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(57) ABSTRACT 

Systems and methods for minimizing or eliminating tran 
sient non-glucose related signal noise due to non-glucose 
rate limiting phenomenon Such as interfering species, 
ischemia, pH changes, temperatures changes, known or 
unknown sources of mechanical, electrical and/or biochemi 
cal noise, and the like. The system monitors a data stream 
from a glucose sensor and detects signal artifacts that have 
higher amplitude than electronic or diffusion-related system 
noise. The system processes some or the entire data stream 
continually or intermittently based at least in part on whether 
the signal artifact event has occurred. 
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0001. This application is a continuation-in-part of U.S. 
application Ser. No. 10/648,849, filed Aug. 22, 2003. This 
application is also a continuation-in-part of U.S. application 
Ser. No. 11/007,920, filed Dec. 8, 2004, which claims the 
benefit of U.S. Provisional Application No. 60/528,382 filed 
Dec. 9, 2003. This application is also a continuation-in-part 
of U.S. application Ser. No. 11/077,739, filed Mar. 10, 2005, 
which claims the benefit of U.S. Provisional Application No. 
60/587,787 filed Jul. 13, 2004; U.S. Provisional Application 
No. 60/587,800 filed Jul. 13, 2004; U.S. Provisional Appli 
cation No. 60/614,683 filed Sep. 30, 2004; and U.S. Provi 
sional Application No. 60/614,764 filed Sep. 30, 2004. Each 
of the aforementioned applications is incorporated by ref 
erence herein in its entirety, and each is hereby expressly 
made a part of this specification. 

FIELD OF THE INVENTION 

0002 The present invention relates generally to systems 
and methods for processing data received from a glucose 
sensor. Particularly, the present invention relates to systems 
and methods for detecting and processing signal artifacts, 
including detecting, estimating, predicting, filtering, dis 
playing, and otherwise minimizing the effects of signal 
artifacts in a glucose sensor data stream. 

BACKGROUND OF THE INVENTION 

0003 Diabetes mellitus is a disorder in which the pan 
creas cannot create Sufficient insulin (Type I or insulin 
dependent) and/or in which insulin is not effective (Type 2 
or non-insulin dependent). In the diabetic state, the victim 
Suffers from high blood Sugar, which causes an array of 
physiological derangements (kidney failure, skin ulcers, or 
bleeding into the vitreous of the eye) associated with the 
deterioration of Small blood vessels. A hypoglycemic reac 
tion (low blood Sugar) is induced by an inadvertent overdose 
of insulin, or after a normal dose of insulin or glucose 
lowering agent accompanied by extraordinary exercise or 
insufficient food intake. 

0004 Conventionally, a diabetic person carries a self 
monitoring blood glucose (SMBG) monitor, which typically 
comprises uncomfortable finger pricking methods. Due to 
the lack of comfort and convenience, a diabetic will nor 
mally only measure his or her glucose level two to four times 
per day. Unfortunately, these time intervals are so far spread 
apart that the diabetic will likely find out too late, sometimes 
incurring dangerous side effects, of a hyperglycemic or 
hypoglycemic condition. In fact, it is not only unlikely that 
a diabetic will take a timely SMBG value, but additionally 
the diabetic will not know if their blood glucose value is 
going up (higher) or down (lower) based on conventional 
methods. 

0005 Consequently, a variety of transdermal and 
implantable electrochemical sensors are being developed for 
continuous detecting and/or quantifying blood glucose val 
ues. Many implantable glucose sensors suffer from compli 
cations within the body and provide only short-term and 
less-than-accurate sensing of blood glucose. Similarly, 
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transdermal sensors have run into problems in accurately 
sensing and reporting back glucose values continuously over 
extended periods of time. Some efforts have been made to 
obtain blood glucose data from implantable devices and 
retrospectively determine blood glucose trends for analysis; 
however these efforts do not aid the diabetic in determining 
real-time blood glucose information. Some efforts have also 
been made to obtain blood glucose data from transdermal 
devices for prospective data analysis, however similar prob 
lems have occurred. 

0006 Data streams from glucose sensors are known to 
have some amount of noise, caused by unwanted electronic 
and/or diffusion-related system noise that degrades the qual 
ity of the data stream. Some attempts have been made in 
conventional glucose sensors to Smooth the raw output data 
stream representative of the concentration of blood glucose 
in the sample, for example by Smoothing or filtering of 
Gaussian, white, random, and/or other relatively low ampli 
tude noise in order to improve the signal to noise ratio, and 
thus data output. 

SUMMARY OF THE INVENTION 

0007 Systems and methods are provided that accurately 
detect signal noise that is caused by Substantially non 
glucose reaction rate-limiting phenomena, such as interfer 
ing species, ischemia, pH changes, temperature changes, 
pressure, and stress, for example, which are referred to 
herein as signal artifacts or “noise episodes'. Detecting 
signal artifacts and processing the sensor data based on 
detection of signal artifacts provides accurate estimated 
glucose measurements to a diabetic patient so that they can 
proactively care for their condition to safely avoid hyperg 
lycemic and hypoglycemic conditions. 

0008 Accordingly, in a first aspect, a method of analyz 
ing data from an analyte sensor is provided, the method 
comprising receiving data from the analyte sensor, the data 
comprising at least one sensor data point; determining 
whether a signal artifact event has occurred; and processing 
the received data, wherein the processing is based at least in 
part upon whether the signal artifact event has occurred. 

0009. In an embodiment of the first aspect, the method 
further comprises filtering the received data to generate 
filtered data. 

0010. In an embodiment of the first aspect, determining 
whether a signal artifact has occurred comprises comparing 
the received data with the filtered data to obtain at least one 
residual. 

0011. In an embodiment of the first aspect, a signal 
artifact event is determined to have occurred if the residual 
is exceeds a threshold value. 

0012. In an embodiment of the first aspect, the method 
further comprises determining whether another signal arti 
fact event has occurred, wherein another signal artifact event 
has occurred if the residual exceeds a second threshold 
value. 

0013 In an embodiment of the first aspect, a signal 
artifact event is determined to have occurred if the residual 
is exceeds a threshold value for a predetermined period of 
time or for a predetermined amount of data. 
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0014. In an embodiment of the first aspect, determining 
whether a signal artifact has occurred further comprises 
determining whether a predetermined number of residuals 
exceed a threshold over a predetermined period of time, or 
whether a predetermined amount of data exceeds a thresh 
old. 

0015. In an embodiment of the first aspect, determining 
whether a signal artifact event has occurred further com 
prises determining a differential between a first residual at a 
first time point and a second residual at a second time point. 
0016. In an embodiment of the first aspect, determining 
whether a signal artifact event has occurred further com 
prises determining whether a predetermined number of 
differentials exceed a threshold over a predetermined period 
of time, or whether an amount of data exceeds a threshold. 

0017. In an embodiment of the first aspect, the method 
further comprises receiving reference data from a reference 
analyte monitor, the reference data including at least one 
reference data point. 

0018. In an embodiment of the first aspect, processing the 
received data further comprises determining a reliability of 
the received data, wherein processing is conducted if the 
signal artifact event is determined to have not occurred. 

0019. In an embodiment of the first aspect, the method 
further comprises matching the reference data to Substan 
tially time corresponding received data to form a matching 
data pair, wherein the reference data is matched if the signal 
artifact event is determined to have not occurred. 

0020. In an embodiment of the first aspect, the method 
further comprises including the reference data in a calibra 
tion factor for use in calibrating the glucose sensor, wherein 
the reference data is included if the signal artifact event is 
determined to have not occurred. 

0021. In an embodiment of the first aspect, the method 
further comprises prompting a user for a reference glucose 
value, wherein prompting is conducted if the signal artifact 
event is determined to have not occurred. 

0022. In an embodiment of the first aspect, processing the 
received data comprises displaying a graphical representa 
tion of the received data. 

0023. In an embodiment of the first aspect, processing the 
received data comprises filtering the received data, wherein 
filtering is conducted if the signal artifact event is deter 
mined to have occurred. 

0024. In an embodiment of the first aspect, the method 
further comprises filtering the received data, wherein pro 
cessing the received data comprises displaying a graphical 
representation of the filtered data, wherein processing is 
conducted if the signal artifact event is determined to have 
occurred. 

0025. In an embodiment of the first aspect, the method 
further comprises filtering the received data to generate 
filtered data, wherein determining whether a signal artifact 
event has occurred further comprises comparing the 
received data with the filtered data to obtain a residual, and 
wherein processing the received data comprises utilizing the 
residual to modify the filtered data. 
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0026. In an embodiment of the first aspect, the method 
further comprises filtering the received data to generate 
filtered data, wherein determining whether a signal artifact 
event has occurred further comprises comparing the 
received data with the filtered data to obtain a residual and 
deriving a differential of the residual by calculating a first 
derivative of the residual, and wherein processing the 
received data comprises utilizing the differential to modify 
the filtered data. 

0027. In an embodiment of the first aspect, processing the 
received data comprises compensating for a time lag. 

0028. In an embodiment of the first aspect, processing the 
received data comprises displaying a graphical representa 
tion of the received data. 

0029. In an embodiment of the first aspect, the received 
data is an unfiltered digital signal. 
0030. In an embodiment of the first aspect, processing the 
received data comprises disabling display of a graphical 
representation of the received data, wherein processing is 
conducted if the signal artifact event is determined to have 
occurred. 

0031. In an embodiment of the first aspect, processing the 
received data comprises displaying a range of glucose 
values, wherein processing is conducted if the signal artifact 
event is determined to have occurred. 

0032. In an embodiment of the first aspect, processing the 
received data comprises displaying a graphical indication of 
glucose trend, wherein processing is conducted if the signal 
artifact event is determined to have occurred. 

0033. In an embodiment of the first aspect, processing the 
received data comprises generating at least one estimated 
glucose value and displaying a graphical representation of 
the estimated glucose value, wherein processing is con 
ducted if the signal artifact event is determined to have 
occurred. 

0034. In an embodiment of the first aspect, processing the 
received data comprises generating a confidence interval for 
at least one estimated glucose value and displaying a graphi 
cal representation of the confidence interval, wherein pro 
cessing is conducted if the signal artifact event is determined 
to have occurred. 

0035) In a second aspect, a method for processing data 
from a glucose sensor is provided, the method comprising 
receiving data from the glucose sensor, the received data 
comprising at least one sensor data point; displaying a 
graphical representation of the data corresponding to a time 
period; and post-processing the displayed graphical repre 
sentation of the data corresponding to the time period. 

0036). In an embodiment of the second aspect, post 
processing is conducted periodically. 

0037. In an embodiment of the second aspect, post 
processing is conducted Substantially continuously. 

0038. In an embodiment of the second aspect, the method 
further comprises determining whether a signal artifact 
event has occurred and processing the received data prior to 
the displaying step, wherein the processing is based at least 
in part upon whether the signal artifact event has occurred. 
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0039. In an embodiment of the second aspect, post 
processing comprises filtering the data to recalculate data 
corresponding to the time period and displaying a graphical 
representation of the recalculated data corresponding to the 
time period. 
0040. In an embodiment of the second aspect, the step of 
post-processing comprises recalculating data corresponding 
to the time period, wherein a time lag induced by real-time 
filtering is Substantially removed from the data correspond 
ing to the time period; and displaying a graphical represen 
tation of the recalculated data corresponding to the time 
period. 

0041. In an embodiment of the second aspect, recalcu 
lating the data comprises algorithmically smoothing at least 
one sensor data point over a moving window, wherein the 
moving window comprises time points before and after the 
sensor data point is obtained. 
0042. In an embodiment of the second aspect, the method 
further comprises displaying a current glucose value repre 
sentative of the most recently obtained sensor data point. 
0043. In a third aspect, a system configured to process 
data from an analyte sensor is provided, the system com 
prising a data receiving module configured to receive sensor 
data from the analyte sensor, the data comprising at least one 
sensor data point; a signal artifacts module configured to 
detect a signal artifact in the sensor data; and a processor 
module configured to process the sensor data, wherein 
processing is dependent at least in part upon whether the 
signal artifact is detected. 
0044) In an embodiment of the third aspect, the signal 
artifacts module is configured to compare raw sensor data 
with filtered sensor data to determine a residual. 

0045. In an embodiment of the third aspect, the signal 
artifacts module is configured to detect a signal artifact if the 
residual exceeds a threshold value. 

0046. In an embodiment of the third aspect, the signal 
artifacts module is configured to detect a signal artifact if a 
predetermined number of residuals exceed a threshold value 
for a predetermined period of time or for a predetermined 
amount of data. 

0047. In an embodiment of the third aspect, the signal 
artifacts module is configured to compare a first residual 
with a second signal residual to determine a differential. 
0.048. In an embodiment of the third aspect, the signal 
artifacts module is configured to detect a signal artifact if the 
differential exceeds a threshold value. 

0049. In an embodiment of the third aspect, the signal 
artifacts module is configured to detect a signal artifact if a 
predetermined number of differentials exceed a threshold 
value for a predetermined period of time or for a predeter 
mined amount of data. 

0050. In an embodiment of the third aspect, the system 
further comprises a reference data module configured to 
receive reference data from a reference glucose monitor, the 
reference data comprising at least one reference data point. 
0051. In an embodiment of the third aspect, the signal 
artifacts module is configured to determine a reliability of 
the sensor data if the signal artifact is detected. 
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0052. In an embodiment of the third aspect, the processor 
module is configured to form at least one matched data pair 
by matching reference data to Substantially time correspond 
ing sensor data. 
0053. In an embodiment of the third aspect, the processor 
module is configured to form a matching data pair if a signal 
artifact is not detected. 

0054. In an embodiment of the third aspect, the processor 
module is configured to utilize the reference data for cali 
brating the glucose sensor if a signal artifact is not detected. 
0055. In an embodiment of the third aspect, the processor 
module is configured to prompt a user for a reference 
glucose value if a signal artifact is not detected. 
0056. In an embodiment of the third aspect, the data 
receiving module is configured to receive raw sensor data. 
0057. In an embodiment of the third aspect, the raw 
sensor data comprises integrated digital data. 
0058. In an embodiment of the third aspect, the processor 
module is configured to display a graphical representation of 
the raw sensor data if a signal artifact is not detected. 
0059. In an embodiment of the third aspect, the data 
receiving module is configured to receive filtered sensor 
data. 

0060. In an embodiment of the third aspect, the processor 
module is configured to display a graphical representation of 
the filtered sensor data if a signal artifact is detected. 
0061. In an embodiment of the third aspect, the processor 
module is configured to filter the sensor data. 
0062. In an embodiment of the third aspect, the processor 
module is configured to display a graphical representation of 
the filtered sensor data if a signal artifact is detected. 
0063. In an embodiment of the third aspect, the processor 
module is configured to not display the sensor data if a signal 
artifact is detected. 

0064. In an embodiment of the third aspect, the processor 
module is configured to display a range of glucose values if 
a signal artifact is detected. 
0065. In an embodiment of the third aspect, the processor 
module is configured to display a directional indicator of 
glucose trend if a signal artifact is detected. 
0066. In an embodiment of the third aspect, the processor 
module is configured to display at least one estimated 
glucose value if a signal artifact is detected. 
0067. In an embodiment of the third aspect, the processor 
module is configured to display a confidence interval for at 
least one estimated glucose value if a signal artifact is 
detected. 

0068. In a fourth aspect, a system configured to process 
data from an analyte sensor is provided, the system com 
prising a data receiving module configured to receive sensor 
data from the analyte sensor, the data comprising at least one 
sensor data point; an output module configured to display a 
Substantially real-time numerical value corresponding to a 
most recently received sensor data point and a graphical 
representation of sensor data corresponding to a time period; 
and a processor module configured to post-process the 
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graphical representation of the data corresponding to the 
time period, wherein the output module is configured to 
display the post-processed data. 

0069. In an embodiment of the fourth aspect, post-pro 
cessing is conducted periodically. 

0070. In an embodiment of the fourth aspect, post-pro 
cessing is conducted Substantially continuously. 

0071. In an embodiment of the fourth aspect, the proces 
Sor module is configured to automatically post-process the 
graphical representation of the data corresponding to the 
time period. 

0072. In an embodiment of the fourth aspect, the proces 
Sor module is configured to post-process the graphical 
representation of the data corresponding to the time period 
responsive to a request. 

0073. In an embodiment of the fourth aspect, the output 
module is configured to automatically display the post 
processed graphical representation of the data corresponding 
to the time period. 

0074. In an embodiment of the fourth aspect, the output 
module is configured to display the post-processed graphical 
representation of the data corresponding to the time period 
responsive to a request. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0075 FIG. 1A is an exploded perspective view of a 
glucose sensor in one embodiment. 

0076 FIG. 1B is side view of a distal portion of a 
transcutaneously inserted sensor in one embodiment. 

0.077 FIG. 2 is a block diagram that illustrates sensor 
electronics in one embodiment. 

0078 FIGS. 3A to 3D are schematic views of a receiver 
in first, second, third, and fourth embodiments, respectively. 

0079 FIG. 4A is a block diagram of receiver electronics 
in one embodiment. 

0080 FIG. 4B is an illustration of the receiver in one 
embodiment showing an analyte trend graph, including 
measured analyte values, estimated analyte values, and a 
clinical risk Zone. 

0081 FIG. 4C is an illustration of the receiver in another 
embodiment showing a representation of analyte concentra 
tion and directional trend using a gradient bar. 

0082 FIG. 4D is an illustration of the receiver in yet 
another embodiment, including a screen that shows a 
numerical representation of the most recent measured ana 
lyte value. 

0083 FIG. 5 is a flow chart that illustrates the process of 
calibrating the sensor data in one embodiment. 

0084 FIG. 6 is a graph that illustrates a linear regression 
used to calibrate the sensor data in one embodiment. 

0085 FIG. 7A is a graph that shows a raw data stream 
obtained from a glucose sensor over a 4 hour time span in 
one example. 
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0086 FIG. 7B is a graph that shows a raw data stream 
obtained from a glucose sensor over a 36 hour time span in 
another example. 
0087 FIG. 8 is a flow chart that illustrates the process of 
detecting and replacing transient non-glucose related signal 
artifacts in a data stream in one embodiment. 

0088 FIG. 9 is a graph that illustrates the correlation 
between the counter electrode Voltage and signal artifacts in 
a data stream from a glucose sensor in one embodiment. 
0089 FIG. 10A is a circuit diagram of a potentiostat that 
controls a typical three-electrode system in one embodi 
ment. 

0090 FIG. 10B is a diagram known as Cyclic-Voltam 
metry (CV) curve, which illustrates the relationship between 
applied potential (VAs) and signal strength of the working 
electrode (Is Ns) and can be used to detect signal artifacts. 
0091 FIG. 10C is a diagram showing a CV curve that 
illustrates an alternative embodiment of signal artifacts 
detection, wherein pH and/or temperature can be monitoring 
using the CV curve. 
0092 FIG. 11 is a graph and spectrogram that illustrate 
the correlation between high frequency and signal artifacts 
observed by monitoring the frequency content of a data 
stream in one embodiment. 

0093 FIG. 12 is a graph that illustrates a data stream 
obtained from a glucose sensor and a signal smoothed by 
trimmed linear regression that can be used to replace some 
of or the entire raw data stream in one embodiment. 

0094 FIG. 13 is a graph that illustrates a data stream 
obtained from a glucose sensor and a FIR-Smoothed data 
signal that can be used to replace some of or the entire raw 
data stream in one embodiment. 

0095 FIG. 14 is a graph that illustrates a data stream 
obtained from a glucose sensor and an IIR-Smoothed data 
signal that can be used to replace some of or the entire raw 
data stream in one embodiment. 

0.096 FIG. 15 is a flowchart that illustrates the process of 
selectively applying signal estimation based on the severity 
of signal artifacts on a data stream. 
0097 FIG. 16 is a graph that illustrates selectively apply 
ing a signal estimation algorithm responsive to positive 
detection of signal artifacts on the raw data stream. 
0098 FIG. 17 is a graph that illustrates selectively apply 
ing a plurality of signal estimation algorithm factors respon 
sive to a severity of signal artifacts on the raw data stream. 
0099 FIG. 18 is a flow chart that illustrates dynamic and 
intelligent estimation algorithm selection process in an alter 
native embodiment. 

0.100 FIG. 19 is a graph that illustrates dynamic and 
intelligent estimation algorithm selection applied to a data 
stream in one embodiment. 

0101 FIG. 20 is a flow chart that illustrates the process 
of dynamic and intelligent estimation and evaluation of 
analyte values in one embodiment. 
0102 FIG. 21 is a graph that illustrates an evaluation of 
the selected estimative algorithm in one embodiment. 
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0103 FIG. 22 is a flow chart that illustrates the process 
of analyzing a variation of estimated future analyte value 
possibilities in one embodiment. 
0104 FIG. 23 is a graph that illustrates variation analysis 
of estimated glucose values in one embodiment. 
0105 FIG. 24 is a graph that illustrates variation of 
estimated analyte values in another embodiment. 
0106 FIG. 25 is a flow chart that illustrates the process 
of estimating, measuring, and comparing analyte values in 
one embodiment. 

0107 FIG. 26 is a graph that illustrates comparison of 
estimated analyte values in one embodiment. 
0108 FIG. 27 provides a flow chart that illustrates the 
evaluation of reference and/or sensor data for statistical, 
clinical, and/or physiological acceptability in one embodi 
ment. 

0109 FIG.28 is a flow chart that illustrates the evaluation 
of calibrated sensor data for aberrant values in one embodi 
ment. 

0110 FIG. 29 provides a flow chart that illustrates a 
self-diagnostic of sensor data in one embodiment. 
0111 FIG. 30 is a flow chart that illustrates the process of 
detecting and processing signal artifacts in certain embodi 
mentS. 

0112 FIG. 31 is a graph that illustrates a raw data stream 
from a glucose sensor for approximately 24 hours with a 
filtered version of the same data stream Superimposed on the 
same graph. 
0113 FIG. 32 is a flowchart that illustrates a method for 
processing data from a glucose sensor in certain embodi 
mentS. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

0114. The following description and examples illustrate 
Some exemplary embodiments of the disclosed invention in 
detail. Those of skill in the art will recognize that there are 
numerous variations and modifications of this invention that 
are encompassed by its scope. Accordingly, the description 
of a certain exemplary embodiment should not be deemed to 
limit the scope of the present invention. 

Definitions 

0115) In order to facilitate an understanding of the pre 
ferred embodiments, a number of terms are defined below. 
0116. The term “analyte' as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to a Substance or chemical constituent in 
a biological fluid (for example, blood, interstitial fluid, 
cerebral spinal fluid, lymph fluid or urine) that can be 
analyzed. Analytes can include naturally occurring Sub 
stances, artificial Substances, metabolites, and/or reaction 
products. In some embodiments, the analyte for measure 
ment by the sensor heads, devices, and methods is analyte. 
However, other analytes are contemplated as well, including 
but not limited to acarboxyprothrombin; acylcamitine; 
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adenine phosphoribosyl transferase; adenosine deaminase; 
albumin; alpha-fetoprotein; amino acid profiles (arginine 
(Krebs cycle), histidine/urocanic acid, homocysteine, phe 
nylalanine?tyrosine, tryptophan); andrenostenedione; anti 
pyrine; arabinitol enantiomers; arginase; benzoylecgonine 
(cocaine); biotinidase; biopterin, c-reactive protein; car 
nitine, camosinase; CD4; ceruloplasmin, chenodeoxycholic 
acid; chloroquine; cholesterol, cholinesterase; conjugated 
1-B hydroxy-cholic acid; cortisol; creatine kinase; creatine 
kinase MM isoenzyme, cyclosporin A; d-penicillamine; 
de-ethylchloroquine; dehydroepiandrosterone sulfate; DNA 
(acetylator polymorphism, alcohol dehydrogenase, alpha 
1-antitrypsin, cystic fibrosis, Duchenne/Becker muscular 
dystrophy, analyte-6-phosphate dehydrogenase, hemoglobin 
A, hemoglobin S, hemoglobin C, hemoglobin D, hemoglo 
bin E, hemoglobin F, D-Punjab, beta-thalassemia, hepatitis 
B virus, HCMV, HIV-1, HTLV-1, Leber hereditary optic 
neuropathy, MCAD, RNA, PKU. Plasmodium vivax, sexual 
differentiation, 21-deoxycortisol); desbutylhalofantrine; 
dihydropteridine reductase; diptheria/tetanus antitoxin; 
erythrocyte arginase, erythrocyte protoporphyrin; esterase 
D; fatty acids/acylglycines; free B-human chorionic gona 
dotropin; free erythrocyte porphyrin; free thyroxine (FT4); 
free tri-iodothyronine (FT3); fumarylacetoacetase; galac 
tose/gal-1-phosphate; galactose-1-phosphate uridyltrans 
ferase; gentamicin; analyte-6-phosphate dehydrogenase; 
glutathione; glutathione perioxidase; glycocholic acid; gly 
cosylated hemoglobin; halofantrine; hemoglobin variants; 
hexosaminidase A.; human erythrocyte carbonic anhydrase I; 
17-alpha-hydroxyprogesterone; hypoxanthine phosphoribo 
Syl transferase; immunoreactive trypsin, lactate; lead; lipo 
proteins ((a), B/A-1, 3); lysozyme, mefloquine; netilmicin; 
phenobarbitone; phenyloin, phytanic/pristanic acid; proges 
terone; prolactin; prolidase; purine nucleoside phosphory 
lase; quinine; reverse tri-iodothyronine (rT3); selenium; 
serum pancreatic lipase; Sissomicin; Somatomedin C: Spe 
cific antibodies (adenovirus, anti-nuclear antibody, anti-Zeta 
antibody, arbovirus, Aujeszky's disease virus, dengue virus, 
Dracunculus medimensis, Echinococcus granulosus, Enta 
moeba histolytica, enterovirus, Giardia duodenalisa, Heli 
cobacter pylori, hepatitis B virus, herpes virus, HIV-1, IgE 
(atopic disease), influenza virus, Leishmania donovani, lep 
to spira, measles/mumpS/rubella, Mycobacterium leprae, 
Mycoplasma pneumoniae, Myoglobin, Onchocerca volvu 
lus, parainfluenza virus, Plasmodium falciparum, poliovirus, 
Pseudomonas aeruginosa, respiratory syncytial virus, rick 
ettsia (Scrub typhus), Schistosoma mansoni, Toxoplasma 
gondii, Trepenoma pallidium, Trypanosoma Cruzi/rangeli, 
vesicular stomatis virus, Wuchereria bancrofti, yellow fever 
virus); specific antigens (hepatitis B virus, HIV-1); Succiny 
lacetone; sulfadoxine; theophylline; thyrotropin (TSH); thy 
roxine (T4); thyroxine-binding globulin; trace elements; 
transferrin; UDP-galactose-4-epimerase; urea; uroporphy 
rinogen I synthase; vitamin A; white blood cells; and 
0117 zinc protoporphyrin. Salts, sugar, protein, fat, Vita 
mins, and hormones naturally occurring in blood or inter 
Stitial fluids can also constitute analytes in certain embodi 
ments. The analyte can be naturally present in the biological 
fluid, for example, a metabolic product, a hormone, an 
antigen, an antibody, and the like. Alternatively, the analyte 
can be introduced into the body, for example, a contrast 
agent for imaging, a radioisotope, a chemical agent, a 
fluorocarbon-based synthetic blood, or a drug or pharma 
ceutical composition, including but not limited to insulin; 
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ethanol; cannabis (marijuana, tetrahydrocannabinol, hash 
ish); inhalants (nitrous oxide, amyl nitrite, butyl nitrite, 
chlorohydrocarbons, hydrocarbons); cocaine (crack 
cocaine); stimulants (amphetamines, methamphetamines, 
Ritalin, Cylert, Preludin, Didrex, PreState, Voranil, Sandrex, 
Plegine); depressants (barbituates, methaqualone, tranquil 
izers such as Valium, Librium, Miltown, Serax, Equanil, 
Tranxene); hallucinogens (phencyclidine, lysergic acid, 
mescaline, peyote, psilocybin); narcotics (heroin, codeine, 
morphine, opium, meperidine, Percocet, Percodan, Tus 
Sionex, Fentanyl, Darvon, Talwin, Lomotil); designer drugs 
(analogs of fentanyl, meperidine, amphetamines metham 
phetamines, and phencyclidine, for example, Ecstasy); ana 
bolic steroids; and nicotine. The metabolic products of drugs 
and pharmaceutical compositions are also contemplated 
analytes. Analytes Such as neurochemicals and other chemi 
cals generated within the body can also be analyzed, such as, 
for example, ascorbic acid, uric acid, dopamine, noradrena 
line, 3-methoxytyramine MT), 3,4-Dihydroxyphenylacetic 
acid (DOPAC), Homovanillic acid (HVA), 5-Hydrox 
ytryptamine (5HT), and 5-Hydroxyindoleacetic acid 
(FHIAA). 

0118. The term “EEPROM as used herein is a broad 
term and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art (and is not to be limited 
to a special or customized meaning), and furthermore refers 
without limitation to electrically erasable programmable 
read-only memory, which is user-modifiable read-only 
memory (ROM) that can be erased and reprogrammed (e.g., 
written to) repeatedly through the application of higher than 
normal electrical Voltage. 

0119) The term “SRAM as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to static random access memory (RAM) 
that retains data bits in its memory as long as power is being 
Supplied. 

0120) The term “ROM as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to read-only memory, which is a type of 
data storage device manufactured with fixed contents. ROM 
is broad enough to include EEPROM, for example, which is 
electrically erasable programmable read-only memory 
(ROM). 

0121 The term “RAM as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to a data storage device for which the 
order of access to different locations does not affect the 
speed of access. RAM is broad enough to include SRAM, 
for example, which is static random access memory that 
retains data bits in its memory as long as power is being 
Supplied. 

0122) The term “A/D Converter” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
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furthermore refers without limitation to hardware and/or 
Software that converts analog electrical signals into corre 
sponding digital signals. 

0123 The terms “microprocessor and “processor as 
used herein are broad terms and are to be given their 
ordinary and customary meaning to a person of ordinary 
skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limi 
tation to a computer system, state machine, and the like that 
performs arithmetic and logic operations using logic cir 
cuitry that responds to and processes the basic instructions 
that drive a computer. 

0.124. The term “RF transceiver as used herein is a broad 
term and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art (and is not to be limited 
to a special or customized meaning), and furthermore refers 
without limitation to a radio frequency transmitter and/or 
receiver for transmitting and/or receiving signals. 

0.125 The termitter” as used herein is a broad term and 
is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to noise above and below the mean 
caused by ubiquitous noise caused by a circuit and/or 
environmental effects; jitter can be seen in amplitude, phase 
timing, or the width of the signal pulse. 

0126 The terms "raw data stream” and "data stream” as 
used herein are broad terms and are to be given their 
ordinary and customary meaning to a person of ordinary 
skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limi 
tation to an analog or digital signal directly related to the 
measured glucose from the glucose sensor. In one example, 
the raw data stream is digital data in “counts’ converted by 
an A/D converter from an analog signal (e.g., Voltage or 
amps) and includes one or more data points representative of 
a glucose concentration. The terms broadly encompass a 
plurality of time spaced data points from a substantially 
continuous glucose sensor, which comprises individual mea 
Surements taken at time intervals ranging from fractions of 
a second up to, e.g., 1, 2, or 5 minutes or longer. In another 
example, the raw data stream includes an integrated digital 
value, wherein the data includes one or more data points 
representative of the glucose sensor signal averaged over a 
time period. 

0127. The term “calibration' as used herein is a broad 
term and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art (and is not to be limited 
to a special or customized meaning), and furthermore refers 
without limitation to the process of determining the rela 
tionship between the sensor data and the corresponding 
reference data, which can be used to convert sensor data into 
meaningful values Substantially equivalent to the reference 
data. In some embodiments, namely, in continuous analyte 
sensors, calibration can be updated or recalibrated over time 
as changes in the relationship between the sensor data and 
reference data occur, for example, due to changes in sensi 
tivity, baseline, transport, metabolism, and the like. 

0128. The terms “calibrated data” and “calibrated data 
stream” as used herein are broad terms and are to be given 
their ordinary and customary meaning to a person of ordi 
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nary skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limi 
tation to data that has been transformed from its raw state to 
another state using a function, for example a conversion 
function, to provide a meaningful value to a user. 

0129. The terms “smoothed data” and “filtered data” as 
used herein are broad terms and are to be given their 
ordinary and customary meaning to a person of ordinary 
skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limi 
tation to data that has been modified to make it smoother and 
more continuous and/or to remove or diminish outlying 
points, for example, by performing a moving average of the 
raw data stream. Examples of data filters include FIR (finite 
impulse response), IIR (infinite impulse response), moving 
average filters, and the like. 

0130. The terms “smoothing” and “filtering as used 
herein are broad terms and are to be given their ordinary and 
customary meaning to a person of ordinary skill in the art 
(and are not to be limited to a special or customized 
meaning), and furthermore refer without limitation to modi 
fication of a set of data to make it smoother and more 
continuous or to remove or diminish outlying points, for 
example, by performing a moving average of the raw data 
Stream. 

0131 The term “algorithm' as used herein is a broad 
term and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art (and is not to be limited 
to a special or customized meaning), and furthermore refers 
without limitation to a computational process (for example, 
programs) involved in transforming information from one 
state to another, for example, by using computer processing. 

0132) The term “matched data pairs” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to reference data (for 
example, one or more reference analyte data points) matched 
with Substantially time corresponding sensor data (for 
example, one or more sensor data points). 

0133. The term “counts” as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to a unit of measurement of a digital 
signal. In one example, a raw data stream measured in 
counts is directly related to a Voltage (e.g., converted by an 
A/D converter), which is directly related to current from the 
working electrode. In another example, counter electrode 
Voltage measured in counts is directly related to a Voltage. 

0134) The term “sensor as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to the component or region of a device by 
which an analyte can be quantified. 

0135) The term “needle' as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
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without limitation to a slender hollow instrument for intro 
ducing material into or removing material from the body. 
0.136 The terms “glucose sensor' and “member for deter 
mining the amount of glucose in a biological sample,’ as 
used herein, are broad terms and are used in an ordinary 
sense, including, without limitation, any mechanism (e.g., 
enzymatic or non-enzymatic) by which glucose can be 
quantified. For example, some embodiments utilize a mem 
brane that contains glucose oxidase that catalyzes the con 
version of oxygen and glucose to hydrogen peroxide and 
gluconate, as illustrated by the following chemical reaction: 

Glucose--O-->Gluconate+H2O, 

0.137 Because for each glucose molecule metabolized, 
there is a proportional change in the co-reactant O. and the 
product H2O, one can use an electrode to monitor the 
current change in either the co-reactant or the product to 
determine glucose concentration. 
0.138. The terms “operably connected and “operably 
linked as used herein are broad terms and are to be given 
their ordinary and customary meaning to a person of ordi 
nary skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limi 
tation to one or more components being linked to another 
component(s) in a manner that allows transmission of sig 
nals between the components. For example, one or more 
electrodes can be used to detect the amount of glucose in a 
sample and convert that information into a signal, e.g., an 
electrical or electromagnetic signal; the signal can then be 
transmitted to an electronic circuit. In this case, the electrode 
is "operably linked to the electronic circuitry. These terms 
are broad enough to include wireless connectivity. 
0.139. The term “electronic circuitry” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to the components of a 
device configured to process biological information 
obtained from a host. In the case of a glucose-measuring 
device, the biological information is obtained by a sensor 
regarding a particular glucose in a biological fluid, thereby 
providing data regarding the amount of that glucose in the 
fluid. U.S. Pat. Nos. 4,757,022, 5,497,772 and 4,787,398, 
which are hereby incorporated by reference, describe suit 
able electronic circuits that can be utilized with devices 
including the biointerface membrane of a preferred embodi 
ment. 

0140. The term “substantially as used herein is a broad 
term and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art (and is not to be limited 
to a special or customized meaning), and furthermore refers 
without limitation to being largely but not necessarily 
wholly that which is specified. 

0.141. The term “proximal' as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to near to a point of reference Such as an 
origin, a point of attachment, or the midline of the body. For 
example, in Some embodiments of a glucose sensor, wherein 
the glucose sensor is the point of reference, an oxygen 
sensor located proximal to the glucose sensor will be in 
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contact with or nearby the glucose sensor Such that their 
respective local environments are shared (e.g., levels of 
glucose, oxygen, pH, temperature, etc. are similar). 
0142. The term “distal” as used herein is a broad term and 

is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to spaced relatively far from a point of 
reference, such as an origin or a point of attachment, or 
midline of the body. For example, in some embodiments of 
a glucose sensor, wherein the glucose sensor is the point of 
reference, an oxygen sensor located distal to the glucose 
sensor will be sufficiently far from the glucose sensor such 
their respective local environments are not shared (e.g., 
levels of glucose, oxygen, pH, temperature, etc. may not be 
similar). 
0143. The term “domain as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to a region of the membrane system that 
can be a layer, a uniform or non-uniform gradient (for 
example, an anisotropic region of a membrane), or a portion 
of a membrane. 

0144. The terms “in vivo portion' and “distal portion” as 
used herein are broad terms and are to be given their 
ordinary and customary meaning to a person of ordinary 
skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limi 
tation to the portion of the device (for example, a sensor) 
adapted for insertion into and/or existence within a living 
body of a host. 
0145 The terms "ex vivo portion' and “proximal por 
tion” as used herein are broad terms and are to be given their 
ordinary and customary meaning to a person of ordinary 
skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limi 
tation to the portion of the device (for example, a sensor) 
adapted to remain and/or exist outside of a living body of a 
host. 

0146 The term “electrochemical cell as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to a device in which 
chemical energy is converted to electrical energy. Such a cell 
typically consists of two or more electrodes held apart from 
each other and in contact with an electrolyte solution. 
Connection of the electrodes to a source of direct electric 
current renders one of them negatively charged and the other 
positively charged. Positive ions in the electrolyte migrate to 
the negative electrode (cathode) and there combine with one 
or more electrons, losing part or all of their charge and 
becoming new ions having lower charge or neutral atoms or 
molecules; at the same time, negative ions migrate to the 
positive electrode (anode) and transfer one or more electrons 
to it, also becoming new ions or neutral particles. The 
overall effect of the two processes is the transfer of electrons 
from the negative ions to the positive ions, a chemical 
reaction. 

0147 The term “potentiostat” as used herein is a broad 
term and is to be given its ordinary and customary meaning 
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to a person of ordinary skill in the art (and is not to be limited 
to a special or customized meaning), and furthermore refers 
without limitation to an electrical system that controls the 
potential between the working and reference electrodes of a 
three-electrode cell at a preset value. It forces whatever 
current is necessary to flow between the working and 
counter electrodes to keep the desired potential, as long as 
the needed cell voltage and current do not exceed the 
compliance limits of the potentiostat. 

0.148. The term “electrical potential” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to the electrical poten 
tial difference between two points in a circuit which is the 
cause of the flow of a current. 

0.149 The term “host’ as used herein is a broad term and 
is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to mammals, particularly humans. 
0150. The term “continuous analyte (or glucose) sensor' 
as used herein is a broad term and is to be given its ordinary 
and customary meaning to a person of ordinary skill in the 
art (and is not to be limited to a special or customized 
meaning), and furthermore refers without limitation to a 
device that continuously or continually measures a concen 
tration of an analyte, for example, at time intervals ranging 
from fractions of a second up to, for example, 1, 2, or 5 
minutes, or longer. In one exemplary embodiment, the 
continuous analyte sensor is a glucose sensor Such as 
described in U.S. Pat. No. 6,001,067, which is incorporated 
herein by reference in its entirety. 
0151. The term “continuous analyte (or glucose) sensing 
as used herein is a broad term and is to be given its ordinary 
and customary meaning to a person of ordinary skill in the 
art (and is not to be limited to a special or customized 
meaning), and furthermore refers without limitation to the 
period in which monitoring of an analyte is continuously or 
continually performed, for example, at time intervals rang 
ing from fractions of a second up to, for example, 1, 2, or 5 
minutes, or longer. 

0152 The terms “reference analyte monitor,”“reference 
analyte meter, and “reference analyte sensor as used 
herein are broad terms and are to be given their ordinary and 
customary meaning to a person of ordinary skill in the art 
(and are not to be limited to a special or customized 
meaning), and furthermore refer without limitation to a 
device that measures a concentration of an analyte and can 
be used as a reference for the continuous analyte sensor, for 
example a self-monitoring blood glucose meter (SMBG) can 
be used as a reference for a continuous glucose sensor for 
comparison, calibration, and the like. 
0153. The terms “sensor head' and “sensing region' as 
used herein are broad terms and are to be given their 
ordinary and customary meaning to a person of ordinary 
skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limi 
tation to the region of a monitoring device responsible for 
the detection of a particular analyte. The sensing region 
generally comprises a non-conductive body, a working elec 
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trode (anode), a reference electrode (optional), and/or a 
counter electrode (cathode) passing through and secured 
within the body forming electrochemically reactive surfaces 
on the body and an electronic connective means at another 
location on the body, and a multi-domain membrane affixed 
to the body and covering the electrochemically reactive 
Surface. 

0154) The term “electrochemically reactive surface' as 
used herein is a broad term and is to be given its ordinary and 
customary meaning to a person of ordinary skill in the art 
(and is not to be limited to a special or customized meaning), 
and furthermore refers without limitation to the surface of an 
electrode where an electrochemical reaction takes place. In 
the case of the working electrode, the hydrogen peroxide 
produced by the enzyme catalyzed reaction of the glucose 
being detected reacts creating a measurable electronic cur 
rent (e.g., detection of glucose utilizing glucose oxidase 
produces H2O as a by product, HO reacts with the Surface 
of the working electrode producing two protons (2H), two 
electrons (2e) and one molecule of oxygen (O) which 
produces the electronic current being detected). In the case 
of the counter electrode, a reducible species, e.g., O is 
reduced at the electrode surface in order to balance the 
current being generated by the working electrode. 
0155 The term “electronic connection” as used herein is 
a broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to any electronic con 
nection known to those in the art that can be utilized to 
interface the sensor head electrodes with the electronic 
circuitry of a device such as mechanical (e.g., pin and 
socket) or soldered. 
0156 The term “sensing membrane' as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to a permeable or 
semi-permeable membrane that can be comprised of two or 
more domains and is typically constructed of materials of a 
few microns thickness or more, which are permeable to 
oxygen and may or may not be permeable to glucose. In one 
example, the sensing membrane comprises an immobilized 
glucose oxidase enzyme, which enables an electrochemical 
reaction to occur to measure a concentration of glucose. 
0157. The term “biointerface membrane' as used herein 

is a broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to a permeable mem 
brane that can be comprised of two or more domains and is 
typically constructed of materials of a few microns thickness 
or more, which can be placed over the sensor body to keep 
host cells (e.g., macrophages) from gaining proximity to, 
and thereby damaging, the sensing membrane or forming a 
barrier cell layer and interfering with the transport of glu 
cose across the tissue-device interface. 

0158. The term “Clarke Error Grid” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to an error grid analy 

Feb. 8, 2007 

sis, which evaluates the clinical significance of the differ 
ence between a reference glucose value and a sensor gen 
erated glucose value, taking into account 1) the value of the 
reference glucose measurement, 2) the value of the sensor 
glucose measurement, 3) the relative difference between the 
two values, and 4) the clinical significance of this difference. 
See Clarke et al., “Evaluating Clinical Accuracy of Systems 
for Self-Monitoring of Blood Glucose.” Diabetes Care, 
Volume 10, Number 5, September-October 1987, which is 
incorporated by reference herein in its entirety. 

0159. The term “physiologically feasible' as used herein 
is a broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to the physiological 
parameters obtained from continuous studies of glucose data 
in humans and/or animals. For example, a maximal Sus 
tained rate of change of glucose in humans of about 4 to 5 
mg/dL/min and a maximum acceleration of the rate of 
change of about 0.1 to 0.2 mg/dL/min/min are deemed 
physiologically feasible limits. Values outside of these limits 
would be considered non-physiological and likely a result of 
signal error, for example. As another example, the rate of 
change of glucose is lowest at the maxima and minima of the 
daily glucose range, which are the areas of greatest risk in 
patient treatment, thus a physiologically feasible rate of 
change can be set at the maxima and minima based on 
continuous studies of glucose data. As a further example, it 
has been observed that the best solution for the shape of the 
curve at any point along glucose signal data stream over a 
certain time period (e.g., about 20 to 30 minutes) is a straight 
line, which can be used to set physiological limits. 

0.160 The term “ischemia' as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to local and temporary deficiency of 
blood Supply due to obstruction of circulation to a part (e.g., 
sensor). Ischemia can be caused by mechanical obstruction 
(e.g., arterial narrowing or disruption) of the blood Supply, 
for example. 

0.161 The term "system noise' as used herein is a broad 
term and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art (and is not to be limited 
to a special or customized meaning), and furthermore refers 
without limitation to unwanted electronic or diffusion-re 
lated noise which can include Gaussian, motion-related, 
flicker, kinetic, or other white noise, for example. 

0162 The terms “noise,”“noise event(s).'"noise epi 
sode(s).'"signal artifact(s).'"signal artifact event(s).' and 
“signal artifact episode(s) as used herein are broad terms 
and are to be given their ordinary and customary meaning to 
a person of ordinary skill in the art (and are not to be limited 
to a special or customized meaning), and furthermore refer 
without limitation to signal noise that is caused by Substan 
tially non-glucose related, such as interfering species, 
macro- or micro-motion, ischemia, pH changes, temperature 
changes, pressure, stress, or even unknown sources of 
mechanical, electrical and/or biochemical noise for 
example. In some embodiments, signal artifacts are transient 
and characterized by a higher amplitude than system noise, 
and described as “transient non-glucose related signal arti 
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fact(s) that have a higher amplitude than system noise.” In 
Some embodiments, noise is caused by rate-limiting (or 
rate-increasing) phenomena. In some circumstances, the 
Source of the noise is unknown. 

0163 The terms “low noise' as used herein is a broad 
term and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art (and is not to be limited 
to a special or customized meaning), and furthermore refers 
without limitation to noise that Substantially decreases signal 
amplitude. 

0164. The terms “high noise' and “high spikes' as used 
herein are broad terms and are to be given their ordinary and 
customary meaning to a person of ordinary skill in the art 
(and are not to be limited to a special or customized 
meaning), and furthermore refer without limitation to noise 
that Substantially increases signal amplitude. 
0165. The term “frequency content as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to the spectral density, 
including the frequencies contained within a signal and their 
power. 

0166 The term “spectral density” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to power spectral den 
sity of a given bandwidth of electromagnetic radiation is the 
total power in this bandwidth divided by the specified 
bandwidth. Spectral density is usually expressed in Watts 
per Hertz (W/Hz). 
0167 The term “orthogonal transform as used herein is 
a broad term and is to be given its binary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to a general integral 
transform that is defined by g(C)= f(t)K(c.,t)dt, where 
K(O,t) represents a set of orthogonal basis functions. 

0168 The term “Fourier Transform as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to a technique for 
expressing a waveform as a weighted Sum of sines and 
cosines. 

0169. The term “Discrete Fourier Transform” as used 
herein is a broad term and is to be given its ordinary and 
customary meaning to a person of ordinary skill in the art 
(and is not to be limited to a special or customized meaning), 
and furthermore refers without limitation to a specialized 
Fourier transform where the variables are discrete. 

0170 The term “wavelet transform as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to a transform which 
converts a signal into a series of wavelets, which in theory 
allows signals processed by the wavelet transform to be 
stored more efficiently than ones processed by Fourier 
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transform. Wavelets can also be constructed with rough 
edges, to better approximate real-world signals. 
0171 The term "chronoamperometry” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to an electrochemical 
measuring technique used for electrochemical analysis or for 
the determination of the kinetics and mechanism of elec 
trode reactions. A fast-rising potential pulse is enforced on 
the working (or reference) electrode of an electrochemical 
cell and the current flowing through this electrode is mea 
Sured as a function of time. 

0.172. The term “pulsed amperometric detection” as used 
herein is a broad term and is to be given its ordinary and 
customary meaning to a person of ordinary skill in the art 
(and is not to be limited to a special or customized meaning), 
and furthermore refers without limitation to an electro 
chemical flow cell and a controller, which applies the 
potentials and monitors current generated by the electro 
chemical reactions. The cell can include one or multiple 
working electrodes at different applied potentials. Multiple 
electrodes can be arranged so that they face the chromato 
graphic flow independently (parallel configuration), or 
sequentially (series configuration). 
0173 The term “linear regression” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to finding a line in 
which a set of data has a minimal measurement from that 
line. Byproducts of this algorithm include a slope, a y-in 
tercept, and an R-Squared value that determine how well the 
measurement data fits the line. 

0.174 The term “non-linear regression” as used herein is 
a broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to fitting a set of data 
to describe the relationship between a response variable and 
one or more explanatory variables in a non-linear fashion. 
0.175. The term “mean” as used herein is a broad term and 

is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to the sum of the observations divided by 
the number of observations. 

0176) The term “trimmed mean' as used herein is a broad 
term and is to be given its ordinary and customary meaning 
to a person of ordinary skill in the art (and is not to be limited 
to a special or customized meaning), and furthermore refers 
without limitation to a mean taken after extreme values in 
the tails of a variable (e.g., highs and lows) are eliminated 
or reduced (e.g., “trimmed'). The trimmed mean compen 
sates for sensitivities to extreme values by dropping a certain 
percentage of values on the tails. For example, the 50% 
trimmed mean is the mean of the values between the upper 
and lower quartiles. The 90% trimmed mean is the mean of 
the values after truncating the lowest and highest 5% of the 
values. In one example, two highest and two lowest mea 
Surements are removed from a data set and then the remain 
ing measurements are averaged. 
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0177. The term “non-recursive filter” as used herein is a 
broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to an equation that uses 
moving averages as inputs and outputs. 

0178. The terms “recursive filter” and “auto-regressive 
algorithm' as used herein are broad terms and are to be 
given their ordinary and customary meaning to a person of 
ordinary skill in the art (and are not to be limited to a special 
or customized meaning), and furthermore refer without 
limitation to an equation in which includes previous aver 
ages are part of the next filtered output. More particularly, 
the generation of a series of observations whereby the value 
of each observation is partly dependent on the values of 
those that have immediately preceded it. One example is a 
regression structure in which lagged response values assume 
the role of the independent variables. 

0179 The term “signal estimation algorithm factors’ as 
used herein is a broad term and is to be given its ordinary and 
customary meaning to a person of ordinary skill in the art 
(and is not to be limited to a special or customized meaning), 
and furthermore refers without limitation to one or more 
algorithms that use historical and/or present signal data 
stream values to estimate unknown signal data stream Val 
ues. For example, signal estimation algorithm factors can 
include one or more algorithms, such as linear or non-linear 
regression. As another example, signal estimation algorithm 
factors can include one or more sets of coefficients that can 
be applied to one algorithm. 

0180. The term “variation' as used herein is a broad term 
and is to be given its ordinary and customary meaning to a 
person of ordinary skill in the art (and is not to be limited to 
a special or customized meaning), and furthermore refers 
without limitation to a divergence or amount of change from 
a point, line, or set of data. In one embodiment, estimated 
analyte values can have a variation including a range of 
values outside of the estimated analyte values that represent 
a range of possibilities based on known physiological pat 
terns, for example. 

0181. The terms “physiological parameters' and “physi 
ological boundaries' as used herein are broad terms and are 
to be given their ordinary and customary meaning to a 
person of ordinary skill in the art (and are not to be limited 
to a special or customized meaning), and furthermore refer 
without limitation to the parameters obtained from continu 
ous studies of physiological data in humans and/or animals. 
For example, a maximal Sustained rate of change of glucose 
in humans of about 4 to 5 mg/dL/min and a maximum 
acceleration of the rate of change of about 0.1 to 0.2 
mg/dL/min are deemed physiologically feasible limits; Val 
ues outside of these limits would be considered non-physi 
ological. As another example, the rate of change of glucose 
is lowest at the maxima and minima of the daily glucose 
range, which are the areas of greatest risk in patient treat 
ment, thus a physiologically feasible rate of change can be 
set at the maxima and minima based on continuous studies 
of glucose data. As a further example, it has been observed 
that the best solution for the shape of the curve at any point 
along glucose signal data stream over a certain time period 
(for example, about 20 to 30 minutes) is a straight line, 

Feb. 8, 2007 

which can be used to set physiological limits. These terms 
are broad enough to include physiological parameters for 
any analyte. 

0182. The term “measured analyte values' as used herein 
is a broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to an analyte value or 
set of analyte values for a time period for which analyte data 
has been measured by an analyte sensor. The term is broad 
enough to include data from the analyte sensor before or 
after data processing in the sensor and/or receiver (for 
example, data Smoothing, calibration, and the like). 
0183 The term “estimated analyte values' as used herein 

is a broad term and is to be given its ordinary and customary 
meaning to a person of ordinary skill in the art (and is not 
to be limited to a special or customized meaning), and 
furthermore refers without limitation to an analyte value or 
set of analyte values, which have been algorithmically 
extrapolated from measured analyte values. Typically, esti 
mated analyte values are estimated for a time period during 
which no data exists. However, estimated analyte values can 
also be estimated during a time period for which measured 
data exists, but is to be replaced by algorithmically extrapo 
lated (e.g. processed or filtered) data due to noise or a time 
lag in the measured data, for example. 
0.184 The terms “interferants' and “interfering species' 
as used herein are broad terms and are to be given their 
ordinary and customary meaning to a person of ordinary 
skill in the art (and are not to be limited to a special or 
customized meaning), and furthermore refer without limi 
tation to effects and/or species that interfere with the mea 
Surement of an analyte of interest in a sensor to produce a 
signal that does not accurately represent the analyte con 
centration. In one example of an electrochemical sensor, 
interfering species are compounds with an oxidation poten 
tial that overlap that of the analyte to be measured, thereby 
producing a false positive signal. 
0185. As employed herein, the following abbreviations 
apply: Eq and Eqs (equivalents); mEq (millieduivalents); M 
(molar); mM (millimolar) uM (micromolar); N (Normal); 
mol (moles); mmol (millimoles); umol (micromoles); nmol 
(nanomoles); g (grams); mg (milligrams); Lug (micrograms); 
Kg (kilograms); L (liters); mL (milliliters); dL (deciliters); 
LL (microliters); cm (centimeters); mm (millimeters); Lim 
(micrometers); nm (nanometers); h and hr (hours); min. 
(minutes); S and Sec. (seconds); C. (degrees Centigrade). 
Overview 

0186 The preferred embodiments relate to the use of a 
glucose sensor that measures a concentration of glucose or 
a Substance indicative of the concentration or presence of the 
glucose. In some embodiments, the glucose sensor is a 
continuous device, for example a Subcutaneous, transder 
mal, or intravascular device. In some embodiments, the 
device can analyze a plurality of intermittent blood samples. 
The glucose sensor can use any method of glucose-mea 
Surement, including enzymatic, chemical, physical, electro 
chemical, spectrophotometric, polarimetric, calorimetric, 
iontophoretic, radiometric, and the like. 
0187. The glucose sensor can use any known method, 
including invasive, minimally invasive, and non-invasive 
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sensing techniques, to provide a data stream indicative of the 
concentration of glucose in a host. The data stream is 
typically a raw data signal that is used to provide a useful 
value of glucose to a user, Such as a patient or doctor, who 
may be using the sensor. It is well known that raw data 
streams typically include system noise Such as defined 
herein; however the preferred embodiments address the 
detection and replacement of “signal artifacts' as defined 
herein. Accordingly, appropriate signal estimation (e.g., 
filtering, data Smoothing, augmenting, projecting, and/or 
other methods) replace Such erroneous signals (e.g., signal 
artifacts) in the raw data stream. Glucose Sensor 
0188 The glucose sensor can be any device capable of 
measuring the concentration of glucose. One exemplary 
embodiment is described below, which utilizes an implant 
able glucose sensor. However, it should be understood that 
the devices and methods described herein can be applied to 
any device capable of detecting a concentration of glucose 
and providing an output signal that represents the concen 
tration of glucose. 

0189 In one preferred embodiment, the analyte sensor is 
an implantable glucose sensor, such as described with ref 
erence to U.S. Pat. No. 6,001,067 and U.S. Publication No. 
US-2005-0027463-A1. In another preferred embodiment, 
the analyte sensor is a transcutaneous glucose sensor, Such 
as described with reference to U.S. Publication No. 
US-2006-0020187-A1. In one alternative embodiment, the 
continuous glucose sensor comprises a transcutaneous sen 
sor such as described in U.S. Pat. No. 6,565,509 to Say et al., 
for example. In another alternative embodiment, the con 
tinuous glucose sensor comprises a Subcutaneous sensor 
such as described with reference to U.S. Pat. No. 6,579,690 
to Bonnecaze et al. or U.S. Pat. No. 6,484,046 to Say et al., 
for example. In another alternative embodiment, the con 
tinuous glucose sensor comprises a refillable Subcutaneous 
sensor such as described with reference to U.S. Pat. No. 
6.512.939 to Colvin et al., for example. In another alterna 
tive embodiment, the continuous glucose sensor comprises 
an intravascular sensor Such as described with reference to 
U.S. Pat. No. 6,477.395 to Schulman et al., for example. In 
another alternative embodiment, the continuous glucose 
sensor comprises an intravascular sensor Such as described 
with reference to U.S. Pat. No. 6,424,847 to Mastrototaro et 
al. 

0.190 FIG. 1A is an exploded perspective view of one 
exemplary embodiment comprising an implantable glucose 
sensor 10 that utilizes amperometric electrochemical sensor 
technology to measure glucose concentration. In this exem 
plary embodiment, a body 12 and head 14 house the 
electrodes 16 and sensor electronics, which are described in 
more detail below with reference to FIG. 2. Three electrodes 
16 are operably connected to the sensor electronics (FIG. 2) 
and are covered by a sensing membrane 17 and a biointer 
face membrane 18, which are attached by a clip 19. 

0191 In one embodiment, the three electrodes 16, which 
protrude through the head 14, include a platinum working 
electrode, a platinum counter electrode, and a silver/silver 
chloride reference electrode. The top ends of the electrodes 
are in contact with an electrolyte phase (not shown), which 
is a free-flowing fluid phase disposed between the sensing 
membrane 17 and the electrodes 16. The sensing membrane 
17 includes an enzyme, e.g., glucose oxidase, which covers 
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the electrolyte phase. The biointerface membrane 18 covers 
the sensing membrane 17 and serves, at least in part, to 
protect the sensor 10 from external forces that can result in 
environmental stress cracking of the sensing membrane 17. 
0.192 In the illustrated embodiment, the counter elec 
trode is provided to balance the current generated by the 
species being measured at the working electrode. In the case 
of a glucose oxidase based glucose sensor, the species being 
measured at the working electrode is HO. Glucose oxidase 
catalyzes the conversion of oxygen and glucose to hydrogen 
peroxide and gluconate according to the following reaction: 

Glucose--O-->Gluconate+H2O, 

0193 The change in HO can be monitored to determine 
glucose concentration because for each glucose molecule 
metabolized, there is a proportional change in the product 
HO. Oxidation of HO, by the working electrode is 
balanced by reduction of ambient oxygen, enzyme generated 
HO, or other reducible species at the counter electrode. 
The H2O produced from the glucose oxidase reaction 
further reacts at the surface of working electrode and pro 
duces two protons (2H), two electrons (2e), and one 
oxygen molecule (O). 
0194 FIG. 1B is side view of a distal portion of a 
transcutaneously-inserted sensor 100 in one embodiment, 
showing working and reference electrodes. In preferred 
embodiments, the sensor 100 is formed from a working 
electrode 244 and a reference electrode 246 helically wound 
around the working electrode 244. An insulator 245 is 
disposed between the working and reference electrodes to 
provide necessary electrical insulation therebetween. Cer 
tain portions of the electrodes are exposed to enable elec 
trochemical reaction thereon, for example, a window 243 
can be formed in the insulator to expose a portion of the 
working electrode 244 for electrochemical reaction. 
0.195. In preferred embodiments, each electrode is 
formed from a fine wire with a diameter of from about 0.001 
or less to about 0.010 inches or more, for example, and is 
formed from, e.g., a plated insulator, a plated wire, or bulk 
electrically conductive material. Although the illustrated 
electrode configuration and associated text describe one 
preferred method of forming a transcutaneous sensor, a 
variety of known transcutaneous sensor configurations can 
be employed with the transcutaneous analyte sensor system 
of the preferred embodiments, such as are described in U.S. 
Pat. No. 6,695,860 to Ward et al., U.S. Pat. No. 6,565,509 to 
Say et al., U.S. Pat. No. 6,248,067 to Causey III, et al., and 
U.S. Pat. No. 6,514,718 to Heller et al. 
0196. In preferred embodiments, the working electrode 
comprises a wire formed from a conductive material. Such as 
platinum, platinum-iridium, palladium, graphite, gold, car 
bon, conductive polymer, alloys, and the like. Although the 
electrodes can by formed by a variety of manufacturing 
techniques (bulk metal processing, deposition of metal onto 
a Substrate, and the like), it can be advantageous to form the 
electrodes from plated wire (e.g., platinum on steel wire) or 
bulk metal (e.g., platinum wire). It is believed that electrodes 
formed from bulk metal wire provide superior performance 
(e.g., in contrast to deposited electrodes), including 
increased stability of assay, simplified manufacturability, 
resistance to contamination (e.g., which can be introduced in 
deposition processes), and improved Surface reaction (e.g., 
due to purity of material) without peeling or delamination. 
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0197) The working electrode 244 is configured to mea 
Sure the concentration of an analyte. In an enzymatic elec 
trochemical sensor for detecting glucose, for example, the 
working electrode measures the hydrogen peroxide pro 
duced by an enzyme catalyzed reaction of the analyte being 
detected and creates a measurable electronic current. For 
example, in the detection of glucose wherein glucose oxi 
dase produces hydrogen peroxide as a byproduct, hydrogen 
peroxide reacts with the surface of the working electrode 
producing two protons (2H), two electrons (2e) and one 
molecule of oxygen (O), which produces the electronic 
current being detected. 
0198 In preferred embodiments, the working electrode 
244 is covered with an insulating material 45, for example, 
a non-conductive polymer. Dip-coating, spray-coating, 
vapor-deposition, or other coating or deposition techniques 
can be used to deposit the insulating material on the working 
electrode. In one embodiment, the insulating material com 
prises parylene, which can be an advantageous polymer 
coating for its strength, lubricity, and electrical insulation 
properties. Generally, parylene is produced by vapor depo 
sition and polymerization of para-xylylene (or its substituted 
derivatives). However, any suitable insulating material can 
be used, for example, fluorinated polymers, polyethylene 
terephthalate, polyurethane, polyimide, other nonconducting 
polymers, and the like. Glass or ceramic materials can also 
be employed. Other materials suitable for use include sur 
face energy modified coating systems such as are marketed 
under the trade names AMC18, AMC148, AMC141, and 
AMC321 by Advanced Materials Components Express of 
Bellafonte, Pa. In some alternative embodiments, however, 
the working electrode may not require a coating of insulator. 

0199 The reference electrode 246, which can function as 
a reference electrode alone, or as a dual reference and 
counter electrode, is formed from silver, silver/silver chlo 
ride, and the like. Preferably, the reference electrode 246 is 
juxtapositioned and/or twisted with or around the working 
electrode 244; however other configurations are also pos 
sible. In the illustrated embodiments, the reference electrode 
246 is helically wound around the working electrode 244. 
The assembly of wires is then optionally coated or adhered 
together with an insulating material, similar to that described 
above, so as to provide an insulating attachment. 

0200. In embodiments wherein an outer insulator is dis 
posed, a portion of the coated assembly structure can be 
stripped or otherwise removed, for example, by hand, exci 
mer lasing, chemical etching, laser ablation, grit-blasting 
(e.g., with sodium bicarbonate or other Suitable grit), and the 
like, to expose the electroactive Surfaces. Alternatively, a 
portion of the electrode can be masked prior to depositing 
the insulator in order to maintain an exposed electroactive 
Surface area. In one exemplary embodiment, grit blasting is 
implemented to expose the electroactive surfaces, preferably 
utilizing a grit material that is sufficiently hard to ablate the 
polymer material, while being Sufficiently soft So as to 
minimize or avoid damage to the underlying metal electrode 
(e.g., a platinum electrode). Although a variety of "grit” 
materials can be used (e.g., Sand, talc, walnut shell, ground 
plastic, sea salt, and the like), in Some preferred embodi 
ments, sodium bicarbonate is an advantageous grit-material 
because it is sufficiently hard to ablate, e.g., a parylene 
coating without damaging, e.g., an underlying platinum 
conductor. One additional advantage of sodium bicarbonate 
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blasting includes its polishing action on the metal as it strips 
the polymer layer, thereby eliminating a cleaning step that 
might otherwise be necessary. 

0201 In the embodiment illustrated in FIG. 1B, a radial 
window 243 is formed through the insulating material 245 to 
expose a circumferential electroactive surface of the work 
ing electrode. Additionally, sections 241 of electroactive 
surface of the reference electrode are exposed. For example, 
the 241 sections of electroactive surface can be masked 
during deposition of an outer insulating layer or etched after 
deposition of an outer insulating layer. 

0202) In some applications, cellular attack or migration 
of cells to the sensor can cause reduced sensitivity and/or 
function of the device, particularly after the first day of 
implantation. However, when the exposed electroactive sur 
face is distributed circumferentially about the sensor (e.g., as 
in a radial window), the available surface area for reaction 
can be sufficiently distributed so as to minimize the effect of 
local cellular invasion of the sensor on the sensor signal. 
Alternatively, a tangential exposed electroactive window 
can be formed, for example, by Stripping only one side of the 
coated assembly structure. In other alternative embodi 
ments, the window can be provided at the tip of the coated 
assembly structure such that the electroactive Surfaces are 
exposed at the tip of the sensor. Other methods and con 
figurations for exposing electroactive surfaces can also be 
employed. 

0203. In some embodiments, the working electrode has a 
diameter of from about 0.001 inches or less to about 0.010 
inches or more, preferably from about 0.002 inches to about 
0.008 inches, and more preferably from about 0.004 inches 
to about 0.005 inches. The length of the window can be from 
about 0.1 mm (about 0.004 inches) or less to about 2 mm 
(about 0.078 inches) or more, and preferably from about 0.5 
mm (about 0.02 inches) to about 0.75 mm (0.03 inches). In 
Such embodiments, the exposed surface area of the working 
electrode is preferably from about 0.000013 in (0.0000839 
cm) or less to about 0.0025 in (0.016129 cm) or more 
(assuming a diameter of from about 0.001 inches to about 
0.010 inches and a length of from about 0.004 inches to 
about 0.078 inches). The preferred exposed surface area of 
the working electrode is selected to produce an analyte 
signal with a current in the pico Amp range, Such as is 
described in more detail elsewhere herein. However, a 
current in the pico Amp range can be dependent upon a 
variety of factors, for example the electronic circuitry design 
(e.g., sample rate, current draw, A/D converter bit resolution, 
etc.), the membrane system (e.g., permeability of the analyte 
through the membrane system), and the exposed surface area 
of the working electrode. Accordingly, the exposed electro 
active working electrode surface area can be selected to have 
a value greater than or less than the above-described ranges 
taking into consideration alterations in the membrane system 
and/or electronic circuitry. In preferred embodiments of a 
glucose sensor, it can be advantageous to minimize the 
Surface area of the working electrode while maximizing the 
diffusivity of glucose in order to optimize the signal-to-noise 
ratio while maintaining sensor performance in both high and 
low glucose concentration ranges. 

0204. In some alternative embodiments, the exposed sur 
face area of the working (and/or other) electrode can be 
increased by altering the cross-section of the electrode itself. 
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For example, in some embodiments the cross-section of the 
working electrode can be defined by a cross, star, cloverleaf. 
ribbed, dimpled, ridged, irregular, or other non-circular 
configuration; thus, for any predetermined length of elec 
trode, a specific increased surface area can be achieved (as 
compared to the area achieved by a circular cross-section). 
Increasing the Surface area of the working electrode can be 
advantageous in providing an increased signal responsive to 
the analyte concentration, which in turn can be helpful in 
improving the signal-to-noise ratio, for example. 

0205. In some alternative embodiments, additional elec 
trodes can be included within the assembly, for example, a 
three-electrode system (working, reference, and counter 
electrodes) and/or an additional working electrode (e.g., an 
electrode which can be used to generate oxygen, which is 
configured as a baseline Subtracting electrode, or which is 
configured for measuring additional analytes). U.S. Publi 
cation No. US-2005-0161346-A1 and U.S. Publication No. 
US-2005-0143635-A1 describe some systems and methods 
for implementing and using additional working, counter, 
and/or reference electrodes. In one implementation wherein 
the sensor comprises two working electrodes, the two work 
ing electrodes are juxtapositioned (e.g., extend parallel to 
each other), around which the reference electrode is dis 
posed (e.g., helically wound). In some embodiments 
wherein two or more working electrodes are provided, the 
working electrodes can be formed in a double-, triple-, 
quad-, etc. helix configuration along the length of the sensor 
(for example, surrounding a reference electrode, insulated 
rod, or other Support structure). The resulting electrode 
system can be configured with an appropriate membrane 
system, wherein the first working electrode is configured to 
measure a first signal comprising glucose and baseline and 
the additional working electrode is configured to measure a 
baseline signal consisting of baseline only (e.g., configured 
to be substantially similar to the first working electrode 
without an enzyme disposed thereon). In this way, the 
baseline signal can be subtracted from the first signal to 
produce a glucose-only signal that is Substantially not Sub 
ject to fluctuations in the baseline and/or interfering species 
on the signal. 
0206 Although the preferred embodiments illustrate one 
electrode configuration including one bulk metal wire heli 
cally wound around another bulk metal wire, other electrode 
configurations are also contemplated. In an alternative 
embodiment, the working electrode comprises a tube with a 
reference electrode disposed or coiled inside, including an 
insulator therebetween. Alternatively, the reference elec 
trode comprises a tube with a working electrode disposed or 
coiled inside, including an insulator therebetween. In 
another alternative embodiment, a polymer (e.g., insulating) 
rod is provided, wherein the electrodes are deposited (e.g., 
electro-plated) thereon. In yet another alternative embodi 
ment, a metallic (e.g., Steel) rod is provided, coated with an 
insulating material, onto which the working and reference 
electrodes are deposited. In yet another alternative embodi 
ment, one or more working electrodes are helically wound 
around a reference electrode. 

0207 Preferably, the electrodes and membrane systems 
of the preferred embodiments are coaxially formed, namely, 
the electrodes and/or membrane system all share the same 
central axis. While not wishing to be bound by theory, it is 
believed that a coaxial design of the sensor enables a 
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symmetrical design without a preferred bend radius. 
Namely, in contrast to prior art sensors comprising a Sub 
stantially planar configuration that can Suffer from regular 
bending about the plane of the sensor, the coaxial design of 
the preferred embodiments do not have a preferred bend 
radius and therefore are not subject to regular bending about 
a particular plane (which can cause fatigue failures and the 
like). However, non-coaxial sensors can be implemented 
with the sensor system of the preferred embodiments. 
0208. In addition to the above-described advantages, the 
coaxial sensor design of the preferred embodiments enables 
the diameter of the connecting end of the sensor (proximal 
portion) to be substantially the same as that of the sensing 
end (distal portion) such that the needle is able to insert the 
sensor into the host and Subsequently slide back over the 
sensor and release the sensor from the needle, without slots 
or other complex multi-component designs. 

0209. In one such alternative embodiment, the two wires 
of the sensor are held apart and configured for insertion into 
the host in proximal but separate locations. The separation of 
the working and reference electrodes in Such an embodiment 
can provide additional electrochemical stability with sim 
plified manufacture and electrical connectivity. It is appre 
ciated by one skilled in the art that a variety of electrode 
configurations can be implemented with the preferred 
embodiments. 

0210 Preferably, a membrane system is deposited over 
the electroactive surfaces of the sensor 100 and includes a 
plurality of domains or layers. The membrane system may 
be deposited on the exposed electroactive Surfaces using 
known thin film techniques (for example, spraying, electro 
depositing, dipping, and the like). In one exemplary embodi 
ment, each domain is deposited by dipping the sensor into a 
Solution and drawing out the sensor at a speed that provides 
the appropriate domain thickness. In general, the membrane 
system may be disposed over (deposited on) the electroac 
tive surfaces using methods appreciated by one skilled in the 
art. 

0211. In one exemplary embodiment, the sensor is an 
enzyme-based electrochemical sensor, wherein the glucose 
measuring working electrode measures the hydrogen peroX 
ide produced by the enzyme catalyzed reaction of glucose 
being detected and creates a measurable electronic current 
(for example, detection of glucose utilizing glucose oxidase 
produces H2O peroxide as a by product, H2O, reacts with 
the Surface of the working electrode producing two protons 
(2H), two electrons (2e) and one molecule of oxygen (O) 
which produces the electronic current being detected). Such 
as described in more detail above and as is appreciated by 
one skilled in the art. Typically, the working and reference 
electrodes operatively connect with sensor electronics, such 
as described in more detail elsewhere herein. Additional 
aspects of the above-described transcutaneously inserted 
sensor can be found in co-pending U.S. Publication No. 
US-2006-002O187-A1. 

0212. In some embodiments (e.g., sensors such as illus 
trated in FIGS. 1A and 1B), a potentiostat is employed to 
monitor the electrochemical reaction at the electrochemical 
cell. The potentiostat applies a constant potential to the 
working and reference electrodes to determine a current 
value. The current that is produced at the working electrode 
(and flows through the circuitry to the counter electrode) is 
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proportional to the amount of H2O that diffuses to the 
working electrode. Accordingly, a raw signal can be pro 
duced that is representative of the concentration of glucose 
in the user's body, and therefore can be utilized to estimate 
a meaningful glucose value. Such as described herein. 
0213. One problem with raw data stream output of enzy 
matic glucose sensors such as described above is caused by 
transient non-glucose reaction rate-limiting phenomenon. 
For example, if oxygen is deficient, relative to the amount of 
glucose, then the enzymatic reaction will be limited by 
oxygen rather than glucose. Consequently, the output signal 
will be indicative of the oxygen concentration rather than the 
glucose concentration, producing erroneous signals. Other 
non-glucose reaction rate-limiting phenomenon could 
include interfering species, temperature and/or pH changes, 
or even unknown sources of mechanical, electrical and/or 
biochemical noise, for example. Accordingly, reduction of 
signal noise, and particularly replacement of transient non 
glucose related signal artifacts in the data stream that have 
a higher amplitude than system noise, can be performed in 
the sensor and/or in the receiver, Such as described in more 
detail below in the sections entitled “Signal Artifacts Detec 
tion' and “Signal Artifacts Replacement,” for example. 
0214 FIG. 2 is a block diagram that illustrates one 
possible configuration of the sensor electronics in one 
embodiment. In this embodiment, a potentiostat 20 is 
shown, which is operatively connected to an electrode 
system (FIG. 1A or 1B) and provides a voltage to the 
electrodes, which biases the sensor to enable measurement 
of a current value indicative of the analyte concentration in 
the host (also referred to as the analog portion). In some 
embodiments, the potentiostat includes a resistor (not 
shown) that translates the current into Voltage. In some 
alternative embodiments, a current to frequency converter is 
provided that is configured to continuously integrate the 
measured current, for example, using a charge counting 
device. In the illustrated embodiment, an A/D converter 21 
digitizes the analog signal into “counts’ for processing. 
Accordingly, the resulting raw data stream in counts is 
directly related to the current measured by the potentiostat 
20. 

0215. A processor module 22 is the central control unit 
that controls the processing of the sensor electronics. In 
Some embodiments, the processor module includes a micro 
processor, however a computer system other than a micro 
processor can be used to process data as described herein, 
for example an ASIC can be used for some or all of the 
sensor's central processing. The processor typically pro 
vides semi-permanent storage of data, for example, storing 
data Such as sensor identifier (ID) and programming to 
process data streams (for example, programming for data 
Smoothing and/or replacement of signal artifacts Such as is 
described in more detail elsewhere herein). The processor 
additionally can be used for the systems cache memory, for 
example for temporarily storing recent sensor data. In some 
embodiments, the processor module comprises memory 
storage components such as ROM, RAM, dynamic-RAM, 
static-RAM, non-static RAM, EEPROM, rewritable ROMs, 
flash memory, and the like. In one exemplary embodiment, 
EEPROM 23 provides semi-permanent storage of data, for 
example, storing data Such as sensor identifier (ID) and 
programming to process data streams (e.g., programming for 
signal artifacts detection and/or replacement Such as 
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described elsewhere herein). In one exemplary embodiment, 
SRAM 24 can be used for the systems cache memory, for 
example for temporarily storing recent sensor data. 

0216) In some embodiments, the processor module com 
prises a digital filter, for example, an IIR or FIR filter, 
configured to smooth the raw data stream from the A/D 
converter. Generally, digital filters are programmed to filter 
data sampled at a predetermined time interval (also referred 
to as a sample rate). In some embodiments, wherein the 
potentiostat is configured to measure the analyte at discrete 
time intervals, these time intervals determine the sample rate 
of the digital filter. In some alternative embodiments, 
wherein the potentiostat is configured to continuously mea 
Sure the analyte, for example, using a current-to-frequency 
converter, the processor module can be programmed to 
request a digital value from the A/D converter at a prede 
termined time interval, also referred to as the acquisition 
time. In these alternative embodiments, the values obtained 
by the processor are advantageously averaged over the 
acquisition time due the continuity of the current measure 
ment. Accordingly, the acquisition time determines the 
sample rate of the digital filter. In preferred embodiments, 
the processor module is configured with a programmable 
acquisition time, namely, the predetermined time interval for 
requesting the digital value from the A/D converter is 
programmable by a user within the digital circuitry of the 
processor module. An acquisition time of from about 2 
seconds to about 512 seconds is preferred; however any 
acquisition time can be programmed into the processor 
module. A programmable acquisition time is advantageous 
in optimizing noise filtration, time lag, and processing/ 
battery power. 

0217 Preferably, the processor module is configured to 
build the data packet for transmission to an outside source, 
for example, an RF transmission to a receiver as described 
in more detail below. Generally, the data packet comprises 
a plurality of bits that can include a sensor ID code, raw data, 
filtered data, and/or error detection or correction. The pro 
cessor module can be configured to transmit any combina 
tion of raw and/or filtered data. 

0218. A battery 25 is operatively connected to the pro 
cessor 22 and provides the necessary power for the sensor 
(e.g., 10 or 100). In one embodiment, the battery is a Lithium 
Manganese Dioxide battery, however any appropriately 
sized and powered battery can be used (e.g., AAA, Nickel 
cadmium, Zinc-carbon, Alkaline, Lithium, Nickel-metal 
hydride, Lithium-ion, Zinc-air, Zinc-mercury oxide, Silver 
Zinc, or hermetically-sealed). In some embodiments the 
battery is rechargeable. In some embodiments, a plurality of 
batteries can be used to power the system. In yet other 
embodiments, the receiver can be transcutaneously powered 
via an inductive coupling, for example. A Quartz Crystal 26 
is operatively connected to the processor 22 and maintains 
system time for the computer system as a whole. 

0219) An RF module, (e.g., an RF Transceiver) 27 is 
operably connected to the processor 22 and transmits the 
sensor data from the sensor (e.g., 10 or 100) to a receiver 
(see FIGS. 3 and 4). Although an RF transceiver is shown 
here, some other embodiments can include a wired rather 
than wireless connection to the receiver. A second quartz 
crystal 28 provides the system time for synchronizing the 
data transmissions from the RF transceiver. It is noted that 
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the transceiver 27 can be substituted with a transmitter in 
other embodiments. In some alternative embodiments, how 
ever, other mechanisms, such as optical, infrared radiation 
(1R), ultrasonic, and the like, can be used to transmit and/or 
receive data. 

0220. In some embodiments, a Signal Artifacts Detector 
29 is provided that includes one or more of the following: an 
oxygen detector 29a, a pH detector 29b, a temperature 
detector 29c, and a pressure/stress detector 29d, which is 
described in more detail with reference to signal artifacts 
detection. It is noted that in Some embodiments the signal 
artifacts detector 29 is a separate entity (e.g., temperature 
detector) operatively connected to the processor, while in 
other embodiments, the signal artifacts detector is a part of 
the processor and utilizes readings from the electrodes, for 
example, to detect ischemia and other signal artifacts. 
Although the above description is focused on an embodi 
ment of the Signal Artifacts Detector within the sensor, some 
embodiments provide for systems and methods for detecting 
signal artifacts in the sensor and/or receiver electronics (e.g., 
processor module) as described in more detail elsewhere 
herein. 

Receiver 

0221 FIGS. 3A to 3D are schematic views of a receiver 
30 including representations of estimated glucose values on 
its user interface in first, second, third, and fourth embodi 
ments, respectively. The receiver 30 comprises systems to 
receive, process, and display sensor data from the glucose 
sensor (e.g., 10 or 100), such as described herein. Particu 
larly, the receiver 30 can be a pager-sized device, for 
example, and comprise a user interface that has a plurality 
of buttons 32 and a liquid crystal display (LCD) screen 34, 
and which can optionally include a backlight. In some 
embodiments, the user interface can also include a keyboard, 
a speaker, and a vibrator, as described below with reference 
to FIG. 4A. 

0222 FIG. 3A illustrates a first embodiment wherein the 
receiver 30 shows a numeric representation of the estimated 
glucose value on its user interface, which is described in 
more detail elsewhere herein. 

0223 FIG. 3B illustrates a second embodiment wherein 
the receiver 30 shows an estimated glucose value and 
approximately one hour of historical trend data on its user 
interface, which is described in more detail elsewhere 
herein. 

0224 FIG. 3C illustrates a third embodiment wherein the 
receiver 30 shows an estimated glucose value and approxi 
mately three hours of historical trend data on its user 
interface, which is described in more detail elsewhere 
herein. 

0225 FIG. 3D illustrates a fourth embodiment wherein 
the receiver 30 shows an estimated glucose value and 
approximately nine hours of historical trend data on its user 
interface, which is described in more detail elsewhere 
herein. 

0226. In some embodiments, a user can toggle through 
some or all of the screens shown in FIGS. 3A to 3D using 
a toggle button on the receiver. In some embodiments, the 
user will be able to interactively select the type of output 

Feb. 8, 2007 

displayed on their user interface. In other embodiments, the 
sensor output can have alternative configurations. 
0227 FIG. 4A is a block diagram that illustrates one 
possible configuration of the receiver's 30 electronics. It is 
noted that the receiver 30 can comprise a configuration Such 
as described with reference to FIGS. 3A to 3D, above. 
Alternatively, the receiver 30 can comprise other configu 
rations, including a desktop computer, laptop computer, a 
personal digital assistant (PDA), a server (local or remote to 
the receiver), and the like. In some embodiments, the 
receiver 30 can be adapted to connect (via wired or wireless 
connection) to a desktop computer, laptop computer, PDA, 
server (local or remote to the receiver), and the like, in order 
to download data from the receiver 30. In some alternative 
embodiments, the receiver 30 and/or receiver electronics can 
be housed within or directly connected to the sensor (e.g., 10 
or 100) in a manner that allows sensor and receiver elec 
tronics to work directly together and/or share data process 
ing resources. Accordingly, the receiver's electronics can be 
generally referred to as a "computer system.” 
0228) A quartz crystal 40 is operatively connected to an 
RF transceiver 41 that together function to receive and 
synchronize data streams (e.g., raw data streams transmitted 
from the RF transceiver). Once received, a processor 42 
processes the signals, such as described below. 
0229. The processor 42, also referred to as the processor 
module, is the central control unit that performs the pro 
cessing. Such as storing data, analyzing data streams, cali 
brating analyte sensor data, estimating analyte values, com 
paring estimated analyte values with time corresponding 
measured analyte values, analyzing a variation of estimated 
analyte values, downloading data, and controlling the user 
interface by providing analyte values, prompts, messages, 
warnings, alarms, and the like. The processor includes 
hardware and Software that performs the processing 
described herein, for example flash memory provides per 
manent or semi-permanent storage of data, storing data Such 
as sensor ID, receiver ID, and programming to process data 
streams (for example, programming for performing estima 
tion and other algorithms described elsewhere herein) and 
random access memory (RAM) stores the systems cache 
memory and is helpful in data processing. 
0230. In one exemplary embodiment, the processor is a 
microprocessor that provides the processing, such as cali 
bration algorithms stored within an EEPROM 43. The 
EEPROM 43 is operatively connected to the processor 42 
and provides semi-permanent storage of data, storing data 
Such as receiver ID and programming to process data 
streams (e.g., programming for performing calibration and 
other algorithms described elsewhere herein). In this exem 
plary embodiment, an SRAM 44 is used for the systems 
cache memory and is helpful in data processing. 
0231. A battery 45 is operatively connected to the pro 
cessor 42 and provides power for the receiver. In one 
embodiment, the battery is a standard AAA alkaline battery, 
however any appropriately sized and powered battery can be 
used. In some embodiments, a plurality of batteries can be 
used to power the system. A quartz crystal 46 is operatively 
connected to the processor 42 and maintains system time for 
the computer system as a whole. 
0232 A user interface 47 comprises a keyboard 2. 
speaker 3, vibrator 4, backlight 5, liquid crystal display 
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(LCD 6), and one or more buttons 7. The components that 
comprise the user interface 47 provide controls to interact 
with the user. The keyboard 2 can allow, for example, input 
of user information about himself/herself, such as mealtime, 
exercise, insulin administration, and reference glucose val 
ues. The speaker 3 can provide, for example, audible signals 
or alerts for conditions such as present and/or predicted 
hyper- and hypoglycemic conditions. The vibrator 4 can 
provide, for example, tactile signals or alerts for reasons 
such as described with reference to the speaker, above. The 
backlight 5 can be provided, for example, to aid the user in 
reading the LCD in low light conditions. The LCD 6 can be 
provided, for example, to provide the user with visual data 
output such as is illustrated in FIGS. 3A to 3D. The buttons 
7 can provide for toggle, menu selection, option selection, 
mode selection, and reset, for example. 
0233. In some embodiments, prompts or messages can be 
displayed on the user interface to convey information to the 
user, such as reference outlier values, requests for reference 
analyte values, therapy recommendations, deviation of the 
measured analyte values from the estimated analyte values, 
and the like. Additionally, prompts can be displayed to guide 
the user through calibration or trouble-shooting of the cali 
bration. 

Input and Output 

0234. In general, the above-described estimative algo 
rithms, including estimation of measured analyte values and 
variation analysis of the estimated analyte values are useful 
when provided to a patient, doctor, family member, and the 
like. Even more, the estimative algorithms are useful when 
they are able to provide information helpful in modifying a 
patient’s behavior so that they experience less clinically 
risky situations and higher quality of life than may otherwise 
be possible. Therefore, the above-described data analysis 
can be output in a variety of forms useful in caring for the 
health of a patient. 
0235. Output can be provided via a user interface, includ 
ing but not limited to, visually on a screen, audibly through 
a speaker, or tactilely through a vibrator. Additionally, 
output can be provided via wired or wireless connection to 
an external device, including but not limited to, computer, 
laptop, server, personal digital assistant, modem connection, 
insulin delivery mechanism, medical device, or other device 
that can be useful in interfacing with the receiver. 
0236 Output can be continuously provided, or certain 
output can be selectively provided based on events, analyte 
concentrations and the like. For example, an estimated 
analyte path can be continuously provided to a patient on an 
LCD screen, while audible alerts can be provided only 
during a time of existing or approaching clinical risk to a 
patient. As another example, estimation can be provided 
based on event triggers (for example, when an analyte 
concentration is nearing or entering a clinically risky Zone). 
As yet another example, analyzed deviation of estimated 
analyte values can be provided when a predetermined level 
of variation (for example, due to known error or clinical 
risk) is known. 
0237. In some embodiments, alarms prompt or alert a 
patient when a measured or projected analyte value or rate 
of change simply passes a predetermined threshold. In some 
embodiments, the clinical risk alarms combine intelligent 
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and dynamic estimative algorithms to provide greater accu 
racy, more timeliness in pending danger, avoidance of false 
alarms, and less annoyance for the patient. For example, 
clinical risk alarms of these embodiments include dynamic 
and intelligent estimative algorithms based on analyte value, 
rate of change, acceleration, clinical risk, statistical prob 
abilities, known physiological constraints, and/or individual 
physiological patterns, thereby providing more appropriate, 
clinically safe, and patient-friendly alarms. 

0238. In some embodiments, clinical risk alarms can be 
activated for a predetermined time period to allow for the 
user to attend to his/her condition. Additionally, the clinical 
risk alarms can be de-activated when leaving a clinical risk 
Zone so as not to annoy the patient by repeated clinical risk 
alarms, when the patient’s condition is improving. 
0239). In some embodiments, the dynamic and intelligent 
estimation determines a possibility of the patient avoiding 
clinical risk, based on the analyte concentration, the rate of 
change, and other aspects of the dynamic and intelligent 
estimative algorithms of the preferred embodiments. If there 
is minimal or no possibility of avoiding the clinical risk, a 
clinical risk alarm will be triggered. However, if there is a 
possibility of avoiding the clinical risk, the system can wait 
a predetermined amount of time and re-analyze the possi 
bility of avoiding the clinical risk. In some embodiments, 
when there is a possibility of avoiding the clinical risk, the 
system will further provide targets, therapy recommenda 
tions, or other information that can aid the patient in 
proactively avoiding the clinical risk. 
0240. In some embodiments, a variety of different display 
methods are used, such as described in the preferred embodi 
ments, which can be toggled through or selectively dis 
played to the user based on conditions or by selecting a 
button, for example. As one example, a simple screen can be 
normally shown that provides an overview of analyte data, 
for example present analyte value and directional trend. 
More complex screens can then be selected when a user 
desires more detailed information, for example, historical 
analyte data, alarms, clinical risk Zones, and the like. 
0241 FIG. 4B is an illustration of the receiver in one 
embodiment showing an analyte trend graph, including 
measured analyte values, estimated analyte values, and a 
clinical risk Zone. The receiver 30 includes an LCD screen 
34, buttons 7, and a speaker 3 and/or microphone. The 
screen 34 displays a trend graph in the form of a line 
representing the historical trend of a patients analyte con 
centration. Although axes may or may not be shown on the 
screen 34, it is understood that a theoretical X-axis represents 
time and a theoretical y-axis represents analyte concentra 
tion. 

0242. In some embodiments such as shown in FIG. 4B, 
the screen shows thresholds, including a high threshold 200 
and a low threshold 202, which represent boundaries 
between clinically safe and clinically risky conditions for the 
patients. In one exemplary embodiment, a normal glucose 
threshold for a glucose sensor is set between about 100 and 
160 mg/dL, and the clinical risk Zones 204 are illustrated 
outside of these thresholds. In alternative embodiments, the 
normal glucose threshold is between about 80 and about 200 
mg/dL, between about 55 and about 220 mg/dL, or other 
threshold that can be set by the manufacturer, physician, 
patient, computer program, and the like. Although a few 
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examples of glucose thresholds are given for a glucose 
sensor, the setting of any analyte threshold is not limited by 
the preferred embodiments. 
0243 In some embodiments, the screen 34 shows clinical 
risk Zones 204, also referred to as danger Zones, through 
shading, gradients, or other graphical illustrations that indi 
cate areas of increasing clinical risk. Clinical risk Zones 204 
can be set by a manufacturer, customized by a doctor, and/or 
set by a user via buttons 7, for example. In some embodi 
ments, the danger Zone 204 can be continuously shown on 
the screen 34, or the danger Zone can appear when the 
measured and/or estimated analyte values fall into the dan 
ger Zone 204. Additional information can be displayed on 
the screen, Such as an estimated time to clinical risk. In some 
embodiments, the danger Zone can be divided into levels of 
danger (for example, low, medium, and high) and/or can be 
color-coded (for example, yellow, orange, and red) or oth 
erwise illustrated to indicate the level of danger to the 
patient. Additionally, the screen or portion of the screen can 
dynamically change colors or illustrations that represent a 
nearness to the clinical risk and/or a severity of clinical risk. 
0244. In some embodiments, such as shown in FIG. 4B, 
the screen 34 displays a trend graph of measured analyte 
data 206. Measured analyte data can be smoothed and 
calibrated such as described in more detail elsewhere herein. 
Measured analyte data can be displayed for a certain time 
period (for example, previous 1 hour, 3 hours, 9 hours, etc.) 
In some embodiments, the user can toggle through screens 
using buttons 7 to view the measured analyte data for 
different time periods, using different formats, or to view 
certain analyte values (for example, highs and lows). 
0245. In some embodiments such as shown in FIG. 4B, 
the screen 34 displays estimated analyte data 208 using dots. 
In this illustration, the size of the dots can represent the 
confidence of the estimation, a variation of estimated values, 
and the like. For example, as the time gets farther away from 
the present (t=0) the confidence level in the accuracy of the 
estimation can decline as is appreciated by one skilled in the 
art. In some alternative embodiments, dashed lines, symbols, 
icons, and the like can be used to represent the estimated 
analyte values. In some alternative embodiments, shaded 
regions, colors, patterns, and the like can also be used to 
represent the estimated analyte values, a confidence in those 
values, and/or a variation of those values, such as described 
in more detail in preferred embodiments. 
0246 Axes, including time and analyte concentration 
values, can be provided on the screen, however are not 
required. While not wishing to be bound by theory, it is 
believed that trend information, thresholds, and danger 
Zones provide Sufficient information to represent analyte 
concentration and clinically educate the user. In some 
embodiments, time can be represented by symbols, such as 
a Sun and moon to represent day and night. In some 
embodiments, the present or most recent measured analyte 
concentration, from the continuous sensor and/or from the 
reference analyte monitor can be continually, intermittently, 
or selectively displayed on the screen. 
0247 The estimated analyte values 208 of FIG. 4B 
include a portion, which extends into the danger Zone 204. 
By providing data in a format that emphasizes the possibility 
of clinical risk to the patient, appropriate action can be taken 
by the user (for example, patient, or caretaker) and clinical 
risk can be preempted. 
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0248 FIG. 4C is an illustration of the receiver in another 
embodiment showing a representation of analyte concentra 
tion and directional trend using a gradient bar. In this 
embodiment, the screen illustrates the measured analyte 
values and estimated analyte values in a simple but effective 
manner that communicates valuable analyte information to 
the user. 

0249. In this embodiment, a gradient bar 210 is provided 
that includes thresholds 212 set at high and lows such as 
described in more detail with reference to FIG. 4B, above. 
Additionally, colors, shading, or other graphical illustration 
can be present to represent danger Zones 214 on the gradient 
bar 210 such as described in more detail with reference to 
FIG. 4B, above. 

0250) The measured analyte value is represented on the 
gradient bar 210 by a marker 216, such as a darkened or 
colored bar. By representing the measured analyte value 
with a bar 216, a low-resolution analyte value is presented 
to the user (for example, within a range of values). For 
example, each segment on the gradient bar 210 can represent 
about 10 mg/dL of glucose concentration. As another 
example, each segment can dynamically represent the range 
of values that fall within the “A” and “B” regions of the 
Clarke Error Grid. While not wishing to be bound by theory, 
it is believed that inaccuracies known both in reference 
analyte monitors and/or continuous analyte sensors are 
likely due to known variables such as described in more 
detail elsewhere herein, and can be de-emphasized such that 
a user focuses on proactive care of the condition, rather than 
inconsequential discrepancies within and between reference 
analyte monitors and continuous analyte sensors. 
0251 Additionally, the representative gradient bar com 
municates the directional trend of the analyte concentration 
to the user in a simple and effective manner, namely by a 
directional arrow 218. For example, in conventional diabetic 
blood glucose monitoring, a person with diabetes obtains a 
blood sample and measures the glucose concentration using 
a test strip, and the like. Unfortunately, this information does 
not tell the person with diabetes whether the blood glucose 
concentration is rising or falling. Rising or falling direc 
tional trend information can be particularly important in a 
situation such as illustrated in FIG. 4C, wherein if the user 
does not know that the glucose concentration is rising, 
he/she may assume that the glucose concentration is falling 
and not attend to his/her condition. However, because rising 
directional trend information 218 is provided, the person 
with diabetes can preempt the clinical risk by attending to 
his/her condition (for example, administer insulin). Esti 
mated analyte data can be incorporated into the directional 
trend information by characteristics of the arrow, for 
example, size, color, flash speed, and the like. 

0252) In some embodiments, the gradient bar can be a 
vertical instead of horizontal bar. In some embodiments, a 
gradient fill can be used to represent analyte concentration, 
variation, or clinical risk, for example. In some embodi 
ments, the bar graph includes color, for example the center 
can be green in the safe Zone that graduates to red in the 
danger Zones; this can be in addition to or in place of the 
divided segments. In some embodiments, the segments of 
the bar graph are clearly divided by lines; however color, 
gradation, and the like can be used to represent areas of the 
bar graph. In some embodiments, the directional arrow can 
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be represented by a cascading level of arrows to a represent 
slow or rapid rate of change. In some embodiments, the 
directional arrow can be flashing to represent movement or 
pending danger. 

0253) The screen 34 of FIG. 4C can further comprise a 
numerical representation of analyte concentration, date, 
time, or other information to be communicated to the 
patient. However, a user can advantageously extrapolate 
information helpful for his/her condition using the simple 
and effective representation of this embodiment shown in 
FIG. 4C, without reading a numeric representation of his/her 
analyte concentration. 
0254. In some alternative embodiments, a trend graph or 
gradient bar, a dial, pie chart, or other visual representation 
can provide analyte data using shading, colors, patterns, 
icons, animation, and the like. 
0255 FIG. 4D is an illustration of a receiver 30 in another 
embodiment, including a screen 34 that shows a numerical 
representation of the most recent measured analyte value 
252. This numerical value 252 is preferably a calibrated 
analyte value, such as described in more detail with refer 
ence to FIGS. 5 and 6. Additionally, this embodiment 
preferably provides an arrow 254 on the screen 34, which 
represents the rate of change of the hosts analyte concen 
tration. A bold “up' arrow is shown on the drawing, which 
preferably represents a relatively quickly increasing rate of 
change. The arrows shown with dotted lines illustrate 
examples of other directional arrows (for example, rotated 
by 45 degrees), which can be useful on the screen to 
represent various other positive and negative rates of 
change. Although the directional arrows shown have a 
relative low resolution (45 degrees of accuracy), other 
arrows can be rotated with a high resolution of accuracy (for 
example one degree of accuracy) to more accurately repre 
sent the rate of change of the hosts analyte concentration. 
In some alternative embodiments, the screen provides an 
indication of the acceleration of the hosts analyte concen 
tration. 

0256 A second numerical value 256 is shown, which is 
representative of a variation of the measured analyte value 
252. The second numerical value is preferably determined 
from a variation analysis based on statistical, clinical, or 
physiological parameters, such as described in more detail 
elsewhere herein. In one embodiment, the second numerical 
value 256 is determined based on clinical risk (for example, 
weighted for the greatest possible clinical risk to a patient). 
In another embodiment, the second numerical representation 
256 is an estimated analyte value extrapolated to compen 
sate for a time lag. Such as described in more detail else 
where herein. In some alternative embodiments, the receiver 
displays a range of numerical analyte values that best 
represents the host's estimated analyte value (for example, 
+/-10%). In some embodiments, the range is weighted 
based on clinical risk to the patient. In some embodiments, 
the range is representative of a confidence in the estimated 
analyte value and/or a variation of those values. In some 
embodiments, the range is adjustable. 
0257 Referring again to FIG. 4A, communication ports, 
including a PC communication (corn) port 48 and a refer 
ence glucose monitor corn port 49 can be provided to enable 
communication with systems that are separate from, or 
integral with, the receiver 30. The PC corn port 48, for 
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example, a serial communications port, allows for commu 
nicating with another computer system (e.g., PC, PDA, 
server, and the like). In one exemplary embodiment, the 
receiver 30 is able to download historical data to a physi 
cian’s PC for retrospective analysis by the physician. The 
reference glucose monitor corn port 49 allows for commu 
nicating with a reference glucose monitor (not shown) so 
that reference glucose values can be downloaded into the 
receiver 30, for example, automatically. In one embodiment, 
the reference glucose monitor is integral with the receiver 
30, and the reference glucose corn port 49 allows internal 
communication between the two integral systems. In another 
embodiment, the reference glucose monitor corn port 49 
allows a wireless or wired connection to reference glucose 
monitor Such as a self-monitoring blood glucose monitor 
(e.g., for measuring finger Stick blood samples). 
Calibration 

0258 Reference is now made to FIG. 5, which is a flow 
chart 50 that illustrates the process of initial calibration and 
data output of the glucose sensor (e.g., 10 or 100) in one 
embodiment. 

0259 Calibration of the glucose sensor comprises data 
processing that converts a sensor data stream into an esti 
mated glucose measurement that is meaningful to a user. 
Accordingly, a reference glucose value can be used to 
calibrate the data stream from the glucose sensor. In one 
embodiment, the analyte sensor is a continuous glucose 
sensor and one or more reference glucose values are used to 
calibrate the data stream from the sensor. The calibration can 
be performed on a real-time basis and/or retrospectively 
recalibrated. However in alternative embodiments, other 
calibration techniques can be utilized, for example using 
another constant analyte (for example, folic acid, ascorbate, 
urate, and the like) as a baseline, factory calibration, periodic 
clinical calibration, oxygen calibration (for example, using a 
plurality of sensor heads), and the like can be used. 
0260. At block 51, a sensor data receiving module, also 
referred to as the sensor data module, or processor module, 
receives sensor data (e.g., a data stream), including one or 
more time-spaced sensor data points hereinafter referred to 
as “data stream,”“sensor data.”“sensor analyte data”, “glu 
cose signal.” from a sensor via the receiver, which can be in 
wired or wireless communication with the sensor. The 
sensor data can be raw or smoothed (filtered), or include 
both raw and Smoothed data. In some embodiments, raw 
sensor data may include an integrated digital data value, e.g., 
a value averaged over a time period such as by a charge 
capacitor. Smoothed sensor data point(s) can be filtered in 
certain embodiments using a filter, for example, a finite 
impulse response (FIR) or infinite impulse response (IIR) 
filter. Some or all of the sensor data point(s) can be replaced 
by estimated signal values to address signal noise Such as 
described in more detail elsewhere herein. It is noted that 
during the initialization of the sensor, prior to initial cali 
bration, the receiver 30 (e.g., computer system) receives and 
stores the sensor data, however it may not display any data 
to the user until initial calibration and eventually stabiliza 
tion of the sensor has been determined. 

0261. At block 52, a reference data receiving module, 
also referred to as the reference input module, or the 
processor module, receives reference data from a reference 
glucose monitor, including one or more reference data 
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points. In one embodiment, the reference glucose points can 
comprise results from a self-monitored blood glucose test 
(e.g., from a finger Stick test). In one such embodiment, the 
user can administer a self-monitored blood glucose test to 
obtain a glucose value (e.g., point) using any known glucose 
sensor, and enter the numeric glucose value into the com 
puter system. In another such embodiment, a self-monitored 
blood glucose test comprises a wired or wireless connection 
to the receiver 30 (e.g. computer system) so that the user 
simply initiates a connection between the two devices, and 
the reference glucose data is passed or downloaded between 
the self-monitored blood glucose test and the receiver 30. In 
yet another Such embodiment, the self-monitored glucose 
test is integral with the receiver 30 so that the user simply 
provides a blood sample to the receiver 30, and the receiver 
30 runs the glucose test to determine a reference glucose 
value. 

0262. In some embodiments, the calibration process 50 
monitors the continuous analyte sensor data stream to deter 
mine a preferred time for capturing reference analyte con 
centration values for calibration of the continuous sensor 
data stream. In an example wherein the analyte sensor is a 
continuous glucose sensor, when data (for example, 
observed from the data stream) changes too rapidly, the 
reference glucose value may not be sufficiently reliable for 
calibration due to unstable glucose changes in the host. In 
contrast, when sensor glucose data are relatively stable (for 
example, relatively low rate of change), a reference glucose 
value can be taken for a reliable calibration. In one embodi 
ment, the calibration process 38 can prompt the user via the 
user interface to "calibrate now when the analyte sensor is 
considered stable. 

0263. In some embodiments, the calibration process 50 
can prompt the user via the user interface 47 to obtain a 
reference analyte value for calibration at intervals, for 
example when analyte concentrations are at high and/or low 
values. In some additional embodiments, the user interface 
47 can prompt the user to obtain a reference analyte value 
for calibration based upon certain events, such as meals, 
exercise, large excursions in analyte levels, faulty or inter 
rupted data readings, and the like. In some embodiments, the 
estimative algorithms can provide information useful in 
determining when to request a reference analyte value. For 
example, when estimated analyte values indicate approach 
ing clinical risk, the user interface 47 can prompt the user to 
obtain a reference analyte value. 
0264 Certain acceptability parameters can be set for 
reference values received from the user. For example, in one 
embodiment, the receiver may only accept reference glucose 
values between about 40 and about 400 mg/dL. 

0265. In some embodiments, the calibration process 50 
performs outlier detection on the reference data and time 
corresponding sensor data. Outlier detection compares a 
reference analyte value with a time corresponding measured 
analyte value to ensure a predetermined Statistically, physi 
ologically, or clinically acceptable correlation between the 
corresponding data exists. In an example wherein the ana 
lyte sensor is a glucose sensor, the reference glucose data is 
matched with Substantially time corresponding calibrated 
sensor data and the matched data are plotted on a Clarke 
Error Grid to determine whether the reference analyte value 
is an outlier based on clinical acceptability, Such as 
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described in more detail with reference U.S. Publication No. 
US-2005-0027463-A1. In some embodiments, outlier detec 
tion compares a reference analyte value with a correspond 
ing estimated analyte value. Such as described in more detail 
elsewhere herein and with reference to the above-described 
patent application, and the matched data is evaluated using 
statistical, clinical, and/or physiological parameters to deter 
mine the acceptability of the matched data pair. In alterna 
tive embodiments, outlier detection can be determined by 
other clinical, statistical, and/or physiological boundaries. 

0266. In some embodiments, outlier detection utilizes 
signal artifacts detection, described in more detail elsewhere 
herein, to determine the reliability of the reference data 
and/or sensor data responsive to the results of the signal 
artifacts detection. For example, if a certain level of signal 
artifacts is not detected in the data signal, then the sensor 
data is determined to be reliable. As another example, if a 
certain level of signal artifacts are detected in the data signal, 
then the reliability of the reference glucose data if the signal 
artifact is determined. 

0267 At block 53, a data matching module, also referred 
to as the processor module, matches reference data (e.g., one 
or more reference glucose data points) with Substantially 
time corresponding sensor data (e.g., one or more sensor 
data points) to provide one or more matched data pairs. In 
one embodiment, one reference data point is matched to one 
time corresponding sensor data point to form a matched data 
pair. In another embodiment, a plurality of reference data 
points are averaged (e.g., equally or non-equally weighted 
average, mean-value, median, and the like) and matched to 
one time corresponding sensor data point to form a matched 
data pair. In another embodiment, one reference data point 
is matched to a plurality of time corresponding sensor data 
points averaged to form a matched data pair. In yet another 
embodiment, a plurality of reference data points are aver 
aged and matched to a plurality of time corresponding 
sensor data points averaged to form a matched data pair. 

0268. In one embodiment, a time corresponding sensor 
data comprises one or more sensor data points that occur, for 
example, 15-tiš min after the reference glucose data times 
tamp (e.g., the time that the reference glucose data is 
obtained). In this embodiment, the 15 minute time delay has 
been chosen to account for an approximately 10 minute 
delay introduced by the filter used in data Smoothing and an 
approximately 5 minute diffusional time-lag (e.g., the time 
necessary for the glucose to diffusion through a mem 
brane(s) of a glucose sensor). In alternative embodiments, 
the time corresponding sensor value can be more or less than 
in the above-described embodiment, for example +60 min 
utes. Variability in time correspondence of sensor and ref 
erence data can be attributed to, for example, a longer or 
shorter time delay introduced during signal estimation, or if 
the configuration of the glucose sensor incurs a greater or 
lesser physiological time lag. 

0269. In some practical implementations of the sensor, 
the reference glucose data can be obtained at a time that is 
different from the time that the data is input into the receiver 
30. Accordingly, it should be noted that the “time stamp' of 
the reference glucose (e.g., the time at which the reference 
glucose value was obtained) may not be the same as the time 
at which the receiver 30 obtained the reference glucose data. 
Therefore, some embodiments include a time stamp require 
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ment that ensures that the receiver 30 stores the accurate 
time stamp for each reference glucose value, that is, the time 
at which the reference value was actually obtained from the 
USC. 

0270. In some embodiments, tests are used to evaluate 
the best-matched pair using a reference data point against 
individual sensor values over a predetermined time period 
(e.g., about 30 minutes). In one such embodiment, the 
reference data point is matched with sensor data points at 
5-minute intervals and each matched pair is evaluated. The 
matched pair with the best correlation can be selected as the 
matched pair for data processing. In some alternative 
embodiments, matching a reference data point with an 
average of a plurality of sensor data points over a predeter 
mined time period can be used to form a matched pair. 
0271 In some embodiments wherein the data signal is 
evaluated for signal artifacts, as described in more detail 
elsewhere herein, the processor module is configured to 
form a matching data pair only if a signal artifact is not 
detected. In some embodiments wherein the data signal is 
evaluated for signal artifacts, the processor module is con 
figured to prompt a user for a reference glucose value during 
a time when one or more signal artifact(s) is not detected. 
0272. At block 54, a calibration set module, also referred 
to as the processor module, forms an initial calibration set 
from a set of one or more matched data pairs, which are used 
to determine the relationship between the reference glucose 
data and the sensor glucose data, such as described in more 
detail with reference to block 55, below. 
0273. The matched data pairs, which make up the initial 
calibration set, can be selected according to predetermined 
criteria. In some embodiments, the number (n) of data 
pair(s) selected for the initial calibration set is one. In other 
embodiments, in data pairs are selected for the initial cali 
bration set wherein n is a function of the frequency of the 
received reference data points. In one exemplary embodi 
ment, six data pairs make up the initial calibration set. In 
another embodiment, the calibration set includes only one 
data pair. 
0274. In some embodiments, the data pairs are selected 
only within a certain glucose value threshold, for example 
wherein the reference glucose value is between about 40 and 
about 400 mg/dL. In some embodiments, the data pairs that 
form the initial calibration set are selected according to their 
time stamp. In certain embodiments, the data pairs that form 
the initial calibration set are selected according to their time 
stamp, for example, by waiting a predetermined “break-in' 
time period after implantation, the stability of the sensor data 
can be increased. In certain embodiments, the data pairs that 
form the initial calibration set are spread out over a prede 
termined time period, for example, a period of two hours or 
more. In certain embodiments, the data pairs that form the 
initial calibration set are spread out over a predetermined 
glucose range, for example, spread out over a range of at 
least 90 mg/dL or more. 
0275. In some embodiments, wherein the data signal is 
evaluated for signal artifacts, as described in more detail 
elsewhere herein, the processor module is configured to 
utilize the reference data for calibration of the glucose 
sensor only if a signal artifact is not detected. 
0276. At block 55, the conversion function module, also 
referred to as the processor module, uses the calibration set 
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to create a conversion function. The conversion function 
substantially defines the relationship between the reference 
glucose data and the glucose sensor data. A variety of known 
methods can be used with the preferred embodiments to 
create the conversion function from the calibration set. In 
one embodiment, wherein a plurality of matched data points 
form the initial calibration set, a linear least squares regres 
sion is performed on the initial calibration set Such as 
described in more detail with reference to FIG. 6. 

0277 At block 56, a sensor data transformation module, 
also referred to as the processor module, uses the conversion 
function to transform sensor data into Substantially real-time 
glucose value estimates, also referred to as calibrated data, 
or converted sensor data, as sensor data is continuously (or 
intermittently) received from the sensor. For example, the 
sensor data, which can be provided to the receiver in 
“counts, is translated in to estimate analyte value(s) in 
mg/dL. In other words, the offset value at any given point in 
time can be subtracted from the raw value (e.g., in counts) 
and divided by the slope to obtain the estimated glucose 
value: 

(raw value - offset) mg/dL = H slope 

0278 In some alternative embodiments, the sensor and/or 
reference glucose values are stored in a database for retro 
spective analysis. 

0279. At block 57, an output module, also referred to as 
the processor module, provides output to the user via the 
user interface. The output is representative of the estimated 
glucose value, which is determined by converting the sensor 
data into a meaningful glucose value Such as described in 
more detail with reference to block 56, above. User output 
can be in the form of a numeric estimated glucose value, an 
indication of directional trend of glucose concentration, 
and/or a graphical representation of the estimated glucose 
data over a period of time, for example. Other representa 
tions of the estimated glucose values are also possible, for 
example audio and tactile. 
0280. In one embodiment, such as shown in FIG. 3A, the 
estimated glucose value is represented by a numeric value. 
In other exemplary embodiments, such as shown in FIGS. 
3B to 3D, the user interface graphically represents the 
estimated glucose data trend over predetermined a time 
period (e.g., one, three, and nine hours, respectively). In 
alternative embodiments, other time periods can be repre 
sented. In alternative embodiments, other time periods can 
be represented. In alternative embodiments, pictures, ani 
mation, charts, graphs, ranges of values, and numeric data 
can be selectively displayed. 

0281. Accordingly, after initial calibration of the sensor, 
real-time continuous glucose information can be displayed 
on the user interface so that the user can regularly and 
proactively care for his/her diabetic condition within the 
bounds set by his/her physician. 

0282. In alternative embodiments, the conversion func 
tion is used to predict glucose values at future points in time. 
These predicted values can be used to alert the user of 
upcoming hypoglycemic or hyperglycemic events. Addi 
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tionally, predicted values can be used to compensate for a 
time lag (e.g., 15 minute time lag. Such as described else 
where herein), if any, so that an estimated glucose value 
displayed to the user represents the instant time, rather than 
a time delayed estimated value. 

0283. In some embodiments, the substantially real-time 
estimated glucose value, a predicted future estimated glu 
cose value, a rate of change, and/or a directional trend of the 
glucose concentration is used to control the administration 
of a constituent to the user, including an appropriate amount 
and time, in order to control an aspect of the user's biologi 
cal system. One Such example is a closed loop glucose 
sensor and insulin pump, wherein the glucose data (e.g., 
estimated glucose value, rate of change, and/or directional 
trend) from the glucose sensor is used to determine the 
amount of insulin, and time of administration, that can be 
given to a diabetic user to evade hyper- and hypoglycemic 
conditions. 

0284 FIG. 6 is a graph that illustrates one embodiment of 
a regression performed on a calibration set to create a 
conversion function such as described with reference to FIG. 
5, block 55, above. In this embodiment, a linear least squares 
regression is performed on the initial calibration set. The 
X-axis represents reference glucose data; the y-axis repre 
sents sensor data. The graph pictorially illustrates regression 
of matched pairs 66 in the calibration set. The regression 
calculates a slope 62 and an offset 64, for example, using the 
well-known slope-intercept equation (y=mx+b), which 
defines the conversion function. 

0285) In alternative embodiments, other algorithms could 
be used to determine the conversion function, for example 
forms of linear and non-linear regression, for example fuZZy 
logic, neural networks, piece-wise linear regression, poly 
nomial fit, genetic algorithms, and other pattern recognition 
and signal estimation techniques. 

0286. In yet other alternative embodiments, the conver 
sion function can comprise two or more different optimal 
conversions because an optimal conversion at any time is 
dependent on one or more parameters, such as time of day, 
calories consumed, exercise, or glucose concentration above 
or below a set threshold, for example. In one such exemplary 
embodiment, the conversion function is adapted for the 
estimated glucose concentration (e.g., high vs. low). For 
example in an implantable glucose sensor it has been 
observed that the cells surrounding the implant will consume 
at least a small amount of glucose as it diffuses toward the 
glucose sensor. Assuming the cells consume Substantially 
the same amount of glucose whether the glucose concen 
tration is low or high, this phenomenon will have a greater 
effect on the concentration of glucose during low blood 
Sugar episodes than the effect on the concentration of 
glucose during relatively higher blood Sugar episodes. 
Accordingly, the conversion function can be adapted to 
compensate for the sensitivity differences in blood Sugar 
level. In one implementation, the conversion function com 
prises two different regression lines, wherein a first regres 
sion line is applied when the estimated blood glucose 
concentration is at or below a certain threshold (e.g., 150 
mg/dL) and a second regression line is applied when the 
estimated blood glucose concentration is at or above a 
certain threshold (e.g., 150 mg/dL). In one alternative imple 
mentation, a predetermined pivot of the regression line that 
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forms the conversion function can be applied when the 
estimated blood is above or below a set threshold (e.g., 150 
mg/dL), wherein the pivot and threshold are determined 
from a retrospective analysis of the performance of a con 
version function and its performance at a range of glucose 
concentrations. In another implementation, the regression 
line that forms the conversion function is pivoted about a 
point in order to comply with clinical acceptability standards 
(e.g., Clarke Error Grid, Consensus Grid, mean absolute 
relative difference, or other clinical cost function). Although 
only a few example implementations are described, other 
embodiments include numerous implementations wherein 
the conversion function is adaptively applied based on one 
or more parameters that can affect the sensitivity of the 
sensor data over time. 

0287 Additional methods for processing sensor glucose 
data are disclosed in U.S. Publication No. US-2005 
0027463-A1. In view of the above-described data process 
ing, it should be obvious that improving the accuracy of the 
data stream will be advantageous for improving output of 
glucose sensor data. Accordingly, the following description 
is related to improving data output by decreasing signal 
artifacts on the raw data stream from the sensor. The data 
Smoothing methods of preferred embodiments can be 
employed in conjunction with any sensor or monitor mea 
suring levels of an analyte in vivo, wherein the level of the 
analyte fluctuates over time, including but not limited to 
such sensors as described in U.S. Pat. No. 6,001,067 to 
Shults et al.: U.S. Patent Application 2003/0023317 to 
Brauker et al.; U.S. Pat. No. 6,212,416 to Ward et al.; U.S. 
Pat. No. 6,119,028 to Schulman et al; U.S. Pat. No. 6,400, 
974 to Lesho; U.S. Pat. No. 6,595,919 to Berner et al.; U.S. 
Pat. No. 6,141,573 to Kurnik et al.; U.S. Pat. No. 6,122,536 
to Sun et al.; European Patent Application EP 1153571 to 
Varall et al.; U.S. Pat. No. 6,512,939 to Colvin et al.; U.S. 
Pat. No. 5,605,152 to Slate et al.; U.S. Pat. No. 4,431,004 to 
Bessman et al.; U.S. Pat. No. 4,703,756 to Gough et al; U.S. 
Pat. No. 6,514,718 to Heller et al; and U.S. Pat. No. 
5,985,129 to Gough et al. 

Signal Artifacts 

0288 Typically, a glucose sensor produces a data stream 
that is indicative of the glucose concentration of a host. Such 
as described in more detail above. However, it is well known 
that the above described glucose sensors includes only a few 
examples of an abundance of glucose sensors that are able 
to provide raw data output indicative of the concentration of 
glucose. Thus, it should be understood that the systems and 
methods described herein, including signal artifacts detec 
tion, signal artifacts replacement, and other data processing, 
can be applied to a data stream obtained from any glucose 
SSO. 

0289 Raw data streams typically have some amount of 
“system noise, caused by unwanted electronic or diffusion 
related noise that degrades the quality of the signal and thus 
the data. Accordingly, conventional glucose sensors are 
known to Smooth raw data using methods that filter out this 
system noise, and the like, in order to improve the signal to 
noise ratio, and thus data output. One example of a conven 
tional data-Smoothing algorithm includes a finite impulse 
response filter (FIR), which is particularly suited for reduc 
ing high-frequency noise (see Steil et al. U.S. Pat. No. 
6,558,351). 
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0290 FIGS. 7A and 7B are graphs of raw data streams 
from an implantable glucose sensor prior to data Smoothing. 
FIG. 7A is a graph that shows a raw data stream obtained 
from a glucose sensor over an approximately 4 hour time 
span in one example. FIG. 7B is a graph that shows a raw 
data stream obtained from a glucose sensor over an approxi 
mately 36 hour time span in another example. The X-axis 
represents time in minutes. The y-axis represents sensor data 
in counts. In these examples, sensor output in counts is 
transmitted every 30-seconds. 
0291. The “system noise' such as shown in sections 72a, 
72b of the data streams of FIGS. 7A and 7B, respectively, 
illustrate time periods during which system noise can be 
seen on the data stream. This system noise can be charac 
terized as Gaussian, Brownian, and/or linear noise, and can 
be substantially normally distributed about the mean. The 
system noise is likely electronic and diffusion-related, and 
the like, and can be Smoothed using techniques such as by 
using an FIR filter. As another example, the raw data can be 
represented by an integrated value, for example, by inte 
grating the signal over a time period (e.g., 30 seconds or 5 
minutes), and providing an averaged (e.g., integrated) data 
point there from. The system noise Such as shown in the data 
of sections 72a, 72b is a fairly accurate representation of 
glucose concentration and can be confidently used to report 
glucose concentration to the user when appropriately cali 
brated. 

0292. The “signal artifacts” such as shown in sections 
74a, 74b of the data stream of FIGS. 7A and 7B, respec 
tively, illustrate time periods during which “signal artifacts' 
can be seen, which are significantly different from the 
previously described system noise (sections 72a, 72b). This 
noise, such as shown in section 74a and 74b, is referred to 
herein as “signal artifacts” and may be described as “tran 
sient non-glucose dependent signal artifacts that have a 
higher amplitude than system noise.” At times, signal arti 
facts comprise low noise, which generally refers to noise 
that substantially decreases signal amplitude 76a, 76b 
herein, which is best seen in the signal artifacts 74b of FIG. 
7B. Occasional high spikes 78a, 78b, which generally cor 
respond to noise that Substantially increases signal ampli 
tude, can also be seen in the signal artifacts, which generally 
occur after a period of low noise. These high spikes are 
generally observed after transient low noise and typically 
result after reaction rate-limiting phenomena occur. For 
example, in an embodiment where a glucose sensor requires 
an enzymatic reaction, local ischemia creates a reaction that 
is rate-limited by oxygen, which is responsible for low 
noise. In this situation, glucose would be expected to build 
up in the membrane because it would not be completely 
catabolized during the oxygen deficit. When oxygen is again 
in excess, there would also be excess glucose due to the 
transient oxygen deficit. The enzyme rate would speed up 
for a short period until the excess glucose is catabolized, 
resulting in high noise. Additionally, noise can be distributed 
both above and below the expected signal. 
0293 Analysis of signal artifacts such as shown sections 
74a, 74b of FIGS. 7A and 7B, respectively, indicates that the 
observed low noise is caused by Substantially non-glucose 
reaction dependent phenomena, such as ischemia that occurs 
within or around a glucose sensor in Vivo, for example, 
which results in the reaction becoming oxygen dependent. 
As a first example, at high glucose levels, oxygen can 
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become limiting to the enzymatic reaction, resulting in a 
non-glucose dependent downward trend in the data (best 
seen in FIG. 7B). As a second example, certain movements 
or postures taken by the patient can cause transient down 
ward noise as blood is squeezed out of the capillaries 
resulting in local ischemia, and causing non-glucose depen 
dent low noise. Because excess oxygen (relative to glucose) 
is necessary for proper sensor function, transient ischemia 
can result in a loss of signal gain in the sensor data. In this 
second example oxygen can also become transiently limited 
due to contracture of tissues around the sensor interface. 
This is similar to the blanching of skin that can be observed 
when one puts pressure on it. Under Such pressure, transient 
ischemia can occur in both the epidermis and Subcutaneous 
tissue. Transient ischemia is common and well tolerated by 
Subcutaneous tissue. 

0294. In another example of non-glucose reaction rate 
limiting phenomena, skin temperature can vary dramati 
cally, which can result in thermally related erosion of the 
signal (e.g., temperature changes between 32 and 39 degrees 
Celsius have been measured in humans). In yet another 
embodiment, wherein the glucose sensor is placed intrave 
nously, increased impedance can result from the sensor 
resting against wall of the blood vessel, for example, pro 
ducing this non-glucose reaction rate-limiting noise due to 
oxygen deficiency. 

0295 Because signal artifacts are not mere system noise, 
but rather are caused by known or unknown non-glucose 
related mechanisms, methods used for conventional random 
noise filtration produce data lower (or in Some cases higher) 
than the actual blood glucose levels due to the expansive 
nature of these signal artifacts. To overcome this, the pre 
ferred embodiments provide systems and methods for 
replacing at least Some of the signal artifacts by estimating 
glucose signal values. 
0296 FIG. 8 is a flow chart that illustrates the process of 
detecting and replacing signal artifacts in certain embodi 
ments. It is noted that “signal artifacts' particularly refers to 
the transient non-glucose related artifacts such as described 
in more detail elsewhere herein. Typically, signal artifacts 
are caused by non-glucose rate-limiting phenomenon Such 
as described in more detail above. 

0297. At block 82, a sensor data receiving module, also 
referred to as the sensor data module 82, or processor 
module, receives sensor data (e.g., a data stream), including 
one or more time-spaced sensor data points. In some 
embodiments, the data stream is stored in the sensor for 
additional processing; in Some alternative embodiments, the 
sensor periodically transmits the data stream to the receiver 
30, which can be in wired or wireless communication with 
the sensor. In some embodiments, raw and/or filtered data is 
stored in the sensor and/or receiver. 

0298. At block 84, a signal artifacts detection module, 
also referred to as the signal artifacts detector 84 or signal 
reliability module, is programmed to detect transient non 
glucose related signal artifacts in the data stream, Such as 
described in more detail with reference to FIGS. 7A and 7B, 
above. The signal artifacts detector can comprise an oxygen 
detector, a pH detector, a temperature detector, and/or a 
pressure/stress detector, for example, the signal artifacts 
detector 29 in FIG. 2. In some embodiments, the signal 
artifacts detector at block 84 is located within the processor 



US 2007/003270.6 A1 

22 in FIG. 2 and utilizes existing components of the glucose 
sensor to detect signal artifacts, for example by pulsed 
amperometric detection, counter electrode monitoring, ref 
erence electrode monitoring, and frequency content moni 
toring, which are described elsewhere herein. In yet other 
embodiments, the data stream can be sent from the sensor to 
the receiver which comprises programming in the processor 
42 in FIG. 4 that performs algorithms to detect signal 
artifacts, for example such as described with reference to 
“Cone of Possibility Detection' method and/or by compar 
ing raw data vs. filtered data, both of which are described in 
more detail below. Numerous embodiments for detecting 
signal artifacts are described in more detail in the section 
entitled, “Signal Artifacts Detection, all of which are 
encompassed by the signal artifacts detection at block 84. 
0299. In certain embodiments, the processor module in 
either the sensor electronics and/or the receiver electronics 
can evaluate an intermittent or continuous signal-to-noise 
measurement to determine aberrancy of sensor data respon 
sive to a signal-to-noise ratio above a set threshold. In 
certain embodiments, signal residuals (e.g., by comparing 
raw and filtered data) can be intermittently or continuously 
analyzed for noise above a set threshold. In certain embodi 
ments, pattern recognition can be used to identify noise 
associated with physiological conditions, such as low oxy 
gen, or other known signal aberrancies. Accordingly, in 
these embodiments, the system can be configured, in 
response to aberrancies in the data stream, to trigger signal 
estimation, adaptively filter the data stream according to the 
aberrancy, and the like, as described in more detail else 
where herein. 

0300. At block 86, the signal artifacts replacement mod 
ule, also referred to as the signal estimation module, replaces 
Some or an entire data stream with estimated glucose signal 
values using signal estimation. Numerous embodiments for 
performing signal estimation are described in more detail in 
the section entitled “Signal Artifacts Replacement, all of 
which are encompassed by the signal artifacts replacement 
module, block 86. It is noted that in some embodiments, 
signal estimation/replacement is initiated in response to 
positive detection of signal artifacts on the data stream, and 
Subsequently stopped in response to detection of negligible 
signal artifacts on the data stream. In some embodiments, 
the system waits a predetermined time period (e.g., between 
30 seconds and 30 minutes) before switching the signal 
estimation on or off to ensure that a consistent detection has 
been ascertained. In some embodiments, however, signal 
estimation/replacement can continuously or continually run. 

0301 Some embodiments of signal estimation can addi 
tionally include discarding data that is considered Sufi 
ciently unreliable and/or erroneous such that the data should 
not be used in a signal estimation algorithm. In these 
embodiments, the system can be programmed to discard 
outlier data points, for example data points that are so 
extreme that they can skew the data even with the most 
comprehensive filtering or signal estimation, and optionally 
replace those points with a projected value based on his 
torical data or present data (e.g., linear regression, recursive 
filtering, and the like). One example of discarding sensor 
data includes discarding sensor data that falls outside of a 
“Cone of Possibility' such as described in more detail 
elsewhere herein. Another example includes discarding sen 
Sor data when signal artifacts detection detects values out 
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side of a predetermined threshold (e.g., oxygen concentra 
tion below a set threshold, temperature above a certain 
threshold, signal amplitude above a certain threshold, etc). 
Any of the signal estimation/replacement algorithms 
described herein can then be used to project data values for 
those data that were discarded. 

Signal Artifacts Detection 
0302 Analysis of signals from glucose sensors indicates 
at least two types of noise, which are characterized herein as 
1) system noise and 2) signal artifacts, such as described in 
more detail above. It is noted that system noise is easily 
Smoothed using the algorithms provided herein; however, 
the systems and methods described herein particularly 
address signal artifacts, by replacing transient erroneous 
signal noise caused by rate-limiting phenomenon (e.g., 
non-glucose related signal) with estimated signal values, for 
example. 

0303. In certain embodiments of signal artifacts detec 
tion, oxygen monitoring is used to detect whether transient 
non-glucose dependent signal artifacts due to ischemia. Low 
oxygen concentrations in or near the glucose sensor can 
account for a large part of the transient non-glucose related 
signal artifacts as defined herein on a glucose sensor signal, 
particularly in Subcutaneously implantable glucose sensors. 
Accordingly, detecting oxygen concentration, and determin 
ing if ischemia exists can discover ischemia-related signal 
artifacts. A variety of methods can be used to test for oxygen. 
For example, an oxygen-sensing electrode, or other oxygen 
sensor can be employed. The measurement of oxygen con 
centration can be sent to a processor, which determines if the 
oxygen concentration indicates ischemia. 
0304. In some embodiments of ischemia detection, an 
oxygen sensor is placed proximal to or within the glucose 
sensor. For example, the oxygen sensor can be located on or 
near the glucose sensor Such that their respective local 
environments are shared and oxygen concentration measure 
ment from the oxygen sensor represents an accurate mea 
Surement of the oxygen concentration on or within the 
glucose sensor. In some alternative embodiments of 
ischemia detection, an oxygen sensor is also placed distal to 
the glucose sensor. For example, the oxygen sensor can be 
located Sufficiently far from the glucose sensor Such that 
their respective local environments are not shared and 
oxygen measurements from the proximal and distal oxygen 
sensors can be compared to determine the relative difference 
between the respective local environments. By comparing 
oxygen concentration at proximal and distal oxygen sensors, 
change in local (proximal) oxygen concentration can be 
determined from a reference (distal) oxygen concentration. 
0305. Oxygen sensors are useful for a variety of pur 
poses. For example, U.S. Pat. No. 6.512.939 to Colvin et al., 
which is incorporated herein by reference, discloses an 
oxygen sensor that measures background oxygen levels. 
However, Colvin et al. rely on the oxygen sensor for the data 
stream of glucose measurements by Subtraction of oxygen 
remaining after exhaustion of glucose by an enzymatic 
reaction from total unreacted oxygen concentration. 
0306 In another embodiment of ischemia detection, 
wherein the glucose sensor is an electrochemical sensor that 
includes a potentiostat, pulsed amperometric detection can 
be employed to determine an oxygen measurement. Pulsed 
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amperometric detection includes Switching, cycling, or puls 
ing the Voltage of the working electrode (or reference 
electrode) in an electrochemical system, for example 
between a positive Voltage (e.g., +0.6 for detecting glucose) 
and a negative Voltage (e.g., -0.6 for detecting oxygen). U.S. 
Pat. No. 4,680,268 to Clark, Jr., which is incorporated by 
reference herein, describes pulsed amperometric detection. 
In contrast to using signal replacement, Clark, Jr. addresses 
oxygen deficiency by Supplying additional oxygen to the 
enzymatic reaction. 

0307 In another embodiment of ischemia detection, 
wherein the glucose sensor is an electrochemical sensor and 
contains a potentiostat, oxygen deficiency can be seen at the 
counter electrode when insufficient oxygen is available for 
reduction, which thereby affects the counter electrode in that 
it is unable to balance the current coming from the working 
electrode. When insufficient oxygen is available for the 
counter electrode, the counter electrode can be driven in its 
electrochemical search for electrons all the way to its most 
negative value, which could be ground or 0.0V, which 
causes the reference to shift, reducing the bias Voltage Such 
as described in more detail below. In other words, a common 
result of ischemia will be seen as a drop off in sensor current 
as a function of glucose concentration (e.g., lower sensitiv 
ity). This happens because the working electrode no longer 
oxidizes all of the HO arriving at its surface because of the 
reduced bias. In some extreme circumstances, an increase in 
glucose can produce no increase in current or even a 
decrease in current. 

0308 FIG. 9 is a graph that shows a comparison of sensor 
current and counter-electrode Voltage in a host over time. 
The x-axis represents time in minutes. The first y-axis 91 
represents sensor counts from the working electrode and 
thus plots a raw sensor data stream 92 for the glucose sensor 
over a period of time. The second y-axis 93 represents 
counter-electrode voltage 94 in counts. The graph illustrates 
the correlation between sensor data 92 and counter-electrode 
voltage 94; particularly, that erroneous counter electrode 
function 96 where the counter voltages drops approximately 
to Zero Substantially coincides with transient non-glucose 
related signal artifacts 98. In other words, when counter 
electrode Voltage is at or near Zero, sensor data includes 
signal artifacts. 

0309. In another embodiment of ischemia detection, 
wherein the glucose sensor is an electrochemical sensor and 
contains a two- or three-cell electrochemical cell, signal 
artifacts are detected by monitoring the reference electrode. 
This “reference drift detection' embodiment takes advan 
tage of the fact that the reference electrode will vary or drift 
in order to maintain a stable bias potential with the working 
electrode, such as described in more detail herein. This 
“drifting’ generally indicates non-glucose reaction rate 
limiting noise, for example due to ischemia. It is noted that 
the following example describes an embodiment wherein the 
sensor includes a working, reference, and counter elec 
trodes, such as described in more detail elsewhere herein; 
however the principles of this embodiment are applicable to 
a two-cell (e.g., anode and cathode) electrochemical cell as 
is understood in the art. 

0310 FIG. 10A is a circuit diagram of a potentiostat that 
controls a typical three-electrode system, which can be 
employed with a glucose sensor Such as described with 
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reference to FIGS. 1 and 2. The potentiostat includes a 
working electrode 100, a reference electrode 102, and a 
counter electrode 104. The voltage applied to the working 
electrode is a constant value (e.g., +1.2V) and the Voltage 
applied to the reference electrode is also set at a constant 
value (e.g., +0.6V) such that the potential (VAs) applied 
between the working and reference electrodes is maintained 
at a constant value (e.g., +0.6V). The counter electrode is 
configured to have a constant current (equal to the current 
being measured by the working electrode), which is accom 
plished by varying the Voltage at the counter electrode in 
order to balance the current going through the working 
electrode 100 such that current does not pass through the 
reference electrode 102. A negative feedback loop 107 is 
constructed from an operational amplifier (OP AMP), the 
reference electrode 102, the counter electrode 104, and a 
reference potential, to maintain the reference electrode at a 
constant Voltage. 
0311. In practice, a glucose sensor of one embodiment 
comprises a membrane that contains glucose oxidase that 
catalyzes the conversion of oxygen and glucose to hydrogen 
peroxide and gluconate. Such as described with reference to 
FIGS. 1 and 2. Therefore, for each glucose molecule 
metabolized there is a change equivalent in molecular con 
centration in the co-reactant O and the product H2O. 
Consequently, one can use an electrode (e.g., working 
electrode 100) to monitor the concentration-induced current 
change in either the co-reactant or the product to determine 
glucose concentration. 
0312 One limitation of the electrochemistry is seen when 
insufficient negative Voltage is available to the counter 
electrode 104 to balance the working electrode 100. This 
limitation can occur when insufficient oxygen is available to 
the counter electrode 104 for reduction, for example. When 
this limitation occurs, the counter electrode can no longer 
vary its Voltage to maintain a balanced current with the 
working electrode and thus the negative feedback loop 107 
used to maintain the reference electrode is compromised. 
Consequently, the reference electrode Voltage will change or 
“drift, altering the applied bias potential (i.e., the potential 
applied between the working and reference electrodes), 
thereby decreasing the applied bias potential. When this 
change in applied bias potential occurs, the working elec 
trode can produce erroneous glucose measurements due to 
either increased or decreased signal strength (Is Ns). 
0313 FIG. 10B a diagram referred to as Cyclic-Voltam 
metry (CV) curve, wherein the x-axis represents the applied 
potential (VAs) and the y-axis represents the signal 
strength of the working electrode (IsiNs). A curve 108 
illustrates an expected CV curve when the potentiostat is 
functioning normally. Typically, desired bias Voltage can be 
Set (e.g., VAs) and a resulting current will be sensed (e.g., 
IsiNs). As the Voltage decreases (e.g., VELAs) due to 
reference Voltage drift, for example, a new resulting current 
is sensed (e.g., IsiNs). Therefore, the change in bias is an 
indicator of signal artifacts and can be used in signal 
estimation and to replace the erroneous resulting signals. In 
addition to ischemia, the local environment at the electrode 
Surfaces can affect the CV curve, for example, changes in 
pH, temperature, and other local biochemical species can 
significantly alter the location of the CV curve. 
0314 FIG. 10C is a CV curve that illustrates an alterna 
tive embodiment of signal artifacts detection, wherein pH 
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and/or temperature can be monitoring using the CV curve 
and diagnosed to detect transient non-glucose related signal 
artifacts. For example, signal artifacts can be attributed to 
thermal changes and/or pH changes in Some embodiments 
because certain changes in pH and temperature affect data 
from a glucose sensor that relies on an enzymatic reaction to 
measure glucose. Signal artifacts caused by pH changes, 
temperature changes, changes in available electrode surface 
area, and other local biochemical species can be detected 
and signal estimation can be applied an/or optimized such as 
described in more detail elsewhere herein. In FIG. 10C, a 
first curve 108 illustrates an expected CV curve when the 
potentiostat is functioning normally. A second curve 109 
illustrates a CV curve wherein the environment has changed 
as indicated by the upward shift of the CV curve. 
0315. In some embodiments, pH and/or temperature mea 
Surements are obtained proximal to the glucose sensor; in 
Some embodiments, pH and/or temperature measurements 
are also obtained distal to the glucose sensor and the 
respective measurements compared, such as described in 
more detail above with reference to oxygen sensors. 
0316. In another implementation of signal artifacts detec 
tion, wherein temperature is detected, an electronic ther 
mometer can be proximal to or within the glucose sensor, 
Such that the temperature measurement is representative of 
the temperature of the glucose sensor's local environment. It 
is noted that accurate sensor function depends on diffusion 
of molecules from the blood to the interstitial fluid, and then 
through the membranes of the device to the enzyme mem 
brane. Additionally, diffusion transport of hydrogen peroX 
ide from the enzyme membrane to the electrode is required 
for accurate sensor function in Some embodiments. There 
fore, temperatures can be a rate determining parameter of 
diffusion. As temperature decreases, diffusion transport 
decreases. Under certain human conditions, such as hypo 
thermia or fever, the variations can be considerably greater. 
Additionally, under normal conditions, the temperature of 
Subcutaneous tissue is known to vary considerably more 
than core tissues (e.g., core temperature). Temperature 
thresholds can be set to detect signal artifacts accordingly. 
0317. In another implementation, a pH detector is used to 
detect signal artifacts. In glucose sensors that rely on enzy 
matic reactions, a pH of the fluid to be sensed can be within 
the range of about 5.5 to 7.5. Outside of this range, effects 
may be seen in the enzymatic reaction and therefore data 
output of the glucose sensor. Accordingly, by detecting if the 
pH is outside of a predetermined range (e.g., 5.5 to 7.5), a 
pH detector may detect transient non-glucose related signal 
artifacts such as described herein. It is noted that the pH 
threshold can be set at ranges other than provided herein 
without departing from the preferred embodiments. 
0318. In an alternative embodiment of signal artifacts 
detection, pressure and/or stress can be monitored using 
known techniques for example by a strain gauge placed on 
the sensor that detects stress/strain on the circuit board, 
sensor housing, or other components. A variety of micro 
electromechanical systems (MEMS) can be utilized to mea 
Sure pressure and/or stress within the sensor. 
0319. In another alternative embodiment of signal arti 
facts detection, the processor in the sensor (or receiver) 
periodically evaluates the data stream for high amplitude 
noise, which is defined by noisy data wherein the amplitude 
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of the noise is above a predetermined threshold. For 
example, in the graph of FIGS. 7A and 7B, the system noise 
sections such as 72a and 72b have a substantially low 
amplitude noise threshold; in contrast to System noise, signal 
artifacts sections such as 74a and 74b have signal artifacts 
(noise) with an amplitude that is much higher than that of 
system noise. Therefore, a threshold can be set at or above 
the amplitude of system noise, such that when noisy data is 
detected above that amplitude, it can be considered “signal 
artifacts' as defined herein. 

0320 In another alternative embodiment of signal arti 
facts detection, a method hereinafter referred to as the "Cone 
of Possibility Detection Method, utilizes physiological 
information along with glucose signal values in order define 
a "cone' of physiologically feasible glucose signal values 
within a human, Such that signal artifacts are detected 
whenever the glucose signal falls outside of the cone of 
possibility. Particularly, physiological information depends 
upon the physiological parameters obtained from continuous 
studies in the literature as well as our own observations. A 
first physiological parameter uses a maximal Sustained rate 
of change of glucose in humans (e.g., about 4 to 5 mg/dL/ 
min) and a maximum acceleration of that rate of change 
(e.g., about 0.1 to 0.2 mg/dL/min). A second physiological 
parameter uses the knowledge that rate of change of glucose 
is lowest at the minima, which is the areas of greatest risk 
in patient treatment, and the maxima, which has the greatest 
long-term effect on secondary complications associated with 
diabetes. A third physiological parameter uses the fact that 
the best Solution for the shape of the curve at any point along 
the curve over a certain time period (e.g., about 20-30 
minutes) is a straight line. Additional physiological param 
eters can be incorporated and are within the scope of this 
embodiment. 

0321) In practice, the Cone of Possibility Detection 
Method combines any one or more of the above-described 
physiological parameters to form an algorithm that defines a 
cone of possible glucose levels for glucose data captured 
over a predetermined time period. In one exemplary imple 
mentation of the Cone of Possibility Detection Method, the 
system (processor in the sensor or receiver) calculates a 
maximum physiological rate of change and determines if the 
data falls within these physiological limits; if not, signal 
artifacts are identified. It is noted that the maximum rate of 
change can be narrowed (e.g., decreased) in some instances. 
Therefore, additional physiological data could be used to 
modify the limits imposed upon the Cone of Possibilities 
Detection Method for sensor glucose values. For example, 
the maximum per minute rate change can be lower when the 
Subject is sleeping or hasn’t eaten in eight hours; on the other 
hand, the maximum per minute rate change can be higher 
when the Subject is exercising or has consumed high levels 
of glucose, for example. In general, it has been observed that 
rates of change are slowest near the maxima and minima of 
the curve, and that rates of change are highest near the 
midpoint between the maxima and minima. It should further 
be noted that rate of change limits are derived from analysis 
of a range of data significantly higher unsustained rates of 
change can be observed. 
0322. In another alternative embodiment of signal arti 
facts detection, examination of the spectral content (e.g., 
frequency content) of the data stream can yield measures 
useful in detecting signal artifacts. For example, data that 
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has high frequency, and in some cases can be characterized 
by a large negative slope, are indicative of signal artifacts 
and can cause sensor signal loss. Specific signal content can 
be monitored using an orthogonal transform, for example a 
Fourier transform, a Discrete Fourier Transform (DFT), or 
any other method known in the art. 
0323 FIG. 11 is a graph of 110 a raw data stream from 
a glucose sensor and a spectrogram 114 that shows the 
frequency content of the raw data stream in one embodi 
ment. Particularly, the graph 110 illustrates the raw data 
stream 112 and includes an X-axis that represents time in 
hours and a y-axis that represents sensor data output in 
counts; the spectrogram 114 illustrates the frequency content 
116 corresponding to the raw data stream 112 and includes 
an X-axis that represents time in hours corresponding to the 
X-axis of the graph 110 and a y-axis that represents fre 
quency content in cycles per hour. The darkness of each 
point represents the amplitude of that frequency at that time. 
Darker points relate to higher amplitudes. Frequency content 
on the spectrogram 114 was obtained using a windowed 
Discrete Fourier transform. 

0324. The raw data stream in the graph 110 has been 
adjusted by a linear mapping similar to the calibration 
algorithm. In this example, the bias (or intercept) has been 
adjusted but not the proportion (or slope). The slope of the 
raw data stream would typically be determined by some 
calibration, but since the calibration has not occurred in this 
example, the gray levels in the spectrogram 114 indicate 
relative values. The lower values of the graph 110 are white. 
They are colored as white below a specific value, highlight 
ing only the most intense areas of the graph. 
0325 By monitoring the frequency content 116, high 
frequency cycles 118 can be observed. The high frequency 
cycles 118 correspond to signal artifacts 119 such as 
described herein. Thus, signal artifacts can be detected on a 
data stream by monitoring frequency content and setting a 
threshold (e.g., 30 cycles per hour). The set threshold can 
vary depending on the signal source. 

0326 In another alternative embodiment of signal arti 
facts detection, examination of the signal information con 
tent can yield measures useful in detecting signal artifacts. 
Time series analysis can be used to measure entropy, 
approximate entropy, variance, and/or percent change of the 
information content over consecutive windows (e.g., 30 and 
60 minute windows of data) of the raw data stream. In one 
exemplary embodiment, the variance of the raw data signal 
is measured over 15 minute and 45 minute windows, and 
signal artifacts are detected when the variance of the data 
within the 15-minute window exceeds the variance of the 
data within the 45-minute window. Alternatively, other 
methods of self-diagnosis can be performed on the signal to 
determine a level of signal artifacts. One example includes 
performing a first derivative analysis that compares con 
secutive points, and detects signal artifacts when point to 
point changes are above a physiologically feasible threshold, 
for example. Another example of signal self-diagnosis 
includes performing a second derivative analysis that con 
siders turning points, for example, detects signal artifacts 
when changes are not sufficiently gradual (e.g., within 
thresholds), for example. 
0327 In yet another alternative embodiment of signal 
artifacts detection that utilizes examination or evaluation of 
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the signal information content, filtered (e.g., Smoothed) data 
is compared to raw data (e.g., in sensor electronics or in 
receiver electronics). In one such embodiment, a signal 
residual is calculated as the difference between the filtered 
data and the raw data. For example, at one time point (or one 
time period that is represented by a single raw value and 
single filtered value), the filtered data can be measured at 
50,000 counts and the raw data can be measured at 55,500 
counts, which would result in a signal residual of 5,500 
counts. In some embodiments, a threshold can be set (e.g., 
5000 counts) that represents a first level of noise (e.g., signal 
artifact) in the data signal, when the residual exceeds that 
level. Similarly, a second threshold can be set (e.g., 8,000 
counts) that represents a second level of noise in the data 
signal. Additional thresholds and/or noise classifications can 
be defined as is appreciated by one skilled in the art. 
Consequently, signal filtering, processing, and/or displaying 
decisions can be executed based on these conditions (e.g., 
the predetermined levels of noise). 

0328. Although the above-described example illustrates 
one method of determining a level of noise, or signal 
artifact(s), based on a comparison of raw vs. filtered data for 
a time point (or single values representative of a time 
period). In an alternative exemplary embodiment for deter 
mining noise, signal artifacts are evaluated for noise epi 
sodes lasting a certain period of time. For example, the 
processor (in the sensor or receiver) can be configured to 
look for a certain number of signal residuals above a 
predetermined threshold (representing noise time points or 
noisy time periods) for a predetermined period of time (e.g., 
a few minutes to a few hours or more). 

0329. In one exemplary embodiment, a processor is con 
figured to determine a signal residual by Subtracting the 
filtered signal from the raw signal for a predetermined time 
period. It is noted that the filtered signal can be filtered by 
any known Smoothing algorithm such as described herein, 
for example a 3-point moving average-type filter. It is further 
noted that the raw signal can include an average value, e.g., 
wherein the value is integrated over a predetermined time 
period (such as 5-minutes). Furthermore, it is noted that the 
predetermined time period can be a time point or represen 
tative data for a time period (e.g., 5 minutes). In some 
embodiments, wherein a noise episode for a predetermined 
time period is being evaluated, a differential can be obtained 
by comparing a signal residual with a previous signal 
residual (e.g., a residual at time (t)=0 as compared to a 
residual at (t)-5 minutes.) Similar to the thresholds 
described above with regard to the signal residual, one or 
more thresholds can be set for the differentials, whereby one 
or more differentials above one of the predetermined differ 
ential thresholds defines a particular noise level. It has been 
shown in certain circumstances that a differential measure 
ment as compared to a residual measurement as described 
herein, amplifies noise and therefore may be a more sensi 
tive to noise episodes. Accordingly, a noise episode, or noise 
episode level, can be defined by one or more points (e.g., 
residuals or differentials) above a predetermined threshold, 
and in Some embodiments, for a predetermined period of 
time. Similarly, a noise level determination can be reduced 
or altered when a different (e.g., reduced) number of points 
above the predetermined threshold are calculated in a pre 
determined period of time. 
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0330. One or a plurality of the above signal artifacts 
detection models can be used alone or in combination to 
detect signal artifacts Such as described herein. Accordingly, 
the data stream associated with the signal artifacts can be 
discarded, replaced, or otherwise processed in order to 
reduce or eliminate these signal artifacts and thereby 
improve the value of the glucose measurements that can be 
provided to a user. 
Signal Artifacts Replacement 
0331 Signal Artifacts Replacement, such as described 
above, can use systems and methods that reduce or replace 
these signal artifacts that can be characterized by transience, 
high frequency, high amplitude, and/or substantially non 
linear noise. Accordingly, a variety of filters, algorithms, and 
other data processing are provided that address the detected 
signal artifacts by replacing the data stream, or portion of the 
data stream, with estimated glucose signal values. It is noted 
that “signal estimation' as used herein, is a broad term, 
which includes filtering, data Smoothing, augmenting, pro 
jecting, and/or other algorithmic methods that estimate 
glucose signal values based on present and historical data. 
0332. It is noted that a glucose sensor can contain a 
processor and the like that processes periodically received 
raw sensor data (e.g., every 30 seconds). Although a data 
point can be available constantly, for example by use of an 
electrical integration system in a chemo-electric sensor, 
relatively frequent (e.g., every 30 seconds), or less frequent 
data point (e.g., every 5 minutes), can be more than sufficient 
for patient use. It is noted that accordingly Nyquist Theory, 
a data point is required about every 10 minutes to accurately 
describe physiological change in glucose in humans. This 
represents the lowest useful frequency of sampling. How 
ever, it should be recognized that it is desirable to sample 
more frequently than the Nyquist minimum, to provide for 
Sufficient data in the event that one or more data points are 
lost, for example. Additionally, more frequently sampled 
data (e.g., 30-second) can be used to Smooth the less 
frequent data (e.g., 5-minute) that are transmitted. It is noted 
that in this example, during the course of a 5-minute period, 
10 determinations are made at 30-second intervals. 

0333. In some embodiments of Signal Artifacts Replace 
ment, signal estimation can be implemented in the sensor 
and transmitted to a receiver for additional processing. In 
Some embodiments of Signal Artifacts Replacement, raw 
data can be sent from the sensor to a receiver for signal 
estimation and additional processing therein. In some 
embodiments of Signal Artifacts Replacement, signal esti 
mation is performed initially in the sensor, with additional 
signal estimation in the receiver. 
0334. In some embodiments of Signal Artifacts Replace 
ment, wherein the sensor is an implantable glucose sensor, 
signal estimation can be performed in the sensor to ensure a 
continuous stream of data. In alternative embodiments, data 
can be transmitted from the sensor to the receiver, and the 
estimation performed at the receiver. It is noted however 
that there can be a risk of transmit-loss in the radio trans 
mission from the sensor to the receiver when the transmis 
sion is wireless. For example, in embodiments wherein a 
sensor is implemented in Vivo, the raw sensor signal can be 
more consistent within the sensor (in vivo) than the raw 
signal transmitted to a source (e.g., receiver) outside the 
body (e.g., if a patient were to take the receiver off to shower, 
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communication between the sensor and receiver can be lost 
and data Smoothing in the receiver would halt accordingly). 
Consequently. It is noted that a multiple point data loss in the 
filter can take for example, about 25 to about 40 minutes for 
the data to recover to near where it would have been had 
there been no data loss. 

0335) In some embodiments of Signal Artifacts Replace 
ment, signal estimation is initiated only after signal artifacts 
are positively detected and stopped once signal artifacts are 
negligibly detected. In some alternative embodiments signal 
estimation is initiated after signal artifacts are positively 
detected and then stopped after a predetermined time period. 
In some alternative embodiments, signal estimation can be 
continuously or continually performed. In some alternative 
embodiments, one or more forms of signal estimation can be 
accomplished based on the severity of the signal artifacts, 
such as will be described with reference the section entitled, 
“Selective Application of Signal Artifacts Replacement.” 

0336. In some embodiments of Signal Artifacts Replace 
ment, the processor performs a linear regression. In one Such 
implementation, the processor performs a linear regression 
analysis of the n (e.g., 10) most recent sampled sensor values 
to Smooth out the noise. A linear regression averages over a 
number of points in the time course and thus reduces the 
influence of wide excursions of any point from the regres 
sion line. Linear regression defines a slope and intercept, 
which is used to generate a “Projected Glucose Value.” 
which can be used to replace sensor data. This regression can 
be continually performed on the data stream or continually 
performed only during the transient signal artifacts. In some 
alternative embodiments, signal estimation can include non 
linear regression. 

0337. In another embodiment of Signal Artifacts 
Replacement, the processor performs a trimmed regression, 
which is a linear regression of a trimmed mean (e.g., after 
rejecting wide excursions of any point from the regression 
line). In this embodiment, after the sensor records glucose 
measurements at a predetermined sampling rate (e.g., every 
30 seconds), the sensor calculates a trimmed mean (e.g., 
removes highest and lowest measurements from a data set 
and then regresses the remaining measurements to estimate 
the glucose value. 

0338 FIG. 12 is a graph that illustrates a raw data stream 
from a glucose sensor and a trimmed regression that can be 
used to replace Some of or the entire data stream. The X-axis 
represents time in minutes; the y-axis represents sensor data 
output in counts. A raw data signal 120, which is illustrated 
as a dotted line, shows a data stream wherein some system 
noise can be detected, however signal artifacts 122 can be 
particularly seen in a portion thereof (and can be detected by 
methods such as described above). The trimmed regression 
line 124, which is illustrated as a solid line, is the data stream 
after signal estimation using a trimmed linear regression 
algorithm, such as described above, and appears at least 
somewhat “smoothed' on the graph. In this particular 
example, the trimmed regression uses the most recent 60 
points (30 minutes) and trims out the highest and lowest 
values, then uses the leftover 58 points to project the next 
point. It is noted that the trimmed regression 124 provides a 
good estimate throughout the majority data stream, however 
is only somewhat effective in Smoothing the data in during 
signal artifacts 122. To provide an optimized estimate of the 
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glucose data values, the trimmed regression can be opti 
mized by changing the parameters of the algorithm, for 
example by trimming more or less raw glucose data from the 
top and/or bottom of the signal artifacts 122 prior to regres 
Sion. Additionally, trimmed regression, because of its inher 
ent properties, can be particularly Suited for noise of a 
certain amplitude and/or characteristic. In one embodiment, 
for example trimmed regression can be selectively applied 
based on the severity of the signal artifacts, which is 
described in more detail below with reference to FIGS. 15 
to 17. 

0339. In another embodiment of Signal Artifacts 
Replacement, the processor runs a non-recursive filter, Such 
as a finite impulse response (FIR) filter. A FIR filter is a 
digital signal filter, in which every sample of output is the 
weighted Sum of past and current samples of input, using 
only some finite number of past samples. 
0340 FIG. 13 is a graph that illustrates a raw data stream 
from a glucose sensor and an FIR-estimated signal that can 
be used to replace some of or the entire data stream. The 
X-axis represents time in minutes; the y-axis represents 
sensor data output in counts. A raw data signal 130, which 
is illustrated as a dotted line, shows a data stream wherein 
Some system noise can be detected, however signal artifacts 
132 can be particularly seen in a portion thereof (and can be 
detected by methods such as described above). The FIR 
estimated signal 134, which is illustrated as a solid line, is 
the data stream after signal estimation using a FIR filter, 
such as described above, and appears at least somewhat 
“smoothed' on the graph. It is noted that the FIR-estimated 
signal provides a good estimate throughout the majority of 
the data stream; however like trimmed regression it is only 
Somewhat effective in Smoothing the data during signal 
artifacts 132. To provide an optimized estimate of the 
glucose data values, the FIR filter can be optimized by 
changing the parameters of the algorithm, for example the 
tuning of the filter, particularly the frequencies of the pass 
band and the stop band. Additionally, it is noted that the FIR 
filter, because of its inherent properties, can be particularly 
Suited for noise of a certain amplitude and/or characteristic. 
In one embodiment, for example the FIR filter can be 
selectively applied based on the severity of the signal 
artifacts, which is described in more detail below with 
reference to FIGS. 15 to 17. It is noted that the FIR 
estimated signal induces a time lag on the data stream, which 
can be increased or decreased in order to optimize the 
filtering or to minimize the time lag, for example. 
0341 In another embodiment of Signal Artifacts 
Replacement, the processor runs a recursive filter, such as an 
infinite impulse response (IIR) filter. An IIR filter is a type 
of digital signal filter, in which every sample of output is the 
weighted Sum of past and current samples of input. In one 
exemplary implementation of an IIR filter, the output is 
computed using 6 additions/subtractions and 7 multiplica 
tions as shown in the following equation: 

ao: x(n) -- a 3 x(n - 1) + a2 : x(n - 2) + as : 
X(n-3) - b : y (n - 1) - b : y (n - 2) - b3 : y (n-3) 

bo 

This polynomial equation includes coefficients that are 
dependent on sample rate and frequency behavior of the 
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filter. Frequency behavior passes low frequencies up to cycle 
lengths of 40 minutes, and is based on a 30 second sample 
rate. In alternative implementations, the sample rate and 
cycle lengths can be more or less. See Lynn “Recursive 
Digital Filters for Biological Signals' Med. & Biol. Engi 
neering, Vol. 9, pp. 37-43, which is incorporated herein by 
reference in its entirety. 

0342 FIG. 14 is a graph that illustrates a raw data stream 
from a glucose sensor and an IIR-estimated signal that can 
be used to replace some of or the entire data stream. The 
X-axis represents time in minutes; the y-axis represents 
sensor data output in counts. A raw data signal 140, which 
is illustrated as a dotted line, shows a data stream wherein 
Some system noise can be detected, however signal artifacts 
142 can be particularly seen in a portion thereof (and can be 
detected by methods such as described above). The IIR 
estimated signal 144, which is illustrated as a Solid line, 
represents the data stream after signal estimation using an 
IIR filter, such as described above, and appears at least 
somewhat “smoothed on the graph. It is noted that the 
IIR-estimated signal induces a time lag on the data stream; 
however it appears to be a particularly good estimate of 
glucose data values during signal artifacts 142, as compared 
to the FIR filter (FIG. 13), for example. 
0343 To optimize the estimation of the glucose data 
values, the parameters of the IIR filter can be optimized, for 
example by increasing or decreasing the cycle lengths (e.g., 
10 minutes, 20 minute, 40 minutes, 60 minutes) that are used 
in the algorithm. Although an increased cycle length can 
increase the time lag induced by the IIR filter, an increased 
cycle length can also better estimate glucose data values 
during severe signal artifacts. In other words, the IIR filter, 
because of its inherent properties, can be particularly Suited 
for noise of a certain amplitude and/or characteristic. In one 
exemplary embodiment, the IIR filter can be continually 
applied, however the parameters such as described above 
can be selectively altered based on the severity of the signal 
artifacts; in another exemplary embodiment, the IIR filter 
can be applied only after positive detection of signal arti 
facts. Selective application of the IIR filter based on the 
severity of the signal artifacts is described in more detail 
below with reference to FIGS. 15 to 17. 

0344). It is noted that a comparison of linear regression, an 
FIR filter, and an IIR filter can be advantageous for opti 
mizing their usage in the preferred embodiments. That is, an 
understanding the design considerations for each algorithm 
can lead to optimized selection and implementation of the 
algorithm, as described in the section entitled, “Selective 
Application of Signal Replacement Algorithms' herein. 
During system noise, as defined herein, all of the above 
algorithms can be successfully implemented during system 
noise with relative ease. During signal artifacts, however, 
computational efficiency is greater with an IIR-filter as 
compared with linear regression and FIR-filter. Additionally, 
although the time lag associated with an IIR filter can be 
Substantially greater than that of the linear regression or 
FIR-filter, this can be advantageous during severe signal 
artifacts in order to assign greater weight toward the previ 
ous, less noisy data in signal estimation. 

0345. In another embodiment of Signal Artifacts 
Replacement, the processor runs a maximum-average (max 
average) filtering algorithm. The max-average algorithm 
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smoothes data based on the discovery that the substantial 
majority of signal artifacts observed after implantation of 
glucose sensors in humans, for example, is not distributed 
evenly above and below the actual blood glucose levels. It 
has been observed that many data sets are actually charac 
terized by extended periods in which the noise appears to 
trend downwardly from maximum values with occasional 
high spikes such as described in more detail above with 
reference to FIG. 7B, section 74b, which is likely in 
response to limitations in the system that do not allow he 
glucose to fully react at the enzyme layer and/or proper 
reduction of H2O at the counter electrode, for example. To 
overcome these downward trending signal artifacts, the 
max-average calculation tracks with the highest sensor Val 
ues, and discards the bulk of the lower values. Additionally, 
the max-average method is designed to reduce the contami 
nation of the data with non-physiologically high data from 
the high spikes. 
0346) The max-average calculation smoothes data at a 
sampling interval (e.g., every 30 seconds) for transmission 
to the receiver at a less frequent transmission interval (e.g., 
every 5 minutes) to minimize the effects of low non 
physiological data. First, the processor finds and stores a 
maximum sensor counts value in a first set of sampled data 
points (e.g., 5 consecutive, accepted, thirty-second data 
points). A frame shift time window finds a maximum sensor 
counts value for each set of sampled data (e.g., each 5-point 
cycle length) and stores each maximum value. The processor 
then computes a rolling average (e.g., 5-point average) of 
these maxima for each sampling interval (e.g., every 30 
seconds) and stores these data. Periodically (e.g., every 10" 
interval), the sensor outputs to the receiver the current 
maximum of the rolling average (e.g., over the last 10 
thirty-second intervals as a smoothed value for that time 
period (e.g., 5 minutes)). In one example implementation, a 
10-point window can be used, and at the 10" interval, the 
processor computes the average of the most recent 5 or 10 
average maxima as the Smoothed value for a 5 minute time 
period. 
0347 In some embodiments of the max-average algo 
rithm, an acceptance filter can also be applied to new sensor 
data to minimize effects of high non-physiological data. In 
the acceptance filter, each sampled data point (e.g., every 30 
seconds) is tested for acceptance into the maximum average 
calculation. Each new point is compared against the most 
representative estimate of the sensor curve at the previous 
sampling interface (e.g., 30-second time point), or at a 
projection to a current estimated value. To reject high data, 
the current data point is compared to the most recent value 
of the average maximum values over a time period (e.g., 5 
sampled data points over a 2.5 minute period). If the ratio of 
current value to the comparison value is greater than a 
certain threshold (e.g., about 1.02), then the current data 
point is replaced with a previously accepted value (e.g., 
30-second value). If the ratio of current value to the com 
parison value is in at or within a certain range (e.g., about 
1.02 to 0.90), then the current data point is accepted. If the 
ratio of current value to the comparison value is less than a 
certain threshold (e.g., about 0.90), then the current data 
point is replaced with a previously accepted value. The 
acceptance filter step and max-average calculation are con 
tinuously run throughout the data set (e.g., fixed 5-minute 
windows) on a rolling window basis (e.g., every 30 sec 
onds). 
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0348. In some implementations of the acceptance filter, 
the comparison value for acceptance could also be the most 
recent maximum of 5 accepted sensor points (more sensi 
tive) or the most recent average over 10 averages of 5 
maximum values (least sensitive), for example. In some 
exemplary implementations of the acceptance filter, the 
projected value for the current time point can be based on 
regression of the last 4 accepted 30-second values and/or the 
last 2 to 4 (5 to 15 min) of the 5-minute smoothed values, 
for example. In some exemplary implementations of the 
acceptance filter, the percentage comparisons of +2% and 
-10% of counts value would be replaced by percentage 
comparisons based on the most recent 24 hour range of 
counts values; this method would provide improved sensor 
specificity as compared to a method based on total counts. 
0349. In another embodiment of Signal Artifacts 
Replacement, the processor runs a “Cone of Possibility 
Replacement Method.” It is noted that this method can be 
performed in the sensor and/or in the receiver. The Cone of 
Possibility Detection Method utilizes physiological infor 
mation along with glucose signal values in order define a 
"cone of physiologically feasible glucose signal values 
within a human. Particularly, physiological information 
depends upon the physiological parameters obtained from 
continuous studies in the literature as well as our own 
observations. A first physiological parameter uses a maximal 
Sustained rate of change of glucose in humans (e.g., about 4 
to 5 mg/dl/min) and a maximum Sustained acceleration of 
that rate of change (e.g., about 0.1 to 0.2 mg/min/min). A 
second physiological parameter uses the knowledge that rate 
of change of glucose is lowest at the maxima and minima, 
which are the area of greatest risk in patient treatment, Such 
as described with reference to Cone of Possibility Detection, 
above. A third physiological parameter uses the fact that the 
best solution for the shape of the curve at any point along the 
curve over a certain time period (e.g., about 20-25 minutes) 
is a straight line. It is noted that the maximum rate of change 
can be narrowed in some instances. Therefore, additional 
physiological data can be used to modify the limits imposed 
upon the Cone of Possibility Replacement Method for 
sensor glucose values. For example, the maximum per 
minute rate change can be lower when the Subject is lying 
down or sleeping; on the other hand, the maximum per 
minute rate change can be higher when the Subject is 
exercising, for example. 
0350. The Cone of Possibility Replacement Method uti 
lizes physiological information along with blood glucose 
data in order to improve the estimation of blood glucose 
values within a human in an embodiment of Signal Artifacts 
Replacement. The Cone of Possibility Replacement Method 
can be performed on raw data in the sensor, on raw data in 
the receiver, or on Smoothed data (e.g., data that has been 
replaced/estimated in the sensor or receiver by one of the 
methods described above) in the receiver. 
0351. In a first implementation of the Cone of Possibility 
Replacement Method, a centerline of the cone can be 
projected from a number of previous, optionally smoothed, 
incremental data points (e.g., previous four, 5-minute data 
points). Each predicted cone centerline point (e.g., 5 minute 
point) increases by the slope (S) (e.g., for the regression in 
counts/minute) multiplied by the data point increment (e.g., 
5 minutes). Counts/mg/dL is estimated from glucose and 
sensor range calculation over the data set. 
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0352. In this first implementation of the Cone of Possi 
bility Replacement Method, positive and negative cone 
limits are simple linear functions. Periodically (e.g., every 5 
minutes), each sensor data point (optionally smoothed) is 
compared to the cone limits projected from the last four 
points. If the sensor value observed is within the cone limits, 
the sensor value is retained and used to generate the cone for 
the next data point increment (e.g., 5-minute point). If the 
sensor value observed falls outside the high or low cone 
limit, the value is replaced by the cone limit value, and that 
value is used to project the next data point increment (e.g., 
5 minute point, high point, or low point). For example, if the 
difference between two adjacent 5-minute points exceeds 20 
mg/dL, then cone limits are capped at 20 mg/dL increments 
per 5 minutes, with the positive limit of the cone being 
generated by the addition of 0.5*A*t to mid cone value, 
where A is 0.1 mg/dL/min/min and t is 5 minute increments 
(A is converted to counts/min/min for the calculation), and 
the negative limit of the cone being generated by the 
addition of -0.5*A*t to mid cone value. This implementa 
tion provides a high degree of accuracy and is minimally 
sensitive to non-physiological rapid changes. 

0353. The following Table 1 illustrates one example 
implementation of the Cone of Possibility Replacement 
Method, wherein the maximum sustained value observed for 
S is about +/-4 mg/dL/min and the maximum value 
observed for A is about +/-0.1 mg/dL/min: 

TABLE 1. 

Negative 
Time Mid line (mg/dL) Positive Cone Limit Cone Limit 

O 100 100 1OO 
5 100 - 5 * S 100 - S - S - 12.5 * A 100 - S - S - 

125A 
10 100 - 10 * S 100 - 10 * S - SO * A 100 - 10 * S 

50 * A 
15 100 - 15 * S 100 - 15 * S - 112.5 * A 100 - 15 * S 

112.5 * A 
2O 100 - 20 * S 100 - 20 * S - 200 * A 100 - 20 * S 

200 * A 
25 100 - 25 * S 100 - 25 * S - 312.S* A 100 - 25 * S 

312.5 * A 

0354) The cone widens for each 5-minute increment for 
which a sensor value fails to fall inside the cone up to 30 
minutes, such as can be seen in the table above. At 30 
minutes, a cone has likely widened enough to capture an 
observed sensor value, which is used, and the cone collapses 
back to a 5-minute increment width. If no sensor values are 
captured within 30 minutes, the cone generation routine 
starts over using the next four observed points. In some 
implementations special rules can be applied, for example in 
a case where the change in counts in one 5-minute interval 
exceeds an estimated 30-mg/dL amount. In this case, the 
next acceptable point can be more than 20 to 30 minutes 
later. It is noted that an implementation of this algorithm 
includes utilizing the cone of possibility to predict glucose 
levels and alert patients to present or upcoming dangerous 
blood glucose levels. 

0355. In another alternative embodiment of cone widen 
ing, the cone can widen in set multiples (e.g., 20 mg/dL) of 
equivalent amounts for each additional time interval (e.g., 5 
minutes), which rapidly widens the cone to accept data. 
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0356. It is noted that the numerical parameters represent 
only one example implementation of the Cone of Possibility 
Replacement Method. The concepts can be applied to any 
numerical parameters as desired for various glucose sensor 
applications. 
0357. In another implementation of the Cone of Possi 
bility Replacement Method, sensor calibration data is opti 
mized using the Clarke Error Grid, the Consensus Grid, or 
an alternative error assessment that assigns risk levels based 
on the accuracy of matched data pairs. In an example using 
the Clarke Error Grid, because the 10 regions of the Clarke 
Error Grid are not all symmetric around the Y=X perfect 
regression, fits to the grid can be improved by using a 
multi-line regression to the data. 
0358 Accordingly the pivot point method for the counts 
Vs. glucose regression fit can be used to optimize sensor 
calibration data to the Clarke Error Grid, Consensus Grid, or 
other clinical acceptability standard. First, the glucose range 
is divided according to meter values (e.g., at 200 mg/dL). 
Two linear fitting lines are used, which cross at the pivot 
point. The coordinates of the pivot point in counts and 
glucose value, plus the slope and intercept of the two lines 
are variable parameters. Some of pivot point coordinates 
(e.g., 4 out of 6) and slope or intercept of each line can be 
reset with each iteration, while the chosen coordinates define 
the remainder. The data are then re-plotted on the Clarke 
Error Grid, and changes in point placement and percentages 
in each region of the grid are evaluated. To optimize the fit 
of a data set to a Clark Error Grid, the regression of counts 
vs. reference glucose can be adjusted Such that the maximum 
number of points are in the A+B Zones without reducing the 
A+B percentage, and the number of points are optimized 
Such that the highest percentage are in the A Zone and lowest 
percentage are in the D, E and C Zones. In general, the points 
should be distributed as evenly as possible around the Y=X 
line. In some embodiments, three distinct lines optimized for 
clinical acceptability can represent the regression line. In 
Some embodiments, an additional useful criterion can be 
used to compute the root mean squared percentage bias for 
the data set. Better fits are characterized by reduction in the 
total root mean squared percentage bias. In an alternative 
implementation of the pivot point methods, a predetermined 
pivot (e.g., 10 degree) of the regression line can be applied 
when the estimated blood is above or below a set threshold 
(e.g., 150 mg/dL), wherein the pivot and threshold are 
determined from a retrospective analysis of the performance 
of a conversion function and its performance at a range of 
glucose concentrations. 
0359. In another embodiment of Signal Artifacts 
Replacement, reference changes in electrode potential can 
be used to estimate glucose sensor data during positive 
detection of signal artifacts from an electrochemical glucose 
sensor, the method hereinafter referred to as reference drift 
replacement. In this embodiment, the electrochemical glu 
cose sensor comprises working, counter, and reference elec 
trodes, such as described with reference to FIGS. 1, 2 and 10 
above. This method exploits the function of the reference 
electrode as it drifts to compensate for counter electrode 
limitations during oxygen deficits, pH changes, and/or tem 
perature changes such as described in more detail above 
with reference to FIGS. 10A, 10B, and 10C. 
0360 Such as described with in more detail with refer 
ence to FIG. 10A a potentiostat is generally designed so that 
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a regulated potential difference between the reference elec 
trode 102 and working electrode 100 is maintained as a 
constant. The potentiostat allows the counter electrode volt 
age to float within a certain Voltage range (e.g., from 
between close to the +1.2V observed for the working 
electrode to as low as battery ground or 0.0V). The counter 
electrode voltage measurement will reside within this volt 
age range dependent on the magnitude and sign of current 
being measured at the working electrode and the electroac 
tive species type and concentration available in the electro 
lyte adjacent to the counter electrode 104. This species will 
be electrochemically recruited (e.g., reduced/accepting elec 
trons) to equal the current of opposite sign (e.g., oxidized/ 
donating electrons) occurring at the working electrode 100. 
It has been discovered that the reduction of dissolved 
oxygen or hydrogen peroxide from oxygen converted in the 
enzyme layer are the primary species reacting at the counter 
electrode to provide this electronic current balance in this 
embodiment. If there are inadequate reducible species (e.g., 
oxygen) available for the counter electrode, or if other 
non-glucose reaction rate limiting phenomena occur (e.g., 
temperature or pH), the counter electrode can be driven in its 
electrochemical search for electrons all the way to ground or 
0.0V. However, regardless of the voltage in the counter 
electrode, the working and counter electrode currents must 
still maintain Substantially equivalent currents. Therefore, 
the reference electrode 102 will drift upward creating new 
oxidizing and reducing potentials that maintain equal cur 
rents at the working and counter electrodes. 
0361 Because of the function of the reference electrode 
102, including the drift that occurs during periods of signal 
artifacts (e.g., ischemia), the reference electrode can be 
monitored to determine the severity of the signal artifacts on 
the data stream. Particularly, a substantially direct relation 
ship between the reference electrode drift and signal artifacts 
has been discovered. Using the information contained within 
the CV curve (FIGS. 10B and/or 10C), the measured glucose 
signal (Is Ns) can be automatically scaled accordingly to 
replace these undesired transient effects on the data stream. 
It is noted that the circuit described with reference to FIG. 
10A can be used to determine the CV curve on a regularly 
scheduled basis or as needed. To this end, the desired 
reference Voltage and applied potential are made variable, 
and the reference Voltage can be changed at a defined rate 
while measuring the signal strength from the working elec 
trode, which allows for generation of a CV curve while a 
sensor is in vivo. 

0362. In alternative implementations of the reference 
drift replacement method, a variety of algorithms can there 
fore be implemented that replaces the signal artifacts based 
on the changes measured in the reference electrode. Linear 
algorithms, and the like, are Suitable for interpreting the 
direct relationship between reference electrode drift and the 
non-glucose rate limiting signal noise Such that appropriate 
conversion to signal noise compensation can be derived. 
0363. In other embodiments of Signal Artifacts Replace 
ment, prediction algorithms, also referred to as projection 
algorithms, can be used to replace glucose data signals for 
data which does not exist because 1) it has been discarded, 
2) it is missing due to signal transmission errors and the like, 
or 3) it represents a time period (e.g., future) for which a data 
stream has not yet been obtained based on historic and/or 
present data. Prediction/projection algorithms include any of 
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the above described Signal Artifacts Replacement algo 
rithms, and differ only in the fact that they are implemented 
to replace time points/periods during which no data is 
available (e.g., for the above-described reasons), rather than 
including that existing data, within the algorithmic compu 
tation. 

0364. In some embodiments, signal replacement/estima 
tion algorithms are used to predict where the glucose signal 
should be, and if the actual data stream varies beyond a 
certain threshold of that projected value, then signal artifacts 
are detected. In alternative embodiments, other data pro 
cessing can be applied alone, or in combination with the 
above-described methods, to replace data signals during 
system noise and/or signal artifacts. 
Selective Application of Signal Replacement Algorithms 

0365 FIG. 15 is a flow chart that illustrates a process of 
selectively applying signal estimation in embodiments. 
0366. At block 152, a sensor data receiving module, also 
referred to as the sensor data module, receives sensor data 
(e.g., a data stream), including one or more time-spaced 
sensor data points, such as described in more detail with 
reference to block 82 in FIG. 8. 

0367. At block 154, a signal artifacts detection module, 
also referred to as the signal artifacts detector 154, is 
programmed to detect transient non-glucose related signal 
artifacts in the data stream that have a higher amplitude than 
system noise, such as described in more detail with reference 
to block 84 in FIG.8. However, the signal artifacts detector 
of this embodiment can additionally detect a severity of 
signal artifacts. In some embodiments, the signal artifacts 
detector has one or more predetermined thresholds for the 
severity of the signal artifacts (e.g., low, medium, and high). 
In some embodiments, the signal artifacts detector numeri 
cally represents the severity of signal artifacts based on a 
calculation for example, which representation can be used to 
apply to the signal estimation algorithm factors, such as 
described in more detail with reference to block 156. 

0368. In one exemplary embodiment, the signal artifacts 
detection module evaluates the amplitude and/or frequency 
of the transient non-glucose related signal artifacts, which 
amplitude and/or frequency can be used to define the sever 
ity in terms of a threshold (e.g., high or low) or a numeric 
representation (e.g., a value from 1 to 10). In another 
exemplary embodiment, the signal artifacts detection mod 
ule evaluates a duration of the transient non-glucose related 
signal artifacts, such that as the duration increases, a severity 
can be defined in terms of a threshold (e.g., short or long) or 
a numeric representation (e.g., 10, 20, 30, 40, 50, or 60 
minutes). In another exemplary embodiment, the signal 
artifacts detection module evaluates the frequency content 
from a Fourier Transform and defines severity in terms of a 
threshold (e.g., above or below 30 cycles per hour) or a 
numeric representation (e.g., 50 cycles per hour). All of the 
signal artifacts detection methods described herein can be 
implemented to include determining a severity of the signal 
artifacts, threshold, and/or numerical representations. 
0369. At block 156, the signal artifacts replacement mod 
ule, also referred to as the signal estimation module, selec 
tively applies one of a plurality of signal estimation algo 
rithm factors in response to the severity of said signal 
artifacts. 
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0370. In one embodiment, signal artifacts replacement is 
normally turned off, except during detected signal artifacts. 
In another embodiment, a first signal estimation algorithm 
(e.g., linear regression, FIR filter etc.) is turned on all the 
time, and a second signal estimation algorithm optimized for 
signal artifacts (e.g., IIR filter, Cone of Possibility Replace 
ment Method, etc.) is turned on only during positive detec 
tion of signal artifacts. 
0371. In another embodiment, the signal replacement 
module comprises programming to selectively switch on and 
off a plurality of distinct signal estimation algorithms based 
on the severity of the detected signal artifacts. For example, 
the severity of the signal artifacts can be defined as high and 
low. In Such an example, a first filter (e.g., trimmed regres 
sion, linear regression, FIR, Reference Electrode Method, 
etc.) can be applied during low signal artifacts and a second 
filter (e.g., IIR, Cone of Possibility Method, etc.) can be 
applied during high signal artifacts. It is noted that all of the 
above signal replacement algorithms can be selectively 
applied in this manner based on the severity of the detected 
signal artifacts. 

0372 FIG. 16 is a graph that illustrates an embodiment 
wherein the signal replacement module comprises program 
ming to selectively Switch on and off a signal artifacts 
replacement algorithm responsive to detection of signal 
artifacts. The X-axis represents time in minutes; the first 
y-axis 160 represents sensor data output in counts. A raw 
data signal 161, which is illustrated as a dotted line, shows 
a data stream wherein some system noise can be detected; 
however signal artifacts 162 can be particularly seen in a 
portion thereof. The second y-axis 164 represents counter 
electrode Voltage in counts; counter electrode Voltage data 
165 is illustrated as a solid line. It is noted that a counter 
Voltage drop to approximately Zero in this example, which 
is one of numerous methods provided for detecting signal 
artifacts, detects signal artifacts 162. Accordingly, when the 
system detects the signal artifacts 162, an IIR-filter is 
selectively switched on in order to replace the signal artifact 
with an IIR-estimated glucose signal 166, which is illus 
trated as a heavy solid line. The IIR filter is switched off 
upon detection of negligible signal artifacts (e.g., counter 
electrode Voltage increasing from about Zero in this embodi 
ment). 
0373 FIG. 17 is a graph that illustrates an embodiment 
wherein the signal artifacts replacement module comprises 
programming to selectively apply different signal artifacts 
replacement algorithms responsive to detection of signal 
artifacts. The X-axis represents time in minutes; the first 
y-axis 170 represents sensor data output in counts. A raw 
data signal 171, which is illustrated as a dotted line, shows 
a data stream wherein some system noise can be detected; 
however signal artifacts 172 can be particularly seen in a 
portion thereof. The second y-axis 174 represents counter 
electrode Voltage in counts; counter electrode Voltage data 
175 is illustrated as a solid line. It is noted that a counter 
Voltage drop to approximately Zero in this example, which 
is one of numerous methods provided for detecting signal 
artifacts, detects signal artifacts 172. 

0374. In this embodiment, an FIR filter is applied to the 
data stream during detection of negligible or no signal 
artifacts (e.g., during no noise to system noise in the data 
stream). Accordingly, normal signal noise (e.g., system 
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noise) can be filtered to replace the data stream with an 
FIR-filtered data signal 176, which is illustrated by a slightly 
heavy Solid line. However, upon positive detection of signal 
artifacts (e.g., detected by approximately Zero counter elec 
trode voltage in this embodiment), the FIR filter is switched 
off and an IIR-filter is switched on in order to replace the 
signal artifacts with an IIR-filtered glucose signal 178, 
which is illustrated as a heavy solid line. The IIR filter is 
subsequently switched off and the FIR filter is switched back 
on upon detection of negligible signal artifacts (e.g., counter 
electrode Voltage increasing from about Zero in this embodi 
ment). 
0375. In another embodiment, the signal replacement 
module comprises programming to selectively apply differ 
ent parameters to a single signal artifacts replacement algo 
rithm (e.g., IIR, Cone of Possibility Replacement Method, 
etc.). As an example, the parameters of an algorithm can be 
Switched according to signal artifacts detection; in Such an 
example, an IIR filter with a 30-minute cycle length can be 
used during times of no noise or system noise and a 
60-minute cycle length can be used during signal artifacts. 
As another example, the severity of the signal artifacts can 
be defined as short and long; in Such an example, an IIR filter 
with a 30-minute cycle length can be used during the short 
signal artifacts and a 60-minute cycle length can be used 
during long signal artifacts. As yet another example, the 
severity of the signal artifacts can be defined by a numerical 
representation; in Such an example, the numerical represen 
tation can be used to calculate the parameters of the signal 
replacement algorithm (e.g., IIR, Cone of Possibility 
Replacement Method, and Reference Drift Method). 

0376 FIG. 18 is a flow chart that illustrates dynamic and 
intelligent estimation algorithm selection process 296 in an 
alternative embodiment. 

0377 At block 298, the dynamic and intelligent estima 
tion algorithm selection process 296 obtains sensor data, 
which can be raw, Smoothed, and/or otherwise processed. In 
Some embodiments, data matching can use data from a raw 
data stream received from an analyte sensor, Such as 
described at block 53. In some embodiments, data matching 
can use calibrated data. 

0378. At block 300, the dynamic and intelligent estima 
tion algorithm selection process 296 includes selecting one 
or more algorithms from a plurality of algorithms that best 
fits the measured analyte values. In some embodiments, the 
estimative algorithm can be selected based on physiological 
parameters; for example, in an embodiment wherein the 
analyte sensor is a glucose sensor, a first order regression can 
be selected when the rate of change of the glucose concen 
tration is high, indicating correlation with a straight line, 
while a second order regression can be selected when the 
rate of change of the glucose concentration is low, indicating 
correlation with a curved line. In some embodiments, a first 
order regression can be selected when the reference glucose 
data is within a certain threshold (for example, 100 to 200 
mg/dL), indicating correlation with a straight line, while a 
second order regression can be selected when the reference 
glucose data is outside of a certain threshold (for example, 
100 to 200 mg/dL), indicating correlation with a curved line 
because the likelihood of the glucose concentration turning 
around (for example, having a curvature) is greatest at high 
and low values. 
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0379 Generally, algorithms that estimate analyte values 
from measured analyte values include any algorithm that fits 
the measured analyte values to a pattern, and/or extrapolates 
estimated values for another time period (for example, for a 
future time period or for a time period during which data 
needs to be replaced). In some embodiments, a polynomial 
regression (for example, first order, second order, third 
order, etc.) can be used to fit measured analyte values to a 
pattern, and then extrapolated. In some embodiments, 
autoregressive algorithms (for example, IIR filter) can be 
used to fit measured analyte values to a pattern, and then 
extrapolated. In some embodiments, measured analyte val 
ues can be filtered by frequency before projection (for 
example, by converting the analyte values with a Fourier 
transform, filtering out high frequency noise, and converting 
the frequency data back to time values by using an inverse 
Fourier transform); this data can then be projected forward 
(extrapolated) along lower frequencies. In some embodi 
ments, measured analyte values can be represented with a 
Wavelet transform (for example filtering out specific noise 
depending on wavelet function), and then extrapolate for 
ward. In some alternative embodiments, computational 
intelligence (for example, neural network-based mapping, 
fuzzy logic based pattern matching, genetic-algorithms 
based pattern matching, and the like) can be used to fit 
measured analyte values to a pattern, and/or extrapolate 
forward. In yet other alternative embodiments, time-series 
forecasting is employed using methods such as moving 
average (single or double), exponential Smoothing (single, 
double, or triple), time series decomposition, growth curves, 
Box-Jenkins, and the like. The plurality of algorithms of the 
preferred embodiments can utilize any one or more of the 
above-described algorithms, or equivalents, in order to intel 
ligently select estimative algorithms and thereby estimate 
analyte values. 

0380. In some embodiments, estimative algorithms fur 
ther include parameters that consider external influences, 
Such as insulin therapy, carbohydrate consumption, and the 
like. In one such example, these additional parameters can 
be user input via the user interface 47 or transmitted from an 
external device. Such as an insulin pump, remote device, or 
other computer system. By including Such external influ 
ences in additional to historical trend data (measured analyte 
values), analyte concentration changes can be better antici 
pated. 

0381 At block 302, the selected one or more algorithms 
are evaluated based on statistical, clinical, or physiological 
parameters. In some embodiments, running each algorithm 
on the data stream tests each of the one or more algorithms, 
and the algorithmic result with the best correlation to the 
measured analyte values is selected. In some embodiments, 
the pluralities of algorithms are each compared for best 
correlation with physiological parameters (for example, 
within known or expected rates of change, acceleration, 
concentration, etc). In some embodiments, the pluralities of 
algorithms are each compared for best fit within a clinical 
error grid (for example, within “A” region of Clarke Error 
Grid). Although first and second order algorithms are exem 
plified herein, any two or more algorithms such as described 
in more detail below could be programmed and selectively 
used based on a variety of conditions, including physiologi 
cal, clinical, and/or statistical parameters. 
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0382. At block 304, the algorithm(s) selected from the 
evaluation step is employed to estimate analyte values for a 
time period. Accordingly, analyte values are more dynami 
cally and intelligently estimated to accommodate the 
dynamic nature of physiological data. Additional processes, 
for example applying physiological boundaries, evaluation 
of the estimation algorithms after employing the algorithms, 
evaluating a variation of estimated analyte values, measur 
ing and comparing analyte values, and the like (e.g., Such as 
described in co-pending U.S. Published Patent Application 
2005-0203360 to Brauker et al.) can be applied to the 
dynamic and intelligent estimative algorithms described 
herein 

0383 FIG. 19 is a graph that illustrates dynamic and 
intelligent estimation algorithm selection applied to a data 
stream in one embodiment showing first order estimation, 
second order estimation, and the measured glucose values 
for the time period, wherein the second order estimation 
shows a better correlation to the measured glucose data than 
the first order estimation. The x-axis represents time in 
minutes. The y-axis represents glucose concentration in 
mg/dL. 

0384. In the data of FIG. 19, measured (calibrated) sensor 
glucose data 306 was obtained up to time t=0. At t=0, a first 
order regression 308 was performed on the measured data 
306 to estimate the upcoming 15-minute time period. A 
second order regression 310 was also performed on the data 
to estimate the upcoming 15-minute time period. The intel 
ligent estimation of the preferred embodiments, such as 
described in more detail below, chose the second order 
regression 310 as the preferred algorithm for estimation 
based on programmed conditions (at t=0). The graph of FIG. 
19 further shows the measured glucose values 312 from t=0 
to t-15 to illustrate that second order regression 310 does in 
fact more accurately correlate with the measured glucose 
data 312 than first order regression 308 from t=0 to t=15. 

0385) In the example of FIG. 19, the dynamic and intel 
ligent estimation algorithm selection determined that the 
second order regression 310 was the preferred algorithm for 
estimation at t=0 based on conditions. A first condition was 
based on a set threshold that considers second order regres 
sion a better fit when measured glucose values are above 200 
mg/dL and trending upwardly. A second condition verifies 
that the curvature of the second order regression line appro 
priately shows a deceleration above 200 mg/dL. Although 
two specific examples of conditions are described herein, 
dynamic and intelligent estimation can have as many or as 
few conditions programmed therein as can be imagined or 
contrived. Some additional examples of conditions for 
selecting from a plurality of algorithms are listed above, 
however the scope of this aspect of dynamic and intelligent 
estimation includes any conditional statements that can be 
programmed and applied to any algorithms that can be 
implemented for estimation. 

0386 FIG. 20 is a flow chart that illustrates the process 
330 of dynamic and intelligent estimation and evaluation of 
analyte values in one embodiment, wherein the estimation 
algorithms are continuously, periodically, or intermittently 
evaluated based on Statistical, clinical, or physiological 
parameters to maintain accuracy of estimation. 
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0387. At block 332, the dynamic and intelligent estima 
tion and evaluation process 130 obtains sensor data, which 
can be raw, Smoothed, calibrated and/or otherwise pro 
cessed. 

0388 At block 334, the dynamic and intelligent estima 
tion and evaluation process 330 estimates one or more 
analyte values using one or more estimation algorithms. In 
Some embodiments, this analyte value estimation uses con 
ventional projection using first or second order regression, 
for example. In some embodiments, dynamically and intel 
ligently selecting of one or more algorithms from a plurality 
of algorithms, dynamically and intelligently estimating ana 
lyte values within physiological boundaries, evaluating a 
variation of estimated analyte values, measuring and com 
paring analyte values, and the like (e.g., Such as described in 
U.S. Publication No. US-2005-0203360-A1) can be applied 
to the dynamic and intelligent estimation and evaluation 
process described herein. 

0389. The estimative algorithms described elsewhere 
herein consider mathematical equations, for example, which 
may or may not be sufficient to accurately estimate analyte 
values in some circumstances due to the dynamic nature of 
mammalian behavior. For example, in a circumstance where 
a patient’s glucose concentration is trending upwardly at a 
constant rate of change (for example, 120 mg/dL at 2 
mg/dL/min), an expected physiological pattern would likely 
estimate a continued increase at Substantially the same rate 
of change over the upcoming approximately 40 minutes, 
which would fall within physiological boundaries. However, 
if a person with diabetes were to engage in heavy aerobic 
exercise, which may not be known by the estimative algo 
rithm, a slowing of the upward trend, and possibly a change 
to a downward trend can possibly result, leading to inaccu 
racies in the estimated analyte values. Numerous Such 
circumstances can occur in the lifestyle of a person with 
diabetes. However, although analyte values can sometimes 
be estimated under “normal circumstances, other circum 
stances exist that are not “normal' or “expected” and can 
result in estimative algorithms that produce apparently erro 
neous results, for example, if they are based solely on 
mathematical calculations and/or physiological patterns. 
Accordingly, evaluation of the estimative algorithms can be 
performed to ensure the accuracy or quantify a measure of 
confidence in the estimative algorithms. 

0390 At block 336, the dynamic and intelligent estima 
tion and evaluation process 330 evaluates the estimation 
algorithms employed at block 334 to evaluate a “goodness” 
of the estimated analyte values. The evaluation process 
performs an evaluation of the measured analyte data with the 
corresponding estimated analyte data (e.g., by performing 
the algorithm on the data stream and comparing the mea 
Sured with the corresponding analyte data for a time period). 
In some embodiments, evaluation can be performed con 
tinually or continuously so that the dynamic and intelligent 
algorithms are continuously adapting to the changing physi 
ological analyte data. In some embodiments, the evaluation 
can be performed periodically so that the dynamic and 
intelligent algorithms are periodically and systematically 
adapting to the changing physiological analyte data. In some 
embodiments, evaluation can be performed intermittently, 
for example when an estimative algorithm is initiated or 
when other Such triggers occur, so that the dynamic and 
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intelligent algorithms can be evaluated when new or updated 
data or algorithms are being processed. 

0391 This evaluation process 330 uses any known evalu 
ation method, for example based on statistical, clinical, or 
physiological standards. One example of statistical evalua 
tion is provided below with reference to FIG. 21; however 
other methods are also possible. In some embodiments, the 
evaluation process 330 determines a correlation coefficient 
of regression. In some embodiments wherein the sensor is a 
glucose sensor, the evaluation process 330 determines if the 
selected estimative algorithm shows that analyte values fall 
with the “A” and “B” regions of the Clarke Error Grid. Other 
parameters or methods for evaluation are considered within 
the scope of the preferred embodiments. In some embodi 
ments, the evaluation process 330 includes performing a 
curvature formula to determine fiducial information about 
the curvature, which results in an evaluation of the amount 
of noise on the signal. 

0392. In some embodiments, the evaluation process 330 
calculates physiological boundaries to evaluate whether the 
estimated analyte values fall within known physiological 
constraints. In this embodiment, the estimative algorithm(s) 
are evaluated to ensure that they do not allow estimated 
analyte values to fall outside of physiological boundaries, 
some examples of which are described in more detail 
elsewhere herein, and in co-pending U.S. Published Patent 
Application 2005-0203360 to Brauker et al., for example. In 
some alternative embodiments, clinical or statistical param 
eters can be used in a similar manner to bound estimated 
analyte values. 

0393 If the result of the evaluation is satisfactory (for 
example, 10% average deviation, correlation coefficient 
above 0.79, all estimated analyte values within A or B region 
of the Clarke Error Grid, all estimated analyte values within 
physiological boundaries, and the like), the processing con 
tinues to the next step, using the selected estimative algo 
rithm. However, if the result of the evaluation is unsatisfac 
tory, the process can start the algorithm selection process 
again, optionally considering additional information, or the 
processor can determine that estimation is not appropriate 
for a certain time period. In one alternative embodiment, a 
signal noise measurement can be evaluated, and if the signal 
to noise ratio is unacceptable, the processor can modify its 
estimative algorithm or other action that can help compen 
sate for signal noise (e.g., signal artifacts, such as described 
elsewhere herein). 
0394 FIG. 21 is a graph that illustrates an evaluation of 
the selected estimative algorithm in one embodiment, 
wherein a correlation is measured to determine a deviation 
of the measured glucose data with the selected estimative 
algorithm, if any. The X-axis represents time in minutes. The 
y-axis represents glucose concentration in mg/dL. Measured 
glucose values 340 are shown for about 90 minutes up to 
t=0. At t=0, the selected algorithm is performed on 40 
minutes of the measured glucose values 340 up to t=0, which 
is represented by a regression line 342 in this embodiment. 
A data association function is used to determine a goodness 
of fit of the estimative algorithm on the measured glucose 
data 340; namely, the estimative algorithm is performed 
retrospectively on the measured glucose data 340, and is 
hereinafter referred to as retrospectively estimated glucose 
data 342 (e.g., estimation prior to t=0), after which a 
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correlation (or deviation) with the measured glucose data is 
determined. In this example, the goodness of fit shows a 
mean absolute relative difference (MARD) of 3.3% between 
the measured glucose data 340 and the retrospectively 
estimated glucose data 342. While not wishing to be bound 
to theory, it is believed that this correlation of the measured 
glucose data 340 to the retrospectively estimated glucose 
data 342 can be indicative of the correlation of future 
estimated glucose data to the measured glucose data for that 
estimated time period. 

0395 Reference is now made to FIG. 22, which is a flow 
chart that illustrates the process 450 of analyzing a variation 
of estimated future analyte value possibilities in one 
embodiment. This embodiment takes into consideration that 
analyte values are subject to a variety of external influences, 
which can cause the measured analyte values to alter from 
the estimated analyte values as the time period that was 
estimated passes. External influences include, but are not 
limited to, exercise, sickness, consumption of food and 
alcohol, injections of insulin, other medications, and the 
like. For a person with diabetes, for example, even when 
estimation does not accurately predict the upcoming mea 
Sured analyte values, the estimated analyte values can be 
valuable to a patient in treatment and in fact can even alter 
the estimated path by encouraging proactive patient behav 
ior that can cause the patient to avoid the estimated clinical 
risk. In other words, the deviation of measured analyte 
values from their corresponding estimated analyte values 
may not be an "error” in the estimative algorithm, and is in 
fact one of the benefits of the continuous analyte sensor of 
the preferred embodiments, namely encouraging patient 
behavior modification and thereby improving patient health 
through minimizing clinically risky analyte values. Proac 
tive behavior modification (for example, therapies such as 
insulin injections, carbohydrate consumption, exercise, and 
the like) can cause the patient’s measured glucose to change 
from the estimated path, and analyzing a variation that can 
be associated with the estimated analyte values can encom 
pass many of these changes. Therefore, in addition to 
estimated analyte values, a variation can be calculated or 
estimated based on statistical, clinical, and/or physiological 
parameters that provides a range of values in which the 
estimated analyte values can fall. 

0396 At block 452, the variation of possible estimated 
analyte values analysis process 450 obtains sensor data, 
which can be raw, smoothed, calibrated and/or otherwise 
processed. 

0397. At block 454, the variation of possible estimated 
analyte values analysis process 450 estimates one or more 
analyte values using one or more estimation algorithms. In 
Some embodiments, this analyte values estimation uses 
conventional projection using first or second order regres 
Sion, for example. In some embodiments, dynamically and 
intelligently selecting of one or more algorithms from a 
plurality of algorithms, dynamically and intelligently esti 
mating analyte values within physiological boundaries, 
dynamic and intelligent estimation and evaluation of esti 
mated analyte values, measuring and comparing analyte 
values (e.g., such as described in U.S. Publication No. 
US-2005-0203360-A1), and the like can be applied to the 
dynamic and intelligent estimation and evaluation process 
described herein. 
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0398. At block 456, the variation of possible estimated 
analyte values evaluation process 450 analyzes a variation of 
the estimated analyte data. Particularly, a statistical, clinical, 
and/or physiological variation of estimated analyte values 
can be calculated when applying the estimative algorithms 
and/or can be calculated at regular intervals to dynamically 
change as the measured analyte values are obtained. In 
general, analysis of trends and their variation allows the 
estimation of the preferred embodiments to dynamically and 
intelligently anticipate upcoming conditions, by considering 
internal and external influences that can affect analyte con 
centration. 

0399. In some embodiments, physiological boundaries 
for analytes in mammals can be used to set the boundaries 
of variation. For example, known physiological boundaries 
of glucose in humans are discussed in detail with reference 
to U.S. Publication No. US-2005-0203360-A1, however any 
physiological parameters for any measured analyte can be 
implemented here to provide this variation of physiologi 
cally feasible analyte values. 

0400. In some embodiments, statistical variation can be 
used to determine a variation of possible analyte values. 
Statistical variation can be any known divergence or change 
from a point, line, or set of data based on statistical infor 
mation. Statistical information includes patterns or data 
analysis resulting from experiments, published or unpub 
lished, for example. In some embodiments, statistical infor 
mation can include normal patterns that have been measured 
statistically in studies of analyte concentrations in mammals, 
for example. In some embodiments, statistical information 
can include errors observed and measured Statistically in 
studies of analyte concentrations in mammals, for example. 
In some embodiments, statistical information can include 
predetermined statistical standards, for example, deviation 
less than or equal to 5% on the analyte value. In some 
embodiments, statistical variation can be a measured or 
otherwise known signal noise level. 

04.01. In some embodiments, a variation is determined 
based on the fact that the conventional blood glucose meters 
are known to have up to a +/-20% error in glucose values 
(namely, on average in the hands of a patient). For example, 
gross errors in glucose readings are known to occur due to 
patient error in self-administration of the blood glucose test. 
In one such example, if the user has traces of Sugar on 
his/her finger while obtaining a blood sample for a glucose 
concentration test, then the measured glucose value will 
likely be much higher than the measured glucose value in the 
blood. Additionally, it is known that self-monitored blood 
glucose tests (for example, test strips) are occasionally 
Subject to manufacturing error. In view of this statistical 
information, in an embodiment wherein a continuous glu 
cose sensor relies upon a conventional blood glucose meter 
for calibration, this +/-20% error should be considered 
because of the potential for translated effect on the calibrated 
sensor analyte data. Accordingly, this exemplary embodi 
ment would provide for a +/-20% variation of estimated 
glucose values based on the above-described statistical 
information. 

0402. In some embodiments, a variation of estimated 
analyte values can be analyzed based on individual physi 
ological patterns. Physiological patterns are affected by a 
combination of at least biological mechanisms, physiologi 
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cal boundaries, and external influences such as exercise, 
sickness, consumption of food and alcohol, injections of 
insulin, other medications, and the like. Advantageously, 
pattern recognition can be used with continuous analyte 
sensors to characterize an individual’s physiology; for 
example the metabolism of a person with diabetes can be 
individually characterized, which has been difficult to quan 
tify with conventional glucose sensing mechanisms due to 
the unique nature of an individual’s metabolism. Addition 
ally, this information can be advantageously linked with 
external influences (for example, patient behavior) to better 
understand the nature of individual human physiology, 
which can be helpful in controlling the basal rate in a person 
with diabetes, for example. 

0403. While not wishing to be bound to theory, it is 
believed that monitoring of individual historical physiologi 
cal analyte data can be used to recognize patterns that can be 
used to estimate analyte values, or ranges of values, in a 
mammal. For example, measured analyte data for a patient 
can show certain peaks of glucose levels during a specific 
time of day, “normal AM and PM eating behaviors (for 
example, that follow a pattern), weekday versus weekend 
glucose patterns, individual maximum rate of change, and 
the like, that can be quantified using patient-dependent 
pattern recognition algorithms, for example. Pattern recog 
nition algorithms that can be used in this embodiment 
include, but are not limited to, stochastic nonlinear time 
series analysis, exponential (non-linear) autoregressive 
model, process feedback nonlinear autoregressive (PFNAR) 
model, neural networks, and the like. 

0404 Accordingly, statistically calculated patterns can 
provide information useful in analyzing a variation of esti 
mated analyte values for a patient that includes consider 
ation of the patient’s normal physiological patterns. Pattern 
recognition enables the algorithmic analysis of analyte data 
to be customized to a user, which is useful when analyte 
information is variable with each individual user, such as has 
been seen in glucose in humans, for example. 

0405. In some embodiments, a variation of estimated 
analyte values is on clinical risk analysis. Estimated analyte 
values can have higher clinical risk in certain ranges of 
analyte values, for example analyte values that are in a 
clinically risky Zone or analyte values that are changing at a 
clinically risky rate of change. When a measured analyte 
value or an estimated analyte value shows existing or 
approaching clinical risk, it can be important to analyze the 
variation of estimated analyte values in view of the clinical 
risk to the patient. For example, in an effort to aid a person 
with diabetes in avoiding clinically risky hyper- or hypogly 
cemia, a variation can be weighted toward the clinically risk 
Zone, which can be used to emphasize the pending danger to 
the patient, doctor, or care taker, for example. As another 
example, the variation of measured or estimated analyte 
values can be based on values that fall within the 'A' and/or 
“B” regions of an error grid Analysis Method. 

0406. In case of variation analysis based on clinical risk, 
the estimated analyte values are weighted in view of pending 
clinical risk. For example, if estimated glucose values show 
a trend toward hypoglycemia at a certain rate of change, a 
variation of possible trends toward hypoglycemia are 
weighted to show how quickly the glucose concentration 
could reach 40 mg/dL, for example. As another example, if 
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estimated glucose values show a trend toward hyperglyce 
mia at a certain acceleration, a variation of possible trends 
toward hyperglycemia are weighted to show how quickly 
the glucose concentration could reach 200 mg/dL, for 
example. 

0407. In some embodiments, when a variation of the 
estimated analyte values shows higher clinical risk as a 
possible path within that variation analysis as compared to 
the estimated analyte path, the estimated analyte values can 
be adjusted to show the analyte values with the most clinical 
risk to a patient. While not wishing to be bound by theory, 
adjusting the estimated analyte values for the highest varia 
tion of clinical risk exploits the belief that by showing the 
patient the “worst case scenario, the patient is more likely 
to address the clinical risk and make timely behavioral and 
therapeutic modifications and/or decisions that will slow or 
reverse the approaching clinical risk. 
0408. At block 458, the variation of possible estimated 
analyte values evaluation process 150 provides output based 
on the variation analysis. In some embodiments, the result of 
this variation analysis provides a “Zone' of possible values, 
which can be displayed to the user, considered in data 
analysis, and/or used in evaluating of performance of the 
estimation, for example. 
04.09 FIG. 23 is a graph that illustrates variation analysis 
of estimated glucose values in one embodiment, wherein a 
variation of the estimated glucose values is analyzed and 
determined based on known physiological parameters. The 
X-axis represents time in minutes. The y-axis represents 
glucose concentration in mg/dL. In this embodiment, the 
known maximum rate of change and acceleration of glucose 
in humans are used to provide the variation about the 
estimated glucose path. 

0410 The measured glucose values 460 are shown for 
about 90 minutes up to t=0. At t=0, intelligent and dynamic 
estimation of the preferred embodiments is performed to 
obtain estimated glucose values 462. A variation of esti 
mated glucose values is then determined based on physi 
ological parameters, including an upper limit 464 and a 
lower limit 466 of variation defined by known physiological 
parameters, including rate of change and acceleration of 
glucose concentration in humans. 
0411 FIG. 24 is a graph that illustrates variation of 
estimated analyte values in another embodiment, wherein 
the variation is based on statistical parameters. The X-axis 
represents time in minutes and the y-axis represents glucose 
concentration in mg/dL. The measured glucose values 470 
are shown for about 160 minutes up to t-0. At t=0, intelli 
gent and dynamic estimation of the preferred embodiments 
is employed to obtain estimated glucose values 472. A 
variation is defined by upper and lower limits 474 that were 
determined using 95% confidence intervals. Bremer. T.; 
Gough, D. A. “Is blood glucose predictable from previous 
values? A solicitation for data. Diabetes 1999, 48, 445-451, 
which is incorporated by reference herein in its entirety, 
teaches a method of determining a confidence interval in one 
embodiment. 

0412. Although some embodiments have been described 
for a glucose sensor, any measured analyte pattern, data 
analysis resulting from an experiment, or otherwise known 
statistical information, whether official or unofficial, pub 
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lished or unpublished, proven or anecdotal, and the like, can 
be used to provide the statistical variation described herein. 
0413 FIG. 25 is a flow chart that illustrates the process 
480 of estimating, measuring, and comparing analyte values 
in one embodiment. 

0414. At block 482, the estimating, measuring, and com 
paring analyte values process 480 obtains sensor data, which 
can be raw, Smoothed, calibrated and/or otherwise pro 
cessed. 

0415. At block 484, the estimating, measuring, and com 
paring analyte values process 480 estimates one or more 
analyte values for a time period. In some embodiments, this 
analyte values estimation uses conventional projection using 
first or second order regression, for example. In some 
embodiments, dynamically and intelligently selecting of one 
or more algorithms from a plurality of algorithms, dynami 
cally and intelligently estimating analyte values within 
physiological boundaries), dynamic and intelligent estima 
tion and evaluation of estimated analyte values, variation 
analysis (e.g., such as described in co-pending U.S. Pub 
lished Patent Application 2005-0203360 to Brauker et al.), 
and the like can be applied to the process described herein. 
0416. At block 486, the estimating, measuring, and com 
paring analyte values process 480 obtains sensor data for the 
time period for which the estimated analyte values were 
calculated at block 484. In some embodiments, the measured 
analyte data can be raw, Smoothed, calibrated, and/or oth 
erwise processed. 
0417. At block 488, the estimating, measuring, and com 
paring analyte values process 480 compares the estimated 
analyte data to the measured analyte data for that estimated 
time period. In general, it can be useful to compare the 
estimated analyte data to the measured analyte data for that 
estimated time period after estimation of analyte values. 
This comparison can be performed continuously, namely, at 
regular intervals as data streams are processed into measured 
analyte values. Alternatively, this comparison can be per 
formed based on events, such as during estimation of 
measured analyte values, selection of a estimative algorithm, 
evaluation of estimative algorithms, variation analysis of 
estimated analyte values, calibration and transformation of 
sensor analyte data, and the like. 
0418. One embodiment is shown in FIG. 26, wherein 
MARD is used to determine a correlation (or deviation), if 
any, between the estimated and measured data sets. In other 
embodiments, other methods, such as linear regression, 
non-linear mapping/regression, rank (for example, non 
parametric) correlation, least mean square fit, mean absolute 
deviation (MAD), and the like, can be used to compare the 
estimated analyte data to the measured analyte data to 
determine a correlation (or deviation), if any. 
0419. In one embodiment, wherein estimation is used in 
outlier detection and/or in matching data pairs for a con 
tinuous glucose sensor (see FIGS. 5 and 6), the estimated 
glucose data can be plotted against reference glucose data on 
a clinical error grid (for example, Clarke Error Grid or rate 
grid) and then compared to the measured glucose data for 
that estimated time period plotted against the same reference 
analyte data on the same clinical error grid. In alternative 
embodiments, other clinical error analysis methods can be 
used. Such as Consensus Error Grid, rate of change calcu 
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lation, consensus grid, and standard clinical acceptance 
tests, for example. The deviation can be quantified by 
percent deviation, or can be classified as pass/fail, for 
example. 

0420. In some embodiments, the results of the compari 
son provide a quantitative deviation value, which can be 
used to provide a statistical variation; for example, if the % 
deviation is calculated as 8%, then the statistical variation 
such as described with reference to FIG. 22 can be updated 
with a +/-8% variation. In some alternative embodiments, 
the results of the comparison can be used to turn on/off the 
estimative algorithms, estimative output, and the like. In 
general, the comparison produces a confidence interval (for 
example, +/-8% of estimated values) which can be used in 
data analysis, output of data to a user, and the like. 
0421. A resulting deviation from this comparison 
between estimated and corresponding measured analyte 
values may or may not imply error in the estimative algo 
rithms. While not wishing to be bound by theory, it is 
believed that the deviation between estimated and corre 
sponding measured analyte values is due, at least in part, to 
behavioral changes by a patient, who observes estimated 
analyte values and determines to change the present trend of 
analyte values by behavioral and/or therapeutic changes (for 
example, medication, carbohydrate consumption, exercise, 
rest, and the like). Accordingly, the deviation can also be 
used to illustrate positive changes resulting from the edu 
cational aspect of providing estimated analyte values to the 
user, for example. 
0422 FIG. 26 is a graph that illustrates comparison of 
estimated analyte values in one embodiment, wherein pre 
viously estimated analyte values are compared to time 
corresponding measured analyte values to determine a cor 
relation (or deviation), if any. The X-axis represents time in 
minutes. The y-axis represents glucose concentration in 
mg/dL. The measured glucose values 492 are shown for 
about 105 minutes up to t=15. The estimated analyte values 
494, which were estimated at t=0 for 15 minutes, are shown 
Superimposed over the measured analyte values 492. Using 
a 3-point MARD for t=0 to t=15, the estimated analyte 
values 494 can be compared with the measured analyte 
values 492 to determine a 0.55% average deviation. 
0423 FIG. 27 provides a flow chart 520 that illustrates 
the evaluation of reference and/or sensor data for statistical, 
clinical, and/or physiological acceptability in one embodi 
ment. Although some acceptability tests are disclosed 
herein, any known statistical, clinical, physiological stan 
dards and methodologies can be applied to evaluate the 
acceptability of reference and sensor analyte data. 
0424 One cause for discrepancies in reference and sensor 
data is a sensitivity drift that can occur over time, when a 
sensor is inserted into a host and cellular invasion of the 
sensor begins to block transport of the analyte to the sensor, 
for example. Therefore, it can be advantageous to validate 
the acceptability of converted sensor data against reference 
analyte data, to determine if a drift of sensitivity has 
occurred and whether the calibration should be updated. 
0425. In one embodiment, the reference analyte data is 
evaluated with respect to Substantially time corresponding 
converted sensor data to determine the acceptability of the 
matched pair. For example, clinical acceptability considers a 
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deviation between time corresponding analyte measure 
ments (for example, data from a glucose sensor and data 
from a reference glucose monitor) and the risk (for example, 
to the decision making of a person with diabetes) associated 
with that deviation based on the glucose value indicated by 
the sensor and/or reference data. Evaluating the clinical 
acceptability of reference and sensor analyte data, and 
controlling the user interface dependent thereon, can mini 
mize clinical risk. Preferably, the receiver evaluates clinical 
acceptability each time reference data is obtained. 
0426. After initial calibration, such as is described in 
more detail with reference to FIG. 5, the sensor data receiv 
ing module receives Substantially continuous sensor data 
(e.g., a data stream) via a receiver and converts that data into 
estimated analyte values. As used herein, the term 'substan 
tially continuous” is a broad term and is used in its ordinary 
sense, without limitation, to refer to a data stream of 
individual measurements taken at time intervals (e.g., time 
spaced) ranging from fractions of a second up to, e.g., 1, 2, 
or 5 minutes or more. As sensor data is continuously 
converted, it can be occasionally recalibrated in response to 
changes in sensor sensitivity (drift), for example. Initial 
calibration and re-calibration of the sensor require a refer 
ence analyte value. Accordingly, the receiver can receive 
reference analyte data at any time for appropriate process 
1ng. 

0427. At block 522, the reference data receiving module, 
also referred to as the reference input module, receives 
reference analyte data from a reference analyte monitor. In 
one embodiment, the reference data comprises one analyte 
value obtained from a reference monitor. In some alternative 
embodiments however, the reference data includes a set of 
analyte values entered by a user into the interface and 
averaged by known methods. Such as are described else 
where herein. In some alternative embodiments, the refer 
ence data comprises a plurality of analyte values obtained 
from another continuous analyte sensor. 
0428 The reference data can be pre-screened according 
to environmental and physiological issues, such as time of 
day, oxygen concentration, postural effects, and patient 
entered environmental data. In one exemplary embodiment, 
wherein the sensor comprises an implantable glucose sensor, 
an oxygen sensor within the glucose sensor is used to 
determine if Sufficient oxygen is being provided to Success 
fully complete the necessary enzyme and electrochemical 
reactions for accurate glucose sensing. In another exemplary 
embodiment, the patient is prompted to enter data into the 
user interface. Such as meal times and/or amount of exercise, 
which can be used to determine likelihood of acceptable 
reference data. In yet another exemplary embodiment, the 
reference data is matched with time-corresponding sensor 
data, which is then evaluated on a modified clinical error 
grid to determine its clinical acceptability. 
0429. Some evaluation data, such as described in the 
paragraph above, can be used to evaluate an optimum time 
for reference analyte measurement. Correspondingly, the 
user interface can then prompt the user to provide a refer 
ence data point for calibration within a given time period. 
Consequently, because the receiver proactively prompts the 
user during optimum calibration times, the likelihood of 
error due to environmental and physiological limitations can 
decrease and consistency and acceptability of the calibration 
can increase. 
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0430. At block 524, the evaluation module, also referred 
to as acceptability module, evaluates newly received refer 
ence data. In one embodiment, the evaluation module evalu 
ates the clinical acceptability of newly received reference 
data and time corresponding converted sensor data (new 
matched data pair). In one embodiment, a clinical accept 
ability evaluation module 524 matches the reference data 
with a substantially time corresponding converted sensor 
value, and determines the Clarke Error Grid coordinates. In 
this embodiment, matched pairs that fall within the A and B 
regions of the Clarke Error Grid are considered clinically 
acceptable, while matched pairs that fall within the C, D, and 
E regions of the Clarke Error Grid are not considered 
clinically acceptable. 
0431) A variety of other known methods of evaluating 
clinical acceptability can be utilized. In one alternative 
embodiment, the Consensus Grid is used to evaluate the 
clinical acceptability of reference and sensor data. In another 
alternative embodiment, a mean absolute difference calcu 
lation can be used to evaluate the clinical acceptability of the 
reference data. In another alternative embodiment, the clini 
cal acceptability can be evaluated using any relevant clinical 
acceptability test, Such as a known grid (e.g., Clarke Error or 
Consensus), and additional parameters, such as time of day 
and/or the increase or decreasing trend of the analyte con 
centration. In another alternative embodiment, a rate of 
change calculation can be used to evaluate clinical accept 
ability. In yet another alternative embodiment, wherein the 
received reference data is in substantially real time, the 
conversion function could be used to predict an estimated 
glucose value at a time corresponding to the time stamp of 
the reference analyte value (this can be required due to a 
time lag of the sensor data Such as described elsewhere 
herein). Accordingly, a threshold can be set for the predicted 
estimated glucose value and the reference analyte value 
disparity, if any. In some alternative embodiments, the 
reference data is evaluated for physiological and/or statisti 
cal acceptability as described in more detail elsewhere 
herein. 

0432. At decision block 526, results of the evaluation are 
assessed. If acceptability is determined, then processing 
continues to block 528 to re-calculate the conversion func 
tion using the new matched data pair in the calibration set. 
0433. At block 528, the conversion function module 
re-creates the conversion function using the new matched 
data pair associated with the newly received reference data. 
In one embodiment, the conversion function module adds 
the newly received reference data (e.g., including the 
matched sensor data) into the calibration set, and recalcu 
lates the conversion function accordingly. In alternative 
embodiments, the conversion function module displaces the 
oldest, and/or least concordant matched data pair from the 
calibration set, and recalculates the conversion function 
accordingly. 

0434. At block 530, the sensor data transformation mod 
ule uses the new conversion function (from block 528) to 
continually (or intermittently) convert sensor data into esti 
mated analyte values, also referred to as calibrated data, or 
converted sensor data, Such as is described in more detail 
above. 

0435. At block 532, an output module provides output to 
the user via the user interface. The output is representative 
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of the estimated analyte value, which is determined by 
converting the sensor data into a meaningful analyte value. 
User output can be in the form of a numeric estimated 
analyte value, an indication of directional trend of analyte 
concentration, and/or a graphical representation of the esti 
mated analyte data over a period of time, for example. Other 
representations of the estimated analyte values are also 
possible, for example audio and tactile. 

0436. If, however, acceptability is determined at decision 
block 526 as negative (unacceptable), then the processing 
progresses to block 534 to adjust the calibration set. In one 
embodiment of a calibration set adjustment, the conversion 
function module removes one or more oldest matched data 
pair(s) and recalculates the conversion function accordingly. 
In an alternative embodiment, the conversion function mod 
ule removes the least concordant matched data pair from the 
calibration set, and recalculates the conversion function 
accordingly. 

0437. At block 536, the conversion function module 
re-creates the conversion function using the adjusted cali 
bration set. While not wishing to be bound by theory, it is 
believed that removing the least concordant and/or oldest 
matched data pair(s) from the calibration set can reduce or 
eliminate the effects of sensor sensitivity drift over time, 
adjusting the conversion function to better represent the 
current sensitivity of the sensor. 

0438. At block 524, the evaluation module re-evaluates 
the acceptability of newly received reference data with time 
corresponding converted sensor data that has been converted 
using the new conversion function (block 536). The flow 
continues to decision block 538 to assess the results of the 
evaluation, such as described with reference to decision 
block 526, above. If acceptability is determined, then pro 
cessing continues to block 530 to convert sensor data using 
the new conversion function and continuously display cali 
brated sensor data on the user interface. 

0439 If, however, acceptability is determined at decision 
block 526 as negative, then the processing loops back to 
block 534 to adjust the calibration set once again. This 
process can continue until the calibration set is no longer 
sufficient for calibration, for example, when the calibration 
set includes only one or no matched data pairs with which 
to create a conversion function. In this situation, the system 
can return to the initial calibration or start-up mode, which 
is described in more detail with reference to FIGS. 16 and 
19, for example. Alternatively, the process can continue until 
inappropriate matched data pairs have been Sufficiently 
purged and acceptability is positively determined. 

0440. In alternative embodiments, the acceptability is 
determined by a quality evaluation, for example, calibration 
quality can be evaluated by determining the statistical asso 
ciation of data that forms the calibration set, which deter 
mines the confidence associated with the conversion func 
tion used in calibration and conversion of raw sensor data 
into estimated analyte values. See, e.g., U.S. Publication No. 
US-2005-0O27463-A1. 

0441 Alternatively, each matched data pair can be evalu 
ated based on clinical or statistical acceptability Such as 
described above; however, when a matched data pair does 
not pass the evaluation criteria, the system can be configured 
to ask for another matched data pair from the user. In this 
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way, a secondary check can be used to determine whether 
the error is more likely due to the reference glucose value or 
to the sensor value. If the second reference glucose value 
Substantially correlates to the first reference glucose value, 
it can be presumed that the reference glucose value is more 
accurate and the sensor values are errant. Some reasons for 
errancy of the sensor values include a shift in the baseline of 
the signal or noise on the signal due to low oxygen, for 
example. In such cases, the system can be configured to 
re-initiate calibration using the secondary reference glucose 
value. If, however, the reference glucose values do not 
Substantially correlate, it can be presumed that the sensor 
glucose values are more accurate and the reference glucose 
values eliminated from the algorithm. 
0442 FIG. 28 is a flow chart 550 that illustrates the 
evaluation of calibrated sensor data for aberrant values in 
one embodiment. Although sensor data are typically accu 
rate and reliable, it can be advantageous to perform a 
self-diagnostic check of the calibrated sensor data prior to 
displaying the analyte data on the user interface. 
0443) One reason for anomalies in calibrated sensor data 
includes transient events, such as local ischemia at the 
implant site, which can temporarily cause erroneous read 
ings caused by insufficient oxygen to react with the analyte. 
Accordingly, the flow chart 550 illustrates one self-diagnos 
tic check that can be used to catch erroneous data before 
displaying it to the user. 
0444. At block 552, a sensor data receiving module, also 
referred to as the sensor data module, receives new sensor 
data from the sensor. 

0445. At block 554, the sensor data transformation mod 
ule continuously (or intermittently) converts new sensor data 
into estimated analyte values, also referred to as calibrated 
data. 

0446. At block 556, a self-diagnostic module compares 
the new calibrated sensor data with previous calibrated 
sensor data, for example, the most recent calibrated sensor 
data value. In comparing the new and previous sensor data, 
a variety of parameters can be evaluated. In one embodi 
ment, the rate of change and/or acceleration (or deceleration) 
of change of various analytes, which have known physi 
ological limits within the body, and sensor data can be 
evaluated accordingly. For example, a limit can be set to 
determine if the new sensor data is within a physiologically 
feasible range, indicated by a rate of change from the 
previous data that is within known physiological (and/or 
statistical) limits. Similarly, any algorithm that predicts a 
future value of an analyte can be used to predict and then 
compare an actual value to a time corresponding predicted 
value to determine if the actual value falls within a statis 
tically and/or clinically acceptable range based on the pre 
dictive algorithm, for example. In certain embodiments, 
identifying a disparity between predicted and measured 
analyte data can be used to identify a shift in signal baseline 
responsive to an evaluated difference between the predicted 
data and time-corresponding measured data. In some alter 
native embodiments, a shift in signal baseline and/or sensi 
tivity can be determined by monitoring a change in the 
conversion function; namely, when a conversion function is 
re-calculated using the equation y=mX+b, a change in the 
values of m (sensitivity) or b (baseline) above a pre-selected 
“normal’ threshold, can be used to trigger a fail-safe or 
further diagnostic evaluation. 
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0447. Although the above-described self-diagnostics are 
generally employed with calibrated sensor data, Some alter 
native embodiments are contemplated that check for aber 
rancy of consecutive sensor values prior to sensor calibra 
tion, for example, on the raw data stream and/or after 
filtering of the raw data stream. In certain embodiments, an 
intermittent or continuous signal-to-noise measurement can 
be evaluated to determine aberrancy of sensor data respon 
sive to a signal-to-noise ratio above a set threshold. In 
certain embodiments, signal residuals (e.g. by comparing 
raw and filtered data) can be intermittently or continuously 
analyzed for noise above a set threshold. In certain embodi 
ments, pattern recognition can be used to identify noise 
associated with physiological conditions, such as low oxy 
gen or other known signal aberrancies. Accordingly, in these 
embodiments, the system can be configured, in response to 
aberrancies in the data stream, to trigger signal estimation, 
adaptively filter the data stream according to the aberrancy, 
and the like, as described in more detail herein. 
0448. In another embodiment, reference analyte values 
are processed to determine a level of confidence, wherein 
reference analyte values are compared to their time-corre 
sponding calibrated sensor values and evaluated for clinical 
or statistical accuracy. In yet another alternative embodi 
ment, new and previous reference analyte data are compared 
in place of or in addition to sensor data. In general, there 
exist known patterns and limitations of analyte values that 
can be used to diagnose certain anomalies in raw or cali 
brated sensor and/or reference analyte data. 
0449 At decision block 558, the system determines 
whether the comparison returned aberrant values. In one 
embodiment, the slope (rate of change) between the new and 
previous sensor data is evaluated, wherein values greater 
than +/-10, 15, 20, 25, or 30% or more change and/or +/-2, 
3, 4, 5, 6 or more mg/dL/min, more preferably +/-4 mg/dL/ 
min, rate of change are considered aberrant. In certain 
embodiments, other known physiological parameters can be 
used to determine aberrant values. However, a variety of 
comparisons and limitations can be set. 
0450. At block 560, if the values are not found to be 
aberrant, the sensor data transformation module continu 
ously (or intermittently) converts received new sensor data 
into estimated analyte values, also referred to as calibrated 
data; 

0451. At block 562, if the values are found to be aberrant, 
the system goes into a suspended mode, also referred to as 
fail-safe mode in some embodiments, which is described in 
more detail below with reference to FIG. 29. In general, 
Suspended mode Suspends display of calibrated sensor data 
and/or insertion of matched data pairs into the calibration 
set. Preferably, the system remains in suspended mode until 
received sensor data is not found to be aberrant. In certain 
embodiments, a time limit or threshold for Suspension is set, 
after which system and/or user interaction can be required, 
for example, requesting additional reference analyte data, 
replacement of the electronics unit, and/or reset. 
0452. In some alternative embodiments, in response to a 
positive determination of aberrant value(s), the system can 
be configured to estimate one or more glucose values for the 
time period during which aberrant values exist. Signal 
estimation generally refers to filtering, data Smoothing, 
augmenting, projecting, and/or other methods for estimating 
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glucose values based on historical data, for example. In one 
implementation of signal estimation, physiologically fea 
sible values are calculated based on the most recent glucose 
data, and the aberrant values are replaced with the closest 
physiologically feasible glucose values. See also U.S. Pub 
lication No. US-2005-0027463-A1. 

0453 FIG. 29 provides a flow chart 580 that illustrates a 
self-diagnostic of sensor data in one embodiment. Although 
reference analyte values can useful for checking and cali 
brating sensor data, self-diagnostic capabilities of the sensor 
provide for a fail-safe for displaying sensor data with 
confidence and enable minimal user interaction (for 
example, requiring reference analyte values only as needed). 

0454. At block 582, a sensor data receiving module, also 
referred to as the sensor data module, receives new sensor 
data from the sensor. 

0455. At block 584, the sensor data transformation mod 
ule continuously (or intermittently) converts received new 
sensor data into estimated analyte values, also referred to as 
calibrated data. 

0456. At block 586, a self-diagnostics module, also 
referred to as a fail-safe module, performs one or more 
calculations to determine the accuracy, reliability, and/or 
clinical acceptability of the sensor data. Some examples of 
the self-diagnostics module are described above, with ref 
erence block 556. The self-diagnostics module can be fur 
ther configured to run periodically (e.g., intermittently or in 
response to a trigger), for example, on raw data, filtered data, 
calibrated data, predicted data, and the like. 
0457. In certain embodiments, the self-diagnostics mod 
ule evaluates an amount of time since sensor insertion into 
the host, wherein a threshold is set for the sensor's usable 
life, after which time period the sensor is considered to be 
unreliable. In certain embodiments, the self-diagnostics 
module counts the number of times a failure or reset is 
required (for example, how many times the system is forced 
into Suspended or start-up mode), wherein a count threshold 
is set for a predetermined time period, above which the 
system is considered to be unreliable. In certain embodi 
ments, the self-diagnostics module compares newly received 
calibrated sensor data with previously calibrated sensor data 
for aberrant values, such as is described in more detail 
elsewhere herein. In certain embodiments, the self-diagnos 
tics module evaluates clinical acceptability, such as is 
described in more detail with reference to FIG. 28, above. In 
certain embodiments, diagnostics, such as are described in 
U.S. Publication No. US-2005-01 6 1346-A1 and U.S. Pub 
lication No. US-2005-0143635-A1, can be incorporated into 
the systems of preferred embodiments for system diagnosis, 
for example, for identifying interfering species on the sensor 
signal and for identifying drifts in baseline and sensitivity of 
the sensor signal. 

0458. At block 588, a mode determination module, which 
can be a part of the sensor evaluation module 524, deter 
mines in which mode the sensor should be set (or remain). 
In some embodiments, the system is programmed with three 
modes: 1) start-up mode; 2) normal mode; and 3) Suspended 
mode. Although three modes are described herein, the 
preferred embodiments are limited to the number or types of 
modes with which the system can be programmed. In some 
embodiments, the system is defined as “in-cal' (in calibra 
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tion) in normal mode; otherwise, the system is defined as 
“out-of-cal’ (out of calibration) in start-up and suspended 
mode. The terms as used herein are meant to describe the 
functionality and are not limiting in their definitions. 

0459 Preferably, a start-up mode is provided, wherein 
the start-up mode is set when the system determines that it 
can no longer remain in Suspended or normal mode (for 
example, due to problems detected by the self-diagnostics 
module, such as described in more detail above) and/or 
wherein the system is notified that a new sensor has been 
inserted. Upon initialization of start-up mode, the system 
ensures that any old matched data pairs and/or calibration 
information is purged. In start-up mode, the system initial 
izes the calibration set, such as described in more detail with 
reference to U.S. Publication No. 2006-003 6142-A1. Once 
the calibration set has been initialized, sensor data is ready 
for conversion and the system is set to normal mode. 
0460 Preferably, a normal mode is provided, wherein the 
normal mode is set when the system is accurately and 
reliably converting sensor data, for example, wherein clini 
cal acceptability is positively determined, aberrant values 
are negatively determined, and/or the self-diagnostics mod 
ules confirms reliability of data. In normal mode, the system 
continuously (or intermittently) converts (calibrates) sensor 
data. Additionally, reference analyte values received by the 
system are matched with sensor data points and added to the 
calibration set. 

0461 In certain embodiments, the calibration set is lim 
ited to a predetermined number of matched data pairs, after 
which the systems purges old or less desirable matched data 
pairs when a new matched data pair is added to the calibra 
tion set. Less desirable matched data pairs can be determined 
by inclusion criteria, which include one or more criteria that 
define a set of matched data pairs that form a Substantially 
optimal calibration set. 

0462 One inclusion criterion comprises ensuring the 
time stamp of the matched data pairs (that make up the 
calibration set) span at least a preselected time period (e.g., 
three hours). Another inclusion criterion comprises ensuring 
that the time stamps of the matched data pairs are not more 
than a preselected age (e.g., one week old). Another inclu 
sion criterion ensures that the matched pairs of the calibra 
tion set have a substantially evenly distributed amount of 
high and low raw sensor data points, estimated sensor 
analyte values, and/or reference analyte values. Another 
criterion comprises ensuring all raw sensor data, estimated 
sensor analyte values, and/or reference analyte values are 
within a predetermined range (e.g., 40 mg/dL to 400 mg/dL 
for glucose values). Another criterion comprises evaluating 
the rate of change of the analyte concentration (e.g., from 
sensor data) during the time stamp of the matched pair(s). 
For example, sensor and reference data obtained during the 
time when the analyte concentration is undergoing a slow 
rate of change can be less Susceptible to inaccuracies caused 
by time lag and other physiological and non-physiological 
effects. Another criterion comprises evaluating the congru 
ence of respective sensor and reference data in each matched 
data pair; the matched pairs with the most congruence can be 
chosen. Another criterion comprises evaluating physiologi 
cal changes (e.g., low oxygen due to a user's posture, 
position, or motion that can cause pressure on the sensor and 
effect the function of a subcutaneously implantable analyte 
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sensor, or other effects) to ascertain a likelihood of error in 
the sensor value. Evaluation of calibration set criteria can 
comprise evaluating one, some, or all of the above described 
inclusion criteria. It is contemplated that additional embodi 
ments can comprise additional inclusion criteria not explic 
itly described herein. 
0463 Unfortunately, some circumstances can exist 
wherein a system in normal mode can be changed to start-up 
or Suspended mode. In general, the system is programmed to 
change to Suspended mode when a failure of clinical accept 
ability, aberrant value check and/or other self-diagnostic 
evaluation is determined. Such as described in more detail 
above, and wherein the system requires further processing to 
determine whether a system re-start is required (e.g., start-up 
mode). In general, the system will change to start-up mode 
when the system is unable to resolve itself in suspended 
mode and/or when the system detects a new sensor has been 
inserted (e.g., via system trigger or user input). 
0464) Preferably, a suspended mode is provided wherein 
the Suspended mode is set when a failure of clinical accept 
ability, aberrant value check, and/or other self-diagnostic 
evaluation determines unreliability of sensor data. In certain 
embodiments, the system enters Suspended mode when a 
predetermined time period passes without receiving a ref 
erence analyte value. In Suspended mode, the calibration set 
is not updated with new matched data pairs, and sensor data 
can optionally be converted, but not displayed on the user 
interface. The system can be changed to normal mode upon 
resolution of a problem (positive evaluation of sensor reli 
ability from the self-diagnostics module, for example). The 
system can be changed to start-up mode when the system is 
unable to resolve itself in suspended mode and/or when the 
system detects a new sensor has been inserted (via system 
trigger or user input). 
0465. The systems of preferred embodiments, including a 
transcutaneous analyte sensor, mounting unit, electronics 
unit, applicator, and receiver for inserting the sensor, and 
measuring, processing, and displaying sensor data, provide 
improved convenience and accuracy because of their 
designed stability within the host’s tissue with minimum 
invasive trauma, while providing a discreet and reliable data 
processing and display, thereby increasing overall host com 
fort, confidence, safety, and convenience. Namely, the geo 
metric configuration, sizing, and material of the sensor of the 
preferred embodiments enable the manufacture and use of 
an atraumatic device for continuous measurement of ana 
lytes, in contrast to conventional continuous glucose sensors 
available to persons with diabetes, for example. Addition 
ally, the sensor Systems of preferred embodiments provide a 
comfortable and reliable system for inserting a sensor and 
measuring an analyte level for up to 7 days or more without 
Surgery. The sensor systems of the preferred embodiments 
are designed for host comfort, with chemical and mechanical 
stability that provides measurement accuracy. Furthermore, 
the mounting unit is designed with a miniaturized and 
reusable electronics unit that maintains a low profile during 
use. The usable life of the sensor can be extended by 
incorporation of a bioactive agent into the sensor that 
provides local release of an anti-inflammatory, for example, 
in order to slow the Subcutaneous foreign body response to 
the sensor. 

0466. After the usable life of the sensor (for example, due 
to a predetermined expiration, potential infection, or level of 
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inflammation), the host can remove the sensor and mounting 
from the skin, and dispose of the sensor and mounting unit 
(preferably saving the electronics unit for reuse). Another 
sensor system can be inserted with the reusable electronics 
unit and thus provide continuous sensor output for long 
periods of time. 
0467 FIG. 30 is a flow chart 600 that illustrates the 
process of detecting and processing signal artifacts in some 
embodiments. 

0468. At block 602, a sensor data receiving module, also 
referred to as the sensor data module, or processor module, 
receives sensor data (e.g., a data stream), including one or 
more time-spaced sensor data points. In some embodiments, 
the data stream is stored in the sensor for additional pro 
cessing; in some alternative embodiments, the sensor peri 
odically transmits the data stream to the receiver, which can 
be in wired or wireless communication with the sensor. In 
some embodiments, raw and/or filtered data is stored in the 
sensor and/or transmitted and stored in the receiver, as 
described in more detail elsewhere herein. 

0469 At block 604, a signal artifacts detection module, 
also referred to as the signal artifacts detector, or signal 
reliability module, is programmed to detect transient non 
glucose related signal artifacts in the data stream, In some 
embodiments, the signal artifacts detector can comprise an 
oxygen detector, a pH detector, a temperature detector, 
and/or a pressure/stress detector, for example, the signal 
artifacts detector 29 in FIG. 2. In some embodiments, the 
signal artifacts detector is located within the processor 22 
(FIG. 2) and utilizes existing components of the glucose 
sensor to detect signal artifacts, for example by pulsed 
amperometric detection, counter electrode monitoring, ref 
erence electrode monitoring, and frequency content moni 
toring, which are described elsewhere herein. In yet other 
embodiments, the data can be sent from the sensor to the 
receiver which comprises programming in the processor 42 
(FIG. 4) that performs algorithms to detect signal artifacts, 
for example such as described with reference to “Cone of 
Possibility Detection' method and/or by comparing raw data 
vs. filtered data, both of which are described in more detail 
elsewhere herein. 

0470. In some exemplary embodiments, the processor 
module in either the sensor electronics and/or the receiver 
electronics evaluates an intermittent or continuous signal 
to-noise measurement to determine aberrancy of sensor data 
responsive to a signal-to-noise ratio above a set threshold. In 
Some exemplary embodiments, signal residuals (e.g., by 
comparing raw and filtered data) are intermittently or con 
tinuously analyzed for noise above a set threshold. In some 
exemplary embodiments, pattern recognition can be used to 
identify noise associated with physiological conditions. Such 
as low oxygen, or other known signal aberrancies. Accord 
ingly, in these embodiments, the system can be configured, 
in response to aberrancies in the data stream, to trigger 
signal estimation, adaptively filter the data stream according 
to the aberrancy, and the like, as described in more detail 
elsewhere herein. 

0471. In some embodiments, one or more signal residuals 
are obtained by comparing received data with filtered data, 
whereby a signal artifact can be determined. In some 
embodiments, a signal artifact event is determined to have 
occurred if the residual is greater than a threshold. In some 
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exemplary embodiments, another signal artifact event is 
determined to have occurred if the residual is greater than a 
second threshold. In some exemplary embodiments, a signal 
artifact event is determined to have occurred if the residual 
is greater than a threshold for a period of time or amount of 
data. In some exemplary embodiments, a signal artifact 
event is determined to have occurred if a predetermined 
number of signal residuals above a predetermined threshold 
occur within a predetermined time period (or amount of 
data). In some exemplary embodiments, an average of a 
plurality of residuals is evaluated over a period of time or 
amount of data to determine whether a signal artifact has 
occurred. The use of residuals for noise detection can be 
preferred in circumstances where data gaps (non-continu 
ous) data exists. 
0472. In some exemplary embodiments, a differential, 
also referred to as a derivative of the residual, is determined 
by comparing a first residual (e.g., at a first time point) and 
a second residual (e.g., at a second time point), wherein a 
signal artifact event is determined to have occurred when the 
differential is above a predetermined threshold. In some 
exemplary embodiments, a signal artifact event is deter 
mined to have occurred if the differential is greater than a 
threshold for a period of time or amount of data. In some 
exemplary embodiments, an average of a plurality of dif 
ferentials is calculated over a period of time or amount of 
data to determine whether a signal artifact has occurred. 
0473. Numerous embodiments for detecting signal arti 
facts are described in more detail in the section entitled, 
“Signal Artifacts Detection, all of which are encompassed 
by the signal artifacts detection at block 604. 
0474 At block 606, the processor module is configured 
to process the sensor databased at least in part on whether 
the signal artifact event has occurred. 
0475. In some embodiments, the sensor data is filtered in 
the receiver processor to generate filtered data if the signal 
artifact event is determined to have occurred; filtering can be 
performed either on the raw data, or can be performed to 
further filter received filtered data, or both. 
0476. In some embodiments, signal artifacts detection 
and processing is utilized in outlier detection, Such as 
described in more detail elsewhere herein, wherein a dis 
agreement between time corresponding reference data and 
sensor data can be analyzed, e.g., noise analysis data (e.g., 
signal artifacts detection and signal processing) can be used 
to determine which value is likely more reliable (e.g., 
whether the sensor data and/or reference data can be used for 
processing). In some exemplary embodiments wherein the 
processor module receives reference data from a reference 
analyte monitor, a reliability of the received data is deter 
mined based on signal artifacts detection (e.g., if a signal 
artifact event is determined to have occurred.) In some 
exemplary embodiments, a reliability of the sensor data is 
determined based on signal artifacts detection (e.g., if the 
signal artifact event is determined to have not occurred.) The 
term “reliability,” as used herein, is a broad term and is used 
in its ordinary sense, including, without limitation, a level of 
confidence in the data (e.g., sensor or reference data), for 
example, a positive or negative reliance on the data (e.g., for 
calibration, display, and the like) and/or a rating (e.g., of at 
least 60%, 70%, 80%, 90% or 100% confidence thereon.) 
0477. In some embodiments wherein a matching data pair 

is formed by matching reference data to Substantially time 
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corresponding sensor data (e.g., for calibration and/or outlier 
detection) described in more detail elsewhere herein, match 
ing of a data pair can be configured to occur based on signal 
artifacts detection (e.g., only if a signal artifact event is 
determined to have not occurred.) In some embodiments 
wherein the reference data is included in a calibration factor 
for use in calibration of the glucose sensor as described in 
more detail elsewhere herein, the reference data can be 
configured to be included based on signal artifacts detection 
(e.g., only if the signal artifact event is determined to have 
not occurred.) In general, results of noise analysis (e.g., 
signal artifact detection and/or signal processing) can be 
used to determine when to use or eliminate a matched pair 
for use in calibration (e.g., calibration set). 

0478. In some embodiments, a user is prompted for a 
reference glucose value based on signal artifacts detection 
(e.g., only if a signal artifact event is determined to have not 
occurred.) While not wishing to be bound by theory, it is 
believed certain more preferable times for calibration (e.g., 
not during noise episodes) can be detected and processed by 
prompting the user for calibration during those times. 

0479. In some embodiments, results of noise analysis 
(e.g., signal artifact detection and/or signal processing) can 
be used to determine how to process the sensor data. For 
example, different levels of signal processing and display 
(e.g., raw data, integrated data, filtered data utilizing a first 
filter, filtered data utilizing a second filter, which may be 
“more aggressive' than the first filter by filtering over a 
larger time period, and the like.) Accordingly, the different 
levels of signal processing and display can be selectively 
chosen responsive to a reliability measurement, a positive or 
negative determination of signal artifact, and/or signal arti 
facts above first and second predetermined thresholds. 

0480. In some embodiments, results of noise analysis 
(e.g., signal artifact detection and/or signal processing) can 
be used to determine when to utilize and/or display different 
representations of the sensor data (e.g., raw vs. filtered data), 
when to turn filters on and/or off (e.g., processing and/or 
display of certain Smoothing algorithms), and/or when to 
further process the sensor data (e.g., filtering and/or display 
ing). In some embodiments, the display of the sensor data is 
dependent upon the determination of signal artifact(s). For 
example, when a certain predetermined threshold of signal 
artifacts have been detected (e.g., noisy sensor data), the 
system is configured to modify or turn off a particular 
display of the sensor data (e.g., display filtered data, display 
processed data, disable display of sensor data, display range 
of possible data values, display indication of direction of 
glucose trend data, replace sensor data with predicted/ 
estimated sensor data, and/or display confidence interval 
representative of a level of confidence in the sensor data.) In 
Some exemplary embodiments, a graphical representation of 
filtered sensor data is displayed if the signal artifact event is 
determined to have occurred. Alternatively, when a certain 
predetermined threshold of signal artifacts has not been 
detected (e.g., minimal, insignificant, or no noise in the data 
signal), the system is configured to modify or turn on a 
particular display of the sensor data (e.g., display unfiltered 
(e.g., raw or integrated) data, a single data value, an indi 
cation of direction of glucose trend data, predicted glucose 
data for a future time period and/or a confidence interval 
representative of a level of confidence in the sensor data.) 
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0481. In some embodiments wherein a residual (or dif 
ferential) is determined as described in more detail else 
where herein, the residual (or differential) is used to modify 
the filtered data during signal artifact event(s). In one Such 
exemplary embodiment, the residual is measured and then 
added back into the filtered signal. While not wishing to be 
bound by theory, it is believed that some Smoothing algo 
rithms may result in some loss of dynamic behavior repre 
sentative of the glucose concentration, which disadvantage 
may be reduced or eliminated by the adding of the residual 
back into the filtered signal in Some circumstances. 

0482 In some embodiments, the sensor data can be 
modified to compensate for a time lag, for example by 
predicting or estimating an actual glucose concentration for 
a time period considering a time lag associated with diffu 
sion of the glucose through the membrane, digital signal 
processing, and/or algorithmically induced time lag, for 
example. 

0483 FIG. 31 is a graph that illustrates a raw data stream 
from a glucose sensor for approximately 24 hours with a 
filtered version of the same data stream Superimposed on the 
same graph. Additionally, this graph illustrates a noise 
episode, the beginning and end of which was detected by a 
noise detection algorithm of the preferred embodiments, and 
during which a particular filter was applied to the data. The 
X-axis represents time in minutes; the y-axis represents the 
raw and filtered data values in counts. In this example, the 
raw data stream was obtained in 5 minute intervals from a 
transcutaneous glucose sensor Such as described in more 
detail above, with reference to FIG. 1B and in U.S. Publi 
cation No. US-2006-002O1087-A1. 

0484. In section 608 of the data, which encompasses an 
approximately 14 hour period up to time=2:22, the filtered 
data was obtained by applying a 3-point moving average 
window to the raw data. During that period, the noise 
detection algorithm was applied to detect a noise episode. In 
this example, the algorithm included the following: calcu 
lating a residual signal by Subtracting the filtered data from 
the raw data (e.g., for each 5-minute point); calculating a 
differential by subtracting the residual for each 5-minute 
point from its previous 5-minute residual; determining if 
each differential exceeds a threshold of 5000 counts (and 
declaring a noisy point if so); and determining whether 6 out 
of 12 points in the past 1 hour exceed that threshold (and 
declaring a noise episode if so). Accordingly, a noise episode 
was declared at time=2:22 and a more aggressive filter was 
applied as described with reference to section 610. 

0485. In section 610 of the data, also referred to as a noise 
episode, which encompasses an approximately 5% hour 
period up to time=7:57, the filtered data was obtained by 
applying a 7-point moving average window to the raw data. 
The 7-point moving average window was in this example 
was an effective filter in smoothing out the noise in the data 
signal as can be seen on the graph. During that period, an 
algorithm was applied to detect when the noise episode had 
ended. In this example, the algorithm included the follow 
ing: calculating a residual signal by Subtracting the filtered 
data (using the 3-point moving average filter described 
above) from the raw data (e.g., for each 5-minute point); 
calculating a differential of the residual by subtracting the 
residual for each 5-minute point from its previous 5-minute 
residual; determining if each differential exceeds a threshold 
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of 5000 counts (and declaring a noisy point if so); and 
determining whether less than 2 noisy points had occurred in 
the past hour (and declaring the noise episode over if so). 
Accordingly, the noise episode was declared as over at 
time-7:57 and the less aggressive filter (e.g., 3-point moving 
average) was again applied with the noise detection algo 
rithm as described with reference to section 608, above. 
0486 In section 612 of the data, which encompasses 
more than 4 hours of data, the filtered data was obtained by 
applying a 3-point moving average window to the raw data. 
During that period, the noise detection algorithm (described 
above) did not detect a noise episode. Accordingly, raw or 
minimally filtered data could be displayed to the patient 
during this time period. 
0487. It was shown that the above-described example 
provided Smoother glucose information during noise epi 
sodes, by applying a more aggressive filter to Smooth out the 
noise. It is believed that when displayed, the smoother data 
will avoid presenting potentially misleading or inaccurate 
information to the user. Additionally, it was shown in the 
above-described example that during non-noisy periods 
(when noise episodes are not detected), raw or less aggres 
sively filtered data can be displayed to the user in order to 
provide more accurate data with minimal or no associated 
filter-induced time lag in the data. Furthermore, it is believed 
that proper detection of noise episodes aids in determining 
proper times for calibration, ensuring more accurate cali 
bration than may otherwise be possible. 
0488. In the above-described example, the criteria for the 
onset & offset of noise episodes were different; for example, 
the onset criteria included 6 out of 12 points in the past 1 
hour exceeding a threshold, while the offset criteria included 
less than 2 noisy points in the past 1 hour. In this example, 
these different criteria were found to create smoother tran 
sitions in the data between the raw and filtered data and 
avoided false detections of noise episodes. 
0489 FIG.32 is a flowchart 700 that illustrates a method 
for processing data from a glucose sensor in certain embodi 
ments. In general, prior art systems display either real-time 
sensor data (e.g., prospectively calibrated/analyzed) or his 
torical sensor data (e.g., retrospectively calibrated/ana 
lyzed). Regarding real-time sensor data display, the sensor 
data is typically prospectively processed (e.g., calibrated, 
Smoothed, etc) in Substantially real-time by a predetermined 
algorithm, wherein the real-time prospectively processed 
data are displayed periodically or Substantially continuously 
based on that prospective analysis. Regarding historical 
sensor data display, the sensor data is typically retrospec 
tively processed (e.g., calibrated, Smoothed, etc) after col 
lection of an entire sensor data set, wherein the historical 
retrospectively processed data are displayed based on the 
retrospective analysis. 
0490. In contrast to the prior art, the preferred embodi 
ments describe systems and methods for periodically or 
Substantially continuously post-processing (e.g., updating) 
the Substantially real-time graphical representation of glu 
cose data (e.g., trend graph representative of glucose con 
centration over a previous number of minutes or hours) with 
processed data, wherein the data has been processed respon 
sive to detection of signal artifacts. 
0491. At block 702, a sensor data receiving module, also 
referred to as the sensor data module, or processor module, 
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receives sensor data (e.g., a data stream), including one or 
more time-spaced sensor data points. In some embodiments, 
the data stream is stored in the sensor for additional pro 
cessing; in some alternative embodiments, the sensor peri 
odically transmits the data stream to the receiver, which can 
be in wired or wireless communication with the sensor. In 
some embodiments, raw and/or filtered data is stored in the 
sensor and/or transmitted and stored in the receiver, as 
described in more detail elsewhere herein. 

0492. At block 704, a signal artifacts detection module, 
also referred to as the signal artifacts detector, or signal 
reliability module, optionally detects transient non-glucose 
related signal artifacts in the data stream, Such as described 
in more detail above with reference to block 604. 

0493 At block 706, the processor module is configured 
to optionally process the sensor databased at least in part on 
whether the signal artifact event has occurred. Such as 
described in more detail with reference to block 606 above. 

0494. At block 708, an output module, also referred to as 
the processor module, provides output to the user via the 
user interface. The output is representative of the estimated 
glucose value, which is determined by converting the sensor 
data into a meaningful glucose value Such as described in 
more detail elsewhere herein. User output can be in the form 
of a numeric estimated glucose value, an indication of 
directional trend of glucose concentration, and/or a graphi 
cal representation of the estimated glucose data over a 
period of time, for example. Other representations of the 
estimated glucose values are also possible, for example 
audio and tactile. In some embodiments, the output module 
displays both a “real-time’ glucose value (e.g., a number 
representative of the most recently measure glucose con 
centration) and a graphical representation of the post-pro 
cessed sensor data, which is described in more detail, below. 
0495. In one embodiment, such as shown in FIG. 3A, the 
estimated glucose value is represented by a numeric value. 
In other exemplary embodiments, such as shown in FIGS. 
3B to 3D, the user interface graphically represents the 
estimated glucose data trend over predetermined a time 
period (e.g., one, three, and nine hours, respectively). In 
alternative embodiments, other time periods can be repre 
sented. In some embodiments, the measured analyte value is 
represented by a numeric value. In alternative embodiments, 
other time periods can be represented. In alternative embodi 
ments, pictures, animation, charts, graphs, ranges of values, 
and numeric data can be selectively displayed. 
0496 At block 710, the processor module is configured 
to periodically or Substantially continuously post-process 
(e.g., update) the displayed graphical representation of the 
data corresponding to the time period according to the 
received data. For example, the glucose trend information 
(e.g., for the previous 1-, 3-, or 9-hour trend graphs shown 
in FIGS. 3B to 3D) can be updated to better represent actual 
glucose values during signal artifacts. In some embodi 
ments, the processor module post-processes segments of 
data (e.g., 1-, 3-, or 9-hour trend graph data) every few 
seconds, minutes, hours, days, or anywhere in between, 
and/or when requested by a user (e.g., in responsive to a 
button-activation Such as a request for display of a 3-hour 
trend graph screen). 
0497. In general, post-processing includes the processing 
performed by the processor module (e.g., within the hand 
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held receiver unit) on “recent sensor data (e.g., data that is 
inclusive of time points within the past few minutes to few 
hours) after its initial display of the sensor data and prior to 
what is generally termed “retrospective analysis” in the art 
(e.g., analysis that is typically accomplished retrospectively 
at one time, in contrast to intermittently, periodically, or 
continuously, on an entire data set, such as for display of 
sensor data for physician analysis). Post-processing can 
include programming performed to recalibrate the sensor 
data (e.g., to better match to reference values), fill in data 
gaps (e.g., data eliminated due to noise or other problems), 
Smooth out (filter) sensor data, compensate for a time lag in 
the sensor data, and the like, which is described in more 
detail, below. Preferably, the post-processed data is dis 
played on a personal hand-held unit (e.g., Such as on the 1-, 
3-, and 9-hour trend graphs of the receiver of FIGS. 3A to 
3D) in “real time' (e.g., inclusive of recent data within the 
past few minutes or hours) and can be updated (post 
processed) automatically (e.g., periodically, intermittently, 
or continuously) or selectively (e.g., responsive to a request) 
when new or additional information is available (e.g., new 
reference data, new sensor data, etc). In some alternative 
embodiments, post-processing can be triggered dependent 
upon the duration of a noise episode; for example, data 
associated with noise events extending past about 30 min 
utes can be processed and/or displayed differently than data 
during the initial 30 minutes of a noise episode. 
0498. In one exemplary embodiment, the processor mod 
ule filters the data stream to recalculate data for a previous 
time period and periodically or Substantially continuously 
displays a graphical representation of the recalculated data 
for that time period (e.g., trend graph). 

0499. In another exemplary embodiment, the processor 
module adjusts the data for a time lag (e.g., removes a time 
lag induced by real-time filtering) from data for a previous 
time period and displays a graphical representation of the 
time lag adjusted data for that time period (e.g., trend graph). 

0500. In another exemplary embodiment, the processor 
module algorithmically smoothes one or more sensor data 
points over a moving window (e.g., including time points 
before and after the one or more sensor data points) for data 
for a previous time period and displays a graphical repre 
sentation of the updated, smoothed data for that time period 
(e.g., trend graph). 
0501 Although a few examples of post-processing are 
described herein, one skilled in the art appreciates a variety 
of data processing that can be applied to these systems and 
methods, including any of the processing steps described in 
more detail elsewhere herein. 

0502 Methods and devices that are suitable for use in 
conjunction with aspects of the preferred embodiments are 
disclosed in U.S. Pat. No. 4,994,167; U.S. Pat. No. 4,757, 
022; U.S. Pat. No. 6,001,067; U.S. Pat. No. 6,741,877; U.S. 
Pat. No. 6,702,857; U.S. Pat. No. 6,558,321; U.S. Pat. No. 
6,931,327; and U.S. Pat. No. 6,862,465. 

0503 Methods and devices that are suitable for use in 
conjunction with aspects of the preferred embodiments are 
disclosed in U.S. Publication No. US-2005-0176136-A1; 
U.S. Publication No. US-2005-0251083-A1; U.S. Publica 
tion No. US-2005-0143635-A1; U.S. Publication No. 
US-2005-0181012-A1; U.S. Publication No. US-2005 
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O177036-A1; U.S. Publication No. US-2005-0124873-A1: 
U.S. Publication No. US-2005-00514 
tion No. US-2005-0115832-A1: 

0245795-A1; U.S. Publication No. U 
S. Publication No. US-2005-01824 

ion No. US-2005-0056552-A1: U 

154271-A1; U.S. Publication No. U 
S. Publication No. US-2005-00549 

40-A1; U.S. Publica 
U.S. Publication No. 

US-2005-0245799-A1; U.S. Publication No. US-2005 
S-2005-0242479-A1; 
51-A1; U.S. Publica 
.S. Publication No. 

S-2005-0192557-A1; U.S. Publication No. US-2005 
S-2004-0199059-A1; 
09-A1; U.S. Publica 

on No. US-2005-0112169-A1; U.S. Publication No. 

U 
ti 
U 
O 
U 
ti 
US-2005-0051427-A1; U.S. Publication No. US-2003 
0032874-A1; U.S. Publication No. US-2005-0103625-A1: 
U.S. Publication No. US-2005-0203360-A1; U.S. Publica 
tion No. US-2005-0090607-A1; U.S. Publication No. 
US-2005-0187720-A1; U.S. Publication No. US-2005 
O161346-A1; U.S. Publication No. US-2006-0015020-A1: 
U.S. Publication No. US-2005-0043598-A1; U.S. Publica 
tion No. US-2003-0217966-A1; U.S. Publication No. 
US-2005-0033132-A1; U.S. Publication No. US-2005 
003 1689-A1; U.S. Publication No. US-2004-0045879-A1: 
U.S. Publication No. US-2004-0186362-A1; U.S. Publica 
tion No. US-2005-0027463-A1; U.S. Publication No. 
US-2005-0027181-A1; U.S. Publication No. US-2005 
0027180-A1; U.S. Publication No. US-2006-002O187-A1: 
U.S. Publication No. US-2006-0036142-A1; U.S. Publica 
tion No. US-2006-0020192-A1; U.S. Publication No. 
US-2006-0036143-A1; U.S. Publication No. US-2006 
0036140-A1; U.S. Publication No. US-2006-0019327-A1: 
U.S. Publication No. US-2006-00201 86-A1; U.S. Publica 
tion No. US-2006-0020.189-A1; U.S. Publication No. 
US-2006-0036139-A1; U.S. Publication No. US-2006 
0020191-A1; U.S. Publication No. US-2006-002O188-A1: 
U.S. Publication No. US-2006-0036141-A1; U.S. Publica 
tion No. US-2006-0020190-A1; U.S. Publication No. 
US-2006-0036145-A1; U.S. Publication No. US-2006 
0036144-A1; U.S. Publication No. US-2006-0016700-A1: 
U.S. Publication No. US-2006-0142651-A1; U.S. Publica 
tion No. US-2006-0086624-A1; U.S. Publication No. 
US-2006-0068208-A1; U.S. Publication No. US-2006 
0040402-A1; U.S. Publication No. US-2006-0036142-A1: 
U.S. Publication No. US-2006-0036141-A1; U.S. Publica 
tion No. US-2006-0036143-A1; U.S. Publication No. 
US-2006-0036140-A1; U.S. Publication No. US-2006 
0036139-A1; U.S. Publication No. US-2006-0142651-A1: 
U.S. Publication No. US-2006-0036145-A1; and U.S. Pub 
lication No. US-2006-0036144-A1. 

0504 Methods and devices that are suitable for use in 
conjunction with aspects of the preferred embodiments are 
disclosed in U.S. application Ser. No. 09/.447.227 filed Nov. 
22, 1999 and entitled “DEVICE AND METHOD FOR 
DETERMINING ANALYTE LEVELS”; U.S. application 
Ser. No. 1 1/335,879 filed Jan. 18, 2006 and entitled “CEL 
LULOSIC-BASED INTERFERENCE DOMAIN FOR AN 
ANALYTE SENSOR: U.S. application Ser. No. 1 1/334, 
876 filed Jan. 18, 2006 and entitled “TRANSCUTANEOUS 
ANALYTE SENSOR: U.S. application Ser. No. 1 1/333, 
837 filed Jan. 17, 2006 and entitled “LOW OXYGEN IN 
VIVO ANALYTE SENSOR. 

0505 All references cited herein, including but not lim 
ited to published and unpublished applications, patents, and 
literature references, are incorporated herein by reference in 
their entirety and are hereby made a part of this specifica 
tion. To the extent publications and patents or patent appli 
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cations incorporated by reference contradict the disclosure 
contained in the specification, the specification is intended to 
Supersede and/or take precedence over any such contradic 
tory material. 
0506 The term “comprising as used herein is synony 
mous with “including.”"containing,” or “characterized by, 
and is inclusive or open-ended and does not exclude addi 
tional, unrecited elements or method steps. 
0507 All numbers expressing quantities of ingredients, 
reaction conditions, and so forth used in the specification are 
to be understood as being modified in all instances by the 
term “about.” Accordingly, unless indicated to the contrary, 
the numerical parameters set forth herein are approximations 
that may vary depending upon the desired properties sought 
to be obtained. At the very least, and not as an attempt to 
limit the application of the doctrine of equivalents to the 
Scope of any claims in any application claiming priority to 
the present application, each numerical parameter should be 
construed in light of the number of significant digits and 
ordinary rounding approaches. 

0508 The above description discloses several methods 
and materials of the present invention. This invention is 
Susceptible to modifications in the methods and materials, as 
well as alterations in the fabrication methods and equipment. 
Such modifications will become apparent to those skilled in 
the art from a consideration of this disclosure or practice of 
the invention disclosed herein. Consequently, it is not 
intended that this invention be limited to the specific 
embodiments disclosed herein, but that it cover all modifi 
cations and alternatives coming within the true scope and 
spirit of the invention. 
What is claimed is: 

1. A method of analyzing data from an analyte sensor, the 
method comprising: 

receiving data from the analyte sensor, the data compris 
ing at least one sensor data point; 

determining whether a signal artifact event has occurred; 
and 

processing the received data, wherein the processing is 
based at least in part upon whether the signal artifact 
event has occurred. 

2. The method of claim 1, further comprising filtering the 
received data to generate filtered data. 

3. The method of claim 2, wherein determining whether 
a signal artifact has occurred comprises comparing the 
received data with the filtered data to obtain at least one 
residual. 

4. The method of claim 3, wherein a signal artifact event 
is determined to have occurred if the residual is exceeds a 
threshold value. 

5. The method of claim 4, further comprising determining 
whether another signal artifact event has occurred, wherein 
another signal artifact event has occurred if the residual 
exceeds a second threshold value. 

6. The method of claim 3, wherein a signal artifact event 
is determined to have occurred if the residual is exceeds a 
threshold value for a predetermined period of time or for a 
predetermined amount of data. 

7. The method of claim 6, wherein determining whether 
a signal artifact has occurred further comprises determining 
whether a predetermined number of residuals exceeds a 
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threshold over a predetermined period of time, or whether a 
predetermined amount of data exceeds a threshold. 

8. The method of claim 3, wherein determining whether 
a signal artifact event has occurred further comprises deter 
mining a differential between a first residual at a first time 
point and a second residual at a second time point. 

9. The method of claim 8, wherein determining whether 
a signal artifact event has occurred further comprises deter 
mining whether a predetermined number of differentials 
exceeds a threshold over a predetermined period of time, or 
whether an amount of data exceeds a threshold. 

10. The method of claim 1, further comprising receiving 
reference data from a reference analyte monitor, the refer 
ence data including at least one reference data point. 

11. The method of claim 10, wherein processing the 
received data further comprises determining a reliability of 
the received data, wherein processing is conducted if the 
signal artifact event is determined to have not occurred. 

12. The method of claim 10, further comprising matching 
the reference data to Substantially time corresponding 
received data to form a matching data pair, wherein the 
reference data is matched if the signal artifact event is 
determined to have not occurred. 

13. The method of claim 10, further comprising including 
the reference data in a calibration factor for use in calibrating 
the glucose sensor, wherein the reference data is included if 
the signal artifact event is determined to have not occurred. 

14. The method of claim 1, further comprising prompting 
a user for a reference glucose value, wherein prompting is 
conducted if the signal artifact event is determined to have 
not occurred. 

15. The method of claim 1, wherein processing the 
received data comprises displaying a graphical representa 
tion of the received data. 

16. The method of claim 1, wherein processing the 
received data comprises filtering the received data, wherein 
filtering is conducted if the signal artifact event is deter 
mined to have occurred. 

17. The method of claim 1, further comprising filtering the 
received data, wherein processing the received data com 
prises displaying a graphical representation of the filtered 
data, wherein processing is conducted if the signal artifact 
event is determined to have occurred. 

18. The method of claim 1, further comprising filtering the 
received data to generate filtered data, wherein determining 
whether a signal artifact event has occurred further com 
prises comparing the received data with the filtered data to 
obtain a residual, and wherein processing the received data 
comprises utilizing the residual to modify the filtered data. 

19. The method of claim 1, further comprising filtering the 
received data to generate filtered data, wherein determining 
whether a signal artifact event has occurred further com 
prises comparing the received data with the filtered data to 
obtain a residual and deriving a differential of the residual by 
calculating a first derivative of the residual, and wherein 
processing the received data comprises utilizing the differ 
ential to modify the filtered data. 

20. The method of claim 1, wherein processing the 
received data comprises compensating for a time lag. 

21. The method of claim 1, wherein processing the 
received data comprises displaying a graphical representa 
tion of the received data. 

22. The method of claim 21, wherein the received data is 
an unfiltered digital signal. 
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23. The method of claim 1, wherein processing the 
received data comprises disabling display of a graphical 
representation of the received data, wherein processing is 
conducted if the signal artifact event is determined to have 
occurred. 

24. The method of claim 1, wherein processing the 
received data comprises displaying a range of glucose 
values, wherein processing is conducted if the signal artifact 
event is determined to have occurred. 

25. The method of claim 1, wherein processing the 
received data comprises displaying a graphical indication of 
glucose trend, wherein processing is conducted if the signal 
artifact event is determined to have occurred. 

26. The method of claim 1, wherein processing the 
received data comprises generating at least one estimated 
glucose value and displaying a graphical representation of 
the estimated glucose value, wherein processing is con 
ducted if the signal artifact event is determined to have 
occurred. 

27. The method of claim 26, wherein processing the 
received data comprises generating a confidence interval for 
at least one estimated glucose value and displaying a graphi 
cal representation of the confidence interval, wherein pro 
cessing is conducted if the signal artifact event is determined 
to have occurred. 

28. A method for processing data from a glucose sensor, 
the method comprising: 

receiving data from the glucose sensor, the received data 
comprising at least one sensor data point: 

displaying a graphical representation of the data corre 
sponding to a time period; and 

post-processing the displayed graphical representation of 
the data corresponding to the time period. 

29. The method of claim 28, wherein post-processing is 
conducted periodically. 

30. The method of claim 28, wherein post-processing is 
conducted Substantially continuously. 

31. The method of claim 28, further comprising deter 
mining whether a signal artifact event has occurred and 
processing the received data prior to the displaying step, 
wherein the processing is based at least in part upon whether 
the signal artifact event has occurred. 

32. The method of claim 28, wherein post-processing 
comprises filtering the data to recalculate data corresponding 
to the time period and displaying a graphical representation 
of the recalculated data corresponding to the time period. 

33. The method of claim 28, wherein the step of post 
processing comprises: 

recalculating data corresponding to the time period, 
wherein a time lag induced by real-time filtering is 
Substantially removed from the data corresponding to 
the time period; and 

displaying a graphical representation of the recalculated 
data corresponding to the time period. 

34. The method of claim 33, wherein recalculating the 
data comprises algorithmically smoothing at least one sensor 
data point over a moving window, wherein the moving 
window comprises time points before and after the sensor 
data point is obtained. 

35. The method of claim 28, further comprising display 
ing a current glucose value representative of the most 
recently obtained sensor data point. 
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36. A system configured to process data from an analyte 
sensor, the system comprising: 

a data receiving module configured to receive sensor data 
from the analyte sensor, the data comprising at least one 
sensor data point; 

a signal artifacts module configured to detect a signal 
artifact in the sensor data; and 

a processor module configured to process the sensor data, 
wherein processing is dependent at least in part upon 
whether the signal artifact is detected. 

37. The system of claim 36, wherein the signal artifacts 
module is configured to compare raw sensor data with 
filtered sensor data to determine a residual. 

38. The system of claim 37, wherein the signal artifacts 
module is configured to detect a signal artifact if the residual 
exceeds a threshold value. 

39. The system of claim 37, wherein the signal artifacts 
module is configured to detect a signal artifact if a prede 
termined number of residuals exceed a threshold value for a 
predetermined period of time or for a predetermined amount 
of data. 

40. The system of claim 37, wherein the signal artifacts 
module is configured to compare a first residual with a 
second signal residual to determine a differential. 

41. The system of claim 40, wherein the signal artifacts 
module is configured to detect a signal artifact if the differ 
ential exceeds a threshold value. 

42. The system of claim 40, wherein the signal artifacts 
module is configured to detect a signal artifact if a prede 
termined number of differentials exceed a threshold value 
for a predetermined period of time or for a predetermined 
amount of data. 

43. The system of claim 36, further comprising a refer 
ence data module configured to receive reference data from 
a reference glucose monitor, the reference data comprising 
at least one reference data point. 

44. The system of claim 43, wherein the signal artifacts 
module is configured to determine a reliability of the sensor 
data if the signal artifact is detected. 

45. The system of claim 43, wherein the processor module 
is configured to form at least one matched data pair by 
matching reference data to Substantially time corresponding 
sensor data. 

46. The system of claim 45, wherein the processor module 
is configured to form a matching data pair if a signal artifact 
is not detected. 

47. The system of claim 43, wherein the processor module 
is configured to utilize the reference data for calibrating the 
glucose sensor if a signal artifact is not detected. 

48. The system of claim 43, wherein the processor module 
is configured to prompt a user for a reference glucose value 
if a signal artifact is not detected. 

49. The system of claim 36, wherein the data receiving 
module is configured to receive raw sensor data. 

50. The system of claim 49, wherein the raw sensor data 
comprises integrated digital data. 

51. The system of claim 49, wherein the processor module 
is configured to display a graphical representation of the raw 
sensor data if a signal artifact is not detected. 

52. The system of claim 49, wherein the data receiving 
module is configured to receive filtered sensor data. 
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53. The system of claim 52, wherein the processor module 
is configured to display a graphical representation of the 
filtered sensor data if a signal artifact is detected. 

54. The system of claim 36, wherein the processor module 
is configured to filter the sensor data. 

55. The system of claim 54, wherein the processor module 
is configured to display a graphical representation of the 
filtered sensor data if a signal artifact is detected. 

56. The system of claim 36, wherein the processor module 
is configured to not display the sensor data if a signal artifact 
is detected. 

57. The system of claim 36, wherein the processor module 
is configured to display a range of glucose values if a signal 
artifact is detected. 

58. The system of claim 36, wherein the processor module 
is configured to display a directional indicator of glucose 
trend if a signal artifact is detected. 

59. The system of claim 36, wherein the processor module 
is configured to display at least one estimated glucose value 
if a signal artifact is detected. 

60. The system of claim 36, wherein the processor module 
is configured to display a confidence interval for at least one 
estimated glucose value if a signal artifact is detected. 

61. A system configured to process data from an analyte 
sensor, the system comprising: 

a data receiving module configured to receive sensor data 
from the analyte sensor, the data comprising at least one 
sensor data point; 

an output module configured to display a substantially 
real-time numerical value corresponding to a most 
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recently received sensor data point and a graphical 
representation of sensor data corresponding to a time 
period; and 

a processor module configured to post-process the graphi 
cal representation of the data corresponding to the time 
period, wherein the output module is configured to 
display the post-processed data. 

62. The system of claim 61, wherein post-processing is 
conducted periodically. 

63. The system of claim 61, wherein post-processing is 
conducted Substantially continuously. 

64. The system of claim 61, wherein the processor module 
is configured to automatically post-process the graphical 
representation of the data corresponding to the time period. 

65. The system of claim 61, wherein the processor module 
is configured to post-process the graphical representation of 
the data corresponding to the time period responsive to a 
request. 

66. The system of claim 61, wherein the output module is 
configured to automatically display the post-processed 
graphical representation of the data corresponding to the 
time period. 

67. The system of claim 61, wherein the output module is 
configured to display the post-processed graphical represen 
tation of the data corresponding to the time period respon 
sive to a request. 


