wo 2023/062221 A1 |0 000 AR 0 0 00 0O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

19) World Intellectual Propert <
O orgmtation > ‘O 000000 Y O 0
International Bureau (10) International Publication Number
(43) International Publication Date WO 2023/ 062221 Al
20 April 2023 (20.04.2023) WIRPOIPCT
(51) International Patent Classification: (72) Inventor: MOELLER, Jens-Dietrich; Friedrich-Wil-
GO6F 8/41 (2018.01) helm-Strafe 41, 38302 Wolfenbiittel (DE).
(21) International Application Number: (74) Agent: HOFSTETTER, SCHURACK & PART-
PCT/EP2022/078722 NER PATENT- UND RECHTSANWALTSKANZLEI,

(22) International Filing Date: PARTG MBB; Balanstr. 57, 81541 Miinchen (DE).

14 October 2022 (14.10.2022) (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, I, IN, IQ, IR, IS, IT, JM, JO, JP, KE,
KG,KH,KN,KP, KR, KW,KZ, LA, LC,LK,LR, LS, LU,
LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG,

(25) Filing Language: English

(30) Priority Data:
102021 126 848.6
15 October 2021 (15.10.2021) DE

(71) Applicant: VOLKSWAGEN AKTIENGESEL- NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
LSCHAFT [DE/DE]; Berliner Ring 2, 38440 Wolfsburg RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
(DE).

(54) Title: METHOD AND SYSTEM FOR STRIPPING DOWN A SOFTWARE TO MINIMIZE ITS CODE FOR OPERATING
DEVICE FEATURES OF A DEVICE

SCA

(57) Abstract: The invention is concerned with a method for stripping down a software code (16) of a software while still being able
to operate a predefined feature set of a device (12), wherein device feature data (21) of the device lists several device features (14) that
are to be operated by the software by executing the software on at least one microprocessor (13), wherein the software code (16) of the
software comprises of several function blocks (17) for providing a respective functionality in the device and each function block (17) is
listed in software configuration data (20). The method comprises that a binary code (11) of the software is generated by a compilation
procedure (19), wherein the compilation procedure (19) comprises that only those of the function blocks (17) that are marked in the
software configuration data (20) as being required functions blocks (17) for operating the device features (14) are actually selected and
the binary code (11) is compiled from the selected function blocks (17) only.

[Continued on next page]

WO 2023/062221 A | [I 0]} 00 0000 R0 V0 10 O 0

TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI,
SK, SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722

Description

Method and system for stripping down a software to minimize its code for operating device
features of a device

The invention is concerned with a method and a system for reducing or stripping down a
software code of a software in order to minimize the code while still being able to operate a
predefined feature set in a device, e.g. in a vehicle. Device feature data lists the several
device features that are to be operated by the software and the software shall have a
minimized code footprint, such that a minimum amount of binary code stays unused during
the operation of the device.

In automotive technology, vehicles (like passenger vehicles or trucks or busses) nowadays
comprise microprocessors having an operating system instead of microcontrollers with
monolithic control software. The operating system is often an open source system such as
Linux, in particular the Linux distribution “JANTE” ®. However, those operating systems are
not only limited to the use on microprocessors for vehicles and therefore comprise additional
features that are, however, not needed in a vehicle.

Since any software, including the operating system kernel, in the vehicle has to be tested on
safety issues and has to be supervised and maintained, the more code the software
comprises, the more code has to be tested, supervised and maintained. Therefore, it is the
goal of software engineers to identify those parts of the code of the operating system that are
not used and to eliminate those parts of the code. So far, this is done manually, which makes
the process very cumbersome.

The same counts for software that is originally written for running on a microcontroller and
shall now be transferred to run on a microprocessor. On microcontrollers, it is often an
embedded software that is running on a proprietary operating system that is different from
chip manufacturer to chip manufacturer. Here, a compiler can be used to optimize the binary
code of the software as different function blocks of the software code are linked statically
resulting in a well know predefined arrangement of the binary code in the memory.

This is not possible when transferring the functionality into a shared library on microproces-
sors. Thus, if the software shall be directly transferred to a microprocessor, the software may
also comprise code that is not needed. This is not easy to detect as the shared library may
be linked dynamically in different contexts. This software therefore also needs an optimiza-
tion in order to minimize the amount of software code that is finally included in the binary
code of a software for a vehicle.

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722

Document US 2008 133 598 A discloses a method for reducing a memory food print of an
embedded system. As has already been described, within an embedded system, it is much
easier to identify unused code, as an embedded system is running on a monolithic binary
code with no dynamic linking. Transferring this method to a system using a microprocessor
and dynamic linking is not trivial.

Document US 2012 102 473 A describes a method for reducing the code size of compiled
code by taking advantage of the specific structure of object oriented code where abstract
method definitions may be deleted without rendering the remaining code inoperable.

Document US 2015 234 652 A describes a software for an internet server that determines
automatically which parts of the software have been accessed by clients. Those parts of the
software that are not accessed by any client within a certain time period are deleted from the
server. This statistical approach comes with the risk that code may be deleted that might
become relevant in a very rare specific case that may have been overlooked.

Document US 10956138 B describes a method for reducing memory usage of a software
that is based on a scripting language. This solution requires the programming of functionali-
ties based on scripts instead of binary code.

Document US 9436449 B describes a method for removing portions of a software by means
of a trial and error method in that code is disabled and a behavior of the resulting software is
compared to a desired behavior. If the resulting behavior matches the desired behavior, the
code is removed, otherwise the code is re-enabled. This method makes it difficult to
determine non-required code in a deterministic straight forward way and code might remain
in the software that is not used at all but that has not been identified in the trial and error
phase.

Document US 2009 327 639 A discloses a method for identifying unneeded software
features by analyzing the memory data from a memory of an embedded system. This
method relies on the fact that in embedded systems static linking is used such that unneeded
software features can be traced easily from a memory data dump of a running embedded
system. This is not possible in a microprocessor system that is using an operating system
and dynamic linking, as software features are located in different regions of the memory
every time the system is restarted.

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722
3
It is an objective of the present invention to provide a tool for reducing the amount of code
that is included in the binary version of a software given a specific software source code that
comprises a large amount of function blocks.

The objective is accomplished by the subject matter of the independent claims. Advanta-
geous developments with convenient and non-trivial further embodiments of the invention are
specified in the following description, the dependent claims and the figures.

One solution comprises a method for stripping down or pruning a software to reduce or
minimize the software code of the software for operating predefined device features of a
device, e.g. a vehicle. Device feature data provides a list of the several device features (i.e.
a feature set) that are to be operated by the software. For operating these device features,
binary code of the software will be executed on at least one microprocessor (e.g. of the
device). In particular on the at least one microprocessor, at least one operating system will
be running together with software libraries for dynamic linking. A software code of the
software (like e.g. source code and/or libraries) comprises of several build blocks or function
blocks for providing different functionalities in the vehicle. For example, such a function block
could provide the functionality of converting raw image data of a camera of the device into an
MPEG video data stream (MPEG — moving picture expert group). Another function block
might enable or implement a printing functionality. Each function block is listed in software
configuration data, i.e. the software configuration data provide an overview or classification of
the available function blocks in the software code.

Thus, there is provided device feature data that is listing the device features and there is
software configuration data that is listing the available function blocks.

The method comprises that a processing unit performs the following steps:

¢ Determining a respective demand, that each of the device features has with regard to
each of the function blocks. This may be performed by a predefined code customiza-
tion procedure that may be performed by the processing unit, i.e. the corresponding
instructions may be provided by the code customization procedure. The demand indi-
cates that the respective function block is required to operate the respective device
feature. For example, a function block providing a specific graphics driver routine
might be needed to run a specific display of the device. In this case the display is a
device feature of the device.

e Marking or flagging, in the software configuration data, each function block for which
a respective demand by at least one device feature is determined. In other words,
each marked or flagged function block is a required function block that is required to
operate or run at least one device feature.

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722
4

e Generating a binary code of the software for operating the device. The binary code is
a machine language version (e.g. X86 instructions or RISC instructions) of the soft-
ware for execution by the device processing hardware. This “device processing
hardware” comprises the entire set of available microprocessors, i.e. the network of
electronic control units and/or the central computer which in total form the device
electronic system. The binary code is generated by a compilation procedure that
comprises that only those of the function blocks are selected that are marked in the
software configuration data as being required functions blocks. The binary code is
then compiled and/or linked from these selected function blocks. In particular, the bi-
nary code is generated from only the selected ones of the function blocks. The re-
maining function blocks are not required and are therefore excluded from the binary
code.

In other words, a system that is performing the described method will generate binary code
for the at least one microprocessor in the device electronic system by performing the code
customization procedure and the compilation procedure. The method is based on the list of
all available function blocks, i.e. the software configuration data on one side and on the other
side the device feature data listing all device features that need to be controlled or operated
by the resulting binary code of the software. The code customization procedure matches the
feature set and the software configuration such that only required function blocks are marked
or identified or flagged in the software configuration data. One way of flagging can also be
that the list entries of the non-required function blocks are deleted from the software
configuration data. Another way of flagging can be that the required or the non-required
function blocks are marked by setting a “select bit” or an “un-select bit” in the software
configuration data.

Then, the compilation procedure selects only the required function blocks, i.e. the corre-
sponding source code, for compiling and linking which will result in binary code for at least
one operating system and/or binary code for at least one dynamic library or shared object
library and/or at least one application software that is to executed by the at least one
operation system and is based on at least one dynamic library and/or shared object library. A
dynamic library is a binary code module that an application program is linked to at runtime
(e.g. at start-up), like is known from the prior art. The corresponding software for this
dynamic linking is the well-known dynamic linker.

The method provides the advantage that no software parts or function blocks of the software
code need to be deleted, as the software configuration data identifies the required function
blocks, and the compilation procedure will actively select only these required function blocks.
In other words, the software code may be updated, for example, a new version may be

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722
5

provided, and this will not require a new adaptation of the software code as the software
configuration data still hold the information which of the function blocks shall be selected
from the updated software code. For example, if the software code comprises the code of an
operating system, for example, a Linux operating system, an update of this software code of
the operating system may be provided, and no adaption of this general operating system
code is necessary as the compilation procedure knows which function blocks of the operating
system need to be selected based on the software configuration data. This allows to
efficiently handle software code that forms the basis for a binary code of a software for a
device. The original or initial software code can be stripped down or pruned to a reduced
amount or even a minimum amount that is required to operate the device features.

The binary code may then be installed in the respective device, e.g. a motor vehicle, where
at least one microprocessor of the device may execute the binary code such that the device
features, e.g. a human machine interface (HMI) and/or an electronic control unit and/or a
display, may be operated or controlled by the at least one microprocessor according to the
binary code.

The invention also comprises further developments that provide features which afford
additional technical advantages.

One development comprises that the code customization procedure comprises:

e generating a preliminary version of the binary code using all function blocks or
using a preliminary version of the software configuration data for selecting func-
tion blocks and

e executing the preliminary version of the binary code in a runtime analysis envi-
ronment and

e generating logging data of observed system calls and/or functions calls and/or
program counter states using a tracing functionality of the runtime analysis envi-
ronment and

e adapting the software configuration data by marking those functions blocks that
have been used according to the logging data and/or by unmarking those func-
tions blocks that stayed unused according to the logging data.

This provides the advantage that the code customization procedure may determine
automatically or by itself which function blocks of the software code are necessary for
generating the binary code. The code customization procedure may start with a full version
or with the whole software code, i.e., all function blocks may be used for generating the
preliminary version of the binary code. This will result in a binary code that will also comprise
the binary equivalent of the function blocks that are not necessary or not required in the

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722
6

software for the device. However, by observing the interactions or signal exchange between,
for example, applications on one side and operating systems on the other side (i.e., the
system calls) and/or the interactions between single function routines in an application and/or
an operating system (i.e., the function calls) using the tracing functionality of a runtime
analysis environment, those parts of the binary code that are not accessed throughout the
operation or execution of the software binary code, can be identified as function blocks that
are not required. Using the program counter states for identifying those regions in the
memory that are not covered or accessed by the program counter of a microprocessor even
allows to identify single program steps that are not used or that are not active in the software
code. For example, if a certain IF-condition distinguishes between two specific states
(state_1, state_2) of the device (in pseudo-code: IF state 1 is true THEN execute code for
state_1, ELSE execute code for state_2 ENDIF) and one of the states is never reached, then
the code for the state that is never occupied by the device can be identified as a non-
required function block. Thus, by observing system calls, function calls and/or program
counter states, a different granularity for observing non-required parts of the binary code can
be provided. An appropriate runtime analysis environment can be taken from the prior art, for
example, based on a compiled version of the binary code that additionally provides so-called
debugging symbols.

One development comprises that the code customization procedure comprises:
e matching memory addresses that where accessed according to the logging
data with memory addresses associated with a respective function block and
e marking those function blocks as required that have been accessed by the
program counted according to the comparison of memory addresses.

Within a runtime analysis environment, the so-called “code coverage” can be determined,
i.e., even if a dynamic library is used, during runtime the position of this dynamic library in
memory is known. Thus, by observing the content of the program counter of a microproces-
sor, it can be determined, which code is executed by the microprocessor system. The binary
code can be compared using debug symbols such that it can be identified which memory
address belongs to which function block of the software code. A memory region or a
segment of the memory that is not accessed by the program counter can then be identified
as belonging to a non-required function block and the corresponding marking in the software
configuration data can be done. Observing the program counter provides the most detailed
analysis of unused code.

The code customization procedure not only needs to analyze the running binary code.
Alternatively or additionally, the given source code, i.e. the software code providing all the
function blocks, can also be analyzed.

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722

One development comprises that the code customization procedure comprises
e performing a static code analysis is performed by generating a dependency
graph of software functions of the software code and
e identifying those functions blocks that are not contained in the dependency
graph and
e setting those function blocks in an unmarked state in the software configura-
tion data.

This makes use of the fact that function blocks comprising function routines are identified by
a function name or function header that is used for calling or accessing the respective
function routine from another part of the software code. Thus, if a certain function header or
function name is not mentioned or accessed from anywhere in the software code, this
function routine obviously is not necessary or needed in the binary code. This can be
identified by generating a dependency graph that identifies the function calls in the source
code starting from the main routine or start routine of each application and/or operating
system.

One development comprises that the code customization procedure comprises
e storing a dependency list of build dependencies during at least one preliminary
execution of the compilation procedure and
¢ marking those the function blocks in the software configuration data, that are
mentioned as part of the software build of the binary code in the dependency
list.

This can make use of the tools that are also used in the compilation procedure, i.e. a pre-
compiler, a compiler and/or a linker. These tools also provide information about the function
blocks in the software code that are actually needed starting from the main program or main
function or entry point of the software. In other words, not the unused or non-required
function blocks are identified, but a positive list of all those function blocks that are included
in the dependency list is identified and marked in the software configuration data. Using the
built dependency provides the advantage that all those function blocks are considered that
actually contribute to the binary code.

One development comprises that the code customization procedure comprises that
e receiving a manual input from a user by a user interface and
e marking those function blocks in the software configuration data that are indi-
cated as necessary according to the manual input.

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722
8

In other words, at least one user, preferably several users (preferably several users from
several different development departments) request or reserve those function blocks that
they plan to include in their application software code. Thus, even experimental inclusions of
function blocks that would normally not be considered by any automatic algorithm can still be
included by providing the corresponding manual input. For example, a data base with all the
manually marked function blocks can be stored such that any user or developer that is
participating in the development of the software for the device can mark or identify function
blocks that the user or developer is planning to include or rely upon when developing an
application. The user interface can be provided, for example, based on a network browser
and/or a database access GUI (graphical user interface).

One development comprises that the code customization procedure comprises that a static
target analysis is defined by the steps of:

e providing an association list associating possible device features of the device
with necessary function blocks that are needed to operate the respective de-
vice feature,

e identifying device features comprised in the device according to the device
feature data and identifying the respective associated necessary function
blocks in the association list,

e marking those function blocks in the software configuration data that are nec-
essary according to the identified device features.

By analyzing or looking at the actual target, for example, a specific electronic control unit
and/or a specific sensor and/or a specific actuator, for example, their technical specification
data, it can be determined which function blocks may be needed, for example, a specific
temperature sensor and/or a specific communication protocol and/or a specific power supply
unit. While specific binary code might not be accessed or executed during a test phase of the
software, for example, in a simulated environment and/or a test platform, a specific binary
code might become necessary once the software is installed in the device itself such that
software code for the specific device feature, for example, the power supply unit and/or
temperature sensor, might be become relevant or necessary. As this might not be detectable
during a test phase using the above-described runtime analysis environment, using the
association list associating the actually available hardware device features and/or software-
based functionalities that will be available or present in the device itself, with the necessary
function blocks, it can be prevented that such a function block is overlooked or left out when
generating the binary code.

One development comprises that software configuration data is adapted iteratively in that the
customization procedure is repeated at least once and for each repetition, the marked

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722
9

function blocks from the respective software configuration data resulting from the previous
iteration are provided in the customization procedure as the set of function blocks that need
to be compiled and/or linked by the compilation procedure. This iterative approach has
proven advantageous, as removing or unmarking a specific function block may have an
effect on the overall dependency graph or the overall dependencies of function blocks. For
example, if one function block is marked as non-required or is removed from the software
customization data, any other function block that has so far been exclusively used only by
this now-removed function block, will be identified as also being non-required or unnecessary
in the next iteration.

One development comprises that in the device feature data at least of the following types of
device features is listed:

¢ hardware components of the device,

e software-based functionalities of the device.

In the case of a device that is a vehicle, exemplary hardware components of a vehicle can
be: an electronic control unit, a sensor, an actuator, a display of a specific display type, a
brake control system. Exemplary software-based functionality of a vehicle can be: a
controller for an electric engine, a body control system, a driver assistance system, an
autonomous driving function. The corresponding function blocks for hardware components
may be designed for controlling and/or accessing at least one signal of the hardware
component.

One development comprises that a driver software module comprised in the software code is
removed by unmarking it in the software configuration data, if the corresponding hardware
component to which the driver software is dedicated, is non-existed in the device. It has
proven that this is a easily implemented way of reducing the size of the software code as a
software driver can be directly associated with a specific hardware component, for example,
a specific graphic chip and/or signal processing chip and/or a specific data bus. If such a
hardware component is not present in the device, the corresponding driver software is not
required in the binary code for the device.

One development comprises that in the software configuration data at least one of the
following types of function blocks is listed:
¢ a whole software functionality comprising several software functions and/or at
least one software library (e.g. printing functionality),
e a single function routine (function header and function body in source code) or
system call routine,

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722
10
e at least one single line of code within one of a function routine and a system
call routine.

These three possibilities provide different granularity regarding the selection of necessary
parts or data of the software code. By identifying whole software functionalities, for example,
a printing functionality and/or a data conversion functionality and/or a communication
protocol, selecting or marking one such software functionality as a function block provides a
way of selecting all those parts of the software code that exclusively relate to this software
functionality, and thus removing or ignoring this software functionality provides an effective
way of reducing the size of the binary code. A single function routine can be identified by its
function header and its function body in the source code. Within a whole software functionali-
ty single function routines have proven to be unnecessary with regard to operating the device
features, such that such a single function routine or (in the case of an operating system) a
system call routine may be removed without breaking or destroying the whole software
functionality that comprises this function routine or system call routine. Removing single lines
of code can be advantageous, for example, in the case that a conditional execution of such
single lines or a set of single lines, for example, as part of an if-statement or a case-
statement is not necessary in the device.

One development comprises that the software code comprises
® an operating system kernel and/or
e at least one dynamic library and/or at least one shared object file that is designed to
be dynamically linked during execution of the binary code in the device.

In other words, the method may be applied to the software code of an operating system
kernel and/or to the software code of a dynamic library/shared object library or shared object
file. Such software code has proven to be difficult to analyze with prior art methods as their
arrangement in memory and/or their usage by of numerous or several applications running
on the operating system kernel and/or the dynamic linking to these libraries are difficult to
identify.

Accordingly, one development comprises that the software code comprises of several
different, independent application programs for the device. As different application programs
may all run on the same operating system kernel and/or may use the same dynamic
libraries/shared object libraries, and/or several different developer teams may develop these
application programs, this method provides the specific advantage that the development of
these independent application programs may be coordinated such that for all these
application programs the underlying operating system kernel and/or dynamic libraries/shared

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722
11
object libraries are adapted to provide the necessary function blocks for all application
programs.

One development comprises that the binary code is transferred to the device and the device
is operated by executing the binary code. The advantage is that the binary code can be run
or executed with minimal requirement of storage space as the binary code is tailored to the
available device features of the device. No “dead” binary code for non-existent device
features has to be stored.

In the case that the device that is a vehicle, one development comprises that the software
code comprises at least one software function that performs a driving function in the vehicle,
if performed by at least one electronic control unit of the vehicle. The method can be used to
provide software in the vehicle for the actual driving function of the vehicle, for example, a
driver assistance functionality and/or a not-autonomous driving functionality.

One further solution comprises a system for generating a binary code of a software for
operating device features in a device, wherein the system comprises a processing unit for
performing a code customization procedure and a compilation procedure and a database
storage for storing a device feature data and a software configuration data, wherein the
system is configured to perform an embodiment of the described method.

The processing unit may comprise a processor circuit adapted to perform the embodiment of
the method according to the invention. For this purpose, the processor circuit may comprise at
least one microprocessor and/or at least one FPGA (field programmable gate array) and/or at
least one DSP (digital signal processor). Furthermore, the processor circuit may comprise
program code which comprises computer-readable instructions to perform the embodiment of
the method according to the invention when executed by the processor device. The program
code may be stored in a data memory of the processor device. The system, especially the
processor circuit, may be implemented as a computer or a computer network that is provided
for developing the software for the device. It may be provided, for example, in a laboratory a
network interconnecting the developers of the software for the device.

The device is preferably designed as vehicle, e.g. a motor vehicle, in particular as a
passenger vehicle or a truck, or as a bus or a motorcycle. The device can also be designed
as a building control system (e.g. for climatizing the building) or as a compute server system,
just to name examples.

The invention also comprises the combinations of the features of the different embodiments.

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722
12

In the following an exemplary implementation of the invention is described. The figures show:

Fig. 1 a schematic illustration of an embodiment of the inventive system; and

Fig. 2 a schematic illustration of an embodiment of the inventive method.

The embodiment explained in the following is a preferred embodiment of the invention.
However, in the embodiment, the described components of the embodiment each represent
individual features of the invention which are to be considered independently of each other
and which each develop the invention also independently of each other and thereby are also
to be regarded as a component of the invention in individual manner or in another than the
shown combination. Furthermore, the described embodiment can also be supplemented by
further features of the invention already described.

In the figures identical reference signs indicate elements that provide the same function.

Fig. 1 illustrates a system 10 that can be used to provide binary code 11 that may be
provided in a device that is designed as a vehicle 12 to run at least one microprocessor 13 in
the vehicle 12 such that by the at least one microprocessor 13 based on the binary code 11
at least one device feature 14 may be provided in the vehicle 12. The at least one micropro-
cessor 13 may be provided by one or preferably several different electronic control units
and/or at least one central computer of the vehicle 12. As device features 14 hardware
components H1, H2 and/or software-based functionalities F1, F2 may be provided, wherein
the examples shown for device features 14 are only an exemplary number of device features
14. That can be more or less device features 14.

The binary code 11 can be designed on the basis of system 10 such that an amount of non-
required or unused binary code is minimized. The binary code 11 constitutes a software SW
for operating or controlling the device features 14.

For generating the binary code 11, the system 10 may comprise a processing unit 15 that
may be implemented on the basis of at least one computer and/or processor circuit. For
example, the processing unit 15 can be the computer network of a software development
laboratory. For generating the binary code 11, the software code 16 of at least one operating
system (i.e. at least one operating system kernel or OS-kernel) and/or the source code or at
least one dynamic library DL and/or the source code of at least one application APP may be
provided, for example, in a database DB. An example of a dynamic library DL is the so-called
dynamic link library DLL as it is used in the Microsoft ® operating system or a shared object
library (.s0) as it is known from the Linux ® operating system.

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722
13

By the software code 16, function blocks 17 may be defined that each provide a specific
functionality that can be included in the binary code 11. Starting from the software code 16,
based on a code customization procedure 18, one of several of the function blocks 17,
especially not all of the function blocks 17, may be selected and only those selected function
blocks 17 of the software code 16 may be used in a compilation procedure 19 for compiling
and/or linking the binary code 11.

The code customization procedure 18 may generate software configuration data 20 that
indicate which of the function blocks 17 shall be part of the compilation procedure 19 for
generating the binary code 11. Possible elements or steps of the compilation procedure 19
comprise: a runtime analysis RA, a static code analysis SCA, a build dependency analysis
BD, a reception of manual inputs MI, a static target analysis STA, wherein one or several or
all of these steps or even further other analysis steps may be part of the compilation
procedure.

For generating the software configuration data 20, i.e. for indicating or marking, which device
feature 14 shall be considered or supported by the binary code 11, device feature data 21
can be provided to the code customization procedure 18. The device feature data can
indicate, which device feature 14 and/or which development platform is to be supported or
considered by the binary code 11.

The resulting software configuration data 20 provide or constitute a rule set 22 for selecting
function block 17 from the software code 16 for the compilation procedure 19 that will then
compile and/or link the selected function blocks 17 to generate the binary code 11.

Thus, in a step S10, the code customization procedure 18 may identify or determine an
amount of the device features for certain function blocks 17, and the code customization
procedure 18 may in a step S11 mark in the software configuration data 20 each function
block 17 for which a respective demand has been determined. In a step S12, the binary code
11 may be generated by the compilation procedure 19.

Fig. 2 illustrates, how the code customization procedure 18 may identify unnecessary or non-
required function block 25 in a preliminary version 26 of the binary code 11. The binary code
11 in its preliminary version 26 may provide an operating system OS providing an operating
system kernel. Also, dynamic libraries DL may be provided. Running on the operating system
and using dynamic libraries DL, at least one application APP may be executed as part of the
software for the vehicle 12. During runtime of this preliminary version 26 of the binary code
11, access to different parts of the memory footprint 27 of the binary code 11 may be

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722
14

observed, for example, by tracing function calls 28 and/or system calls 29 in the running
software. Alternatively or additionally, the content of a at least one program counter 30 of the
microprocessor 13 running the binary code 11 may be observed. From these observations, it
may be identified that an unused code 31 may exist that is not executed during runtime. This
non-executed code 31 can be associated with a function block that consequently can be
identified as an non-required function block 25. For example, during the dynamic linking, the
dynamical library DL will be loaded into memory contributing to the memory footprint 27 and
a dynamic linker can be prepared such that the memory address or memory pages used for
this dynamic library DL may be stored, for example, in a list. Thus, identifying a memory
region of non-executed code 31 can be associated with the corresponding function block 25.
Alternatively or additionally, the binary code 11 in the preliminary version 26 may be provided
with debugging symbols that can also be used for identifying which function block a non-
executed code 31 belongs to.

Thus, a method is provided that is shrinking the OS-Kernel by performing a code-footprint
optimization. An extension to libraries also possible.

A preferred embodiment of the method is a close to full automatic way of shrinking software
configuration whilst proofing the code in use has been tested. This means feeding a
knowledge database DB with lots of information from runtime, build time dependencies as
well as static code analysis and manual input from required parts or software parts that are
absolutely forbidden. The algorithm then creates a ruleset for optimizing the code footprint
with the aim to shrink it as much as possible on next compile iteration.

The aim of shrinking code is interesting for other businesses as well. Reducing code footprint
size has not been in focus on non-embedded systems (i.e. microprocessor systems using an
OS and DLs), but it is essential to minimize per-unit costs and to maximize usability.
Programming languages can also profit. Assuming nowadays microprocessor systems offer
much more compute power, in the end this can lead to slower user interfaces and long boot
times simply because it leads to more and more waste of compute power due to code
execution of unnecessary code without taking care about resource consumption.

Overall, a tool is provided that is shrinking an OS-Kernel providing code-footprint optimization
or reduction. Such a tool may implement a method for stripping down a software code (16) of
a software for operating predefined device features (14) of a device , wherein device feature
data (21) of the device lists the several device features (14) that are to be operated by the
software by executing the software on at least one microprocessor (13), wherein the software
code (16) of the software comprises of several function blocks (17) for providing a respective
functionality in the device and each function block (17) is listed in software configuration data

10

WO 2023/062221 PCT/EP2022/078722
15

(20), wherein the method comprises that a processing unit (15) of a system (10) performs the
following steps: determining a respective demand of the device features (14) with regard to
each of the function blocks (17) in a predefined code customization procedure (18), wherein
the demand indicates that the respective function block (17) is required to operate the
respective device feature (14), and marking in the software configuration data (20) each
function block (17) for which a respective demand by at least one device feature (14) is
determined, wherein each marked function block (17) is a required function block (17) and
generating a binary code (11) of the software for operating the device by a compilation
procedure (19), wherein the compilation procedure (19) comprises that only those of the
function blocks (17) that are marked in the software configuration data (20) as being required
functions blocks (17) are selected and the binary code (11) is compiled from the selected
function blocks (17).

10

15

20

10
11
12
13
14
15
16
17
18
19
20
21
22
25
26
27
28
29
30
31

WO 2023/062221
16
Reference humbers
system
binary code
vehicle
microprocessor

device feature

processing unit

software code

function block

code customization procedure
procedure

software configuration data
device feature data

rule set

required function block
preliminary version

code footprint

function call

system call

program counter

unused code

PCT/EP2022/078722

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722

17

Claims

1. Method for stripping down a software code (16) of a software for operating predefined

device features (14) of a device , wherein device feature data (21) of the device lists

the device features (14) that are to be operated by the software by executing the soft-

ware on at least one microprocessor (13), wherein a software code (16) of the software

comprises several function blocks (17) for providing a respective functionality in the

device and each function block (17) is listed in software configuration data (20), where-

in the method comprises that a processing unit (15) of a system (10) performs the fol-

lowing steps:

by a predefined code customization procedure (18): determining a respective de-
mand of the device features (14) concerning each of the function blocks (17),
wherein the demand indicates that the respective function block (17) is required to
operate the respective device feature (14), and

marking in the software configuration data (20) each function block (17) for which
a respective demand by at least one device feature (14) is determined, wherein
each marked function block (17) is a required function block (17) and

generating a binary code (11) of the software for operating the device by a compi-
lation procedure (19), wherein the compilation procedure (19) comprises that only
those of the function blocks (17) that are marked in the software configuration da-
ta (20) as being required functions blocks (17) are selected and the binary code
(11) is compiled from the selected function blocks (17).

2. Method according to claim 1, wherein the code customization procedure (18)

comprises:

generating a preliminary version (26) of the binary code (11) using all function
blocks (17) or using a preliminary version (26) of the software configuration data
(20) and

executing the preliminary version (26) of the binary code (11) in a runtime analysis
environment and

generating logging data of observed system (10) calls and/or functions calls (28)
and/or program counter (30) states using a tracing functionality of the runtime
analysis environment and

adapting the software configuration data (20) by marking those functions blocks
(17) that have been used according to the logging data and/or by unmarking those
functions blocks (17) that stayed unused according to the logging data.

10

15

20

25

30

35

WO 2023/062221 PCT/EP2022/078722

18

3. Method according to claim 2, wherein the code customization procedure (18)

comprises:

matching memory addresses that where accessed according to the logging data
with memory addresses associated with a respective function block (17) and
marking those function blocks (17) as required that have been accessed by the
program counted according to the comparison of memory addresses.

4. Method according to any of the preceding claims, wherein the code customization

procedure (18) comprises

performing a static code analysis is performed by generating a dependency graph
of software functions of the software code (16) and

identifying those functions blocks (17) that are not contained in the dependency
graph and

setting those function blocks (17) in an unmarked state in the software configura-
tion data (20).

5. Method according to any of the preceding claims, wherein the code customization

procedure (18) comprises

storing a dependency list of build dependencies during at least one preliminary
execution of the compilation procedure (19) and

marking those the function blocks (17) in the software configuration data (20), that
are mentioned as part of the software build of the binary code (11) in the depend-
ency list.

6. Method according to any of the preceding claims, wherein the code customization

procedure (18) comprises that

receiving a manual input from a user by a user interface and
marking those function blocks (17) in the software configuration data (20) that are
indicated as necessary according to the manual input.

7. Method according to any of the preceding claims, wherein the code customization

procedure (18) comprises that a static target analysis is defined by the steps of:

providing an association list associating possible device features (14) of the de-
vice with necessary function blocks (17) that are needed to operate the respective
device feature (14),

identifying device features (14) comprised in the device according to the device
feature data (21) and identifying the respective associated necessary function
blocks (17) in the association list,

10

15

20

25

30

35

10.

11.

12.

13.

14.

WO 2023/062221 PCT/EP2022/078722

19

e marking those function blocks (17) in the software configuration data (20) that are
necessary according to the identified device features (14).

Method according to any of the preceding claims, wherein software configuration data
(20) is adapted iteratively in that the customization procedure (18) is repeated at least
once and for each repetition, the marked function blocks (17) from the respective soft-
ware configuration data (20) resulting from the previous iteration are provided in the
customization procedure (18) as the set of function blocks (17) that need to be com-
piled and linked by the compilation procedure (19).

Method according to any of the preceding claims, wherein in the device feature data
(21) at least of the following types of device features (14) is listed:

e hardware components of the device,

e software-based functionalities of the device.

Method according to any of the preceding claims, wherein a driver software module
comprised in the software code (16) is removed by unmarking it in the software config-
uration data (20), if the corresponding hardware component to which the driver soft-
ware is dedicated, is non-existent in the device.

Method according to any of the preceding claims, wherein in the software configuration
data (20) at least one of the following types of function blocks (17) is listed:
e a whole software functionality comprising several software functions and/or at
least one software library,
e asingle function routine or system (10) call routine,
e at least one single line of code within one of a function routine and a system (10)
call routine.

Method according to any of the preceding claims, wherein the software code (16)
comprises
¢ an operating system (10) kernel and/or
e at least one dynamic library and/or at least one shared object file that is designed
to be dynamically linked during execution of the binary code (11) in the device.

Method according to any of the preceding claims, wherein the software code (16)
comprises of several different, independent application programs for the device.

Method according to any of the preceding claims, wherein the device is a vehicle and
the software code (16) comprises as least one software function that performs a driving

WO 2023/062221 PCT/EP2022/078722
20
function in the vehicle (12), if performed by at least one electronic control unit of the
vehicle (12).

15. Method according to any of the preceding claims, wherein the binary code (11) is
5 transferred to the device and the device is operated by executing the binary code (11).

16. System (10) for generating a binary code (11) of a software for operating device
features (14) in a device, wherein the system (10) comprises a processing unit (15) that
is adapted to perform a code customization procedure (18) and a compilation proce-

10 dure (19) and a database storage for storing device feature data (21) and software con-
figuration data (20), wherein the system (10) is configured to perform a method accord-
ing to one of the preceding claims.

PCT/EP2022/078722

WO 2023/062221

1614
YL vl
........ N
| gH|[WH]
TP — | S S
L— ! X
A oms
] __
O N
_ !
WAV
Ll ¢l
¢l
12—}

PCT/EP2022/078722

WO 2023/062221

2/2

SO

1d

9z'LL

ddV

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2022/078722

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F8/41

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category”

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

ZIEGLER ANDREAS ZIEGLER@CS FAU DE ET AL:
"Honey, I Shrunk the ELFs",
ACM TRANSACTIONS ON EMBEDDED COMPUTING
SYSTEMS, ACM, NEW YORK, NY, US,
vol. 18, no. 5s,
8 October 2019 (2019-10-08), pages 1-23,
XP058677280,
ISSN: 1539-9087, DOI: 10.1145/3358222
abstract
page 102:2, paragraph 3 - paragraph 5
page 102:4, section 3, paragraph 2 - page
102:5, paragraph 1
page 102:5, paragraph 5 - page 102:6,
paragraph 4
page 102:5; figure 3
page 102:6, section 3.2, paragraph 3 -
page 102:7, paragraph 1
page 102:17, section 5, paragraph 2 -
paragraph 3

-/

|__K| Further documents are listed in the continuation of Box C.

|:| See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international wyr
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other g

special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other

means

"T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the documentis =~
combined with one or more other such documents, such combination

being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search

12 January 2023

Date of mailing of the international search report

23/01/2023

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,

Authorized officer

Fax: (+31-70) 340-3016 Milasinovie, Goran

Form PCT/ASA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2022/078722
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A Anonymous: "Dead—code elimination - 1-16

Wikipedia",

8 October 2021 (2021-10-08), pages 1-7,
XP093013068,

Retrieved from the Internet:
URL:https://en.wikipedia.org/w/index.php?t
itle=Dead—-code_elimination&oldid=104890182
0

[retrieved on 2023-01-11]

page 1, paragraph 1

page 2, section "Dynamic dead code
elimination", paragraph 1 - page 3,
paragraph 4

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - wo-search-report
	Page 26 - wo-search-report

