(12) (19) (CA)
OPIC

OFFICE DE LA PROPRIETE

CIPO

(CANADIAN INTELLECTUAL

INTELLECTUELLE DU CANADA 3 PROPERTY OFFICE

(72) SUTHERLAND, Stephen B., CA
(72) WICK, Dale M., CA

(72) GIGNAC, John-Paul J., CA

72y COULOMBE, Sam D., CA

(71) TRUESPECTRA INC., CA

1) Int.C1.° GO6T 11/00

Demande-Application
(21) (A1) 2,256,970

22) 1998/12/23
43) 2000/06/23

34 METHODE POUR ACCEDER A UNE IMAGE ET POUR LA

GENERER

34 METHOD FOR ACCESSING AND RENDERING AN IMAGE

Abstract Interfaces for Hierarchical Mcdel

Interface RenderObject

Rect2D getBoundBox (Affine2D obijToHome)

LookAroundDilistances getLockAround (int width, int

height, Affine2D objToHome)

RenderJdob initRender (int width, int height,

Affine2D objToHome)

EndInterface

Interface RenderJob

boolean prefersToOverwriteInputScanline ()

LookAroundDistances getLookAround{int width, int

height,Affine2D obijToHome)

vold renderScanline (RGBAScanline inputBuffer,

RGRAScanline outputBuffer)

EndInterface

(57) The mmvention provides a method of defining and rendering an 1mage comprising a plurality of components

(bitmaps, vector-based elements, text and effects or other effects) and an a

r

pha channel. The components are grouped

into a ranked hierarchy based on their position relative to each other.

[here can be groups of groups. With this

ogrouping, each component can be defined using a common protocol and rendering and processing of the components
can be dealt with in the same manner. The 1mage can be processed on a scanline-by-scanline basis. For each scanline
analysis, information regarding neighbouring scanlines are acquired and processed, as needed.

I*I Industrie Canada Industry Canada

CA 02256970 1998-12-23

ABSTRACT OF THE DISCLOSURE

The i1nvention provides a method of defining and
rendering an lmage comprising a plurality of components
(bitmaps, vector-based elements, text and effects or other
effects) and an alpha channel. The components are grouped
into a ranked hierarchy based on their position relative to
each other. There can be groups of groups. With this
grouplng, each component can be defined using a common
protocol and rendering and processing of the components can
be dealt with 1n the same manner. The image can be
processed on a scanline-by-scanline basis. For each
scanline analysis, information regarding neighbouring

scanlines are acquired and processed, as needed.

CA 02256970 1998-12-23

WH-10,340CA

TITLE: METHOD FOR ACCESSING AND RENDERING AN TIMAGE

FIELD OF THE INVENTION

The present i1nvention relates to a method for
defining various objects which make up an image and a
method of rendering the image on a scanline by scanline

basis.

BACKGROUND OF THE INVENTION

There are a number of computer graphics programs
which store various objects and use these objects to render
the final image. Generally these programs are divided into
vector based programs or bitmap based programs. COREL
DRAW™M™ i1is primarily vector based whereas PHOTOSHOP™ is
essentlally bitmap based. These known graphics packages
allocate enough temporary storage for the entire rendered
image and then render each object, one by one, into that
temporary storage. This approach fully renders lower
objects prior to rendering upper objects. The programs
require substantial memory in rendering the final image.
Some programs allow an object to be defined as a group of
objects and this provides some flexibility. In the case of
an object being a group of objects, this group is
effectively a duplicate of the base bitmap. Groupings of
objects add flexibility in changing the design or returning

to an earller design, but substantial additional memory is

required.

The final image of graphics packages is

typically sent to the raster device for output, which

renders the i1mage on a scanline by scanline basis. The

final image is defined by a host of scanlines, each
representing one row of the final bitmap image. Raster

devices include printers, computer screens, television

screens, etc.

CA 02256970 1998-12-23

WH-10,340CA

Vector based programs such as COREL DRAW™,

produce a bitmap of the final image for the raster device.
Similarly, the graphic program PHOTOSHOP™ produces a

bitmap of the final image.

Vector based drawilings tend to use little storage
before rendering, as simple descriptions often produce
largely significant results. Vector drawings are usually
resolution i1ndependent and they are made up of a list of
objects, described by a programming language or other
symbolic representation. Bitmap 1mages, 1n contrast, are a
rectangular array of pixels whereiln each pixel an
assoclated color or grey level. This image has a clearly
defined resolution (the size of the array). Each
horizontal row of pixels of the bitmap 1s called a
scanline. Bitmaps tend to use a great deal of storage, but
they are easy to work with because they have few

propertiles.

Recently the ability to combine layers of
content has been standardized by using a so called “alpha
channel” which represents the transparency of an object or
pixel. There are levels of transparency between solid and
transparent, which could be represented as a percentage.
Although some standard file formats such as CompuServe’s
GIF are limited to 2 levels (solid and transparent), newer
formats such as Aldus’ TIFF, PNG (Portable Network
Graphics) and the Digital Imaging Group’s ".fpx" format
allow 256 or more levels of transparency, which allows for
smooth blending of layers of content. Normally
manipulation of alpha channel information is limited to

bitmap based programs.

There remalns a need for a method which allows
the compact descriptions of vector programs, with a
retargetable output resolution, which additionally allows

for full use of all of the powerful image processing

CA 02256970 1998-12-23

WH-10, 340CA

effects of an bitmap based program including the alpha
channel capabilities. Our earlier U.S. Patent application
SN 08/629,543 entitled Method Rendering an Image allows for
scanline based rendering and divides all objects into a
tool and region where the region acts as a local alpha
channel for the tool. This doesn’t allow for a more
general use of alpha channels to create holes in images
when used, for example, on web pages -- showing through the
background. Also some types of objects such as formatted
text with color highlighting cannot be represented easily
wilth a separate region (as the shape of the text), and tool
(with the coloring for the text) since particular words
need to have different colors, and these need to follow the
words when the text is reformatted. Additionally the
interface 1s inconvenient to use as it returns a variable
numper of scanlines, i1ncluding none, when the output device

works best with at most and at least one scanline for each
call.

SUMMARY OF THE INVENTION

The present invention allows the user to define an
image using different definitions for the individual
objects of the image. The objects can be defined as a
region tool and an alpha channel, as a bitmap and alpha
channel or as a group of objects where each object within
the group 1s defined as a region tool and alpha channel or
a bitmap and an alpha channel. A group of objects is
defined to act as any other object in the string of ranked
objects defining the image. Grouped objects have the same
defining characteristics as an object defined by a region
tool and an alpha channel or a object defined by a bitmap
and an alpha channel. A group object can contain within
1ts grouping, a further grouped object which can also
contain grouped objects. With this definition, each
grouped object can be defined using the common protocol and
the rendering of objects and the processing of objects can

all be dealt with in the same manner. This arrangement

CA 02256970 1998-12-23

WH-10, 340CA

allows for all of the advantages of being able to group
objects while having a common and consistent manner for
dealing with the storage and rendering of an image defined

by the different types of objects.

A method for rendering an ilmage on a scanline by
scanline basis where the image is composed of a plurality
of distinct segments, according to the present invention,
comprises defining each distinct segment of the image as a)
a region tool and alpha channel, b) a bitmap and alpha
channel, or c) a group of objects where the objects are
defined according to a) and b), where each definition

includes information of the scanline of the image affected

by the particular segment.

The method further includes defining an order of
the distinct segments from lower to higher in the unit and
successively returning scanlines of the image where each
scanline 1s returned by one examining the segments to
determine which segments and the order of the segments
which order the scanline to be returned, to examining the
determining order segments of step 1, and determining the
particular scanlines to be outputted by each ordered
segment for returning the particular scanline of the image,
and 3) using the ordered segments from lower to higher and
returning the determined scanlines of the segment used by
the next higher segment as an input until a scanline of the

image 1s returned.

According to an aspect of the invention, the lmage
includes a background segment which is defined as a region
tool and alpha channel and the background segment is

applied as a last segment prior to returning a scanline.

According to yet a further aspect of the invention,
the method includes using an initial input for the lower

most object equivalent to transparent scanlines.

CA 02256970 1998-12-23

WH-10, 340CA

According to yet a further aspect of the invention,
the step of examining and determining the order segments of
step 1 and determining the particular scanlines to be
outputted by each ordered segment for returning the

particular scanline of the image is carried out by

examining the segments from the highest segment to the
lower segment.

According to yet a further aspect of the invention,

whereln some of the segments include a lookaround object

which requires at least several scanlines from a lower
object to return a scanline.

According to yet a further aspect of the invention,

any defined group of objects can include as part thereof, a
further group of objects.

An 1image made up of a number of render objects
will have a “RenderLayer” as the base render object, which

has a list of render objects contained in it. To create a

RenderLayer Job (which implements a render job interface),
the RenderLayer first surveys the ordered list of objects
from top to bottom, to determine the dependencies of the
contained objects, and determines the amount of look around
for each object. The RenderLayer job renders a scanline on

request by creating a buffer for all active contained

objects, that is, all objects that affect the current

scanline. Each active object is partially rendered, in
order, from bottom to top.

object 1s rendered.

The minimum portion of each
That portion being the minimum number
of scanlines required to create an output scanline for the

parent object. Buffers that will be needed on subsequent

calls to the render engine are retained for efficiency in
calculations. Information buffered for objects can be

reused or deleted when they are no longer needed. This

provides for both computational and memory efficiency and

allows for scanlines to be output sooner. A render object

can comblne its output using a variety of operators that

CA 02256970 1998-12-23

WH-10, 340CA

allow for special effects such as punching a hole through a

background.

Each object 1s separately maintained in storage
and has 1ts own resolution or an unlimited resolution where
possible. The rendering effect of each object is at the
best resolution for imparting the rendering effect of the
object to each segment of the scanline which the object
atfects. For example an object may only affect a middle
segment of the scanline and the best resolution of the

object for this segment of the scanline is used.

A method for grouping dependent elements of an
lmage 1s provided where the method groups each element of
the image into either (i) a region, tool and alpha channel:
(11) a bit-map and alpha channel, or (iii) a group of
objects defined according to (i) or (ii), where each group
includes information of the scanlines of the image affected
by a particular element and creating a plurality of single
dependencies between each subordinate element and its

parent.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are shown in
the drawlings, wherein:

Figure 1 displays the abstract interfaces for
the render object and render job;

Figure 2 defines the support classes which store
information used to communicate between various parts of
the method;

Figures 3, 3a, 3b, 3¢, 3d, 3e, 3f, 3g, 3h, 3i,
3], 3k, and 31 contain pseudo code illustrating the steps
involved in rendering an image to an output device:

Figure 4 displays a rendering pipeline with a
RenderLayer which contains two render objects:

Figure 5 displays a rendering pipeline with an

effect which contains a region and a tool;

CA 02256970 1998-12-23

WH-10,340CA

Figure 6 displays a depiction of a rendered
1mage contalning the objects defined in figure 4 and 5;
Figure 7 displays the inter-relationship of the
various major classes used to define the method:
Figure 8 follows the partial rendering process
of objects contained in a RenderlLaver:
Figure 9 1s a visual representation of the
objects referred to in Figure 8;
Figure 10 is an example of how RenderLayers work
Lo create a result shown as a list within a list;
Figure 11 is a hierarchical representation of
the objects in Figure 10; and
Figure 12 shows
(a) the a rendered final composition of the objects,
with the Layerl object rendered into the scene,
from the objects described in Figure 10;
(b) the Textl object;
(c}) the Textl object with the Shadowl object
rendered over top; and
(d) the Textl object with the Shadowl object
rendered over top, and then the Wavel object

rendered on top of that.

DETAILED DESCRIPTION QOF THE PREFERRED EMBODIMENTS

An 1mage 1s defined using a common standard and
according to at least three classifications. The common
standard 1s that each classification includes a bound box
definition which defines the area which that particular
objects affects. A lookaround distance which is any
additional information that might be required for the

object to render itself as well as the alpha channel.

The first classification is a simple object
defined by a region, tool and alpha channel similar to a
vector program. The second classification is a bitmap
object as commonly defined by a draw program. The third

classification is a grouped object which is defined by a

WH—lof

PRARIL R A A A Ay 4§ S b s m e S AN 0] W

CA 02256970 1998-12-23

340CA

plurality of objects which can include further grouped
objects. The common definition or standard allows grouped
objects to be rendered in a similar manner to the series of
objects defining the image. It also simplifies the
calculations necessary for rendering a scanline as a group
of objects as a common definition which allows the
requlrements of that particular group to be known to the
other objects within a series of objects. As far as the
adjacent higher and lower object is concerned, a grouped
object 1s merely a different type of object having common
characteristilics, and as such, the higher and lower objects
continue to interact with the objects in a common set

manrer.

This standard for defining an image makes it
convenient during rendering of the object to look from the
top down through the primary objects to determine the
number of lines required of the lower objects for passing
onto an upper object. This process is essentially repeated
for any grouped object. 1In this way, the steps and
interfaces for rendering of the image are consistent and

straightforward.

Figure 1 shows the following structures used by

the i1invention.

1. Abstract RenderQObject Class
This class defines the minimum interfaces that

an object needs to be used by the method. They are
getBoundBox which returns an upright rectangle which
defines the limits of the area which the object affects,
getLookAround which defines the amount of extra information
required around any given pixel, in order for that pixel to

be rendered correctly, and initRender which returns a

RenderJob object.

CA 02256970 1998-12-23

WH-10,340CA

2. Concrete RenderlLaver Subclass

The pseudo code required to implement a render
object, which contains an ordered list of objects, is shown
in Figure 3. A sample instance is shown in Figure 6 with a

data flow diagram shown 1n Figure 4.

3. Qther Concrete Subclasses of RenderObiject

Other subclasses include Effect which contains a
Region and Tool as shown in Figure 7. A corresponding data
flow diagram is shown in Figure 5. Other subclasses
include other effects such as Rich Text with Color

Highlighting or Alpha Channel Bitmap.

4. Abstract RenderJdob Class

The class defining the interfaces for a
RenderJob 1s shown in Figure 1. They are
prefersToOverwriteInputBuffer which facilitates
negotiation of whether the output buffer is different from
the input buffer for computational efficiency. The
getLookAroundDistances is the same as in the RenderObject.
Finally renderNext takes an input buffer, and an output

buffer, and renders one scanline.

5. A Concrete Subclass of RenderJob for Each Concrete
Subclass of RenderObject, Including Renderlaver

The pseudo code required to implement a render
Job for a Renderlayer is shown in Figure 3. The
definitions used in figure 3 are simplified for
readability. A sample walk through of how this method

renders 3 scanlines is included in Figures 8 and 9.

The defining implementations shown in Figure 2

of the invention include RGBAScanline, Rectangle2D,
Affine2D, LookAroundDistances. Although the implementation
1n Figure 3 uses an RGB color space, this method applies

equally well to other color spaces such as CIE-LAR, CMYK,
XYZ, etc.

CA 02256970 1998-12-23

WH-10, 340CA

Figure 9 shows an example of the operation of
the i1nvention, wherein:

a composition of 3 render objects contained in a
RenderlLayer 1s shown. The objects are “Heartl” which
displays a red heart, “Hellol” which displays the black
text “"Hello World”, and “Blurl” which blurs or makes fuzzy
the content underneath it. Heartl and Hellol are known as
"simple render objects” because they require only the
background immediately behind the output pixel. This

information can be ascertained by using the

getLookAroundDistances method on the given object. This

call passes 1n the output resolution and a transformation
to the output space (which can involve rotation, scaling,
translation and skewing - ie. all affine transformations).
The result 1s the number of extra pixels required as input
which are above, below, to the left and to the right of any
given pixel, in order for the object to be rendered. When
the number of extra pixels is 0 in every direction, the
object 1s considered to be a simple object. If the number
ls greater than zero in any direction then the object is a
“look around” object. An example of a look around object
1s Blurl. Blurl requires an extra pixel in each direction
to render its effect. The extra area required by the blur
1s shown by the dashed line around the blur’s bound box in
Figure 9. Note that the blur requires information below the

third scanline, which means that an additional scanline

which 1sn’t output needs to be at least partially rendered.

Usling a technique known as called the Painter’s
Algorithm, a buffer large enough to buffer the entire image
1s allocated. First, the background is filled in (Figure
81 steps 1-4), then the bottom most object, Heartl, is
rendered completely (Figure 81 steps 5-7), next the object
1n front of Heartl. (Hellol) is rendered completely (Figure
81 steps 8-9) and finally, the front most object, Blurl, is
rendered completely (Figure 8i steps 10-11) using the

results of steps 6, 7, 8, 9. Once this

S AL A ARV M Sk ralir ey e

CA 02256970 1998-12-23

WH-10,340CA

process 1s complete the 3 requested scanlines can be output

(Figure 81 steps 12-14).

To start using the reordered rendering method,
the render engine 1s 1nvoked on the containing Renderlayver,
called “RenderlLayerl.” RenderLayerl returns a render job
object 1dentified here as “RenderLayerJdobl.” To get a
scanline, the renderScanline method is called on
RenderLayerJobl, passing i1n a background. RenderlLayerJobl
determines which objects affect the Scanline 1 and renders
them completely (Figure 811 steps 1 and 2). The result of
Figure 8ii step 2 is needed by the blur, which is buffered

for later use. The resulting Scanline 1 is then returned

in Figure 8il1 step 3. The next time renderScanline is
called, the blur becomes active. Since the blur needs a
pixel above and a pixel below it in order to render
correctly, the RenderLayerJobl must buffer up more
information. The result of Figure 8ii step 4-6 is buffered
as well as the result of step 7-8. These three results
(from step 2, 6 and 8) are then passed into the BlurJdobl
which results in step 9. The buffer from step 2 can now be
discarded or marked for reuse. The resulting scanline 2 is
returned 1n step 10. To rendered scanline 3, the blur
requires more than the already buffered result of step 6
and step 8, and so RenderLayerJobl renders step 11 and step
12. These three buffers (from step 6, 8 and 12) are then
passed into the BlurJobl which results in step 13. Finally
the scanline 3 1s returned in step 14, and all of the

temporary buffers can be discarded.

In this example, 3 scanline buffers were
required versus 4 scanlines buffers with the Painter’s
Algorithm. With a larger render, the resource savings are

often significant. Also the result of the top of the image

became availlable much earlier.

Figures 4, 5 and 6 show an example of the

processing of images by the modules in the invention.

- 11 -

CA 02256970 1998-12-23

WH-10, 340CA

Figure 6 shows an image of a heart ("Heartl") in its bound

box beneath the text Hello World ("Hellol") , in its bound
box. Both the Heartl and the Hellol have colour and alpha-
channel attributes "(c,a)". The composite image is

referred to as "RenderlLayerl".

Figure 4 i1llustrates the processing of the
entire image. First, the Background color and alpha
channel information (c,a) is fed to the RenderLaverl
module, which initiates RenderJob. Starting from the
bottom element, Heartl, a transparent background is fed to

the subordinate call of RenderJob for Heartl. After the

subordinate call of RenderJob for Heartl has completed its
processing, 1t returns colour and alpha-channel attributes
to the calling RenderJob for RenderLaverl. These returned
attributes are forwarded to the next subordinate call of
RenderJob, 1.e. the call relating to Hellol. Once its
processing 1s completed, its results are returned to
RenderJob for RenderLayerl. At that point, RenderJob takes
the final color and attribute information from RenderJob
for Hellol and combines it with the background colour 1nput

to produce the final output color and alpha information.

Figure 5 illustrates subroutine calls within
Renderdob for Heartl. Here the background color and alpha-
channel information is fed to the RenderJob for the Shape
of Heartl. The RenderJob for Shape returns alpha
information to RenderJob for Heartl. This information
along with the initial color information is fed to the
ToolJob module for the Solid Color of Heartl. This module
returns colour and alpha-channel attributes to the calling
RenderJob for Heartl. These returned attributes are

forwarded to the next subordinate call of RenderJob, i.e.
the call relating to Hellol.

In another example, Figure 12 shows a composite
lmage comprising a heart, stylized text "Exploring the

Wilderness" and a bitmap image of an outdoor scene

- 12 -

o ol o by WAl

CA 02256970 1998-12-23

WH-10,340CA

underneath the heart and the stylized text. The stylized
text 1s shown with its normal attributes at 12b, with a

shadow at 12c¢ and with a wave at 124d.

As shown 1n figure 10, the invention processes
each element of the image according to a hierarchical
stack, having the heart ("Heartl") at the top of the stack,
the stylized text ("Laverl") in the next layer down and
finally with the bitmap ("Bitmapl") at the bottom. Layerl
1s exploded to show its constituent effects, comprising a
wave effect ("Wavel"), a shadow effect ("Shadowl") and the
text ("Textl").

Figure 11 shows the hierarchy structure of the
lmage, where the RootLayer is the fundamental node,
representing the image. Elements of the image, i.e.
Heartl, Layerl and Bitmapl are shown as immediate
dependents of the RootLayer. Further sub-dependencies of
Layerl, 1.e. Wavel, Shadowl and Textl stem from Laverl.
Other information, such as the bound box region may also be
assocliated with each element. It can be appreciated that
this structure of the invention isolates the dependencies
between parent and child elements to one level of
abstraction. As such, the invention provides abstraction
between and amongst elements in an image. This abstraction
provides implementation efficiencies in code re-use and
malntenance. It can be appreciated that for more complex
1mages having many more elements, bitmaps and effects, the
flexibility and efficiencies of using the same code

components to processes the components of the image become

more apparent.

In the preferred embodiment, exactly one
scanline is rendered during each call to the render method
on any render object. This even holds for render groups,
since Render Layer constitutes a valid implementation of
the Render Object class. In the example i1mplementation,

render group always passes a completely transparent

CA 02256970 1998-12-23

WH-10,340CA

background as input to its bottommost object. Then the
scanlines produced by applying the bottom most object to
the transparent background scanlines are passed as input to
the next higher object. Similarly, the output of the
second object 1s passed as input to the third object from
the bottom. This passing repeats until the cumulative
effect of all of the render group's objects is produced.
This final results are then composited onto the background
scanlines (passed by the caller) using the render group's

compositing operator.

Because some render objects have forward look-
around, 1t 1s often necessary for lower objects to render a
tew scanlines ahead of objects above them. For example,
for an object with one scanline of forward look-around to
render a single scanline within its active range, the
object immediately below it must already have rendered its
result both on that scanline and on the following scanline.
Since rendering must be performed from the bottommost
object to the topmost object, therefore, in order to
guarantee that a single scanline will be completely
rendered by all objects by the end of a call to the
rendering method, it is useful to begin the process by
determining exactly how many scanlines must be rendered by

each object in the render group.

The computation is most easily done in terms of
the total number of scanlines rendered by each object so
far during the entire rendering process, as opposed to the
numper of scanlines rendered by each object Just during
this pass. The total number of scanlines required of an
object is referred to, relative to that object, as downTo
whereas the total number of scanlines required _by_ an
object is referred to, relative to that object, as
downToNeeded. Note that the downToNeeded of a given object
1s always equal to the downTo of the object immediately
below 1t, if applicable. 1In the case of the bottommost
object, its downToNeeded is the number of empty input

LAl SN T Vet AT e Al s, >~

CA 02256970 1998-12-23

WH-10,340CA

scanlines that must be passed to it in order for it to
satisfy the object above it, if any, or the caller

otherwise.

Although various preferred embodiments of the
present i1nvention have been described herein in detail, it
wlll be appreciated by those skilled in the art, that
variations may be made thereto without departing from the
spirit of the invention or the scope of the appended

claims.

CA 02256970 1998-12-23

WH-10,340CA

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A method of rendering an image on a scanline by
scanline basls where the image 1s composed of a plurality
of distinct segment, said method comprising

defining each distinct segments of the i1mage as

a) a region, tool and alpha channel,

b) a bit map and alpha channel, or

c) a group of objects where the objects are defined
according to a) and b) and where each definition includes
information of the scanlines of the i1mage affected by the
particular segment;

defining an order of the distinct segments from
lower to higher i1n the i1mage, successively returning
scanlines of the image where each scanline 1s returned by

1) examining the segments to determine which
segments and the order of the segments which affect the
scanline to be returned,

11) examining the determined ordered segments of
step I) and determining the particular scanlines to be
outputted by each ordered segment for returning the
particular scanline of the image, and

111) using the ordered segments from lower to
higher and returning the determined scanlines of the

segment used by the next higher segment as an input until a

scanline of the image i1s returned.

2. A method as claimed in claim 1 wherein said
image includes a background segment defined as a region,
tool and alpha channel and said background segment 1is

applied as a last segment prior to returning a scanline.

3. A method as claimed 1n claim 2 wherein said
method includes using an initial input for the lower most

object equivalent to transparent scanlines.

a3 e e e oA A A e M AT A S AT A A s a0 oo S s A et A DR AP A o et b, eyl T eyt VAP TS v U S M volsere A 4 s PSPV AL AT S S Aoy o

CA 02256970 1998-12-23

4. A method as claimed in claim 3 wherein a group
of objects is a simple object which requires only one

scanline of input for returning a scanline of output.

5. A method as claimed in claim 1 wherein said step
of examining the determined ordered segments of step I) and
determining the particular scanlines to be outputted by
each ordered segment for returning the particular scanline
of the image 1s carried out by examining the segments from

the highest segment to the lowest segment.

6. A method as claimed in claim 1 whereiln at least
some of said segments include a look around object which
requlres at least several scanlines from a lower object to

return a scanline.

7. A method as claimed 1n claim 6 wherein said

group of objects contains at least 3 objects.

8. A method as claimed 1n claim 1 wherein a group
of objects i1ncludes as part thereof, a further group of

objects.

9. A method of grouping dependent elements of an
image for processing on a scanline by scanline basis, said
method comprising: grouping each element of the image as

a) a region, tool and alpha channel;

b) a bit map and alpha channel; or

c) a group of objects where the objects are defined
according to a) and b) and where each group includes
information of the scanlines of the image affected by the
particular element; creating single depending associations
between each subordinate element and its parent: and

defining an order of the distinct elements from

lower to higher in the image.

i M4 AT A0 AL e 45Vl Ao A -4 S 0 U 0. VAP .44:PPVI MMt S DM AL £ e K i o SRR it A H AR TS TR » PPl %t o1 et e At b N

CA 02256970 1998-12-23

WH-10, 340CA

Figure 1.

Abstract Interfaces for Hierarchical Model

Interface RenderObject

RectZ2D getBoundBox (Affine2D objToHome)

LookAroundDistances getLookAround(int width, int
height, Affine2D objToHome)

RenderJob i1nitRender (int width, int height,
Affine2D objToHome)

EndInterface

Interface RenderJob

boolean prefersToOverwriteInputScanline ()

LookAroundDistances getLookAround(int width, int
height,Affine2D objToHome)

vold renderScanline (RGBAScanline inputBuffer,
RGBAScanline outputBuffer)

EndInterface

1

CA 02256970 1998-12-23

WH-10, 340CA

Figure 2.

Support Classes.

Class RGBRAScanline

Constructor(int length, LookAroundDistances

look)
Byte[] getRGBData(int scanline)

Byte[] getAlpha(int scanline, int offset)
Int getRGBOffset (int scanline)
Int getAlphaOffset (int scanline)

EndClass

Class LookAroundDistances
Int left,right, up, down
EndClass

Class Rectangle2D
Double x,y,width, height

EndClass

Class Affine2D

[all al2 al3]
[a2l a22 a23]
[0 0 1]

EndClass

|
{

CA 02256970 1998-12-23

WH-10,340CA

Figure 3a.
RenderLaver and Renderl.averJob Psudocode

This algorithm is presented here in simplified form in order to
clearly convey 1ts fundamental concepts. All trivial modifications
or extensions to the algorithm as presented here should be considered
as such, even 1f the modiflications are only conceptually trivial,
though complex in implementation.

The % operator 1s defined as follows: a ¥ b := b*{a/b-floor(a/b))

——:———_—————_—_ﬂ**“ﬂwtﬁ—_—————————-—*-n.“"—_————————u"“—____—*M_—

// Each instance of this class represents an active render process
// for a render object. Rendering begins by calling

// RenderObject.initRender (), which returns a render 7job.

abstract class RenderJob

{

// Renders a single scanline of an object onto the given

// scanline, storing the result in the given output buffer.
Lt

// 1s acceptable for out to actually be the central scanline
ot

// 1n. The caller i1s responsible for making sure that in

// contains a sufficient amount of look-around information.

vold renderScanline(LookAroundScanline in, PaddedScanline

out) ;

}

// This class represents a 2D object which has some appearance or
// effect when rendered onto a background.
abstract class RenderObject

{

// Returns the maximum required look-around for rendering the

glven

// rectangle.

LookAround getLookAround(Rectangle r);

// This method should return true if this object's render
jobs

// would prefer to write to the same buffer from which they
read.

// This allows for a simple but effective optimization.

boolean prefersToOverwritelInputScanline() ;

// Returns a 'coverage' object loosely describing the maximum

// extent of this object's wvisible effect, regardless of the

// appearance of the background. See also: Coverage.

Coverage getDomain() ;

// Constructs a new render job for this object which will
render

// all of the pixels in the given rectangle.
RenderJob 1nitRender(Rectangle r);

!

CA 02256970 1998-12-23

WH-10,340CA

Figure 3b

abstract class CompositingOperator

{

// Composits the two given colours, and returns the resulting
// colour. Note that the term "colour' is used loosely here,

// and includes an alpha component.
RGBA composit(RGBA background, RGBA foreground) ;

}

abstract class Coverage

{

// Returns a rectangle that completely contains the area

// represented by this object.
Rectangle getBoundbox();

}

// This class represents a horizontal line of RGBA values, as a sub-
// array of an array of RGBA values. This is a valuable alternative
to
// Just a plain array, since it allows for look-around pixels and
// sub-scanlines.
class PaddedScanline
{
private int offset;
private int width;
private RGBA[] buffer;

// Constructs a padded scanline with a specified amount of
// padding to the left and right.
PaddedScanline(int width, int lookLeft, int lookRight)
{

offset = lookLeft;

this.width = width;

buffer = new RGBA[width + lookLeft + lookRight];
}

// Construct a sub-scanline of the given scanline.
private PaddedScanline(PaddedScanline s, int offset,
int width)
{
this.offset = s.offset + offset:
this.width = width;
buffer = s.buffer;
}

// Returns a sub-scanline of this scanline.
PaddedScanline subScanline(int offset, int width)

{

return new PaddedScanline(this, offset, width):

}

CA 02256970 1998-12-23

WH-10,340CA

Figure 3c

// Gets the colour and alpha of the pixel at a specified
offset

// from the left edge of this scanline, not counting any

// additional padding.

RGBA getPixel(1nt x)

{

return buffer[x + offset];

}

// Sets the colour and alpha of the pixel at a specified
offset

// from the left edge of this scanline, not counting any

// additional padding.

vold setPixel{ int x, RGBA colour)

{

buffer|[x + offset] = colour;

}

// Copies the contents of this scanline, plus additional
// look-around information to the left and right, into the

// glven scanline.
voilid blitTo(PaddedScanline dest, int lookLeft, int

lookRight)
{

// 1f the source and dest scanlines are the same
// scanline, then we can just return without doing
// anything.

1f(this == dest) return:;

for x = -lookLeft to (width+lookRight-1)...
dest.buffer[x + dest.offset] = buffer[x +
offset];

}

// Composits the contents of this scanline, plus additional
// look-around information to the left and right, into the
// glven scanline. The given compositing operator is used to
// perform the compositing.

vold mixTo(PaddedScanline dest, CompositingOperator

operator,
int lookLeft, int lookRight)

{
for x = -lookLeft to (width+lookRight-1)...

{
dest.buffer[x + dest.offset] =
operator.composit (
dest.buffer|[x + dest.offset],
buffer[x + offset]):

CA 02256970 1998-12-23

WH-10,340CA

Figure 3d

// Represents a scanline with additional look-around in all four

// directions.
class LookAroundScanline
{
private int offset;
private PaddedScanline[] buffer;

// Constructs a look-around scanline with the specified

amount
// of vertical look-around. This constructor does not

allocate
// the scanlines themselves. Therefore, the object will not

be
// complete until all of the scanlines have been set using

the
// setScanline() method.
LookAroundScanline(int lookUp, int lookDown)

{

new PaddedScanline|[1 + lookUp + lookDown] :
lookUp;

buffer
offset

}

// Returns a specified padded scanline. A y value of 0

returns
// the central scanline. Negative values return higher

// scanlines. Positive values return lower scanlines.
PaddedScanline getScanline(int v)

{

return buffer|[offset + v];

}

// Sets the scanline at the given y position. O 1is the

central
// scanline. Negative values may be used to set higher

// scanlines.
void setScanline(int y, PaddedScanline s)

{
buffer{ offset + yv] = s;

}

// Returns the colour and alpha values of the pixel at the
// given coordinates in this scanline.

RGBA getPixel(int x, int v)

{

return getScanline(y).getPixel(x);

}

// Sets the colour and alpha values of the pixel at the given
// coordinates in this scanline.
void setPixel(int x, int v, RGBA colour)

{

getScanline(y).setPixel(s, colour):;

}

CA 02256970 1998-12-23

WH-10,340CA

Figure 3e

// This 1s a specilal render object that contains a list of render

// objects. The effect of rendering this object onto a given

// background is the same as rendering each of its contalned objects
// one by one onto a blank background, then compositing the resulting
// 1lmage onto the given background.

class RenderlLayer extends RenderObject

{

Vector objects;
CompositingOperator op;

LookAround getLookAround(Rectangle r)

{
return {0,0,0,0}:;

}

boolean prefersToOverwriteInputScanline ()

{

return true;

}

// Returns the union of the domains of the contained objects.
Coverage getDomain()

{

Coverage r = empty;

for each contailined object...
r = Union(r, object.getDomain()) ;

return r;

}

// Initializes the render job.
RenderJob initRender (Rectangle r)

{

return new RenderLayerJob(this, r)

}

|
CA 02256970 1998-12-23

WH-10, 340CA

Figure 3f

// For use by RenderlLavyerJob, this class 1s essentilially a wrapper
// around RenderJob which avoilds initialization until i1t 1s
absolutely

// necesary, then automatilically goes away when i1t is done. It also
// collaborates with the RenderLayerJob 1n order to share buffers
// effectively with other job nodes.

class JobNode

{

RenderObject object;

Rectangle rect;

LookAround look;

int nextOut;

RenderJob job;

PaddedScanline([] backBufs;

private LookAroundScanline rgbaScanline;
int downTo;

JobNode (RenderObject object, Rectangle r)
{
this.object = object;
rect = object.getDomain() .getBoundbox() ;
look = object.getLookAround({ r);
nextOut = rect.top - look.up;

}

// Computes how many background scanlines must be passed

before
// a total of downTo scanlines.

int downToNeeded ()
{

1if(downTo < rect.top)

{

return downTo;

}

1f(downTo < rect.bottom)

{

return downTo + look.down:

}

1f(downTo < rect.bottom + look.down)

{

return rect.bottom + look.down:

}

return downTo:;

I

CA 02256970 1998-12-23

WH-10, 340CA

Figure 3g

// Renders a single scanline of this object. For efficiency,
// rendering 1s restricted both horizontally and vertically
// to

// pixels contained in this object's affected area.

// Vertically, this restriction 1s accomplished by deferring
// 1nitialization of the render job until the object's first
// scanline 1s reached, then by throwing away the render job
// when its last scanline i1s reached. Horizontally, the

// restriction 1s accomplished by passing sub-scanlines of
// the

// 1nput buffers to the render job.

boolean renderScanline()

{

// I1f we haven't vet reached scanline rect.top-

// look.up
// then there 1s nothing to do yet.
1f(nextOut < rect.top - look.up) return false;

// Once we reach the scanline a few scanlines above
// this object's bound box, we need to begin
// buffering
// background scanlines.
// This happens look.up scanlines above the object.
1f(nextOut == rect.top - look.up)
{
// Create the back buffers for look-around
// objects
// Note that non-look-around objects that
// don't

// overwrite their input buffer also need a
// back buffer.

if(look.top > 0 ||
| job.prefersToOverwriteInputScanline ())

{

backBufs = new PaddedScanline]
look.up + 1];

for 1 = 0 to look.up...
backBufs[i] = new
PaddedScanline (
rect.width, look.left,
look.right) ;

WH-10,340CA

Figure 3h

CA 02256970 1998-12-23

// If we've reached the object's first scanline,
// construct 1ts render job.
1f(nextOut == rect.top)

{

job = object.initRender(rect);

// We also need to construct a look-around
// scanline as
// 1nput to the renderScanline() method.
rgbaScanline = new LookAroundScanline {
rect.width,
lock.up, look.down);

}

// The global buffers are where the final results are
// built up. The following line decides which global
// buffer this object's current scanline will be

// rendered into. At this point, this same global

// buffer is guaranteed to contain the appropriate

// final results of all underlying objects.

// Compute which global buffer represents the current

// scanline.

PaddedScanline globalBuf = globalBufs[nextOut %
numGlobalBufs] .subScanline(rect.left);

// If we have not yet reached the object, all we need
// to do 1s buffer the current scanline for next

// pass.

1f{ nextOut < rect.top)

{

globalBuf.blitTo(backBufs[nextOut %
(look.up + 1)1,
look.left, look.right);

nextoOut ++;

return false;

bt s Sl 1 444 w0

WH-10,340CA

Figure 31

4

CA 02256970 1998-12-23

// Set the look-down information to the contents of
// the
// appropriate global buffers. Note that for look-
// down
// information, we are guaranteed that the contents
// of
// the global buffers has not yet been overidden. /
// This
// 1s not true for look-up information. This 1s why
// we
// need to keep back-buffers, but not front-buffers.
for 1 = 0 to look.down...
{
rgbaScanline.setScanline(1,
globalBufs|[(nextOut + 1) %
numGlobalBufs].
subScanline(rect.left));

}

// Compute the back buffer corresponding to the

// current

// scanline.

PaddedScanline backBuf = backBufs|[nextOut %
(look.up + 1)1];

// If this job prefers not to overwrite 1ts input
// scanline, then let's give 1t the current back
// buffer

// as input. (The current back buffer will shortly
// become a copy of the current global buffer.)
if(!'job.prefersToOverwritelInputScanline)

{
rgbaScanline.setScanline(0, backBuf)};

}

if(look.up > 0 ||
lJjob.prefersToOverwriteInputScanline())

{

// Make a local copy of the input scanline
// that

// we're about to overwrite

globalBuf.blitTo(backBuf, look.left,
// look.right);

CA 02256970 1998-12-23

WH-10, 340CA

Figure 3)
// Set all of the look-up scanlines to
// previously stored back buffers.
int backBufNum = nextOut;
for 1 = -look.up to -1...
{
backBufNum ++;
rgbaScanline.setScanline(1,
backBufs|[backBufNum %
(look.up + 1)1);

}

// Render the scanline
job.renderScanline{(rgbaScanline, globalBuf) ;

nextOut ++;

// Return true 1f and only 1f we just rendered the
// object's final scanline.
return (nextOut == rect.top + rect.height);

}

PaddedScanline[] globalBufs;
int numGlobalBufs;

// This i1s the implementation of RenderJob for render groups.
class RenderlaverJob extends Renderdob

{
Nodel.ist list;

Rectangle rect;

LookAround look;
PaddedScanline tmpScanlinel;
PaddedScanline tmpScanline?Z;

[SR VI TIVOTIO YOS SRR SRRV e R U P g b o M a0 oy bk bl AL A7 ST APY O e rrr

!

CA 02256970 1998-12-23

WH-10,340CA

Figure 3k

RenderLaverJob{ RenderlLayer 1, Rectangle r)
{

rect = r;
int maxLookDown = 0;

// Construct a job node for each object being

// rendered.

Rectangle clipRect = r;

for each object in l.objects from last to first...

{
JobNode node = new JobNode(object, r);

// Compute the object boundbox, expanded by
// the
// look-around distances.
Rectangle eRect;
eRect.left = node.rect.left - node.look.left;
eRect.top = node.rect.top - node.look.up;
eRect.right = node.rect.right +
node.look.right;
eRect .bottom = node.rect.bottom +
node. look.down;

clipRect = Union{ clipRect, eRect);
maxLookDown += node. look.down;

list.add(node) ;
}

// Compute the required number of global buffers.

// This

// calculation could be improved significantly. This

// number must be at least 1 + max(look0,
maxLookDown)

// where look(0 1s the total vertical look-around at

// scanline 0, and maxLookDown 1s the maximum

// downwards look-around for any scanline of the

// 1lmage.

// It 1s easy to show that the number computed here

// 18
// sufficient.

numGlobalBufs = 1 + (rect.top - clipRect.top) +
maxLookDown;

// Allocate the global buffers.

globalBufs = new PaddedScanline[numGlobalBufs];
for 1 = 0 to numGlobalBufs-1...

globalBufs[1] = new PaddedScanline
rect.width,
rect.left - clipRect.left,
clipRect.right - rect.right);

nextOQutLine = 0;
nextInline = clipRect.top;

{

CA 02256970 1998-12-23

WH-10,340CA

Figure 31
void renderScanline(LookAroundScanline in, PaddedScanline
out)
{
int downto = nextOutlLine;
// Compute how many scanlines are needed by each
// object
for each node in list...
{
node.downTo = downTo;
downTo = node.downToNeeded () ;
}
// Empty out the background
while{ nextInlLine <= downTo)
{
globalBufs[nextInLine % numGlobalBufs].f1ll({
RGBA .CLEAR) ;
nextInlLine ++;
}
// Render necessary scanlines
for each node i1n list backwards...
{
while(node.nextOutLine <= node.downTo)
{
boolean done = node.renderScanline()
1f(done)
{
list.remove{(node) ;
break:;
}
}
}
// Composit the result with the background
information.

in.getScanline(0) .blitTo(out, 0, 0);
globalBufs{ nextOutLine % numGlobalBufs].
mixTo(out, operator, 0, 0);

nextOutlLiline ++;

i

CA 02256970 1998-12-23

Background color input {c,a)

bl Naa e an oot

Heart1 (¢a) transparent E
RenderJob |7 background E
. RenderLayer]l
. RenderJob
Hellol :
; |
RenderJob +—m—>t—-—— o
T I
|
Output color and alpha |
Figure 4 o - |
- - - - l Backgr();md color input ('c,a)m
l | T (c,a) | - —— |
Shape | e . |
o .Re oglonJob Heart] | |
* |
RenderJob

Solid Color
ToolJob

Output color and alpha

Yy

Figure 5 above Figure 6 below

orld ;

fHel

l

CA 02256970 1998-12-23

e e e S — — o s p——

Other render
objects

RenderObject

RenderLayer ~ Eftect

Key: it -~--—---——-—-E R S
. - Tool
Parent ! : : ,
| Child T R e CERRnEa e S T CEEE
Contains S S Emboss
MLy I E ' Tool
- Fill Tool | gremmmmme
Connected , o .
T , .+ LookAround
Abstract E ------- E ------------------ E TOO] E
Class S : :

Concrete
| Class

Figure 7 above

CA

02256970 1998-12-23

1) Painters

Comparison of traditional painter’s algorithm and reordered streamed rendering:

PP P S y A —

Scanline | Scanline 2 Scanline 3 (Scanline 4)
QOutput scanline 12 13 14 Inactive
Blurl Inactive 10 11 [nactive
| | Hellol 8 9 _Inactive [nactive
| Heartl Inactive 5 6 7
Background I | 2 3 4
i1) Reordered to minimize buffering ‘
_ Scanline | Scanline 2 Scanline 3 (Scanline 4)
Output scanline 3 10 14 Inactive
| Blurl Inactive 9 13 Inactive
Hellol | 2 5 Inactive Inactive
| Heartl . [nactive | S 8 12
Background | l 4 7 11

Figure 8 above and Figure 9 below

Scanline 1

d--—--

Scanline 2

l Scanline 3

TP W 6% wrloe W WP WY W T WP T WP " o me Wy WY B wr W we -_—" es o o o e o o ax = = an =i e

CA 02256970 1998-12-23

Top of stack

RootLayer

' Layerl

Heartl

Wavel | Heart Layerl Bitmap

—-

Layerl Shadow1

i ave [Shadow Textl

Bitmapl

| Textl] l |
|

Rnttom of stack

Figure 10 Figure 11

.'I:‘l\
O
' -y >N vy
N e
?3,-”\: -

3
‘~l;¢9‘!¢

. A
$ @ A o -

T TR oS

WARS. s [N
OO0 -“(‘ -

c o NEKAK ;
“ ol ~ had

A
e Y LU .
v wwn S A . >
o ,":M t“‘-,-.‘;,-{‘f .
- L R
w (- A
. x 4 2K S P“ Ca
r .!‘. .. -
L w6 :
I.")

R Eorciae

e G N Ry
e e ..'\::3;3* “octn Ao .

A

Mt e "?3&2@';3:3% SCONE

r S

Figure 12

T ey W S w S S L L -

Ao SIS VP PY P Pl s e o Yo e = by bR § e e
e o e v i senremnn I ——— — vy ST SO A I skt At A+ e WW“W

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings

