(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 110256445 B (45) 授权公告日 2021. 09. 07

- (21) 申请号 201910676259.0
- (22)申请日 2019.07.25
- (65) 同一申请的已公布的文献号 申请公布号 CN 110256445 A
- (43) 申请公布日 2019.09.20
- (73) 专利权人 牡丹江师范学院 地址 157011 黑龙江省牡丹江市爱民区文 化街191号
- (72) 发明人 景云荣 魏继承 郝婧玮
- (74) **专利代理机构** 北京纪凯知识产权代理有限 公司 11245

代理人 关畅

(51) Int.CI.

CO7D 487/04 (2006.01)

(56) 对比文件

WO 2017/031116 A1,2017.02.23 CN 101048388 A,2007.10.03

Ahmed Malki et al.."Novel 1,5-diphenyl-6-substituted 1H-pyrazolo[3,4-d] pyrimidin-4(5H)-ones induced apoptosis in RKO colon cancer cells".《Journal of Enzyme Inhibition and Medicinal Chemistry》.2015,第31卷(第6期),第1286-1299页.

Eric Weterings et al.."A novel small molecule inhibitor of the DNA repair protein Ku70/80".《DNA Repair》.2016,第43卷 第98-106页.

审查员 马冲

权利要求书1页 说明书5页 附图8页

(54) 发明名称

一种合成DNA-PK抑制剂STL127705的方法

(57) 摘要

本发明公开了一种合成DNA-PK抑制剂STL127705的方法。本发明采用逆合成分析,以2-甲硫醚-4-氯嘧啶-5-甲酸乙酯为起始原料,先后经过氨化,水解,酰胺缩合,合环,氧化,取代等6步反应制备得到目标化合物,总收率为36.8%,纯度达到95.5%,产物结构通过¹H-NMR、¹³C-NMR、MS等表征,证明结构正确。

所述STL127705:

- 1.一种合成STL127705的方法,包括:(1)以2-甲硫醚-4-氯嘧啶-5-甲酸乙酯为起始原料,先后经过氨化,水解,酰胺缩合,合环,得到化合物4;
 - (2) 将所述化合物4在氧化剂存在的条件下进行氧化反应,反应完毕得到化合物5; 所述氧化剂选自间氯过氧苯甲酸(m-CPBA)、双氧水、高锰酸钾和重铬酸钾中至少一种;
 - (3)将所述化合物5与3,4-二甲氧基苯乙胺于有机溶剂中进行取代反应,反应完毕得到

所述取代反应步骤中,温度为20-100℃;时间为1-6h。

2.根据权利要求1所述的方法,其特征在于:所述化合物5与3,4-二甲氧基苯乙胺的投料摩尔比为1:1-4;

所述取代反应步骤中,温度为80℃;时间为2h;

所述有机溶剂选自N,N-二甲基乙酰胺、N,N-二甲基甲酰胺和二氧六环中至少一种。

- 3.根据权利要求2所述的方法,其特征在于:所述化合物5与3,4-二甲氧基苯乙胺的投料摩尔比为1:1.5。
- 4.根据权利要求1所述的方法,其特征在于:所述化合物4与氧化剂的投料摩尔比为1: 2-10:

所述氧化反应步骤中,温度为0-80℃;时间为4-24h;

所述反应在有机溶剂中进行。

5.根据权利要求4所述的方法,其特征在于:所述化合物4与氧化剂的投料摩尔比为1: 5;

所述氧化反应步骤中,温度为室温;时间为12h;

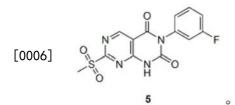
所述有机溶剂选自二氯甲烷、四氢呋喃和丙酮中至少一种。

一种合成DNA-PK抑制剂STL127705的方法

技术领域

[0001] 本发明属于生物领域,涉及一种合成DNA-PK抑制剂STL127705的方法。

背景技术


[0002] DNA依赖的蛋白激酶 (DNA-PK) 是由DNA依赖的蛋白激酶催化亚单位 (DNA-PKcs) 与 Ku蛋白 (由Ku70和Ku80组成的蛋白异构体) 组成的一种蛋白复合物,其功能是启动DNA双链 断裂的非同源末端连接修复 (NHEJ) [1-4]。DNA损伤诱导剂和放疗已经广泛的应用于临床肿瘤治疗,其抗肿瘤机制为诱导肿瘤细胞发生致死性的DNA双链断裂 (DSB),DSB主要是通过非同源末端连接来修复的,因此在此修复过程中起关键作用的DNA-PK的抑制剂就具有增强放化疗敏感性的作用 [5,6]。奥拉帕尼是一种多聚二磷酸腺苷核糖聚合酶 (PARP) 抑制剂,其可阻断参与修复受损DNA的酶 [7-9]。2014年,美国FDA批准奥拉帕尼应用于BRCA基因缺陷相关的卵巢癌的治疗。随着奥拉帕尼的临床获批,DNA修复抑制剂引起了广大研究者的注意,越来越多的新型DNA修复抑制剂被研发并投入到临床试验当中。研究发现,STL127705是一种具有嘧啶并嘧啶二酮骨架结构的DNA-PK的抑制剂,其对肿瘤细胞的杀伤效应不大,但其能够通过阻断DNA修复通路,极大地增强DNA损伤诱导剂或放疗的抗肿瘤功效 [10]。

[0003] 有关STL127705的合成方法之前未见报道,从其化学结构分析,可由3,4-二甲氧基苯乙胺与含有嘧啶并嘧啶二酮结构的衍生物缩合而成;嘧啶并嘧啶二酮结构化合物可由4-氨基嘧啶-5-酰胺衍生结构合环反应制备而得;4-氨基嘧啶-5-酰胺衍生物可由相应的4-氨基-5-嘧啶甲酸衍生物与3-氟苯胺酯化缩合制备(图1)。

发明内容

[0004] 本发明的目的是提供一种合成DNA-PK抑制剂STL127705的方法。

[0005] 本发明要求保护一种合成STL127705的方法,如图2所示,包括:将化合物5与3,4-二甲氧基苯乙胺于有机溶剂中进行取代反应,反应完毕得到所述STL127705:

[0007] 上述方法中,所述化合物5与3,4-二甲氧基苯乙胺的投料摩尔比为1:1-4;具体为1:1.5;

[0008] 所述取代反应步骤中,温度为20-100℃;具体为80℃;时间为1-6h;具体为2h;

[0009] 所述有机溶剂选自N,N-二甲基乙酰胺(DMA)、N,N-二甲基甲酰胺(DMF)和二氧六环中至少一种。

[0010] 本发明还要求保护合成STL127705所用中间体化合物,也即化合物5,

[0012] 本发明提供的制备化合物5的方法,包括:将化合物4在氧化剂存在的条件下进行氧化反应,反应完毕得到所述化合物5:

[0014] 上述方法中,所述氧化剂选自间氯过氧苯甲酸(m-CPBA)、双氧水、高锰酸钾和重铬酸钾中至少一种;

[0015] 所述化合物4与氧化剂的投料摩尔比为1:2-10;具体为1:5;

[0016] 所述氧化反应步骤中,温度为0-80℃;具体为室温;时间为4-24h;具体为12h;

[0017] 所述反应在有机溶剂中进行;所述有机溶剂具体选自二氯甲烷、四氢呋喃和丙酮中至少一种。

[0018] 本发明采用逆合成分析,以2-甲硫醚-4-氯嘧啶-5-甲酸乙酯为起始原料,先后经过氨化,水解,酰胺缩合,合环,氧化,取代等6步反应制备得到目标化合物,总收率为36.8%,纯度达到95.5%,产物结构通过¹H-NMR、¹³C-NMR、MS等表征,证明结构正确。

附图说明

[0019] 图1为目标化合物STL127705的逆合成路线分析。

[0020] 图2为本发明提供的目标化合物STL127705的合成路线。

[0021] 图3为目标化合物的互变异构现象。

[0022] 图4为化合物1的质谱。

[0023] 图5为化合物2的质谱。

[0024] 图6为化合物2的氡谱。

[0025] 图7为化合物3的氢谱。

[0026] 图8为化合物4的质谱。

[0027] 图9为化合物4的氡谱。

[0028] 图10为化合物5的质谱。

[0029] 图11为化合物5的氡谱。

[0030] 图12为目标化合物STL127705的质谱。

[0031] 图13为目标化合物STL127705的氡谱(室温)。

[0032] 图14为目标化合物STL127705的氢谱(80℃)。

[0033] 图15为目标化合物STL127705的纯度。

具体实施方式

[0034] 下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。

[0035] 实施例1、

[0036] 1实验部分

[0037] 1.1仪器与试剂

[0038] 实验中相关化学试剂均为国产分析纯,无水溶剂用常规方法干燥处理。反应监测采用TLC法,薄层层析硅胶板的型号为0.25mm E.Merck (GF_{254});柱层析分离纯化采用快速制备仪器Biotage Isolera I,所用的硅胶为300-400mesh。反应收率为过柱纯化后计算而得。熔点采用X4型显微熔点仪测定,质谱采用LCQ-Deca XP/Ad型 (Thermo Electron),离子源采用电喷雾离子化 (ESI), 1 H-NMR和 13 C-NMR采用400MHz型Bruker Avance III 核磁共振波谱仪器。

[0039] 1.2实验方法

[0040] 1.2.1化合物1的合成将5.00g (21.5mmo1) 2-甲硫醚-4-氯嘧啶-5-甲酸乙酯溶于20mL四氢呋喃中,向反应液中加入5mL 25%氨水溶液,在室温下反应2h,TLC监测反应,待反应结束后向反应液中加入30mL饱和氯化铵溶液淬灭反应,用乙酸乙酯 (20mL×3) 萃取,合并有机相,经无水硫酸钠干燥,过滤,滤液减压浓缩,残留物过柱分离纯化 (PE/EA,1:1) 得到白色固体4.12g,收率89.3%,熔点130-131℃。ESI-MS m/z:214.0 [M+H] $^+$. 1 H NMR (400MHz, DMS0-d₆) δ 8.61 (s,1H,H-4),7.84 (s,2H,-NH₂),3.47-3.41 (q,J=6.8Hz,2H,-0CH₂CH₃),2.45 (s,3H,-SCH₃),1.04-1.00 (t,J=6.8Hz,3H,-0CH₃CH₃).质谱图如图4所示。

[0041] 1.2.2化合物2的合成将4.12g (19.3mmo1) 化合物1溶于15mL甲醇中,向反应液中滴加入3mL 0.50g/mL氢氧化锂水溶液,在50℃的条件下反应5h,TLC监测反应进行,待反应结束后向反应液中加入30mL饱和氯化铵溶液淬灭反应,用乙酸乙酯 (20mL×3) 萃取,合并有机相,经无水硫酸钠干燥,过滤,滤液减压浓缩,残留物过柱分离纯化 (PE/EA,1:3) 得到白色固体3.25g,收率91.0%,熔点122-124℃。ESI-MS m/z:183.9[M-H] $^{-}$. H NMR (400MHz, DMS0-d₆) 813.17 (s,1H,-C00H),8.54 (s,1H,H-4),7.89 (s,1H,-NH₂),7.82 (s,1H,-NH₂),2.47 (s,3H,-SCH₆). 化合物2的质谱图和氢谱图如图5和图6所示。

[0042] 1.2.3化合物3的合成将3.25g (17.6mmo1) 化合物2和8.01g (21.1mmo1) 2- (7-氧化苯并三氮唑) -N,N,N',N'-四甲基脲六氟磷酸酯 (HATU) 溶于20mL干燥的N,N-二甲基甲酰胺 (DMF) 中,在氮气保护和室温的条件下,向反应液中加入4.6mL (26.4mmo1) N,N-二异丙基乙胺 (DIPEA),滴加完毕后反应10min,再向反应液中加入2.40g (21.1mmo1) 3-氟苯胺,在室温下反应12h后,TLC监测反应进行,待反应结束后向反应液中加入30mL饱和氯化铵溶液淬灭反应,用乙酸乙酯 (20mL×4) 萃取,合并有机相,经无水硫酸钠干燥,过滤,滤液减压浓缩,残留物过柱分离纯化 (PE/EA,2:3) 得到淡黄色固体4.55g,收率93.0%,熔点145-147℃。ESI-MS m/z:279.4 [M+H] $^+$. 1 H NMR (400MHz,DMSO-d₆) 8 10.33 (s,1H,-CONH-),8.65 (s,1H,H-4),7.82 (s,2H,-NH₂),7.65 (dt,J=11.8,2.2Hz,1H,H-2'),7.49-7.43 (m,1H,H-6'),7.39 (dt,J=15.0,7.5Hz,1H,H-4'),6.94 (ddd,J=8.1,2.5,1.8Hz,1H,H-5'),2.48 (s,3H,-SCH₃).化合物3的氢谱图如图7所示。

[0043] 1.2.4化合物4的合成在氮气保护和冰浴的条件下,将4.55g(16.4mmol)化合物3和

20g (65.6mmo1) 双 (三氯甲基) 碳酸酯溶于30mL干燥的四氢呋喃中,向反应液中滴加5.7mL (32.8mmo1) DIPEA,反应2h后,TLC监测反应进行,待反应结束后向反应液中加入50mL饱和氯化铵溶液淬灭反应,用乙酸乙酯 (30mL×4) 萃取,合并有机相,经无水硫酸钠干燥,过滤,滤液减压浓缩,残留物过柱分离纯化 (PE/EA,1:1) 得到淡黄色固体4.43g,收率88.9%,熔点 139-140 $^{\circ}$ 。ESI-MS m/z:305.5 [M+H] † . ¹H NMR (400MHz, DMSO-d₆) $^{\circ}$ 812.48 (s,1H,H-7),8.93 (s,1H,H-4),7.60-7.50 (m,1H,H-4'),7.35-7.24 (m,2H,H-2',H-5'),7.21 (d,J=7.9Hz,1H,H-6'),2.61 (s,3H,-SCH₆) . 化合物4的质谱图和氢谱图如图8和图9所示。

[0044] 1.2.5化合物5的合成在冰浴的条件下,将4.43g (14.6mmo1) 化合物4溶于30mL干燥的二氯甲烷中,慢慢地向反应液中加入14.8g (73.0mmo1) 85%间氯过氧苯甲酸 (m-CPBA),待固体溶解后,撤去冰浴,在室温下进行氧化反应12h后,TLC监测反应进行,待反应结束后向反应液中加入50mL饱和碳酸氢钠溶液淬灭反应,用二氯甲烷 (30mL×4) 萃取,合并有机相,经无水硫酸钠干燥,过滤,滤液减压浓缩,残留物过柱分离纯化 (PE/EA,1:2) 得到黄色固体3.45g,收率70.4%,熔点142-143 $\mathbb C$ 。ESI-MS m/z:337.0 [M+H]⁺. ¹H NMR (400MHz, DMS0-d₆) $\mathbb S$ 13.18 (s,1H,H-7),9.32 (s,1H,H-4),7.58 (dd,J=14.7,8.0Hz,1H,H-4'),7.39-7.30 (m,1H,H-5'),7.26 (d,J=9.5Hz,1H,H-2'),7.22 (d,J=8.0Hz,1H,H-6'),3.48 (s,3H,-S0₂CH₃).化合物5的质谱图和氢谱图如图10和图11所示。

[0045] 1.2.6目标化合物STL127705的合成在氮气保护下,将3.45g (10.3mmo1) 化合物5和2.85g (15.5mmo1) 3,4-二甲氧基苯乙胺溶于10mL N,N-二甲基乙酰胺 (DMA) 中,80℃进行取代反应2h后,TLC监测反应进行,待反应结束后向反应液中加入30mL水淬灭反应,用二氯甲烷 (30mL×4) 萃取,合并有机相,经无水硫酸钠干燥,过滤,滤液减压浓缩,残留物过柱分离纯化 (PE/EA,1:2) 得到黄色固体3.50g,收率77.8%,熔点212-213℃。HRMS (ESI) calcd for $C_{22}H_{20}FN_5O_4$ (M+H) $^+$:437.4256Found:437.4216,(△-3.6ppm,-4.9mDa). 1 H NMR (400MHz,DMSO-d₆) 8 11.51 (s,1H,H-7),8.70 (s,1H,H-4),7.80 (s,1H,H-9"),7.51 (dd,J=15.1,7.7Hz,1H,H-4'),7.29-7.10 (m,3H,H-2',H-5',H-6'),6.89 (d,J=8.4Hz,2H,H-2",H-5"),6.81 (d,J=7.3Hz,1H,H-6"),3.79 (s,3H,-0CH₃),3.77 (s,3H,-0CH₃),3.67-3.61 (dd,J=7.1,6.8Hz,2H,H-8"),2.87 (t,J=7.3Hz,2H,H-7"). 13 C NMR (101MHz,DMSO-d₆) 8 173.70,167.52,162.23,161.61,160.16,150.38,149.83,148.82,147.15,137.91,127.82,123.96,122.33,117.25,116.98,113.26,112.81,103.86,57.82,57.73,45.62,33.96。图12为目标化合物STL127705的氢谱(80℃)。图15为目标化合物STL127705的氢谱(室温)。图14为目标化合物STL127705的氢谱(80℃)。图15为目标化合物STL127705的纯度。由上可知,该化合物结构正确,为目标化合物。

[0046] 2结果与讨论

[0047] 从目标化合物STL127705的¹H-NMR数据中观察到终产物存在互变异构现象,可能的互变异构位点为分子结构中的环内酰胺键,其可由酮式发生烯醇式互变(图3)。两种异构体之间存在一种动态平衡,在低温时这种互变速率比较慢,核磁可以检测出来两套峰,当温度升高时,互变速率变快,就会融合成一套峰。因此针对终产物测试了其升温¹H-NMR(80℃),图谱结果显示为一套峰,证实了申请人的推测。

[0048] 中间体4和中间体5同样存在环内酰胺键,但是在¹H-NMR中并未观察到明显的两套峰现象,可能是由于稳定的异构体所占的比例远远大于其互变异构体。中间体4和5肯定是

有互变异构存在,只是两种异构体稳定性差距很大,那么平衡可能99%偏向于其中一个稳定结构,¹H-NMR就仅会显示一套峰。而目标化合物的结构发生了改变,分子结构的改变会影响平衡的偏向,可能两个异构体的稳定性比较接近,在室温下观测到的¹H-NMR就会显示出二者的氢信号,所以是两套峰。

[0049] 3结论

[0050] 本发明提供了一种简单、有效的DNA-PK抑制剂STL127705的合成方法。该方法以市售化工原料为起始原料,经过6步反应,以36.8%的收率得到目标产物,纯度达到95%。该制备方法条件温和,无需苛刻的反应条件,方法简单,技术可行性高,为新型的具有嘧啶并嘧啶二酮结构的DNA-PK抑制剂的合成研究奠定理论基础。

图1

图2

图3

Mass Spectrum RetTime: 0.742 Datafile: D:\data\1902\190220\EW14962-180-P1A.lcd

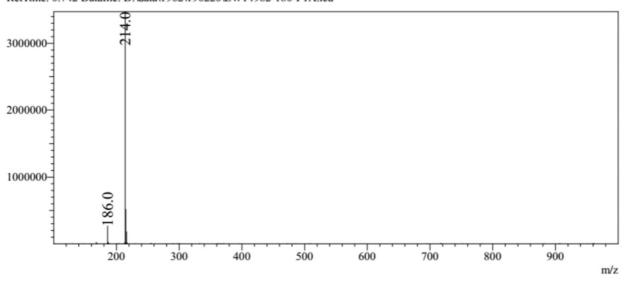


图4

Mass Spectrum RetTime: 0.117 Datafile: D:\DATA\1903\190308\EW17279-1-P1B.lcd

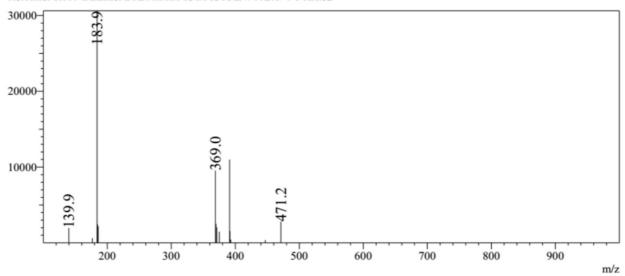


图5

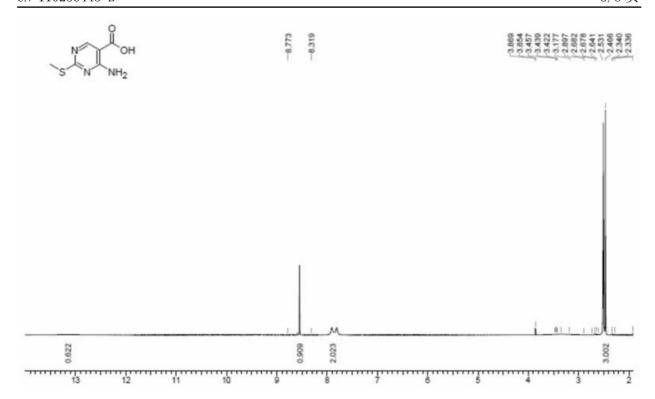


图6

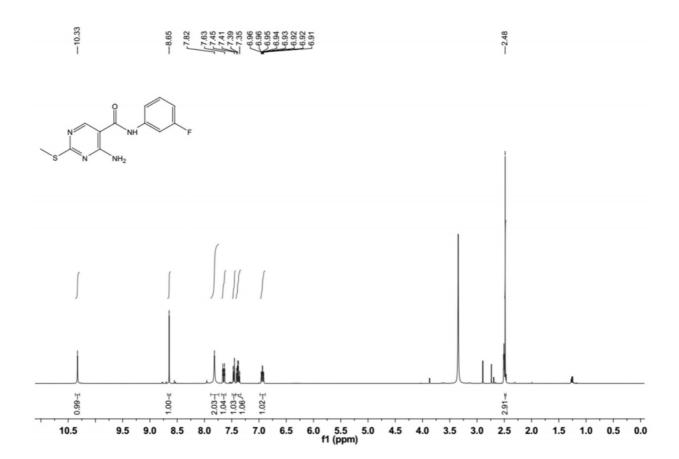
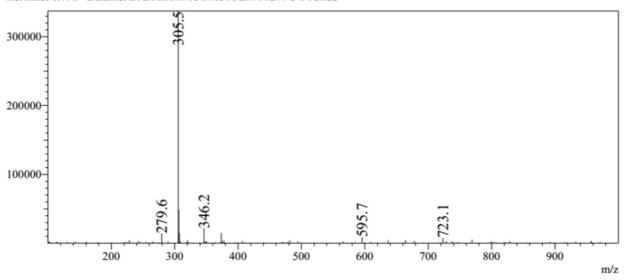



图7

图8

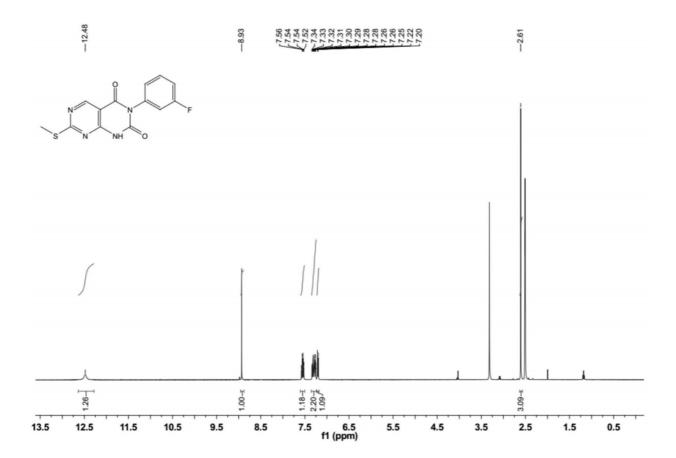


图9

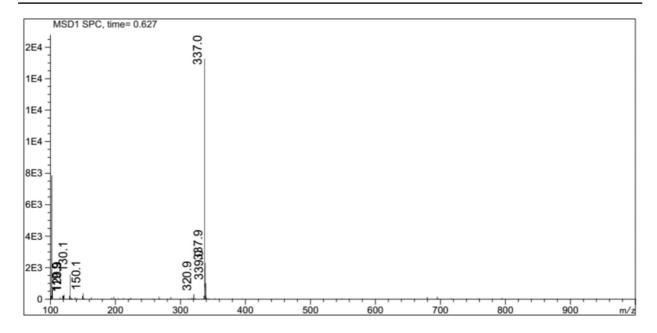


图10

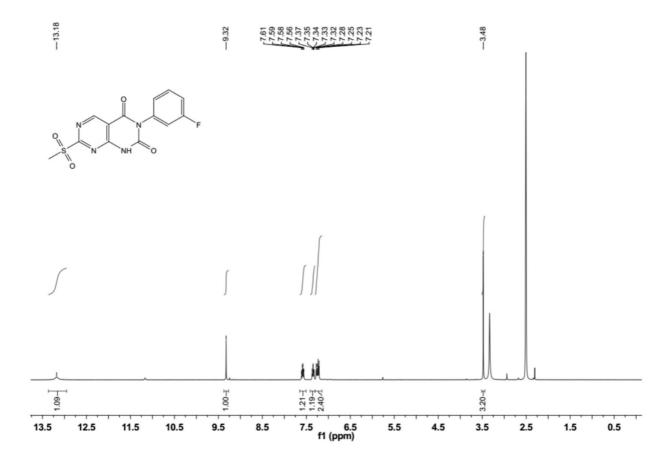


图11

Mass Spectrum RetTime: 0.672 Datafile: D:\DATA\1904\190404\EW17279-6-P1D.lcd

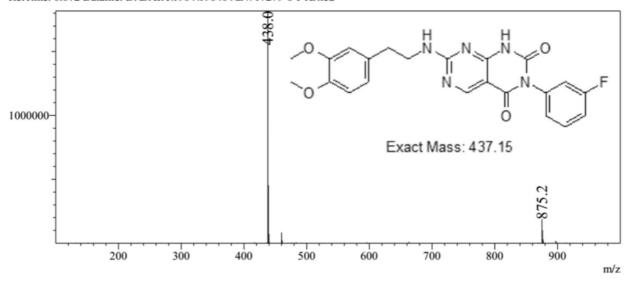


图12

图13

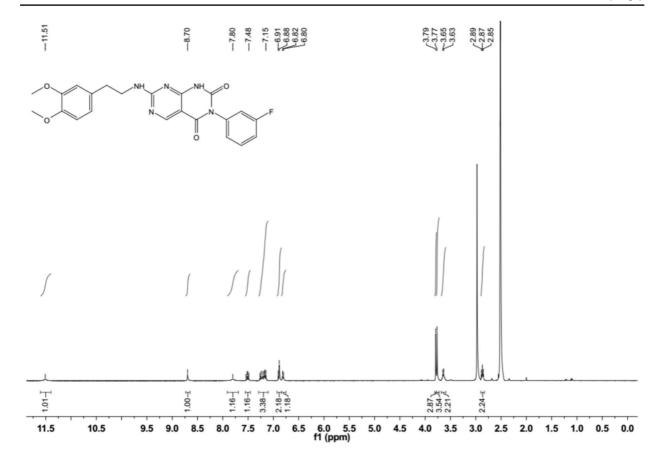
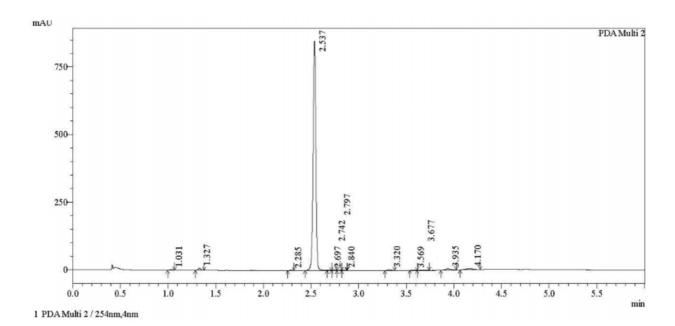



图14

Integration result							
PeakTable							
PDA Ch2 254							
Peak#	Ret. Time	USP Width	Resolution	Height	Area	Area %	
1	1.031	0.054	0.000	2291	4432	0.248	
2	1.327	0.047	5.866	7837	13680	0.767	
3	2.285	0.047	20.389	1093	1926	0.108	
4	2.537	0.053	5.047	849121	1695642	95.053	
5	2.697	0.057	2.918	1231	2082	0.117	
6	2.742	0.051	0.826	2026	3692	0.207	
7	2.797	0.079	0.857	732	1607	0.090	
8	2.840	0.058	0.629	1335	2330	0.131	
9	3.320	0.065	7.790	2976	7148	0.401	
10	3.569	0.062	3.920	967	2260	0.127	
11	3.677	0.100	1.335	1504	5652	0.317	
12	3.935	0.107	2.494	4800	19131	1.072	
13	4.170	0.179	1.645	4078	24306	1.363	
Total				879990	1783889	100.000	

图15