10j Ajensn 2 .
S| €101 ,8jiM, ‘UOSIBd BB 104 Aflensn g)
8|04 ,PUBGSNH, 'S8|0J Bj|M, PUB puBqSNH, yieeq ;s sasonig|- efewepy 0joy uoslied| - uosied asnodg).
-so|ny . :oa.u_ox pu3 0} sjueAz| uope|oy Ys|iqesy o) sueay sonquny| z# Aipu3| 1 Apag uofiejoy

US 2006/0112114 A1

Patent Application Publication May 25, 2006 Sheet 12 of 16

gozrt
ssaulisng

a0yl
JOOM

vocll .
ssauisng _\ _‘ mu _ n_
vovil
JODHOMA
VOLLL
uosiad
0ctl
asnodg
ao0tLtLi

uosJiad

US 2006/0112114 A1

Patent Application Publication May 25, 2006 Sheet 13 of 16

21 014
0 100YS 4O 1N [] jooyag| eesbaq] uosieg e)enpesn)
« 0 100YdS Jo D 100405 U} jooydg| saibag| uosieg douq
0 100y2g U] 100428 40 N0 jooyog| eeibed| uosiad o3
"0 owy] GugeslunjoA esop| ew|] BupsejunjoA Jueun) Ayunwwod uosJed 198JUN|OA
"0 UOjjEUOQ 8JOW uofeuoq uaLng Aunuwo)d]| 1essy| uosieg |InquIuUoD
I3QUSN-UON] Joquep Aunwwo) uosied BAES]
-0 Joqep JOQUIBWIUCN Aunwwo) uosiad utop
+ 0 sepliiqen ssa7 SOnRiIqer] waung Jspud uos.ied wewled
=0 segiiqe sse sennqery weuny Japuay uosiad inejeqg
) PeONpay / [9Ae] sweg Senpliqer jueund jueg uossad 81epllosue)
+ 0 seplgen 8597 sepjiqer] euny Jepueq uosiad HO pled
.0 0)eY }8610)u] paanpey 818y 1S8J0JU| JUBLIND sopuen| Aniqery| uosiag E=0CETEY]
$)958Y 5597 5]8SSy JUBUNYD J19M309d| 18sSY| uosiad BAID)|
Asepysueg 7 jueyu) 81058y 610y 81988y Juaun) JSAI9| 198Sy| UOSIad B6A1808Y
uopowosd ‘Xieno” ‘e|quies 8)assy 810 $]0SSY JUaun))| Josuodg| 19ssy| uosiagd UL
§)088Y 5607 $]0S8Y JUauny| 19pua| jessy| uosiad Nnejeq
§)6SSY 5597 §]0S8Y Jualing poyl| 1essy| uosiad eI
$)8SSy 5587 $}@S8Y Juauny), o8| ~ 1essy| uosiag Aonseq
5887 / BIOW / |BADT] DWES 51988y JuaLIN) Japel]| jessy| uosiag ebueyox3
S)0SSY IO S]0SSY JUBLND) Jonss)| 198Sy| uossad| spuspimig we3
§]0SSY 310 sjossy juaund| iomouog /xueg| 1essy| uosied| sisessulwe3
|0AS] oweg €)8s8y jJuaund)| 100y 01 J00y| 18ssy| uosued 19§5UBl ||
9838y 5587 §10SSY JuaLnD)| 19Ang| 1essy| uosieg Ies
19SSy 9J0N 91888y JUBLIND m)9| 1essy| uosiad Ang
leuosued / qor 0 UORES0 MEN UonEd0] PIO eouspisaN uosiad| 81E0059Y / BADW
0. (dizZ) euoz meN (diz) suoz pio eouapisey uossad suoz ebuey)
) JOUUINN 8UOY4 MBN JBGWINN 8UoUd PIO)| eduspisay uossag| euoyd ebueyd
Aed Jeyeg) SLWOdUL DIOW SWIodu| JuBLND ssauisng|{ Aauopy| uosiad asiey 199
oM J0j ajesuadwio) 0 BWOooUl AI0) 3Woou| Jusuny ssauisng| ABUOW| u0Siad pled 189
piemay 8oUBULIOBY .0 2woau) 8I0N BLLodU| JUaLND ssauisng| ASuOW| uosiad snuog 195
.0 S)jauag meN syysuag pIO ssauisng| siyeuag| uosiad| syyeusqg ebuey)
juswdojaraq .0 UOREJ0T MBN UoRESDT PIO ssauisng| uoyedoq| uosied uoieoo|ay
JUSWAOUBAPY|) yuey meN NUBY PIO ssauisng] JoJop| uosiag uo|oWwo1d
qor Jayeg .0 UoHE[9Y JOJHOM MBN uoliejey Jo4oM PIO Ssauisng| JoJom| uoslad QOf Youmg
punos Xjjeoueuls / pi0 Bumeg) .0 Uollej9y J0pop B JoBuo| ON uoiejoy JoDUOM sseu|sng| J0pom| uosiad Y]
Pailj / Jo-pie / ynd + 0 uope)ay J04%4i0M & Jabuoj oN uopey Jo4Xuom sseuisng| JOJMOM| uosisd qor pu3
20 UONEe|aY JOHOM) UOleeY JOHIOAN ON ssauisng| JopHoM| uosiad qoT VEIS
-0 peiqes|q AqeeH 48s uosiad aJnlu]
.0 0|Bu|s POLEN uosiad uosJad 8310M0
) pouep olbuig uosJad uosiad Auew
) Apu3 UoRiad @ Jebuo] ON WosI8d OAT] 19S uosiod 81q
N } " Anu3 uosiad meN 90u@)S|xa-UON| JeyieJ / 18Lpow Gosiag| ui0g
uoseoy | Asuenbesy UONIPUOD-}SOd UOR|pUed-0id Zi 1000y 399(q0] 1it 1030V SIUBA]

US 2006/0112114 A1

Patent Application Publication May 25, 2006 Sheet 14 of 16

oy () €l Ol

JUSAJ AH_ *3|elA S! 39b.e) usy
‘3lewa S| 924N0S J]

9|ewa4 s! 3ob.ie] usyy

‘3jen Sl 204n0s JI

QA0WRY < DTET 22J40AIq | eadD <DOET Auep

diysuaznid| 3|0y diysuaznid
NSS | NSS
Y31g403eq O€TT yuigjosied
l2puan - d 13puan

(asm) @SNOAS/ (puegsny)
SWEN| 510130610 3|04 824n0S SWEN
dOTTT uosidad | VOT LT uosiad

US 2006/0112114 A1

Patent Application Publication May 25, 2006 Sheet 15 of 16

00¥T qO[HE]S

wora (1 vl Ol
9AOWRY < OTHT qorpug | =3eald
Alejes
— | | 9311L.90[
diooutaieq \%H T\
HOREIOT o (6 1dwia) 04O Ay (3340 dwd)
oweN 9|04 19bue] © 9]0J 324Nn0S

OCIT ssauisng

diysusznid

NSS
yuig3093eq
- 1apusn

awep

OTTT UOSded

US 2006/0112114 A1

Patent Application Publication May 25, 2006 Sheet 16 of 16

US 2006/0112114 Al

MODEL-DRIVEN USER INTERVIEW

[0001] This patent application claims priority from the
following patent application, which is hereby incorporated
by reference: U.S. Provisional Patent Application Ser. No.
60/630,812, filed on Nov. 23, 2004, entitled “Model-Driven
Tax Application Framework.”

BACKGROUND

[0002] The present invention relates to software that
includes a user interview.

[0003] Filling out forms is a common activity in modern
times. Some forms are simple and straightforward, while
others are complex and difficult to understand. Over the
years, software has been created to help people fill out
forms. One type of software obtains, from a user, informa-
tion that is needed to fill out a form. For example, software
can “interview” a user by prompting the user to enter
information. This information can then be processed in order
to determine how the form should be filled out. Such
software has been created to assist with completion of forms
used in fields such as finance and law.

SUMMARY

[0004] A framework is presented that can be used to create
and execute software that includes a user interview. In one
embodiment, the software is financial in nature and can be
used, e.g., for tax, accounting, or financial management. The
interview collects information that can be used, for example,
to fill out a form or generate a document. The interview is
dynamic, in that it can vary from user to user and from one
moment to the next, depending on information that has been
gathered so far.

[0005] The framework includes various run-time engines
and a data repository. Together, the run-time engines execute
a software application, which includes a user interview,
based on the contents of the data repository.

[0006] The data repository includes model information
and interview instructions. The model is configured to store
any type of information that has financial implications, such
as personal information (e.g., date of birth, marital status),
employment information (e.g., salary, benefits), account
balances for any type of financial account, and financial
transactions. In one embodiment, the model information
includes a meta-model, a data model, and an instantiated
model. The meta-model defines four types of elements:
entities (persons, places, or things), relations (associations
between entities), rules (restrictions placed on entities or
relations), and events (change state of entities and relation-
ships). The data model includes specialized versions of these
elements, such as specialized entities (e.g., a person or
business), specialized relations (e.g., marriage or employ-
ment), specialized rules (e.g., regarding whether a person
can legally work), and specialized events (e.g., marriage or
starting a job).

[0007] The meta-model and the data model are abstract, in
that they do not include data specific to a particular entity
(e.g., a user). For a given financial application, an instanti-
ated data model is created from the data model, which
includes one or more instantiated elements (elements that
have a value for one or more attributes). An instantiated

May 25, 2006

element represents a “real-life” phenomenon, although the
phenomenon can be real or hypothetical.

[0008] The interview instructions specify how to obtain
information from a user to create or modify the instantiated
data model. In one embodiment, the interview instructions
include flow control information, prompts, and user inter-
face (UI) information. The flow control information controls
the flow of an interview. In one embodiment, the flow is
based on the data model. If a specialized entity is viewed as
a node and a specialized relation is viewed as an edge, a set
of interconnected entities and relations can be interpreted as
a graph. In one embodiment, the interview flow corresponds
to how this graph is traversed, from node to edge and vice
versa.

[0009] The prompts include prompts (e.g., questions) to
present to a user during the interview process. A prompt
elicits information that can be used to discover or explore a
data model element, such as a specialized entity or relation.
In one embodiment, each element in the data model has
three types of prompts associated with it: AskExist, AskDe-
tail, and AskChange.

[0010] The Ul information specifies the user interface for
the application. In one embodiment, the Ul information
specifies how a prompt is presented and/or how a user
responds to a prompt. In one embodiment, each element in
the data model has one or more associated Uls, which the
user uses to input requested information.

[0011] The run-time engines include an interview driver.
The interview driver executes an application, which includes
a user interview, based on the contents of the data repository.
The interview driver generates or modifies an instantiated
model by using the interview instructions to obtain infor-
mation from a user. Specifically, the interview driver
executes an interview sequence based on the instantiated
model and the flow control information. The interview
driver uses the prompts and the Ul information to present a
prompt to and receive input from the user. The interview
driver uses the input information to create or modify the
instantiated model (e.g., by creating a new element or by
modifying or removing an existing element).

[0012] Once an instantiated model has been created, it can
be used to generate an instantiated application-specific
model, such as for personal income tax. The instantiated
application-specific model can then be used to generate an
application-specific document, such as a tax form. Since the
application is executed based on the contents of the reposi-
tory, the application can be modified by changing the
contents of the repository.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 illustrates a block diagram of a framework
that can be used to create and execute software that includes
a user interview, according to one embodiment of the
invention.

[0014] FIG. 2 illustrates a flowchart of a method for
generating an instantiated model, according to one embodi-
ment of the invention.

[0015] FIGS. 3A and 3B illustrate a flowchart of a method
for revising an instantiated model, according to one embodi-
ment of the invention.

US 2006/0112114 Al

[0016] FIG. 4 illustrates a flow chart of how some of the
components in FIG. 1 can be used, according to one
embodiment of the invention.

[0017] FIG. 5 illustrates a user interface of a visual
modeler, according to one embodiment of the invention.

[0018] FIG. 6 illustrates a user interface of an interview
flow designer, according to one embodiment of the inven-
tion.

[0019] FIG. 7 illustrates a user interface of a UI compo-
nent designer, according to one embodiment of the inven-
tion.

[0020] FIG. 8 illustrates a user interface of a model
mapper, according to one embodiment of the invention.

[0021] FIG. 9 illustrates a table of specialized entities and
their characteristics, according to one embodiment of the
invention.

[0022] FIG. 10 illustrates a table of specialized relations
and their characteristics, according to one embodiment of
the invention.

[0023] FIG. 11 illustrates an entity-relationship diagram
that represents a data model, according to one embodiment
of the invention.

[0024] FIG. 12 illustrates a table of specialized events and
their characteristics, according to one embodiment of the
invention.

[0025] FIG. 13 illustrates a block diagram of information
regarding a Spouse relation, according to one embodiment
of the invention.

[0026] FIG. 14 illustrates a block diagram of information
regarding a WorkFor relation, according to one embodiment
of the invention.

[0027] FIG. 15 illustrates a Unified Modeling Language
(UML) diagram that represents a data model, according to
one embodiment of the invention.

[0028] One skilled in the art will readily recognize from
the following discussion that alternative embodiments of the
structures and methods illustrated herein may be employed
without departing from the principles of the invention
described herein.

DETAILED DESCRIPTION

[0029] The embodiments described below address finan-
cial software that “interviews” a user (i.e., prompts a user for
information). However, the invention can be used in con-
junction with any type of software that includes a user
interview. This software can be used in such diverse fields
as, for example, law (e.g., court documents) and legal
compliance (e.g., local, state, and federal government fil-

ings).

[0030] In addition, while the invention can be used in
conjunction with any type of financial software (e.g., tax,
accounting, and financial management), the embodiments
described below address tax software in particular. Specifi-
cally, systems and methods for tax software that includes a
user interview are described.

May 25, 2006

Framework to Create Software that Includes a User Inter-
view

[0031] According to one embodiment of the invention, a
framework is used to create and execute software that
includes a user interview. The interview collects information
that can be used, for example, to fill out a form or generate
a document. The interview is dynamic, in that it can vary
from user to user and from one moment to the next,
depending on information that has been gathered so far.

[0032] One variable aspect of the interview is its “flow”
(sequence or logic), which represents which information is
sought and in what order. Another variable aspect of the
interview is how the user is prompted for information (e.g.,
which questions are asked).

[0033] FIG. 1 illustrates a block diagram of a framework
that can be used to create and execute software that includes
a user interview, according to one embodiment of the
invention. Here, the framework 100 includes a data reposi-
tory 105 and run-time engines 110. The data repository 105
includes model information 120 and interview instructions
125.

[0034] The model information 120 includes a meta-model
121, a data model 122, and an instantiated model 123. The
meta-model 121 includes four types of elements (entities,
relations, rules, and events) that can store information with
financial implications. An entity represents a person, place,
or thing; a relation represents an association between enti-
ties; a rule represents a restriction placed on an entity or
relation; and an event signals a change in an element. The
data model 122 includes specialized versions of these ele-
ments, where each specialized element has various
attributes, each of which can be assigned a particular value.
The instantiated model 123 includes one or more instantia-
tions of the elements in the data model 122, where an
instantiation is an element that contains a value for one or
more of its attributes. In one embodiment, the model infor-
mation 120, including the meta-model 121, data model 122,
and instantiated model 123, is expressed using eXtensible
Markup Language (XML). The model information 120 is
further described below in the section entitled “Example:
Financial Software,” according to one embodiment of the
invention.

[0035] The interview instructions 125 specify how to
obtain information from a user. In one embodiment, the
interview instructions 125 include flow control information
126, prompts 127, and user interface (UI) information 128.

[0036] The flow control information 126 controls the flow
of an interview. In one embodiment, the flow is based on the
data model 122. If a (specialized) entity is viewed as a node
and a (specialized) relation is viewed as an edge, a set of
interconnected entities and relations can be interpreted as a
graph. In one embodiment, the flow corresponds to how this
graph is traversed, from node to edge and vice versa.

[0037] The interview process can include, for example,
two phases for each specialized element in the graph. The
first phase, discovery, comprises determining whether the
element exists. The second phase, exploration, comprises
determining information about the element. Each of these
determinations can be made based on, for example, infor-
mation received from a user or information inferred from
other information, as explained below.

US 2006/0112114 Al

[0038] In one embodiment, the flow control information
126 specifies the order in which specialized elements should
be discovered and/or explored. In one embodiment, the
order of discovery and/or exploration can be controlled in
three different ways. A first way is via a pre-defined
sequence. One example of a pre-defined sequence is to start
at the main Person entity, then discover his Residence entity
(if any), then his Spouse relation (if any), then his WorkFor
relation (if any), etc. Another example of a pre-defined
sequence is to start at the main Person entity, then discover
his WorkFor relation, then the associated Business entity,
etc.

[0039] A second way to control the flow is via a set of rules
or heuristics. One example of a heuristic is to discover a
Spouse relation before discovering a WorkFor relation.
Another example of a heuristic is to discover an entity before
a relation. Yet another example is to discover all of the
relations connected to a particular entity before exploring
any of the relations in depth. A heuristic can be thought of
as a partial ordering of the elements of a data model. For
example, a heuristic that specifies an ordering between
entities does not address ordering between relations or
between a relation and an entity.

[0040] In one embodiment, data model elements are orga-
nized into groups, and a heuristic orders elements based on
their groups. For example, the “Personal Information” group
includes Person entities, Business entities, and Residence
entities. The “Things You Own” group includes entities
derived from the Asset entity, such as Building Asset entities
and Vehicle Asset entities. The “Things You Owe” group
includes entities derived from the Liability entity, such as
Mortgage Liability entities and Equity Loan Liability enti-
ties. The “Others” group includes the remaining entities of
the data model.

[0041] Possible heuristics can include, for example: dis-
covering “Personal Information™ entities before “Things
You Own” entities; discovering “Personal Information” enti-
ties before “Things You Owe” entities; discovering “Things
You Own” entities before “Others” entities; and discovering
“Things You Owe” entities before “Others” entities. These
four heuristics act as a partial ordering of all entities in the
data model. (The ordering is not complete because no
heuristic addresses both “Things You Own” entities and
“Things You Owe” entities.) While the above heuristics
address discovery, a heuristic can also be used for explora-
tion (e.g., to determine whether an element should be
explored immediately or deferred until later).

[0042] 1In one embodiment, the flow control information
126 specifies whether a specialized element that has been
discovered is explored immediately or is deferred until later.
For example, an application traverses an instantiated model
123 graph and discovers an element, such as a specialized
entity or relation. The application can explore (determine
information about) the element either immediately or at a
later time. For example, one type of flow discovers all of the
relations connected to a particular entity before exploring
any of the relations in depth. In this embodiment, explora-
tion of a relation is deferred until all of the relations
(connected to a particular entity) have been discovered.

[0043] For example, more generally, an application
traverses an instantiated model 123 graph and encounters an
element, such as an entity (node) or a relation (edge). The

May 25, 2006

application checks which elements (if any) it has discovered
but not explored. If a heuristic exists that gives higher
priority to a previously-discovered but as-yet unexplored
element (e.g., based on their groups), then exploration of the
current element is deferred.

[0044] A third way to control the flow is via a generic
graph-search algorithm, such as depth-first, breadth-first,
branch-and-bound, beam, or random. One example of a
breadth-first algorithm is to start at the main Person entity
and then discover all of his connected relations before
discovering any entities associated with the relations. (Dis-
covering an entity associated with a relation before having
discovered all relations would be an example of searching
the depth of the graph.)

[0045] Note that since the pre-defined sequence discusses
particular specialized elements, its operation is limited to an
application using a particular data model 122. Since a
generic graph-search algorithm operates independently of
the data model 122, it can be used to control the flow of any
application that uses any data model 122. Also, note that the
above methods of flow control can be used in combination.
For example, a discovery decision can be made based on a
heuristic. However, if no heuristic applies to the particular
situation, a pre-defined sequence or generic graph-search
algorithm can be used instead.

[0046] In another embodiment, the flow control informa-
tion 126 includes which type of prompt should be presented
at each node (entity) or edge (relation) as it is being
traversed (e.g., discovered or explored). In one embodiment,
each element in the data model 122 has three types of
prompts associated with it. The first type (“AskExist”) elicits
information that can be used to “discover” the specialized
element (i.e., determine whether the specialized element
exists). The second type (“AskDetail”) elicits information
that can be used to “explore” the specialized element (e.g.,
instantiate it by assigning a value to one or more of its
attributes). The third type (“AskChange”) elicits information
regarding a possible change in the specialized element.
Since an event can change a specialized element, an
AskChange prompt sometimes elicits information that can
be used to discover or explore a specialized event.

[0047] Consider a Spouse relation, which associates two
Person entities. An AskExist prompt could be “Are you
married?” or “Are you single?”. An AskDetail prompt could
be “Tell us more about your marriage” or “Describe your
wedding.” An AskChange prompt could be “Has there been
any change in your marital status since 1/1/2005?” or “Did
you get married in 2005?”.

[0048] In one embodiment, for an existing entity or rela-
tion, one of two prompts could be presented: 1) an
AskChange prompt about the entity or relation or 2) an
AskExist prompt about a specialized event that would
change (or remove) that entity or relation. For a non-existing
entity or relation, one of two prompts could be presented: 1)
an AskExist prompt about the entity or relation or 2) an
AskExist prompt about a specialized event that would create
that entity or relation.

[0049] At run-time, the interview driver 135 can access the
flow control information 126 to determine, for example,
which element to discover or explore next and/or which type
of prompt to present. The flow control information 126 can

US 2006/0112114 Al

differ based on what type of flow is desired. For example, if
a pre-defined sequence is desired, the flow control informa-
tion 126 can include a specific ordering of data model
elements, such as entities and relations. If a rule- or heuris-
tic-based flow is desired, the flow control information 126
can include one or more rules or heuristics and their rankings
in terms of which should be applied in case of a conflict. If
a graph-search algorithm is desired, the flow control infor-
mation 126 can include one or more algorithms, such as
breadth-first search, depth-first search, branch-and-bound,
and beam search.

[0050] In one embodiment, the flow control information
126 is stored in a database using XML. Appendix A includes
XML code for defining discovery or exploration heuristics
based on groups (as described above), according to one
embodiment of the invention.

[0051] The prompts 127 include prompts (e.g., questions)
to present to a user during the interview process. As dis-
cussed above, a prompt elicits information that can be used
to discover or explore a data model 122 element (such as a
specialized entity or relation).

[0052] Inoneembodiment, each element in the data model
122 has three types of prompts associated with it: AskExist
prompts, AskDetail prompts, and AskChange prompts. In
one embodiment, if more than one prompt exists for a
particular type (e.g., if two AskExist prompts exist), a
prompt is chosen at run-time based on one or more user
characteristics. These characteristics could be described in
the instantiated model 123 by various specialized elements.
For example, the user’s age and gender could be described
by the Person entity that represents the user. The character-
istics would then be used to determine the appropriate
prompt. For example, if the user is under the age of 25, the
chosen AskExist prompt might be “Are you single?”, rather
than “Are you married?”.

[0053] Information related to the specialized element in
question (i.e., the element about which information is being
elicited) could also be described by another specialized
element. AskChange prompts, in particular, can make good
use of this type of information. Since an AskChange prompt
elicits information regarding a possible change in the spe-
cialized element, an initial state of the specialized element is
implied. For example, if the specialized element in question
is the Spouse relation and the instantiated model 123 cur-
rently describes the user as single, the chosen AskChange
prompt might be “Did you get married in 2005?”, rather than
“Has there been any change in your marital status since
1/1/2005?”.

[0054] User characteristics could also include information
beyond that which is described in the instantiated model
123. For example, user characteristics could include the
user’s level of experience with the application (e.g., whether
the user is an expert or a novice). The level of experience
could be based on statistics gathered by the software during
use of the application.

[0055] In one embodiment, a prompt is written individu-
ally. In another embodiment, a prompt is generated using
software. For example, a “template” prompt can be used that
designates certain variables whose values are determined at
run-time. One example of a template prompt is “What is
your <spousetitle>’s name?” where the value of the variable

May 25, 2006

<spousetitle> can be “wife” or “husband,” depending on the
user’s gender. Thus, this one template prompt can be written
instead of the two “normal” prompts “What is your wife’s
name?” and “What is your husband’s name?”. As another
example, natural language processing can be used to gen-
erate a prompt (e.g., based on name substitution, role
substitution, and rephrasing).

[0056] In one embodiment, a prompt (whether it is a
normal prompt or a template prompt) is stored in a database
using XML. Appendix B includes XML code for a template
prompt, according to one embodiment of the invention. At
run-time, the interview driver 135 can access this informa-
tion to determine which prompt to present to the user. In
another embodiment, the prompt is associated with 1) the
data model 122 element about which it elicits information
and/or 2) the prompt’s type (e.g., AskExist, AskDetail, or
AskChange).

[0057] The Ul information 128 specifies the user interface
for the application. In one embodiment, the Ul information
128 specifies how a prompt is presented and/or how a user
responds to a prompt. In one embodiment, each specialized
entity, relation, and event has one or more associated Uls,
which the user uses to input requested information. For
example, one specialized element can have different Uls that
serve different purposes. An Add View Ul can enable a user
to create a new element by entering new information. An
Edit View Ul can enable a user to edit an existing element
by modifying or updating existing information. A Summary
View Ul can present selected information about the element,
while a Detail View Ul can present all information about the
element.

[0058] Uls can differ in appearance (for example, by using
different layouts, fonts, and color schemes) based on their
associated specialized element and/or their use (e.g., Add
View, Edit View, Summary View, and Detail View). In one
embodiment, a set of Ul information 128 for a data model
122 is referred to as a “theme.” By specifying a different
theme, the UI of the application can be changed. In one
embodiment, a Ul includes a dialog box with fields into
which information can be entered.

[0059] In one embodiment, the UI information 128 is
stored in a database using XML. At run-time, the interview
driver 135 can access this information to determine 1) how
to present prompts and/or 2) how to accept input. For
example, the Ul information 128 can be expressed using
XML User Interface Language (XUL) or eXtensible Appli-
cation Markup Language (XAML). XUL is further
described at http://www.mozilla.org/projects/xul/, and its
specification is available at http://www.mozilla.org/projects/
xul/xulhtml. XAML is further described at http://winfx.ms-
dn.microsoft.com/library/default.asp?url=/library/en-us/
wep conceptual/html/a80 db4cd-dd0f479f-a4 51-
3740017c22e4.asp.

[0060] The run-time engines 110 include an interview
driver 135. The interview driver 135 executes an application
(that includes a user interview) based on the contents of the
data repository 105. In one embodiment (not shown), the
run-time engines 110 also include helper applications such
as a rule engine and a database engine. The rule engine
performs rule chaining based on a rule set. Rule chaining can
be used, for example, to infer information, rather than
having to obtain it from the user during the interview

US 2006/0112114 Al

process. It can also be used to control traversal of an
instantiated model 123 graph, as explained above. In one
embodiment, the rule engine is the open source Drools rule
engine (available at http://drools.codehaus.org), and flow
control information 126 includes rules that are input into the
rule engine. The database engine interfaces with the data
repository 105 to access and store information.

[0061] The interview driver 135 generates or modifies an
instantiated model 123. An application, regardless of its
type, will focus on collecting information relevant to one or
more specialized entities. In one embodiment, when the
application begins, an instantiated model 123 is generated
that comprises that entity (the “anchor” entity). The inter-
view driver 135 instantiates this entity and “discovers”
(determines the existence of) other specialized elements and
instantiates them. Eventually, a complete instantiated model
123 is built.

[0062] Forexample, consider a tax preparation application
that is being used to determine the tax liability for a person.
The application would generate an instantiated model 123
that included one anchor element—a Person entity that
represented the taxpayer in question. The interview driver
135 would instantiate the Person entity and discover other
data model elements that affect the taxpayer’s tax liability.

[0063] Note that the above steps can be performed in
different orders. For example, an interview driver 135 could
first instantiate the taxpayer entity and then discover other
elements or vice versa. Also, the interview driver 135 could
instantiate one of these other elements as soon as it has been
identified, or the interview driver 135 could continue iden-
tifying additional elements before instantiating any of them.
These choices control the run-time operation of the inter-
view driver 135 and were discussed above with reference to
the interview instructions 125.

[0064] In one embodiment, a data model element is dis-
covered and/or instantiated based on information received
from the user of the application. For example, the applica-
tion can “interview” (present prompts to) the user. In order
to assign a value to a Person entity’s DateOfBirth attribute,
an application might ask the user for his birth date. In order
to determine whether a WorkFor relation exists, an applica-
tion might ask the user whether he has a job. In one
embodiment, a prompt is presented visually (e.g., using a
display device). In another embodiment, a prompt is pre-
sented in audio (e.g., using a speaker).

[0065] The user’s response would then be used to deter-
mine the existence of an element or assign a value to an
element’s attribute. In one embodiment, a response is
entered by using a pointing device or keyboard (e.g., to enter
a value into a field of a form). In another embodiment, a
response is entered by speaking (e.g., using a microphone
and a voice recognition program).

[0066] In another embodiment, a data model element is
discovered and/or instantiated based on information that has
been inferred by the application (e.g., using a rule/inference
engine). For example, consider a data model that includes a
Person entity that has a Gender attribute value of “Male.”
The application then determines that the person represented
by the Person entity is married (and thus is part of a Spouse
relation). As a result of this determination, the application
can infer that 1) another Person entity exists (the first

May 25, 2006

person’s spouse) and 2) the value of that Person entity’s
Gender attribute is “Female.” The application can infer these
facts because 1) a Spouse relation is defined as existing
between two Person entities, and 2) a rule exists that states
that in a Spouse relation, the two Person entities must have
different values of their Gender attributes. In this way, an
interview driver 135 can discover data model elements
and/or instantiate them without requiring additional input
from the user. Inferencing is discussed below with reference
to rules associated with elements of the data model 122.

[0067] The interview driver 135 uses the interview
instructions 125 to obtain information from a user. Specifi-
cally, the interview driver 135 executes an interview
sequence based on the instantiated model 123 and the flow
control information 126. The interview driver 135 uses the
prompts 126 and the Ul information 128 to present a prompt
to and receive input from the user. The interview driver 135
uses the input information to create or modify the instanti-
ated model 123 (e.g., by creating a new element or by
modifying or removing an existing element).

Generating and Revising an Instantiated Model

[0068] Software created according to the framework 100
shown in FIG. 1 can be used to generate an instantiated
model 123 and/or revise an existing instantiated model 123.
Generating a model is useful when, for example, the soft-
ware is being used for the first time for a particular person.
Revising a model is useful when, for example, the software
has already been used for a particular person, but the
information stored in the model is no longer current. FIG. 2
addresses generating a model, while FIGS. 3A and 3B
address revising an existing model.

[0069] FIG. 2 illustrates a flowchart of a method for
generating an instantiated model, according to one embodi-
ment of the invention. In one embodiment, the interview
driver 135 performs the steps of the flowchart 200. Recall
that an application collects information relevant to one or
more specialized entities, called “anchor” entities. An
anchor entity can be, for example, a Person entity or a
Business entity. In one embodiment, when the data model
122 is created, one or more entities is designated as an
anchor entity.

[0070] In the embodiment illustrated in FIG. 2, there is
only one anchor entity. The flowchart 200 begins when the
anchor entity (a specialized entity) is added to a queue called
the New Entity Queue (NEQ) 210. Next, various steps are
performed for each entity (the “current entity”) in the New
Entity Queue. Initially, the New Entity Queue contains only
the anchor entity. However, other entities can be added to the
New Entity Queue in other steps of the flowchart 200, as
explained below.

[0071] The current entity is instantiated and added to an
instantiated model 220. (The instantiated model 123 is
empty initially, until the instantiated anchor entity is added
to it during the first iteration of step 220.) As discussed
above, instantiating a specialized element comprises assign-
ing a value to one or more attributes of the element. This
value can be determined based on information received from
the user or information inferred from other information, as
discussed above. This determination is similar to the “explo-
ration” phase described above. In one embodiment, when
determining a value, inference is attempted first, based on

US 2006/0112114 Al

information that has already been collected (e.g., informa-
tion stored in the instantiated model 123).

[0072] 1If the value cannot be determined through infer-
ence, then information is sought from the user. In one
embodiment, the user is presented with one or more
prompts. In one embodiment, an “AskDetail” prompt that is
associated with the current entity (part of the prompts 127)
is presented. For example, for a Person entity, the prompt
contains the question “What is your birthdate?”. In response
to the prompt, the user enters information, which is used to
determine a value for an attribute of the entity. In one
embodiment, the information is entered using an Add View
UI. This process is repeated for all attributes of the entity.

[0073] Next, various steps are performed for each special-
ized relation (the “current possible relation) which could
exist and involve the current entity. For example, if the entity
is a Person entity, it could be involved in a Spouse relation,
a Parent/Child relation, and/or a WorkFor relation. These
relations can be identified based on the data model 122. Note
that some relations involve two specialized entities of the
same type (e.g., two Person entities). In one embodiment, in
order to avoid considering each of these relations twice
(once where the current entity is the first entity and again
where the current entity is the second entity), the relations
that are considered are only those where the current entity is
the first (“source™) entity, not where the current entity is the
second (“target”) entity.

[0074] A determination is made regarding whether the
current possible relation exists involving the current entity,
and the current entity is annotated with the answer 230. This
determination is similar to the “discovery” phase described
above. In one embodiment, three answers are possible: 1)
exists (the current possible relation does exist), 2) doesn’t
exist (the current possible relation does not exist), and 3)
unknown (it is unclear whether the current possible relation
exists). If the current possible relation does exist, it is added
to a queue called the New Relation Queue (NRQ) 240.

[0075] The determination can be based on information
received from the user or information inferred from other
information. In one embodiment, when making this deter-
mination, inference is attempted first based on information
that has already been collected (e.g., information stored in
the instantiated model 123).

[0076] If the determination cannot be made through infer-
ence, then information is sought from the user. In one
embodiment; the user is presented with one or more
prompts. In one embodiment, an “AskExist” prompt that is
associated with the current possible relation (part of the
prompts 127) is presented. For example, for a Spouse
relation, the prompt contains the question “Are you mar-
ried?”. In another embodiment, an “AskExist” prompt that is
associated with an event (part of the prompts 127) is
presented. This event could be one that, if it occurred, would
create the current possible relation. For example, for a
Spouse relation, the event could be a wedding, and the
prompt could contain the question “Did you get married
recently?”. In response to the prompt, the user enters infor-
mation, which is used to determine whether the current
possible relation exists involving the current entity.

[0077] Next, various steps are performed for each special-
ized relation (the “current actual relation”) in the New

May 25, 2006

Relation Queue. Initially, the New Relation Queue contains
only relations involving the anchor entity. However, other
relations can be added to the New Relation Queue in other
steps of the flowchart 200, as explained below.

[0078] The current actual relation is instantiated and added
to the instantiated model 250. A value of an attribute of a
specialized relation can be determined based on information
received from the user or information inferred from other
information. This determination is similar to the “explora-
tion” phase described above. In one embodiment, when
determining a value, inference is attempted first, based on
information that has already been collected (e.g., informa-
tion stored in the instantiated model 123).

[0079] 1If the value cannot be determined through infer-
ence, then information is sought from the user. In one
embodiment, the user is presented with one or more
prompts. In one embodiment, an “AskDetail” prompt that is
associated with the current actual relation (part of the
prompts 127) is presented. For example, for a Spouse
relation, the prompt contains the question “When did you get
married?”. In response to the prompt, the user enters infor-
mation, which is used to determine a value for an attribute
of the current actual relation. In one embodiment, the
information is entered using an Add View Ul. This process
is repeated for all attributes of the relation.

[0080] Recall that a relation involves multiple entities.
Since a determination has been made that the relation exists,
the other entities in the relation (e.g., those other than the
current entity) must also exist. These other (specialized)
entities are added to the New Entity Queue 260 and will be
processed accordingly, as described above. In one embodi-
ment, steps 250 and 260 can be performed in either order.

[0081] Note that the above description of the flowchart
200 does not address the order in which 1) the specialized
entities in the New Entity Queue are explored (e.g., starting
with step 220), 2) the specialized relations are discovered
(e.g., starting with step 230), and 3) the specialized relations
in the New Relation Queue are explored (e.g., starting with
step 250). These orders are based on the flow control
information 126 described above. For example, regarding
entities, the flow control information 126 can specify that
Person entities should be explored before Business entities.
Regarding relations, the flow control information 126 can
specify that Spouse relations should be discovered before
WorkFor relations but that Spouse relations should be
explored after WorkFor relations.

[0082] Other embodiments of the flowchart 200 are also
possible, based on the flow control information 126. For
example, the iteration loops for exploring entities, discov-
ering relations, and exploring relations can be defined dif-
ferently, therefore affecting the flow of the interview. In one
embodiment (not shown), once a determination has been
made that a current possible relation does exist (step 230),
that relation is explored immediately (steps 250 and 260),
rather than waiting for determinations to be made regarding
the existence of other possible relations. In this embodiment,
each possible relation is processed for both discovery and
exploration (if the relation exists) before another relation is
considered.

[0083] In another embodiment (not shown), once a target
entity has been added to the New Entity Queue (step 260),

US 2006/0112114 Al

that entity is explored immediately (step 220), rather than
waiting for exploration of other actual relations (steps 250
and 260). In this embodiment, each entity is explored as
soon as it is discovered.

[0084] FIGS. 3A-3B illustrate a flowchart of a method for
revising an instantiated model, according to one embodi-
ment of the invention. In one embodiment, the interview
driver 135 performs the steps of the flowchart 300. When the
flowchart 300 begins, an instantiated model 123 already
exists.

[0085] Inthe embodiment illustrated in FIGS. 3A and 3B,
the instantiated model 123 includes only one anchor entity.
The flowchart 300 begins when the anchor entity (an instan-
tiated specialized entity) is added to a queue called the
Update Entity Queue (UEQ) 305.

[0086] Next, various steps are performed for each instan-
tiated entity (the “current entity”) in the Update Entity
Queue. Initially, the Update Entity Queue contains only the
anchor entity. However, other entities can be added to the
Update Entity Queue in other steps of the flowchart 300, as
explained below.

[0087] The current entity is updated 310. In one embodi-
ment, updating an entity 310 comprises updating the value
(if necessary) of one of the entity’s attributes. In one
embodiment, when determining the updated value, inference
is attempted first, based on information that has already been
collected (e.g., information stored in the instantiated model
123). If the updated value cannot be determined through
inference, then information is sought from the user by
presenting one or more prompts. In one embodiment, an
“AskChange” prompt that is associated with the current
entity (part of the prompts 127) is presented. For example,
for a Person entity, the prompt contains the question “Have
you changed your name?”. In another embodiment, an
“AskExist” prompt that is associated with an event (part of
the prompts 127) is presented. This event could be one that,
if it occurred, could change an attribute of the current entity.
For example, for a Person entity, the event could be a
wedding (causing the “name” attribute to change), and the
prompt could contain the question “Did you get married
recently?”. In response to the prompt, the user enters infor-
mation, which is used to update an attribute value of the
current entity. In one embodiment, the information is entered
using an Edit View Ul This process can be repeated for
multiple AskChange prompts, AskExist prompts, and
attributes of the entity.

[0088] Inthe embodiment just described, only one version
of each instantiated entity exists at a time (e.g., in the data
repository 105). In another embodiment, multiple versions
of the same instantiated entity can exist simultaneously.
These versions can represent the instantiated entity during
various time periods. In one embodiment, an element
includes “begin” and “end” attributes that represent the start
date and end date, respectively, between which the phenom-
enon modeled by the entity exists. The entity also includes
a “past” attribute, which references the corresponding entity
(if any) that existed before the begin date, and a “future”
attribute, which references the corresponding entity (if any)
that existed after the end date. In this way, an entity is
“linked” to other versions of itself.

[0089] Inone embodiment, where multiple versions of the
same instantiated entity can exist simultaneously, updating

May 25, 2006

an entity 310 comprises the following: A determination is
made regarding whether a value of one of the entity’s
attributes should be changed. If the value should be changed,
the entity is copied. The non-copy entity is then updated with
a new value for the attribute. The copy represents the entity
before the change, while the non-copy represents the entity
after the change. The values of the “end” attribute of the
copy and the “begin” attribute of the non-copy are set to a
timestamp that reflects their periods of validity. In addition,
the “future” attribute of the copy references the non-copy,
while the “past” attribute of the non-copy references the

copy.

[0090] Next, various steps are performed for each special-
ized relation annotated in the current entity (the “current
relation”). Recall that when the instantiated model 123 was
generated (FIG. 2), possible relations were considered, and
the entity was annotated with their states of existence (step
230). For each relation annotated as “doesn’t exist” or
“unknown”, a determination is made regarding whether the
relation exists (involving the current entity), and the current
entity is annotated with the answer 315. If the current
relation does exist, it is added to a queue called the New
Relation Queue (NRQ) 320.

[0091] Inone embodiment, in order to make this determi-
nation, inference is attempted first, based on information that
has already been collected (e.g., information stored in the
instantiated model 123). If the determination cannot be
made through inference, then information is sought from the
user by presenting one or more prompts. In one embodi-
ment, an “AskExist” prompt that is associated with the
current relation (part of the prompts 127) is presented. For
example, for a Spouse relation, the prompt contains the
question “Are you married?”. In another embodiment, an
“AskExist” prompt that is associated with an event (part of
the prompts 127) is presented. This event could be one that,
if it occurred, could create the current relation. For example,
for a Spouse relation, the event could be a wedding, and the
prompt could contain the question “Did you get married
recently?”. In response to the prompt, the user enters infor-
mation, which is used to determine whether the relation
exists. In one embodiment, the information is entered using
an Edit View UL This process can be repeated for multiple
AskExist prompts.

[0092] For each relation annotated as “exists”, a determi-
nation is made regarding whether an update is needed 325.
In one embodiment, when determining whether an update is
needed, inference is attempted first, based on information
that has already been collected (e.g., information stored in
the instantiated model 123). If the determination cannot be
made through inference, then information is sought from the
user by presenting one or more prompts. In one embodi-
ment, an “AskChange” prompt that is associated with the
current relation (part of the prompts 127) is presented. For
example, for a Spouse relation, the prompt contains the
question “Has there been a change in your marital status?”.
In another embodiment, an “AskExist” prompt that is asso-
ciated with an event (part of the prompts 127) is presented.
This event could be one that, if it occurred, could change an
attribute of the current relation. For example, for a Spouse
relation, the event could be a legal separation, and the
prompt could contain the question “Have you obtained a
legal separation?”. In response to the prompt, the user enters
information, which is used to determine whether an update

US 2006/0112114 Al

is needed. In one embodiment, the information is entered
using an Edit View Ul This process can be repeated for
multiple AskChange prompts and AskExist prompts.

[0093] If the current relation’s information (e.g., its
attribute values) needs to be updated, the current relation is
updated 330. In one embodiment, updating a relation 330
comprises updating a value of one of the relation’s
attributes. In this embodiment, only one version of each
instantiated relation exists at a time (e.g., in the data reposi-
tory 105). In another embodiment, multiple versions of the
same instantiated relation can exist simultaneously. These
versions can represent the instantiated relation during vari-
ous time periods. In one embodiment, an element includes
“begin” and “end” attributes that represent the start date and
end date, respectively, between which the phenomenon
modeled by the relation exists. The relation also includes a
“past” attribute, which references the corresponding relation
(if any) that existed before the begin date, and a “future”
attribute, which references the corresponding relation (if
any) that existed after the end date. In this way, a relation is
“linked” to other versions of itself.

[0094] Inone embodiment, where multiple versions of the
same instantiated relation can exist simultaneously, updating
a relation 330 comprises the following: The relation is
copied. The non-copy relation is then updated with a new
value for the attribute. The copy represents the relation
before the change, while the non-copy represents the relation
after the change. The values of the “end” attribute of the
copy and the “begin” attribute of the non-copy are set to a
timestamp that reflects their periods of validity. In addition,
the “future” attribute of the copy references the non-copy,
while the “past” attribute of the non-copy references the

copy.

[0095] Ifthe current relation has terminated (e.g., a Spouse
relation is terminated due to a divorce), the current relation
is removed 335. In one embodiment, removing a relation
335 comprises annotating the current entity (and the target
entity of the relation) to reflect that the relation no longer
exists. In addition, each entity’s “begin” and “end” attributes
are set to a timestamp that reflects their periods of validity.

[0096] In one embodiment, the current relation is deleted
from the data repository 105. In this embodiment, informa-
tion is not kept regarding past relations that no longer exist.
In another embodiment, information of this sort is kept. The
current relation’s “begin” and “end” attributes are set to a
timestamp that reflects the relation’s period of validity.

[0097] If no update is needed (i.e., the current relation has
not changed), the target instantiated entity of the current
relation is added to the Update Entity Queue. This way, the
target entity will also be updated 310, as described above.

[0098] Next, various steps are performed for each special-
ized relation (the “current relation™) in the New Relation
Queue. Relations were added to the New Relation Queue
during step 320. These relations were previously annotated
as “doesn’t exist” or “unknown” but have now been deter-
mined to exist (step 315). The current relation is instantiated
(“explored”) and added to the instantiated model 345 (see
FIG. 3B). In addition, its target specialized entity is added
to the New Entity Queue 350. Steps 345 and 350 (of FIG.
3B) are similar to steps 250 and 260 (of FIG. 2), so their
details won’t be repeated here.

May 25, 2006

[0099] Next, various steps are performed for each special-
ized entity (the “current entity”) in the New Entity Queue.
Entities were added to the New Entity Queue during step
350. These entities were target entities of new relations. The
current entity is instantiated and added to the instantiated
model 355. For each specialized relation that could exist
involving the current entity (“the current possible relation”),
a determination is made regarding whether it does exist, and
the current entity is annotated with the answer 360. If the
current relation does exist, it is added to the New Relation
Queue 365. Each specialized relation in the New Relation
Queue (“the current actual relation”) is instantiated and
added to the instantiated model 370. In addition, the target
specialized entity of the current actual relation is added to
the New Entity Queue 375. Steps 355, 360, 365, 370, and
375 (of FIG. 3B) are similar to steps 220, 230, 240, 250, and
260 (of FIG. 2), so their details won’t be repeated here.

[0100] After each specialized entity in the New Entity
Queue has been processed (steps 355, 360, 365, 370, and
375), it is determined whether any relations exist in the New
Relation Queue that have not yet been processed. (A relation
may have been added to the New Relation Queue during step
365.) If they do, the flowchart 300 returns to steps 345 and
350 to process the unprocessed relations. Then, any entities
in the New Entity Queue that have not yet been processed
are processed. These steps (345, 350, 355, 360, 365, 370,
and 375) repeat until all relations in the New Relation Queue
and all entities in the New Entity Queue have been pro-
cessed.

[0101] Note that the above description of the flowchart
300 does not address the order in which 1) the instantiated
entities in the Update Entity Queue are updated (e.g., step
310), 2) the “doesn’t exist” or “unknown” annotated rela-
tions are updated (e.g., steps 315 and 320), 3) the “exists”
annotated relations are updated (e.g., steps 325, 330, 335,
and 340), 4) the specialized relations in the New Relation
Queue are explored (e.g., steps 345 and 350), 5) the spe-
cialized entities in the New Entity Queue are explored (e.g.,
starting with step 355), 6) the specialized possible relations
are discovered (e.g., starting with step 360), and 7) the
specialized actual relations are explored (e.g., starting with
step 370). These orders are based on the flow control
information 126 described above.

[0102] Other embodiments of the flowchart 300 are also
possible, based on the flow control information 126. For
example, the iteration loops for discovering, exploring, and
updating entities and relations can be defined differently,
thereby affecting the flow of the interview. In one embodi-
ment (not shown), once a determination has been made that
a current possible relation does exist (step 360), that actual
relation is explored immediately (steps 370 and 375), rather
than waiting for determinations to be made regarding the
existence of other possible relations. In this embodiment,
each possible relation is processed for both discovery and
exploration (if the relation exists) before another relation is
considered.

[0103] In another embodiment (not shown), once a target
entity has been added to the New Entity Queue (step 375),
that entity is explored immediately (step 355), rather than
waiting for exploration of other actual relations (steps 370
and 375). In this embodiment, each entity is explored as
soon as it is discovered.

US 2006/0112114 Al

Using an Instantiated Model

[0104] FIG. 4 illustrates a flow chart of how some of the
components in FIG. 1 can be used, according to one
embodiment of the invention. In one embodiment, an appli-
cation executes as follows: An interview driver 135 obtains
information from the user and generates an instantiated
model 123. A transformer 410 uses the instantiated model
123 and the application logic 400 to generate an instantiated
application-specific model 420. Finally, a document ren-
derer 430 generates an application-specific document 440
based on the instantiated application-specific model 420.
This process will now be described in more detail.

[0105] Once the interview driver 135 has generated an
instantiated model 123, information can be transformed
from that domain to another domain (e.g., a financial model,
such as tax or accounting). For example, a tax return
preparation application is used to prepare a tax return and,
in a particular use, will prepare a return for a particular
taxpayer. In order to do that, the application needs to identify
all sources of income and deductions applicable to that
taxpayer.

[0106] In terms of the data model, the particular taxpayer
is a Person entity or a Business entity, and the sources of
income and deductions are entities (such as Assets or
Liabilities) that are connected to the Person entity or Busi-
ness entity by various relations (such as Own or Owe). These
connections can be “direct” (e.g., along a path that includes
only one relation edge), or they can be indirect (e.g., along
a path that includes one or more intermediate entity nodes
and multiple relation edges). An example of a direct con-
nection is an Asset entity that is connected to the taxpayer
entity via a path that includes one Own relation. An example
of an indirect connection is an Asset entity that is connected
to the taxpayer via a path that includes one Own relation, a
Person entity, and a Spouse relation.

[0107] Each financial software application will have its
own mapping from the data model to the appropriate finan-
cial model, whether the application be in the field of tax,
accounting, or financial management. This mapping will
correlate a financial concept (such as “wages” or “interest
income”) with one or more data model elements and indicate
how to compute the value of that concept if necessary.

[0108] The transformer 410 generates an instantiated
application-specific model 420 based on the instantiated
model 123 and the application logic 400. The application
logic 400 relates an instantiated model 123 to a target
application-specific model by mapping data from the instan-
tiated model 123 to the target model. In one embodiment, the
target model is a financial model, such as tax or accounting.
The mapping uses financial rules (e.g., accounting rules or
tax laws) to correlate a concept in the target model with one
or more instantiated model 123 elements and indicate how
to compute the value of that concept if necessary.

[0109] Examples of financial models in the tax realm
include state and federal income taxes for people and
businesses. In one embodiment, the federal personal income
tax financial model includes concepts like taxpaying entities
(e.g., a person or married couple), income types (e.g., salary
or interest), and deduction types (e.g., local taxes or interest
on a mortgage). In a personal income tax preparation appli-
cation, the application logic 400 would correlate these

May 25, 2006

concepts with one or more instantiated model 123 elements
and indicate how to compute the values of those concepts if
necessary.

[0110] For example, the taxpaying entity would corre-
spond to either the Person entity representing the taxpayer
(in the case of an individual taxpayer) or two Person entities
that share a Spouse relation (in the case of a married couple
filing jointly). The social security number of the taxpaying
entity (usually needed for a tax filing) would then corre-
spond to the value of the Person entity’s SSN attribute (in
the case of an individual taxpayer).

[0111] A source of income would correspond to, for
example, a job salary (represented by the Salary attribute of
a WorkFor relation) or interest on a bank account (repre-
sented by a Financial Asset entity, such as a Savings Account
Asset entity). If the taxpaying entity earned income from
multiple sources, the total income earned would be the sum
of these amounts. In this case, the application logic 400
would specify both 1) corresponding instantiated elements
and 2) how to compute the financial concept (here, total
income) based on those elements. (In the social security
number example above, the social security number of the
taxpaying entity was already present in the instantiated
model 123, so no computation was necessary in order to
determine it.)

[0112] As discussed above, the instantiated model 123 can
be expressed in any form or data structure. Similarly, the
target application-specific model can be expressed in any
form or data structure, and it is not necessary that it be
expressed in the same way as the instantiated model 123. In
one embodiment, both the instantiated model 123 and the
target model are expressed in XML. The XML describes the
structure of the model, including its constituent parts. In one
embodiment, the XML is specified using an XML Schema
according to the XML Schema Definition language (XSD).

[0113] Appendix C1 includes an XSD that specifies an
instantiated model 123, according to one embodiment of the
invention. Here, the XSD includes several elements, such as
LastName, Gender, Employer, and Salary. The XSD also
includes several composite types, such as PersonType,
NameType, and ResidenceType.

[0114] Appendix C2 includes an XSD that specifies a
target financial model, according to one embodiment of the
invention. Here, the financial model is federal personal
income tax and, specifically, Internal Revenue Service (IRS)
Form 1040. Here, the XSD includes several elements, such
as LastName, AddressLine, and SSN. The XSD also
includes several composite types, such as IncomeType,
Line7Type, and TaxPayerType.

[0115] The application logic 400 specifies how to generate
an instantiated application-specific model 420 given an
instantiated model 123 and a target application-specific
model (e.g., federal personal income tax). In one embodi-
ment, the application logic 400 is an XML document. For
example, the application logic 400 can be an XSL Trans-
formation (XSLT) document that, when executed (see below
regarding the transformer 410), performs the mapping func-
tion and generates the instantiated application-specific
model 420.

[0116] If the application logic 400 is an XSLT document,
the transformer 410 can be, for example, an XSLT engine.

US 2006/0112114 Al

Alternatively, the application logic 400 and the transformer
410 can be combined into a single program that generates
the instantiated application-specific model 420 based on the
instantiated model 123. In one embodiment, the transformer
410 uses XSLT transformation to perform mapping and
calculation. Transformation rules and/or calculations are
specified in the mapping. The transformer 410 can include
an XSLT engine, such as the Xalan engine (part of the
Apache XML Project) or the Altova XSLT Engine (available
from Altova® of Beverly, Mass.).

[0117] Once an instantiated application-specific model
420 exists, a financial document (such as a tax return or
balance sheet) can be generated. The document renderer 430
generates an application-specific document 440 (such as a
tax form or accounting report) based on the instantiated
application-specific model 420 generated by the transformer
410. In one embodiment, the instantiated application-spe-
cific document 440 is described as a web form (e.g., includ-
ing various user interface elements) using the XForm stan-
dard. HTML (HyperText Markup Language) or XHTML
(eXtensible HyperText Markup Language) is generated
from the XForm definition using XSLT transformation. The
HTML or XHTML can then be rendered by a web browser.

[0118] Note that an application need not execute all of the
components shown in FIG. 4 each time it executes. For
example, if a user has already generated one application-
specific document 440 and now wants to generate a different
one, the application need not execute the interview driver
135 again. This is because the interview driver 135 is meant
to generate an instantiated model 123, and an instantiated
model 123 already exists. (It was used to generate the first
application-specific document 440.) The interview driver
135 need only be executed when no instantiated model 123
exists (e.g., the first time the application is run) or when an
instantiated model 123 exists but needs to be modified (e.g.,
when a phenomenon represented by the instantiated model
123 has changed).

[0119] In one embodiment (not shown), the application
also includes a workflow engine and/or a document man-
agement engine. The workflow engine manages the user’s
progress during the interview and document preparation
process and enables the user to navigate between questions
(either forward or backward), save a current session, and
reload a saved session. The document management engine
stores user information (e.g., application-specific documents
440 that have been generated) and provides features such as
access control, versioning, and editing.

Design-Time Tools

[0120] As discussed above, the run-time engines 110
execute an application based on the contents of the data
repository 105. Thus, by changing the contents of the data
repository 105, different applications can be created.

[0121] The contents of the data repository 105 can be
expressed in any form or data structure. If the contents are
stored in human-readable form (e.g., source code or XML),
they can be edited directly to modify an existing application
or create a new application.

[0122] Ifthe contents are non-human-readable (or if direct
editing is undesirable), a design tool can be created to enable
a user (here, an application designer or programmer) to
create and/or modify the contents of the data repository 105.

May 25, 2006

In one embodiment, each type of information stored in the
data repository 105 has a separate design tool that enables
the information to be created and/or modified.

[0123] For example, in one embodiment, the data model
122 is created and/or modified using a visual modeler. In one
embodiment, the visual modeler features a drag-and-drop
interface so that a user can define and/or modity specialized
elements (e.g., based on the elements of the meta-model
121). The specialized elements can then be used for a
particular application. In another embodiment, the visual
modeler includes a library of specialized elements that have
already been defined (by the same user or by others). This
library can organize and subdivide specialized elements so
that they are easier to find while using the visual modeler.
For example, the organization can be based on a financial
model (e.g., tax versus accounting) and, within that model,
different types of applications (e.g., state versus federal or
personal versus business). FIG. 5 illustrates a user interface
of a visual modeler, according to one embodiment of the
invention.

[0124] In one embodiment, the interview instructions 125
are created and/or modified using an interview prompt
designer and an interview flow designer. In one embodi-
ment, the interview prompt designer includes a library of
interview prompts (including templates and variables) that
have already been defined (by the same user or by others).
This library can organize and subdivide the prompts so that
they are easier to find while using the interview prompt
designer. For example, the organization can be based on a
specialized element (e.g., a Person entity) and, within that
specialized element, different types of prompts (e.g., AskEx-
ist, AskDetail, and AskChange). The interview flow designer
can, for example, enable a user to graphically specify a
discovery or exploration flow and to define forward and
backward traversal actions based on rules and conditions.
FIG. 6 illustrates a user interface of an interview flow
designer, according to one embodiment of the invention.

[0125] The user interface (UI) information 128 is created
and/or modified using a Ul component designer. In one
embodiment, the Ul component designer features a what-
you-see-is-what-you-get (WYSIWYG) interface so that the
UT component being designed is presented to the designing
user as it would be presented to the end-user. In another
embodiment, the Ul component designer includes a library
of Ul components that have already been defined (by the
same user or by others). This library can organize and
subdivide the components so that they are easier to find
while using the Ul component designer. For example, the
organization can be based on a specialized element (e.g., a
Person entity) and, within that specialized element, different
types of functionality (e.g., Add View, Edit View, Detail
View, and Summary View). FIG. 7 illustrates a user inter-
face of a Ul component designer, according to one embodi-
ment of the invention.

[0126] The application logic 400 is created and/or modi-
fied using a model mapper. In one embodiment, the model
mapper features a graphical interface that enables a user to
correlate (map) a value in one model (such as the data model
122) with a value in another model (such as an application-
specific model) and specify a computation. FIG. 8 illustrates
a user interface of a model mapper, according to one
embodiment of the invention. In one embodiment, the model

US 2006/0112114 Al

mapper uses the MapForce™ software application (avail-
able from Altova® of Beverly, Mass.). Appendix D includes
XSLT code that was generated by a model mapper.

[0127] The left side of the user interface shows the origi-
nation model. Here, the origination model is a data model
122 that represents a person who has a name, birthdate,
residence, and job. The right side of the user interface shows
the destination model. Here, the destination model is a
financial model (specifically, IRS Form 1040) that repre-
sents a taxpayer who has a spouse and an income.

[0128] The middle of the user interface shows the corre-
lation between the model on the left and the model on the
right. A line connecting two elements (one from each model)
denotes that the two elements are related to one another. If
computation is performed on an origination element before
its value is “assigned” to a destination element, that com-
putation is shown in the middle of the user interface. For
example, the ADDRLINE element in the origination model
has two strings (stringl and string2). These strings are
concatenated and the resulting string is assigned to the
AddressLine element in the destination model. Note that
computations can be chained together. For example, the
CITY and STATEPROVN elements in the origination model
are concatenated to form a resulting string, and that string is
concatenated with the POSTALCODE element in the origi-
nation model. The final string is then assigned to the
CityStateZip element in the destination model.

[0129] Design-time tools can also include a workflow
engine and/or a content management engine. The worktflow
engine manages the software team’s progress during the
design and implementation of the software application and
enables portions of the application to be reviewed, approved,
and deployed. The content management engine stores data
underlying the software application that is being developed,
such as source code, images, and models, and provides
features such as access control, versioning, and editing.

Example: Financial Software

[0130] Financial software applications, such as tax return
preparation, accounting, and financial management applica-
tions, differ from one another in various ways. Most of these
differences stem from the fact that the applications have
different primary functions or purposes. While a tax return
preparation application can be used to determine a person’s
or business’ tax liability, an accounting application or finan-
cial management application can be used to track and
analyze a person’s or business’ assets and liabilities. These
different purposes cause the applications to need different
types of financial information. For example, a tax applica-
tion needs information about a person and that person’s job
and employer, while an accounting application needs infor-
mation about a business and that business’ customers and
sales.

[0131] Applications also differ in how they manipulate
information in the context of the application’s primary
purpose. For example, a tax return preparation application
might classify an amount as an income versus a deduction,
while an accounting application might classify an amount as
an asset versus a liability. Yet another way in which appli-
cations differ is the type of financial document generated.
For example, a tax application might generate a tax return,
while an accounting application might generate a balance
sheet.

May 25, 2006

[0132] Despite all their differences, financial software
applications do have attributes in common. They receive
financial information, manipulate it according to a set of
rules, and generate financial documents. If the differences
are compartmentalized, then a common framework can be
used to generate different types of financial software appli-
cations. For example, one data modeling technique could be
used to represent information needed by financial software
applications. Information in the data model could then be
manipulated in different ways depending on the purpose of
the software application (tax, accounting, etc.). Finally,
different financial documents could be generated. The
framework described above can be used to create different
types of financial software applications, using a data model
of the underlying phenomena that are meaningful to each
application.

[0133] Inoneembodiment, information needed by a finan-
cial software application is defined by the model information
120, which includes a meta-model 121, a data model 122,
and an instantiated model 123. The meta-model 121 includes
four types of elements: entities, relations, rules, and events.
The data model 122 includes specialized, or application-
specific, versions of these elements, as will be explained
below.

[0134] An entity represents a person, place, or thing. In
one embodiment, the data model 122 includes the following
specialized entities: Person, Business, Residence, Site,
Liability, Asset, School, Charity, Government, and Medical
Institute. Other specialized entities can be defined as appro-
priate based on the financial software application that is
being created. Different software applications can be con-
cerned with different entities of the same specialized type.
For example, a tax return preparation application can be
concerned with a Person entity that represents an individual
taxpayer and a Business entity that represents an employer,
while an accounting application can be concerned with a
Person entity that represents a customer and a Business
entity that represents a vendor.

[0135] Different specialized entities can have different
types of characteristics or attributes. In one embodiment, a
Person entity has the following attributes: Name, DateOf-
Birth, Gender, MarriageStatus, Citizenship, and SSN (social
security number). A Business entity has the following
attributes: Name, DateEstablished, Site, FederallD, and
StateID.

[0136] The value of an attribute can be a simple data type
(such as a number or string) or a composite data type, which
includes multiple subparts. For example, an address value (a
composite data type) can include multiple strings (e.g., for
city and state) and numbers (e.g., for zip code). An attribute
value can be entered by a user, or it can be inferred or
derived based on other information in the instantiated data
model 123. For example, the MarriageStatus value can be
inferred based on the (non)existence of a Spouse relation
(see below). A value representing the number of dependents
can be derived based on the number of Dependent relations
(see below). A user can override an inferred or derived value
by entering a different value. If this different value conflicts
with the rest of the instantiated data model 123, then a
warning can be presented to the user.

[0137] FIG. 9 illustrates a table of specialized entities and
their characteristics, according to one embodiment of the

US 2006/0112114 Al

invention. A “derived entity” is a sub-type of a specialized
entity. For example, a Residence entity can be a Primary
Residence entity or a Secondary Residence Entity. A Liabil-
ity entity can be a Mortgage Liability entity, a Car Loan
Liability entity, an Equity Loan Liability entity, or a Personal
Loan Liability entity.

[0138] A relation represents an association between mul-
tiple entities. In one embodiment, the data model 122
includes the following specialized relations: Spouse, Parent/
Child, Dependent, WorkFor, Education, Liveln, Station,
Volunteer, Own, Owe, and Pay/Receive. Other specialized
relations can be defined as appropriate based on the financial
software application that is being created (e.g., Product,
Vendor, and Supplier). Different specialized relations can
have different types of characteristics or attributes. For
example, a Spouse relation exists between two Person
entities and has two Role attributes (one for each Person
entity). The value of Role for the male Person is “husband,”
and the value of Role for the female Person is “wife.” A
WorkFor relation exists between one Person entity and one
Business entity and has the attributes JobTitle, Salary, Ben-
efits, Expenses, and Role (one for each entity). The value of
Role for the Person entity is “employee,” and the value of
Role for the Business entity is “employer.” Similar to an
entity attribute, the value of a relation attribute can be a
simple data type or a composite data type. FIG. 10 illustrates
a table of specialized relations and their characteristics,
according to one embodiment of the invention.

[0139] In one embodiment, the data model 122 is repre-
sented as an entity-relationship (ER) model and is visualized
using an ER diagram. FIG. 11 illustrates an entity-relation-
ship diagram that represents a data model, according to one
embodiment of the invention. In the illustrated embodiment,
an entity is shown by a rectangle, and a relation is shown by
an oval. The illustrated embodiment includes four entities
(two Person entities 1110A, 1110B and two Business entities
1120A, 1120B) and three relations (one Spouse relation
1130 and two WorkFor relations 1140A, 1140B).

[0140] Each specialized relation has a specific meaning.
This meaning can differ based on the relative “positions” of
the entities with which the relation is associated. For
example, a Dependent relation exists between two Person
entities 1110. But there is no way, based solely on the Person
entities 1110, to identify which Person entity 1110 is the
dependent. In order to handle cases such as this, a line in an
ER diagram can be directional, and its direction will indicate
the meaning of the relation.

[0141] In one embodiment, a particular phenomenon is
represented by an element of the data model 122 that has
been instantiated (that is, an element which contains a value
for one or more of its attributes). For example, a taxpayer is
represented by an instantiated Person entity. The instantiated
Person entity would have attribute values that correspond to
the state of the taxpayer, such as the taxpayer’s name, date
of birth, and gender. Similarly, a job is represented by an
instantiated WorkFor relation. The instantiated WorkFor
relation would have attribute values that correspond to the
state of the job, such as the job title and salary.

[0142] Consider a tax return preparation application.
Information that is relevant to a person’s or business’ tax
liability would be stored in instantiated entities and rela-
tions. If entities were viewed as nodes and relations were

May 25, 2006

viewed as edges, these instantiated entities and relations
would be “connected” (in a graph sense) to the entity that
represented the person or business whose tax liability was
being determined. In one embodiment, an entity’s tax liabil-
ity can be determined by analyzing only the information that
is stored in entities and relations that are connected to the
entity of interest. In one embodiment, execution of the
financial software application is related to traversing the data
model “graph,” as explained above.

[0143] For example, if the data model elements illustrated
in FIG. 11 were instantiated, the instantiated data model 123
would represent a first person (Person entity 1110A), a
second person (Person entity 1110B), facts about their
marriage (Spouse relation 1130), and facts about their jobs
(WorkFor relations 1140A, 1140B). This instantiated data
model 123 could be used, for example, to prepare a tax
return for the first person (Person entity 1110A) (assuming,
of course, that no other sources of income or deductions
were present). The information in the instantiated data
model 123 would be stored in data structures. For example,
the attribute values of each element (such as an entity or
relation) could be stored in a separate data structure. The tax
return preparation software would access the data structures
in order to determine the tax liability and generate a tax
return.

[0144] In one embodiment, the phenomenon modeled by
an instantiated element exists in real life, and the attribute
values of the instantiated element reflect the state of the
real-life phenomenon. In this embodiment, the instantiated
element reflects reality. However, it is also useful for an
instantiated element not to reflect reality (e.g., as part of a
hypothetical situation used for financial forecasting). In that
embodiment, the phenomenon modeled by the instantiated
element does not exist in real life (or, if the phenomenon
does exist, the attribute values of the instantiated element do
not reflect the state of the real-life phenomenon).

[0145] Arule represents a restriction placed on an entity or
relation. If an entity or relation does not obey its rules, then
it is invalid. In one embodiment, a rule for an entity specifies
how to infer the value of a particular attribute. For example,
if a Person entity 1110 has an Age attribute, a rule can
specify that the value of this attribute is equal to the
difference between the “current” timestamp (e.g., the date
for which the model information is valid) and the Person’s
DateOfBirth attribute value. In another embodiment, a rule
for an entity specifies whether a value of a particular
attribute is valid. For example, a rule can specify that the
value of a Person entity’s Age attribute must not exceed 120.

[0146] A rule can also express a connection between an
entity (e.g., an attribute) and a relation. For example, if a
Person entity 1110 has a MarriageStatus attribute, a rule can
specify that the value of this attribute is “Married” if a
Spouse relation 1130 exists and “Unmarried” if a Spouse
relation 1130 does not exist. As another example, in one
embodiment, the data model 122 includes the following
specialized rule for the Spouse relation 1130: If the value of
the Gender attribute of one associated Person entity 1110 is
Male, then the value of the Gender attribute of the other
associated Person entity 1110 must be Female (and vice
versa). In this embodiment, if a Spouse relation 1130 has just
been discovered, it can be inferred that 1) an additional
Person entity 1110 exists (i.e., the spouse) and 2) the

US 2006/0112114 Al

additional Person entity 1110 has a Gender attribute value of
either Female (if the other Person’s Gender attribute value is
Male) or Male (if the other Person’s Gender attribute value
is Female). Other specialized rules can be defined as appro-
priate based on the financial software application that is
being created.

[0147] Real-life events can affect people, places, and
things and the associations between them. Since these phe-
nomena are represented in an instantiated data model 123, it
follows that real-life events can also affect the instantiated
data model 123. In one embodiment, the effects on an
instantiated data model 123 of a real-life event include
changing attribute values of existing entities and relations,
creating new entities and relations, and removing existing
entities and relations. For example, if a person got married
(a Marry event), the value of the associated Person entity’s
MarriageStatus attribute would change, and a Spouse rela-
tion 1130 would be created. If a person received a raise (a
ChangeBenefits event), the value of the associated WorkFor
relation’s Salary attribute would change. If a person were
born (a Born event), a Person entity 1110 would be created,
and if a person died (a Die event), a Person entity 1110
would be removed. Similarly, if a business started opera-
tions, a Business entity 1120 would be created, and if a
business ceased operations, a Business entity 1120 would be
removed.

[0148] FIG. 12 illustrates a table of specialized events and
their characteristics, according to one embodiment of the
invention. In the illustrated embodiment, the Frequency
column represents how many times an event can occur for
the same Person entity. For example, a Born event and a Die
event can each occur only once (because a person can be
born and die only once). A Frequency value of “0 . . . x”
indicates that the event can occur anywhere from 0 times to
X times, where X is any positive integer. If x is * (e.g., a
Frequency value of O . . . *), then x has no limit, and the
event can occur anywhere from O times to an infinite number
of times.

[0149] Since the world can change over time, an instan-
tiated data model 123 that represents the world (and its
associated diagram) can also change over time. Thus, an
instantiated data model 123 is valid for a specific period of
time. If an event affects an instantiated data model 123, the
event acts a link between two instantiated data models 123:
one that represents the world before the event and one that
represents the world after the event. The point in time when
the event occurred would signal the end of the first model’s
validity and the beginning of the second model’s validity. In
one embodiment, every event has an associated timestamp
that indicates when the event occurred. This timestamp is
used to indicate, for example, when a pre-event model’s
period of validity ends or a post-event model’s period of
validity begins.

[0150] Consider again the instantiated data model 123
shown in FIG. 11. Assume that a tax preparation application
was being used to determine the tax liability for the first
person (Person entity 1110A). If that person were to get a
divorce, Spouse relation 1130 would be removed, thereby
“disconnecting” Person entity 1110B, WorkFor relation
1140B, and Business 1120B from the data model graph for
Person entity 1110A. This disconnection makes sense, since

May 25, 2006

information regarding the second person and that person’s
job and employer no longer affects the first person’s tax
liability.

[0151] In terms of events, the instantiated data model 123
shown in FIG. 11 would be valid until the divorce, and the
“disconnected” instantiated data model 123 described above
would be valid after the divorce. The divorce event would
“link” these two instantiated data models 123 and signal the
end of the first model’s validity and the beginning of the
second model’s validity.

[0152] FIG. 13 illustrates a block diagram of information
regarding a Spouse relation, according to one embodiment
of the invention. In the illustrated embodiment, a rule is
shown by an octagon, and an event is shown by an arrow. As
described above, a Spouse relation 1130 exists between two
Person entities 1110A, 1110B. It is created by a marriage (a
Marry event 1300) and is removed by a divorce (a Divorce
event 1310). In the illustrated embodiment, a Spouse rela-
tion 1130 has two Role attributes and one rule 1320 asso-
ciated with it.

[0153] FIG. 14 illustrates a block diagram of information
regarding a WorkFor relation, according to one embodiment
of the invention. As described above, a WorkFor relation
1140 exists between a Person entity 1110 and a Business
entity 1120. It is created by a person starting a job (a StartJob
event 1400) and is removed by a person’s quitting, firing, or
lay-off (an Endjob event 1410). In the illustrated embodi-
ment, a WorkFor relation 1140 has two attributes (JobTitle
and Salary). Although no rules are shown, one possible rule
is that a person who has a job must be of legal working age
(where the person’s age is determined based on the date
range of the instantiated data model 123 and the value of the
Person entity’s DateOfBirth attribute).

[0154] In one embodiment, the data model 122 is repre-
sented as a Unified Modeling Language (UML) model and
is visualized using a UML diagram. FIG. 15 illustrates a
UML diagram that represents a data model, according to one
embodiment of the invention. The UML diagram can be
thought of as a graph, where entities are nodes and relations
are edges. The data model includes several specialized
entities, some of which are grouped together into various
levels of abstraction using sub-types (“derived entities”™).
For example, an Asset entity 1500 (“owned” by a Person
entity 1110) can be a Building Asset entity 1505 (e.g., a
house), a Vehicle Asset entity 1510 (e.g., a car or boat), or
a Financial Asset entity 1515. A Financial Asset entity 1515
can be, for example, a Savings Account Asset entity 1520,
a Checking Account Asset entity 1525, a Money Market
Account Asset entity 1530, a CD Account Asset entity 1535,
a Mutual Fund Asset entity 1540, a Stock Asset entity 1545,
or a Bond Asset entity 1550.

[0155] Similarly, a Liability entity 1555 (“owed” by a
Person entity 1110) can be a Mortgage Liability entity 1560,
an Equity Loan Liability entity 1565, a Vehicle Loan Liabil-
ity entity 1570, or a Personal Loan Liability entity 1575.
Other specialized entities shown in the illustrated embodi-
ment include financial institutions, accounts, charities, gov-
ernments, educational institutions, and residences.

[0156] The data model 122 also includes several special-
ized relations (shown by dashed lines), some of which are
grouped together into various levels of abstraction using

US 2006/0112114 Al

sub-types (“derived relations™). For example, a Relationship
relation 1580 exists between two Person entities 1110 and
can be, for example, Parent-Child 1585, Spouse 1130,
Partnership 1590 (e.g., a business partnership), and Depen-
dent 1595. A WorkFor relation 1140 exists between a Person
entity 1110 and a Business entity 1120.

[0157] If one or more elements of the data model 122 are
instantiated, the instantiated data model 123 represents a
state of the world. Specifically, it describes various entities
and relations in graph form. The world state that is repre-
sented can be true for a particular time period, or it can be
hypothetical.

[0158] FIG. 15 illustrates a UML diagram of one embodi-
ment of a data model 122. Other embodiments of a data
model are also possible. These embodiments can include
different specialized entities and relations and/or specialized
entities and relations with different attributes, meanings, or
rules. Similarly, these embodiments can include different
specialized events and/or specialized events with different
effects or meanings.

[0159] In one embodiment, the elements in the meta-
model 121 are expressed using extensible Markup Language
(XML). For example, the following XML code can represent
an entity:

<GenericType name="“EntityType”>
<Property name="__oid” type="“String” required="true”/>
<Property name="__alias” type="String” required="true”/>
<Property name="__begin” type=“Date” required="true”/>
<Property name="“__end” type="“Date” required="true’”/>
<Property name="_past” type="ReferenceType”
subtype="EntityType:Self”

required="true”/>
<Property name="__future” type="ReferenceType”
subtype="EntityType:Self”

required="true”/>

</GenericType>

In this example, the “begin” and “end” properties represent
the start date and end date, respectively, between which the
entity exists. The corresponding entity (if any) that existed
before the begin date is referenced by the “past™ property,
while the corresponding entity (if any) that existed after the
end date is referenced by the “future” property. The past and
future properties are one way to “link” an element to other
versions of that element, as mentioned above with respect to,
e.g., steps 310 and 330 of FIG. 3A.

[0160] As discussed above, a specialized element of the
data model 122 has one or more attributes. In one embodi-
ment, a specialized element is defined by its attributes and
information regarding these attributes. Information about an
attribute can include, for example, a default value for the
attribute and validation logic that determines whether an
attribute value is correct and/or of the proper format.

[0161] Like an element of the meta-model 121, an element
of the data model 122 can also be expressed using XML.. At
run-time, the financial software application can access this
information in order to create and instantiate a data model
122 element as needed. In one embodiment, a specialized
element is expressed as an extension of a “generic” element
in the meta-model 121. For example, a Person entity in the

May 25, 2006

data model 122 can be expressed as an extension of the
entity element in the meta-model 121. The following is an
example of XML code that represents a Person entity:

<GenericType name="“Person” base="Entity Type”>
<Property name="name” type="GenericType”
subtype=“PersonName”
required="true”/>
<Property name="dateOfBirth” type=“Date” required="true”/>
<Property name=“dateOfDeath” type="Date”/>
<Property name="gender” type="String” required="true”/>
<Property name="ssn” type="String” required="true”/>
<Property name="citizenship” type="String” required="“true”/>
</GenericType>

[0162] Consider an instantiated Person entity with the
following attribute values: Name (Dr. John Jay Doe),
DateOfBirth (02/01/1950), DateOfDeath (none), SSN
(123456789), and Citizenship (USA). The entity could be
expressed by the following XML code:

<Person>
<_ 0id>EN2<«/_oid>
<_ alias />
<__begin>02/01/1950</__begin>
<_end />
<name>
<firstName>John</firstName>
<lastName>Doe</lastName>
<middleName>Jay</middleName>
<prefix>Dr.</prefix>
<suffix />
</name>
<dateOfBirth>02/01/1950</dateOfBirth>
<dateOfDeath />
<gender>male</gender>
<ssn>123456789</ssn>
<citizenship>USA</citizenship>
</Person>

[0163] Appendix El includes XML code that represents
an entity from the meta-model 121 or a specialized entity
from the data model 122. Appendix E2 includes XML code
that expresses an instantiated specialized entity. Appendix
F1 includes XML code for relations and specialized rela-
tions, while Appendix F2 includes XML code for instanti-
ated specialized relations. Appendix G1 includes XML code
for events and specialized events, while Appendix G2
includes XML code for instantiated specialized events.

[0164] Finally, Appendix H1 includes XML code for rules,
while Appendix H2 includes XML code for instantiated
specialized rules. In one embodiment, a rule is expressed
using Rule Markup Language (RuleML). RuleML is further
described at http://www.ruleml.org, and its specification is
available at http://www.ruleml.org/spec/.

[0165] If a software application needs a specialized ele-
ment that does not exist in the data model 122, the special-
ized element can be created. In the embodiments discussed
above, a specialized element of the data model 122 is
specified using an XML definition. Thus, a new specialized
element can be defined by creating another XML definition.
In one embodiment, the new specialized element is an
extension of one of the generic elements of the meta-model
121.

US 2006/0112114 Al

[0166] The present invention has been described in par-
ticular detail with respect to several possible embodiments.
Those of skill in the art will appreciate that the invention
may be practiced in other embodiments. First, the particular
naming of the components, capitalization of terms, the
attributes, data structures, or any other programming or
structural aspect is not mandatory or significant, and the
mechanisms that implement the invention or its features may
have different names, formats, or protocols. Further, the
system may be implemented via a combination of hardware
and software or entirely in hardware elements. Also, the
particular division of functionality between the various
system components described herein is merely exemplary,
and not mandatory; functions performed by a single system
component may instead be performed by multiple compo-
nents, and functions performed by multiple components may
instead performed by a single component.

[0167] Some portions of above description present the
features of the present invention in terms of algorithms and
symbolic representations of operations on information.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled in the art. These operations, while described func-
tionally or logically, are understood to be implemented by
computer programs. Furthermore, it has also proven conve-
nient at times to refer to these arrangements of operations as
modules or by functional names, without loss of generality.

[0168] Unless specifically stated otherwise as apparent
from the above discussion, it is appreciated that throughout
the description, discussions utilizing terms such as “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system memories or registers or other such
information storage, transmission or display devices.

[0169] Certain aspects of the present invention include
process steps and instructions described herein in the form
of an algorithm. It should be noted that the process steps and
instructions of the present invention could be embodied in
software, firmware, or hardware, and when embodied in
software, could be downloaded to reside on and be operated
from different platforms used by real time network operating
systems.

[0170] The present invention also relates to an apparatus
for performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated
or reconfigured by a computer program stored on a computer
readable medium that can be accessed by the computer. Such
a computer program may be stored in a computer readable
storage medium, such as, but not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, magnetic-
optical disks, read-only memories (ROMs), random access
memories (RAMs), EPROMs, EEPROMs, magnetic or opti-
cal cards, application specific integrated circuits (ASICs), or
any type of media suitable for storing electronic instructions,
and coupled to a computer system bus. Furthermore, the
computers referred to in the specification may include a
single processor or may be architectures employing multiple
processor designs for increased computing capability.

May 25, 2006

[0171] The algorithms and operations presented herein are
not inherently related to any particular computer or other
apparatus. Various general-purpose systems may also be
used with programs in accordance with the teachings herein,
or it may prove convenient to construct more specialized
apparatus to perform the required method steps. The
required structure for a variety of these systems will be
apparent to those of skill in the art, along with equivalent
variations. In addition, the present invention is not described
with reference to any particular programming language. It is
appreciated that a variety of programming languages may be
used to implement the teachings of the present invention as
described herein, and any references to specific languages
are provided for enablement and best mode of the present
invention.

[0172] The present invention is well suited to a wide
variety of computer network systems over numerous topolo-
gies. Within this field, the configuration and management of
large networks comprise storage devices and computers that
are communicatively coupled to dissimilar computers and
storage devices over a network, such as the Internet.

[0173] Finally, it should be noted that the language used in
the specification has been principally selected for readability
and instructional purposes, and may not have been selected
to delineate or circumscribe the inventive subject matter.
Accordingly, the disclosure of the present invention is
intended to be illustrative, but not limiting, of the scope of
the invention, which is set forth in the following claims.

What is claimed is:

1. A computer-implemented system for modifying an
instantiated data model, the instantiated data model com-
prising one or more instantiated specialized elements, the
system comprising:

a data model comprising an uninstantiated specialized
element; and

an interview driver configured to present a prompt to a
user, wherein the prompt is determined based on a
location in a graph, the graph comprising the one or
more instantiated specialized elements of the instanti-
ated data model.

2. The system of claim 1, wherein an element comprises

an entity or a relation.

3. The system of claim 1, further comprising a meta-
model comprising a generic element, wherein the uninstan-
tiated specialized element is a type of the generic element.

4. The system of claim 1, wherein the interview driver is
further configured to delete an instantiated specialized ele-
ment from the instantiated data model.

5. The system of claim 1, wherein the interview driver is
further configured to instantiate the uninstantiated special-
ized element and to add the instantiated specialized element
to the instantiated data model.

6. The system of claim 5, wherein the uninstantiated
specialized element is associated with an element rule, and
wherein the interview driver is further configured to instan-
tiate the uninstantiated specialized element in accordance
with the element rule.

7. The system of claim 1, wherein the interview driver is
further configured to modify an instantiated specialized
element.

8. The system of claim 7, wherein the instantiated spe-
cialized element is associated with an element rule, and

US 2006/0112114 Al

wherein the interview driver is further configured to modify
the instantiated specialized element in accordance with the
element rule.

9. The system of claim 7, wherein the interview driver is
further configured to modify a value of an attribute of the
instantiated specialized element.

10. The system of claim 1, further comprising a rule
engine and a rule set, wherein the rule engine is configured
to perform rule chaining based on the rule set, and wherein
the interview driver is further configured to modify the
instantiated data model based on the rule chaining.

11. The system of claim 1, wherein the interview driver is
further configured to modify the instantiated data model
based on information received from the user.

12. The system of claim 11, wherein the set of interview
instructions comprises a prompt, and wherein the interview
driver is further configured to present the prompt to the user.

13. The system of claim 12, wherein the prompt is
associated with the uninstantiated specialized element.

14. The system of claim 13, wherein the information
received from the user is used to determine whether to
instantiate the uninstantiated specialized element.

15. The system of claim 13, wherein the information
received from the user is used to instantiate the uninstanti-
ated specialized element.

16. The system of claim 13, wherein the set of interview
instructions comprises flow information, and wherein the
prompt is selected based on its associated uninstantiated
specialized element, the uninstantiated specialized element
being selected based on the instantiated data model and the
flow information.

17. The system of claim 12, wherein the prompt is
associated with an instantiated specialized element.

May 25, 2006

18. The system of claim 17, wherein the information
received from the user is used to modify the instantiated
specialized element.

19. The system of claim 17, wherein the set of interview
instructions comprises flow information, and wherein the
prompt is selected based on its associated instantiated spe-
cialized element, the instantiated specialized element being
selected based on the instantiated data model and the flow
information.

20. A computer-implemented method for modifying an
instantiated data model, the instantiated data model com-
prising one or more instantiated specialized elements, the
method comprising:

presenting a prompt to a user, wherein the prompt is
determined based on a location in a graph, the graph
comprising the one or more instantiated specialized
elements of the instantiated data model,

obtaining information from the user; and

modifying the instantiated data model.
21. A computer-implemented method for generating an
application-specific document, comprising:

obtaining information from a user;

modifying an instantiated data model, the instantiated
data model comprising one or more instantiated spe-
cialized elements;

creating, based on the modified instantiated data model,
an instantiated application-specific data model; and

generating, based on the instantiated application-specific
data model, the application-specific document.

#* #* #* #* #*

