
US 20190140835A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0140835 A1

Moen et al . (43) Pub . Date : May 9 , 2019

(54) BLIND HASH COMPRESSION (52) U . S . CI .
CPC H04L 9 / 3236 (2013 . 01) ; H04L 2209 / 30

(2013 . 01) ; H04L 9 / 3239 (2013 . 01) ; G06F
21 / 577 (2013 . 01)

(71) Applicant : Shape Security , Inc . , Mountain View ,
CA (US)

(72) Inventors : Daniel G . Moen , Sunnyvale , CA (US) ;
Bryan D . Hanks , San Jose , CA (US) (57) ABSTRACT

(73) Assignee : Shape Security , Inc . , Mountain View ,
CA (US)

(21) Appl . No . : 16 / 236 , 566
(22) Filed : Dec . 30 , 2018

Techniques are provided for blind hash compression , such as
serving , from a computer server system and to a plurality of
different computing devices remote from the computer
server system , web code and code for reporting status of the
computing devices ; receiving from one or more of the
computing devices , first data that indicates a parameter of
the one or more computing devices , the first data in a
compressed format ; receiving from one or more others of the
computing devices , second data that indicates the parameter
of the one or more others of the computing devices , the
second data in an uncompressed format ; and compressing
the second data and comparing the compressed second data
to the first data to correlate the first data to the second data .
The code for reporting status of the computing devices can
include code for allowing the computing devices to deter
mine whether to send the first or second data .

Related U . S . Application Data
Continuation of application No . 14 / 160 , 107 , filed on
Jan . 21 , 2014 , now Pat . No . 9 , 225 , 729 .

(63)

Publication Classification
(51) Int . Cl .

H04L 9 / 32
G06F 21 / 57

(2006 . 01)
(2006 . 01)

Serve Web Code
302

Serve Supplemental Code

Receive Hashed
Representation (s) 306

Save Hashed
Representation (s) 306

Y

Receive Plaintext
Representation (s) 310

Hash Plaintext
Representations (s) 712

Check Hash Against
Received lashes 314

Correlate Plaintext to
Matching Hash 326

Identify Characteristics of
Infected Computers 378

- 110A
110B

102A

Code

RN - 300

- 110C

Patent Application Publication

fil

Instr . UTS RF - 1000

???????????????????????

User A

24 . 16

104

V

102B

RN - 674

L

Internet
24 . 16

User B

106

108

1020
102c7 _

RN - 1012 RN = 10123

May 9 , 2019 Sheet 1 of 6

scut . -

" Chrome 2 . 3 . 21 . 04 . "

Hash

Original

* * *

.

01 :

D24

User

YYYYYYYYYYYYYY YYYYYYYYYYYYYYYY

224

Hash
" Chrome 2 . 3 . 21 . 04 " = > 24
I 24 Chrome 2 . 3 . 21 . 04

US 2019 / 0140835 A1

FIG . 1

200

204an

207

Web Servers

???????????? ??????????????? |

Single Security Console

???????????????????????????

viiiiiii

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ith

w

IN 204n

Patent Application Publication

LY

Y YYYYYYYYYYY

Wm

202a

Security Servers
220

222

Policy

Rules

Engine

208)

LILILARIN

2240

Central Security Console

Decode , Analysis , and
Re - encode Module

226 Instrumentation
???

* *

May 9 , 2019 Sheet 2 of 6

L

2020

210

218a

212a

214a

218n

????????????

????????????????????

FIG . 2

US 2019 / 0140835 A1

?????????????????

??????????????????

1

12121

- 24 4n

h

yyyyyyyyyyyy

Patent Application Publication May 9 , 2019 Sheet 3 of 6 US 2019 / 0140835 A1

Serve Web Code

Serve Supplemental Code

Receive Hashed
Representation (s) 306

Save Hashed
Representation (s) 308

Receive Plaintext
Representation (s) 320

PROD OTTO O OOOOOOOOOOOOOOOOO

Hash Plaintext
Representations (s

* * *

iii .

Check Hash Against
Received Hashes 314

Correlate Plaintext to
Matching Hash 316

Identify Characteristics of
Infected Computers 318

FIG . 3

Patent Application Publication May 9 , 2019 Sheet 4 of 6 US 2019 / 0140835 A1

tute

???????? ?????? ?? ???????? ????? Request Web Page Serve Web Code
404

?

Intercept and Modify
Web Code

.

Render Web Page yyyy
Append with 408

Monitoring and
Reporting Code

Record Events
with Device ID Generate 412

Characterization
and Activily Dala Associate Device

With Hash

Generate 418
Characterization
and Activity Data

Record Events
with Device ID

Generate Hash from
Plaintext ??? ? ?? ?? ?? ?? ?? ??? . ?? ?? ?? ?? ??

Associate 424
Parameters with

Device IDs

Request D and
Parameter Data Retreive D and

Parameter Data and
Transmit 428

Identify Common
Features of Anomolously

Acting Machines

Clients Security Server Analysis system Web Server

FIG . 4

Start
502

Start
520

Patent Application Publication

lognya0700

506

Hash nekda2

May 9 , 2019 Sheet 5 of 6

Update 534

Des anjen

Encode raw lielo

US 2019 / 0140835 A1

VYYYYYYYY FIG . 5A

FIG . 5B

Patent Application Publication

wan

Oo oo

Processor U

NING

.

.

. .

. . .

. .

.

. . . .

. . .

. . .

.

.

.

.

.

.

2620
Memory

:

:

:

:

:

:

:

:

:

:

i

:

:

t

t

i

Storage Device

Input / Output
6407 Devices

May 9 , 2019 Sheet 6 of 6

MAANDAMANAN

Input / Output

Ila

FIG . 6

US 2019 / 0140835 A1

US 2019 / 0140835 A1 May 9 , 2019

BLIND HASH COMPRESSION
CROSS - REFERENCE TO RELATED
APPLICATIONS ; BENEFIT CLAIM

[0001] This application claims the benefit under 35 U . S . C .
$ 120 as a Continuation of U . S . patent application No .
14 / 980 , 231 , filed on 2015 - 12 - 28 , which is a Continuation of
U . S . patent application No . 14 / 160m107 , filed on 2014 - 1
21 , the entire contents of which are hereby incorporated by
reference as if fully set forth herein .

FIELD OF THE DISCLOSURE
[0002] This document generally relates to computer com
munications .

BACKGROUND
[0003] The approaches described in this section are
approaches that could be pursued , but not necessarily
approaches that have been previously conceived or pursued .
Therefore , unless otherwise indicated , it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section .
[0004] Web content , such as HTML or JavaScript for
generating web pages , may contain application - like func
tionality that is interpreted and executed within a visitor ' s
browser , or in a similar application . The general goal with
HTML and other web technologies is to make them work ,
and work similarly , across many different platforms (e . g . ,
Mac , PC , Linux , etc .) .
[0005] To maximize the functionality of web content , it
can be relevant for a system that serves the content to know
the configurations of computers (whether desktop , smart
phone , tablet , or other) that are being served the content . For
example , particular knowledge can be obtained by identify
ing the type of browser that is rendering a web page , the
operating system on which the browser is running , and plug
ins that might also be operating on such computers . How
ever , this additional supporting information must generally
be sent from the various client computers to the server
system , and such transmission adds overhead to the func
tioning of a browser presenting a web page or other appli
cation , which overhead is not directly responsible for
improving operation of the page .

pression) using the same technique used by the client
devices to perform their compression , at which point the
server system knows the correlation between the uncom
pressed and compressed representations , and can then cor
relate any previously - or later - received compressed repre
sentations back to the original raw data . The percentage of
the client computers reporting raw data may be much
smaller than those reporting compressed data , so that the
overall bandwidth of the system is substantially reduced . For
example , each of the computing devices may determine
whether it should submit a compressed representation of the
data , or instead , an uncompressed representation by gener
ating a random number (again , e . g . , using standard
JavaScript functions) , and only send a particular format or
representation if the generated number is above or below a
predetermined number , as the case may be .
[0009] The server system may provide a biasing value to
the computing devices when it serves web code so as to push
the random number higher or lower , so as to affect the
likelihood that any particular computing device will send
uncompressed , raw data instead of compressed data . More
frequent submission of uncompressed representations will
allow a server system to more quickly identify the real
meaning of data that newly arrives , e . g . , when new features
arrive on the computing devices (e . g . , new plug ins are
announced) , but could cause higher bandwidth usage in a
pool of computing devices . Thus , an operator of a server
system may use the biasing value to match its desire for fast
reaction versus its desire for lower bandwidth requirements .
[0010] To further minimize the amount of data transfer
needed , the compression algorithm may be one that is
available from public libraries , such as standard JavaScript
hash algorithms . In this manner , the server system may
automatically obtain plaintext representations of new data as
it arrives in a pool of computers (e . g . , all computers trying
to access a particular retailer ' s web site) , but may also
determine how broadly such information has spread without
having to send the potentially voluminous plaintext repre
sentation for very many of the computing devices .
10011] Generally , hashing algorithms are selective enough
that very few collisions will be seen between hashes (i . e . ,
two different strings of text sent by computing devices will
seldom generate the same hash value) . When there are
collisions , however , a server system will not be able to
determine what is meant by such a compressed value when
it arrives (it will be ambiguous as between the two or more
source strings that generate the compressed value) . Thus , the
system just discussed may also include provisions for
resolving such collisions . For example , a computing device
may perform a secondary compression that uses a different
algorithm than the primary compression , so that if the values
of both compressions do not match across different submis
sions , then the source text for those different submissions is
known to be different . Alternatively , or in addition , a length
of the source string may also be submitted as to serve as yet
another separate check on the source string .
[0012] In particular implementations of such techniques ,
the collected data may be configuration data for the com
puting devices , which may include , for example , the make
and model of the computer , the make and version of the
operating system and the web browser that is being used , the
identity of active plug ins and other applications currently
executing on the computing device in addition to the
browser , among other things , such as installed fonts , screen

SUMMARY
[0006] This document describes systems and techniques
by which various user computing devices (computers such
as desktops , laptops , tablets , and smartphones) can submit
information to a server system in a manner that lowers the
bandwidth required for such reporting . Specifically , certain
of the computing devices can send information in a lossy
compressed format (e . g . , as a hash of the original informa
tion) , while others can send the same information in an
uncompressing format (e . g . , as the original plaintext) .
[0007 The compressed format may be highly compressed ,
such as by a lossy one - way function so that the server system
cannot immediately determine what original string a com
pressed submission is indicative of (e . g . , via a hash function
or other lossy compression function) .
[0008] To determine what the compressed submissions
represent , the server system compresses any received
uncompressed submissions (or submitted with lossless com

US 2019 / 0140835 A1 May 9 , 2019

resolution , etc . Collected data may also include activity data
that identifies actions that have been taken on the computer ,
including actions by third - party software that appears to be
anomalous (e . g . , attempts to interact with the revised web
code in an invalid manner) . Such data may be collected by
one or more central server systems for diagnostics purposes ,
including for identifying the state of machines when a
program throws an error , and for identifying common char
acteristics of computing devices that are exhibiting fraudu
lent or other anomalous behavior . For example , a criminal
group may have a plug in or other software surreptitiously
distributed to thousands of computers spread across the
world to form a so - called bot net , and the server system
discussed here may use reporting information from such
computers to more quickly and accurately identify the
presence of a new bot net that is emerging , and the behavior
of that bot net (e . g . , if common reports of malicious activity
are coming from a particular operating system running a
particular browser version) .
[0013] Various implementations are described herein
using hardware , software , firmware , or a combination of
such components . In some implementations , a computer
implemented method can include serving , from a computer
server system and to a plurality of different computing
devices remote from the computer server system , web code
and code for reporting parameters of the computing devices ;
receiving from different ones of the computing devices , a
plaintext representation of a particular parameter of a first of
the computing devices , and a hashed representation of the
same parameter of a second of the computing devices ;
hashing the plaintext representation of the particular param
eter to create a hash value , and comparing the hash value to
the hashed representation ; and based on a determination that
the hash value matches the hashed representation , correlat
ing the hashed representation to the plaintext representation
on the computer server system , wherein the code for report
ing parameters of the computing devices includes code for
allowing the computing devices to determine whether to
send a plaintext representation or a hashed representation .
[0014] These and other implementations can optionally
include one or more of the following features . The code for
allowing the computing devices to determine whether to
send a plaintext representation or a hashed representation
can include biasing data that affects a frequency with which
the computing devices select to send the plaintext represen
tation or the hashed representation .
[0015] The method can further include receiving from the
computing devices , plaintext representations and hashed
representations of a plurality of different parameters of the
computing devices ; hashing the received plaintext represen
tations to created hashed values ; and using correlations
between the hashed values and the received plaintext rep
resentations to identify parameters represented by the
hashed representations . The method can further include
using the hashed representation and the plaintext represen
tation to identify characteristics of malware executing on the
computing devices .
[001] In some implementations , a computer - imple
mented method can include serving , from a computer server
system and to a plurality of different computing devices
remote from the computer server system , web code and code
for reporting status of the computing devices ; receiving from
one or more of the computing devices , first data that
indicates a parameter of the one or more computing devices

the first data in a compressed format ; receiving from one or
more others of the computing devices , second data that
indicates the parameter of the one or more others of the
computing devices , the second data in an uncompressed
format ; and compressing the second data and comparing the
compressed second data to the first data to correlate the first
data to the second data , wherein the code for reporting status
of the computing devices includes code for allowing the
computing devices to determine whether to send the first
data or the second data .
[0017] These and other implementations can optionally
include one or more of the following features . The code for
allowing the computing devices to determine whether to
send the first data or the second data can include biasing data
that affects a frequency with which the computing devices
select to send the first data or the second data . The first data
can be compressed on the computing devices using hashing .
The server system can be configured to not send hashing
algorithm information to the computing devices . The
method can further include using the compressed format to
represent the parameter in identifying aggregate activity by
multiple of the computing devices . The method can further
include determining from the aggregate activity by multiple
of the computer devices whether ones of the multiple
computing devices is infected with malware . The computer
server system can be an intermediary security server system
that is separate from a web server system that generates and
serves the web code . The method can further include com
paring information sent with the compressed second data to
information derived from the received first data to determine
whether the compressed second data was generated from
data that matches the first data .
[0018] In some implementations , one or more non - transi
tory storage devices can store instructions that , when
executed by one or more computer processors , perform
operations comprising : serving , from a computer server
system and to a plurality of different computing devices
remote from the computer server system , web code and code
for reporting status of the computing devices ; receiving from
one or more of the computing devices , first data that
indicates a parameter of the one or more computing devices ,
the first data in a compressed format ; receiving from one or
more others of the computing devices , second data that
indicates the parameter of the one or more others of the
computing devices , the second data in an uncompressed
format ; and compressing the second data and comparing the
compressed second data to the first data to correlate the first
data to the second data , wherein the code for reporting status
of the computing devices includes code for allowing the
computing devices to determine whether to send the first
data or the second data .
100191 . These and other implementations can optionally
include one or more of the following features . The code for
allowing the computing devices to determine whether to
send the first data or the second data can include biasing data
that affects a frequency with which the computing devices
select to send the first data or the second data . The first data
can be compressed on the computing devices using hashing .
The operations can further include using the compressed
format to represent the parameter in identifying aggregate
activity by multiple of the computing devices . The opera
tions can further include determining from the aggregate
activity by multiple of the computer devices whether ones of
the multiple computing devices is infected with malware .

US 2019 / 0140835 A1 May 9 , 2019

[0024] Other features and advantages will be apparent
from the description and drawings , and from the claims .
0025] . The appended claims may serve as a summary of
the invention .

BRIEF DESCRIPTION OF THE DRAWINGS
10026] . In the drawings :
[0027] FIG . 1 is a schematic diagram of a system for
providing compressed reporting of computing device infor
mation using a blind hash .
[0028] FIG . 2 is a schematic diagram of a system for
performing deflection and detection of malicious activity
with respect to a web server system .
[0029] FIG . 3 is a flow chart of a process for reducing
bandwidth requirements between computers .
[0030] FIG . 4 is a swim lane diagram of a process for
transferring data between client computers and a server
system .
[0031] FIG . 5A is a representation of a state machine for
client - side encoding .
[0032 FIG . 5B is a representation of a state machine for
server - side decoding .
[0033] FIG . 6 is a block diagram of a generic computer
system for implementing the processes and systems
described herein .
[0034] Like reference numbers and designations in the
various drawings indicate like elements .

The computer server system can include an intermediary
security server system that is separate from a web server
system that generates and serves the web code . The opera
tions can further include comparing information sent with
the compressed second data to information derived from the
received first data to determine whether the compressed
second data was generated from data that matches the first
data .
[0020] In some implementations , a computer - imple
mented system includes : a first data communication inter
face arranged to communicate with a web server system ; a
second data communication interface arranged to commu
nicate with clients that request content from the web server
system ; a compressed code interpreter programmed to iden
tify an original form of compressed content received from
particular ones of the clients by (a) compressing original
content received from other ones of the clients to form a
compressed representation , and (b) comparing the com
pressed representation to the compressed content received
from the particular ones of the clients , wherein compressed
code interpreter compresses the original content using a
technique that matches techniques used by the particular
ones of the clients to compress the content .
[0021] These and other implementations can optionally
include one or more of the following features . The system
can be further programmed to provide code to the clients that
allows the clients to determine whether to provide com
pressed content or instead , uncompressed content to the
system .
[0022] In some implementations , a computer - imple
mented method can include serving , from a computer server
system and to a plurality of different computing devices
remote from the computer server system , web code and code
for reporting parameters of the computing devices ; receiving
from different ones of the computing devices , a plaintext
representation of a particular parameter of a first of the
computing devices , and a hashed representation of the same
parameter of a second of the computing devices ; hashing the
plaintext representation of the particular parameter to create
a hash value , and comparing the hash value to the hashed
representation ; and based on a determination that the hash
value matches the hashed representation , correlating the
hashed representation to the plaintext representation on the
computer server system , wherein the code for reporting
parameters of the computing devices includes code for
allowing the computing devices to determine whether to
send a plaintext representation or a hashed representation .
[0023] The features discussed here may , in certain imple
mentations , provide one or more advantages . For example ,
a security intermediary system may be provided that does
not add an appreciable level of bandwidth to the communi
cation channel between a server system and the clients it
services . The intermediary system may collect data that is
relatively large compared to the bandwidth that it occupies ,
and may use that data for diagnosing problems with par
ticular clients , and across large numbers of clients (e . g . , by
identifying the spread of malware threats) . Moreover , a wide
variety of data for various purposes may be transmitted
using these techniques , and may be used for a wide variety
of purposes once it is interpreted at the server system .
Moreover , in certain implementations , the compressed rep
resentations can be used as database keys , thus further
simplifying the operations recited herein .

DETAILED DESCRIPTION
[0035] In the following description , for the purpose of
explanation , numerous specific details are set forth in order
to provide a thorough understanding of the present inven
tion . It will be apparent , however , that the present invention
may be practiced without these specific details . In other
instances , well - known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur
ing the present invention .
0036] It will be further understood that : the term “ or ”
may be inclusive or exclusive unless expressly stated oth
erwise ; the term “ set ” may comprise zero , one , or two or
more elements ; the terms “ first " , " second " , " certain ” , and
“ particular ” are used as naming conventions to distinguish
elements from each other does not imply an ordering ,
timing , or any other characteristic of the referenced items
unless otherwise specified ; the term “ and / or ” as used herein
refers to and encompasses any and all possible combinations
of one or more of the associated listed items ; that the terms
“ comprises ” and / or " comprising ” specify the presence of
stated features , but do not preclude the presence or addition
of one or more other features .

General Overview
[0037] This document discusses mechanisms for reducing
bandwidth between client computing devices and server
systems with which they communicate (where “ clients ” and
" servers ” are terms used generally , and do not require any
sort of formal client - server architecture) . Generally , the
mechanisms are most useful where many different comput
ing devices will be communicating the same data to the
server system . For example , it may be beneficial to have
computing devices report their configuration information to
a server system so that the system can identify commonality
in the operations of such devices , for example , to diagnose

US 2019 / 0140835 A1 May 9 , 2019

reasons for faults in the devices or to identify the emergence
of malware on the devices in a large group of devices (e . g . ,
all devices that access a banking or retail web site) .
[0038] The common data that is communicated may be
communicated by some of the computing devices in its
native form (e . g . , plaintext) or another form in which its
content can be directly determined (e . g . , via lossless com
pression or encryption for which the server system receiving
the data can accurately decompress or decrypt the data) .
[0039] Others of the devices may communicate the same
data in a form from which it cannot be identified directly ,
such as by submitted a hash of the data . When the server
system receives compressed representations of the text but
has not yet received the original representation , it can save
indications of the compressed representations in association
with the computing devices from which they were received ,
without knowing the original representation . When the
server system receives any uncompressed representations , it
can compress them using the same algorithm that the client
devices used , can store the correlation of the compressed
representation to the original representation , and can use that
correlation to resolve any compressed representations ,
whether associated with events reported from computing
devices in the past or the future , to determine what the
compressed representation actually represents .
[0040] Some or all compressed representations may be
accompanied by a secondary representation , that can be used
to identify potential collisions between the compressed
representation . In particular , because the compressed repre
sentations are smaller in size than the uncompressed repre
sentations , certain compressed representations will end up
being repeated in a system so that two identical com
pressed representations received by a server system could
represent different original strings .
10041] Though proper selection of parameters will make
such collisions relatively rare , where the volume of the
different strings that need to be represented is extensive , the
risk of a collision may be relevant . The secondary repre
sentation , then , may serve as a check on the main represen
tation , as it will be extremely unlike that both would match
even though the original text did not . Such secondary
representation may be transmitted to the server system with
the compressed representation , and may be formed , for
example , by applying a second hash or other compression
technique to the original text that uses a different algorithm ,
or by sending a value that represents a length of the original
string .
[0042] The compressed representations or other represen
tations that correspond to the compressed representations
may then be passed as identifiers for the original data to
systems that can perform analysis using such data . For
example , client devices may pass reports that indicate
anomalous activity , such as efforts by a browser plug - in to
access served code using defunct function names or the like
(e . g . , in a system that uses a security intermediary to change
the function names with each serving of the web code) .
10043] A fraud detection system may perform clustering
analysis on the reported features of such computing devices ,
and may use the compressed representations as identifiers
for the various reported features in performing such analysis .
The analysis may be used to identify that device having
particular characteristics (e . g . , IP address , operating system ,
and browser) that have reported the existence of anomalous
behavior , which may in turn be used to determine whether

the anomalous behavior is benign (e . g . , from a plug in that
users intentionally installed) or malicious (e . g . , code per
forming a “ Man in the Middle ” attack on their devices) .
[0044] FIG . 1 is a schematic diagram of a system 100 for
providing compressed reporting of computing device infor
mation using a blind hash . In general , the system 100 is
directed to presenting information from a web server system
108 to a variety of computing devices 114A - C that are
located remotely from the web server system 108 .
[0045] Examples of operators of such a web server system
108 include on - line retailers and on - line banking systems ,
where the devices 114A - C belong to people trying to buy
products or perform on - line banking transactions . The web
server system 108 is shown as a row of servers along with
a separate row of servers for a security server system 106 ,
both in a single data center facility . Such arrangement is
intended to indicate that , in one typical implementation , an
operator of a web site may supplement its main server
system 108 with a security server system 106 that it builds
itself or that it acquires for a third party .
[0046] The security server system 106 may physically and
logically between the web server system 108 and the net
work , which may include internet 104 , and may intercept
web code to be served to the various client devices 102A - C .
[0047] In the described example , the system 100 operates
by providing modified or recoded web code to the client
computing device 102 , where the modifications are relative
to a web page that would normally be served to the client
computing device without additional security measures
applied . Web code may include , for example , HTML , CSS ,
JavaScript , and other program code associated with the
content or transmission of web resources such as a web page
that may be presented at a client computing device 102 (e . g . ,
via a web browser or a native application (non - browser)) .
[0048] The system 100 can detect and obstruct attempts by
fraudsters and computer hackers to learn the structure of a
website (e . g . , the operational design of the pages for a site)
and exploit security vulnerabilities in the client device 102 .
For example , malware may infect the client device 102 and
gather sensitive information about a user of the device , or
deceive a user into engaging in compromising activity such
as divulging confidential information . Man - in - the - middle
exploits are performed by one type of malware that is
difficult to detect on a client device 102 , but can use security
vulnerabilities at the client device 102 to engage in such
malicious activity .
[0049] Served code 110 shows an example of code that
can be served to a requesting one of various of the comput
ing devices 102A - C after the request is provided to the web
server system 108 , the content from the web server system
108 is intercepted or otherwise provided to the security
server system 106 , and the code is changed and / or supple
mented by the security server system 106 . Various portions
of the served code 110 are shown schematically to actions
that the security server system 106 can take with respect to
the code .
[0050] Code 110A represents the original web code pro
vided by the web server system 108 with certain modifica
tions made to it . For example , the security server system 106
may change the names of functions in essentially random
ways every time a set of content for a web page is served ,
where the changes are made consistently across the served
code so as not to break internal references between pieces of
the code . For example , references to a particular function

US 2019 / 0140835 A1 May 9 , 2019

may be made consistently across HTML , CSS , and
JavaScript . For example , the following strings indicate
HTML before and after alteration using a random number
for textual replacement :
[0051] Original code :

< form action = " login . jsp " method = " post " name = " Login " >
< input type = " text " id = " lastname _ id ” name = " lastname ” Re - coded format :
< form action = " login . jsp " method = " post " name = " imp0q6wNm " >
< input typ = " text " id = " b24mpdfKX ” name = " aSkFjp5x1Y ”

0052] Such changes may be made so that malware on a
client device that receives the code cannot easily identify the
operational structure of the web site and / or automatically
interact with the code so as to mislead a user into opening
its security to the malware (e . g . , for a Man in the Middle
attack) . By making the changes frequently enough and
randomly enough that automated malware cannot interact
with it predictably , the security server system 106 interferes
with such attacks by malware .
[0053] Instrumentation code 110B is added to the code
110A by the security server system 106 , and allows the
system 100 to detect malware in addition to deflecting its
efforts . In particular , the instrumentation code 110B can
execute in the background on the computing devices
102A - C and can monitor how the code 110A operates and
how other code on the particular computing device 102A - C
interacts with the execution of code 110A . For example , the
instrumentation code 110B can monitor the DOM made
from the code 110A at different points in time and may
report back to security server system 106 information that
characterizes the current state of the DOM . Such informa
tion can be compared to information that indicates what the
DOM should look like in order to determine whether other
side is interfering with the execution of code 110A . Alter
natively , or in addition , the instrumentation code can iden
tify anomalous attempts by third - party code to interact with
the operation of code 110A , such as for calls made to code
110A using “ old ” names for the code (e . g . , names that were
valid in a prior serving of the relevant web page but that are
no longer relevant because security server system 106 is
constantly changing the names so as to create a moving
target for such third - party code to hit) .
[0054] A user telemetry script 110C is also provided to a
requesting one of computing devices 102A - C . The user
telemetry script 100C may include code for managing
communications between the relevant client device and the
security server system 106 . Such communications may
include transmission of information identified by the instru
mentation code 100B described above , and other relevant
information . In certain implementations , the security server
system 106 can be supplied additional information using the
user telemetry script and after the code 110A has been
served , such as information that affects the manner in which
the instrumentation code 110B operates . For example , the
security server system 106 may receive a report from the
user telemetry script 110C that indicates that a third - party
program is attempting to interact with the served code 110A ,
and may respond so as to have the instrumentation code
110B perform certain operations to better understand the
nature of the interaction occurring on the computing device .
(0055] A request frequency code 110D may also be sent
and may be as simple as a single number that biases the user
telemetry script 110C to return information to the security

server system 106 in its original form , or instead in a
compressed form . For example , the request frequency code
110D that is sent in this example is a value of 1000 , which
may have been selected by the security server system 106 for
a range between 0 and 1024 in this example . In turn , the user
telemetry script 110C may be programmed to select a
random number between 0 and 1024 , and to return the
original text rather than a compressed version of the original
text when the randomly - selected number exceeds 1000 . As
a result , original text will be returned by only about 2 % of
all computing devices that are served code from the security
server system 106 using this request frequency value . Others
of the computing devices will return a compressed version
of the text , such as a hash of the original text produced by
the particular device .
[0056] Upon receiving the code 110 , the particular client
devices 102A - C may render respective webpages and estab
lish document object models that represent the served page ,
in a familiar manner . User interactions with the webpage and
associated code may then begin . At or around that time , the
instrumentation code 110B and user telemetry script 110C
may execute to return information about the configuration of
a particular computing device to the security server system
106 . For example , the user telemetry skip script 110C may
return data that identifies the operating system of the par
ticular computing device , the model of the particular com
puting device , the amount of RAM loaded on the computing
device , other applications executing on the computing
device , and similar information . In certain implementations ,
such functionality may be provided using a browser plug in
that is programmed to perform a check of the environment
for the machine on which it is running . Generally , JavaScript
or VBScript can permit that measurement of User Agent ,
other HTTP header information , indirect measurements of
the JavaScript execution environment , Plugin information ,
fonts , and screen information .
[0057] As shown by the arrow labeled with a 1 in a circle ,
computing device 102A returns the numeric pair 24 . 16 .
These numbers represent , respectively , a hash of a textual
string that represents the name and model of the browser that
is running on computing device 102A . In the example here ,
all three computing devices 102A - C are running the
" Chrome 2 . 3 . 21 . 04 ” browser release , as an example . Such
information may be obtained by making a request that is to
be responded to with the “ user agent ” string on the particular
computing device , in a familiar manner . In the current
example , computing device 102A delivered this compressed
representation of the user agent string , because it generated
a random number of 300 , which is less than the request
frequency number of 1000 .
[0058] Similarly , when computing device 102B received
the served code 110 , it generated a random number of 674 ,
meaning that it too would send a compressed version of the
user agent string , or 24 . 16 . In both these examples , 24 has
been selected as an example to represent a hash that may be
created from such a string , and the number 16 represents the
number of characters in that string .
[0059] The actual string itself can be seen as being trans
mitted from computing device 102C back to security server
system 106 . Here , computing device 102C selected a ran
dom number of one 1012 , which is greater than the request
frequency number of 1000 . As a result , computing device

US 2019 / 0140835 A1 May 9 , 2019

102C will be one of the 2 % of all devices that report back
the original , uncompressed (unhashed) version of the user
agent string .
[0060] To better show the level to which an initial string
can be compressed , the user agent string for Firefox on an
Ipad is “ Mozilla / 5 . 0 (iPad ; U ; CPU OS 3 _ 2 _ 1 like Mac OS
X ; en - us) AppleWebKit / 531 . 21 . 10 (KHTML , like Gecko)
Mobile / 7B405 . ” A compressed representation that indicates
a hash and a length might be of the form 4528 . 111 . As can
be appreciated , the bandwidth for the latter is much lower
than for the former .
[0061] In the figure , operations of the security server
system 106 performed in response to receiving the commu
nications from devices 102A - C are shown schematically as
a two - column database entry below security server system
106 and Web server system 108 . The two columns are shown
to indicate how a system may associate a compressed
version of a string with the actual string itself . In a first
representation shown by a 1 in a circle and corresponding to
actions that would occur in response to the first transmission
from computing device 102A , the database has been popu
lated with the hash value of 24 upon receiving that hash
value form device 102A . The system 100 does not , at that
point , know what the original string representation for that
value is (assume that the system did not receive earlier
communications regarding the user agent string from other
device) , but stores the hash value 24 in anticipation that will
eventually be able to determine what the original , plaintext
value is .
[0062] In a second representation shown by the number 2
in a circle and representing the transmission from computing
device 102B , the table has not changed because again , the
security server system 106 received only the hash code , and
not the original version of the user agent string . Finally , at
the bottom of the representation , the system receives a string
of original plaintext and , as shown by the arrow labeled with
" hash , " the system performs a hashing function on that
plaintext that is the same as a hashing function that the
system 100 knew to be provided by the computing devices
102A - C . For example , each of the computing devices
102A - C and the security server system 106 may be pro
grammed to use the same hashing algorithm as the Java hash
algorithm , which is well known and readily available on
many computing platforms .
[0063] With that hash value (24) in hand , the security
server system 106 may search the table for a matching value ,
and when it finds such a matching value , it may determine
that that matching hash value is what corresponds to the
original text . It may then update the table to correlate the
particular hash value with the particular original plaintext .
Such a correlation is shown in the row of the table labeled
with a 3 in a circle .
[0064] This correlation may then be used with other parts
of the system . For example , the number 24 can be used
throughout the system to represent the user agent string
represented here (i . e . , as a unique database index value) . As
some examples , a cluster analysis system like that discussed
with respect to FIG . 2 below may use the number 24 to
represent such a feature instead of using the full string
representation . In other embodiments , yet a third represen
tation for the feature may be used as an index representation .
[0065] The processing of the communication from com
puting device 102C may also be accompanied by a deter
mination that the full string is 16 characters in length . Such

a value may be stored in yet a third column of the table (not
shown) and may be correlated to the hash value and the
original plaintext of the string . When later communications
arrive with a hash value of 24 , they may be compared to the
first column shown in the table , and their accompanying
value of 16 may be compared to this additional value to
provide more confidence that the hash value is unique to this
particular original textual string . As discussed above , other
techniques may also be used to ensure that there are no
collisions in the hash values , such as by returning an
additional number or other representation that is generated
by an alternative hash algorithm . In certain implementations ,
if the security server system 106 identified that there may be
a problem with a received hash value , the security server
system 106 may provide a special message to the responding
computing device to trigger the responding computer device
to transmit the original plaintext code instead of the hash
value .
[0066] Other tables may store additional relationships that
are of value in operating the system 100 . For example , one
table may store identifiers for particular ones of the com
puting devices 102A - C , where a particular device may be
identified by a cookie that it stores and passes to the security
server system 106 . That device identifier may then be related
to the variety of parameters , such as the user agent parameter
just discussed , and additional parameters , which may
include hardware identifiers , operating system identifiers ,
and software identifiers , among other things . By this mecha
nism then , the system 100 may correlate a particular device
to particular configuration information and to configuration
parameters reported by the device .
[0067] This particular example is highly simplified for
purposes of clarity . In a typical implementation , many
different webpages and other Web resources will be served
by system 100 to many different computing devices . Thus ,
a large number of different hash values will be received by
security server system 106 in an interleaved fashion with
each other , and the system will need to correlate those hash
values or other compressed values with particular original
text represented by those values . Such multi - value imple
mentation may occur , for example , by adding additional
records to the simple table shown here , or by other appro
priate techniques .
[0068] A server system can also specify a seed to be used
before generating a random number , or specify another
random number generation method (and the initial state of
the pseudorandom number generator (PRNG) , and the
choice threshold value , such that the sequence of fields
chosen will be known by the server . This can be used to
force the client to generate an " uncompressed " value for a
field that is unknown by the client . It can also be used to
allow the server to have more control over the data flow
(more or less data) , and can even be used as a mechanism for
determining when a malicious client is sending data in a
non - compliant format , which could be used to determine
that the client is , in fact , addled with malware .
[0069] From time to time , hash values that have already
been correlated with original text may also be tested by other
incoming original text . For example , the security server
system 106 might not normally perform a hash on incoming
original text if the system 106 has determined that there is
already a correlation for that text in the table .
[0070] However , a random number approach similar to
that used on the computing devices 102A - C may be used so

uues

US 2019 / 0140835 A1 May 9 , 2019

that the security server system 106 periodically does per
form such a hashing and comparison so as to confirm the
accuracy of the data in the table . If the system 106 deter
mines that there is an inaccuracy , because the hash value
generated for an incoming string of text does not match a
pre - existing hash value in the system for that text , the system
106 may generate an exception and alert an operator of the
system 106 .
[0071] Also , the example here is stated in terms of Web
code being served to a general web browser . Other types of
code may alternatively be served to other types of applica
tions . In such situations , those other applications may be
caused to choose whether to return original or compressed
configuration information , or such decisions may be made
by code separate from the applications but made in respect
to the execution of the applications .
[0072] Also , although the techniques discussed here have
been associated with communications for the delivery of
information related to browser environment and user or
automated interactions with web pages , they may also , in
appropriate circumstances , be applied more generally . For
example , other data that is reported at periodic intervals and
is common as between a substantial portion of those report
ing events , may be compressed using the techniques here ,
and interpreted using uncompressed (or losslessly com
pressed) messages in some instances of the reporting , and
lossy compressed messages corresponding to the same con
tent in other instance of reporting . Various mechanisms ,
including those discussed above and below , may be used to
identify that the compressed and uncompressed messages
match each other in their content , and to then associate the
compressed messages with the uncompressed content .
[0073] In addition , while the techniques are described here
as involving transmission of data to a server system from
web code served to a browser , other techniques may also be
used . For example , a stand - alone application for a particular
organization may report information to a server system , and
may be programmed to use the sometimes - compressed /
sometimes - uncompressed techniques described here to
transmit necessary data to the server system (particularly
when the data is largely repetitive as between different
reporting events for the data) .
[0074] FIG . 2 is a schematic diagram of a system 200 for
performing deflection and detection of malicious activity
with respect to a web server system . The system 200 may be
the same as the system 100 discussed with respect to FIG .
1 , and is shown in this example to better explain the
interrelationship of various general features of the overall
system 200 , including the use of the reporting of compressed
and uncompressed versions of the same strings in order to
conserve bandwidth (for compressed representations) and to
determine what the compressed representations represent
(for uncompressed representations) .
[0075] The system 200 in this example is a system that is
operated by or for a large number of different businesses that
serve web pages and other content over the internet , such as
banks and retailers that have on - line presences (e . g . , on - line
stores , or on - line account management tools) . The main
server systems operated by those organizations or their
agents are designated as web servers 204a - 204n , and could
include a broad array of web servers , content servers ,
database servers , financial servers , load balancers , and other
necessary components (either as physical or virtual servers) .

0076] A set of security server systems 202a to 202n are
shown connected between the web servers 204a to 204n and
a network 210 such as the internet . Although both extend to
n in number , the actual number of sub - systems could vary .
For example , certain of the customers could install two
separate security server systems to serve all of their web
server systems (which could be one or more) , such as for
redundancy purposes . The particular security server systems
202a - 202n may be matched to particular ones of the web
server systems 204a - 204n , or they may be at separate sites ,
and all of the web servers for various different customers
may be provided with services by a single common set of
security servers 202a - 202n (e . g . , when all of the server
systems are at a single co - location facility so that bandwidth
issues are minimized) .
[0077] Each of the security server systems 2020 - 202n may
be arranged and programmed to carry out operations like
those discussed above and below and other operations . For
example , a policy engine 220 in each such security server
system may evaluate HTTP requests from client computers
(e . g . , desktop , laptop , tablet , and smartphone computers)
based on header and network information , and can set and
store session information related to a relevant policy . The
policy engine 220 may be programmed to classify requests
and correlate them to particular actions to be taken to code
returned by the web server systems (for transmission to
requesting clients) before such code is served back to a client
computer . When such code returns , the policy information
may be provided to a decode , analysis , and re - encode
module 224 , which matches the content to be delivered ,
across multiple content types (e . g . , HTML , JavaScript , and
CSS) , to actions to be taken on the content (e . g . , using
XPATH within a DOM) , such as substitutions , addition of
content , and other actions that may be provided as exten
sions to the system . For example , the different types of
content may be analyzed to determine naming that may
extend across such different pieces of content (e . g . , the name
of a function or parameter) , and such names may be changed
in a way that differs each time the content is served , e . g . , by
replacing a named item with randomly - generated characters .
Elements within the different types of content may also first
be grouped as having a common effect on the operation of
the code (e . g . , if one element makes a call to another) , and
then may be re - encoded together in a common manner so
that their interoperation with each other will be consistent
even after the re - encoding .
[0078] A rules engine 222 may store analytical rules for
performing such analysis and for re - encoding of the content .
The rules engine 222 may be populated with rules developed
through operator observation of particular content types ,
such as by operators of a system studying typical web pages
that call JavaScript content and recognizing that a particular
method is frequently used in a particular manner . Such
observation may result in the rules engine 222 being pro
grammed to identify the method and calls to the method so
that they can all be grouped and re - encoded in a consistent
and coordinated manner .
[0079] The decode , analysis , and re - encode module 224
encodes content being passed to client computers from a
web server according to relevant policies and rules . The
module 224 also reverse encodes requests from the client
computers to the relevant web server or servers . For
example , a web page may be served with a particular
parameter , and may refer to JavaScript that references that

US 2019 / 0140835 A1 May 9 , 2019

same parameter . The decode , analysis , and re - encode mod
ule 224 may replace the name of that parameter , in each of
the different types of content , with a randomly generated
name , and each time the web page is served (or at least in
varying sessions) , the generated name may be different .
When the name of the parameter is passed back to the web
server , it may be re - encoded back to its original name so that
this portion of the security process may occur seamlessly for
the web server .
[0080] A key for the function that encodes and decodes
such strings can be maintained by the security server system
202 along with an identifier for the particular client com
puter so that the system 202 may know which key or
function to apply , and may otherwise maintain a state for the
client computer and its session . A stateless approach may
also be employed , whereby the system 202 encrypts the state
and stores it in a cookie that is saved at the relevant client
computer . The client computer may then pass that cookie
data back when it passes the information that needs to be
decoded back to its original status . With the cookie data , the
system 202 may use a private key to decrypt the state
information and use that state information in real - time to
decode the information from the client computer . Such a
stateless implementation may create benefits such as less
management overhead for the server system 202 (e . g . , for
tracking state , for storing state , and for performing clean - up
of stored state information as sessions time out or otherwise
end) and as a result , higher overall throughput .
[0081] An instrumentation module 226 is programmed to
add instrumentation code to the content that is served from
a web server . The instrumentation code is code that is
programmed to monitor the operation of other code that is
served . For example , the instrumentation code may be
programmed to identify when certain methods are called ,
when those methods have been identified as likely to be
called by malicious software . When such actions are
observed to occur by the instrumentation code , the instru
mentation code may be programmed to send a communica
tion to the security server reporting on the type of action that
occurred and other meta data that is helpful in characterizing
the activity . Such information can be used to help determine
whether the action was malicious or benign .
[0082] The instrumentation code may also analyze the
DOM on a client computer in predetermined manners that
are likely to identify the presence of and operation of
malicious software , and to report to the security servers 202
or a related system . For example , the instrumentation code
may be programmed to characterize a portion of the DOM
when a user takes a particular action , such as clicking on a
particular on - page button , so as to identify a change in the
DOM before and after the click (where the click is expected
to cause a particular change to the DOM if there is benign
code operating with respect to the click , as opposed to
malicious code operating with respect to the click) .
[0083] Data that characterizes the DOM may also be
hashed , either at the client computer or the server system
202 , to produce a representation of the DOM (e . g . , in the
differences between part of the DOM before and after a
defined action occurs) that is easy to compare against
corresponding representations of DOMs from other client
computers .
10084) Other techniques may also be used by the instru
mentation code to generate a compact representation of the

DOM or other structure expected to be affected by malicious
code in an identifiable manner .
[0085] The instrumentation module 226 or another com
ponent may also provide a user telemetry script or other code
for causing the client device receiving the other code to
communicate with the server system after the code is
transmitted . Such additional code may include code that
causes the client devices to return configuration information
about themselves , and to control whether they return the
information in a compressed or native state , in the manners
described above . The module 226 may also generate and
provide to the client devices a request frequency value that
helps control how often the native text is transmitted back to
the system instead of the compressed form of the text . One
or more modules may also control the receipt of such
configuration information , the storage of the information ,
and the correlation of the compressed data (e . g . , being used
as an index value for a table) and the corresponding original
form of the data .
f0086] As noted , the content from web servers 204a - 204n ,
as encoded by decode , analysis , and re - encode module 224 ,
may be rendered on web browsers of various client com
puters . Uninfected client computers 212a - 212n represent
computers that do not have malicious code programmed to
interfere with a particular site a user visits or to otherwise
perform malicious activity . Infected client computers 214a
214n represent computers that do have malware , or mali
cious code (218a - 218n , respectively) , programmed to inter
fere with a particular site a user visits or to otherwise
perform malicious activity . In certain implementations , the
client computers 212 , 214 may also store the encrypted
cookies discussed above and pass such cookies back through
the network 210 . The client computers 212 , 214 will , once
they obtain the served content , implement DOMs for man
aging the displayed web pages , and instrumentation code
may monitor the respective DOMs as discussed above .
Reports of illogical activity (e . g . , software on the client
device calling a method that does not exist in the down
loaded and rendered content) can then be reported back to
the server system .
[0087] The reports from the instrumentation code may be
analyzed and processed in various manners in order to
determine how to respond to particular abnormal events , and
to track down malicious code via analysis of multiple
different similar interactions across different client comput
ers 212 , 214 . For small - scale analysis , each web site opera
tor may be provided with a single security console 207 that
provides analytical tools for a single site or group of sites .
For example , the console 207 may include software for
showing groups of abnormal activities , or reports that indi
cate the type of code served by the web site that generates
the most abnormal activity . For example , a security officer
for a bank may determine that defensive actions are needed
if most of the reported abnormal activity for its web site
relates to content elements corresponding to money transfer
operations - an indication that stale malicious code may be
trying to access such elements surreptitiously .
[0088] A central security console 208 may connect to a
large number of web content providers , and may be run , for
example , by an organization that provides the software for
operating the security server systems 202a - 202n . Such con
sole 208 may access complex analytical and data analysis
tools , such as tools that identify clustering of abnormal
activities across thousands of client computers and sessions ,

US 2019 / 0140835 A1 May 9 , 2019

so that an operator of the console 208 can focus on those
clusters in order to diagnose them as malicious or benign ,
and then take steps to thwart any malicious activity .
[0089] In certain other implementations , the console 208
may have access to software for analyzing telemetry data
received from a very large number of client computers that
execute instrumentation code provided by the system 200 .
Such data may result from forms being re - written across a
large number of web pages and web sites to include content
that collects system information such as browser version ,
installed plug - ins , screen resolution , window size and posi
tion , operating system , network information , and the like . In
addition , user interaction with served content may be char
acterized by such code , such as the speed with which a user
interacts with a page , the path of a pointer over the page , and
the like . The telemetry data may also include the received
data that characterizes the then - current conditions of each of
the client devices , such as the browser and operating systems
that they were running , and other appropriate information .
[0090] Such collected telemetry data , across many thou
sands of sessions and client devices , may be used by the
console 208 to identify what is “ natural ” interaction with a
particular page that is likely the result of legitimate human
actions , and what is “ unnatural ” interaction that is likely the
result of a bot interacting with the content .
[0091] Statistical and machine learning methods may be
used to identify patterns in such telemetry data , and to
resolve bot candidates to particular client computers . Such
client computers may then be handled in special manners by
the system 200 , may be blocked from interaction , or may
have their operators notified that their computer is poten
tially running malicious software (e . g . , by sending an e - mail
to an account holder of a computer so that the malicious
software cannot intercept it easily) .
[0092] FIG . 3 is a flow chart of a process for reducing
bandwidth requirements between computers . In general , the
process involves providing client computers with code that
causes the computers to report back aspects of their opera
tion . Different ones of the client computers are caused to
report the information in compressed form , while others of
the client devices are caused to report the same information
in an original uncompressed , or plaintext form . The process
can then use the combination of compressed and uncom
pressed reported information to correlate the compressed
representations with the uncompressed representations , even
though no particular computer or transmission provided
such a correlation for the server system that served the code .
The server system may make the correlation , for example ,
by performing a compression of received uncompressed
code in a manner that matches the way that one or more of
the client devices performed the compression of the same
code or data .
[0093] The process begins at box 302 , where the server
system serves Web code to a plurality of different client
devices . The Web code may be code for a particular web
page , for multiple related webpages , or for various unrelated
webpages associated with different websites , including web
sites from different domains . In certain implementations , the
Web code may be recoded from what is initially served by
a Web servers , such as by rewriting the names of particular
functions or other elements in unpredictable manners but in
a way that is consistent across all of the elements being
served (e . g . , so that the code does not break when executed

and so that calls made to a particular function or other
element are changed according to the changes made in the
name of the element) .
[0094] At box 304 , supplemental code is served by the
system . The supplemental code may be served along with
the Web code in a single transaction , or may be served
separately . The supplemental code may include , for
example , instrumentation code and telemetry code that
causes the receiving client device to monitor the operation of
the Web code that is served to the device and potentially to
report back on such operation to a security server system , if
the monitoring determines that anomalous activity is occur
ring on the client device . Other code may also be served ,
such as parameter values that may affect the way in which
the supplemental code operates , such as a request frequency
number described above , and other appropriate values .
[0095] At box 306 , the server system may have waited
after serving both the Web code and the supplemental code ,
and may subsequently receive , from the client or clients to
whom the code was served , hashed representations for
configuration . Those representations may represent a variety
of parameters that are relevant to the client devices from
which they come , including identifiers for the current con
figuration state of a particular client device . The particular
parameter may be identified , and the value of the identified
may be identified by the hash code that one of the client
devices generated by hashing the plaintext parameter value .
A number of different parameters may be reported on for
each client device , and even more parameters may be
reported on across a universe of client devices . For example ,
Web code served from a certain webpage may be accom
panied by instrumentation code that reports back on certain
parameters of a device , while Web code served for another
webpage may be accompanied by code that reports back on
other parameters .
[0096] When the system receives such hashed represen
tations , it may save them , as shown at box 308 , even though
it does not at that time know what original values they
represent . Such representations may also be associated with
identifiers for client devices from which they were received ,
so that the particular configuration information for those
devices may be determined later , even if it cannot be
determined when the hashed representations are initially
received .
[0097] At box 310 , plaintext representations are received
from one or more client devices . The plaintext representa
tions may have been transmitted by those client devices in
response to the client devices executing instrumentation or
telemetry code that instructed the transmission of such
plaintext versions of the information to be transmitted (e . g . ,
upon the client device choosing to transmit plaintext rather
than a compressed representation) . When the security sys
tem receives plaintext representations from telemetry code ,
it may be programmed to first compress those plaintext
representations such as by hashing them . The compression
may occur according to a mechanism that matches a known
hashing mechanism to be operating on the client devices in
cooperation with the instrumentation and telemetry code that
was served to those client devices .
[0098] With the plaintext representations having been
hashed , the security system will now have a correlation
between a particular plaintext representation and a particular
hash value . The system may then compare that hash value to
any of the hashed values that have previously been received ,

US 2019 / 0140835 A1 May 9 , 2019

at box 314 , and may then correlate whatever previously
received hash values were received to the plaintext repre
sentation that was later received , at box 316 . In certain
examples , the initial transfer of a particular piece of data
may be in plaintext form , so that the database would be
populated with a plaintext representation and a hash repre
sentation simultaneously . Later transmissions of plaintext
representations may simply be matched against the plaintext
column of the database , and the devices that sent those
plaintext representations may be correlated with the hashed
value as an index value for those devices . Alternatively , the
plaintext values that are later received may always be
hashed , and the hashed values may be compared against the
database if that is a more efficient operation of the system
computationally . Also , periodically , plaintext representa
tions and their hash values may be checked against the table
to ensure that there are no errors in the data . In addition ,
other values that represent the plaintext may be transmitted
along with the hashed representations of the plaintext so as
to ensure that the system is not receiving overlapping hash
values that match each other but that each represent different
plaintext representations .
[0099] At box 318 , characteristics of infected computers
are identified using information gleaned from the previous
steps . For example , the hashed values may be used as data
in statistical analysis techniques , such as techniques that
may attempt to identify clusters of activity within a popu
lation of computers , such as a population of hundreds of
thousands of computers . Clustering may indicate anomalous
activities by those computers , and the hash values may then
be used to determine what configuration information is
possessed in common by computers within that cluster . As
one example , the analysis may determine that a large major
ity of computers having anomalous behavior are running a
recently released operating system or browser version (i . e . ,
that anomalous behavior is clustered around a dimension
associated with that particular value of the user agent
parameter for a population of machines) . Such a determi
nation may be evidence of a vulnerability of such browser or
operating system version to Mal Ware . An operator of the
system described here may then act upon such information ,
such as to cause the browser or operating system to be
updated or the security hole to otherwise be plugged .
[0100] FIG . 4 is a swim lane diagram of a process for
transferring data between client computers and a server
system . In general , the process , like those discussed above ,
involves transmitting content to a server system , in most
instances , in a compressed manner from which the identity
of the original content cannot be determined (a lossy com
pression like forming a hash) . In a small number of cases ,
the content can be transmitted in an uncompressed or
losslessly compressed form , the received data may be com
pressed using a process equivalent to the process that was
used by clients on the other received content , and the
compressed form may be matched to the compressed forms
received in that other received content . In this way , the
original form of the other received content (both past and
future) can be inferred .
10101] The process begins at box 402 , where a client
device requests a web page , such as via a GET or POST
method . Such a request may be directed to a particular URL
served by a web server system of a particular organization .
The request may result in the web server system identifying
appropriate code to respond to the request , which may

include static code and dynamic code , and may take the form
of HTML , CSS , and JavaScript , among others . At box 404 ,
the web server system serves the responsive code .
[0102] The served code is intercepted at box 406 by a
security server system that , e . g . , the operator of the web
server system has added as an intermediary for providing
security for the web server system . For example , a third
party may provide a security system that can be added
modularly to a company ' s web server system without having
to affect the web server system in any substantial manner . In
other implementations , the intermediary functionality may
be integrated in the web server system . Also , the interme
diary server system may be physically location within the
same building as the web server system (for minimizing
latency and maximizing the ability to coordinate systems) or
in a separate location that requires communication through
a network , including the Internet ,
[0103] At box 406 , the security server system intercepts
the code and modifies it . For example , as described above ,
the names of certain functions may be changed in a suffi
ciently random or arbitrary manner that the new names
cannot be anticipated by malware running on the clients . The
changes may be coordinated across different types of code
(e . g . , HTML , CSS , and JavaScript) where the names occur ,
so that the code functions the same as the code it replaced .
Generally , the changes are made to latent code whose
operation a user does not see , and static code .
[0104] At box 408 , the code is appended with monitoring
and reporting code . Such code may monitor the DOM that
is created on the client when the served code is rendered , or
may monitor attempts to interact with the code , and may
characterize and report any abnormal activity . Such code
may also report other status information about a client , such
as configuration information that describes the features of
the client system . In certain situations , a complete picture of
what is occurring in the browser or other application (e . g . ,
a specific app programmed for the company that serves the
code) . The reporting code may in particular include code for
making a determination whether to report particular infor
mation in a compressed versus an uncompressed form , and
then to transmit the data back to the server system accord
ingly .
101051 At box 410 , the client renders the web page by
executing the various types of served code , and perhaps by
acquiring code form other sources in addition to the code
that was initially served by the web server system (whether
from the organization that operates the web server system or
from one or more other organizations) . As described
throughout this process , the serving and executing of code
described here would be repeated across thousands or more
different client devices that may each vary in different ways ,
such as by having different base (the basic computer) and
extended hardware (e . g . , added graphics cards or RAM) ,
operating systems , installed and executing applications , and
executing browser plug ins . Thus , each rendering of the web
page may be performed in a different manner for different
ones of the client devices , and even for the same client
device in different sessions .
0106] At box 412 , the client device generates character
ization and activity data that is to be sent back to the server
systems . The box is labeled with a “ 1 ” to indicate that this
step represents a subset of the devices that are served the
web code , and are the devices that hash the data that is to be
reported so as to lower the bandwidth required for such

US 2019 / 0140835 A1 May 9 , 2019

reporting . Generally , the vast majority of instances would be
established to report in such a manner so as to significantly
reduce the overhead of transmitting the data .
[0107] In this example , characterization data represents
status of the client device , such as hardware and software on
the device , whereas activity data represents actions that have
occurred on the device , particularly since the device
received the served web code (e . g . , activities between the
served code and other code that is on the device) . The
characterization data may be sent to one server system ,
while the activity data may be sent to another , or they may
be sent to the same server system . Also , certain data may be
sent according to the compressed / uncompressed scheme
described in this document when the data is expected to be
common across many devices , so that the original value of
the content for devices that compress their content can be
inferred from the uncompressed content (where , unless
otherwise noted , uncompressed content includes content
whose original form can be determined by a server system
that receives it , and thus includes losslessly compressed
content) . Other data may be sent in a normal manner ,
without the pairing of compressed / uncompressed transmis
sion , such as where the content is not typically common as
among different machines , so that there would be relatively
little value in trying to infer the original content from
transmissions made by other machines .
[0108] At box 414 , an analysis system receives the
reported data , which may include activity data . The analysis
system may use such activity data to identify that certain
normal or anomalous activities have occurred on a certain
device , and may conduct analysis on similar activity data
received from a large number of other devices to identify
clusters of common activity so as to determine that malware
is taking advantage of such devices . The analysis system
may also be provided with characterization data so that it can
determine characteristics of the devices that are being
affected by the malware .
[0109] Separately , or as part of the same communication ,
the client device may provide similar data to the security
server system , as indicated at box 416 . The security server
system may then associate the particular client device with
the hashed forms of the compressed content that is sent (as
the analysis system may do if it receives only hashed data) .
At this point in the example process , the security server
system has received no unhashed form of the content , so it
does not know what the original form of the content was . As
a result , the system may simply associate an identifier for the
particular device with the hashed form of the received
content (or may simply index upward a count of the number
of clients reporting the content of the particular form of
hash) . In this example , multiple different fields may be
reported in a hashed manner , such as one or more fields that
identify hardware for a device , and one or more fields that
identify software executing on the device . Each feature of
the device (e . g . , make and model , operating system , amount
of RAM , etc .) may receive its own hash , or groups of
features may receive a single hash — where each hash is
selected so as to cover content that is likely to be common
across many devices , so that the hash value may be readily
reverse - engineered when an uncompressed version of the
content is received from another device .
[0110] At box 418 , another client (indicated by the circled
“ 2 ”) also generates and reports characterization and activity
data . In this instance , the particular device does not com

press the content that it reports - e . g . , because it selected a
number pseudo - randomly that does not exceed a predeter
mined level that was provided with the web page code . The
analysis system may receive at least some of the generated
content at box 420 (which may be the same content as
received at box 414 or may contain some fields whose
parameters are the same as those received at box 414) ,
though here the content would be received in uncompressed
form (e . g . , either as plaintext or in a losslessly compressed
format) . To the extent the analysis system previously
received parameters for certain fields in compressed format ,
it may compress the received uncompressed content to form
a hash value and may then compare it to compressed content
that was previously received . If the hash value matches a
hash value stored form Box 414 , then the original content
may be associated by the system with the other devices that
previously reported the hashed value , as may future devices
that report the hashed value . Alternatively , or in addition , the
analysis system can add to a number of devices that have
reported as having the particular parameter .
0111] Similarly , the second client device can report the
characterization and activity data to the security server
system , and at box 422 , that system can generate a hash
value for it . As with the analysis system , certain other fields
may have been reported in hashed form or may always be
reported by all devices in uncompressed form .
[0112] At box 424 , the security server system associates
the particular parameters received from box 412 with the
other instances of reporting the same content (as determined
by comparing the just - generated hash value with previously
received hash values form the other devices) .
10113] . In situations where the analysis system does not
separately track associations between particular device IDs
and content reported by those devices , the analysis system
can request ID and parameter data (box 426) from the
security server system . The security server system (box 428)
may gather and transmit such data , and the analysis system
may identify common features of anomalously - acting
machines (box 430) using such data . In other words , in one
implementation , the analysis system may receive activity
data and use such data to identify clusters of common
activity , or otherwise identify potential problems that arise in
the operation of a number of different client devices . At the
time of such initial analysis , the analysis system may not
know the characterization data for the devices , and may only
seek such data from the security server system after identi
fying the problem . Such follow - up information gathering
may then be used by the analysis system to identify features
of the devices that are determined to be acting anomalously ,
such as by determining that they all are executing the same
browser program , and perhaps a common version or range
of versions of that program . In yet other embodiments , the
analysis system may repeat operations that are performed by
the security server system , such as in the inferring of the
original content of compressed messages via compressing of
received uncompressed messages .
[0114] Also , the security server system and the analysis
server system may be part of the same system or separate
systems . For example , a retailer may manage both systems
along with a web server system . In another example , a
third - party may operate the analysis server system from its
own facility , and can assist customers with operating their
particular security server systems on their premises , with
their web server systems . The third - party may aggregate

US 2019 / 0140835 A1 May 9 , 2019

activity over a large number of served content in such
manner , and may more readily identify anomalous behavior
than could a single organization serving only a fraction of
such content .
[0115] FIGS . 5A and 5B show , respectively , state dia
grams for a client and a server operating according to the
mechanisms described above . Referring specifically to the
client encoding state machine of FIG . 5A , at box 502 , the
client device begins its operations by which it prepares
information for transmission to the server system and per
forms the transmission . At box 504 , a determination is made
whether more fields need to be encoded for transmission . If
not , then the client waits until a next time that processing and
transmission is needed .
[0116] At box 506 , if more fields need to be transmitted to
the server , a random number (which may be pseudorandom
or otherwise less than exactly random) is generated at box
506 . The number may be generated for each overall trans
mission or for each field within a transmission (so that some
field values may be compressed and some not) . At box 508 ,
the client determines whether the generated number exceeds
a threshold . That threshold may be a predetermined value
that is relatively permanent and stored by the client for a
long time , or may be highly variable , where the threshold is
transmitted with code recently received by the client , or is
accessed at run time by the client (e . g . , by submitting a GET
function to a remote server system) . If the generated number
exceeds the threshold , then the client sends a raw version of
the relevant field , such as in plaintext or losslessly com
pressed form of the content for the field (box 512) . If the
threshold is not exceeded , then a hashed version of the
content is sent (box 510) . Of course , the determination may
be made inversely , so that the hashed form is sent if the
threshold is exceeded (and / or matched) , and the raw data is
sent if it is not (and / or is matched) .
[0117] Referring now to FIG . 5B , there is shown a state
diagram for a server that interacts with the operations of the
client just described . At box 520 , the process begins , such as
by the server determining that it has received data for a
plurality of fields , where the data needs to be interpreted by
the server system . If there are no more fields to process , the
system returns to a rest state , but if there are , then the server
analyzes the next field in line and determines whether it is
in raw form or hash form (box 524) . If it is in raw form , then
the server hashes the field using a hashing technique that
matches a technique that the server knows to be performed
by various clients that are reporting data to it (box 532) . The
server then associates the hash result with the raw content
(box 534) . The system can then use such a correlation
between the hash result and the raw data to interpret other
communications form other clients that contain only the
hash result . In particular , the system can use the correlation
to infer what the raw form at the client was when only the
hash form is received .
[0118] . If the field is not in raw form (is in hash form) , the
system performs a lookup on the hash form (box 526) . The
system determines whether the hash form of the field is
found in the system (box 528) , so as to indicate that a
correlation has already been stored between the hash form
and the raw form . If the hash form is found , then the system
can get the raw value a box 530) and act accordingly . If the
field is not found (e . g . , because the value for the field has not
previously been received in raw form) , then the occurrence

of the receipt of the hash form from the client may be saved
and noted , and the system may return to check if additional
fields need processing .
[0119] FIG . 6 is a schematic diagram of a computer system
600 . The system 600 can be used for the operations
described in association with any of the computer - imple
ment methods described previously , according to one imple
mentation . The system 600 is intended to include various
forms of digital computers , such as laptops , desktops , work
stations , personal digital assistants , servers , blade servers ,
mainframes , and other appropriate computers . The system
600 can also include mobile devices , such as personal digital
assistants , cellular telephones , smartphones , and other simi
lar computing devices . Additionally the system can include
portable storage media , such as , Universal Serial Bus (USB)
flash drives . For example , the USB flash drives may store
operating systems and other applications . The USB flash
drives can include input / output components , such as a
wireless transmitter or USB connector that may be inserted
into a USB port of another computing device .
10120] The system 600 includes a processor 610 , a
memory 620 , a storage device 630 , and an input / output
device 640 . Each of the components 610 , 620 , 630 , and 640
are interconnected using a system bus 650 . The processor
610 is capable of processing instructions for execution
within the system 600 . The processor may be designed using
any of a number of architectures . For example , the processor
610 may be a CISC (Complex Instruction Set Computers)
processor , a RISC (Reduced Instruction Set Computer)
processor , or a MISC (Minimal Instruction Set Computer)
processor .
[0121] In one implementation , the processor 610 is a
single - threaded processor . In another implementation , the
processor 610 is a multi - threaded processor . The processor
610 is capable of processing instructions stored in the
memory 620 or on the storage device 630 to display graphi
cal information for a user interface on the input / output
device 640 .
[0122] The memory 620 stores information within the
system 600 . In one implementation , the memory 620 is a
computer - readable medium . In one implementation , the
memory 620 is a volatile memory unit . In another imple
mentation , the memory 620 is a non - volatile memory unit .
[0123] The storage device 630 is capable of providing
mass storage for the system 600 . In one implementation , the
storage device 630 is a computer - readable medium . In
various different implementations , the storage device 630
may be a floppy disk device , a hard disk device , an optical
disk device , or a tape device .
[0124] The input / output device 640 provides input / output
operations for the system 600 . In one implementation , the
input / output device 640 includes a keyboard and / or pointing
device . In another implementation , the input / output device
640 includes a display unit for displaying graphical user
interfaces .
(0125] The features described can be implemented in
digital electronic circuitry , or in computer hardware , firm
ware , software , or in combinations of them . The apparatus
can be implemented in a computer program product tangibly
embodied in an information carrier , e . g . , in a machine
readable storage device for execution by a programmable
processor ; and method steps can be performed by a pro
grammable processor executing a program of instructions to
perform functions of the described implementations by

US 2019 / 0140835 A1 May 9 , 2019
13

operating on input data and generating output . The described
features can be implemented advantageously in one or more
computer programs that are executable on a programmable
system including at least one programmable processor
coupled to receive data and instructions from , and to trans
mit data and instructions to , a data storage system , at least
one input device , and at least one output device . A computer
program is a set of instructions that can be used , directly or
indirectly , in a computer to perform a certain activity or
bring about a certain result . A computer program can be
written in any form of programming language , including
compiled or interpreted languages , and it can be deployed in
any form , including as a stand - alone program or as a
module , component , subroutine , or other unit suitable for
use in a computing environment .
[0126] Suitable processors for the execution of a program
of instructions include , by way of example , both general and
special purpose microprocessors , and the sole processor or
one of multiple processors of any kind of computer . Gen
erally , a processor will receive instructions and data from a
read - only memory or a random access memory or both . The
essential elements of a computer are a processor for execut
ing instructions and one or more memories for storing
instructions and data . Generally , a computer will also
include , or be operatively coupled to communicate with , one
or more mass storage devices for storing data files ; such
devices include magnetic disks , such as internal hard disks
and removable disks ; magneto - optical disks ; and optical
disks . Storage devices suitable for tangibly embodying
computer program instructions and data include all forms of
non - volatile memory , including by way of example semi
conductor memory devices , such as EPROM , EEPROM ,
and flash memory devices ; magnetic disks such as internal
hard disks and removable disks ; magneto - optical disks ; and
CD - ROM and DVD - ROM disks . The processor and the
memory can be supplemented by , or incorporated in , ASICS
(application - specific integrated circuits) .
[0127] To provide for interaction with a user , the features
can be implemented on a computer having a display device
such as a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor for displaying information to the user and
a keyboard and a pointing device such as a mouse or a
trackball by which the user can provide input to the com
puter . Additionally , such activities can be implemented via
touchscreen flat - panel displays and other appropriate
mechanisms .
[0128] The features can be implemented in a computer
system that includes a back - end component , such as a data
server , or that includes a middleware component , such as an
application server or an Internet server , or that includes a
front - end component , such as a client computer having a
graphical user interface or an Internet browser , or any
combination of them . The components of the system can be
connected by any form or medium of digital data commu
nication such as a communication network . Examples of
communication networks include a local area network
(“ ' LAN ”) , a wide area network (“ WAN ”) , peer - to - peer net
works (having ad - hoc or static members) , grid computing
infrastructures , and the Internet .
[0129] The computer system can include clients and serv
ers . A client and server are generally remote from each other
and typically interact through a network , such as the
described one . The relationship of client and server arises by

virtue of computer programs running on the respective
computers and having a client - server relationship to each
other .
[0130] While this specification contains many specific
implementation details , these should not be construed as
limitations on the scope of any inventions or of what may be
claimed , but rather as descriptions of features specific to
particular implementations of particular inventions . Certain
features that are described in this specification in the context
of separate implementations can also be implemented in
combination in a single implementation . Conversely , vari
ous features that are described in the context of a single
implementation can also be implemented in multiple imple
mentations separately or in any suitable subcombination .
Moreover , although features may be described above as
acting in certain combinations and even initially claimed as
such , one or more features from a claimed combination can
in some cases be excised from the combination , and the
claimed combination may be directed to a subcombination
or variation of a subcombination .
[0131] Similarly , while operations are depicted in the
drawings in a particular order , this should not be understood
as requiring that such operations be performed in the par
ticular order shown or in sequential order , or that all illus
trated operations be performed , to achieve desirable results .
In certain circumfstances , multitasking and parallel process
ing may be advantageous . Moreover , the separation of
various system components in the implementations
described above should not be understood as requiring such
separation in all implementations , and it should be under
stood that the described program components and systems
can generally be integrated together in a single software
product or packaged into multiple software products .
[0132] Thus , particular implementations of the subject
matter have been described . Other implementations are
within the scope of the following claims . In some cases , the
actions recited in the claims can be performed in a different
order and still achieve desirable results . In addition , the
processes depicted in the accompanying figures do not
necessarily require the particular order shown , or sequential
order , to achieve desirable results . In certain implementa
tions , multitasking and parallel processing may be advanta
geous .
What is claimed is :
1 . A computer - implemented method , comprising :
serving , from a computer server system and to a plurality

of different computing devices remote from the com
puter server system , web code that has been recoded to
obscure its operation from malware that may be oper
ating on the different computing devices ;

receiving from different ones of the computing devices , an
obfuscated representation of a particular parameter for
a first of the computing devices , and a nonobfuscated
representation of the same parameter for a second of
the computing devices ;

obfuscating the unobfuscated representation of the par
ticular parameter , and comparing the obfuscated rep
resentation for the second of the computing devices
with the obfuscated representation for the first of the
computing devices ; and

based on a determination that the obfuscated representa
tions correspond to each other , correlating the obfus
cated representation to the unobfuscated representation
on the computer server system ,

US 2019 / 0140835 A1 May 9 , 2019
14

wherein the code for reporting parameters of the comput -
ing devices includes code for allowing the computing
devices to determine whether to send an obfuscated
representation or an unobfuscated representation .

2 . The computer - implemented method of claim 1 ,
wherein the code for allowing the computing devices to
determine whether to send an obfuscated representation or
an unobfuscated representation comprises biasing data that
affects a frequency with which the computing devices select
to send the plaintext representation or the hashed represen
tation .

3 . The computer - implemented method of claim 1 , further
comprising :

receiving from the computing devices , unobfusctaed rep
resentations and obfuscated representations of a plu
rality of different parameters of the computing devices ;

obfuscating the received unobfuscated representations to
created obfuscated values ; and

using correlations between the obfuscated values and the
received unobfuscated representations to identify
parameters represented by the obfuscated representa
tions .

4 . The computer - implemented method of claim 1 , further
comprising using the obfuscated representation and the
unobfuscated representation to identify characteristics of
malware executing on the computing devices .

5 . A computer - implemented method , comprising :
serving , from a computer server system and to a plurality

of different computing devices remote from the com
puter server system , web code and code for reporting
status of the computing devices ;

receiving from one or more of the computing devices , first
data that indicates a parameter of the one or more
computing devices , the first data in a compressed
format ;

receiving from one or more others of the computing
devices , second data that indicates the parameter of the
one or more others of the computing devices , the
second data in an uncompressed format ; and

compressing the second data and comparing the com
pressed second data to the first data to correlate the first
data to the second data ,

wherein the code for reporting status of the computing
devices includes code for allowing the computing
devices to determine whether to send the first data or
the second data .

6 . The computer - implemented method of claim 5 ,
wherein the code for allowing the computing devices to
determine whether to send the first data or the second data
comprises biasing data that affects a frequency with which
the computing devices select to send the first data or the
second data .

7 . The computer - implemented method of claim 5 ,
wherein the first data is compressed on the computing
devices using hashing .

8 . The computer - implemented method of claim 7 ,
wherein the server system does not send hashing algorithm
information to the computing devices .

9 . The computer - implemented method of claim 5 , further
comprising using the compressed format to represent the
parameter in identifying aggregate activity by multiple of
the computing devices .

10 . The computer - implemented method of claim 9 , fur
ther comprising determining from the aggregate activity by

multiple of the computer devices whether ones of the
multiple computing devices is infected with malware .

11 . The computer - implemented method of claim 5 ,
wherein the computer server system comprises an interme
diary security server system that is separate from a web
server system that generates and serves the web code .

12 . The computer - implemented method of claim 5 , fur
ther comprising comparing information sent with the com
pressed second data to information derived from the
received first data to determine whether the compressed
second data was generated from data that matches the first
data .

13 . One or more non - transitory storage devices storing
instructions that , when executed by one or more computer
processors , perform operations comprising :

serving , from a computer server system and to a plurality
of different computing devices remote from the com
puter server system , web code and code for reporting
status of the computing devices ;

receiving from one or more of the computing devices , first
data that indicates a parameter of the one or more
computing devices , the first data in a compressed
format ;

receiving from one or more others of the computing
devices , second data that indicates the parameter of the
one or more others of the computing devices , the
second data in an uncompressed format ; and

compressing the second data and comparing the com
pressed second data to the first data to correlate the first
data to the second data ,

wherein the code for reporting status of the computing
devices includes code for allowing the computing
devices to determine whether to send the first data or
the second data .

14 . The one or more non - transitory storage devices of
claim 13 , wherein the code for allowing the computing
devices to determine whether to send the first data or the
second data comprises biasing data that affects a frequency
with which the computing devices select to send the first
data or the second data .

15 . The one or more non - transitory storage devices of
claim 13 , wherein the first data is compressed on the
computing devices using hashing .

16 . The one or more non - transitory storage devices of
claim 13 , wherein the operations further comprise using the
compressed format to represent the parameter in identifying
aggregate activity by multiple of the computing devices .

17 . The one or more non - transitory storage devices of
claim 16 , wherein the operations further comprise determin
ing from the aggregate activity by multiple of the computer
devices whether ones of the multiple computing devices is
infected with malware .

18 . The one or more non - transitory storage devices of
claim 13 , wherein the computer server system comprises an
intermediary security server system that is separate from a
web server system that generates and serves the web code .

19 . The one or more non - transitory storage devices of
claim 13 , wherein the operations further comprise compar
ing information sent with the compressed second data to
information derived from the received first data to determine
whether the compressed second data was generated from
data that matches the first data .

* * * * *

