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SYSTEMS AND METHODS FOR PREDICTING TREATMENT-REGIMEN-RELATED

OUTCOMES

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application No. 62/234,763, filed
September 30, 2015, entitled “SYSTEMS AND METHODS FOR PREDICTING
TREATMENT-REGIMEN-RELATED OUTCOMES,;” the entirety of which is incorporated by
reference.

TECHNICAL FIELD

[0002] The present disclosure relates generally to the field of risk prediction, and, more
specifically, to systems and methods for predicting treatment-regimen-related outcomes using
predictive models. The present disclosure describes a combination of machine learning
prediction and patient preference assessment to enable informed consent and precise treatment

decisions.

BACKGROUND

[0003] Cancer, a genetic disease resulting in abnormal proliferation of affected cells, is one of
the most common causes of death in many parts of the world. Estimated new cases of cancer in
the United States in 2014 were over 1.5 million (excluding nonmelanoma skin cancers), and
estimated deaths from cancer were in excess of 500,000.

[0004] One cancer treatment option is chemotherapy. Chemotherapy is the use of anticancer
drugs to suppress or kill cancerous cells, and is one of the most common treatments for cancer.
Tumor cells are characterized by fast growth reproduction, local invasion and distant spread

(metastases). In most cases, chemotherapy works by targeting various cell cycle pathways that
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are used by the tumor cells to promote their growth and spread. A chemotherapeutic drug may
be used alone, in combination with one or more other chemotherapeutic drugs, in combination
with other treatments such as radiation or surgery, or in combination with biologic agents,
targeted agents, immune-therapies or antibody-based therapies. Certain chemotherapy drugs and
their combinations may be administered in a specific order depending on the type of cancer it is
being used to treat.

[0005] Clinical outcomes, such as efficacy and/or side effects (also known as toxicities) of
certain medical treatments such as chemotherapy, are important for evaluating or assessing the
effect of the treatment regimens. The prediction of the clinical outcomes plays a critical role for
developing precision medical treatments. For example, upon diagnosis of cancer and during the
planning of treatment options by the physician, additional patient information, such as genetic
information or non-genetic information, may help determine the likelihood of a patient
developing regimen-related toxicities. Currently there are no precise methods or systems that
allow a physician to predict an individual patient’s risk of side-effects or toxicities of anticancer
regimens. Having such methods or systems would allow for the adoption of precision medicine
for treatment of cancer. Predicting efficacy and potential side effects or toxicities based on
genetic or other patient information requires an innovative approach because such risk may be
associated with combinations of factors including but not limited to networks of genes

functioning and interacting together.

SUMMARY
[0006] Systems and methods are provided for predicting regimen-related outcomes (e.g., risks

of regime-related toxicities). A predictive model is determined for predicting regimen-related
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outcomes and applied to a plurality of datasets. An ensemble algorithm is applied on result data
generated from the application of the predictive model. Regimen-related outcomes are predicted
using the predictive model.

[0007] According to one embodiment, a processor-implemented method is provided for
predicting risk of regimen-related toxicities. The method comprises: generating, using the one or
more data processors, one or more training datasets and one or more testing datasets based at
least in part on clinical data or gene feature data of a plurality of patients; determining, using one
or more data processors, one or more initial predictive models using one or more machine
learning algorithms based at least in part on the one or more training datasets; applying, using the
one or more data processors, the one or more initial predictive models on the one or more
training datasets to generate result data; performing, using the one or more data processors, an
ensemble algorithm on the result data to generate ensemble data; determining, using the one or
more data processors, one or more final predictive models based at least in part on the ensemble
data; evaluating, using the one or more data processors, performance of the one or more final
predictive models based at least in part on the one or more test datasets; and predicting, using the
one or more data processors, regimen-related outcomes using the one or more final predictive
models.

[0008] According to another embodiment, a processor-implemented method is provided for
building a predictive model for predicting regimen-related outcomes. The method comprises:
dividing, using one or more data processors, a training dataset into a plurality of sub-datasets;
selecting, using the one or more data processors, one or more first training sub-datasets from the
plurality of sub-datasets; determining, using the one or more data processors, a first predictive

model using one or more machine learning algorithms based at least in part on the one or more
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first training sub-datasets; evaluating, using the one or more data processors, the performance of
the first predictive model using the plurality of sub-datasets excluding the one or more first
training sub-datasets; and determining, using the one or more data processors, a final predictive
model based at least in part on the performance evaluation of the first predictive model.

[0009] According to yet another embodiment, a processor-implemented system is provided for
predicting regimen-related outcomes. The system comprises: one or more processors and one or
more non-transitory machine-readable storage media. The one or more processors are
configured to: generate one or more training datasets and one or more testing datasets based at
least in part on clinical data or gene feature data of a plurality of patients; determine one or more
initial predictive models using one or more machine learning algorithms based at least in part on
the one or more training datasets; apply the one or more initial predictive models on the one or
more training datasets to generate result data; perform an ensemble algorithm on the result data
to generate ensemble data; determine one or more final predictive models based at least in part
on the ensemble data; evaluate performance of the one or more final predictive models based at
least in part on the one or more test datasets; and predict regimen-related outcomes using the one
or more final predictive models;. The one or more non-transitory machine-readable storage
media are provided for storing a computer database having a database schema that includes and
interrelates clinical data fields, gene feature data fields, result data fields, ensemble data fields
and predictive model data fields. The clinical data fields store the clinical data, the gene feature
data fields store the gene feature data, and the result data fields store the result data. The
ensemble data fields store the ensemble data, and the predictive model data fields store

parameter data of the initial predictive models and the final predictive models.
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[0010] According to yet another embodiment, a processor-implemented system is provided for
building a predictive model for predicting regimen-related outcomes. The system comprises:
one or more processors and one or more non-transitory machine-readable storage media. The
one or more processors are configured to: divide a training dataset into a plurality of sub-datasets;
select one or more first training sub-datasets from the plurality of sub-datasets; determine a first
predictive model using one or more machine learning algorithms based at least in part on the one
or more first training sub-datasets; evaluate the performance of the first predictive model using
the plurality of sub-datasets excluding the one or more first training sub-datasets; and determine
a final predictive model based at least in part on the performance evaluation of the first
predictive model. The one or more non-transitory machine-readable storage media are provided
for storing a computer database having a database schema that includes and interrelates training
data fields, first predictive model data fields, and final predictive model data fields. The training
data fields store the training dataset, the first predictive model data fields store parameter data of
the first predictive model, and the final predictive model data fields store parameter data of the
final predictive model.

[0011] In some embodiments, a non-transitory computer-readable medium is encoded with
instructions for commanding one or more processors to execute operations of a method for
predicting regimen-related outcomes. The method comprises: generating one or more training
datasets and one or more testing datasets based at least in part on clinical data or gene feature
data of a plurality of patients; determining one or more initial predictive models using one or
more machine learning algorithms based at least in part on the one or more training datasets;
applying the one or more initial predictive models on the one or more training datasets to

generate result data; performing an ensemble algorithm on the result data to generate ensemble
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data; determining one or more final predictive models based at least in part on the ensemble data;
evaluating performance of the one or more final predictive models based at least in part on the
one or more test datasets; and predicting regimen-related outcomes using the one or more final
predictive models.

[0012] In certain embodiments, a non-transitory computer-readable medium is encoded with
instructions for commanding one or more processors to execute operations of a method for
building a predictive model for predicting regimen-related outcomes. The method comprises:
dividing a training dataset into a plurality of sub-datasets; selecting one or more first training
sub-datasets from the plurality of sub-datasets; determining a first predictive model using one or
more machine learning algorithms based at least in part on the one or more first training sub-
datasets; evaluating the performance of the first predictive model using the plurality of sub-
datasets excluding the one or more first training sub-datasets; and determining a final predictive
model based at least in part on the performance evaluation of the first predictive model.

[0013] In other embodiments, a non-transitory computer-readable medium is provided for
storing data for access by an application program being executed on a data processing system.
The storage medium comprises: a data structure stored in said memory, said data structure
including information, resident in a database used by said application program. The data
structure includes: one or more clinical data objects stored in said memory, the clinical data
objects containing clinical data of a plurality of patients from said database; one or more gene
feature data objects stored in said memory, the gene feature data objects containing gene feature
data of the plurality of patients from said database; one or more training data objects stored in
said memory, the training data objects containing one or more training datasets generated based

at least in part on the clinical data or the gene feature data; one or more predictive model data
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objects stored in said memory; one or more initial predictive model data objects stored in said
memory, the initial predictive model data objects containing parameters of one or more initial
predictive models determined using one or more machine learning algorithms based at least in
part on the one or more training datasets; one or more result data objects stored in said memory,
the result data objects containing result data generated by applying the initial predictive models
on the one or more training datasets; one or more ensemble data objects stored in said memory,
the ensemble data objects containing ensemble data generated by performing an ensemble
algorithm on the result data; and one or more final predictive model data objects stored in said
memory, the final predictive model data objects containing parameters of one or more final
predictive models determined based at least in part on the ensemble data. The final predictive
model data objects are used by said application program for predicting regimen-related outcomes.
[0014] In other embodiments, a non-transitory computer-readable medium is provided for
storing data for access by an application program being executed on a data processing system.
The storage medium comprises: a data structure stored in said memory, said data structure
including information, resident in a database used by said application program. The data
structure includes: one or more training data objects stored in said memory, the training data
objects containing a training dataset from said database, the training dataset including a plurality
of sub-datasets; one or more first predictive model data objects stored in said memory, the first
predictive model data objects containing parameter data of a first predictive model determined
using one or more machine learning algorithms based at least in part on one or more first training
sub-datasets from the plurality of sub-datasets; one or more final predictive model data objects
stored in said memory, the final predictive model data objects containing parameter data of a

final predictive model determined based at least in part on performance evaluation of the first



WO 2017/059022 PCT/US2016/054355

predictive model. The final predictive model data objects are used by said application program
for predicting regimen-related outcomes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 depicts an example computer-implemented environment wherein users can
interact with a regimen-related outcome prediction system hosted on one or more servers through
a network.

[0016] FIG. 2 depicts an example block diagram for building and evaluating predictive models.
[0017] FIG. 3 depicts an example block diagram for model building.

[0018] FIG. 4 depicts an example diagram for patient preference assessment.

[0019] FIG. S depicts an example flow chart for building and evaluating predictive models.
[0020] FIG. 6 depicts an example flow chart for model building.

[0021] FIG. 7 depicts an example diagram showing a system for predicting regimen-related
outcomes.

[0022] FIG. 8 depicts an example diagram showing a computing system for predicting
regimen-related outcomes.

[0023] FIG. 9 — FIG. 48 depict example diagrams showing model building and evaluation in

one embodiment.

DETAILED DESCRIPTION

1. Overview
[0024] The present disclosure relates to systems and methods for treating diseases (e.g., cancer)
in a subject. For example, cancer encompasses a wide range of conditions, each with a unique

disease profile and treatment regimen. After a subject is diagnosed with a certain type of cancer,
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various chemotherapeutic and anticancer treatment options are considered based on the cancer
type and a variety of its genetic makeup and molecular markers. Additional external information
about the patient is collected, including, but not limited to medical history, gender, age, ethnicity,
hereditary medical information, genetic information, demographic information, environmental
information, and other information related to the individual patient. Such information can be
obtained using various methods, including at the point of care through questionnaires, from
surveys, or from personal health records. One or more sources of such additional information
are used as input for a regimen-related outcome prediction tool to predict regimen-related
outcomes, such as risks of regimen-related toxicities. A personalized risk profile can be
generated and the optimal course of treatment can be determined. It should be understood that
the systems and methods described herein are not limited to any particular disease (such as

cancer) or any particular treatment regimen.

2. Types of Cancer

[0025] The systems and methods provided herein can be used for treating the side effects of a
number of cancer types including Acute Lymphoblastic, Acute Myeloid Leukemia;
Adrenocortical Carcinoma; Adrenocortical Carcinoma, Childhood; Appendix Cancer; Basal Cell
Carcinoma; Bile Duct Cancer, Extrahepatic; Bladder Cancer; Bone Cancer; Osteosarcoma and
Malignant Fibrous Histiocytoma; Brain Stem Glioma, Childhood; Brain Tumor, Adult; Brain
Tumor, Brain Stem Glioma, Childhood; Brain Tumor, Central Nervous System Atypical
Teratoid/Rhabdoid Tumor, Childhood; Central Nervous System Embryonal Tumors; Cerebellar
Astrocytoma; Cerebral Astrocytoma/Malignant Glioma; Craniopharyngioma;

Ependymoblastoma; Ependymoma; Medulloblastoma; Medulloepithelioma; Pineal Parenchymal
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Tumors of Intermediate Differentiation; Supratentorial Primitive Neuroectodermal Tumors and
Pineoblastoma; Visual Pathway and Hypothalamic Glioma; Brain and Spinal Cord Tumors;
Breast Cancer; Bronchial Tumors; Burkitt Lymphoma; Carcinoid Tumor; Carcinoid Tumor,
Gastrointestinal; Central Nervous System Atypical Teratoid/Rhabdoid Tumor; Central Nervous
System Embryonal Tumors; Central Nervous System Lymphoma; Cerebellar Astrocytoma,
Cerebral Astrocytoma/Malignant Glioma, Childhood; Cervical Cancer; Chordoma, Childhood,
Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Chronic Myeloproliferative
Disorders; Colon Cancer; Colorectal Cancer; Craniopharyngioma; Cutaneous T -Cell Lymphoma,;
Esophageal Cancer, Ewing Family of Tumors; Extra gonadal Germ Cell Tumor; Extrahepatic
Bile Duct Cancer; Eye Cancer, Intraocular Melanoma; Eye Cancer, Retinoblastoma; Gallbladder
Cancer; Gastric (Stomach) Cancer; Gastrointestinal Carcinoid Tumor; Gastrointestinal Stromal
Tumor (GIST); Germ Cell Tumor, Extracranial; Germ Cell Tumor, Extragonadal; Germ Cell
Tumor, Ovarian; Gestational Trophoblastic Tumor; Glioma; Glioma, Childhood Brain Stem;
Glioma, Childhood Cerebral Astrocytoma; Glioma, Childhood Visual Pathway and
Hypothalamic; Hairy Cell Leukemia; Head and Neck Cancer; Hepatocellular (Liver) Cancer;
Histiocytosis, Langerhans Cell; Hodgkin Lymphoma; Hypopharyngeal Cancer; Hypothalamic
and Visual Pathway Glioma; Intraocular Melanoma; Islet Cell Tumors; Kidney (Renal Cell)
Cancer; Langerhans Cell Histiocytosis; Laryngeal Cancer; Leukemia, Acute Lymphoblastic;
Leukemia, Acute Myeloid; Leukemia, Chronic Lymphocytic; Leukemia, Chronic Myelogenous;
Leukemia, Hairy Cell; Lip and Oral Cavity Cancer; Liver Cancer; Lung Cancer, Non-Small Cell,
Lung Cancer, Small Cell, Lymphoma, AIDS-Related; Lymphoma, Burkitt; Lymphoma,
Cutaneous T -Cell; Lymphoma, Hodgkin; Lymphoma, Non-Hodgkin; Lymphoma, Primary

Central Nervous System; Macroglobulinemia, Waldenstrom; Malignant Fibrous Histiocytoma of

10
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Bone and Osteosarcoma; Medulloblastoma; Melanoma; Melanoma, Intraocular (Eye); Merkel
Cell Carcinoma; Mesothelioma; Metastatic Squamous Neck Cancer with Occult Primary; Mouth
Cancer; Multiple Endocrine Neoplasia Syndrome, (Childhood); Multiple Myeloma/Plasma Cell
Neoplasm; Mycosis Fungoides; Myelodysplastic Syndromes;
Myelodysplastic/Myeloproliferative Diseases; Myelogenous Leukemia, Chronic; Myeloid
Leukemia, Adult Acute; Myeloid Leukemia, Childhood Acute; Myeloma, Multiple;
Myeloproliferative Disorders, Chronic; Nasal Cavity and Paranasal Sinus Cancer;
Nasopharyngeal Cancer; Neuroblastoma; Non-Small Cell Lung Cancer; Oral Cancer; Oral
Cavity Cancer;, Oropharyngeal Cancer; Osteosarcoma and Malignant Fibrous Histiocytoma of
Bone; Ovarian Cancer; Ovarian Epithelial Cancer; Ovarian Germ Cell Tumor; Ovarian Low
Malignant Potential Tumor; Pancreatic Cancer; Pancreatic Cancer, Islet Cell Tumors;
Papillomatosis; Parathyroid Cancer; Penile Cancer; Pharyngeal Cancer; Pheochromocytoma;
Pineal Parenchymal Tumors of Intermediate Differentiation; Pineoblastoma and Supratentorial
Primitive Neuroectodermal Tumors; Pituitary Tumor; Plasma Cell Neoplasm/Multiple Myeloma;
Pleuropulmonary Blastoma; Primary Central Nervous System Lymphoma; Prostate Cancer;
Rectal Cancer; Renal Cell (Kidney) Cancer; Renal Pelvis and Ureter, Transitional Cell Cancer;
Respiratory Tract Carcinoma Involving the NUT Gene on Chromosome 15; Retinoblastoma,;
Rhabdomyosarcoma; Salivary Gland Cancer; Sarcoma, Ewing Family of Tumors; Sarcoma,
Kaposi; Sarcoma, Soft Tissue; Sarcoma, Uterine; Sezary Syndrome; Skin Cancer
(Nonmelanoma); Skin Cancer (Melanoma); Skin Carcinoma, Merkel Cell; Small Cell Lung
Cancer; Small Intestine Cancer; Soft Tissue Sarcoma; Squamous Cell Carcinoma, Squamous
Neck Cancer with Occult Primary, Metastatic, Stomach (Gastric) Cancer; Supratentorial

Primitive Neuroectodermal Tumors; T -Cell Lymphoma, Cutaneous; Testicular Cancer; Throat
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Cancer, Thymoma and Thymic Carcinoma; Thyroid Cancer; Transitional Cell Cancer of the
Renal Pelvis and Ureter; Trophoblastic Tumor, Gestational; Urethral Cancer; Uterine Cancer,
Endometrial; Uterine Sarcoma; Vaginal Cancer; Vulvar Cancer; Waldenstrom

Macroglobulinemia; or Wilms Tumor.

3. Cancer Therapv

[0026] Chemotherapy is one of the most widely used treatment method for cancer.
Chemotherapy can be used alone or in combination with surgery or radiation therapy, or in
combination with other anti-cancer agents. These other anti-cancer agents, which can be used
alone or in combination with other treatments, include, but are not limited to, monoclonal
antibodies, biologic agents, targeted agents, immune-therapies or antibody-based therapies.
[0027] A number of chemotherapeutic agents are available today. These agents include, but
are not limited to, alkylating agents, antimetabolites, anti-tumor antibiotics, topoisomerase
inhibitors and mitotic inhibitors.

[0028] While chemotherapy can be quite effective in treating certain cancers, chemotherapy
drugs reach all parts of the body, not just the cancer cells. Because of this, there may be many
side effects during treatment, including tissue damage. For example, oxidative stress, caused
directly or indirectly by chemotherapeutics (e.g. doxorubicin), is one of the underlying
mechanisms of the toxicity of anticancer drugs in noncancerous tissues, including the heart and
brain. In addition, extravasation, i.e. the accidental administration of intravenously (IV) infused

chemotherapeutic agents into the tissue surrounding the infusion sites, can cause significant

injury.
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3.1 Types of Chemotherapy

[0029] The systems and methods provided herein can be used to predict regimen-related
outcomes, including efficacy and toxicity, that can be used by a physician or a patient to tailor a
specific treatment regimen in order to optimize the patient’s clinical outcomes. For example, a
chemotherapeutic agent can be administered to patients to treat virtually any disorder that is now
known or that is later discovered to be treatable with such compounds or combinations thereof.
These agents include Alkylating agents, Platinum agents, Anthracyclines Antimetabolites, Anti-
tumor antibiotics, Topoisomerase inhibitors (such as camptothecin compounds), Podophyllotoxin
derivatives, Antimetabolites, antibiotics, anti-tumor antibodies, Taxanes, and Mitotic inhibitors.
In particular, chemotherapeutic agents include, but are not limited to Amsacrine, Actinomycin,
All-trans retinoic acid, Azacitidine, Azathioprine, belustine, Bleomycin, Bortezomib, Busulfan,
Camptosar™ (irinotecan HCL), Carmustine, Carboplatin, Capecitabine, Cisplatin, Chlorambucil,
Chlomaphazin, Cyclophosphamide, Cytarabine, Cytosine arabinoside, Dacarbazine,
Dactinomycin, Daunomycin, Daunorubicin, Docetaxel, Doxifluridine, Doxorubicin, Epirubicin,
Epothilone, Etoposide, Fluorouracil, Gemcitabine, Hycamtin™ (topotecan HCL), Hydroxyurea,
Idarubicin, Imatinib, Irinotecan, Ifosfamide, Mechlorethamine, Melphalan, Mercaptopurine,
Methotrexate, Mithramycin, Mitomycin, Mitomycin C, Mitoxantrone, Mitopodozide,
Navelbine™ (vinorelbine-5'-noranhydroblastine), Nitrogen mustard, Oxaliplatin, Paclitaxel,
Pemetrexed, Procarbazine Teniposide, Tioguanine, Topotecan, Trimethylene thiophosphoramide,
Uracil mustard, Valrubicin, Vinblastine, Vincristine, Vindesine, and Vinorelbine, and other

compounds derived from Camptothecin and its analogues.
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3.2 Side Effects of Chemotherapy

[0030] Chemotherapy can cause a variety of side-effects/toxicities, and it is imperative to
reduce the severity or frequency of certain toxicities associated with the exposure to the
chemotherapy in the patient to both alleviate suffering and potentially increase the dose, thus
increasing the chance of successful therapy. These toxicities include, but are not limited to,
neurotoxicity, nephrotoxicity, ototoxicity, cardiotoxicity, alopecia, fatigue, cognitive dysfunction,
diarrhea nausea, vomiting, mucosal toxicities (mucositis of the gastrointestinal tract and
vaginitis), xerostomia, infertility, pulmonary toxicity, low white blood cell counts, infection,
anemia, low platelet counts with or without bleeding, and renal failure. Some of these toxicities
when severe enough can lead to hospitalizations, medical care in an intensive unit and sometimes
death. In specific embodiments, the side effects whose severity or frequency may be predicted
by the systems and methods provided herein include: chemotherapy-induced peripheral
neuropathy (CIPN) (including damages to certain nerves, which may impair sensation,
movement, gland or organ function, or other aspects of health, depending on the type of nerves
affected), chemotherapy-induced nausea and vomiting (CINV), fatigue, oral mucositis, diarrhea
and cognitive dysfunction.

[0031] The side effect profiles of chemotherapeutic drugs vary considerably in terms of short-
and long-term side effects. Short term side effects include mostly the toxic effects encountered
during or shortly after a course of chemotherapy. Long-term side effects include later
complications arising after the conclusion of the course of chemotherapy and may last for many
months, years or be permanent. The side effect profiles vary by type of drug, dosage and
treatment regimen, but there is also considerable variability in side effect profile across patient

populations and more specifically individual patients. It is therefore highly desirable to be able
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to predict the outcomes of a treatment regimen in terms of both short and long term side effects
for each individual patient to enable the patient and the physician to make the appropriate choice

given the individual patient’s circumstances.

4. Obtaining Patient Information

[0032] The techniques described herein can be used with all types of patient information or
information from healthy individuals (e.g. to generate control groups), including, but not limited
to medical history, gender, age, ethnicity, hereditary medical information, genetic information,
demographic information, environmental information, and other information related to the
individual patient. Such information can be obtained using various methods, including at the
point of care through questionnaires, from surveys, or from personal health records.

[0033] Genetic information is generated from genetic material that can be collected from
patients or healthy individuals in various ways. In one embodiment, the material is a sample of
any tissue or bodily fluid, including hair, blood, tissue obtained through biopsy, or saliva. The
material can be collected at point of care or at home. When collected at home, the patient or
healthy individual may be sent a collection kit accompanied by instructions for collecting the
sample and questionnaire. In addition to the genetic sample collection kit, the patient or healthy
individual may be sent a unique identifier which is to be used to link the information provided in
response to the questionnaire with the genetic material. DNA can be extracted using techniques
known in the art.

[0034] A number of techniques can be used to obtain genetic information from material
samples. These techniques include, but are not limited to, SNP-arrays to detect SNPs, DNA

microarrays to determine gene expression profiles, tiling arrays to analyze larger genomic region
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of interest (e.g. human chromosome), and Nanopore sequencing for cost-effective high-
throughput sequencing of the entire genome. It should be understood that the systems and
methods described herein may be configured to obtain other types of patient information or
information from healthy individuals (e.g. to generate control groups) as input data, including but

not limited to, proteomic information, transcriptomic information, and metabolomic information.

5. Predictive Modeling

[0035] FIG. 1 depicts an example computer-implemented environment wherein users 102 (e.g.,
health care providers) can interact with a regimen-related outcome prediction system 104 hosted
on one or more servers 106 through a network 108. The regimen-related outcome prediction
system 104 can assist the users 102 to build and/or evaluate one or more predictive models for
predicting regimen-related outcomes (e.g., risk of regimen-related out toxicities) for treating
diseases in a subject. In specific embodiments, the regimen-related outcome prediction system
104 is configured to combine machine learning prediction based on the one or more predictive
models and patient preference assessment to enable informed consent and precise treatment
decisions.

[0036] In some embodiments, the regimen-related outcome prediction system 104 assists the
users 102 to obtain genetic information or non-genetic information of certain patients (e.g., by
any means known to a skilled artisan) for creating analysis datasets and build one or more
predictive models for predicting outcomes of specific treatment regimens. Data handling of
genetic information or non-genetic information will be described in detail as in FIG. 2. In certain
embodiments, the regimen-related outcome prediction system 104 implements the one or more

predictive models to predict outcomes of a specific treatment regimen using genetic or non-
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genetic information from an individual patient and determine suitability of the treatment regimen
for the patient.

[0037] In specific embodiments, the regimen-related outcome prediction system 104 builds the
one or more predictive models using one or more deterministic models/algorithms. For example,
the regimen-related outcome prediction system 104 implements one or more machine learning
algorithms, such as penalized logistic regression, random forests, and/or C5.0, for building the
one or more predictive models. The modeling building process will be described in detail as in
FIG. 3. It should be understood that other known machine learning algorithms may also be
implemented for building the one or more predictive models.

[0038] In some embodiments, the regimen-related outcome prediction system 104 may assists
one or more of the users 102 to build and/or evaluate one or more predictive models through a
graphical user interface 116. For example, the users 102 (or the system operator) may provide
inputs at the graphical user interface 116 for the regimen-related outcome prediction system 104
to build the one or more predictive models. In certain embodiments, the user inputs may include
non-genetic information related to individual patients, such as medical history, gender, age,
ethnicity, demographic information, and environmental information. For example, the user
inputs may include patient preferences for disease treatments or toxicities. In some embodiments,
the regimen-related outcome prediction system 104 may assists one or more of the users 102 to
predict regimen-related outcomes using the one or more predictive models through the graphical
user interface 116. For example, the regimen-related outcome prediction system 104 may output
a personalized risk profile related to a particular disease for an individual patient and the optimal

course of treatment of the disease on the graphical user interface 116.
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[0039] As shown in FIG. 1, the users 102 can interact with the regimen-related outcome
prediction system 104 through a number of ways, such as over one or more networks 108. One
or more servers 106 accessible through the network(s) 108 can host the regimen-related outcome
prediction system 104. The one or more servers 106 can also contain or have access to the one
or more data stores 110 for storing data for the regimen-related outcome prediction system 104,
or receive input data (e.g., genetic information or non-genetic information) from external sources.
It should be appreciated that in alternative embodiments the server 106 may be self-contained
and not connected to external networks due to security or other concerns.

[0040] FIG. 2 depicts an example block diagram for building and evaluating predictive models.
As shown in FIG. 2, non-genetic data 202 and/or genetic data 204 are obtained to generate one or
more training datasets 206 and one or more testing datasets 208. One or more models 210 are
built using the one or more training datasets 206. Prediction result data 212 of the one or more
models 210 based at least in part on the one or more training datasets 206 is given as inputs to an
ensemble algorithm 214 for generating ensemble data 216 as a final set of predictions. One or
more final predictive models 242 are determined based at least in part on the ensemble data 216.
The one or more final predictive models 242 are applied to the one or more test datasets 208 for
performance evaluation to generate evaluation results 240. The one or more final predictive
models 242 can be applied to new patient data of an individual patient for prediction of regime-
related outcomes.

[0041] Specifically, a data handling process is performed (e.g., by the regimen-related
outcome prediction system 104) to obtain the non-genetic data 202 and/or the genetic data 204.
The non-genetic data 202 may include certain clinical data 218 of individual patients which can

be used to generate the one or more training datasets 206 and the one or more testing datasets
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208. For example, the clinical data 218 includes diagnosis data, cancer-stage data, regimen
related data, and neuropathy related data related to individual patients. Binary predictors may be
generated by splitting parameters (e.g., diagnosis factors, cancer-stage factors, regimen factors)
related to the clinical data 218. In some embodiments, a stratified random approach is used to
generate the one or more training datasets 206 and the one or more testing datasets 208 with a
numeric regimen categorization and response category so that regimens for affected subjects are
proportionally represented in the training datasets and the testing datasets.

[0042] In some embodiments, the genetic data 204 includes gene feature data 220, such as data
related to one or more SNPs, which can be used to generate the one or more training datasets 206
and the one or more testing datasets 208. In some embodiments, original gene feature data 220
may include a large number of SNPs, and certain pre-processing steps and/or a data filtering
process may be performed to determine a limited number of filtered SNPs 224 from the large
number of SNPs to simplify and improve the subsequent predictive modeling. For example, the
pre-processing steps may include removing certain SNPs due to too much missing data. Also,
highly associated SNPs (e.g., contingency table agreement > 0.7) may be removed (e.g., one of
each pair of associated SNPs may be removed). It should be understood that other known pre-
processing steps may also be performed to ensure data quality.

[0043] After the pre-processing steps, the filtering process is performed through recursive
partitioning models (e.g., using 10-fold cross-validation) to determine the filtered SNPs 224.
Recursive partitioning creates a decision tree that strives to correctly classify members of a
dataset by splitting it into sub-datasets based on several dichotomous independent variables.
Each sub-dataset may in turn be split an indefinite number of times until the splitting process

terminates after a particular stopping criterion is reached. For example, the pre-processed SNP
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dataset is divided into ten sub-datasets. Nine out of the ten sub-datasets are selected for
recursive partitioning modeling which involves building a classification tree. The size of the
classification tree is selected by developing recursive partitioning models for each potential tree
size on the selected nine sub-datasets. The one sub-dataset other than the selected nine sub-
datasets is used to determine the size of the tree that yields a maximum predictive accuracy.
Such a process is repeated on each of the possible arrangements of the ten sub-datasets. Any
SNPs that are used in any of the recursive partitioning models are kept for predictive modeling.
Upon completion of the pre-processing steps and the filtering process, the filtered SNPs 224 are
determined for predictive modeling. In specific embodiments, the gene feature data 220 may
include one or more selected SNPs 222 (e.g., as identified in Jean E. Abraham et al., Clinical
Cancer Research 20(9), May 1, 2014; McWhinney-Glass et al., Clinical Cancer Research 19(20),
October 15, 2013; Won et al., Cancer, 118:2828-36, 2012).

[0044] As shown in FIG. 2, the one or more training datasets 206 may be generated using the
non-genetic data 202 (e.g., the clinical data 218) and/or the genetic data 204 (e.g., the selected
SNPs 222, the filtered SNPs 224). The one or more models 210 can be built (e.g., by the
regimen-related outcome prediction system 104) using the one or more training datasets 206. In
the process of building the models 210, imbalance in the response may influence models to
predict samples into the majority class. To adjust for imbalance, the regimen-related outcome
prediction system 104 may perform both up-sampling (e.g., selecting additional minority class
subjects with replacement to increase the minority class size) and down-sampling (e.g., sampling
the majority class to create balance with the minority class). In some embodiments, down-

sampling yields better predictive models than up-sampling.
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[0045] For example, as shown in FIG. 3, the one or more training datasets 206 are divided into
a plurality of sub-datasets for exploring different models/algorithms (e.g., machine learning
models/algorithms). One or more training sub-datasets 304 are selected from the plurality of
sub-datasets 302 for building a model 308. The performance of the model 308 is evaluated using
other sub-datasets 306 in the training datasets 206. Such a process is repeated for multiple times,
and each time a different group of sub-datasets are selected from the training datasets 206 for
building and evaluating a model, until a set of models (e.g., the one or more models 210) are
determined. In certain embodiments, five repeats of 10-fold cross-validation are used on the
training datasets 206 to determine the optimal tuning parameter setting for the models 210.
[0046] One or more machine learning algorithms, including but not limited to, penalized
logistic regression, random forests, and/or C5.0, can be applied (e.g., by the regimen-related
outcome prediction system 104) on the one or more training datasets 206 for predictive model
building (e.g., as shown in FIG. 3). In some embodiments, the penalized logistic regression
algorithm can be implemented to find parameter estimates that maximize the objective function
(e.g. log-likelihood), subject to regularization constraints. One regularization constraint forces
the parameter estimates to be smaller (e.g. shrinkage), while the other regularization constraint
essentially forces some parameter estimates to zero (e.g. lasso). The penalized logistic
regression algorithm is suited for problems where the predictors are highly correlated or when
there are more predictors than subjects. Because the regularization forces some parameter
estimates to zero, a predictive model generated based on the penalized logistic regression
algorithm performs internal variable selection.

[0047] In certain embodiments, the random forests (RF) algorithm is a tree-based method built

on an ensemble of trees. A predictive model generated based on the RF algorithm does the
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following process many times: selects a bootstrap sample of the training dataset and builds a tree
on the bootstrap sample. Within each tree, a randomly selected number of predictors are chosen
and the optimal split is selected only from that sample. One or more tuning parameters for
predictive model generated based on the RF algorithm include the number of randomly selected
predictors for each split. Building an ensemble of trees in this way reduces the variance seen by
using just a single tree.

[0048] In specific embodiments, the C5.0 algorithm can be used to generate a predictive
model. Specifically, the C5.0 algorithm is implemented (e.g., by the regimen-related outcome
prediction system 104) to build a sequence of trees. At each step in the sequence, the regimen-
related outcome prediction system 104 adjusts each sample's weight based on the accuracy of the
model at each iteration. Samples that are predicted correctly are given less weight, while
samples that are predicted incorrectly are given more weight. The final model prediction is a
combination of the predictions across all trees. It should be understood that the systems and
methods disclosed herein are not limited to penalized logistic regression, random forests, and
C5.0 that are merely described above as examples. Other machine learning algorithms may be
implemented for predictive modeling (e.g., as shown in FIG. 3).

[0049] In some embodiments, the ensemble algorithm 214 is trained to combine the prediction
result data 212 optimally to generate the ensemble data 216. For example, a weight may be
determined for the prediction result of each of the models 210, and a weighted sum of the
prediction results of all the models 210 is calculated to generate the ensemble data 216.

[0050] In certain embodiments, the ensemble algorithm 214 involves an average calculation of
the result data 212 generated by applying the models 210 on the training datasets 206. In some

embodiments, the ensemble algorithm 214 uses a logistic regression model to combine the result
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data 212 across models. It should be understood that the ensemble algorithm 214 disclosed
herein is not limited to the average calculation and the logistic regression model. The ensemble
algorithm 214 may include a stacking technique, a blending technique, or any other known
second-level machine learning algorithm in which predictions of a collection of models are
combined to form a final set of predictions.

[0051] In specific embodiments, the training datasets 206 include a clinical predictor dataset, a
selected SNP dataset, and a filtered SNP dataset. Correspondingly, the result data 212 includes
clinical predictor result data, selected SNP result data, and filtered SNP result data. The
ensemble algorithm 214 can be applied to a combination of these result data. For example, the
ensemble algorithm 214 is applied to a combination of the clinical predictor result data and the
selected SNP result data, or a combination of the clinical predictor result data, the selected SNP
result data, and the filtered SNP result data.

[0052] As shown in FIG. 2, the final predictive models 242 are applied to the testing datasets
208 to generate the evaluation results 240. As an example, the evaluation results 240 include
sensitivity or specificity parameters for the one or more final predictive models 242. In certain
embodiments, the one or more final predictive models 242 provided herein can be used to predict
the occurrence of a side effect (such as those listed in Section 3.2) during the treatment of a
cancer (such as those listed in Section 2) with a therapy (such as those listed in Section 3.1) with
an accuracy of at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%.,
98%, or at least 99%.

[0053] In specific embodiments, the systems and methods disclosed herein (e.g., the regimen-
related outcome prediction system 104) are configured to combine model prediction and patient

preferences for generating individualized patient reports so that treatment options tailored for
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individual patients can be determined. For example, patients diagnosed with cancer face
important decisions, in partnership with their physicians, regarding chemotherapy options. The
patients may weigh the potential clinical benefit against the potential toxicities of the available
therapies and their likely effects on quality of life. Patient preferences for cancer therapy
incorporate a patient’s understanding of the relative benefit and harm of the various alternatives.
Understanding a patient’s preferences can better inform clinical decision-making.

[0054] As an example, three treatment options may be presented to a patient with breast
cancer: 1. dose-dense doxorubicin/cyclophosphamide (AC) for four cycles, followed by dose-
dense paclitaxel (T) for a first number of weeks with granulocyte-colony stimulating factor (G-
CSF) support; 2. dose-dense AC for the first number of weeks for four cycles, followed by
paclitaxel (T) weekly for twelve weeks; 3. docetaxel/cyclophosphamide (TC) for a second
number of weeks for six cycles. The regimen-related outcome prediction system 104 determines
a personalized genomic risk profile related to these three treatment regimens for the patient, e.g.,
as shown in Table 0. Particularly, each number shown in a particular cell of Table O refers to a

percentage risk for a corresponding side-effect/toxicity.
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Table 0

Chemotherapy CINV Oral‘ . Diarrhea Cogmtlye Fatigue Peripheral

mucositis dysfunction neuropathy
1. Dose-dense

> < > < <

ACHT 90 10 90 10 70 10
2. Dose-dense
AC +weekly >90 <10 >90 <10 70 <10
T
3.TC 50 >90 >90 30 70 <10

[0055] As shown in Table 0, the patient has a high risk of CINV for the first treatment option
and the second treatment option and a high risk of oral mucositis for the third treatment option.
For all three treatment options, the patient has a high risk of diarrhea, a moderate-high risk of
fatigue, and a low risk of cognitive dysfunction and peripheral neuropathy.

[0056] The informed consent for the treatment regimens may be obtained from the patient
based on the risk profile. For example, the patient may be informed of lowering of white blood
cells, red blood cells, and platelets (CBC) and associated risks. In addition, the patient may be
informed of the risk of CINV, diarrhea, dehydration, electrolyte imbalance, organ damage,
fatigue, hair loss, infusion reactions, allergic reactions, etc. Also, the patient may be informed of
the risk of cardiac dysfunction due to doxorubicin, bleeding in the bladder due to
cyclophosphamide, and other side effects that can be severe and cause death.

[0057] FIG. 4 depicts an example diagram for patient preference assessment. As shown in
FIG. 4, a visual analog scale is designed for quantifying the patient’s willingness to tolerate side
effects. For example, on the analog scale, a score of 100 is set for perfect health, and a score of 0
is set for death. Patient preferences with respect to different side effects can be quantified on the

analog scale.
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[0058] Specifically, as shown in FIG. 4, current health of the patient, for example, is ranked at
82 out of 100. Preference assessment shows that the patient is least willing to tolerate peripheral
neuropathy (ranked at 10 out of 100) and fatigue (ranked at 20 out of 100).

[0059] A treatment regimen can be selected based on the combination of the personalized risk
profile and the patient preference assessment. For example, for this particular patient with breast
cancer, the second treatment option, dose-dense AC and weekly paclitaxel, may be selected as
the preferred therapy. This allows a clinician to plan best supportive care, for example, including:
palonosetron and dexamethasone prior to chemotherapy, two additional days of dexamethasone
after chemotherapy for prevention of CINV, daily IV hydration and loperamide for prevention of
diarrhea. In addition, the nursing staff may provide teaching to monitor the patient’s temperature
daily.

[0060] In some embodiments, chemotherapy regimens or agents may be switched to avoid
side effects yet maintain the anti-cancer effect of a therapeutically equivalent regimen. Further,
supportive care agents to prevent and/or ameliorate side effects may be planned accordingly.
[0061] In certain embodiments, the regimen-related outcome prediction system 104 is
configured to implement one or more methods for assessing patient preferences. For example,
several methods of assessing patient preferences in oncology treatment can be used: 1) standard
gamble (SG), 2) time trade-off (TTO), 3) ranking or rating scale, and 4) visual analogue scale
(VAS). In some embodiments, these methods are combined in different manners to effectively
assess patient preferences.

[0062] The SG method is a quantitative assessment of patient preferences based on modern (or
expected) utility theory, and is a method of decision-making under uncertainty that incorporates

the decision maker’s fundamental preferences in the decision process. Utility in this context
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refers to the desirability or preference of the individual for a given outcome expressed in a
cardinal number; utility methods enable the decision-maker to reach a rational decision that is
consistent with his/her personal preferences. Use of utility methods is based on health-related
quality of life conditions (e.g., as described in Torrance et al., Journal of chronic diseases, 40.6,
1987). The SG technique may be implemented to measure utilities and used in clinical situations
to help individual patients reach healthcare-related decisions (e.g., as described in Torrance et al.,
Journal of chronic diseases, 40.6, 1987). Because the individual’s choices are made under
uncertainty, this technique most closely resembles the uncertainty of the clinical situation and is
considered to be the ‘gold standard’ of preference assessment tools.

[0063] Inthe SG method, patients choose either a gamble between perfect health (for a set
time) and immediate death or a certainty of living in an intermediate health state (between
perfect health and death) for a set time. Perfect health has a probability of P and death has a
probability of 1 —P. The value of P is varied until the patient is indifferent to the choice between
the gamble and the certain intermediate health state, at which point P is the utility for the certain
intermediate health state (e.g., as described in Blinman et al., Ann. Oncol., 23: 1104-1110, 2012).
The treatment with highest expected utility may be the preferred treatment.

[0064] The TTO method was developed as an alternative for SG, specifically for use in
healthcare settings (e.g., as described in Torrance et al., Journal of chronic diseases, 40.6, 1987).
The TTO does not involve probabilities and is easier for patients to use. It involves trade-offs
between two alternative health states, although patient decisions are made under conditions of
certainty, which lessens its similarity to clinical realities. Patients choose either an intermediate

health state for a given time (t) or perfect health for less than that given time (x<t) followed by
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immediate death. The duration (x) is modified until the patient is indifferent between the two
alternatives.

[0065] The TTO technique has been validated against SG for assessment of health states
‘preferred to death’ and found to give similar results (as described in Torrance et al., Journal of
chronic diseases, 40.6, 1987). The systems described herein may implement the TTO technique
to determine preferences of treatment in breast, ovarian, colon, and lung cancers (e.g., as
described in Sun et al., Oncology, 87: 118-128, 2002; Simes et al., Psycho-Oncology, 15: 1001-
1013, 2001; Duric et al., Br. J. Cancer, 93(12): 1319-1323, 2005; Blinman et al., Eur. J. Cancer,
46(10): 1800-1807, 2010, Blinman et al., Lung Cancer, 72(2): 213-218, 2011).

[0066] The rating scale method is a quick and easy assessment tool in which patients are asked
to rate a set of available options (i.e., chemotherapies; side effects) on a Likert scale or other
scales, with the most preferred health state at one end and the least preferred at the other end.
The rating scale method provides ordinal data about patient preferences (e.g., as described in
Blinman et al., Ann Oncol., 23: 1104-1110, 2012). Rating scale results may require a power
curve correction for optimal reliability (e.g., as described in Torrance et al., Journal of chronic
diseases, 40.0, 1987).

[0067] The VAS method is simple for patients and caregivers to use, and patients may be
asked to choose their health preference on a visual linear rating scale, with the scale anchored on
a line by perfect health and death. The VAS ratings are made under conditions of certainty, have
no trade-offs, and contain some measurement biases. The VAS may be better used in
combination with other methods. The systems described herein may implement the VAS to
determine patient preferences for cancer chemotherapy for ovarian cancer (e.g., as described in

Sun et al., Oncology, 87: 118-128, 2002 and Sun et al., Support Care Cancer, 13: 219-227, 2005)
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and for cervical cancer (e.g., as described in Sun et al, Int. J. Gynecol. Cancer, 24(6): 1077-1084,
2014).

[0068] The choice of method(s) for assessing patient preferences depends on the clinical
situation, goal of the assessment, and degree of acceptable patient burden, with some of the
methods being more cognitively demanding than others. Multiple methods may be, and often are,
combined to assess preferences most effectively. Determining patient preference is key in
facilitating the most appropriate therapeutic decisions.

[0069] A number of clinical and demographic factors may influence a patient’s preferences for
cancer treatments. Incorporating the patient’s perspective and value judgments into decisions
about their treatment, for example, the trade-offs between the relative preference for improved
survival and potential side effects, can help guide therapeutic regimens that are most effective
and well-tolerated for the patient. Patient preferences may change depending on the situation.
Whether a patient has already been treated or has already made a treatment decision can affect
the outcomes of the assessment, so results should be considered in the context of the patient’s
situation (e.g., as described in Stiggelbout et al., J. Clin. Oncol., 19(1): 220-230, 2001).

[0070] In some embodiments, the systems and methods disclosed herein are configured to
combine patient preference data, collected using well validated tools, with other patient results
such as genomic analyses, in a shared medical decision model with the patient to obtain the most
favorable treatment results.

[0071] FIG. S depicts an example flow chart for building and evaluating predictive models.

As shown in FIG. 5, at 402, one or more training datasets and one or more testing datasets are
generated based at least in part on clinical data or gene feature data of a plurality of patients. For

example, the clinical data includes diagnosis data, cancer-stage data, regimen related data, and
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neuropathy related data related to individual patients. The gene feature data may include one or
more predetermined SNPs and/or one or more filtered SNPs which are generated through certain
pre-processing steps and a filtering process. At 404, one or more initial predictive models are
determined using one or more machine learning algorithms based at least in part on the one or
more training datasets (e.g., as shown in FIG. 6). For example, the one or more machine
learning algorithms correspond to one or more of the following: penalized logistic regression,
random forests, and C5.0.

[0072] At 406, the one or more initial predictive models are applied on the one or more
training datasets to generate result data. For example, the training datasets include a clinical
predictor dataset, a selected SNP dataset, and a filtered SNP dataset. At 408, an ensemble
algorithm is performed on the result data to generate ensemble data. For example, the ensemble
algorithm corresponds to an average calculation or a logistic regression model. The ensemble
algorithm may be applied to a combination of clinical predictor result data and selected SNP
result data, or a combination of the clinical predictor result data, the selected SNP result data,
and filtered SNP result data. At 410, one or more final predictive models are determined based
at least in part on the ensemble data. At 412, performance of the one or more final predictive
models is evaluated based at least in part on the one or more test datasets. At 414, regimen-
related outcomes are predicted using the one or more final predictive models.

[0073] FIG. 6 depicts an example flow chart for model building. As shown in FIG. 6, at 502,
a training dataset is divided into a plurality of sub-datasets. At 504, one or more first training
sub-datasets are selected from the plurality of sub-datasets. At 506, a first model is determined
using one or more machine learning algorithms based at least in part on the one or more first

training sub-datasets. At 508, the performance of the first model is evaluated using the plurality
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of sub-datasets excluding the one or more first training sub-datasets. Such a process is repeated
multiple times, and each time a different group of sub-datasets are selected from the training
dataset for model building and evaluation. At 510, a predictive model is determined based at
least in part on the performance evaluation of the first model and other models generated through
the different iterations based on different groups of sub-datasets selected from the training
dataset.

[0074] FIG. 7 depicts an example diagram showing a system for predicting regimen-related
outcomes. As shown in FIG. 7, the system 10 includes a computing system 12 that contains a
processor 14, a storage device 16 and a regimen-related outcome prediction module 18. The
computing system 12 includes any suitable type of computing device (e.g., a server, a desktop, a
laptop, a tablet, a mobile phone, etc.) that includes the processor 14 or provide access to a
processor via a network or as part of a cloud-based application. The regimen-related outcome
prediction module 18 includes tasks (e.g., corresponding to steps shown in FIG. 4) and is
implemented as part of a user interface module (not shown in FIG. 7).

[0075] FIG. 8 depicts an example diagram showing a computing system for predicting
regimen-related outcomes. As shown in FIG. 8, the computing system 12 includes a processor
14, memory devices 1902 and 1904, one or more input/output devices 1906, one or more
networking components 1908, and a system bus 1910. In some embodiments, the computing
system 12 includes the regimen-related outcome prediction module 18, and provides access to

the regimen-related outcome prediction module 18 to a user as a stand-alone computer.
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6. Exemplary Embodiment

[0076] This embodiment is merely an example, which should not unduly limit the scope of the
claims. One of ordinary skill in the art would recognize many variations, alternatives, and
modifications. For example, an endpoint for evaluation in this embodiment is binary severity
classification of chemotherapy induced peripheral neuropathy (CIPN). The objectives for the
endpoint are to:

1. Build and evaluate predictive models based on a biased predictor selection approach; and

2. Build and evaluate predictive models based on an unbiased predictor selection approach.

It should be understood that the systems and methods described herein can be configured to
adopt other endpoints and related objectives for model building/evaluation and outcome
prediction.

[0077] As an example, predictive models are built and evaluated based on an unbiased
predictor selection approach for the endpoint (CIPN) and contains the following processes: data

handling, descriptive analyses, and predictive modeling of classification outcomes.

6.1 Data Handling

[0078] A clinical dataset is created through one or more of the following steps:

1. importing patient level covariates and the CIPN endpoint;

2. splitting a diagnosis factor into individual binary predictors for modeling (e.g. breast=1 for
breast cancer, O otherwise, etc.),

3. splitting a stage factor into individual binary predictors for modeling (e.g. stage1=1 for stage 1

patients, O otherwise, etc.),
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4. splitting a regimen factor into individual binary predictors for modeling (e.g. CIPNregl=1 if
CIPNreg n=1, 0 otherwise, etc.),

5. keeping subjects with quality values of O (e.g., data of decent quality with no major problems)
or 1 (high neuropathy scores immediately prior to the first cycle of treatment),

6. using CIPN score data (e.g., maximum neuropathy score during the first 9 cycles) as the
endpoint and categorizing the data into unaffected (e.g., <4) or affected (e.g., >4). If CIPN score
data is missing, then it is imputed only if the patient exceeded the criterion in the previous time
period; and

7. splitting data into a training set (75%) and test set (25%) using a stratified random approach
using a numeric regimen categorization and response category in order to ensure that regimens
for affected subjects are proportionally represented in training and testing sets.

[0079] The original SNP data contains approximately 2.3 million unique SNPs. The following
pre-processing steps and the data filtering process are taken prior to predictive modeling:

1. The following ACORNNO are removed due to too much missing data across SNPs: 38, 102,
211, and 320.

2. Highly associated SNPs (contingency table agreement >0.7) are removed. If a pair of SNPs
have high association, then the first SNP is kept and the second is removed. The number of
SNPs after this process is approximately 620 K.

3. Less than 0.1 % of the data is missing (e.g., labeled as "U"). Because the percentage of
missing values is very small, the values are imputed to label "H" in order to prevent

computational errors in the model training process.
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4. Using only the subjects in the training data, recursive partitioning models using 10-fold cross-
validation are trained. Any SNP that is used in any of the recursive partitioning models is kept.
This process identifies approximately 4300 SNPs as relevant to the response.

[0080] The resulting SNPs are referred to as “Filtered SNPs" in the predictive modeling below
(e.g., Section 6.3). The training set has 152 samples and the test set has 48 samples. The
distribution of affected/unaffected subjects by training/test set is presented in Table 1.

Table 1

6.2 Descriptive Analysis

[0081] FIG. 9 depicts an example diagram showing the distribution of age for the entire data
set, and within the training and test splits. The average age for all data and within the training
and test sets is 56, 55.8, and 56.6, respectively. Overall, the distribution of age is similar across
the sets, indicating no bias in age in the selection process between training and test sets.

[0082] Tables 2 and 3 provide the counts and percents for the remaining demographic
variables and regimens for all data and within the training and test sets. The denominators for
computing the percents in these tables are 200 (All), 152 (Train), and 48 (Test). Similar to age,
the percent of patients in the training and test sets are similar across the demographic variables
and regimens indicating no bias in the randomization process. Table 4 provides the counts and
percents of subjects who were affected within each regimen for all data and within the training
and test sets. The denominators for computing the percents in these tables are 200 (All), 152

(Train), and 48 (Test).
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Table 4

o I
F

6.3 Predictive Modeling of Classification Qutcomes

[0083] The predictive ability for three distinct predictors sets is investigated:

1. Clinical predictors

2. Selected SNPs

3. Filtered SNPs

[0084] For example, the selected SNPs are determined as SNPs identified in three manuscripts
(i.e., Jean E. Abraham et al., Clinical Cancer Research 20(9), May 1, 2014; McWhinney-Glass et
al., Clinical Cancer Research 19(20), October 15, 2013; Won et al., Cancer, 118:2828-36, 2012)
as being related to the endpoint of interest. In total, 24 SNPs were identified in these
manuscripts. 14 of these 24 SNPs are used for the analysis herein. Many predictive models are
explored for this analysis. In the process of building models, imbalance in the response
influences models that place samples into the majority class. To adjust for imbalance, both up-
sampling (selecting additional minority class subjects with replacement to increase the minority
class size) and down-sampling (sampling the majority class to create balance with the minority
class) are explored. In the data of this embodiment, down-sampling yielded better models than

up-sampling. This is likely due to the small training set size.
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[0085] For all models, 5 repeats of 10-fold cross-validation are used on the training set to
determine the optimal tuning parameter setting. For the down-sampled data, many models are
explored. The three models to be described in detail herein are penalized logistic regression,
random forests (RF), and C5.0. A brief explanation of each method has been provided in Section
5.

[0086] The results from each of these models are obtained for the following subsets of data:
clinical predictors, selected SNPs, and filtered SNPs. To give equal weight to each of these
predictor subsets, a simple ensemble and a model-based ensemble are constructed for the
following combinations: clinical predictors and selected SNPs; and clinical predictors, selected
SNPs, and filtered SNPs. The simple ensemble approach takes the average of the model
predictions, while the model-based approach uses a logistic regression model to combine the
predictions across models.

[0087] The three modeling techniques have similar predictive performance, but C5.0 is
computationally more efficient, in some circumstances. For example, C5.0 performs better than
the other two models on the selected SNP subset, while RF performs slightly better than the
other two models on the filtered SNP subset. The penalized logistic regression model performs
better than the other two models on the model-based ensemble across the clinical, selected SNPs,

and filtered SNPs predictors.

63.1 C5.0

6.3.1.1 Clinical predictors

[0088] FIG. 10 depicts an example diagram showing the tuning parameter profile for the C5.0

model related to clinical predictors. The optimal number of trials (iterations) for this data is 3.
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The distribution of affected/unaffected subjects based on the clinical predictors is presented in
Table 5, where Y-axis indicates predicted affected/unaffected subjects and X-axis indicates
observed affected/unaffected subjects. FIG. 11 depicts an example diagram showing a receiver-
operating-characteristic (ROC) curve related to the clinical predictors. FIG. 12 depicts an
example diagram showing top important predictors among the clinical predictors.

Table 5

6.3.1.2 Selected SNPs

[0089] FIG. 13 depicts an example diagram showing the tuning parameter profile for the C5.0
model related to the selected SNPs. The optimal number of trials (iterations) for this data is 2.
The distribution of affected/unaffected subjects based on the selected SNPs is presented in Table
6, where Y-axis indicates predicted affected/unaffected subjects and X-axis indicates observed
affected/unaffected subjects. FIG. 14 depicts an example diagram showing a ROC curve related
to the selected SNPs. FIG. 15 depicts an example diagram showing the top important predictors
among the selected SNPs.

Table 6
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6.3.1.3 Simple Ensemble Approach: Clinical Predictions and Selected SNPs Predictions

[0090] A simple ensemble approach is applied to determine a simple average of test set
predicted probabilities to classify subjects into the affected and unaffected categories. FIG. 16
depicts an example diagram showing a ROC curve based on the average of clinical predictions
and selected SNPs predictions. The distribution of affected/unaffected subjects based on the
simple ensemble approach is presented in Table 7, where Y-axis indicates predicted
affected/unaffected subjects and X-axis indicates observed affected/unaffected subjects. Table 8
includes prediction data of the simple ensemble approach from calculation based on an average
of the model probabilities.

Table 7
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Table 8

Frwse:

6.3.1.4 Model-based Iinsemble Approach: Clinical Predictions and Selected SNPs Predictions

[0091] A logistic regression model is built on the hold-out datasets in the previous training
step using the optimal tuning parameters. The logistic regression model is then applied to the
test set. The distribution of affected/unaffected subjects based on a cross-validated model using

the clinical predictions and selected SNPs predictions is presented in Table 9, where Y-axis
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indicates predicted affected/unaffected subjects and X-axis indicates observed
affected/unaffected subjects. FIG. 17 depicts an example diagram showing a ROC curve based
on clinical predictions and selected SNPs predictions using a model. Table 10 includes
prediction data of the mode-based ensemble approach from calculation based on a model of the

model probabilities.
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[0093] FIG. 18 depicts an example diagram showing the tuning parameter profile for the C5.0
model related to the filtered SNPs. The optimal number of trials (iterations) for this data is 46.
The distribution of affected/unaffected subjects based on the filtered SNPs is presented in Table
12, where Y-axis indicates predicted affected/unaftected subjects and X-axis indicates observed
affected/unaffected subjects. FIG. 19 depicts an example diagram showing a ROC curve related
to the filtered SNPs. FIG. 20 depicts an example diagram showing top important predictors
among the filtered SNPs.

Table 12

6.3.1.6 Simple Ensemble Approach: Clinical Predictions, Selected and Filtered SNPs

Predictions

[0094] A simple ensemble approach is applied to determine a simple average of test set
predicted probabilities to classify subjects into the affected and unaffected categories. The
distribution of affected/unaffected subjects based on the simple ensemble approach is presented
in Table 13, where Y-axis indicates predicted affected/unaffected subjects and X-axis indicates
observed affected/unaffected subjects.

Table 13
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FIG. 21 depicts an example diagram showing a ROC curve based on the average of
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6.3.1.7 Model-based Iinsemble Approach: Clinical Predictions, Selected and Filtered SNPs

Predictions

[0096] A logistic regression model is built on the hold-out datasets in the previous training
step using the optimal tuning parameters. The logistic regression model is then applied to the
test set. The distribution of affected/unaffected subjects based on a cross-validated model using
the clinical predictions and selected and filtered SNPs predictions is presented in Table 15,
where Y-axis indicates predicted affected/unaffected subjects and X-axis indicates observed
affected/unaffected subjects. FIG. 22 depicts an example diagram showing a ROC curve based
on clinical predictions and selected and filtered SNPs predictions using a model. Table 16
includes prediction data of the mode-based ensemble approach from calculation based on a
model of the model probabilities.

Table 15
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6.3.2 Random Forests

6.3.2.1 Clinical predictors

[0097] FIG. 23 depicts an example diagram showing the tuning parameter profile for the
random forests model related to clinical predictors. The optimal number of predictors randomly
selected at each split for this data is 1. The distribution of affected/unaffected subjects based on
the clinical predictors is presented in Table 17, where Y-axis indicates predicted
affected/unaffected subjects and X-axis indicates observed affected/unaffected subjects.

Table 17

Affactest  nailscted
20 3

15 18

[0098] FIG. 24 depicts an example diagram showing a random forest test set ROC curve
related to the clinical predictors. FIG. 25 depicts an example diagram showing random forest top

important predictors among the clinical predictors.

6.3.2.2 Selected SNPs

[0099] FIG. 26 depicts an example diagram showing the tuning parameter profile for the
random forests model related to the selected SNPs. The optimal number of predictors randomly
selected at each iteration for this data is 10. The distribution of affected/unaffected subjects
based on the selected SNPs is presented in Table 18, where Y-axis indicates predicted
affected/unaffected subjects and X-axis indicates observed affected/unaffected subjects.

Table 18

Afferted Unaffectsd

Unatfected 19 &
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[00100] FIG. 27 depicts an example diagram showing a random forest test set ROC curve
related to the selected SNPs. FIG. 28 depicts an example diagram showing random forest top

important predictors among the selected SNPs.

6.3.2.3 Simple Ensemble Approach: Clinical Predictions and Selected SNPs Predictions

[00101] A simple ensemble approach is applied to determine a simple average of test set
predicted probabilities to classify subjects into the affected and unaffected categories. FIG. 29
depicts an example diagram showing a ROC curve based on the average of clinical predictions
and selected SNPs predictions. The distribution of affected/unaffected subjects based on the
simple ensemble approach for the random forest model is presented in Table 19, where Y-axis
indicates predicted affected/unaffected subjects and X-axis indicates observed
affected/unaffected subjects. Table 20 includes prediction data of the simple ensemble approach
from calculation based on an average of the model probabilities for random forest models.

Table 19

Afoctod  Upnaffecied
Affacted 21 4
Unalfected HE %
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6.3.2.4 Model-based Iinsemble Approach: Clinical Predictions and Selected SNPs Predictions

[00102] A logistic regression model is built on the hold-out datasets in the previous training
step using the optimal tuning parameters. The logistic regression model is then applied to the
test set. The distribution of affected/unaffected subjects based on a cross-validated model using
the clinical predictions and selected SNPs predictions from random forest models is presented in
Table 21, where Y-axis indicates predicted affected/unaffected subjects and X-axis indicates
observed affected/unaffected subjects. FIG. 30 depicts an example diagram showing a ROC
curve based on clinical predictions and selected SNPs predictions using a model based on the
random forest models. Table 22 includes prediction data of the mode-based ensemble approach
from calculation based on a model of the model probabilities for the random forest models.

Table 21
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6.3.2.5 Filtered SNPs

[00103] FIG. 31 depicts an example diagram showing the tuning parameter profile for the
random forest model related to the filtered SNPs. The cross-validated ROC is high in FIG. 31,
indicating that it may be over-fitting, likely due to a high proportion of irrelevant predictors. The
optimal number of trials (iterations) for this data is 10. The distribution of affected/unaftected
subjects based on the filtered SNPs is presented in Table 23, where Y-axis indicates predicted
affected/unaffected subjects and X-axis indicates observed affected/unaffected subjects. FIG. 32
depicts an example diagram showing a random forest test set ROC curve related to the filtered
SNPs. FIG. 33 depicts an example diagram showing random forest top important predictors
among the filtered SNPs.

Table 23

Affected  Unaflected

3 )

bt
3 1

10 1

6.3.2.6 Simple Ensemble Approach: Clinical Predictions, Selected and Filtered SNPs

Predictions

[00104] A simple ensemble approach is applied to determine a simple average of test set
predicted probabilities to classify subjects into the affected and unaffected categories. The
distribution of affected/unaffected subjects based on the average of clinical predictions and
selected and filtered SNPs predictions for random forest models is presented in Table 24, where
Y-axis indicates predicted affected/unaffected subjects and X-axis indicates observed

affected/unaffected subjects.
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Table 24
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[00105] FIG. 34 depicts an example diagram showing a ROC curve based on the average of
clinical predictions and selected and filtered SNPs predictions for random forest models. Table
25 includes prediction data of the simple ensemble approach from calculation based on an

average of the model probabilities.
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6.3.2.7 Model-based Iinsemble Approach: Clinical Predictions, Selected and Filtered SNPs

Predictions

[00106] A logistic regression model is built on the hold-out predictions in the previous training
step using the optimal tuning parameters. The logistic regression model is then applied to the
test set. The distribution of affected/unaffected subjects based on a cross-validated model using
the clinical predictions and selected and filtered SNPs predictions for the random forest models
is presented in Table 26, where Y-axis indicates predicted affected/unaffected subjects and X-
axis indicates observed affected/unaffected subjects. FIG. 35 depicts an example diagram
showing a ROC curve based on clinical predictions and selected and filtered SNPs predictions
using a model for the random forest models. Table 27 includes prediction data of the mode-
based ensemble approach from calculation based on a model of the model probabilities for the

random forest models.

Table 26
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6.3.3 Penalized Logistic Regression

6.3.3.1 Clinical predictors

[00107] FIG. 36 depicts an example diagram showing the tuning parameter profile for the
penalized logistic model related to clinical predictors. The optimal mixing percentage for this
data is 0.1 and the optimal regularization parameter is 0.3. The distribution of
affected/unaffected subjects for the penalized logistic regression model is presented in Table 28,
where Y-axis indicates predicted affected/unaffected subjects and X-axis indicates observed
affected/unaffected subjects.

Table 28

[00108] FIG. 37 depicts an example diagram showing a penalized logistic regression test set
ROC curve related to the clinical predictors. FIG. 38 depicts an example diagram showing

penalized logistic regression top important predictors among the clinical predictors.

6.3.3.2 Selected SNPs

[00109] FIG. 39 depicts an example diagram showing the tuning parameter profile for the
penalized logistic regression model related to the selected SNPs. The optimal mixing percentage
for this data is 0.2 and the optimal regularization parameter is 0.01. The distribution of
affected/unaffected subjects based on the selected SNPs for the penalized logistic regression
model is presented in Table 29, where Y-axis indicates predicted affected/unaffected subjects

and X-axis indicates observed affected/unaffected subjects.
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Table 29

Affecied  Unaflected
el 14g 16

16 3

[00110] FIG. 40 depicts an example diagram showing a penalized logistic regression test set
ROC curve related to the selected SNPs. FIG. 41 depicts an example diagram showing penalized

logistic regression top important predictors among the selected SNPs.

6.3.3.3 Simple Ensemble Approach: Clinical Predictions and Selected SNPs Predictions

[00111] A simple ensemble approach is applied to determine a simple average of test set
predicted probabilities to classify subjects into the affected and unaffected categories. FIG. 42
depicts an example diagram showing a ROC curve based on the average of clinical predictions
and selected SNPs predictions for the penalized logistic regression model. The distribution of
affected/unaffected subjects based on the simple ensemble approach for the penalized logistic
regression model is presented in Table 30, where Y-axis indicates predicted affected/unaffected
subjects and X-axis indicates observed affected/unaffected subjects. Table 31 includes
prediction data of the simple ensemble approach from calculation based on an average of the
model probabilities for penalized logistic regression models.

Table 30
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6.3.3.4 Model-based Iinsemble Approach: Clinical Predictions and Selected SNPs Predictions

[00112] A logistic regression model is built on the hold-out datasets in the previous training
step using the optimal tuning parameters. The logistic regression model is then applied to the
test set. The distribution of affected/unaffected subjects based on a cross-validated model using
the clinical predictions and selected SNPs predictions from penalized logistic regression models
is presented in Table 32, where Y-axis indicates predicted affected/unaffected subjects and X-
axis indicates observed affected/unaffected subjects. FIG. 43 depicts an example diagram
showing a ROC curve based on clinical predictions and selected SNPs predictions using a model
based on the penalized logistic regression models. Table 33 includes prediction data of the
mode-based ensemble approach from calculation based on a model of the model probabilities for
the penalized logistic regression models.

Table 32

Affected Unallected
i 11

Pnaffected 20 3
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6.3.3.5 Filtered SNPs

[00113] FIG. 44 depicts an example diagram showing the tuning parameter profile for the
penalized logistic regression model related to the filtered SNPs. The cross-validated ROC is
high in FIG. 44, indicating that it may be over-fitting, likely due to a high proportion of
irrelevant predictors. The optimal mixing percentage for this data is 0.05 and the optimal
regularization parameter is 0.1. The distribution of affected/unaffected subjects based on the
filtered SNPs for the penalized logistic regression model is presented in Table 34, where Y-axis
indicates predicted affected/unaffected subjects and X-axis indicates observed
affected/unaffected subjects. FIG. 45 depicts an example diagram showing a penalized logistic
regression test set ROC curve related to the filtered SNPs. FIG. 46 depicts an example diagram
showing penalized logistic regression top important predictors among the filtered SNPs.

Table 34

Afferted  Unatffectad
Afeeted 26 1

Unalfiected 4 3

6.3.3.6 Simple Ensemble Approach: Clinical Predictions, Selected and Filtered SNPs

Predictions

[00114] A simple ensemble approach is applied to determine a simple average of test set
predicted probabilities to classify subjects into the affected and unaffected categories. The
distribution of affected/unaffected subjects based on the average of clinical predictions and
selected and filtered SNPs predictions for penalized logistic regression models is presented in
Table 35, where Y-axis indicates predicted affected/unaffected subjects and X-axis indicates

observed affected/unaffected subjects.
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Table 35

Affected Unaffected

=
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[00115] FIG. 47 depicts an example diagram showing a ROC curve based on the average of
clinical predictions and selected and filtered SNPs predictions for penalized logistic regression
models. Table 36 includes prediction data of the simple ensemble approach from calculation

based on an average of the model probabilities for penalized logistic regression models.
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6.3.3.7 Model-based Iinsemble Approach: Clinical Predictions, Selected and Filtered SNPs

Predictions

[00116] A logistic regression model is built on the hold-out datasets in the previous training
step using the optimal tuning parameters. The logistic regression model is then applied to the
test set. The distribution of affected/unaffected subjects based on a cross-validated model using
the clinical predictions and selected and filtered SNPs predictions for the penalized logistic
regression models is presented in Table 37, where Y-axis indicates predicted affected/unaftected
subjects and X-axis indicates observed affected/unaffected subjects. FIG. 48 depicts an example
diagram showing a ROC curve based on clinical predictions and selected and filtered SNPs
predictions using a model for the penalized logistic regression models. Table 38 includes
prediction data of the mode-based ensemble approach from calculation based on a model of the
model probabilities for the penalized logistic regression models.

Table 37
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[00117] It should be understood that the above description only discloses several scenarios
presented by this invention, and the description is relatively specific and detailed, yet it cannot
therefore be understood as limiting the scope of this invention's patent. It should be noted that
ordinary technicians in the field may also, without deviating from the invention's conceptual
premises, make a number of variations and modifications, which are all within the scope of this
invention. As a result, in terms of protection, the patent claims shall prevail.

[00118] For example, some or all components of various embodiments of the present invention
each are, individually and/or in combination with at least another component, implemented using
one or more software components, one or more hardware components, and/or one or more
combinations of software and hardware components. In another example, some or all
components of various embodiments of the present invention each are, individually and/or in
combination with at least another component, implemented in one or more circuits, such as one
or more analog circuits and/or one or more digital circuits. In yet another example, various
embodiments and/or examples of the present invention can be combined.

[00119] Additionally, the methods and systems described herein may be implemented on many
different types of processing devices by program code comprising program instructions that are
executable by the device processing subsystem. The software program instructions may include
source code, object code, machine code, or any other stored data that is operable to cause a
processing system to perform the methods and operations described herein. Other
implementations may also be used, however, such as firmware or even appropriately designed
hardware configured to carry out the methods and systems described herein.

[00120] The systems' and methods' data (e.g., associations, mappings, data input, data output,

intermediate data results, final data results, etc.) may be stored and implemented in one or more
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different types of computer-implemented data stores, such as different types of storage devices
and programming constructs (e.g., RAM, ROM, Flash memory, flat files, databases,
programming data structures, programming variables, [IF-THEN (or similar type) statement
constructs, etc.). It is noted that data structures describe formats for use in organizing and
storing data in databases, programs, memory, or other computer-readable media for use by a
computer program.

[00121] The systems and methods may be provided on many different types of computer-
readable media including computer storage mechanisms (e.g., CD-ROM, diskette, RAM, flash
memory, computer's hard drive, etc.) that contain instructions (e.g., software) for use in
execution by a processor to perform the methods' operations and implement the systems
described herein.

[00122] The computer components, software modules, functions, data stores and data structures
described herein may be connected directly or indirectly to each other in order to allow the flow
of data needed for their operations. It is also noted that a module or processor includes but is not
limited to a unit of code that performs a software operation, and can be implemented for example
as a subroutine unit of code, or as a software function unit of code, or as an object (as in an
object-oriented paradigm), or as an applet, or in a computer script language, or as another type of
computer code. The software components and/or functionality may be located on a single
computer or distributed across multiple computers depending upon the situation at hand.

[00123] The computing system can include clients and servers. A client and server are
generally remote from each other and typically interact through a communication network. The
relationship of client and server arises by virtue of computer programs running on the respective

computers and having a client-server relationship to each other.
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[00124] While this specification contains many specifics, these should not be construed as
limitations on the scope or of what may be claimed, but rather as descriptions of features specific
to particular embodiments. Certain features that are described in this specification in the context
or separate embodiments can also be implemented in combination in a single embodiment.
Conversely, various features that are described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any suitable subcombination. Moreover,
although features may be described above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed combination can in some cases be excised
from the combination, and the claimed combination may be directed to a subcombination or
variation of a subcombination.

[00125] Similarly, while operations are depicted in the drawings in a particular order, this
should not be understood as requiring that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations be performed, to achieve desirable
results. In certain circumstances, multitasking and parallel processing may be advantageous.
Moreover, the separation of various system components in the embodiments described above
should not be understood as requiring such separation in all embodiments, and it should be
understood that the described program components and systems can generally be integrated
together in a single software product or packaged into multiple software products.

[00126] Although specific embodiments of the present invention have been described, it will be
understood by those of skill in the art that there are other embodiments that are equivalent to the
described embodiments. Accordingly, it is to be understood that the invention is not to be limited

by the specific illustrated embodiments, but only by the scope of the appended claims.
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[00127] Various references are cited herein, the disclosures of which are hereby incorporated

by reference herein in their entireties.
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IT IS CLAIMED:

1. A processor-implemented method for predicting regimen-related outcomes, the
method comprising:

generating, using the one or more data processors, one or more training datasets and one
or more testing datasets based at least in part on clinical data or gene feature data of a plurality of
patients;

determining, using one or more data processors, one or more initial predictive models
using one or more machine learning algorithms based at least in part on the one or more training
datasets;

applying, using the one or more data processors, the one or more initial predictive models
on the one or more training datasets to generate result data;

performing, using the one or more data processors, an ensemble algorithm on the result
data to generate ensemble data;

determining, using the one or more data processors, one or more final predictive models
based at least in part on the ensemble data;

evaluating, using the one or more data processors, performance of the one or more final
predictive models based at least in part on the one or more test datasets; and

predicting, using the one or more data processors, regimen-related outcomes using the

one or more final predictive models.

2. The method of claim 1, wherein the gene feature data includes data related to one

or more single-nucleotide polymorphisms (SNPs).
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3. The method of claim 2, wherein generating one or more training datasets and one
or more testing datasets based at least in part on clinical data or gene feature data of a plurality of
patients includes:

determining the gene feature data based at least in part on one or more predetermined

SNPs.

4. The method of claim 2, wherein generating one or more training datasets and one
or more testing datasets based at least in part on clinical data or gene feature data of a plurality of
patients includes:

determining a plurality of SNPs;

filtering the plurality of SNPs to determine one or more filtered SNPs; and

determining the gene feature data based at least in part on the one or more filtered SNPs.

5. The method of claim 4, wherein filtering the plurality of SNPs to determine the
one or more filtered SNPs includes:

removing a number of SNPs based on missing data from the plurality of SNPs.

6. The method of claim 4, wherein filtering the plurality of SNPs to determine the
one or more filtered SNPs includes:

removing one or more SNPs that are associated from the plurality of SNPs.

7. The method of claim 4, wherein filtering the plurality of SNPs to determine the

one or more filtered SNPs includes:
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performing recursive partitioning for filtering the plurality of SNPs.

8. The method of claim 7, wherein performing recursive partitioning for filtering the
plurality of SNPs includes:

dividing a gene feature dataset related to the plurality of SNPs into a plurality of sub-
datasets;

selecting one or more first sub-datasets from the plurality of sub-datasets;

developing a first recursive partitioning model based at least in part on the one or more
first sub-datasets; and

determining one or more first predictive SNPs based at least in part on the first recursive
partitioning model, wherein the one or more first predictive SNPs are included into the one or

more filtered SNPs.

0. The method of claim 8, wherein performing recursive partitioning for filtering the
plurality of SNPs further includes:

selecting one or more second sub-datasets from the plurality of sub-datasets;

developing a second recursive partitioning model based at least in part on the one or more
second sub-datasets; and

determining one or more second predictive SNPs based at least in part on the second
recursive partitioning model, wherein the one or more second predictive SNPs are included into

the one or more filtered SNPs.
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10. The method of claim 1, wherein the one or more machine learning algorithms
correspond to one or more of the following: a penalized logistic regression algorithm, a random

forests algorithm, and a C5.0 algorithm.

11. The method of claim 1, wherein generating one or more training datasets and one
or more testing datasets based at least in part on clinical data or gene feature data of a plurality of
patients includes:

generating one or more clinical predictor datasets based at least in part on the clinical
data; and

generating one or more gene feature datasets based at least in part on the gene feature

data.

12. The method of claim 11, wherein applying the one or more initial predictive
models on the one or more training datasets to generate result data includes:

applying the initial predictive models on the one or more clinical predictor datasets to
generate clinical result data; and

applying the initial predictive models on the one or more gene feature datasets to generate

gene feature result data.

13. The method of claim 1, wherein the ensemble algorithm corresponds to an

average calculation or a logistic regression algorithm.
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14. The method of claim 1, wherein generating one or more training datasets and one
or more testing datasets based at least in part on clinical data or gene feature data of a plurality of
patients includes:

generating one or more clinical predictor datasets by generating binary predictor data

based at least in part on the clinical data.

15. The method of claim 1, further comprising:
performing 10-fold cross-validation on the one or more training datasets to determine one

or more tuning parameters for the initial predictive models.

16. The method of claim 1, wherein the clinical data includes diagnosis data, cancer-

stage data, regimen related data, and neuropathy related data.

17. A processor-implemented method for determining a treatment regimen for a
patient, the method comprising:

generating, using the one or more data processors, one or more training datasets and one
or more testing datasets based at least in part on sample clinical data or sample gene feature data;

determining, using one or more data processors, one or more initial predictive models
using one or more machine learning algorithms based at least in part on the one or more training
datasets;

applying, using the one or more data processors, the one or more initial predictive models

on the one or more training datasets to generate result data;
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performing, using the one or more data processors, an ensemble algorithm on the result
data to generate ensemble data;

determining, using the one or more data processors, one or more final predictive models
based at least in part on the ensemble data;

evaluating, using the one or more data processors, performance of the one or more final
predictive models based at least in part on the one or more test datasets;

predicting, using the one or more data processors, regimen-related outcomes using the
one or more final predictive models based at least in part on clinical data or gene feature data of
a patient;

assessing patient preferences of the patient to generate patient preference data; and

determining a treatment regimen for the patient based on the regimen-related outcomes

and the patient preference data.

18. A processor-implemented method for building a predictive model for predicting
regimen-related outcomes, the method comprising:

dividing, using one or more data processors, a training dataset into a plurality of sub-
datasets;

selecting, using the one or more data processors, one or more first training sub-datasets
from the plurality of sub-datasets;

determining, using the one or more data processors, a first predictive model using one or
more machine learning algorithms based at least in part on the one or more first training sub-

datasets;
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evaluating, using the one or more data processors, the performance of the first predictive
model using the plurality of sub-datasets excluding the one or more first training sub-datasets;
and

determining, using the one or more data processors, a final predictive model based at

least in part on the performance evaluation of the first predictive model.

19. The method of claim 18, further comprising:

selecting one or more second training sub-datasets from the plurality of sub-datasets;

determining a second predictive model using the one or more machine learning
algorithms based at least in part on the one or more second training sub-datasets; and

evaluating the performance of the second predictive model using the plurality of sub-

datasets excluding the one or more second training sub-datasets.

20. The method of claim 19, wherein the final predictive model is determined based
at least in part on the comparison of the performance of the first predictive model and the

performance of the second predictive model.

21. The method of claim 19, further comprising:

selecting one or more third training sub-datasets from the plurality of sub-datasets;

determining a third predictive model using the one or more machine learning algorithms
based at least in part on the one or more third training sub-datasets; and

evaluating the performance of the third predictive model using the plurality of sub-

datasets excluding the one or more third training sub-datasets.
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22. The method of claim 21, wherein the final predictive model is determined based
at least in part on the comparison of the performance of the first predictive model, the

performance of the second predictive model, and the performance of the third predictive model.

23. The method of claim 18, further comprising:
performing cross-validation on the plurality of sub-datasets to determine one or more

tuning parameters of the final predictive model.

24. The method of claim 18, wherein the one or more machine learning algorithms
correspond to one or more of the following: a penalized logistic regression algorithm, a random

forests algorithm, and a C5.0 algorithm.

25. A processor-implemented system for predicting regimen-related outcomes, the
system comprising;

one or more processors configured to:

generate one or more training datasets and one or more testing datasets based at
least in part on clinical data or gene feature data of a plurality of patients;

determine one or more initial predictive models using one or more machine
learning algorithms based at least in part on the one or more training datasets;

apply the one or more initial predictive models on the one or more training
datasets to generate result data;

perform an ensemble algorithm on the result data to generate ensemble data;
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determine one or more final predictive models based at least in part on the
ensemble data;
evaluate performance of the one or more final predictive models based at least in
part on the one or more test datasets; and
predict regimen-related outcomes using the one or more final predictive models;
one or more non-transitory machine-readable storage media for storing a computer
database having a database schema that includes and interrelates clinical data fields, gene feature
data fields, result data fields, ensemble data fields and predictive model data fields,
the clinical data fields storing the clinical data,
the gene feature data fields storing the gene feature data,
the result data fields storing the result data,
the ensemble data fields storing the ensemble data, and
the predictive model data fields storing parameter data of the initial predictive models

and the final predictive models.

26. A processor-implemented system for building a predictive model for predicting
regimen-related outcomes, the system comprising:
one or more processors configured to:
divide a training dataset into a plurality of sub-datasets;
select one or more first training sub-datasets from the plurality of sub-datasets;
determine a first predictive model using one or more machine learning algorithms

based at least in part on the one or more first training sub-datasets;
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evaluate the performance of the first predictive model using the plurality of sub-
datasets excluding the one or more first training sub-datasets; and
determine a final predictive model based at least in part on the performance
evaluation of the first predictive model;
one or more non-transitory machine-readable storage media for storing a computer
database having a database schema that includes and interrelates training data fields, first
predictive model data fields, and final predictive model data fields,
the training data fields storing the training dataset,
the first predictive model data fields storing parameter data of the first predictive model,
and

the final predictive model data fields storing parameter data of the final predictive model.

27. A non-transitory computer-readable medium encoded with instructions for
commanding one or more processors to execute operations of a method for predicting regimen-
related outcomes, the method comprising:

generating one or more training datasets and one or more testing datasets based at least in
part on clinical data or gene feature data of a plurality of patients;

determining one or more initial predictive models using one or more machine learning
algorithms based at least in part on the one or more training datasets;

applying the one or more initial predictive models on the one or more training datasets to
generate result data;

performing an ensemble algorithm on the result data to generate ensemble data;

85



WO 2017/059022 PCT/US2016/054355

determining one or more final predictive models based at least in part on the ensemble
data;

evaluating performance of the one or more final predictive models based at least in part
on the one or more test datasets; and

predicting regimen-related outcomes using the one or more final predictive models.

28. A non-transitory computer-readable medium encoded with instructions for
commanding one or more processors to execute operations of a method for building a predictive
model for predicting regimen-related outcomes, the method comprising:

dividing a training dataset into a plurality of sub-datasets;

selecting one or more first training sub-datasets from the plurality of sub-datasets;

determining a first predictive model using one or more machine learning algorithms
based at least in part on the one or more first training sub-datasets;

evaluating the performance of the first predictive model using the plurality of sub-
datasets excluding the one or more first training sub-datasets; and

determining a final predictive model based at least in part on the performance evaluation

of the first predictive model.

29. A non-transitory computer-readable medium for storing data for access by an
application program being executed on a data processing system, comprising:
a data structure stored in said memory, said data structure including information, resident

in a database used by said application program and including:
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one or more clinical data objects stored in said memory, the clinical data objects
containing clinical data of a plurality of patients from said database;

one or more gene feature data objects stored in said memory, the gene feature data
objects containing gene feature data of the plurality of patients from said database;

one or more training data objects stored in said memory, the training data objects
containing one or more training datasets generated based at least in part on the clinical
data or the gene feature data;

one or more initial predictive model data objects stored in said memory, the initial
predictive model data objects containing parameters of one or more initial predictive
models determined using one or more machine learning algorithms based at least in part
on the one or more training datasets;

one or more result data objects stored in said memory, the result data objects
containing result data generated by applying the initial predictive models on the one or
more training datasets;

one or more ensemble data objects stored in said memory, the ensemble data
objects containing ensemble data generated by performing an ensemble algorithm on the
result data; and

one or more final predictive model data objects stored in said memory, the final
predictive model data objects containing parameters of one or more final predictive
models determined based at least in part on the ensemble data;
wherein the final predictive model data objects are used by said application program for

predicting regimen-related outcomes.
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30. A non-transitory computer-readable medium for storing data for access by an
application program being executed on a data processing system, comprising:
a data structure stored in said memory, said data structure including information, resident
in a database used by said application program and including:
one or more training data objects stored in said memory, the training data objects
containing a training dataset from said database, the training dataset including a plurality
of sub-datasets;
one or more first predictive model data objects stored in said memory, the first
predictive model data objects containing parameter data of a first predictive model
determined using one or more machine learning algorithms based at least in part on one
or more first training sub-datasets from the plurality of sub-datasets;
one or more final predictive model data objects stored in said memory, the final
predictive model data objects containing parameter data of a final predictive model
determined based at least in part on performance evaluation of the first predictive model,;
wherein the final predictive model data objects are used by said application program for

predicting regimen-related outcomes.
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