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HALL ELEMENT SIGNAL CALIBRATING IN ings aid in explaining and understanding the disclosed 
ANGLE SENSOR technology . Since it is often impractical or impossible to 

illustrate and describe every possible embodiment , the pro 
BACKGROUND vided figures depict one or more illustrative embodiments . 

Accordingly , the figures are not intended to limit the scope Typically , a magnetic - field angle sensor measures a direc 
tion of a magnetic - field vector through 360 ° in an x - y plane . of the broad concepts , systems and techniques described 
In one example , a magnetic field angle sensor may be used herein . Like numbers in the figures denote like elements . 
to detect an angular position of a rotating magnet . Some FIG . 1 is a block diagram of an example of an integrated 
magnetic - field angle sensors may include one or more Hall circuit ( IC ) to calibrate signals from Hall elements ; 
elements . When signals from Hall elements are not properly FIGS . 2A and 2B are diagrams of vertical Hall elements 
calibrated , angle error of the angle sensor increases . Gen- with a conduction path used to generate magnetic field flux 
erally , the angle error is defined to be the difference between densities ; 
an actual position of a magnet and a position of the magnet FIG . 3 is a diagram of planar Hall elements with a as measured by the angle sensor . conduction path arranged in a coil used to generate magnetic 

field flux densities ; SUMMARY FIG . 4 is a graph a magnetic field versus Hall voltage ; 
In one aspect , an angle sensor includes a first Hall element FIGS . 5A to 5C are circuit diagrams used to generate 

disposed on a first axis , a second Hall element disposed on compensation signals ; 
a second axis perpendicular to the first axis and a conduction 20 FIGS . 6A to 6C are circuit diagrams to calibrate signals 
path having a first portion extending parallel to the first axis measured from Hall elements using the compensation sig 
and a second portion parallel to the second axis . The nals from FIGS . 5A to 5C ; and 
conduction path is configured to conduct a calibration cur FIG . 7 is a block diagram of an example of a circuit used rent that generates a first magnetic flux density measured at to calibrate signals from Hall elements . the first Hall element and a second magnetic flux density 
measured at the second Hall element . The angle sensor also DETAIL DESCRIPTION includes calibration circuitry configured to generate one or 
more compensation signals based on the first and second Described herein are techniques to improve angle accu magnetic flux densities and to adjust an external magnetic 
flux density measured at the second Hall element due to an racy of a magnetic - field angle sensor ( e.g. , on an integrated 
external magnetic field using the one or more compensation 30 circuit ( IC ) ) by calibrating signals , on the IC , from Hall 
signals to reduce angle error of the angle sensor . elements used in an angle sensor as opposed to a one - time 

In another aspect , a method includes determining one or calibration done at an IC manufacturer . 
more compensation signals based on a first magnetic flux Referring to FIG . 1 , an example of an IC that performs 
density measured at a first Hall element of an angle sensor calibration of signals from Hall element is an IC 100. The IC 
disposed on a first axis and a second magnetic flux density 35 100 includes an angle sensor 101 and power 110 that power 
measured at a second Hall element of the angle sensor components on the IC 100 including the angle sensor 101 . 
disposed on a second axis perpendicular to the first axis and The angle sensor 101 includes Hall elements 102 , angle 
adjusting an external magnetic flux density measured at the processing circuitry 104 and calibration circuitry 108 . 
second Hall element due to an external magnetic field using In one example , the Hall elements 101 are planar Hall 
the one or more compensation signals . 40 elements . In another example , the Hall elements 101 are 

In a further aspect , an angle sensor includes a first Hall vertical Hall elements . 
element disposed on a first axis , a second Hall element The Hall elements 102 in this embodiment include at least 
disposed on a second axis perpendicular to the first axis , a two Hall elements that are orthogonal to each other and the 
first conduction path extending parallel to the first axis , a angle sensor 101 is a 2D ( two - dimensional ) angle sensor . 
second conduction path extending parallel to the second 45 For example , at least one Hall element is along an x - axis and 
axis , and calibration circuitry configured to generate one or at least one Hall element is along a y - axis . 
more compensation signals based on the first and second In other embodiments , the Hall elements 102 may include 
magnetic flux densities and adjust an external magnetic flux at least three Hall elements that are orthogonal to each other 
density measured at the second Hall element due to an and the angle sensor 101 is a 3D ( three - dimensional ) angle 
external magnetic field using the one or more compensation 50 sensor . For example , at least one Hall element is along an 
signals to reduce angle error of the angle sensor . The first X - axis , at least one Hall element is along a y - axis and at least 
conduction path is configured to conduct a first calibration one Hall element is along a z - axis . 
current that generates a first magnetic flux density measured In one example , the Hall elements 102 provide a signal X 
at the first Hall and the second conduction path is configured 122 from at least one Hall element along the x - axis and a 
to conduct a second calibration current that generates a 55 signal Y 122 from at least one Hall element along the y - axis . 
second magnetic flux density measured at the second Hall The signals X 122 , Y 124 are sent to the angle processing 
element . circuitry 104 and to the calibration circuitry 108 . 

In a still further aspect , an angle sensor includes a first In one example , in a first mode , the calibration circuitry 
Hall element disposed on a first axis ; a second Hall element 108 provides a calibration current Icai 126 used in calibrating 
disposed on a second axis perpendicular to the first axis and 60 signals from the Hall elements 102. The calibration current 
a means for calibrating signals from the first and second Hall Icai 126 is used to measure the sensitivity of the Hall 
elements . elements 101. In particular , the calibration current Ical 126 

generates a magnetic flux density that is detected by the Hall 
DESCRIPTION OF THE DRAWINGS elements 102. The signals X 122 , Y 124 , which are provided 

65 by the Hall elements 102 , are used by the calibration 
The foregoing features may be more fully understood circuitry 108 to generate one or more compensation signals 

from the following description of the drawings . The draw- 128. In one example , the calibration current Icai 126 is an 

a 
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alternating current . In one example , a frequency of the contact 306 , a contact 308 , a contact 310 , a contact 312 and 
calibration current Icai 126 is 100 kHz . a contact 314 , and the Hall element 302b includes a contact 

In a second mode , without the calibration current Icat 316 , a contact 318 , a contact 320 , a contact 322 and a contact 
activated , the Hall elements 102 detect a magnetic field and 324 . 
provide the signals X 122 , Y 124. The angle circuitry 1045 The contacts 306 , 314 are used to supply power to the Hall 
uses the compensation signals 128 to calibrate one or more element 302a . The contacts 308 , 312 are used to measure 
of the signals X 122 , Y 124. Based on the signals X 122 , Y voltage from the Hall element 302a and the contact 210 
124 and the compensation signals 128 , the angle circuitry provides a ground to the Hall element 302a . 
104 provides an output signal 130 that includes an angle . The contacts 316 , 324 are used to supply power to the Hall 

Referring to FIGS . 2A and 2B , an example of a circuit 10 element 302b . The contacts 318 , 322 are used to measure configuration used to generate magnetic field flux densities voltage from the Hall element 302b and contact 320 pro 
is a circuit configuration 200. In one example , the circuit vides a ground to the Hall element 302b . 
configuration 200 includes at least two vertical Hall ele While FIGS . 2A , 2B and 3 show Hall elements with a 
ments ( e.g. , a Hall element 202a and a Hall element 202b ) single conduction path , in other embodiments , one or more and a conduction path 204. In one example , the conduction Hall elements may have a separate conduction path from the path 204 carries the calibration current 126 ( FIG . 1 ) and other Hall elements and thereby have their own respective generates a first magnetic field flux density B , along the first calibration current . In one example , each Hall elements has Hall element 202a and a second magnetic field flux density a separate conduction path from the other Hall elements . B2 along the second Hall element 202b . Each conduction path may have a separate or the same Each Hall element 202a , 202b includes at least five metal current source to generate the respective calibration current . contacts . For example , the Hall element 202a includes a In one example , the current sources that generate the respec contact 206 , a contact 208 , a contact 210 , a contact 212 and tive calibration currents are current mirrors . In one example , a contact 214 , and the Hall element 202b includes a contact the respective calibration currents are equal . 216 , a contact 218 , a contact 220 , a contact 222 and a contact Referring to FIG . 4 , typically a magnetic sensor detects 224 . magnetic flux densities between 100 Gauss ( G ) to 1,000 G. The contacts 206 , 214 are used to supply power to the Hall Therefore , applying 20G may vary the measured magnetic element 202a . The contacts 208 , 212 are used to measure flux density by roughly 2 % to 20 % . If the calibration current signals ( e.g. , a voltage signal ) from the Hall element 202a Ica 126 ( FIG . 1 ) is bidirectional , + or -20G may be achieved and the contact 210 provides a ground to the Hall element 30 doubling the signal variation . Using calibration currents 202a . with frequencies higher than a sampling frequency The contacts 216 , 224 are used to supply power to the Hall ( e.g. , > 100 kHz ) enables a measurement of the Hall element element 202b . The contacts 218 , 222 are used to measure sensitivity , which is equal to a slope in FIG . 4 and shows signals ( e.g. , a voltage signal ) from the Hall element 202b Hall voltage with respect to magnetic field flux density . For and the contact 220 provides a ground to the Hall element 35 example , the sensitivity of a first Hall element is : 202b . 

The conduction path 204 is separated from the Hall plates 
202a , 202b by a distance D. In one example , the distance D 
is 1 micron . sensitivityHel 

The magnetic field flux density generated by the calibra 
tion current is : 

and the sensitivity of a second Hall element is : 

20 

25 

a 

AV Halli 
A Bext 

= 

40 

Bcal = 
1 
- * * Ical . 
1 2? AV Hall2 sensitivityHe2 45 A Bext 

a and a sensitivity mismatch is : Assuming a 1 micron distance between the Hall element 
and the conduction path and a 10 mA conduction current , the 
expected magnetic flux density is 20G and the coupling 
factor is 50 

sensitivitymismatch sensitivity He ? 
sensitivityhel 

AV Hall2 
AV Halli 

- 

Bcal 
I cal 

or 2 G / mA . 

ext 

where AV Hall 1 is the change in voltage of the first Hall 
55 element , AV Hall 2 is the change in voltage of the second Hall 

Referring to FIG . 3 , another example of a circuit con- element , and AB is the change in magnetic field flux 
figuration to generate magnetic field flux densities is a density . 
circuit configuration 300. In one example , the circuit con- Variances in the measured sensitivity causing a sensitivity 
figuration 200 includes at least two planar Hall elements mismatch lead to harmonic errors . By compensating the 
( e.g. , a Hall element 302a and a Hall element 302b ) and a 60 sensitivity mismatch by a change in the Hall element biasing 
conduction path 304 in a form of a coil . In one example , the current and / or a mathematical factor in angle processing , the 
conduction path 204 carries the calibration current 126 ( FIG . angle accuracy may be improved . 
1 ) and generates a first magnetic field flux density B , along Referring to FIGS . 5A to 5C , examples of circuits to 
the first Hall element 302a and a second magnetic field flux generate compensation signals are circuits 500a , 5000 , 500c . 
density B2 along the second Hall element 302b . 65 The circuits 500a - 500c determine compensations signal 

Each Hall element 302a , 302b includes at least five metal 524a , 524b , 524c , which are in one embodiment , examples 
contacts . For example , the Hall element 302a includes a of compensation signals 128 . 
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In one example , the circuit 500a provides a compensation compensation signal 524a , 524b . That is , the ratio of the 
signal in the x - direction . The circuit 500a includes a current compensation signal 524b to the compensation signals 524c 
source 502a that provides a calibration current Ix car on a ( Bx cal , measure / B , cal , measure ) is mixed with the signal 6026 
conduction path 504a to a coil 506a . The coil 506a generates to provide an adjusted signal 612b . 
a magnetic flux density Bx cal that is detected by a Hall 5 In one example , the circuit 600c provides the adjusted 
element 510a that is aligned along an x - axis . The coupling signal 612c in the z - direction . The circuit 600c includes the 
factor F , is equal to Bx calIx cal Hall element 510c , which receives a detected magnetic field , 

The output signal of the Hall element 510a is amplified by ?. The output signal of the Hall element 510c is ampli 
an amplifier 514a and converted from an analog signal to a fied by the amplifier 514c and converted from an analog 
digital signal by an analog - to - digital converter ( ADC ) 518a . 10 signal to a digital signal 602c by the ADC 518c . The digital 
The digital signal is a calibration signal 524a and repre- signal 602c is represented as B , The digital signal 
sented as Bx cal , measure ' . 602c is provided to a mixer 604c to be mixed with the 

In one example , the circuit 500b provides a compensation compensation signals 524a , 524c . That is , the ratio of the 
signal in the y - direction . The circuit 500b includes a current compensation signal 524b to the compensation signal 524c 
source 502b that provides a calibration current Iy cat on a 15 ( Bx cal , measure / B , z cal , measure ) is mixed with the signal 602c to 
conduction path 504b to a coil 506b . The coil 506b generates provide an adjusted signal 612c . 
a magnetic flux density B , cal that is detected by a Hall Referring to FIG . 7 , an example of the IC 100 ( FIG . 1 ) to 
element 510b that is aligned along a y - axis . The coupling calibrate signals from the Hall elements is an IC 100 ' . The 
factor F , is equal to By cally cal IC 100 ' includes an angle sensor 101 ' , which is an example 

The output signal of the Hall element 510b is amplified by 20 of the angle sensor 101 ( FIG . 1 ) , and power 702 which 
an amplifier 514b and converted from an analog signal to a powers the IC 100 ' . 
digital signal by an ADC 518b . The digital signal is a The Hall elements 102 ' includes Hall elements 102 ' , 
calibration signal 524b and represented as By cal , measure which are similar to Hall elements 102 ( FIG . 1 ) ; angle 

In one example , the circuit 500c provides a compensation processing circuitry 104 ' , which is similar to angle process 
signal in the c - direction . The circuit 500c includes a current 25 ing circuitry 104 ( FIG . 1 ) , and calibration circuitry 108 ' , 
source 502c that provides a calibration current Iy cat on a which is similar to calibration circuitry 108 ( FIG . 1 ) . 
conduction path 504c to a coil 506c . The coil 506c generates The angle sensor 101 ' includes a Hall element 702a 
a magnetic flux density B , cal that is detected by a Hall aligned along the x - axis and a Hall element 702b aligned 
element 510c that is aligned along a z - axis . The coupling along the y - axis . The Hall elements 702a , 702b are biased by 
factor F , is equal to B , call , cal 30 the Hall plate biasing 706 . 

The output signal of the Hall element 510c is amplified by The calibration circuitry 108 ' includes a calibration bias 
an amplifier 514c and converted from an analog signal to a ing circuit 708 , which supplies the calibration current Ical on 
digital signal by an ADC 518c . The digital signal is a the conduction path 704 to generate magnetic field flux 
calibration signal 524c and represented as B , cal , measure densities at the coils 702a , 702b adjacent to their respective 

In one embodiment , the current sources 502a - 502c are the 35 Hall element 702a , 702b . 
same current source . In other embodiments , the current Each Hall element 702a , 702b provides a signal to a 
sources 502a - 502c are current mirrors . multiplexor 710 which is controlled by time multiplexor 

Referring to FIGS . 6A to 6C , examples of circuits to logic 714. The signals from the multiplexor are converted by 
calibrate signals measured from Hall elements using the an ADC 718 from analog to digital and sent to a multiplexor 
compensation signals are circuits 600a , 600b , 600c . The 40 712 controlled by the time multiplexor logic 714 . 
circuits 600a - 600c determine adjusted signals 612a , 612b , The calibration circuitry 108 ' also includes calibration 
612c , which are signals that have been calibrated using the logic 726. The signals from the multiplexor 712 are sent to 
compensation signals 524a - 524c . the calibration logic 726 to determine the compensation 

In one example , the circuit 600a provides the adjusted signals . The compensation signals are sent to compensation 
signal 612a in the x - direction . The circuit 600a includes the 45 factor 730 . 
Hall element 510a , which receives a detected magnetic field , In this embodiment , the signals from the Hall plate 702a 
B extx . The output signal of the Hall element 510a is ampli- are calibrated to the Hall plate 702b . Thus , the signals from 
fied by the amplifier 514a and converted from an analog the Hall plate 702a are mixed by a mixer 737 of the angle 
signal to a digital signal 602a by the ADC 518a . The digital processing circuitry 104 ' with compensation signals from 
signal 602a is represented as Bx ext , measure 50 the compensation factor 730 and sent to an angle processor 

In this embodiment , the digital signal 602a is the adjusted 742 while the signals from the Hall plate 702b are sent 
signal 612a . In this embodiment , the Hall elements 510b , directly to the angle processor 742 . 
510c that are aligned along the y - axis and the z - axis are In one example , the angle processor 742 is a CORDIC 
calibrated with the Hall element 510a along the x - axis . In ( COordinate Rotation Digital Computer ) . The angle proces 
other embodiments , the Hall elements may calibrate to the 55 sor 742 may perform various trigonometric functions that 
Hall element along the y - axis or the Z - axis . In other embodi- can be used to compute an angle of magnetic field . In one 
ments , two Hall elements may be calibrated to each other . In example , the angle processor 742 performs a function , a tan 
still further embodiments , the Hall elements may be cali- 2 ( P1 , P2 ) to determine a , the angle of the direction of the 
brated to a low drift current source . magnetic - field vector , where P1 and P2 are parameters . In 

In one example , the circuit 600b provides the adjusted 60 one example , P1 may represent signals from the Hall ele 
signal 612b in the y - direction . The circuit 600b includes the ment 702b and P2 represents signals from the Hall element 
Hall element 5106 , which receives a detected magnetic field , 702a . 
B The output signal of the Hall element 510b is ampli- The angle determined by the angle processor 742 sent 
fied by the amplifier 514b and converted from an analog to digital logic 748 and to an output stage 752. The update 
signal to a digital signal 6026 by the ADC 5186. The digital 65 timer 734 is used to control the calibration logic and the 
signal 602b is represented as By ext , measure The digital signal compensation factor 730 to update the calibration signals on 
602b is provided to a mixer 604b to be mixed with the a regular basis . 

Z 

ext , y * 



5 

10 

15 

a 

30 

US 11,169,223 B2 
7 8 

The compensation circuitry 108 ' also includes a non- 10. An angle sensor comprising : 
volatile ( NV ) memory 758. In one example , the NV memory a first Hall element disposed on a first axis ; 
758 stores parameters to control the update timer 734 , the a second Hall element disposed on a second axis perpen 
compensation factor 730 , the digital logic 748 and the output dicular to the first axis ; 
stage 752 . a third Hall element disposed on a third axis , the third axis 

In some examples , the NV memory 758 store time adjust- being perpendicular to the first axis and being perpen 
ment factors and amplitude adjustment factors ( PID regu dicular to the second axis ; 
lator logic ) for the compensation block 730 and the update a conduction path having a first portion extending parallel 
timer block 734 in order to control the speed in which the to the first axis and a second portion parallel to the 
compensation factor is being adjusted . second axis , wherein the conduction path is configured 

In some examples , the NV memory 758 may be used to to conduct a calibration current that generates a first 
control the digital logic 748 to adjust the angle output to fit magnetic flux density measured at the first Hall element 
application requirements ( e.g. , adjust zero angle point , and a second magnetic flux density measured at the 
adjust angle gain , adjust angle saturation and so forth ) . second Hall element ; and 

In some examples , the NV memory 758 may be used to calibration circuitry configured to : 
store configuration values for the output stage 752 , so that generate one or more compensation signals based on 
different interfaces may be used ( e.g. , SENT , PWM with the first and second magnetic flux densities ; and 
various tick times , frequencies and so forth ) . adjust an external magnetic flux density measured at 

Elements of different embodiments described herein may 20 the second Hall element due to an external magnetic 
be combined to form other embodiments not specifically set field using the one or more compensation signals to 
forth above . Various elements , which are described in the reduce angle error of the angle sensor , 
context of a single embodiment , may also be provided wherein the conduction path has a third portion extending 
separately or in any suitable subcombination . Other embodi- parallel to the third axis . 
ments not specifically described herein are also within the 25 11. The angle sensor of claim 10 , wherein the calibration 
scope of the following claims . current generates a third magnetic flux density measured at 

the third Hall element ; 
wherein the calibration circuitry is further configured to : What is claimed is : 

1. An angle sensor comprising : generate the one or more compensation signals based 
on the third magnetic flux density ; and a first Hall element disposed on a first axis ; adjust the magnetic flux measured at the third Hall a second Hall element disposed on a second axis perpen element from an external magnetic field using the dicular to the first axis ; one or more compensation signals . a conduction path having a first portion extending parallel 12. The angle sensor of claim 10 , wherein the conduction 

to the first axis and a second portion parallel to the 35 path is not in contact with the first , second or third Hall 
second axis , wherein the conduction path is not in elements . 
contact with the first or second Hall elements , wherein 13. The angle sensor of claim 10 , wherein the first and 
the conduction path is configured to conduct a calibra- second Hall elements are vertical Hall elements or planar 
tion current that generates a first magnetic flux density Hall elements . 
measured at the first Hall element and a second mag- 40 14. A method comprising : 
netic flux density measured at the second Hall element ; generating a first magnetic flux density and / or a second 
and magnetic flux density using a calibration current on a 

calibration circuitry configured to : conduction path ; 
generate one or more compensation signals based on determining one or more compensation signals based on 

the first and second magnetic flux densities ; and the first magnetic flux density measured at a first Hall 
adjust an external magnetic flux density measured at element of an angle sensor disposed on a first axis and 

the second Hall element due to an external magnetic the second magnetic flux density measured at a second 
field using the one or more compensation signals to Hall element of the angle sensor disposed on a second 
reduce angle error of the angle sensor . axis perpendicular to the first axis ; 

2. The angle sensor of claim 1 , wherein the first and 50 separating the conduction path from the first and / or sec 
second Hall elements are vertical Hall elements . ond Hall element by a distance ; and 

3. The angle sensor of claim 1 , wherein the calibration adjusting an external magnetic flux density measured at 
current is 10 milliamps . the second Hall element due to an external magnetic 

4. The angle sensor of claim 1 , wherein the first and field using the one or more compensation signals . 
second Hall elements are planar Hall elements . 15. The method of claim 14 , wherein separating the 

5. The angle sensor of claim 4 , wherein the conduction conduction path from the first and / or second Hall element by 
path is a coil . a distance comprises spacing the conduction path about 1 

6. The angle sensor of claim 1 , wherein the calibration micron from the first Hall element . 
current is an alternating current . 16. The method of claim 15 , wherein separating the 

7. The angle sensor of claim 6 , wherein a frequency of the 60 conduction path from the first and / or second Hall element by 
calibration current is 100 kHz . a distance comprises spacing the conduction path about 1 

8. The angle sensor of claim 1 , wherein the conduction micron from the second Hall element . 
path is spaced apart from the first Hall element by about one 17. A method comprising : 
micron . determining one or more compensation signals based on 

9. The angle sensor of claim 8 , wherein the conduction 65 a first magnetic flux density measured at a first Hall 
path is spaced apart from the second Hall element by about element of an angle sensor disposed on a first axis and 
one micron . a second magnetic flux density measured at a second 
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Hall element of the angle sensor disposed on a second 26. The angle sensor of claim 22 , wherein each of the first 
axis perpendicular to the first axis ; and and second calibration currents is an alternating current . adjusting an external magnetic flux density measured at 27. The angle sensor of claim 26 , wherein a frequency of the second Hall element due to an external magnetic each of the first and second calibration currents is 100 kHz . field using the one or more compensation signals ; and 28. An angle sensor comprising : determining one or more compensation signals based on a first Hall element disposed on a first axis ; a first magnetic flux density , a second magnetic flux a second Hall element disposed on a second axis perpen density and a magnetic flux density measured at a third dicular to the first axis ; Hall element orthogonal to a first and second Hall 
elements . a third Hall element disposed on a third axis , the third axis 

18. The method of claim 17 , further comprising adjusting being perpendicular to the first axis and being perpen 
dicular to the second axis ; an external magnetic flux density measured at the third Hall 

element due to the external magnetic field using the one or a first conduction path extending parallel to the first axis , 
wherein the first conduction path is configured to more compensation signals . 

19. The method of claim 17 , further comprising applying conduct a first calibration current that generates a first 
a calibration current to a first conduction path that generates magnetic flux density measured at the first Hall ; 
the first magnetic flux density . a second conduction path extending parallel to the second 

20. The method of claim 19 , further comprising applying axis , wherein the second conduction path is configured 
to conduct a second calibration current that generates a a calibration current to a second conduction path that 

generates the second magnetic flux density . second magnetic flux density measured at the second 
Hall element ; 21. The method of claim 20 , wherein the first conduction 

path is equal to the second conduction path . a third conduction path parallel to the third axis , 
22. An angle sensor comprising : wherein the third conduction path conducts a third cali 
a first Hall element disposed on a first axis ; bration current that generates a third magnetic flux 
a second Hall element disposed on a second axis perpen- 25 density measured at the third Hall element ; 

wherein the calibration circuitry is configured to : dicular to the first axis ; 
a first conduction path extending parallel to the first axis , generate one or more compensation signals based on 

wherein the first conduction path is configured to the first and second magnetic flux densities ; 
conduct a first calibration current that generates a first adjust an external magnetic flux density measured at 

the second Hall element due to an external magnetic magnetic flux density measured at the first Hall , 
wherein the first conduction path is not in contact with field using the one or more compensation signals to 
the first Hall element ; reduce angle error of the angle sensor ; 

a second conduction path extending parallel to the second generate the one or more compensation signals based 
axis , wherein the second conduction path is configured on the third magnetic flux density ; and 
to conduct a second calibration current that generates a adjust the magnetic flux measured at the third Hall 
second magnetic flux density measured at the second element from an external magnetic field using the 
Hall element , wherein the second conduction path is one or more compensation signals . 
not in contact with the second Hall element ; and 29. The angle sensor of claim 28 , wherein the first , 

calibration circuitry configured to : second , and third Hall elements are vertical Hall elements or 
planar Hall elements . generate one or more compensation signals based on 

the first and second magnetic flux densities ; and 30. The angle sensor of claim 28 , wherein the first , second 
and third calibration currents are equal . adjust an external magnetic flux density measured at 

the second Hall element due to an external magnetic 31. The angle sensor of claim 28 , wherein the first 
field using the one or more compensation signals to conduction path is not in contact with the first Hall element , 
reduce angle error of the angle sensor . wherein the second conduction path is not in contact with 

the second Hall element , and 23. The angle sensor of claim 22 , wherein the first 
conduction path is spaced apart from the first Hall element wherein the third conduction path is not in contact with 

the third Hall element . by about one micron ; and 
wherein the second conduction path is spaced apart from 32. The angle sensor of claim 28 , wherein each of the first , 

second and third calibration currents is an alternating cur the second Hall element by about one micron . rent . 24. The angle sensor of claim 22 , wherein the first and 
second calibration currents are equal . 33. The angle sensor of claim 32 , wherein a frequency of 

25. The angle sensor of claim 22 , wherein the first and each of the first , second and third calibration currents is 100 
kHz . second Hall elements are vertical Hall elements or planar 

Hall elements . 
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