(12) STANDARD PATENT (19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2014225712 C1

(54)	Title Pharmaceutical composition comprising albumin-binding arginine deiminase for cancer targeting treatment
(51)	International Patent Classification(s) <i>A61K 38/50</i> (2006.01)
(21)	Application No: 2014225712 (22) Date of Filing: 2014.03.06
(87)	WIPO No: WO14/138319
(30)	Priority Data
(31)	Number(32)Date(33)Country14/197,2362014.03.05US61/773,2142013.03.06US
(43) (44) (44)	Publication Date:2014.09.12Accepted Journal Date:2017.04.06Amended Journal Date:2017.09.28
(71)	Applicant(s) Vision Global Holdings Ltd.
(72)	Inventor(s) Wong, Bing Lou;Wai, Norman Fung Man;Kwok, Sui Yi;Leung, Yun Chung
(74)	Agent / Attorney PIPERS, Unit 9B 9 Beach Road, Port Melbourne, VIC, 3207, AU
(56)	Related Art US 2010/0303893 A1 US 2009/0305982 A1 WO 2000/23580 A1 US 7569384 B2 US 5876969 A CN 1634995 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 12 September 2014 (12.09.2014)

- (51) International Patent Classification: A61K 38/50 (2006.01)
- (21) International Application Number:

PCT/US2014/020943

- (22) International Filing Date: 6 March 2014 (06.03.2014)
 (25) Filing Language: English
 (26) Publication Language: English
 (30) Priority Data: 61/773,214 6 March 2013 (06.03.2013) US 14/197,236 5 March 2014 (05.03.2014) US
- (71) Applicant: VISION GLOBAL HOLDINGS LTD. [CN/CN]; Flat 2301, 23/F Fu Fai Commercial Centre, 27 Hillier Street, Sheung Wan, Hong Kong (CN).
- (72) Inventors: WONG, Bing Lou; 3592 S. Mall Street, Irvine, CA 92606 (US). WAI, Norman Fung Man; 3906 West 19th Ave, Vancouver, B.C. V6S 1E1 (CA). KWOK, Sui Yi; Flat 2907, 29/F, Pik Wai House, Shek Pai Wan Estate, Aberdeen, Hong Kong (CN). LEUNG, Yun Chung; Flat A, 9/F, Block 2, The Great Hill, 8 Tung Lo Wan Hill Road, Shatin, N.T., Hong Kong (CN).
- (74) Agent: YIP, Sam T.; Ella Cheong (Hong Kong) Limited, 5001 Hopewell Centre, 183 Queen's Road East, Wan Chai, Hong Kong (CN).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,

(10) International Publication Number WO 2014/138319 A8

MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))
- of inventorship (Rule 4.17(iv))

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))
- (88) Date of publication of the international search report: 24 December 2014
- (48) Date of publication of this corrected version:

22 January 2015

(15) Information about Correction: see Notice of 22 January 2015

(54) Title: PHARMACEUTICAL COMPOSITION COMPRISING ALBUMIN-BINDING ARGININE DEIMINASE FOR CANCER TARGETING TREATMENT

(57) Abstract: The present invention provides a pharmaceutical composition containing albumin-binding arginine deiminase fusion protein (AAD) for treating cancer or other arginine-dependent diseases. The AAD fusion protein can be purified from both soluble and insoluble fractions of crude proteins, it binds to human serum albumin (HSA) and has its high activity with longer half life for efficient depletion of arginine in cancer cells. The specific activities of wild-type ADI and AAD in the present invention are 8.4 and 9.2 U/mg (at physiological pH 7.4), respectively. The AAD used in the present invention can be used in the treatment of various cancers (e.g. pancreatic cancer, leukemia, head and neck cancer, colorectal cancer, lung cancer, breast cancer, liver cancer, nasopharyngeal cancer, esophageal cancer, prostate cancer, stomach cancer & brain cancer) and curing arginine-dependent diseases. The composition can be used alone or in combination with at least one chemotherapeutic agent to give a synergistic effect on cancer treatment and/or inhibiting metastasis.

PHARMACEUTICAL COMPOSITION COMPRISING ALBUMIN-BINDING ARGININE DEIMINASE FOR CANCER TARGETING TREATMENT

Cross-reference to Related Application

[0001] The present application claims benefit from US provisional patent application serial number 61/773,214 filed March 6, 2013 and US non-provisional patent application serial number 14/197,236 filed March 5, 2014, and the disclosures of which are incorporated herein by reference in its entirety.

Technical Field

[0002] The present invention describes albumin-binding arginine deiminase (AAD) fusion protein that has been genetically modified to create a material having high activity and long *in vivo* half-life. The present invention further describes the designs for DNA and protein engineering for creating different AAD fusion proteins. The AAD fusion proteins can be isolated and purified from soluble fraction and insoluble fraction (inclusion bodies) of the crude proteins. The present invention further relates to albumin-binding arginine deiminase-containing pharmaceutical compositions for cancer targeting treatment and curing arginine-dependent diseases in humans and other animals.

Background of the Invention

[0003] The incidence of pancreatic cancer, colon cancer, liver cancer, melanoma and cervical cancer in the worldwide population is increasing. Effective treatments for these diseases are urgently needed. In many types of cancer including leukemia, melanoma, pancreatic, colon, renal cell carcinoma, lung, prostate, breast, brain, cervical and liver cancers, the cancer cells are auxotrophic for arginine since they lack of expression of argininosuccinate synthetase (ASS), making these cancers excellent targets for arginine depletion therapy.

[0004] Arginine is a semi-essential amino acid for humans and other mammals. It can be synthesized from citrulline *via* a two step process catalyzed by the urea cycle enzymes

argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL). Arginine can be metabolized to ornithine by the enzyme arginase, and ornithine can be converted to citrulline by ornithine carbamoyltransferase (OTC) in the mitochondria. The citrulline can be utilized to synthesize arginine again. Normal cells usually do not require an exogenous supply of arginine for growth because of the abundant catalytic activity of ASS and ASL. In contrast, many types of cancers do not express ASS and therefore are auxotrophic for arginine. Their growth is dependent on arginine solely obtained from blood circulation. Therefore, targeting circulating arginine by using arginine-degrading enzymes is a feasible strategy to inhibit ASS-negative tumor growth [Feun et al., Curr. Pharm. Des. 14:1049-1057 (2008); Kuo et al., Oncotarget. 1:246-251 (2010)]

[0005] Arginine can be degraded by arginase, arginine decarboxylase, and arginine deiminase (ADI). Among them, arginine deiminase (ADI) appears to have the highest affinity for arginine (a low K_m value). ADI converts arginine to citrulline and ammonia, the metabolites of the urea cycle. Unfortunately, ADI can only be found in prokaryotes e.g. *Mycoplasma sp*. There are some problems associated with the isolation and purification of ADI from prokaryotes. ADI isolated from *Pseudomonas pudita* fails to exhibit efficacy *in vivo* because of its low enzymatic activity in neutral pH. ADI produced from *Escherichia coli* is enzymatically inactive and subsequently requires multiple denaturation and renaturation process which raises the subsequent cost of production.

[0006] As the native ADI is found in microorganisms, it is antigenic and rapidly cleared from circulation in a patient. The native form of ADI is immunogenic upon injection into human circulation with a short half-life (~4 hours) and elicits neutralizing antibodies [Ensor et al., Cancer Res. 62:5443-5450 (2002); Izzo et al., J. Clin. Oncol. 22:1815-1822 (2004)]. These shortcomings can be remedied by pegylation. Among various forms of pegylated ADI, ADI bound with PEG (molecular weight 20,000) *via* succinimidyl succinate (ADI-PEG 20) has been found to be an efficacious formulation. However, the activity of ADI after pegylation is greatly decreased on the order of 50% [Ensor et al., Cancer Res. 62:5443-5450 (2002)]. The previous attempts to create pegylated ADI resulted in materials that are not homogenous (due to the random attachment of PEG on protein surface Lys residues) and also difficult to characterize and perform quality control during the manufacturing process. Also, PEG is very expensive, greatly increasing the production cost. After the intravenous injection of pegylated ADI *in vivo*, leakage

or detachment of free PEG is observed and the ADI (without PEG) can elicit the immunogenicity problem. Therefore, there is a need for improved cancer-treatment compositions, particularly, improved cancer-treatment compositions that have enhanced activity and *in vivo* half-life.

Summary of the Invention

[0007] In the present invention, albumin-binding arginine deiminase (AAD) fusion protein has increased its activity and plasma half-life in order to efficiently deplete arginine in cancer cells. Native ADI may be found in microorganisms and is antigenic and rapidly cleared from circulation in a patient. The present invention constructs different AAD fusion proteins with one or two albumin-binding proteins to maintain high activity with longer *in vivo* half-life (at least 5 days of arginine depletion after one injection). In the present invention, the albumin binding protein in the AAD fusion protein product does not appear to influence its specific enzyme activity but instead appears to increase the circulating half-life. The specific activities of wild-type ADI and AAD fusion protein in the present invention are 8.4 and 9.2 U/mg (at physiological pH 7.4), respectively.

[0008] In its broadest sense, the present invention provides an albumin-binding arginine deiminase fusion protein comprising a first portion comprising one or two components selected from an albumin-binding domain, an albumin-binding peptide or an albumin-binding protein(s) fused to a second portion comprising arginine deiminase to form the albumin-binding arginine deiminase fusion protein such that the albumin-binding arginine deiminase fusion protein retains the activity of arginine deiminase and is also able to bind serum albumin.

[0009] The present invention further relates to albumin-binding arginine deiminase (AAD) fusion protein –containing pharmaceutical compositions for targeted cancer treatment in humans and other animals. The first aspect of the present invention is to construct the modified AAD fusion protein with high activity against cancer cells. The second aspect of the present invention is to purify AAD fusion protein with high purity from both soluble and insoluble fractions of the crude proteins. The third aspect of the present invention is to lengthen the half-life of AAD fusion protein as it can bind to albumin very well in the circulation. The fourth aspect of the present invention is to provide a method of using the AAD-containing pharmaceutical composition of the present invention for treating cancer by administering said composition to a

subject in need thereof suffering from various tumors, cancers or diseases associated with tumors or cancers or other arginine-dependent diseases.

[0010] The AAD fusion protein of the present invention is also modified to avoid dissociation into albumin-binding protein and ADI such that it becomes more stable and has a longer half-life in circulation. ADI is fused to an albumin-binding domain/peptide/protein in AAD fusion product to extend the plasma half-life and reduce the immunogenicity of the fusion product. Albumin binding domain (ABD) is a peptide that binds albumin in the blood. There are different variants of ABD showing different or improved human serum albumin (HSA) affinities. Different variants of ABD can be constructed and can be fused to ADI. Unlike the naturally occurring ADI, this longer half-life property facilitates the depletion of arginine efficiently in cancerous cells, cancer stem cells and/or cancer progenitor cells.

[0011] The pharmaceutical composition containing AAD fusion protein can be used for intravenous (i.v.) injection (for rapid-acting dosage of medication) and intramuscular (i.m.) injection (for fairly rapid-acting and long-lasting dosage of medication). The application of AAD fusion protein in the present invention can be used in the treatment of various cancers such as pancreatic cancer, leukemia, head and neck cancer, colorectal cancer, lung cancer, breast cancer, prostate cancer, cervical cancer, liver cancer, nasopharyngeal cancer, esophageal cancer and brain cancer. The present invention is directed to AAD fusion proteins, to methods of treating cancer, to methods of treating and/or inhibiting metastasis of cancerous tissue, and to methods of curing arginine-dependent diseases.

[0012] The method of the present invention also includes using a combination of different chemotherapeutic drugs and/or radiotherapy with the AAD fusion protein of the present invention to give a synergistic effect on cancer treatment.

Brief Description of the Drawings

[0013] **FIG. 1** shows the design approach for construction of different AAD fusion proteins with one or two albumin-binding domain/peptide/protein(s) in three-dimensional structure. One or two albumin-binding domain/peptide/protein(s) can be fused to ADI to form the AAD fusion protein. The position of albumin-binding domain/peptide/protein is far from the ADI active site.

The albumin-binding domain/peptide/protein can be fused to the N-terminus or/and C-terminus of ADI. The structure in this figure is based on the *Mycoplasma arginini* ADI structure (Protein Data Bank: 1LXY). (A) Native ADI; (B) AAD fusion protein with two ABD or ABD1; (C) AAD fusion protein with one ABD or ABD1 at N-terminus; (D) AAD fusion protein with one ABD or ABD1 at C-terminus.

[0014] **FIG. 2** shows the sequence alignment for ADI in some bacterial species including *Mycoplasma arginini* (SEQ ID No. 23), *Lactococcus lactis* (SEQ ID No. 24), *Bacillus cereus* (SEQ ID No. 25) and *Bacillus licheniformis* (SEQ ID No. 26).

[0015] **FIG. 3** shows the designs and amino acid sequences for different AAD fusion proteins originated from *Mycoplasma arginini* (A to E) and AAD fusion protein originated from *Bacillus cereus* (F).

[0016] **FIG. 4** shows the creation of AAD fusion protein in two embodiments (A) and (B) by the use of intein-fusion proteins and expressed protein ligation (CBD, chitin binding domain) under the following schemes; (C) C-terminal fusion; (D) N-terminal fusion; (E) Intein-mediated protein ligation.

[0017] **FIG. 5** shows the plasmid map of the expression vector constructed for producing AAD fusion protein.

[0018] **FIG. 6** shows the (A) gene map, (B) nucleotide sequence (SEQ ID No. 44) and (C) amino acid sequence (SEQ ID No. 40) of His-ABD-PolyN–ADI. (ADI: the *Mycoplasma arginini* ADI)

[0019] **FIG.** 7 shows the (A) gene map, (B) nucleotide sequence (SEQ ID No. 45) and (C) amino acid sequence (SEQ ID No. 41) of His-ABD-PolyN–bcADI. (bcADI, the *Bacillus cereus* ADI)

[0020] **FIG. 8** shows the expression and purification of AAD fusion protein: (A) AAD is ~90% soluble when expressed at 20° C (lanes 2 and 3) and ~90% insoluble (inclusion body) when expressed at 37° C (lanes 4 and 5); (B) The purified AAD fusion protein in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel: lane 1, purified AAD fusion protein (52.8 kDa); lane 2, molecular weight marker.

5

[0021] **FIG. 9** illustrates that AAD fusion protein depletes arginine efficiently and inhibits the growth of various types of human cancer cell lines in *in vitro* tissue culture studies, including human melanoma (A375), human colon carcinoma (HCT116), and human pancreatic cancer (PancI).

[0022] **FIG. 10** shows the albumin binding results of AAD fusion protein: (A) A non-denaturing native polyacrylamide gel (12%) showing the increase in the amount of HSA+AAD complex when the amount of AAD fusion protein (the amino acid sequence is shown in SEQ ID NO: 36; FIG. 3A) added increases. The mole ratios of human serum albumin (HSA): AAD in lanes 3-6 are 1:1, 1:2, 1:5, and 1:15, respectively. Lanes 1 and 2 represent HSA and AAD at 6 and 30 pmole, respectively; (B) In another experiment based on AAD fusion protein (SEQ ID NO: 40; FIG. 3E), an albumin: AAD ratio of 1:8 is sufficient to bind all the albumin present (lane 5).

[0023] FIG. 11 is a graph showing the dose response of AAD fusion protein on plasma arginine levels in mice. A dose of 100 μ g of AAD is sufficient to deplete plasma arginine for at least 5 days.

Definitions

[0024] The term "cancer stem cell" refers to the biologically distinct cell within the neoplastic clone that is capable of initiating and sustaining tumor growth *in vivo* (i.e. the cancer-initiating cell).

Detailed Description of the Invention

[0025] Arginine is a semi-essential amino acid for humans and other mammals. It can be synthesized from citrulline *via* a two step process catalyzed by urea cycle enzymes argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL). Arginine can be metabolized to ornithine by the enzyme arginase, and ornithine can be converted to citrulline by ornithine carbamoyltransferase (OTC) in the mitochondria. The citrulline can be utilized to synthesize arginine again. Normal cells do not typically require an exogenous supply of arginine for growth because of the abundant catalytic activity of ASS and ASL. In contrast, many types of cancers do not express ASS and are therefore auxotrophic for arginine. Their growth is solely

dependent on arginine from circulation. Therefore, targeting circulating arginine by using arginine-degrading enzymes is a feasible strategy to inhibit ASS-negative tumor growth.

[0026] Arginine can be degraded by arginine deiminase (ADI). ADI converts arginine to citrulline and ammonia, the metabolites of the urea cycle. Unfortunately, ADI can only be found in prokaryotes e.g. Mycoplasma sp. There are many problems associated with the isolation and purification of arginine deiminase from prokaryotes. ADI isolated from Pseudomonas pudita failed to exhibit efficacy in vivo because of its low enzymatic activity in neutral pH. ADI produced from *Escherichia coli* is enzymatically inactive and subsequently requires multiple denaturation and renaturation process which raised the subsequent cost of production. The plasma half-life of the native form of ADI is short (~4 hours) upon injection into human circulation [Ensor et al., Cancer Res. 62:5443-5450 (2002); Izzo et al., J. Clin. Oncol. 22:1815-1822 (2004)]. These shortcomings can be partially remedied by pegylation. Among various forms of pegylated ADI, ADI bound with PEG (molecular weight 20,000) via succinimidyl succinate (ADI-PEG 20) has been found to be an efficacious formulation. However, the activity of ADI after pegylation is greatly decreased (by ~50%) [Ensor et al., Cancer Res. 62:5443-5450 (2002); Wang et al., Bioconjug. Chem. 17:1447-1459 (2006)]. Also, the succinimidyl succinate PEG linker can easily be hydrolyzed and detached from the protein, causing immunogenic problems after a short period of use in the body. Therefore, there is a need for improved cancertreatment compositions, particularly, improved cancer-treatment compositions with enhanced activity.

[0027] ADI isolated from *P. pudita* failed to exhibit efficacy *in vivo* because it had little enzyme activity at a neutral pH and was rapidly cleared from the circulation of experimental animals. ADI derived from *Mycoplasma arginini* is described, for example, by Takaku et al, Int. J. Cancer, 51:244-249 (1992), and U.S. Pat. No. 5,474,928. However, a problem associated with the therapeutic use of such a heterologous protein is its antigenicity. The chemical modification of ADI from *Mycoplasma arginini, via* a cyanuric chloride linking group, with polyethylene glycol (PEG) was described by Takaku et al., Jpn. J. Cancer Res., 84:1195-1200 (1993). However, the modified protein was toxic when metabolized due to the release of cyanide from the cyanuric chloride linking group. In contrast, even for the ADI-PEG20, the PEG linker can easily be hydrolyzed and detached from the protein, causing immunogenic problems after a short period of

use in the body. Therefore, there is a need for compositions which degrade non-essential amino acids and which do not have the problems associated with the prior art.

[0028] In many types of cancer including melanoma, pancreatic, colon, leukemia, breast, prostate, renal cell carcinoma and liver cancers, cancer cells are auxotrophic for arginine since they lack of expression of argininosuccinate synthetase (ASS), making them excellent targets for arginine depletion therapy. In this invention, albumin-binding arginine deiminase (AAD) fusion proteins have high activity with long half-lives for efficient depletion of arginine in cancer cells.

[0029] The size of the monomer for ADI is on the order of 45 kDa and it exists as dimer (on the order of 90 kDa) [Das et al., Structure. 12:657-667 (2004)]. A design for construction of an AAD fusion protein is shown in FIG. 1. One or two albumin-binding domain/peptide/protein(s) with or without linker(s), SEQ ID NO: 46-49, are fused to ADI to form the AAD fusion protein. It is noteworthy that the selection of one or two particular albumin-binding domain/peptide/protein(s) can be made depending upon the type of cancer tissue to be targeted, the desired size and halflife of the resulting fusion protein, and whether a domain or entire protein is selected. Further, the selected albumin-binding material may be the same or different. That is, a protein and a peptide can be fused, two proteins, two domains, a domain and a protein, etc., as long as the resultant molecule retains the activity of the ADI and is also able to bind serum albumin with neither function of one portion of the fusion protein being interfered with by the other portion of the fusion protein. The position of the albumin-binding domain/peptide/protein is far from the active site. The albumin-binding domain/peptide/protein can be fused to the N-terminus or/and C-terminus of ADI. There are different variants of ABD showing different or improved human serum albumin (HSA) affinities. Different variants of ABD can be constructed and can be fused to ADI. Some micro-organisms endowed with ADI (for example Pseudomonas sp) cannot be used, due to their potential pathogenicity and pyrogenicity. The source of ADI can be from, but not limited to, different microorganisms, e.g. Mycoplasma (e.g. Mycoplasma arginini, Mycoplasma arthritidis, Mycoplasma hominis), Lactococcus (e.g. Lactococcus lactis), Pseudomonas (e.g. Pseudomonas plecoglossicida, Pseudomonas putida, Pseudomonas aeruginosa), Streptococcus pyogenes, **Steptococcus** (e.g. Streptococcus pneumonia, Streptococcus pneumoniae), Escherichia, Mycobacterium (e.g. Mycobacterium tuberculosis) and Bacillus (e.g. Bacillus licheniformis, Bacillus cereus). It is preferred that ADI is cloned from

Mycoplasma arginini, *Lactococcus lactis*, *Bacillus licheniformis*, *Bacillus cereus*, or any combination thereof. Their amino acid sequences with SEQ ID (SEQ ID NO: 23-35) and the sequence alignment for some of the amino acid sequences in FIG. 2 are disclosed herein and also in the literature [Das et al., Structure. 12:657-667 (2004); Wang et al., Bioconjug. Chem. 17:1447-1459 (2006); Ni et al., Appl. Microbiol. Biotechnol. 90:193-201 (2011)].

[0030] The design and amino acid sequence for (A) native *Mycoplasma arginini* ADI protein (SEQ ID NO: 23), (B) different AAD fusion proteins originated from the *Mycoplasma arginini* ADI (SEQ ID NO: 36-40) and (C) AAD fusion protein originated from the *Bacillus cereus* ADI (SEQ ID NO: 41) are shown in FIG. 3. Different AAD fusion proteins are successfully constructed. A linker is inserted between the albumin-binding protein and ADI in the AAD fusion protein in these embodiments.

[0031] On the other hand, a novel AAD fusion protein is also created by the use of intein-fusion proteins and expressed protein ligation (FIG. 4). The novel AAD fusion protein can be formed (1) by reacting the ADI having a N-terminal cysteine residue with a reactive thioester at C-terminus of the ABD, or (2) by reacting the ABD having a N-terminal cysteine residue with a reactive thioester at C-terminus of the ADI so that the ADI and the ABD are linked by a covalent bond. In FIG. 4E, ADI with N-terminal cysteine residue reacts with reactive thioester at the C-terminus of ABD. The thioester tag at the C-terminus of ABD, and an α -cysteine at the N-terminus of ADI are required to facilitate protein ligation. These fragments are produced using a pTWIN1 vector (New England Biolabs) according to the manufacturer's manual. In particular, the gene coding for the ABD-Intein-CBD fusion protein is synthesized and it is cloned into the vector under the control of T7 promoter for expression in E. coli (FIG. 4C). The ABD-Intein-CBD fusion protein produced binds to chitin in a column. The amino acid sequence of ABD-Intein-CBD (SEQ ID NO: 42) is shown in FIG. 4A. After thiol-inducible cleavage and elution from the column, the ABD with reactive thioester at its C-terminus is obtained (FIG. 4C). On the other hand, the gene coding for the CBD-Intein-ADI fusion protein is synthesized and cloned into the vector under the control of the T7 promoter for expression in E. coli (FIG. 4D). The CBD-Intein-ADI fusion protein produced binds to chitin in a column. The amino acid sequence of the CBD-Intein-ADI (SEQ ID NO: 43) is shown in FIG. 4B. After cleavage at pH 7 and 25°C, and elution from the column, the ADI with α -cysteine at its N-terminus is obtained (FIG. 4D). Finally, the AAD fusion protein is produced by the protein ligation reaction as shown in FIG. 4E.

[0032] Importantly, AAD fusion proteins can be produced and purified in a convenient manner. For example, an AAD fusion protein is successfully expressed and purified from *E. coli* both in soluble fraction and insoluble fraction, and this result is shown in FIG. 8. Furthermore, FIG. 8 shows the purified AAD fusion protein analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The size of the purified AAD fusion protein is determined as 52.8 kDa.

[0033] The pharmaceutical composition of the present invention contains AAD fusion protein with high activity for depleting arginine in tumor cells for cancer treatment. The specific activity of the purified AAD fusion protein is found to be similar to that of the wild-type ADI. IC_{50} is the half maximal inhibitory concentration, that is, it represents the concentration of AAD fusion protein that is required for 50% inhibition of a cancer cell line. The IC_{50} is a measure of the effectiveness of a drug. The IC_{50} of AAD fusion protein (amino acid sequence is shown in SEQ ID NO: 40, FIG. 3E) for different cancer cell lines (human melanoma, A375 & SK-mel-28; human colon carcinoma, HCT116; human pancreatic cancer, PancI; human liver cancer, Sk-hep1; human cervical cancer, C-33A) is shown in TABLE 1. The *in vitro* efficacy of AAD fusion protein on different cancer types, including human melanoma, human colon carcinoma and pancreatic cancer cell lines.

[0034]	TABLE	1
--------	-------	---

Cancer cell line	IC ₅₀ of AAD (µg/ml)
A375 (human melanoma)	0.104
SK-mel-28 (human melanoma)	1.92
PancI (human pancreatic cancer)	1
Sk-hep1 (human liver cancer)	10

C-33A (human cervical cancer)	0.063
HCT116 (human colon carcinoma)	1.30

[0035] For the albumin binding study, we have demonstrated successfully that the engineered AAD fusion protein can bind to human serum albumin (HSA). FIG. 10 shows that the AAD fusion protein (amino acid sequence is shown in SEQ ID NO: 40, FIG. 3E) binds to HSA readily. At a mole ratio of 1:5 or 1:15, the formation of the HSA-AAD complex forms according to the construct of FIG. 1 using the linker molecule design. It is expected that the circulating half-life of AAD fusion protein in the blood is increased by the non-covalent HSA-AAD complex formation. Therefore, a long-lasting version of AAD fusion protein has been successfully created.

[0036] No commercial products show high efficacy when compared to the AAD fusion proteincontaining pharmaceutical composition prepared in this invention. For uses in cancer treatment, the AAD fusion protein-containing pharmaceutical composition of the present invention serves as an anti-cancer agent to deplete the arginine in tumor tissues. AAD fusion protein is a good candidate to be used in combination with other molecular targeting or cytotoxic agents.

Examples

[0037] The following examples are provided by way of describing specific embodiments of this invention without intending to limit the scope of this invention in any way.

[0038] Several of the Examples below relate to methods of making an albumin-binding arginine deiminase fusion protein. Various techniques can be used including cloning and intein-mediated protein ligation. As used herein, the term "cloning" is broadly used and comprises constructing a fusion gene coding for the albumin-binding arginine deiminase fusion protein, inserting the fusion gene into a vector, inserting the vector into a host organism and expressing a protein that includes an albumin-binding arginine deiminase fusion protein. Numerous variants on this technique can be performed and still fall within the cloning contemplated by the present invention.

[0039] Example 1

[0040] Construction of the gene coding for albumin-binding domain/peptide/protein (ABD)

[0041] The gene coding for ABD is constructed by two rounds of PCR. In the first round, the PCR reaction mixture (total volume of 25 μ l) contains the following materials:

1 x iProof PCR buffer (Bio-Rad)

 $50 \ \mu M \ dNTP \ mixture$

0.5 unit of iProof DNA Polymerase (Bio-Rad)

10 nM of each of the following oligos

ABD-F1 forward primer (SEQ ID NO: 01):

5' - CATGATGCGAATTCCTTAGCTGAAGCTAAAGTCTTAGCTAACAGAGAACT - 3'

ABD-R2 reverse primer (SEQ ID NO: 02):

5' - TAGTCACTTACTCCATATTTGTCAAGTTCTCTGTTAGCTAAGACTTTAGC-3'

ABD-F3 forward primer (SEQ ID NO: 03):

5' - GAACTTGACAAATATGGAGTAAGTGACTATTACAAGAACCTAATCAACAA - 3'

ABD-R4 reverse primer (SEQ ID NO: 04):

5' - TACACCTTCAACAGTTTTGGCATTGTTGATTAGGTTCTTGTAATAGTCAC-3'

ABD-F5 forward primer (SEQ ID NO: 05):

5' - GCCAAAACTGTTGAAGGTGTAAAAGCACTGATAGATGAAATTTTAGCTGC-3'

ABD-R6 reverse primer (SEQ ID NO: 06):

5' - AGCTACGATAAGCTTAAGGTAATGCAGCTAAAATTTCATCTATCAGTG-3'

The following PCR program is used:

98°C 30 s; 20 cycles of {98°C 10 s, 50°C 20 s, 72°C 20 s}

- [0042] In the second round of PCR, the PCR mixture (total volume of 50 µl) contains the following materials:
 - 1 x iProof PCR buffer (Bio-Rad);
 - 50 µM dNTP mixture;
 - 1 µl of PCR reactant as DNA template from the first round;

1 unit of iProof DNA Polymerase (Bio-Rad);

200 nM of each of the following oligos:

ABD-F7 forward primer (SEQ ID NO: 07):

5' - CATGATGCGAATTCCTTAGCTGAAGCTAAAGTCTTAGCTAACAGAGAACT-3'

ABD-R8 reverse primer (SEQ ID NO: 08):

5' - AGCTACGATAAGCTTAAGGTAATGCAGCTAAAATTTCATCTATCAGTG-3'

The following PCR program is used:

98°C 30 s; 35 cycles of {98°C 10 s, 60°C 20 s, 72°C 20 s}; 72°C 5 min

[0043] A PCR product containing the DNA sequence of ABD (169 bp) is obtained and purified by Qiagen DNA Gel Extraction Kit for cloning purpose.

[0044] Example 2A

[0045] Construction of the fusion gene coding for the AAD fusion protein

[0046] In the first PCR, the PCR mixture (total volume of 50 μ l) contains the following materials:

x iProof PCR buffer (Bio-Rad);
 μM dNTP mixture;
 ng of *Mycoplasma arginini* genomic DNA;
 unit of iProof DNA Polymerase (Bio-Rad);
 nM of each of the following oligos:
 ADINde-F forward primer (SEQ ID NO: 09):
 - ATCGATCGATGTCTGTATTTGACAGTAAATTTAAAGG-3'
 ADIhis-R reverse primer (SEQ ID NO: 10):
 - AGCTAAGGAATTCGCATCATGATGGTGATGGTGGTGGCTACCCCACTTAAC-3'

The following PCR program is used:

98°C 1 min; 35 cycles of {98°C 10s, 50°C 20s, 72°C 40s}; 72°C 5 min

A PCR product of 1280 bp long is obtained and purified by Qiagen DNA Gel Extraction Kit. After that, the second PCR is performed. The PCR mixture (total volume of 50 μ l) contains the following materials:

x iProof PCR buffer (Bio-Rad);
 μM dNTP mixture;
 ng of the 1280 bp PCR product;
 ng of the 169 bp PCR product;
 unit of iProof DNA Polymerase (Bio-Rad);
 200 nM of each of the following oligos:

ADINde-F forward primer (SEQ ID NO: 11):

5' - ATCGATCGATGTCTGTATTTGACAGTAAATTTAAAGG-3'

ABD-R10 reverse primer (SEQ ID NO: 12):

${\tt 5'-AGCTACGATAAGCTTAAGGTAATGCAGCTAAAATTTCATCTATCAGTG-{\tt 3'}}$

The following PCR program is used:

98°C 1 min; 35 cycles of {98°C 10s, 50°C 20s, 72°C 45s}; 72°C 5 min

[0047] A PCR product of 1428 bp is obtained and purified by Qiagen DNA Gel Extraction Kit. Then it is digested with restriction enzymes NdeI and HindIII, and ligated to plasmid pREST A (Invitrogen) that is predigested with the same enzymes. The ligation product is then transformed into *E. coli* BL21 (DE3) cells. The sequence of the constructed fusion gene is confirmed by DNA sequencing.

[0048] Example 2B

[0049] Cloning of His-ABD-PolyN-ADI

[0050] The construction of **His-ABD-PolyN–ADI** (SEQ ID NO: 40, in FIG. 3E) is done by two steps of overlapping PCR, the PCR fragment obtained from the last step is inserted into the vector pET3a between the NdeI and BamHI sites. The gene map, nucleotide sequence and amino acid sequence of **His-ABD-PolyN–ADI** are shown in FIG. 6.

Primers involved in construction of **His-ABD-PolyN–ADI**:

hisABDNde-F forward primer (SEQ ID NO: 13):

${\tt 5'-GGAGATATACATATGCATCATCACCATCACCATGAAGCCGTGGATG-{\tt 3'}}$

ABDnn-R1 reverse primer (SEQ ID NO: 14):

${\tt 5'-TTGTTATTGTTGTTGTTGTTACTACCCGAAGGTAATGCAGCTAAAATTTCATC-{\tt 3'}}$

ABDn-R2 reverse primer (SEQ ID NO: 15):

5'-AGAACCGCCGCTACCATTGTTATTATTGTTGTTACTACCCGA-3'

ADIn-F forward primer (SEQ ID NO: 16):

${\tt 5'-AATAATAACAATGGTAGCGGCGGTTCTGTATTTGACAGTAAATTTAAAGG-{\tt 3'}}$

ADIBam-R reverse primer (SEQ ID NO: 17):

5' - TAGATCAATGGATCCTTACCACTTAACATCTTTACGTGATAAAG-3'

[0051] In the first round of PCR, 50 μ l of reaction volume containing the known concentration of components are prepared in two PCR tubes. In each of the tubes, dNTP, iProof buffer (BIO-RAD), iProof DNA polymerase (BIO-RAD), primers and DNA template are mixed and added up to 50 μ l by ddH₂O. The DNA template used in the reaction is a pET3a vector containing the gene of ADI from *Mycoplasma arginini* with a removal of an internal NdeI site mutation without altering the protein sequence of the ADI gene.

[0052] The two reaction tubes contain the primer mixtures of (A) 10 pmol *hisABDNde-F* (SEQ ID NO: 13), 0.5 pmol *ABDnn-R1* (SEQ ID NO: 14) and 10 pmol *ABDn-R2* (SEQ ID NO: 15); and (B) 10 pmol *ADIn-F* (SEQ ID NO: 16) and 10 pmol *ADIBam-R* (SEQ ID NO: 17), respectively.

[0053] The PCR program is set according to the recommended steps in the manual with an annealing and extension temperature (time) at 50 $^{\circ}$ C (20 s) and 72 $^{\circ}$ C (40 s), respectively. The

two products generated by PCR with the size of 237 bp and 1278 bp. The products are extracted and applied as template for the next round of PCR.

[0054] In the second overlapping step, the reaction mixture is prepared in a similar way to the first round except the template used was the mixture of 1 pmol of the 237 bp PCR product and 1 pmol of the 1278 bp PCR product from the first round PCR. Primers used are changed to 10 pmol *hisABDNde-F* (SEQ ID NO: 13) and 10 pmol *ADIBam-R* (SEQ ID NO: 17).

[0055] The annealing and extension temperature (time) are 50 °C (20 s) and 72 °C (60 s), respectively. A PCR product with the size of 1484 bp is generated from the reaction. The PCR product is purified and digested with NdeI and BamHI and then ligated into the pre-digested pET3a plasmid. The ligated product is then transformed into *E. coli* BL21 (DE3) for the production of recombinant protein.

[0056] Example 2C

[0057] Cloning of His-ABD-PolyN-bcADI

[0058] The construction of **His-ABD-PolyN–bcADI** (SEQ ID NO: 41, in FIG. 3F) is done by two steps of overlapping PCR, the PCR fragment obtained from the last step is inserted into the vector pET3a between the NdeI and BamHI sites. The gene map, nucleotide sequence and amino acid sequence of **His-ABD-PolyN–bcADI** are shown in FIG. 7.

Primers involved in construction of His-ABD-PolyN-bcADI:

hisABDNde-F2 forward primer (SEQ ID NO: 18):

 ${\tt 5'-GGAGATATACATATGCATCATCACCATCACCATGAAGCCGTGGATG-{\tt 3'}}$

bcABDnn-R1 reverse primer (SEQ ID NO: 19):

${\tt 5'-TTGTTATTGTTGTTGTTGTTACTACCCGAAGGTAATGCAGCTAAAATTTCATC-{\tt 3'}}$

bcABDn-R2 reverse primer (SEQ ID NO: 20):

5'-TTTACCGCCGCTACCATTGTTATTGTTGTTGTTACTACCCGA-3'

bcADln-F forward primer (SEQ ID NO: 21):

5' - AATAATAACAATGGTAGCGGCGGTAAACATCCGATACATGTTACTTCAGA - 3'

bcADIBam-R reverse primer (SEQ ID NO: 22):

${\tt 5'-TAGATCAATGGATCCCTAAATATCTTTACGAACAATTGGCATAC-{\tt 3'}}$

[0059] In the first round of PCR, 50 μ l of reaction volume containing the known concentration of components are prepared in two PCR tubes. In each of the tubes, dNTP, iProof buffer (BIO-RAD), iProof DNA polymerase (BIO-RAD), primers and DNA template are mixed and added up to 50 μ l by ddH₂O. The DNA template used in the reaction is a pET3a vector containing the gene of ADI from *Bacillius cereus* with a removal of an internal NdeI site mutation without altering the protein sequence of the ADI gene.

[0060] The two reaction tubes contain the primer mixtures of (A) 10 pmol *hisABDNde-F2* (SEQ ID NO: 18), 0.5 pmol *bcABDnn-R1* (SEQ ID NO: 19) and 10 pmol *bcABDn-R2* (SEQ ID NO: 20); and (B) 10 pmol *bcADIn-F* (SEQ ID NO: 21) and 10 pmol *bcADIBam-R* (SEQ ID NO: 22), respectively. The PCR program is set according to the recommended steps in the manual with an annealing and extension temperature (time) at 50 °C (20 s) and 72 °C (40 s), respectively. The two products are generated by PCR with the size of 237 bp and 1250 bp. The products are extracted and applied as template for the next round of PCR.

[0061] In the second overlapping step, the reaction mixture is prepared in a similar way to the first round except the template used is the mixture of 1 pmol of the 237 bp PCR product and 1 pmol of the 1250 bp PCR product from the first round PCR. Primers used are changed to 10 pmol *hisABDNde-F2* (SEQ ID NO: 18) and 10 pmol *bcADIBam-R* (SEQ ID NO: 22).

[0062] The annealing and extension temperature (time) are 50 °C (20 s) and 72 °C (60 s), respectively. A PCR product with the size of 1512 bp is generated from the reaction. The PCR product is purified and digested with NdeI and BamHI and then ligated into the pre-digested pET3a plasmid. The ligated product is then transformed into *E. coli* BL21 (DE3) for the production of recombinant protein.

[0063] Example 3

[0064] Expression and purification of the AAD fusion protein

[0065] For preparing the seed culture, the strain *E. coli* BL21(DE3) carrying the plasmid encoding the AAD fusion protein (FIG. 5) is cultured in 5 ml of 2xTY medium, 30°C, 250 rpm, overnight. The overnight seed culture (2.5 ml) is added to 250 ml of 2xTY, 37°C, 250 rpm, 2.5 h (until $OD_{600} \approx 0.6$ -0.7). When the OD_{600} reached, IPTG is added to the culture (0.2 mM final concentration). The growth is continued for 22 more hours at 20°C and then the cells are collected by centrifugation. The cell pellet is resuspended in 25 ml of 10 mM sodium phosphate buffer, pH 7.4. The cells are lysed by sonication. The soluble portion is collected after centrifugation. The fusion protein (containing a His tag) is then purified by nickel affinity chromatography. TABLE 2 shows that cultivation temperature is an important factor in affecting the solubility of AAD fusion protein (amino acid sequence is shown in SEQ ID NO: 40, FIG. 3E) obtained from the expression host.

[0066] For isolating the soluble fraction of AAD fusion protein, the cell pellet is resuspended in 25 ml of 10 mM sodium phosphate buffer, pH 7.4. The cells are lysed by sonication. The soluble portion is collected after centrifugation. The AAD fusion protein (contains a His tag) is then purified by nickel affinity chromatography.

[0067] For isolating the insoluble fraction of AAD fusion protein, the cell pellet is resuspended in 25 ml of 20 mM Tris-HCl, pH 7.4, 1% Triton X-100. The cells are lysed by sonication. The insoluble portion (inclusion bodies) is collected by centrifugation. The protein is unfolded by resuspending in 10 ml of 20 mM Tris-HCl, pH 7.4, 6 M Guanidine HCl, and vortexed until it becomes soluble. The protein is refolded by adding the unfolded protein solution drop by drop into a fast stirring solution of 100 ml of 20 mM Sodium phosphate buffer, pH 7.4. The insoluble materials are removed by centrifugation. Salting out of the protein is performed by adding solid ammonium sulphate powder into the supernatant to achieve 70% saturation. The insoluble portion is collected by centrifugation and it is resuspended in 10 ml of 20 mM sodium phosphate buffer. The AAD fusion protein (contains a His tag) is then purified by nickel affinity chromatography.

[0068] TABLE 2

AAD	1	2	3
Cultivation temperature (°C)	30	20	37
Yield (mg) / 250ml culture	~0.66	~12.0	~7.0
solubility	50% soluble	90% soluble	90% inclusion body
IC ₅₀ (μg/ml) on A375 cells	0.10	0.68	0.23

[0069] Example 4

[0070] Enzyme activity assay and Enzyme kinetics for AAD fusion protein

[0071] To determine the enzyme activity for wild-type ADI and AAD fusion protein in the present invention, the diacetyl monoxime (DAM) - thiosemicarbazide (TSC) assay for citrulline detection is used. The reaction is shown below.

[0072] L-Arginine arginine deiminase (ADI) or AAD fusion protein > L-Citrulline + Ammonia

[0073] This assay is run by adding sample to a color reagent, which is made by mixing acidic ferric chloride solution with DAM-TSC solution. Briefly, enzyme is incubated with 20 mM arginine, 10 mM sodium phosphate pH 7.4 for 5 min at 37° C. The reaction mixture is heated at 100° C for 5 min to develop the color and read at 540 nm (light path = 1 cm). A standard curve is constructed using various concentrations of citrulline. One unit of the ADI native enzyme is the amount of enzyme activity that converts 1 µmol of arginine to 1 µmol of citrulline per minute at

37°C under the assay conditions. The specific activities of wild-type ADI and AAD fusion protein in the present invention are 8.4 and 9.2 U/mg (at pH 7.4, physiological pH) respectively. The specific activities for wild-type ADI and AAD fusion protein at different pH range (from pH 5.5 to 9.5) are also determined, and the optimum pH is at 6.5. Therefore, the results indicate that AAD fusion protein depletes arginine efficiently, as the fusion with albumin-binding protein does not affect enzyme activity of ADI.

[0074] The Michaelis constant K_m is the substrate concentration at which the reaction rate is at half-maximum, and is an inverse measure of the substrate's affinity for the enzyme. A small K_m indicates high affinity for the substrate, and it means that the rate will approach the maximum reaction rate more quickly. For determination of the enzyme kinetics or K_m value, the activity of wild-type ADI and AAD fusion protein are measured under different concentration of substrate arginine (2000 μ M, 1000 μ M, 500 μ M, 250 μ M, 125 μ M, 62.5 μ M) at pH 7.4. The measured K_m values of the AAD fusion protein shown in FIG. 3E (SEQ ID NO: 40, ADI protein is originated from *Mycoplasma arginini*) and AAD fusion protein shown in FIG. 3F (SEQ ID NO: 41, ADI protein is originated from *Bacillus cereus*) are 0.0041 mM and 0.132 mM respectively. The results suggest that the fusion to ABD did not affect the binding affinity of the different AAD fusion proteins to arginine.

[0075] Example 5

[0076] Cell proliferation assay and *in vitro* efficacy of AAD fusion protein on cancer cell lines

[0077] Culture medium DMEM is used to grow the human melanoma A375 & SK-mel-28, human pancreatic cancer PancI and human cervical cancer C-33A cell lines. The EMEM medium is used to culture the SK-hep 1 liver cancer and C-33A cervical cancer cell line. Cancer cells $(2-5 \times 10^3)$ in 100 µl culture medium are seeded to the wells of 96-well plates and incubated for 24 h. The culture medium is replaced with medium containing different concentrations of AAD fusion protein. The plates are incubated for an additional 3 days at 37°C in an atmosphere of 95% air/5% CO₂. MTT assay is performed to estimate the number of viable cells in the culture according to manufacturer's instructions. The amount of enzyme needed to achieve 50% inhibition of cell growth is defined as IC₅₀.

[0078] As shown in TABLE 1 and FIG. 9, the results indicate that AAD fusion protein depletes arginine efficiently and inhibits the growth of various types of human cancer cell lines in *in vitro* tissue culture studies. For example, human melanoma, human colon carcinoma, human pancreatic cancer, human liver cancer and human cervical cancer, all have low values of IC_{50} (see TABLE 1), as these cancer types are all inhibited by AAD fusion protein readily. As predicted, AAD fusion protein would inhibit all cancer types that are arginine-dependent (for example, the ASS-negative cancers).

[0079] Example 6

[0080] In vivo half-life determination of AAD fusion protein

[0081] Balb/c mice (5-7 weeks) are used in this study and they are allowed to acclimatize for a week before the experiment. Mice (n=3) are separated into four groups and injected with 0, 100, 500 or 1000 μ g of AAD fusion protein (SEQ ID NO: 40, FIG. 3E) in 100 μ l PBS intraperitoneally, respectively. Blood of each mouse is collected at 0 h and Day 1-7. Sera are obtained after centrifugation. The sera are then deproteinised and analyzed by amino acid analyzer for arginine.

[0082] As shown in FIG. 11, AAD fusion protein (SEQ ID NO: 40, FIG. 3E), even at the lowest dosage of 100 μ g, depletes plasma arginine efficiently at Day 1, 3 and 5, suggesting that AAD can deplete arginine *in vivo* efficiently for at least 5 days. The arginine level returns to normal gradually at Day 6 and Day 7 in all treatment groups.

[0083] Example 7

[0084] In vivo efficacy of AAD fusion protein on cancer cell xenografts

[0085] Nude balb/c mice (5-7 weeks) are used in this study and they are allowed to acclimatize for a week before the experiment. Mice are inoculated subcutaneously with $2x10^6$ cancer cells in 100 µl of fresh culture medium. Ten days later, the mice are randomly separated into control and treatment group. Control group receives 100 µl PBS and treatment group receives 100 µl AAD fusion protein intraperitoneally weekly. Tumor size is measured by caliper and tumor volume is

calculated using formula: (length x width²)/2. Blood draw are obtained at Day 5 after each treatment for plasma measurement of arginine.

CLAIMS:

1. An albumin-binding arginine deiminase fusion protein comprising a first portion comprising one or two components selected from an albumin-binding domain, an albumin-binding peptide or an albumin-binding protein(s) fused to a second portion comprising arginine deiminase to form the albumin-binding arginine deiminase fusion protein, and one or more linker molecules; the first portion being positioned far from active site of the second portion by said linker molecule such that the albumin-binding arginine deiminase fusion protein retains the activity of arginine deiminase and binds serum albumin with neither function of one portion of the fusion protein being interfered with by the other portion of the fusion protein, wherein pegylation of said arginine deiminase is avoided, and wherein the albumin-binding arginine deiminase fusion protein protein deiminase fusion protein comprises a sequence selected from SEQ ID NO: 36, 37, 38, 39, 40, or 41.

2. The albumin-binding arginine deiminase fusion protein of claim 1 wherein the two components of the first portion are the same.

3. The albumin-binding arginine deiminase fusion protein of claim 1 wherein the two components of the first portion are different.

4. The albumin-binding arginine deiminase fusion protein of claim 1 wherein the albuminbinding domain is SEQ ID NO: 46, 47, 48, or 49.

5. The albumin-binding arginine deiminase fusion protein of claim 1 wherein the albumin binding peptide is SEQ ID NO: 46, 47, 48, or 49.

6. The albumin-binding arginine deiminase fusion protein of claim 1 wherein the albumin binding protein is SEQ ID NO: 46, 47, 48, or 49.

7. The albumin-binding arginine deiminase fusion protein of claim 1 wherein the linker molecule comprises a sequence selected from SEQ ID NO: 50, 51, 52, 53, or serine-glycine-serine (SGS) amino acid sequence.

8. The albumin-binding arginine deiminase fusion protein of claim 1 further comprising at least one of Poly-N or a His tag.

9. The albumin-binding arginine deiminase fusion protein of claim 1 wherein the fusion comprises a remaining portion of an intein-mediated protein ligation between the first portion and the second portion.

10. The albumin-binding arginine deiminase fusion protein of claim 10 wherein the inteinmediated protein comprises a chitin binding domain.

11. The albumin-binding arginine deiminase fusion protein of claim 1 wherein the arginine deiminase is selected from arginine deiminase produced from a *Mycoplasma*, *Lactococcus*, *Pseudomonas*, *Steptococcus*, *Escherichia*, *Mycobacterium* or *Bacillus* microorganism.

12. The albumin-binding arginine deiminase fusion protein of claim 11 wherein the arginine deiminase is produced from *Mycoplasma arginini*, *Lactococcus lactis*, *Bacillus licheniformis*, *Bacillus cereus*, *Mycoplasma arthritidis*, *Mycoplasma hominis*, *Streptococcus pyogenes*, *Streptococcus pneumonia*, *Streptococcus pneumoniae*, *Mycobacterium tuberculosis*, *Pseudomonas plecoglossicida*, *Pseudomonas putida*, *Pseudomonas aeruginosa* or a combination thereof.

13. The albumin-binding arginine deiminase fusion protein of claim 1 wherein the fusion protein is formed by reacting the arginine deiminase having a N-terminal cysteine residue with a reactive thioester at C-terminus of the albumin-binding domain so that the arginine deiminase and the albumin-binding domain are linked by a covalent bond.

14. The albumin-binding arginine deiminase fusion protein of claim 1 wherein the fusion protein is formed by reacting the albumin-binding domain having a N-terminal cysteine residue with a reactive thioester at C-terminus of the arginine deiminase so that the arginine deiminase and the albumin-binding domain are linked by a covalent bond.

15. The albumin-binding arginine deiminase fusion protein of claim 1 wherein the fusion protein is formed by using SEQ ID NOs: 42 and 43 and by reacting the arginine deiminase having a N-terminal cysteine residue with a reactive thioester at C-terminus of the albumin-binding domain so that the arginine deiminase and the albumin-binding domain are linked by a covalent bond.

16. A pharmaceutical composition comprising the albumin-binding arginine deiminase fusion protein of claim 1 in a pharmaceutically-acceptable carrier.

17. The pharmaceutical composition of claim 16 wherein the composition has a pH in a range of 5.5 to 9.5.

18. The pharmaceutical composition of claim 16 wherein the composition has a pH of 7.4.

19. The pharmaceutical composition of claim 16 wherein the composition has a pH of 6.5.

END OF CLAIMS

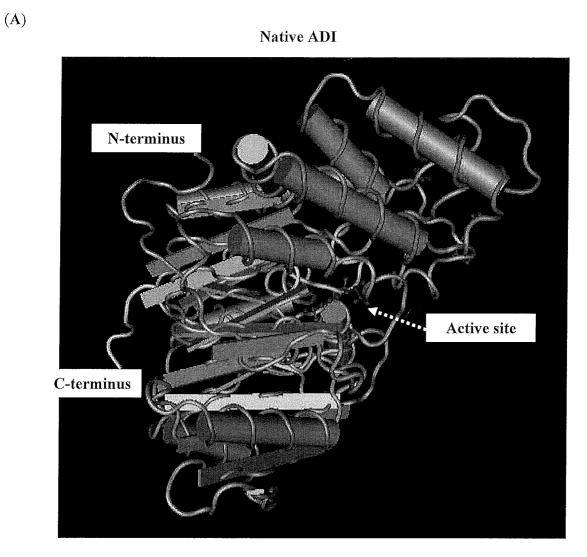
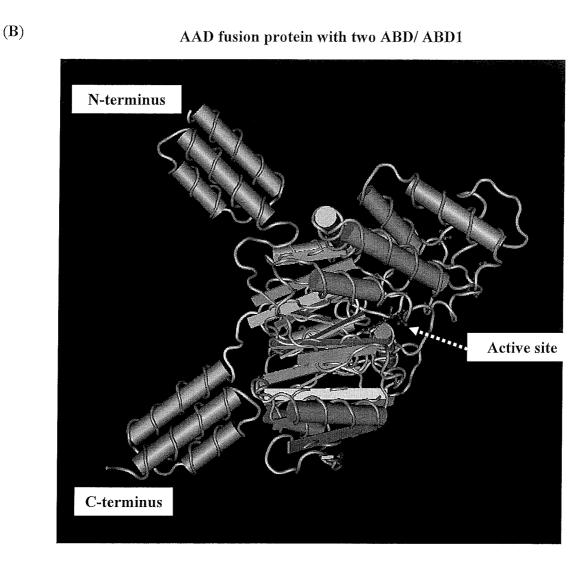



FIG. 1

SEQ ID NO: 46 ABD without linker: LAEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAALP

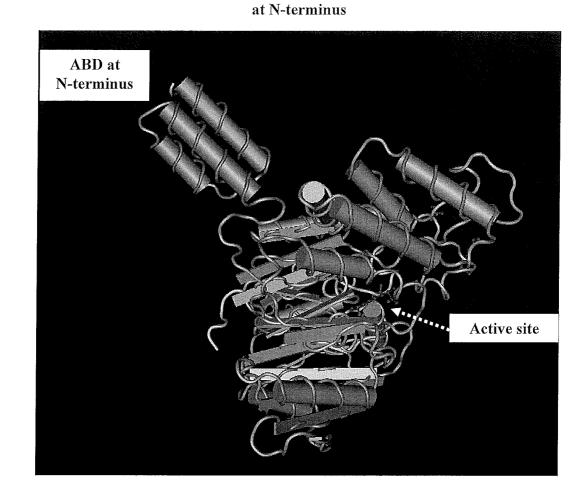
SEQ ID NO: 47

ABD with linker:

 $\label{eq:aquality} AQHDEAVDANSLAEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAALP$

SEQ ID NO: 48 ABD1 without linker: LAEAKVLANRELDKYGVSDFYKRLINKAKTVEGVEALKLHILAALP

SEQ ID NO: 49 ABD1 with linker: GSHHHHHHANSLAEAKVLANRELDKYGVSDFYKRLINKAKTVEGVEALKLHILAALP


FIG. 1 (continued)

3/22

AAD fusion protein with one ABD/ ABD1

2014225712 08 Jun 2017

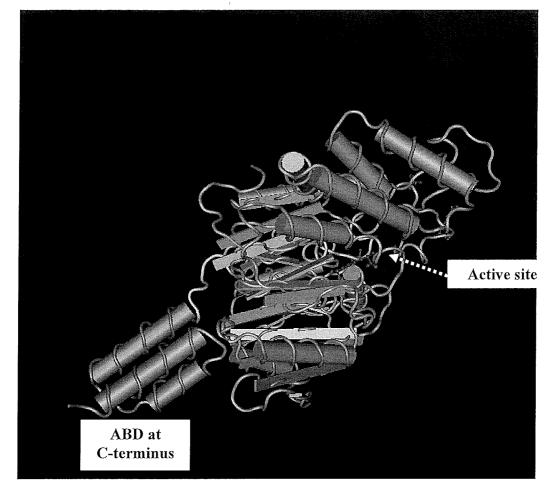
(C)

SEQ ID NO: 46 ABD without linker:

 ${\tt LAEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAALP}$

SEQ ID NO: 47

ABD with linker:


 $\label{eq:aqhdeavdanslaeakvlankeldkygvsdyyknlinnaktvegvkalideilaalp$

SEQ ID NO: 48 ABD1 without linker: LAEAKVLANRELDKYGVSDFYKRLINKAKTVEGVEALKLHILAALP

SEQ ID NO: 49 ABD1 with linker: GSHHHHHHANSLAEAKVLANRELDKYGVSDFYKRLINKAKTVEGVEALKLHILAALP

FIG. 1 (continued)

AAD fusion protein with one ABD/ ABD1 at C-terminus

SEQ ID NO: 46 ABD without linker: AEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAALP

SEQ ID NO: 47

ABD with linker:

AQHDEAVDANSLAEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAALP

SEQ ID NO: 48 ABD1 without linker: LAEAKVLANRELDKYGVSDFYKRLINKAKTVEGVEALKLHILAALP

SEQ ID NO: 49 ABD1 with linker: GSHHHHHHANSLAEAKVLANRELDKYGVSDFYKRLINKAKTVEGVEALKLHILAALP

FIG. 1 (continued)

(D)

Mycoplasma arginini 1	MSVFDSKFKGIHVYSEIGELESVLVHEPGREIDYITPARLDELLFSAILESHDARKEHKQ	60
Lactococcus lactis 1	MINGINVNSEIGKLKSVLLHRPGAEVENITPDTMKQLLFDDIPYLKIAQKEHDF	54
Bacillus cereus 1	MKHPIHVTSEIGELQTVLLKRPGKEVENLTPDYLQQLLFDDIPYLPIIQKEHDY	54
Bacillus licheniformis 1	MIMTTPIHVYSEIGPLKTVMLKRPGRELENLTPEYLERLLFDDIPFLPAVQKEHDQ	56
-	* * **** ****** ** *** *** * *** *	
61	FVAETKANDINVVELIDLVAETYDLASOEAKDKLIEEFLEDSEPVLSEEHKVVVRNFLKA	120
55	FAQTLRDNGAETVYIENLATEVFEKSSE-TKEEFLSHLLHEAGYRPGRTYDGL-TEYLT-	111
55	FAOTLENRGVEVLYLEKLAAEALVDK-K-LREEFVDRILKEGOADVNVAHOTL-KEYLL-	110
57	FAETLKOOGAEVLYLEKLTAEALDDA-L-VREQFIDELLTESKADINGAYDRL-KEFLL-	112
57		***
121	KKTSREIVEIMMAGITKYDLGIEADHELIVDFMPNLYFTRDPFASVGNG	169
112	SMPTKDMVEKVYAGVRKNELDIKRTALSDMAGSDAENYFYLNPLPNAYFTRDPOASMGVG	171
111	SFSNEELIQKINGGVRKNEIETSKKTHLYE-LMEDHYPFYLDPMPNLYFTRDPAASVGDG	169
113	TFDADSMVEOVMSGIRKNELEREKKSHLHE-LMEDHIFFILDFMPNLYFTRDFAAAIGSG	171
1 I I I I I I I I I I I I I I I I I I I	그는 그는 것 같아요. 그는 것 같아요. 그렇게 가지 않는 것이 있는 것이 가지 않는 것이 가지 않는 것 같아요. 그는 것 같아요. 정말 않는 것을 많은 것을 많이 많이 가지 않는 것을 못 하는 것이 나라 나라 가지 않는 것을 못 하는 것이 같아요. 그는 것 같아요. 그는 그는 것 같아요. 그는 그는 그는 것 같아요. 그는 그는 그는 것 같아요. 그는 그는 것 같아요. 그는 그는 그는 것 같아요. 그는 것 그 그는 그는 것 같아요. 그는 그는 것 그는 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 그는 것 그는 그는 것 같아요. 그는 것 같아요. 그는	μ. γ. <u>μ</u>
	:::::::::::::::::::::::::::::::::::	
170	VTIHYMRYKVRORETHFSRFVFSNHPKLINTPWYYDPSLKLSIEGGDVFIYNNDTLVV	227
170	MTINKMTFPAROPESLITEYVMANHPRFKDTPIWRDRNHTTRIEGGDELILNKTTVAI	229
172	LTINKMIFFARQFESHILLIVMANNFRFRDIFIWRDRNNIIRIEGGDELILNEITVAT	229
	LTINKMREFARRESLEMETTIKTHERRARINVETWIDRDIKEFTEGGDELTINEETTAT LTINKMKEPARRESLEMRYIINHHPREKGHEIPVWLDRDFKENIEGGDELVLNEETVAT	231
172	- 「「「「「「「」」」」「「「」」」」「「」」」「「」」」「「」」」」「「」」」」	231
	. * .*: *:*: **:: * : * ** :: *: *: *::	
		000
228	GVSERTDLQTVTLLAKNIVANKECEFKRIVAINVPKWTNLMHLDTWLTMLDKDKFLYSPI	287 289
230	GVSERTSSKTIQNLAKELFANPLSTFDTVLAVEIPHNHAMMHLDTVFTMINHDQFTVFPG	
230	GVSARTSAKAIERLAKNLFSRQ-NKIKKVLAIEIPKCRAFMHLDTVFTMVDYDKETIHPA	288
232	GVSERTTAQAIERLVRNLFQRQ-SRIRRVLAVEIPKSRAFMHLDTVFTMVDRDQFTIHPA	290
	*** ** ::: *.::. : ::*::*: :***** :**:: *:*	
288	ANDVFKFWDYDLYNGGAEPOPVENGLPLEGLLOSIINKKPVLIPTAGEGASOMEIERE	345
	방문 날만 모든 것 같아? 방문 만든 것인것 든 것만에 주겠었다. 그는 그는 것 같아가 있는 거씨에 집중하지 않았다? 가지에는 그 방문을 입었는 것이 않았다. 것 같아? 가지 않았다. 것 같아?	347
290	IMDGAGNINVFILRPGQDG-EVEIEHLTDLKAALKKVLNLSELDL-LECGAGDPIAAPRE	
289	IQGPKGNMNIYILEKGADEETLKITHRTSLMEALKEVLDLSELVL-IPCGGGDVIASARE	347
291	IQGPEGDMRIFVLERGKTADEIHTTEEHNLPEVLKRTLGLSDVNL-IFCGGGDEIASARE	349
المراجع		i n'n
346	THFDGTNYLAIRPGVVIGYSRNEKTNAALEAAGIKVLPFHGNQLSLGMGNARCMSMPLSR	405
348	QWNDGSNTLATAPGEIVTYDRNYVTVELLKEHGIKVHEILSSELGRGRGGARCMSQPLWR	407
348	QWNDGSNTLATAPGVVVTYDRNYVSNTLLREHGIEVIEVLSSELSRGRGGPRCMSMPIVR	407
350	QWNDGSNTLAIAPGVVVTYDRNYISNECLREQGIKVIEIPSGELSRGRGGPRCMSMPLYR	409
	:* * ** :: *.** : *. **:* :*. * **** *: *	
_ //		
406	KDVKW 410	
408	EDL 410	
408	KDI 410	
410	EDVK- 413	

FIG. 2

(A) SEQ ID NO: 36

ADI-linker-ABD 1

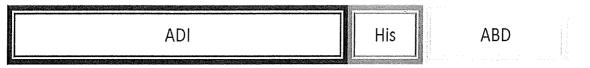
MSVFDSKFKGIHVYSEIGELESVLVHEPGREIDYITPARLDELLFSAILESHDARKEHKQ FVAELKANDINVVELIDLVAETYDLASQEAKDKLIEEFLEDSEPVLSEEHKVVVRNFLKA KKTSRELVEIMMAGITKYDLGIEADHELIVDPMPNLYFTRDPFASVGNGVTIHYMRYKVR QRETLFSRFVFSNHPKLINTPWYYDPSLKLSIEGGDVFIYNNDTLVVGVSERTDLQTVTL LAKNIVANKECEFKRIVAINVPKWTNLMHLDTWLTMLDKDKFLYSPIANDVFKFWDYDLV NGGAEPQPVENGLPLEGLLQSIINKKPVLIPIAGEGASQMEIERETHFDGTNYLAIRPGV VIGYSRNEKTNAALEAAGIKVLPFHGNQLSLGMGNARCMSMPLSRKDVKWGSHHHHHHAN <u>S</u>LAEAKVLANRELDKYGVSDFYKRLINKAKTVEGVEALKLHILAALP

(ABD 1: high affinity albumin binding domain; the linker is underlined.)

Linker 1 (SEQ ID NO: 50): GSHHHHHHHANS

(**B**) SEQ ID NO: 37

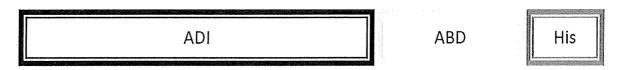
ADI-linker-ABD


MSVFDSKFKGIHVYSEIGELESVLVHEPGREIDYITPARLDELLFSAILESHDARKEHKQ FVAELKANDINVVELIDLVAETYDLASQEAKDKLIEEFLEDSEPVLSEEHKVVVRNFLKA KKTSRELVEIMMAGITKYDLGIEADHELIVDPMPNLYFTRDPFASVGNGVTIHYMRYKVR QRETLFSRFVFSNHPKLINTPWYYDPSLKLSIEGGDVFIYNNDTLVVGVSERTDLQTVTL LAKNIVANKECEFKRIVAINVPKWTNLMHLDTWLTMLDKDKFLYSPIANDVFKFWDYDLV NGGAEPQPVENGLPLEGLLQSIINKKPVLIPIAGEGASQMEIERETHFDGTNYLAIRPGV VIGYSRNEKTNAALEAAGIKVLPFHGNQLSLGMGNARCMSMPLSRKDVKWAQHDEAVDAN SLAEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAALP

(ABD: albumin binding domain; the linker is underlined.) -

Linker 2 (SEQ ID NO: 51): AQHDEAVDANS

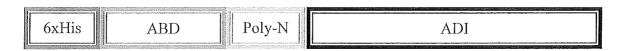
FIG. 3


(C) SEQ ID NO: 38

MSVFDSKFKGIHVYSEIGELESVLVHEPGREIDYITPARLDELLFSAILESHDARKEHKQ FVAELKANDINVVELIDLVAETYDLASQEAKDKLIEEFLEDSEPVLSEEHKVVVRNFLKA KKTSRELVEIMMAGITKYDLGIEADHELIVDPMPNLYFTRDPFASVGNGVTIHYMRYKVR QRETLFSRFVFSNHPKLINTPWYYDPSLKLSIEGGDVFIYNNDTLVVGVSERTDLQTVTL LAKNIVANKECEFKRIVAINVPKWTNLMHLDTWLTMLDKDKFLYSPIANDVFKFWDYDLV NGGAEPQPVENGLPLEGLLQSIINKKPVLIPIAGEGASQMEIERETHFDGTNYLAIRPGV VIGYSRNEKTNAALEAAGIKVLPFHGNQLSLGMGNARCMSMPLSRKDVKWHHHHHHAQHD EAVDANSLAEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAALP

(ABD: albumin binding domain; the linker is underlined.)

(**D**) SEQ ID NO: 39



MSVFDSKFKGIHVYSEIGELESVLVHEPGREIDYITPARLDELLFSAILESHDARKEHKQ FVAELKANDINVVELIDLVAETYDLASQEAKDKLIEEFLEDSEPVLSEEHKVVVRNFLKA KKTSRELVEIMMAGITKYDLGIEADHELIVDPMPNLYFTRDPFASVGNGVTIHYMRYKVR QRETLFSRFVFSNHPKLINTPWYYDPSLKLSIEGGDVFIYNNDTLVVGVSERTDLQTVTL LAKNIVANKECEFKRIVAINVPKWTNLMHLDTWLTMLDKDKFLYSPIANDVFKFWDYDLV NGGAEPQPVENGLPLEGLLQSIINKKPVLIPIAGEGASQMEIERETHFDGTNYLAIRPGV VIGYSRNEKTNAALEAAGIKVLPFHGNQLSLGMGNARCMSMPLSRKDVKWAQHDEAVDAN SLAEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAALPHHHHHH

(ABD: albumin binding domain; the linker is underlined.)

FIG. 3 (continued)

(E) SEQ ID NO: 40

MHHHHHDEAVDANSLAEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAAL PSGSNNNNNGSGGSVFDSKFKGIHVYSEIGELESVLVHEPGREIDYITPARLDELLFSA ILESHDARKEHKQFVAELKANDINVVELIDLVAETYDLASQEAKDKLIEEFLEDSEPVLS EEHKVVVRNFLKAKKTSRELVEIMMAGITKYDLGIEADHELIVDPMPNLYFTRDPFASVG NGVTIHYMRYKVRQRETLFSRFVFSNHPKLINTPWYYDPSLKLSIEGGDVFIYNNDTLVV GVSERTDLQTVTLLAKNIVANKECEFKRIVAINVPKWTNLMHLDTWLTMLDKDKFLYSPI ANDVFKFWDYDLVNGGAEPQPVENGLPLEGLLQSIINKKPVLIPIAGEGASQMEIERETH FDGTNYLAIRPGVVIGYSRNEKTNAALEAAGIKVLPFHGNQLSLGMGNARCMSMPLSRKD VKW

(*ABD*: albumin binding domain; the linker between His and ABD is underlined with solid line while the linker between Poly-N and ADI is underlined with dotted line.)

Linker 3 (SEQ ID NO: 52): DEAVDANS; Linker 4: SGS; Linker 5 (SEQ ID NO: 53): GSGG

FIG. 3 (continued)

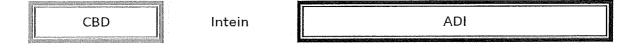
(F) SEQ ID NO: 41

MGHHHHHHDEAVDANSLAEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAALP SGSNNNNNGSGGKHPIHVTSEIGELQTVLLKRPGKEVENLTPDYLQQLLFDDIPYLPIIQK EHDYFAQTLRNRGVEVLYLEKLAAEALVDKKLREEFVDRILKEGQADVNVAHQTLKEYLLSF SNEELIQKIMGGVRKNEIETSKKTHLYELMEDHYPFYLDPMPNLYFTRDPAASVGDGLTINK MREPARRESLFMEYIIKYHPRFAKHNVPIWLDRDYKFPIEGGDELILNEETIAIGVSARTS AKAIERLAKNLFSRQNKIKKVLAIEIPKCRAFMHLDTVFTMVDYDKFTIHPAIQGPKGNMNI YILEKGADEETLKITHRTSLMEALKEVLDLSELVLIPCGGGDVIASAREQWNDGSNTLAIAP GVVVTYDRNYVSNTLLREHGIEVIEVLSSELSRGRGGPRCMSMPIVRKDI

(ABD: aroumin binding domain; the linker between His and ABD is underlined with solid line

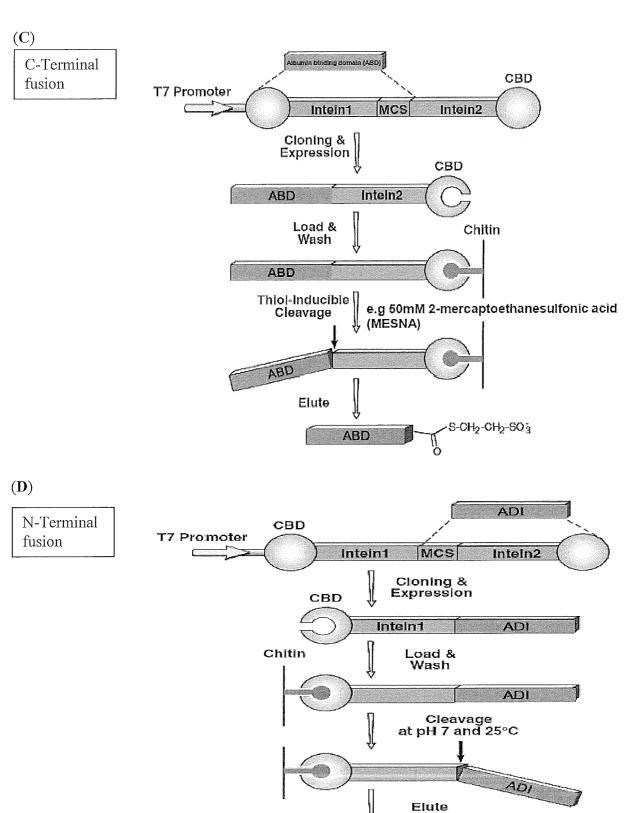
while the linker between Poly-N and bcADI is underlined with dotted line.)

Linker 3 (SEQ ID NO: 52): DEAVDANS; Linker 4: SGS; Linker 5 (SEQ ID NO: 53): GSGG


FIG. 3 (continued)

(A) SEQ ID NO: 42

		r
ABD	Intein	CBD


MAQHDEAVDANSLAEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAALPEF LEGSSCITGDALVALPEGESVRIADIVPGARPNSDNAIDLKVLDRHGNPVLADRLFHSGE HPVYTVRTVEGLRVTGTANHPLLCLVDVAGVPTLLWKLIDEIKPGDYAVIQRSAFSVDCA GFARGKPEFAPTTYTVGVPGLVRFLEAHHRDPDAQAIADELTDGRFYYAKVASVTDAGVQ PVYSLRVDTADHAFITNGFVSHATGLTGLNSGLTTNPGVSAWQVNTAYTAGQLVTYNGKT YKCLQPHTSLAGWEPSNVPALWQLQGDPITITITK

(**B**) SEQ ID NO: 43

MKIEEGKLTNPGVSAWQVNTAYTAGQLVTYNGKTYKCLQPHTSLAGWEPSNVPALWQLQNNGNN GLELRESGAISGDSLISLASTGKRVSIKDLLDEKDFEIWAINEQTMKLESAKVSRVFCTGKKLV YILKTRLGRTIKATANHRFLTIDGWKRLDELSLKEHIALPRKLESSSLQLSPEIEKLSQSDIYW DSIVSITETGVEEVFDLTVPGPHNFVANDIIVHNCSVFDSKFKGIHVYSEIGELESVLVHEPGR EIDYITPARLDELLFSAILESHDARKEHKQFVAELKANDINVVELIDLVAETYDLASQEAKDKL IEEFLEDSEPVLSEEHKVVVRNFLKAKKTSRELVEIMMAGITKYDLGIEADHELIVDPMPNLYF TRDPFASVGNGVTIHYMRYKVRQRETLFSRFVFSNHPKLINTPWYYDPSLKLSIEGGDVFIYNN DTLVVGVSERTDLQTVTLLAKNIVANKECEFKRIVAINVPKWTNLMHLDTWLTMLDKDKFLYSP IANDVFKFWDYDLVNGGAEPQPVENGLPLEGLLQSIINKKPVLIPIAGEGASQMEIERETHFDG TNYLAIRPGVVIGYSRNEKTNAALEAAGIKVLPFHGNQLSLGMGNARCMSMPLSRKDVKW

FIG. 4

Cys I

ļ

ADI

11/22

12/22

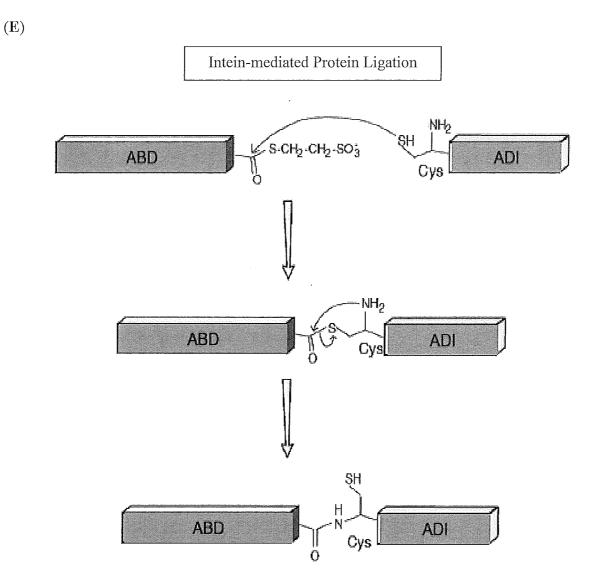
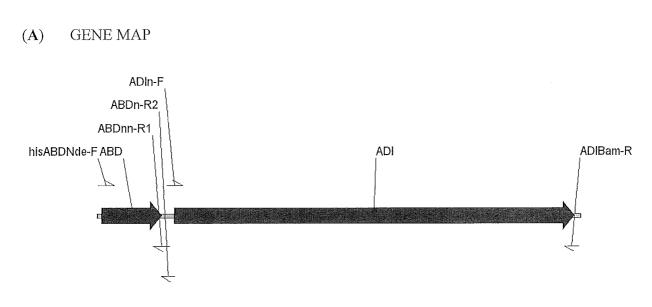



FIG. 4 (continued)

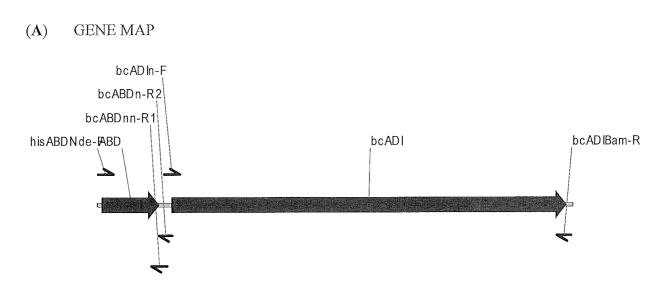
FIG. 5

(B) Nucleotide sequence of His-ABD-PolyN-ADI (1484 bp):

(SEQ ID NO: 44)

5′-

ATGCATCATCACCATCACCATGATGAAGCCGTGGATGCGAATTCCTTAGCTGAAGCTAAAGTCT TAGCTAACAGAGAACTTGACAAATATGGAGTAAGTGACTATTACAAGAACCTAATCAACAATGC CAAAACTGTTGAAGGTGTAAAAGCACTGATAGATGAAATTTTAGCTGCATTACCTTCGGGTAGT AACAACAATAATAACAATGGTAGCGGCGGTTCTGTATTTGACAGTAAATTTAAAGGAATTCACG TTTATTCAGAAATTGGTGAATTAGAATCAGTTCTAGTTCACGAACCAGGACGCGAAATTGACTA TATTACACCAGCTAGACTAGATGAATTATTATTCTCAGCTATCTTAGAAAGCCACGATGCTAGA ATTTAGTTGCTGAAACATATGATTTAGCATCACAAGAAGCTAAAGACAAATTAATCGAAGAATT TTTAGAAGACTCAGAACCAGTTCTATCAGAAGAACACAAAGTAGTTGTAAGAAACTTCTTAAAA GCTAAAAAAACATCAAGAGAATTAGTAGAAATCATGATGGCAGGGATCACAAAATACGATTTAG GTATCGAAGCAGATCACGAATTAATCGTTGACCCAATGCCAAACCTATACTTCACACGTGACCC ATTTGCATCAGTAGGTAATGGTGTAACAATCCACTACATGCGTTACAAAGTTAGACAACGTGAA ACATTATTCTCAAGATTTGTATTCTCAAATCACCCTAAACTAATTAACACTCCATGGTACTACG ACCCTTCACTAAAATTATCAATCGAAGGTGGGGGACGTATTTATCTACAACAATGACACATTAGT AGTTGGTGTTTCTGAAAGAACTGACTTACAAACAGTTACTTTATTAGCTAAAAACATTGTTGCT AATAAAGAATGTGAATTCAAACGTATTGTTGCAATTAACGTTCCAAAATGGACAAACTTAATGC ACTTAGACACATGGCTAACAATGTTAGACAAGGACAAATTCCTATACTCACCAATCGCTAATGA CGTATTTAAATTCTGGGATTATGACTTAGTAAACGGTGGAGCAGAACCACAACCAGTTGAAAAC GGATTACCTCTAGAAGGATTATTACAATCAATCATTAACAAAAAACCAGTTTTAATTCCTATCG CAGGTGAAGGTGCTTCACAAATGGAAATCGAAAGAGAAACACACTTCGATGGTACAAACTACTT GCTGCAGGCATTAAAGTTCTTCCATTCCACGGTAACCAATTATCATTAGGTATGGGTAACGCTC GTTGTATGTCAATGCCTTTATCACGTAAAGATGTTAAGTGGTAA-3'


FIG. 6

(C) Amino acid sequence of His-ABD-PolyN-ADI:(SEQ ID NO: 40)

M<u>HHHHHH</u>DEAVDANSLAEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAALP<u>SGSNNNNNNGSGG</u>SVF DSKFKGIHVYSEIGELESVLVHEPGREIDYITPARLDELLFSAILESHDARKEHKQFVAELKANDINVVELIDLVAET YDLASQEAKDKLIEEFLEDSEPVLSEEHKVVVRNFLKAKKTSRELVEIMMAGITKYDLGIEADHELIVDPMPNLYFTR DPFASVGNGVTIHYMRYKVRQRETLFSRFVFSNHPKLINTPWYYDPSLKLSIEGGDVFIYNNDTLVVGVSERTDLQTV TLLAKNIVANKECEFKRIVAINVPKWTNLMHLDTWLTMLDKDKFLYSPIANDVFKFWDYDLVNGGAEPQPVENGLPLE GLLQSIINKKPVLIPIAGEGASQMEIERETHFDGTNYLAIRPGVVIGYSRNEKTNAALEAAGIKVLPFHGNQLSLGMG NARCMSMPLSRKDVKW

(PolyN with linker: SGSNNNNNGSGG)

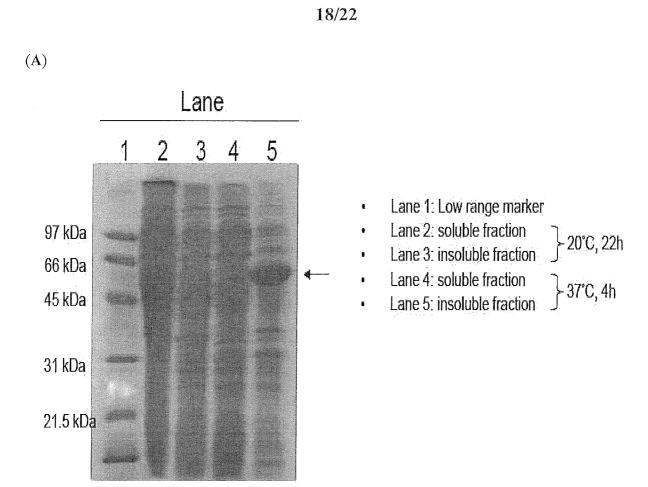
FIG. 6 (continued)

(B) The nucleotide sequence of His-ABD-PolyN–bcADI (1512 bp):

(SEQ ID NO: 45)

5′-

ATGGGTCATCATCACCATCACCATGATGAAGCCGTGGATGCGAACAGCTTAGCTGAAGCTAAAG TCTTAGCTAACAGAGAACTTGACAAATATGGAGTAAGTGACTATTACAAGAACCTAATCAACAA TGCCAAAACTGTTGAAGGTGTAAAAGCACTGATAGATGAAATTTTAGCTGCATTACCTTCGGGT AGTAACAACAATAATAACAATGGTAGCGGCGGTAAACATCCGATACATGTTACTTCAGAAATTG GGGAATTACAAACGGTTTTATTAAAACGACCGGGTAAAGAAGTGGAAAACTTGACGCCAGATTA TTTGCAGCAATTATTATTTGACGATATTCCATACCTACCAATTATTCAAAAAGAGCATGATTAT CGTTAGTAGATAAAAAACTTCGAGAAGAATTTGTTGATCGTATTTTAAAAGAAGGACAGGCCGA CAAAAAATTATGGGCGGTGTACGGAAAAACGAAATTGAAACAAGTAAGAAGACACATTTATATG AATTAATGGAAGATCATTATCCGTTTTACTTAGATCCAATGCCTAATTTATATTTTACTCGTGA TCCAGCAGCTAGCGTGGGCGATGGCTTAACGATAAATAAGATGAGAGAACCAGCGCGTAGACGT GAATCATTATTCATGGAGTACATCATTAAATATCATCCAAGATTTGCAAAACATAATGTACCAA TCTGGTTAGATCGTGATTATAAATTTCCAATTGAAGGTGGCGACGAGCTAATTTTAAATGAAGA AACAATTGCGATTGGAGTATCTGCTCGTACTTCAGCTAAAGCAATTGAACGTTTAGCAAAAAAT CTCTTTAGCCGACAAAATAAAATTAAGAAAGTGTTAGCAATAGAAATTCCAAAATGCCGAGCAT TTATGCATTTAGATACAGTATTTACAATGGTTGATTATGATAAGTTTACAATTCACCCAGCTAT TCAAGGGCCAAAAGGGAATATGAATATTTATATTTTTAGAAAAAGGAGCAGATGAGGAAACTCTT AAAATTACACATCGTACTTCTTTAATGGAAGCATTAAAAGAGGTATTAGACTTAAGTGAATTAG TTCTTATTCCATGTGGAGGAGGAGGAGGATGTAATTGCTTCTGCTCGTGAACAATGGAATGATGGCTC GAACACATTAGCAATCGCGCCAGGTGTAGTTGTTACATATGATCGCAACTATGTATCCAATACG TTATTACGGGAACACGGTATAGAAGTGATTGAGGTGCTAAGTTCAGAATTATCTCGTGGTCGTG GGGGTCCACGTTGCATGAGTATGCCAATTGTTCGTAAAGATATTTAA-3'


(C) The amino acid sequence of His-ABD-PolyN-bcADI:(SEQ ID NO: 41)

MGHHHHHHDEAVDANSLAEAKVLANRELDKYGVSDYYKNLINNAKTVEGVKALIDEILAALPSGSNNNNNNGSGGKH PIHVTSEIGELQTVLLKRPGKEVENLTPDYLQQLLFDDIPYLPIIQKEHDYFAQTLRNRGVEVLYLEKLAAEALVDKK LREEFVDRILKEGQADVNVAHQTLKEYLLSFSNEELIQKIMGGVRKNEIETSKKTHLYELMEDHYPFYLDPMPNLYFT RDPAASVGDGLTINKMREPARRESLFMEYIIKYHPRFAKHNVPIWLDRDYKFPIEGGDELILNEETIAIGVSARTSA KAIERLAKNLFSRQNKIKKVLAIEIPKCRAFMHLDTVFTMVDYDKFTIHPAIQGPKGNMNIYILEKGADEETLKITHR TSLMEALKEVLDLSELVLIPCGGGDVIASAREQWNDGSNTLAIAPGVVVTYDRNYVSNTLLREHGIEVIEVLSSELSR GRGGPRCMSMPIVRKDI

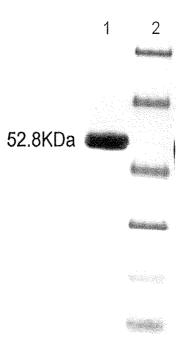
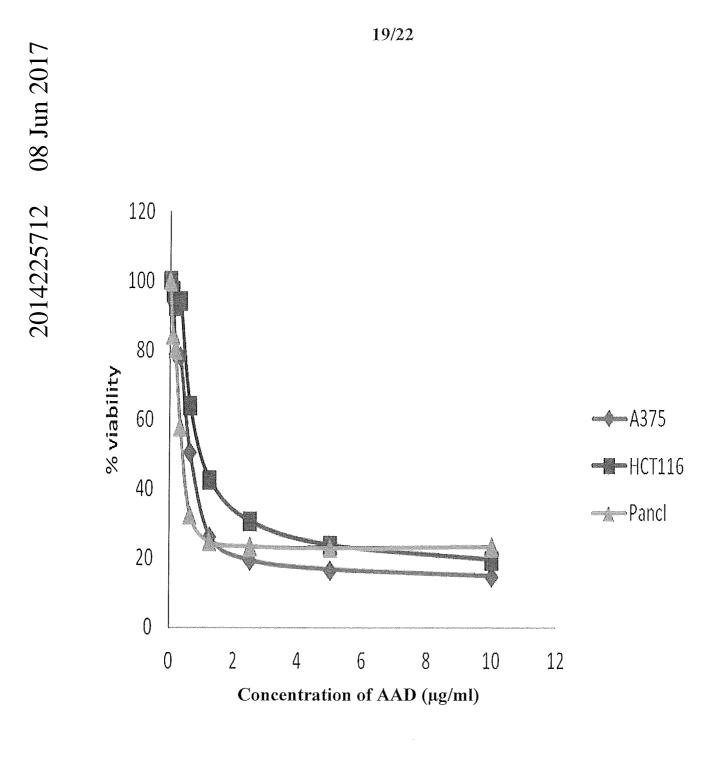
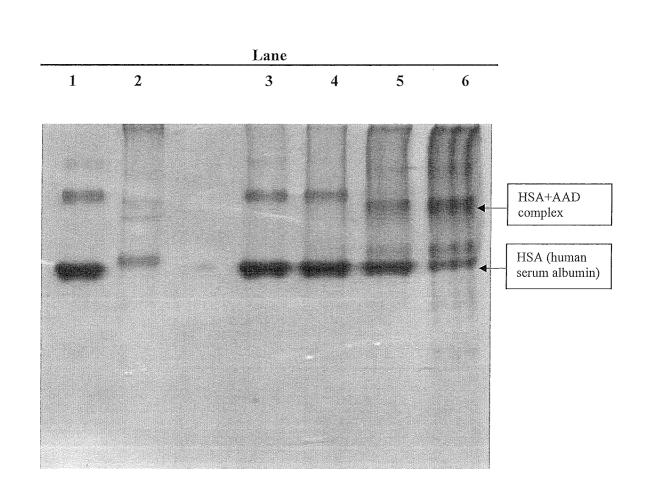
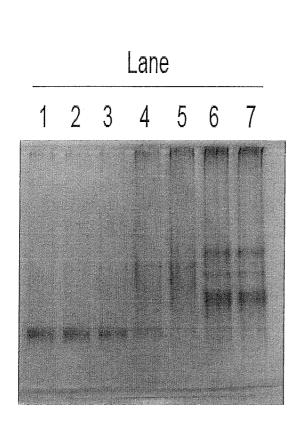

(PolyN with linker: <u>SGSNNNNNNGSGG</u>)

FIG. 7 (continued)

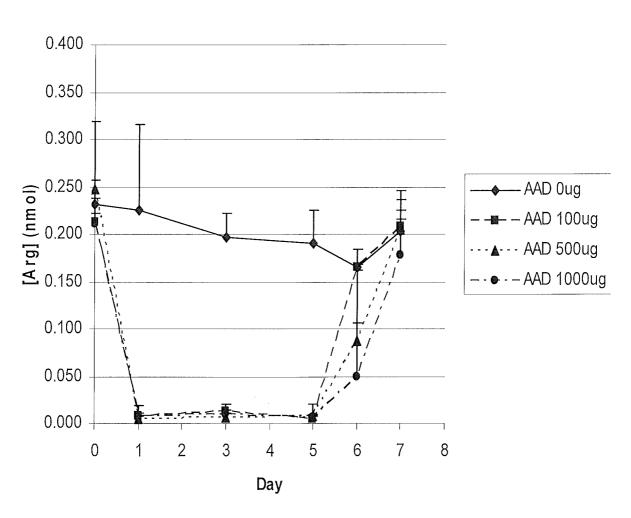
(B)

FIG. 8


FIG. 9

(A)



(B)

Lanes	No. of mole of albumin (pmole)	No. of mole of AAD (pmole)	Albumin : AAD
1	7.5	-	-
2	7.5	7.5	1:1
3	7.5	15	1:2
4	7.5	30	1:4
5	7.5	60	1:8
6	7.5	120	1:16
7	-	120	-

FIG. 10 (continued)

Effect of AAD on mice plasma arginine levels (n=3)

FIG. 11

•			
		P6890US01 - Complete Sequence Listing (Clean).txt SEQUENCE LISTING	
	<110>	Vision Global Holdings Ltd. WONG, Bing Lou	
	<120>	PHARMACEUTICAL COMPOSITION COMPRISING ALBUMIN-BINDING ARGININE DEIMINASE FOR CANCER TARGETING TREATMENT	
	<130>	P6890US01	
		PCT/US14/020943 2014-03-06	
		US 61/773,214 2013-03-06	
		US 14/197,236 2014-03-05	
	<160>	53	
	<170>	PatentIn version 3.5	
		1 50 DNA Artificial Sequence	
	<220> <223>	Primer,synthesized in lab	
	<400> catgat	1 gcga attccttagc tgaagctaaa gtcttagcta acagagaact	50
	<210> <211> <212> <213>	2 50 DNA Artificial Sequence	
	<220> <223>	Primer,synthesized in lab	
	<400> tagtca	2 ctta ctccatattt gtcaagttct ctgttagcta agactttagc	50
	.24.0.		

<210> 3

08 Jun 2017	<211> <212> <213> <220> <223>	P6890US01 - Complete Sequence Listing (Clean).txt 50 DNA Artificial Sequence Primer, synthesized in lab	
5712	<400> gaactt	3 tgaca aatatggagt aagtgactat tacaagaacc taatcaacaa	50
201422	<400> gaactt <210> <211> <212> <213>	4 50 DNA Artificial Sequence	
	<220> <223>	Primer, synthesized in lab	
	<400> tacacc	4 ettca acagttttgg cattgttgat taggttcttg taatagtcac	50
	<210> <211> <212> <213>	5 50 DNA Artificial Sequence	
	<220>		
	<223>	Primer, synthesized in lab	
	<400> gccaaa	5 actg ttgaaggtgt aaaagcactg atagatgaaa ttttagctgc	50
	<210> <211> <212> <213>	6 48 DNA Artificial Sequence	
	<220>		
	<223>	Primer, synthesized in lab	
	<400> agctac	6 gata agcttaaggt aatgcagcta aaatttcatc tatcagtg	48
	<210>	7	

Jun 2017		P6890US01 - Complete Sequence Listing (Clean).txt 50 DNA Artificial Sequence	
08		Primer, synthesized in lab	
5712	<400> catgat	7 gcga attccttagc tgaagctaaa gtcttagcta acagagaact	50
201422	<210> <210> <211> <212> <213>	8 48 DNA Artificial Sequence	
	<220> <223>	Primer, synthesized in lab	
	<400> agctac	8 gata agcttaaggt aatgcagcta aaatttcatc tatcagtg	48
	<210> <211> <212> <213>	9 37 DNA Artificial Sequence	
	<220> <223>	Primer, synthesized in lab	
	<400> atcgat	9 cgat gtctgtattt gacagtaaat ttaaagg	37
	<210> <211> <212> <213>	10 51 DNA Artificial Sequence	
	<220> <223>	Primer, synthesized in lab	
	<400> agctaa	10 ggaa ttcgcatcat gatggtgatg gtggtggcta ccccacttaa c	51
	<210N	11	

<210> 11

08 Jun 2017	<211> <212> <213> <220> <223>	P6890US01 - Complete Sequence Listing (Clean).txt 37 DNA Artificial Sequence Primer, synthesized in lab	
25712	<400> atcgat	11 ccgat gtctgtattt gacagtaaat ttaaagg	37
20142	<400> atcgat <210> <211> <212> <213>	12 48 DNA Artificial Sequence	
	<220> <223>	Primer, synthesized in lab	
	<400> agctac	12 gata agcttaaggt aatgcagcta aaatttcatc tatcagtg	48
	<210> <211> <212> <213>	13 49 DNA Artificial Sequence	
	<220> <223>	Primer, synthesized in lab	
	<400> ggagat	13 atac atatgcatca tcaccatcac catgatgaag ccgtggatg	49
	<210> <211> <212> <213>	14 50 DNA Artificial Sequence	
	<22Ø> <223>	Primer, synthesized in lab	
	<400> ttgtta	14 ttat tgttgttact acccgaaggt aatgcagcta aaatttcatc	50
	<210>	15	

08 Jun 2017	<211> <212> <213> <220> <223>	P6890US01 - Complete Sequence Listing (Clean).txt 42 DNA Artificial Sequence Primer, synthesized in lab	
25712		15 gccg ctaccattgt tattattgtt gttactaccc ga	42
201423	<400> agaacc <210> <211> <212> <213>	16 50 DNA Artificial Sequence	
	<220> <223>	Primer, synthesized in lab	
	<400> aataat	16 aaca atggtagcgg cggttctgta tttgacagta aatttaaagg	50
	<210> <211> <212> <213>	17 44 DNA Artificial Sequence	
	<220> <223>	Primer, synthesized in lab	
	<400> tagatc	17 aatg gatccttacc acttaacatc tttacgtgat aaag	44
	<210> <211> <212> <213>	18 49 DNA Artificial Sequence	
	<220> <223>	Primer, synthesized in lab	
	<400> ggagata	18 atac atatgcatca tcaccatcac catgatgaag ccgtggatg	49
	<210>	19	

08 Jun 2017	<211> <212> <213> <220>	P6890US01 - Complete Sequence Listing (Clean).txt 50 DNA Artificial Sequence	
•	<223>	Primer, synthesized in lab	
25712	<400> ttgtta	19 ttat tgttgttact acccgaaggt aatgcagcta aaatttcatc	50
201423	<400> ttgtta <210> <211> <212> <213>	20 42 DNA Artificial Sequence	
	<220> <223>	Primer, synthesized in lab	
	<400> tttacc	20 gccg ctaccattgt tattattgtt gttactaccc ga	42
	<210> <211> <212> <213>	21 50 DNA Artificial Sequence	
	<220> <223>	Primer, synthesized in lab	
	<400> aataat	21 aaca atggtagcgg cggtaaacat ccgatacatg ttacttcaga	50
	<210> <211> <212> <213>	22 44 DNA Artificial Sequence	
	<220> <223>	Primer, synthesized in lab	
	<400> tagatca	22 aatg gatccctaaa tatctttacg aacaattggc atac	44
	<210>	23	

Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt <211> <212> PRT <213> Mycoplasma arginini <400> Met Ser Val Phe Asp Ser Lys Phe Lys Gly Ile His Val Tyr Ser Glu Ile Gly Glu Leu Glu Ser Val Leu Val His Glu Pro Gly Arg Glu Ile Asp Tyr Ile Thr Pro Ala Arg Leu Asp Glu Leu Leu Phe Ser Ala Ile Leu Glu Ser His Asp Ala Arg Lys Glu His Lys Gln Phe Val Ala Glu Leu Lys Ala Asn Asp Ile Asn Val Val Glu Leu Ile Asp Leu Val Ala Glu Thr Tyr Asp Leu Ala Ser Gln Glu Ala Lys Asp Lys Leu Ile Glu Glu Phe Leu Glu Asp Ser Glu Pro Val Leu Ser Glu Glu His Lys Val Val Val Arg Asn Phe Leu Lys Ala Lys Lys Thr Ser Arg Glu Leu Val Glu Ile Met Met Ala Gly Ile Thr Lys Tyr Asp Leu Gly Ile Glu Ala Asp His Glu Leu Ile Val Asp Pro Met Pro Asn Leu Tyr Phe Thr Arg Asp Pro Phe Ala Ser Val Gly Asn Gly Val Thr Ile His Tyr Met Arg

					P€	5890l	JS01	- Co	omple	ete S	Seque	ence	List	ing	(Cle	ean).txt
	Tyr	Lys	Val	Arg 180		Arg	Glu	Thr	Leu 185	Phe	Ser	Arg	Phe	Val 190	Phe	Ser
711	Asn	His	Pro 195	Lys	Leu	Ile	Asn	Thr 200	Pro	Trp	Tyr	Tyr	Asp 205	Pro	Ser	Leu
	Lys	Leu 210		Ile	Glu	Gly	Gly 215	Asp	Val	Phe	Ile	Tyr 220	Asn	Asn	Asp	Thr
1	Leu 225	Val	Val	Gly	Val	Ser 230	Glu	Arg	Thr	Asp	Leu 235	Gln	Thr	Val	Thr	Leu 240
	Leu	Ala	Lys	Asn	Ile 245	Val	Ala	Asn	Lys	Glu 250	Cys	Glu	Phe	Lys	Arg 255	Ile
	Val	Ala	Ile	Asn 260	Val	Pro	Lys	Trp	Thr 265	Asn	Leu	Met	His	Leu 270	Asp	Thr
	Trp	Leu	Thr 275	Met	Leu	Asp	Lys	Asp 280	Lys	Phe	Leu	Tyr	Ser 285	Pro	Ile	Ala
	Asn	Asp 290	Val	Phe	Lys	Phe	Trp 295	Asp	Tyr	Asp	Leu	Val 300	Asn	Gly	Gly	Ala
	Glu 305	Pro	Gln	Pro	Val	Glu 310	Asn	Gly	Leu	Pro	Leu 315	Glu	Gly	Leu	Leu	Gln 320
	Ser	Ile	Ile	Asn	Lys 325	Lys	Pro	Val	Leu	Ile 330	Pro	Ile	Ala	Gly	Glu 335	Gly
	Ala	Ser	Gln	Met 340	Glu	Ile	Glu	Arg	Glu 345	Thr	His	Phe	Asp	Gly 350	Thr	Asn
	Tyr	Leu	Ala 355	Ile	Arg	Pro	Gly	Val 360	Val		-	-	Ser 365	Arg	Asn	Glu
										ł	age	ъ				

				Pé	5890L	JS01	- Cc	omple	ete S	Seque	ence	List	ing	(Cle	an).txt
Lys	Thr 370		Ala	Ala	Leu	Glu 375	Ala	Ala	Gly	Ile	Lys 380	Val	Leu	Pro	Phe
His 385	Gly	Asn	Gln	Leu	Ser 390	Leu	Gly	Met	Gly	Asn 395		Arg	Cys	Met	Ser 400
Met	Pro	Leu	Ser	Arg 405	Lys	Asp	Val	Lys	Trp 410						
<210 <211 <212 <213	1> 4 2> 1	24 410 PRT Lacto	0000	cus 1	lact:	is									
<400)> :	24													
Met 1	Asn	Asn	Gly	Ile 5	Asn	Val	Asn	Ser	Glu 10	Ile	Gly	Lys	Leu	Lys 15	Ser
Val	Leu	Leu	His 20	Arg	Pro	Gly	Ala	Glu 25	Val	Glu	Asn	Ile	Thr 30	Pro	Asp
Thr	Met	Lys 35	Gln	Leu	Leu	Phe	Asp 40	Asp	Ile	Pro	Tyr	Leu 45	Lys	Ile	Ala
Gln	Lys 50	Glu	His	Asp	Phe	Phe 55	Ala	Gln	Thr	Leu	Arg 60	Asp	Asn	Gly	Ala
Glu 65	Thr	Val	Tyr	Ile	Glu 70	Asn	Leu	Ala	Thr	Glu 75	Val	Phe	Glu	Lys	Ser 80
Ser	Glu	Thr	Lys	Glu 85	Glu	Phe	Leu	Ser	His 90	Leu	Leu	His	Glu	Ala 95	Gly
Tyr	Arg	Pro	Gly 100	Arg	Thr	Tyr	Asp	Gly 105	Leu	Thr	Glu	Tyr	Leu 110	Thr	Ser

101					Pe	5890l	JSØ1	- Co	omple	ete S	Seque	ence	List	ing	(Cle	ean).txt
nu vull	Met	Pro	Thr 115		Asp	Met	Val	Glu 120	-	Val	Tyr	Ala	Gly 125	Val	Arg	Lys
	Asn	Glu 130		Asp	Ile	Lys	Arg 135	Thr	Ala	Leu	Ser	Asp 140	Met	Ala	Gly	Ser
	Asp 145	Ala	Glu	Asn	Tyr	Phe 150	Tyr	Leu	Asn	Pro	Leu 155	Pro	Asn	Ala	Tyr	Phe 160
	Thr	Arg	Asp	Pro	Gln 165	Ala	Ser	Met	Gly	Val 170	Gly	Met	Thr	Ile	Asn 175	Lys
	Met	Thr	Phe	Pro 180	Ala	Arg	Gln	Pro	Glu 185	Ser	Leu	Ile	Thr	Glu 190	Tyr	Val
	Met	Ala	Asn 195	His	Pro	Arg	Phe	Lys 200	Asp	Thr	Pro	Ile	Trp 205	Arg	Asp	Arg
	Asn	His 210	Thr	Thr	Arg	Ile	Glu 215	Gly	Gly	Asp	Glu	Leu 220	Ile	Leu	Asn	Lys
	Thr 225	Thr	Val	Ala	Ile	Gly 230	Val	Ser	Glu	Arg	Thr 235	Ser	Ser	Lys	Thr	Ile 240
	Gln	Asn	Leu	Ala	Lys 245	Glu	Leu	Phe	Ala	Asn 250	Pro	Leu	Ser	Thr	Phe 255	Asp
	Thr	Val	Leu	Ala 260	Val	Glu	Ile	Pro	His 265	Asn	His	Ala	Met	Met 270	His	Leu
	Asp	Thr	Val 275	Phe	Thr	Met	Ile	Asn 280	His	Asp	Gln	Phe	Thr 285	Val	Phe	Pro
	Gly	Ile 290	Met	Asp	Gly	Ala	Gly 295	Asn	Ile	Asn	Val	Phe 300	Ile	Leu	Arg	Pro

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Gly Gln Asp Gly Glu Val Glu Ile Glu His Leu Thr Asp Leu Lys Ala Ala Leu Lys Lys Val Leu Asn Leu Ser Glu Leu Asp Leu Ile Glu Cys Gly Ala Gly Asp Pro Ile Ala Ala Pro Arg Glu Gln Trp Asn Asp Gly Ser Asn Thr Leu Ala Ile Ala Pro Gly Glu Ile Val Thr Tyr Asp Arg Asn Tyr Val Thr Val Glu Leu Leu Lys Glu His Gly Ile Lys Val His Glu Ile Leu Ser Ser Glu Leu Gly Arg Gly Arg Gly Gly Ala Arg Cys Met Ser Gln Pro Leu Trp Arg Glu Asp Leu <210> <211> <212> PRT <213> Bacillus cereus <400> Met Lys His Pro Ile His Val Thr Ser Glu Ile Gly Glu Leu Gln Thr Val Leu Leu Lys Arg Pro Gly Lys Glu Val Glu Asn Leu Thr Pro Asp Tyr Leu Gln Gln Leu Leu Phe Asp Asp Ile Pro Tyr Leu Pro Ile Ile

P6890US01 - Complete Sequence Listing (Clean).txt Gln Lys Glu His Asp Tyr Phe Ala Gln Thr Leu Arg Asn Arg Gly Val Glu Val Leu Tyr Leu Glu Lys Leu Ala Ala Glu Ala Leu Val Asp Lys Lys Leu Arg Glu Glu Phe Val Asp Arg Ile Leu Lys Glu Gly Gln Ala Asp Val Asn Val Ala His Gln Thr Leu Lys Glu Tyr Leu Leu Ser Phe Ser Asn Glu Glu Leu Ile Gln Lys Ile Met Gly Gly Val Arg Lys Asn Glu Ile Glu Thr Ser Lys Lys Thr His Leu Tyr Glu Leu Met Glu Asp His Tyr Pro Phe Tyr Leu Asp Pro Met Pro Asn Leu Tyr Phe Thr Arg Asp Pro Ala Ala Ser Val Gly Asp Gly Leu Thr Ile Asn Lys Met Arg Glu Pro Ala Arg Arg Arg Glu Ser Leu Phe Met Glu Tyr Ile Ile Lys Tyr His Pro Arg Phe Ala Lys His Asn Val Pro Ile Trp Leu Asp Arg Asp Tyr Lys Phe Pro Ile Glu Gly Gly Asp Glu Leu Ile Leu Asn Glu Glu Thr Ile Ala Ile Gly Val Ser Ala Arg Thr Ser Ala Lys Ala Ile

Page 12

P6890US01 - Complete Sequence Listing (Clean).txt Glu Arg Leu Ala Lys Asn Leu Phe Ser Arg Gln Asn Lys Ile Lys Lys Val Leu Ala Ile Glu Ile Pro Lys Cys Arg Ala Phe Met His Leu Asp Thr Val Phe Thr Met Val Asp Tyr Asp Lys Phe Thr Ile His Pro Ala Ile Gln Gly Pro Lys Gly Asn Met Asn Ile Tyr Ile Leu Glu Lys Gly Ala Asp Glu Glu Thr Leu Lys Ile Thr His Arg Thr Ser Leu Met Glu Ala Leu Lys Glu Val Leu Asp Leu Ser Glu Leu Val Leu Ile Pro Cys Gly Gly Gly Asp Val Ile Ala Ser Ala Arg Glu Gln Trp Asn Asp Gly Ser Asn Thr Leu Ala Ile Ala Pro Gly Val Val Val Thr Tyr Asp Arg Asn Tyr Val Ser Asn Thr Leu Leu Arg Glu His Gly Ile Glu Val Ile Glu Val Leu Ser Ser Glu Leu Ser Arg Gly Arg Gly Gly Pro Arg Cys Met Ser Met Pro Ile Val Arg Lys Asp Ile <210> <211> <212> PRT

<213> Bacillus licheniformis

Page 13

				P	5890l	JSØ1	- Co	omple	ete S	Seque	ence	List	ing	(Cle	ean).txt
<40	90>	26													
Met	Ile	e Met	Thr	Thr 5	Pro	Ile	His	Val	Tyr 10	Ser	Glu	Ile	Gly	Pro 15	Leu
Ly≤	5 Thr	• Val	Met 20	Leu	Lys	Arg	Pro	Gly 25	Arg	Glu	Leu	Glu	Asn 30	Leu	Thr
Pro	o Glu	Tyr 35	Leu	Glu	Arg	Leu	Leu 40	Phe	Asp	Asp	Ile	Pro 45	Phe	Leu	Pro
Ala	Val 50	Gln	Lys	Glu	His	Asp 55	Gln	Phe	Ala	Glu	Thr 60	Leu	Lys	Gln	Gln
Gly 65	Ala	Glu	Val	Leu	Tyr 70	Leu	Glu	Lys	Leu	Thr 75	Ala	Glu	Ala	Leu	Asp 80
Asp	Ala	Leu	Val	Arg 85	Glu	Gln	Phe	Ile	Asp 90	Glu	Leu	Leu	Thr	Glu 95	Ser
Lys	Ala	Asp	Ile 100	Asn	Gly	Ala	Tyr	Asp 105	Arg	Leu	Lys	Glu	Phe 110	Leu	Leu
Thr	Phe	Asp 115	Ala	Asp	Ser	Met	Val 120	Glu	Gln	Val	Met	Ser 125	Gly	Ile	Arg
Lys	Asn 130	Glu	Leu	Glu	Arg	Glu 135	Lys	Lys	Ser	His	Leu 140	His	Glu	Leu	Met
Glu 145	Asp	His	Tyr	Pro	Phe 150	Tyr	Leu	Asp	Pro	Met 155	Pro	Asn	Leu	Tyr	Phe 160
Thr	Arg	Asp	Pro	Ala 165	Ala	Ala	Ile	Gly	Ser 170	Gly	Leu	Thr	Ile	Asn 175	Lys
Met	Lys	Glu	Pro	Ala	Arg	Arg	Arg	Glu		Leu age		Met	Arg	Tyr	Ile

08 Jun 2017	Ile	Asn	His 195	180 His					185 Gly		·			190 Val		ean).txt Leu
5712	Asp	Arg 210	Asp	Phe	Lys	Phe	Asn 215		Glu	Gly	Gly	Asp 220		Leu	Val	Leu
2014225712	Asn 225	Glu	Glu	Thr	Val	Ala 230	Ile	Gly	Val	Ser	Glu 235	Arg	Thr	Thr	Ala	Gln 240
0		Ile	Glu	Arg	Leu 245	Val	Arg	Asn	Leu	Phe 250	Gln	Arg	Gln	Ser	Arg 255	Ile
	Arg	Arg	Val	Leu 260	Ala	Val	Glu	Ile	Pro 265	Lys	Ser	Arg	Ala	Phe 270	Met	His
	Leu	Asp	Thr 275	Val	Phe	Thr	Met	Val 280	Asp	Arg	Asp	Gln	Phe 285	Thr	Ile	His
	Pro	Ala 290	Ile	Gln	Gly	Pro	Glu 295	Gly	Asp	Met	Arg	Ile 300	Phe	Val	Leu	Glu
	4rg 305	Gly	Lys	Thr	Ala	Asp 310	Glu	Ile	His	Thr	Thr 315	Glu	Glu	His	Asn	Leu 320
	Pro	Glu	Val	Leu	Lys 325	Arg	Thr	Leu	Gly	Leu 330	Ser	Asp	Val	Asn	Leu 335	Ile
	Phe	Cys	Gly	Gly 340	Gly	Asp	Glu	Ile	Ala 345	Ser	Ala	Arg	Glu	Gln 350	Trp	Asn
	Asp	Gly	Ser 355	Asn	Thr	Leu	Ala	Ile 360	Ala	Pro	Gly	Val	Val 365	Val	Thr	Tyr
	Asp	Arg	Asn	Tyr	Ile	Ser	Asn	Glu	Cys		Arg age		Gln	Gly	Ile	Lys

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Val Ile Glu Ile Pro Ser Gly Glu Leu Ser Arg Gly Arg Gly Gly Pro Arg Cys Met Ser Met Pro Leu Tyr Arg Glu Asp Val Lys <210> <211> PRT <212> <213> Mycoplasma arthritidis <400> Met Ser Val Phe Asp Ser Lys Phe Lys Gly Ile His Val Tyr Ser Glu Ile Gly Glu Leu Glu Thr Val Leu Val His Glu Pro Gly Lys Glu Ile Asp Tyr Ile Thr Pro Ala Arg Leu Asp Glu Leu Leu Phe Ser Ala Ile Leu Glu Ser His Asp Ala Arg Lys Glu His Lys Glu Phe Val Ala Glu Leu Lys Lys Arg Gly Ile Asn Val Val Glu Leu Val Asp Leu Ile Val Glu Thr Tyr Asp Leu Ala Ser Lys Glu Ala Lys Glu Lys Leu Leu Glu Glu Phe Leu Asp Asp Ser Val Pro Val Leu Ser Asp Glu His Arg Ala Ala Val Lys Lys Phe Leu Gln Ser Gln Lys Ser Thr Arg Ser Leu Val

					P€	589Øl	JS01	- Co	omple	ete S	Seque	ence	List	ting	(Cle	ean).txt
nn on	Glu	Tyr 130		Ile	Ala	Gly	Ile 135	Thr	Lys	His	Asp	Leu 140	Lys	Ile	Glu	Ser
112	Asp 145	Leu	Glu	Leu	Ile	Val 150	Asp	Pro	Met	Pro	Asn 155	Leu	Tyr	Phe	Thr	Arg 160
014440	Asp	Pro	Phe	Ala	Ser 165	Val	Gly	Asn	Gly	Val 170	Thr	Ile	His	Tyr	Met 175	Arg
77	Tyr	Lys	Val	Arg 180	Gln	Arg	Glu	Thr	Leu 185	Phe	Ser	Arg	Phe	Val 190	Phe	Ser
	Asn	His	Pro 195	Lys	Leu	Val	Asn	Thr 200	Pro	Trp	Tyr	Tyr	Asp 205	Pro	Ala	Glu
	Gly	Leu 210	Ser	Ile	Glu	Gly	Gly 215	Asp	Val	Phe	Ile	Tyr 220	Asn	Asn	Asp	Thr
	Leu 225	Val	Val	Gly	Val	Ser 230	Glu	Arg	Thr	Asp	Leu 235	Gln	Thr	Ile	Thr	Leu 240
	Leu	Ala	Lys	Asn	Ile 245	Lys	Ala	Asn	Lys	Glu 250	Cys	Glu	Phe	Lys	Arg 255	Ile
	Val	Ala	Ile	Asn 260	Val	Pro	Lys	Trp	Thr 265	Asn	Leu	Met	His	Leu 270	Asp	Thr
	Trp	Leu	Thr 275	Met	Leu	Asp	Lys	Asp 280	Lys	Phe	Leu	Tyr	Ser 285	Pro	Ile	Ala
	Asn	Asp 290	Val	Phe	Lys	Phe	Trp 295	Asp	Tyr	Asp	Leu	Val 300	Asn	Gly	Gly	Asp
	Ala 305	Pro	Gln	Pro	Val	Asp 310	Asn	Gly	Leu		315	Glu	Asp	Leu	Leu	Lys 320
										Pa	age	17				

1071					P6	5890L	JS01	- Cc	omple	ete S	Seque	ence	List	ing	(Cl€	ean).tx	t
	Ser	Ile	Ile	Gly	Lys 325	Lys	Pro	Thr	Leu	Ile 330	Pro	Ile	Ala	Gly	Ala 335	Gly	
111	Ala	Ser	Gln	Ile 340	Asp	Ile	Glu	Arg	Glu 345	Thr	His	Phe	Asp	Gly 350	Thr	Asn	
	Tyr	Leu	Ala 355	Val	Ala	Pro	Gly	Ile 360	Val	Ile	Gly	Tyr	Ala 365	Arg	Asn	Glu	
1	Lys	Thr 370	Asn	Ala	Ala	Leu	Glu 375	Ala	Ala	Gly	Ile	Thr 380	Val	Leu	Pro	Phe	
	Arg 385	Gly	Asn	Gln	Leu	Ser 390	Leu	Gly	Met	Gly	Asn 395	Ala	Arg	Cys	Met	Ser 400	
	Met	Pro	Leu	Ser	Arg 405	Lys	Asp	Val	Lys								
	<210> 28 <211> 409 <212> PRT <213> Mycoplasma hominis																
	<400)> 2	28														
	Met 1	Ser	Val	Phe	Asp 5	Ser	Lys	Phe	Asn	Gly 10	Ile	His	Val	Tyr	Ser 15	Glu	
	Ile	Gly	Glu	Leu 20	Glu	Thr	Val	Leu	Val 25	His	Glu	Pro	Gly	Arg 30	Glu	Ile	
	Asp	Tyr	Ile 35	Thr	Pro	Ala	Arg	Leu 40	Asp	Glu	Leu	Leu	Phe 45	Ser	Ala	Ile	
	Leu	Glu 50	Ser	His	Asp	Ala	Arg 55	Lys	Glu	His	Gln	Ser 60	Phe	Val	Lys	Ile	

				Pe	5890L	JS01	- Co	mple	ete S	Seque	ence	List	ing	(Cle	ean).txt
Met 65	Lys	Asp	Arg	Gly	Ile 70	Asn	Val	Val	Glu	Leu 75	Thr	Asp	Leu	Val	Ala 80
Glu	Thr	Tyr	Asp	Leu 85	Ala	Ser	Lys	Ala	Ala 90	Lys	Glu	Glu	Phe	Ile 95	Glu
Thr	Phe	Leu	Glu 100	Glu	Thr	Val	Pro	Val 105	Leu	Thr	Glu	Ala	Asn 110	Lys	Lys
Ala	Val	Arg 115	Ala	Phe	Leu	Leu	Ser 120	Lys	Pro	Thr	His	Glu 125	Met	Val	Glu
Phe	Met 130	Met	Ser	Gly	Ile	Thr 135	Lys	Tyr	Glu	Leu	Gly 140	Val	Glu	Ser	Glu
Asn 145	Glu	Leu	Ile	Val	Asp 150	Pro	Met	Pro	Asn	Leu 155	Tyr	Phe	Thr	Arg	Asp 160
Pro	Phe	Ala	Ser	Val 165	Gly	Asn	Gly	Val	Thr 170	Ile	His	Phe	Met	Arg 175	Tyr
Ile	Val	Arg	Arg 180	Arg	Glu	Thr	Leu	Phe 185	Ala	Arg	Phe	Val	Phe 190	Arg	Asn
His	Pro	Lys 195	Leu	Val	Lys	Thr	Pro 200	Trp	Tyr	Tyr	Asp	Pro 205	Ala	Met	Lys
Met	Ser 210	Ile	Glu	Gly	Gly	Asp 215	Val	Phe	Ile	Tyr	Asn 220	Asn	Glu	Thr	Leu
Val 225	Val	Gly	Val	Ser	Glu 230	Arg	Thr	Asp	Leu	Asp 235	Thr	Ile	Thr	Leu	Leu 240
Ala	Lys	Asn	Ile	Lys 245	Ala	Asn	Lys	Glu	Val 250	Glu	Phe	Lys	Arg	Ile 255	Val

101					PE	5890L	JS01	- Cc	omple	ete S	Seque	ence	List	ing	(Cle	ean).txt
nu juli	Ala	Ile	Asn	Val 260	Pro	Lys	Trp	Thr	Asn 265	Leu	Met	His	Leu	Asp 270	Thr	Тгр
71	Leu	Thr	Met 275	Leu	Asp	Lys	Asn	Lys 280	Phe	Leu	Tyr	Ser	Pro 285	Ile	Ala	Asn
- 011+	Asp	Val 290	Phe	Lys	Phe	Trp	Asp 295	Tyr	Asp	Leu	Val	Asn 300	Gly	Gly	Ala	Glu
107	Pro 305	Gln	Pro	Gln	Leu	Asn 310	Gly	Leu	Pro	Leu	Asp 315	Lys	Leu	Leu	Ala	Ser 320
	Ile	Ile	Asn	Lys	Glu 325	Pro	Val	Leu	Ile	Pro 330	Ile	Gly	Gly	Ala	Gly 335	Ala
	Thr	Glu	Met	Glu 340	Ile	Ala	Arg	Glu	Thr 345	Asn	Phe	Asp	Gly	Thr 350	Asn	Tyr
	Leu	Ala	Ile 355	Lys	Pro	Gly	Leu	Val 360	Ile	Gly	Tyr	Asp	Arg 365	Asn	Glu	Lys
	Thr	Asn 370	Ala	Ala	Leu	Lys	Ala 375	Ala	Gly	Ile	Thr	Val 380	Leu	Pro	Phe	His
	Gly 385	Asn	Gln	Leu	Ser	Leu 390	Gly	Met	Gly	Asn	Ala 395	Arg	Cys	Met	Ser	Met 400
	Pro	Leu	Ser		Lys 405	Asp	Val	Lys	Trp							
	<210 <211 <212 <213	.> 4 .> P	9 11 RT trep	toco	occus	рус	gene	S								
	<400	> 2	.9													

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Met Thr Ala Gln Thr Pro Ile His Val Tyr Ser Glu Ile Gly Lys Leu Lys Lys Val Leu Leu His Arg Pro Gly Lys Glu Ile Glu Asn Leu Met Pro Asp Tyr Leu Glu Arg Leu Leu Phe Asp Asp Ile Pro Phe Leu Glu Asp Ala Gln Lys Glu His Asp Ala Phe Ala Gln Ala Leu Arg Asp Glu Gly Ile Glu Val Leu Tyr Leu Glu Thr Leu Ala Ala Glu Ser Leu Val Thr Pro Glu Ile Arg Glu Ala Phe Ile Asp Glu Tyr Leu Ser Glu Ala Asn Ile Arg Gly Arg Ala Thr Lys Lys Ala Ile Arg Glu Leu Leu Met Ala Ile Glu Asp Asn Gln Glu Leu Ile Glu Lys Thr Met Ala Gly Val Gln Lys Ser Glu Leu Pro Glu Ile Pro Ala Ser Glu Lys Gly Leu Thr Asp Leu Val Glu Ser Ser Tyr Pro Phe Ala Ile Asp Pro Met Pro Asn Leu Tyr Phe Thr Arg Asp Pro Phe Ala Thr Ile Gly Thr Gly Val Ser Leu Asn His Met Phe Ser Glu Thr Arg Asn Arg Glu Thr Leu Tyr Gly

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Lys Tyr Ile Phe Thr His His Pro Ile Tyr Gly Gly Gly Lys Val Pro Met Val Tyr Asp Arg Asn Glu Thr Thr Arg Ile Glu Gly Gly Asp Glu Leu Val Leu Ser Lys Asp Val Leu Ala Val Gly Ile Ser Gln Arg Thr Asp Ala Ala Ser Ile Glu Lys Leu Leu Val Asn Ile Phe Lys Gln Asn Leu Gly Phe Lys Lys Val Leu Ala Phe Glu Phe Ala Asn Asn Arg Lys Phe Met His Leu Asp Thr Val Phe Thr Met Val Asp Tyr Asp Lys Phe Thr Ile His Pro Glu Ile Glu Gly Asp Leu Arg Val Tyr Ser Val Thr Tyr Asp Asn Glu Glu Leu His Ile Val Glu Glu Lys Gly Asp Leu Ala Asp Leu Leu Ala Ala Asn Leu Gly Val Glu Lys Val Asp Leu Ile Arg Cys Gly Gly Asp Asn Leu Val Ala Ala Gly Arg Glu Gln Trp Asn Asp Gly Ser Asn Thr Leu Thr Ile Ala Pro Gly Val Val Val Val Tyr Asn Arg Asn Thr Ile Thr Asn Ala Ile Leu Glu Ser Lys Gly Leu Lys Leu

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Ile Lys Ile His Gly Ser Glu Leu Val Arg Gly Arg Gly Gly Pro Arg Cys Met Ser Met Pro Phe Glu Arg Glu Asp Ile <210> <211> <212> PRT <213> Streptococcus pneumonia <400> Met Ser Ser His Pro Ile Gln Val Phe Ser Glu Ile Gly Lys Leu Lys Lys Val Met Leu His Arg Pro Gly Lys Glu Leu Glu Asn Leu Leu Pro Asp Tyr Leu Glu Arg Leu Leu Phe Asp Asp Ile Pro Phe Leu Glu Asp Ala Gln Lys Glu His Asp Ala Phe Ala Gln Ala Leu Arg Asp Glu Gly Ile Glu Val Leu Tyr Leu Glu Gln Leu Ala Ala Glu Ser Leu Thr Ser Pro Glu Ile Arg Asp Gln Phe Ile Glu Glu Tyr Leu Asp Glu Ala Asn Ile Arg Asp Arg Gln Thr Lys Val Ala Ile Arg Glu Leu Leu His Gly Ile Lys Asp Asn Gln Glu Leu Val Glu Lys Thr Met Ala Gly Ile Gln Lys Val Glu Leu Pro Glu Ile Pro Asp Glu Ala Lys Asp Leu Thr Asp Page 23

		130			Pé	5890L	IS01 135	- Cc	omple	ete S	Seque	ence 140	List	ing	(Cle	an).txt
	Leu 145	Val	Glu	Ser	Asp	Tyr 150	Pro	Phe	Ala	Ile	Asp 155	Pro	Met	Pro	Asn	Leu 160
11-11	Tyr	Phe	Thr	Arg	Asp 165	Pro	Phe	Ala	Thr	Ile 170	Gly	Asn	Ala	Val	Ser 175	Leu
	Asn	His	Met	Phe 180	Ala	Asp	Thr	Arg	Asn 185	Arg	Glu	Thr	Leu	Tyr 190	Gly	Lys
1	Tyr	Ile	Phe 195	Lys	Tyr	His	Pro	Ile 200	Tyr	Gly	Gly	Lys	Val 205	Asp	Leu	Val
	Tyr	Asn 210	Arg	Glu	Glu	Asp	Thr 215	Arg	Ile	Glu	Gly	Gly 220	Asp	Glu	Leu	Val
	Leu 225	Ser	Lys	Asp	Val	Leu 230	Ala	Val	Gly	Ile	Ser 235	Gln	Arg	Thr	Asp	Ala 240
	Ala	Ser	Ile	Glu	Lys 245	Leu	Leu	Val	Asn	Ile 250	Phe	Lys	Lys	Asn	Val 255	Gly
	Phe	Lys	Lys				Phe				Asn	Asn	Arg	Lys 270	Phe	Met
	His	Leu	Asp 275	Thr	Val	Phe	Thr	Met 280	Val	Asp	Tyr	Asp	Lys 285	Phe	Thr	Ile
	His	Pro 290	Glu	Ile	Glu	Gly	Asp 295	Leu	His	Val	Tyr	Ser 300	Val	Thr	Tyr	Glu
	Asn 305	Glu	Lys	Leu	Lys	Ile 310	Val	Glu	Glu	Lys	Gly 315	Asp	Leu	Ala	Glu	Leu 320
	Leu	Ala	Gln	Asn	Leu	Gly	Val	Glu	Lys		His age	Leu 24	Ile	Arg	Cys	Gly

1 INT TIME OF					Ре 325		JS01	- Cc	omple	ete S 330		ence	List	ing	(Cle 335	ean).txt
00 J	Gly	Gly	Asn	Ile 340	Val	Ala	Ala	Ala	Arg 345	Glu	Gln	Trp	Asn	Asp 350	Gly	Ser
71/07	Asn	Thr	Leu 355	Thr	Ile	Ala	Pro	Gly 360	Val	Val	Val	Val	Tyr 365	Asp	Arg	Asn
C14220	Thr	Val 370	Thr	Asn	Lys	Ile	Leu 375	Glu	Glu	Tyr	Gly	Leu 380	Arg	Leu	Ile	Lys
7	Ile 385	Arg	Gly	Ser	Glu	Leu 390	Val	Arg	Gly	Arg	Gly 395	Gly	Pro	Arg	Cys	Met 400
	Ser	Met	Pro	Phe	Glu 405	Arg	Glu	Glu	Val							
	<210 <212 <212 <213	1> 4 2> 1	31 402 PRT Mycoł	pacte	eriun	n tuł	perci	ulos:	is							
	<400	ð> 3	31													
	Met 1	Gly	Val	Glu	Leu 5	Gly	Ser	Asn	Ser	Glu 10	Val	Gly	Ala	Leu	Arg 15	Val
	Val	Ile	Leu	His 20	Arg	Pro	Gly	Ala	Glu 25	Leu	Arg	Arg	Leu	Thr 30	Pro	Arg
	Asn	Thr	Asp 35	Gln	Leu	Leu	Phe	Asp 40	Gly	Leu	Pro	Trp	Val 45	Ser	Arg	Ala
	Gln	Asp 50	Glu	His	Asp	Glu	Phe 55	Ala	Glu	Leu	Leu	Ala 60	Ser	Arg	Gly	Ala
	Glu 65	Val	Leu	Leu	Leu	Ser 70	Asp	Leu	Leu		Glu 75 age		Leu	His	His	Ser 80

2014225712 08 Jun 2017

					Pe	5890l	JS01	- Co	omple	ete S	Seque	ence	List	ing	(Cle	ean).txt
in coo	Gly	Ala	Ala	Arg	Met 85	Gln	Gly	Ile	Ala	Ala 90	Ala	Val	Asp	Ala	Pro 95	Arg
111	Leu	Gly	Leu	Pro 100	Leu	Ala	Gln	Glu	Leu 105	Ser	Ala	Tyr	Leu	Arg 110	Ser	Leu
11111	Asp	Pro	Gly 115	Arg	Leu	Ala	His	Val 120	Leu	Thr	Ala	Gly	Met 125	Thr	Phe	Asn
1	Glu	Leu 130	Pro	Ser	Asp	Thr	Arg 135	Thr	Asp	Val	Ser	Leu 140	Val	Leu	Arg	Met
	His 145	His	Gly	Gly	Asp	Phe 150	Val	Ile	Glu	Pro	Leu 155	Pro	Asn	Leu	Val	Phe 160
	Thr	Arg	Asp	Ser	Ser 165	Ile	Тгр	Ile	Gly	Pro 170	Arg	Val	Val	Ile	Pro 175	Ser
	Leu	Ala	Leu	Arg 180	Ala	Arg	Val	Arg	Glu 185	Ala	Ser	Leu	Thr	Asp 190	Leu	Ile
	Tyr	Ala	His 195	His	Pro	Arg	Phe	Thr 200	Gly	Val	Arg	Arg	Ala 205	Tyr	Glu	Ser
	Arg	Thr 210	Ala	Pro	Val	Glu	Gly 215	Gly	Asp	Val	Leu	Leu 220	Leu	Ala	Pro	Gly
	Val 225	Val	Ala	Val	Gly	Val 230	Gly	Glu	Arg	Thr	Thr 235	Pro	Ala	Gly	Ala	Glu 240
	Ala	Leu	Ala	Arg	Ser 245	Leu	Phe	Asp	Asp	Asp 250	Leu	Ala	His	Thr	Val 255	Leu
	Ala	Val	Pro	Ile 260	Ala	Gln	Gln	Arg	Ala 265	Gln	Met	His	Leu	Asp 270	Thr	Val

08 Jun 2017					Pe	58901	JS01	- Cc	omple	ete S	Seque	ence	List	ing	(Cle	ean).txt
08 Ju	Cys	Thr	Met 275	Val	Asp	Thr	Asp	Thr 280	Met	Val	Met	Tyr	Ala 285	Asn	Val	Val
5712	Asp	Thr 290	Leu	Glu	Ala	Phe	Thr 295	Ile	Gln	Arg	Thr	Pro 300		Gly	Val	Thr
014225712	Ile 305	Gly	Asp	Ala	Ala	Pro 310	Phe	Ala	Glu	Ala	Ala 315	Ala	Lys	Ala	Met	Gly 320
50	Ile	Asp	Lys	Leu	Arg 325	Val	Ile	His	Thr	Gly 330	Met	Asp	Pro	Val	Val 335	Ala
	Glu	Arg	Glu	Gln 340	Trp	Asp	Asp	Gly	Asn 345	Asn	Thr	Leu	Ala	Leu 350	Ala	Pro
	Gly	Val	Val 355	Val	Ala	Tyr	Glu	Arg 360	Asn	Val	Gln	Thr	Asn 365	Ala	Arg	Leu
	Gln	Asp 370	Ala	Gly	Ile	Glu	Val 375	Leu	Thr	Ile	Ala	Gly 380	Ser	Glu	Leu	Gly
	Thr 385	Gly	Arg	Gly	Gly	Pro 390	Arg	Cys	Met	Ser	Cys 395	Pro	Ala	Ala	Arg	Asp 400
	Pro	Leu														
	<210 <211 <212 <213	.> 4 ?> F	32 917 9RT 9Seud	omor	ias p	lecc	glos	sici	.da							
	<400)> 3	2													
	Met 1	Ser	Thr	Glu	Lys 5	Gln	Lys	Tyr	Gly	Val 10	His	Ser	Glu	Ala	Gly 15	Lys

1107					Pe	589Øl	JS01	- Cc	omple	ete S	Seque	ence	List	ing	(Cle	ean).txt
IIIn CO	Leu	Arg	Lys	Val 20	Met	Val	Cys	Ser	Pro 25	Gly	Leu	Ala	His	Lys 30	Arg	Leu
71	Thr	Pro	Ser 35	Asn	Cys	Asp	Glu	Leu 40	Leu	Phe	Asp	Asp	Val 45	Ile	Trp	Val
10774	Asp	Gln 50	Ala	Lys	Arg	Asp	His 55	Phe	Asp	Phe	Val	Thr 60	Lys	Met	Arg	Glu
707	Arg 65	Gly	Val	Asp	Val	Leu 70	Glu	Met	His	Asn	Leu 75	Leu	Thr	Asp	Ile	Val 80
	Gln	Asp	Lys	Asn	Ala 85	Leu	Lys	Trp	Ile	Leu 90	Asp	Arg	Lys	Leu	Thr 95	Asp
	Asp	Thr	Val	Gly 100	Val	Gly	Leu	Lys	Asn 105	Glu	Val	Arg	Ser	Trp 110	Leu	Glu
	Gly	Gln	Asp 115	Pro	Arg	His	Leu	Ala 120	Glu	Phe	Leu	Ile	Gly 125	Gly	Val	Ala
	Gly	Gln 130	Asp	Leu	Pro	Gln	Ser 135	Glu	Gly	Ala	Asp	Val 140	Val	Lys	Met	Tyr
	Asn 145	Asp	Tyr	Leu	Gly	His 150	Ser	Ser	Phe	Ile	Leu 155	Pro	Pro	Leu	Pro	Asn 160
	Thr	Gln	Phe	Thr	Arg 165	Asp	Thr	Thr	Cys	Trp 170	Ile	Tyr	Gly	Gly	Val 175	Thr
	Leu	Asn	Pro	Met 180	Tyr	Trp	Pro	Ala	Arg 185	Arg	Gln	Glu	Thr	Leu 190	Leu	Thr
	Thr	Ala	Ile 195	Tyr	Lys	Phe	His	Lys 200	Glu	Phe	Thr	Asn	Ala 205	Glu	Phe	Glu

P6890US01 - Complete Sequence Listing (Clean).txt Val Trp Tyr Gly Asp Pro Asp Lys Glu His Gly Ser Ser Thr Leu Glu Gly Gly Asp Val Met Pro Ile Gly Lys Gly Ile Val Leu Ile Gly Met Gly Glu Arg Thr Ser Arg Gln Ala Ile Gly Gln Leu Ala Arg Asn Leu Phe Glu Lys Gly Ala Ala Thr Glu Val Ile Val Ala Gly Leu Pro Lys Ser Arg Ala Ala Met His Leu Asp Thr Val Phe Ser Phe Cys Asp Arg Asp Leu Val Thr Val Phe Pro Glu Val Val Asn Glu Ile Val Pro Phe Ile Ile Arg Pro Asp Glu Lys Lys Pro Tyr Gly Met Asp Val Arg Arg Ile Asn Lys Ser Phe Ile Glu Val Val Gly Glu Gln Leu Gly Val Lys Leu Arg Val Val Glu Thr Gly Gly Asn Ser Phe Ala Ala Glu Arg Glu Gln Trp Asp Asp Gly Asn Asn Val Val Ala Ile Glu Pro Gly Val Val Ile Gly Tyr Asp Arg Asn Thr Tyr Thr Asn Thr Leu Leu Arg Lys Ala Gly Ile Glu Val Ile Thr Ile Ser Ala Gly Glu Leu Gly Arg Gly Arg

Page 29

P6890US01 - Complete Sequence Listing (Clean).txt Gly Gly His Cys Met Thr Cys Pro Ile Val Arg Asp Pro Ile Asp Tyr <210> <211> <212> PRT <213> Pseudomonas putida <400> Met Ser Ala Glu Lys Gln Lys Tyr Gly Val His Ser Glu Ala Gly Lys Leu Arg Lys Val Met Val Cys Ser Pro Gly Leu Ala His Lys Arg Leu Thr Pro Ser Asn Cys Asp Glu Leu Leu Phe Asp Asp Val Ile Trp Val Asp Gln Ala Lys Arg Asp His Phe Asp Phe Val Thr Lys Met Arg Glu Arg Gly Val Asp Val Leu Glu Met His Asn Leu Leu Thr Asp Ile Val Gln Gln Pro Glu Ala Leu Lys Trp Ile Leu Asp Arg Lys Ile Thr Ser Asp Thr Val Gly Val Gly Leu Thr Asn Glu Val Arg Ser Trp Leu Glu Gly Leu Glu Pro Arg His Leu Ala Glu Phe Leu Ile Gly Gly Val Ala

P6890US01 - Complete Sequence Listing (Clean).txt Gly Gln Asp Leu Pro Val Ser Glu Gly Ala Glu Val Ile Lys Met Tyr Asn Lys Tyr Leu Gly His Ser Ser Phe Ile Leu Pro Pro Leu Pro Asn Thr Gln Phe Thr Arg Asp Thr Thr Cys Trp Ile Tyr Gly Gly Val Thr Leu Asn Pro Met Tyr Trp Pro Ala Arg Arg Gln Glu Thr Leu Leu Thr Thr Ala Ile Tyr Lys Phe His Lys Glu Phe Thr Gly Ala Asp Phe Gln Val Trp Tyr Gly Asp Pro Asp Lys Asp His Gly Asn Ala Thr Leu Glu Gly Gly Asp Val Met Pro Val Gly Lys Gly Ile Val Leu Ile Gly Met Gly Glu Arg Thr Ser Arg His Ala Ile Gly Gln Leu Ala Gln Asn Leu Phe Glu Lys Gly Ala Ala Glu Lys Ile Ile Val Ala Gly Leu Pro Lys Ser Arg Ala Ala Met His Leu Asp Thr Val Phe Ser Phe Cys Asp Arg Asp Leu Val Thr Val Phe Pro Glu Val Val Lys Glu Ile Lys Pro Phe Ile Ile Thr Pro Asp Ser Ser Lys Pro Tyr Gly Met Asn Ile Ala Pro

Page 31

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Gln Asp Ala Ser Phe Leu Glu Val Val Ser Glu Gln Leu Leu Gly Lys 325 330 335 Lys Asp Lys Leu Arg Val Val Glu Thr Gly Gly Asn Ser Phe Ala Ala 340 345 350 Glu Arg Glu Gln Trp Asp Asp Gly Asn Asn Val Val Ala Leu Glu Pro 360 355 365 Gly Val Val Ile Gly Tyr Asp Arg Asn Thr Tyr Thr Asn Thr Leu Leu 370 · 375 380 Arg Lys Ala Gly Ile Glu Val Ile Thr Ile Ser Ala Gly Glu Leu Gly 385 390 395 400 Arg Gly Arg Gly Gly Gly His Cys Met Thr Cys Pro Ile Val Arg Asp 405 410 415 Pro Ile Asp Tyr 420 <210> 34 <211> 418 <212> PRT <213> Pseudomonas aeruginosa <400> 34 Met Ser Thr Glu Lys Thr Lys Leu Gly Val His Ser Glu Ala Gly Lys 5 1 10 15 Leu Arg Lys Val Met Val Cys Ser Pro Gly Leu Ala His Gln Arg Leu 20 25 30 Thr Pro Ser Asn Cys Asp Glu Leu Leu Phe Asp Asp Val Ile Trp Val 35 40 45 Asn Gln Ala Lys Arg Asp His Phe Asp Phe Val Thr Lys Met Arg Glu

```
Page 32
```

2014225712

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Arg Gly Ile Asp Val Leu Glu Met His Asn Leu Leu Thr Glu Thr Ile Gln Asn Pro Glu Ala Leu Lys Trp Ile Leu Asp Arg Lys Ile Thr Ala Asp Ser Val Gly Leu Gly Leu Thr Ser Glu Leu Arg Ser Trp Leu Glu Ser Leu Glu Pro Arg Lys Leu Ala Glu Tyr Leu Ile Gly Gly Val Ala Ala Asp Asp Leu Pro Ala Ser Glu Gly Ala Asn Ile Leu Lys Met Tyr Arg Glu Tyr Leu Gly His Ser Ser Phe Leu Leu Pro Pro Leu Pro Asn Thr Gln Phe Thr Arg Asp Thr Thr Cys Trp Ile Tyr Gly Gly Val Thr Leu Asn Pro Met Tyr Trp Pro Ala Arg Arg Gln Glu Thr Leu Leu Thr Thr Ala Ile Tyr Lys Phe His Pro Glu Phe Ala Asn Ala Glu Phe Glu Ile Trp Tyr Gly Asp Pro Asp Lys Asp His Gly Ser Ser Thr Leu Glu Gly Gly Asp Val Met Pro Ile Gly Asn Gly Val Val Leu Ile Gly Met Gly Glu Arg Ser Ser Arg Gln Ala Ile Gly Gln Val Ala Gln Ser Leu Page 33

					Р€ 245		JS01	- Cc	omple	ete S 250	Seque	ence	List	ing	(Cle 255	ean).txt
	Phe	Ala	Lys	Gly 260	Ala	Ala	Glu	Arg	Val 265		Val	Ala	Gly	Leu 270	Pro	Lys
	Ser	Arg	Ala 275	Ala	Met	His	Leu	Asp 280	Thr	Val	Phe	Ser	Phe 285	Cys	Asp	Arg
	Asp	Leu 290	Val	Thr	Val	Phe	Pro 295	Glu	Val	Val	Lys	Glu 300	Ile	Val	Pro	Phe
4	Ser 305	Leu	Arg	Pro	Asp	Pro 310	Ser	Ser	Pro	Tyr	Gly 315	Met	Asn	Ile	Arg	Arg 320
	Glu	Glu	Lys	Thr	Phe 325	Leu	Glu	Val	Val	Ala 330	Glu	Ser	Leu	Gly	Leu 335	Lys
	Lys	Leu	Arg	Val 340	Val	Glu	Thr	Gly	Gly 345	Asn	Ser	Phe	Ala	Ala 350	Glu	Arg
	Glu	Gln	Trp 355	Asp	Asp	Gly	Asn	Asn 360	Val	Val	Cys	Leu	Glu 365	Pro	Gly	Val
	Val	Val 370	Gly	Tyr	Asp	Arg	Asn 375	Thr	Tyr	Thr	Asn	Thr 380	Leu	Leu	Arg	Lys
	Ala 385	Gly	Val	Glu	Val	Ile 390	Thr	Ile	Ser	Ala	Ser 395	Glu	Leu	Gly	Arg	Gly 400
	Arg	Gly	Gly	Gly	His 405	Cys	Met	Thr	Cys	Pro 410	Ile	Val	Arg	Asp	Pro 415	Ile
	Asp	Tyr														

<210> 35

Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt <211> PRT <212> <213> Streptococcus pneumoniae <400> Met Ser Ser His Pro Ile Gln Val Phe Ser Glu Ile Gly Lys Leu Lys Lys Val Met Leu His Arg Pro Gly Lys Glu Leu Glu Asn Leu Leu Pro Asp Tyr Leu Glu Arg Leu Leu Phe Asp Asp Ile Pro Phe Leu Glu Asp Ala Gln Lys Glu His Asp Ala Phe Ala Gln Ala Leu Arg Asp Glu Gly Ile Glu Val Leu Tyr Leu Glu Gln Leu Ala Ala Glu Ser Leu Thr Ser Pro Glu Ile Arg Asp Gln Phe Ile Glu Glu Tyr Leu Asp Glu Ala Asn Ile Arg Asp Arg Gln Thr Lys Val Ala Ile Arg Glu Leu Leu His Gly Ile Lys Asp Asn Gln Glu Leu Val Glu Lys Thr Met Ala Gly Ile Gln Lys Val Glu Leu Pro Glu Ile Pro Asp Glu Ala Lys Asp Leu Thr Asp Leu Val Glu Ser Asp Tyr Pro Phe Ala Ile Asp Pro Met Pro Asn Leu Tyr Phe Thr Arg Asp Pro Phe Ala Thr Ile Gly Asn Ala Val Ser Leu

Page 35

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Asn His Met Phe Ala Asp Thr Arg Asn Arg Glu Thr Leu Tyr Gly Lys Tyr Ile Phe Lys Tyr His Pro Ile Tyr Gly Gly Lys Val Asp Leu Val Tyr Asn Arg Glu Glu Asp Thr Arg Ile Glu Gly Gly Asp Glu Leu Val Leu Ser Lys Asp Val Leu Ala Val Gly Ile Ser Gln Arg Thr Asp Ala Ala Ser Ile Glu Lys Leu Leu Val Asn Ile Phe Lys Lys Asn Val Gly Phe Lys Lys Val Leu Ala Phe Glu Phe Ala Asn Asn Arg Lys Phe Met His Leu Asp Thr Val Phe Thr Met Val Asp Tyr Asp Lys Phe Thr Ile His Pro Glu Ile Glu Gly Asp Leu His Val Tyr Ser Val Thr Tyr Glu Asn Glu Lys Leu Lys Ile Val Glu Glu Lys Gly Asp Leu Ala Glu Leu Leu Ala Gln Asn Leu Gly Val Glu Lys Val His Leu Ile Arg Cys Gly Gly Gly Asn Ile Val Ala Ala Ala Arg Glu Gln Trp Asn Asp Gly Ser Asn Thr Leu Thr Ile Ala Pro Gly Val Val Val Val Tyr Asp Arg Asn

Page 36

P6890US01 - Complete Sequence Listing (Clean).txt Thr Val Thr Asn Lys Ile Leu Glu Glu Tyr Gly Leu Arg Leu Ile Lys 370 375 380 Ile Arg Gly Ser Glu Leu Val Arg Gly Arg Gly Gly Pro Arg Cys Met 385 390 395 400 Ser Met Pro Phe Glu Arg Glu Glu Val 405 <210> 36 <211> 467 <212> PRT <213> Artificial Sequence <220> <223> ABD1, synthesized in lab <400> 36 Met Ser Val Phe Asp Ser Lys Phe Lys Gly Ile His Val Tyr Ser Glu 5 15 1 10 Ile Gly Glu Leu Glu Ser Val Leu Val His Glu Pro Gly Arg Glu Ile 20 25 30 Asp Tyr Ile Thr Pro Ala Arg Leu Asp Glu Leu Leu Phe Ser Ala Ile 35 40 45 Leu Glu Ser His Asp Ala Arg Lys Glu His Lys Gln Phe Val Ala Glu 50 55 60 Leu Lys Ala Asn Asp Ile Asn Val Val Glu Leu Ile Asp Leu Val Ala 65 70 75 80 Glu Thr Tyr Asp Leu Ala Ser Gln Glu Ala Lys Asp Lys Leu Ile Glu 85 90 95

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Glu Phe Leu Glu Asp Ser Glu Pro Val Leu Ser Glu Glu His Lys Val Val Val Arg Asn Phe Leu Lys Ala Lys Lys Thr Ser Arg Glu Leu Val Glu Ile Met Met Ala Gly Ile Thr Lys Tyr Asp Leu Gly Ile Glu Ala Asp His Glu Leu Ile Val Asp Pro Met Pro Asn Leu Tyr Phe Thr Arg Asp Pro Phe Ala Ser Val Gly Asn Gly Val Thr Ile His Tyr Met Arg Tyr Lys Val Arg Gln Arg Glu Thr Leu Phe Ser Arg Phe Val Phe Ser Asn His Pro Lys Leu Ile Asn Thr Pro Trp Tyr Tyr Asp Pro Ser Leu Lys Leu Ser Ile Glu Gly Gly Asp Val Phe Ile Tyr Asn Asn Asp Thr Leu Val Val Gly Val Ser Glu Arg Thr Asp Leu Gln Thr Val Thr Leu Leu Ala Lys Asn Ile Val Ala Asn Lys Glu Cys Glu Phe Lys Arg Ile Val Ala Ile Asn Val Pro Lys Trp Thr Asn Leu Met His Leu Asp Thr Trp Leu Thr Met Leu Asp Lys Asp Lys Phe Leu Tyr Ser Pro Ile Ala

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Asn Asp Val Phe Lys Phe Trp Asp Tyr Asp Leu Val Asn Gly Gly Ala Glu Pro Gln Pro Val Glu Asn Gly Leu Pro Leu Glu Gly Leu Leu Gln Ser Ile Ile Asn Lys Lys Pro Val Leu Ile Pro Ile Ala Gly Glu Gly Ala Ser Gln Met Glu Ile Glu Arg Glu Thr His Phe Asp Gly Thr Asn Tyr Leu Ala Ile Arg Pro Gly Val Val Ile Gly Tyr Ser Arg Asn Glu Lys Thr Asn Ala Ala Leu Glu Ala Ala Gly Ile Lys Val Leu Pro Phe His Gly Asn Gln Leu Ser Leu Gly Met Gly Asn Ala Arg Cys Met Ser Met Pro Leu Ser Arg Lys Asp Val Lys Trp Gly Ser His His His His His His Ala Asn Ser Leu Ala Glu Ala Lys Val Leu Ala Asn Arg Glu Leu Asp Lys Tyr Gly Val Ser Asp Phe Tyr Lys Arg Leu Ile Asn Lys Ala Lys Thr Val Glu Gly Val Glu Ala Leu Lys Leu His Ile Leu Ala Ala Leu Pro

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt <210> <211> <212> PRT <213> Artificial Sequence <220> ABD, synthesized in lab <223> <400> Met Ser Val Phe Asp Ser Lys Phe Lys Gly Ile His Val Tyr Ser Glu Ile Gly Glu Leu Glu Ser Val Leu Val His Glu Pro Gly Arg Glu Ile Asp Tyr Ile Thr Pro Ala Arg Leu Asp Glu Leu Leu Phe Ser Ala Ile Leu Glu Ser His Asp Ala Arg Lys Glu His Lys Gln Phe Val Ala Glu Leu Lys Ala Asn Asp Ile Asn Val Val Glu Leu Ile Asp Leu Val Ala Glu Thr Tyr Asp Leu Ala Ser Gln Glu Ala Lys Asp Lys Leu Ile Glu Glu Phe Leu Glu Asp Ser Glu Pro Val Leu Ser Glu Glu His Lys Val Val Val Arg Asn Phe Leu Lys Ala Lys Lys Thr Ser Arg Glu Leu Val Glu Ile Met Met Ala Gly Ile Thr Lys Tyr Asp Leu Gly Ile Glu Ala Asp His Glu Leu Ile Val Asp Pro Met Pro Asn Leu Tyr Phe Thr Arg

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Asp Pro Phe Ala Ser Val Gly Asn Gly Val Thr Ile His Tyr Met Arg Tyr Lys Val Arg Gln Arg Glu Thr Leu Phe Ser Arg Phe Val Phe Ser Asn His Pro Lys Leu Ile Asn Thr Pro Trp Tyr Tyr Asp Pro Ser Leu Lys Leu Ser Ile Glu Gly Gly Asp Val Phe Ile Tyr Asn Asn Asp Thr Leu Val Val Gly Val Ser Glu Arg Thr Asp Leu Gln Thr Val Thr Leu Leu Ala Lys Asn Ile Val Ala Asn Lys Glu Cys Glu Phe Lys Arg Ile Val Ala Ile Asn Val Pro Lys Trp Thr Asn Leu Met His Leu Asp Thr Trp Leu Thr Met Leu Asp Lys Asp Lys Phe Leu Tyr Ser Pro Ile Ala Asn Asp Val Phe Lys Phe Trp Asp Tyr Asp Leu Val Asn Gly Gly Ala Glu Pro Gln Pro Val Glu Asn Gly Leu Pro Leu Glu Gly Leu Leu Gln Ser Ile Ile Asn Lys Lys Pro Val Leu Ile Pro Ile Ala Gly Glu Gly Ala Ser Gln Met Glu Ile Glu Arg Glu Thr His Phe Asp Gly Thr Asn

Page 41

1 1 1 7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1					P6	890L	ISØ1	- Cc	omple	ete S	eque	ence	List	ing	(Cle	ean).txt
nr on	Tyr	Leu	Ala 355	Ile	Arg	Pro	Gly	Val 360	Val	Ile	Gly	Tyr	Ser 365	Arg	Asn	Glu
71/	Lys	Thr 370	Asn	Ala	Ala	Leu	Glu 375	Ala	Ala	Gly	Ile	Lys 380	Val	Leu	Pro	Phe
14440	His 385	Gly	Asn	Gln	Leu	Ser 390	Leu	Gly	Met	Gly	Asn 395	Ala	Arg	Cys	Met	Ser 400
07	Met	Pro	Leu	Ser	Arg 405	Lys	Asp	Val	Lys	Trp 410	Ala	Gln	His	Asp	Glu 415	Ala
	Val	Asp	Ala	Asn 420	Ser	Leu	Ala	Glu	Ala 425	Lys	Val	Leu	Ala	Asn 430	Arg	Glu
	Leu	Asp	Lys 435	Tyr	Gly	Val	Ser	Asp 440	Tyr	Tyr	Lys	Asn	Leu 445	Ile	Asn	Asn
	Ala	Lys 450	Thr	Val	Glu	Gly	Val 455	Lys	Ala	Leu	Ile	Asp 460	Glu	Ile	Leu	Ala
	Ala 465	Leu	Pro													
	<210 <211 <212 <213	.> 4 :> P	38 173 PRT Artif	icia	al Se	equer	ice									
	<220 <223		ΑBD,	synt	hesi	.zed	in l	.ab								
	<400	> 3	8													
	Met 1	Ser	Val	Phe	Asp 5	Ser	Lys	Phe	Lys	Gly 10	Ile	His	Val	Tyr	Ser 15	Glu

P6890US01 - Complete Sequence Listing (Clean).txt Ile Gly Glu Leu Glu Ser Val Leu Val His Glu Pro Gly Arg Glu Ile Asp Tyr Ile Thr Pro Ala Arg Leu Asp Glu Leu Leu Phe Ser Ala Ile Leu Glu Ser His Asp Ala Arg Lys Glu His Lys Gln Phe Val Ala Glu Leu Lys Ala Asn Asp Ile Asn Val Val Glu Leu Ile Asp Leu Val Ala Glu Thr Tyr Asp Leu Ala Ser Gln Glu Ala Lys Asp Lys Leu Ile Glu Glu Phe Leu Glu Asp Ser Glu Pro Val Leu Ser Glu Glu His Lys Val Val Val Arg Asn Phe Leu Lys Ala Lys Lys Thr Ser Arg Glu Leu Val Glu Ile Met Met Ala Gly Ile Thr Lys Tyr Asp Leu Gly Ile Glu Ala Asp His Glu Leu Ile Val Asp Pro Met Pro Asn Leu Tyr Phe Thr Arg Asp Pro Phe Ala Ser Val Gly Asn Gly Val Thr Ile His Tyr Met Arg Tyr Lys Val Arg Gln Arg Glu Thr Leu Phe Ser Arg Phe Val Phe Ser Asn His Pro Lys Leu Ile Asn Thr Pro Trp Tyr Tyr Asp Pro Ser Leu

Page 43

P6890US01 - Complete Sequence Listing (Clean).txt Lys Leu Ser Ile Glu Gly Gly Asp Val Phe Ile Tyr Asn Asn Asp Thr Leu Val Val Gly Val Ser Glu Arg Thr Asp Leu Gln Thr Val Thr Leu Leu Ala Lys Asn Ile Val Ala Asn Lys Glu Cys Glu Phe Lys Arg Ile Val Ala Ile Asn Val Pro Lys Trp Thr Asn Leu Met His Leu Asp Thr Trp Leu Thr Met Leu Asp Lys Asp Lys Phe Leu Tyr Ser Pro Ile Ala Asn Asp Val Phe Lys Phe Trp Asp Tyr Asp Leu Val Asn Gly Gly Ala Glu Pro Gln Pro Val Glu Asn Gly Leu Pro Leu Glu Gly Leu Leu Gln Ser Ile Ile Asn Lys Lys Pro Val Leu Ile Pro Ile Ala Gly Glu Gly Ala Ser Gln Met Glu Ile Glu Arg Glu Thr His Phe Asp Gly Thr Asn Tyr Leu Ala Ile Arg Pro Gly Val Val Ile Gly Tyr Ser Arg Asn Glu Lys Thr Asn Ala Ala Leu Glu Ala Ala Gly Ile Lys Val Leu Pro Phe His Gly Asn Gln Leu Ser Leu Gly Met Gly Asn Ala Arg Cys Met Ser

Page 44

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Met Pro Leu Ser Arg Lys Asp Val Lys Trp His His His His His His Ala Gln His Asp Glu Ala Val Asp Ala Asn Ser Leu Ala Glu Ala Lys Val Leu Ala Asn Arg Glu Leu Asp Lys Tyr Gly Val Ser Asp Tyr Tyr Lys Asn Leu Ile Asn Asn Ala Lys Thr Val Glu Gly Val Lys Ala Leu Ile Asp Glu Ile Leu Ala Ala Leu Pro <210> <211> <212> PRT <213> Artificial Sequence <220> <223> ABD, synthesized in lab <400> Met Ser Val Phe Asp Ser Lys Phe Lys Gly Ile His Val Tyr Ser Glu Ile Gly Glu Leu Glu Ser Val Leu Val His Glu Pro Gly Arg Glu Ile Asp Tyr Ile Thr Pro Ala Arg Leu Asp Glu Leu Leu Phe Ser Ala Ile Leu Glu Ser His Asp Ala Arg Lys Glu His Lys Gln Phe Val Ala Glu Leu Lys Ala Asn Asp Ile Asn Val Val Glu Leu Ile Asp Leu Val Ala

Page 45

					Pe	5890L	ISØ1	- Cc	omple	ete S	Seque	ence	List	ing	(Cle	ean).txt
00 J UL	Glu	Thr	Tyr	Asp	Leu 85	Ala	Ser	Gln	Glu	Ala 90	Lys	Asp	Lys	Leu	Ile 95	Glu
111	Glu	Phe	Leu	Glu 100	Asp	Ser	Glu	Pro	Val 105	Leu	Ser	Glu	Glu	His 110	Lys	Val
	Val	Val	Arg 115	Asn	Phe	Leu	Lys	Ala 120	Lys	Lys	Thr	Ser	Arg 125	Glu	Leu	Val
2	Glu	Ile 130	Met	Met	Ala	Gly	Ile 135	Thr	Lys	Tyr	Asp	Leu 140	Gly	Ile	Glu	Ala
	Asp 145	His	Glu	Leu	Ile	Val 150	Asp	Pro	Met	Pro	Asn 155	Leu	Tyr	Phe	Thr	Arg 160
	Asp	Pro	Phe	Ala	Ser 165	Val	Gly	Asn	Gly	Val 170	Thr	Ile	His	Tyr	Met 175	Arg
	Tyr	Lys	Val	Arg 180	Gln	Arg	Glu	Thr	Leu 185	Phe	Ser	Arg	Phe	Val 190	Phe	Ser
	Asn	His	Pro 195	Lys	Leu	Ile	Asn	Thr 200	Pro	Trp	Tyr	Tyr	Asp 205	Pro	Ser	Leu
	Lys	Leu 210	Ser	Ile	Glu	Gly	Gly 215	Asp	Val	Phe	Ile	Tyr 220	Asn	Asn	Asp	Thr
	Leu 225	Val	Val	Gly	Val	Ser 230	Glu	Arg	Thr	Asp	Leu 235	Gln	Thr	Val	Thr	Leu 240
	Leu	Ala	Lys	Asn	Ile 245	Val	Ala	Asn	Lys	Glu 250	Cys	Glu	Phe	Lys	Arg 255	Ile
	Val	Ala	Ile	Asn 260	Val	Pro	Lys	Trp	Thr 265			Met	His	Leu 270	Asp	Thr
										P	age	40				

					P6	5890L	JS01	- Cc	omple	ete S	Seque	ence	List	ing	(Cl€	ean).txt
nu vull	Trp	Leu	Thr 275	Met	Leu	Asp	Lys	Asp 280	Lys	Phe	Leu	Tyr	Ser 285	Pro	Ile	Ala
116	Asn	Asp 290	Val	Phe	Lys	Phe	Trp 295	Asp	Tyr	Asp	Leu	Val 300	Asn	Gly	Gly	Ala
	Glu 305	Pro	Gln	Pro	Val	Glu 310	Asn	Gly	Leu	Pro	Leu 315	Glu	Gly	Leu	Leu	Gln 320
1	Ser	Ile	Ile	Asn	Lys 325	Lys	Pro	Val	Leu	Ile 330	Pro	Ile	Ala	Gly	Glu 335	Gly
	Ala	Ser	Gln	Met 340	Glu	Ile	Glu	Arg	Glu 345	Thr	His	Phe	Asp	Gly 350	Thr	Asn
	Tyr	Leu	Ala 355	Ile	Arg	Pro	Gly	Val 360	Val	Ile	Gly	Tyr	Ser 365	Arg	Asn	Glu
	Lys	Thr 370	Asn	Ala	Ala	Leu	Glu 375	Ala	Ala	Gly	Ile	Lys 380	Val	Leu	Pro	Phe
	His 385	Gly	Asn	Gln ,	Leu	Ser 390	Leu	Gly	Met	Gly	Asn 395	Ala	Arg	Cys	Met	Ser 400
	Met	Pro	Leu	Ser	Arg 405	Lys	Asp	Val	Lys	Trp 410	Ala	Gln	His	Asp	Glu 415	Ala
	Val	Asp	Ala	Asn 420	Ser	Leu	Ala	Glu	Ala 425	Lys	Val	Leu	Ala	Asn 430	Arg	Glu
	Leu	Asp	Lys 435	Tyr	Gly	Val	Ser	Asp 440	Tyr	Tyr	Lys	Asn	Leu 445	Ile	Asn	Asn
		Lys 450	Thr	Val	Glu	Gly	Val 455	Lys	Ala	Leu	Ile	Asp 460	Glu	Ile	Leu	Ala

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Ala Leu Pro His His His His His His 470 465 <210> 40 \sim <211> 483 201422571 <212> PRT <213> Artificial Sequence <220> <223> ABD, synthesized in lab <400> 40 Met His His His His His Asp Glu Ala Val Asp Ala Asn Ser Leu 1 5 10 15 Ala Glu Ala Lys Val Leu Ala Asn Arg Glu Leu Asp Lys Tyr Gly Val 20 25 30 Ser Asp Tyr Tyr Lys Asn Leu Ile Asn Asn Ala Lys Thr Val Glu Gly 35 40 45 Val Lys Ala Leu Ile Asp Glu Ile Leu Ala Ala Leu Pro Ser Gly Ser 50 55 60 Asn Asn Asn Asn Asn Asn Gly Ser Gly Gly Ser Val Phe Asp Ser Lys 65 70 75 80 Phe Lys Gly Ile His Val Tyr Ser Glu Ile Gly Glu Leu Glu Ser Val 85 90 95 Leu Val His Glu Pro Gly Arg Glu Ile Asp Tyr Ile Thr Pro Ala Arg 100 105 110 Leu Asp Glu Leu Leu Phe Ser Ala Ile Leu Glu Ser His Asp Ala Arg 115 120 125

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Lys Glu His Lys Gln Phe Val Ala Glu Leu Lys Ala Asn Asp Ile Asn Val Val Glu Leu Ile Asp Leu Val Ala Glu Thr Tyr Asp Leu Ala Ser Gln Glu Ala Lys Asp Lys Leu Ile Glu Glu Phe Leu Glu Asp Ser Glu Pro Val Leu Ser Glu Glu His Lys Val Val Val Arg Asn Phe Leu Lys Ala Lys Lys Thr Ser Arg Glu Leu Val Glu Ile Met Met Ala Gly Ile Thr Lys Tyr Asp Leu Gly Ile Glu Ala Asp His Glu Leu Ile Val Asp Pro Met Pro Asn Leu Tyr Phe Thr Arg Asp Pro Phe Ala Ser Val Gly Asn Gly Val Thr Ile His Tyr Met Arg Tyr Lys Val Arg Gln Arg Glu Thr Leu Phe Ser Arg Phe Val Phe Ser Asn His Pro Lys Leu Ile Asn Thr Pro Trp Tyr Tyr Asp Pro Ser Leu Lys Leu Ser Ile Glu Gly Gly Asp Val Phe Ile Tyr Asn Asp Thr Leu Val Val Gly Val Ser Glu Arg Thr Asp Leu Gln Thr Val Thr Leu Leu Ala Lys Asn Ile Val Ala

P6890US01 - Complete Sequence Listing (Clean).txt Asn Lys Glu Cys Glu Phe Lys Arg Ile Val Ala Ile Asn Val Pro Lys Trp Thr Asn Leu Met His Leu Asp Thr Trp Leu Thr Met Leu Asp Lys Asp Lys Phe Leu Tyr Ser Pro Ile Ala Asn Asp Val Phe Lys Phe Trp Asp Tyr Asp Leu Val Asn Gly Gly Ala Glu Pro Gln Pro Val Glu Asn Gly Leu Pro Leu Glu Gly Leu Leu Gln Ser Ile Ile Asn Lys Lys Pro Val Leu Ile Pro Ile Ala Gly Glu Gly Ala Ser Gln Met Glu Ile Glu Arg Glu Thr His Phe Asp Gly Thr Asn Tyr Leu Ala Ile Arg Pro Gly Val Val Ile Gly Tyr Ser Arg Asn Glu Lys Thr Asn Ala Ala Leu Glu Ala Ala Gly Ile Lys Val Leu Pro Phe His Gly Asn Gln Leu Ser Leu Gly Met Gly Asn Ala Arg Cys Met Ser Met Pro Leu Ser Arg Lys Asp Val Lys Trp <210> <211> <212> PRT

<213> Artificial Sequence

P6890US01 - Complete Sequence Listing (Clean).txt Jun <220> His-ABD-PolyN-bcADI, synthesized in lab <223> <400> Met Gly His His His His His Asp Glu Ala Val Asp Ala Asn Ser Leu Ala Glu Ala Lys Val Leu Ala Asn Arg Glu Leu Asp Lys Tyr Gly Val Ser Asp Tyr Tyr Lys Asn Leu Ile Asn Asn Ala Lys Thr Val Glu Gly Val Lys Ala Leu Ile Asp Glu Ile Leu Ala Ala Leu Pro Ser Gly Ser Asn Asn Asn Asn Asn Gly Ser Gly Gly Lys His Pro Ile His Val Thr Ser Glu Ile Gly Glu Leu Gln Thr Val Leu Leu Lys Arg Pro Gly Lys Glu Val Glu Asn Leu Thr Pro Asp Tyr Leu Gln Gln Leu Leu Phe Asp Asp Ile Pro Tyr Leu Pro Ile Ile Gln Lys Glu His Asp Tyr Phe Ala Gln Thr Leu Arg Asn Arg Gly Val Glu Val Leu Tyr Leu Glu Lys Leu Ala Ala Glu Ala Leu Val Asp Lys Lys Leu Arg Glu Glu Phe Val Asp Arg Ile Leu Lys Glu Gly Gln Ala Asp Val Asn Val Ala His

017					P6	5890L	1501	- 00	omple	ete S	Seaue	ence	List	ing	(Cle	ean).txt
08 Jun 2017	Gln	Thr	Leu	Lys										_		·
08 J	GIN		LCU	180	010	' y '	LCU		185	1 lic			014	190	200	220
712	Gln	Lys	Ile 195	Met	Gly	Gly	Val	Arg 200	Lys	Asn	Glu	Ile	Glu 205	Thr	Ser	Lys
2014225712	Lys	Thr 210	His	Leu	Tyr	Glu	Leu 215	Met	Glu	Asp	His	Tyr 220	Pro	Phe	Tyr	Leu
20	Asp 225	Pro	Met	Pro	Asn	Leu 230	Tyr	Phe	Thr	Arg	Asp 235	Pro	Ala	Ala	Ser	Val 240
	Gly	Asp	Gly	Leu	Thr 245	Ile	Asn	Lys	Met	Arg 250	Glu	Pro	Ala	Arg	Arg 255	Arg
	Glu	Ser	Leu	Phe 260	Met	Glu	Tyr	Ile	Ile 265	Lys	Tyr	His	Pro	Arg 270	Phe	Ala
	Lys	His	Asn 275	Val	Pro	Ile	Trp	Leu 280	Asp	Arg	Asp	Tyr	Lys 285	Phe	Pro	Ile
	Glu	Gly 290	Gly	Asp	Glu	Leu	Ile 295	Leu	Asn	Glu	Glu	Thr 300	Ile	Ala	Ile	Gly
	Val 305	Ser	Ala	Arg	Thr	Ser 310	Ala	Lys	Ala	Ile	Glu 315	Arg	Leu	Ala	Lys	Asn 320
	Leu	Phe	Ser	Arg	Gln 325	Asn	Lys	Ile	Lys	Lys 330	Val	Leu	Ala	Ile	Glu 335	Ile
	Pro	Lys	Cys	Arg 340	Ala	Phe	Met	His	Leu 345	Asp	Thr	Val	Phe	Thr 350	Met	Val
	Asp	Tyr	Asp 355	Lys	Phe	Thr	Ile	His 360	Pro		Ile		Gly 365	Pro	Lys	Gly

AO L

P6890US01 - Complete Sequence Listing (Clean).txt Asn Met Asn Ile Tyr Ile Leu Glu Lys Gly Ala Asp Glu Glu Thr Leu 370 375 380 Lys Ile Thr His Arg Thr Ser Leu Met Glu Ala Leu Lys Glu Val Leu 385 390 395 400 Asp Leu Ser Glu Leu Val Leu Ile Pro Cys Gly Gly Gly Asp Val Ile 405 410 415 Ala Ser Ala Arg Glu Gln Trp Asn Asp Gly Ser Asn Thr Leu Ala Ile 420 425 430 Ala Pro Gly Val Val Val Thr Tyr Asp Arg Asn Tyr Val Ser Asn Thr 435 440 445 Leu Leu Arg Glu His Gly Ile Glu Val Ile Glu Val Leu Ser Ser Glu 450 455 460 Leu Ser Arg Gly Arg Gly Gly Pro Arg Cys Met Ser Met Pro Ile Val 465 470 475 480 Arg Lys Asp Ile <210> 42 <211> 335 <212> PRT <213> Artificial Sequence <220> <223> ABD-Intein-CBD, synthesized in lab 42 <400> Met Ala Gln His Asp Glu Ala Val Asp Ala Asn Ser Leu Ala Glu Ala 1 5 10 15

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Lys Val Leu Ala Asn Arg Glu Leu Asp Lys Tyr Gly Val Ser Asp Tyr Tyr Lys Asn Leu Ile Asn Asn Ala Lys Thr Val Glu Gly Val Lys Ala Leu Ile Asp Glu Ile Leu Ala Ala Leu Pro Glu Phe Leu Glu Gly Ser Ser Cys Ile Thr Gly Asp Ala Leu Val Ala Leu Pro Glu Gly Glu Ser Val Arg Ile Ala Asp Ile Val Pro Gly Ala Arg Pro Asn Ser Asp Asn Ala Ile Asp Leu Lys Val Leu Asp Arg His Gly Asn Pro Val Leu Ala Asp Arg Leu Phe His Ser Gly Glu His Pro Val Tyr Thr Val Arg Thr Val Glu Gly Leu Arg Val Thr Gly Thr Ala Asn His Pro Leu Leu Cys Leu Val Asp Val Ala Gly Val Pro Thr Leu Leu Trp Lys Leu Ile Asp Glu Ile Lys Pro Gly Asp Tyr Ala Val Ile Gln Arg Ser Ala Phe Ser Val Asp Cys Ala Gly Phe Ala Arg Gly Lys Pro Glu Phe Ala Pro Thr Thr Tyr Thr Val Gly Val Pro Gly Leu Val Arg Phe Leu Glu Ala His

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt His Arg Asp Pro Asp Ala Gln Ala Ile Ala Asp Glu Leu Thr Asp Gly Arg Phe Tyr Tyr Ala Lys Val Ala Ser Val Thr Asp Ala Gly Val Gln Pro Val Tyr Ser Leu Arg Val Asp Thr Ala Asp His Ala Phe Ile Thr Asn Gly Phe Val Ser His Ala Thr Gly Leu Thr Gly Leu Asn Ser Gly Leu Thr Thr Asn Pro Gly Val Ser Ala Trp Gln Val Asn Thr Ala Tyr Thr Ala Gly Gln Leu Val Thr Tyr Asn Gly Lys Thr Tyr Lys Cys Leu Gln Pro His Thr Ser Leu Ala Gly Trp Glu Pro Ser Asn Val Pro Ala Leu Trp Gln Leu Gln Gly Asp Pro Ile Thr Ile Thr Ile Thr Lys <210> <211> <212> PRT <213> Artificial Sequence <220> CBD-Intein-ADI, synthesized in lab <223> <400> Met Lys Ile Glu Glu Gly Lys Leu Thr Asn Pro Gly Val Ser Ala Trp Gln Val Asn Thr Ala Tyr Thr Ala Gly Gln Leu Val Thr Tyr Asn Gly Page 55

1 1 1 7 11 1 1					P6	5890L	JSØ1	- Cc	omple	ete S	Seque	ence	List	ing	(Cle	ean).txt
In c o o	Lys	Thr	Tyr 35	Lys	Cys	Leu	Gln	Pro 40	His	Thr	Ser	Leu	Ala 45	Gly	Trp	Glu
114	Pro	Ser 50	Asn	Val	Pro	Ala	Leu 55	Тгр	Gln	Leu	Gln	Asn 60	Asn	Gly	Asn	Asn
114440	Gly 65	Leu	Glu	Leu	Arg	Glu 70	Ser	Gly	Ala	Ile	Ser 75	Gly	Asp	Ser	Leu	Ile 80
1	Ser	Leu	Ala	Ser	Thr 85	Gly	Lys	Arg	Val	Ser 90	Ile	Lys	Asp	Leu	Leu 95	Asp
	Glu	Lys	Asp	Phe 100	Glu	Ile	Trp	Ala	Ile 105	Asn	Glu	Gln	Thr	Met 110	Lys	Leu
	Glu	Ser	Ala 115	Lys	Val	Ser	Arg	Val 120	Phe	Cys	Thr	Gly	Lys 125	Lys	Leu	Val
	Tyr	Ile 130	Leu	Lys	Thr	Arg	Leu 135	Gly	Arg	Thr	Ile	Lys 140	Ala	Thr	Ala	Asn
	His 145	Arg	Phe	Leu	Thr	Ile 150	Asp	Gly	Trp	Lys	Arg 155	Leu	Asp	Glu	Leu	Ser 160
	Leu	Lys	Glu	His	Ile 165	Ala	Leu	Pro	Arg	Lys 170	Leu	Glu	Ser	Ser	Ser 175	Leu
	Gln	Leu	Ser	Pro 180	Glu	Ile	Glu	Lys	Leu 185	Ser	Gln	Ser	Asp	Ile 190	Tyr	Trp
	Asp	Ser	Ile 195	Val	Ser	Ile	Thr	Glu 200	Thr	Gly	Val	Glu	Glu 205	Val	Phe	Asp
	Leu	Thr 210	Val	Pro	Gly	Pro	His 215	Asn	Phe		Ala	220	Asp	Ile	Ile	Val

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt His Asn Cys Ser Val Phe Asp Ser Lys Phe Lys Gly Ile His Val Tyr Ser Glu Ile Gly Glu Leu Glu Ser Val Leu Val His Glu Pro Gly Arg Glu Ile Asp Tyr Ile Thr Pro Ala Arg Leu Asp Glu Leu Leu Phe Ser Ala Ile Leu Glu Ser His Asp Ala Arg Lys Glu His Lys Gln Phe Val Ala Glu Leu Lys Ala Asn Asp Ile Asn Val Val Glu Leu Ile Asp Leu Val Ala Glu Thr Tyr Asp Leu Ala Ser Gln Glu Ala Lys Asp Lys Leu Ile Glu Glu Phe Leu Glu Asp Ser Glu Pro Val Leu Ser Glu Glu His Lys Val Val Val Arg Asn Phe Leu Lys Ala Lys Lys Thr Ser Arg Glu Leu Val Glu Ile Met Met Ala Gly Ile Thr Lys Tyr Asp Leu Gly Ile Glu Ala Asp His Glu Leu Ile Val Asp Pro Met Pro Asn Leu Tyr Phe Thr Arg Asp Pro Phe Ala Ser Val Gly Asn Gly Val Thr Ile His Tyr Met Arg Tyr Lys Val Arg Gln Arg Glu Thr Leu Phe Ser Arg Phe Val

Page 57

					P6	890L	ISØ1	- Cc	mple	te S	eque	ence	List	ing	(Cle	ean).txt
	Phe	Ser	Asn	His 420	Pro	Lys	Leu	Ile	Asn 425	Thr	Pro	Trp	Tyr	Tyr 430	Asp	Pro
1	Ser	Leu	Lys 435	Leu	Ser	Ile	Glu	Gly 440	Gly	Asp	Val	Phe	Ile 445	Tyr	Asn	Asn
	Asp	Thr 450	Leu	Val	Val	Gly	Val 455	Ser	Glu	Arg	Thr	Asp 460	Leu	Gln	Thr	Val
	Thr 465	Leu	Leu	Ala	Lys	Asn 470	Ile	Val	Ala	Asn	Lys 475	Glu	Cys	Glu	Phe	Lys 480
	Arg	Ile	Val	Ala	Ile 485	Asn	Val	Pro	Lys	Trp 490	Thr	Asn	Leu	Met	His 495	Leu
	Asp	Thr	Trp	Leu 500	Thr	Met	Leu	Asp	Lys 505	Asp	Lys	Phe	Leu	Tyr 510	Ser	Pro
	Ile	Ala	Asn 515	Asp	Val	Phe	Lys	Phe 520	Trp	Asp	Tyr	Asp	Leu 525	Val	Asn	Gly
	Gly	Ala 530	Glu	Pro	Gln	Pro	Val 535	Glu	Asn	Gly	Leu	Pro 540	Leu	Glu	Gly	Leu
	Leu 545	Gln	Ser	Ile	Ile	Asn 550	Lys	Lys	Pro	Val	Leu 555	Ile	Pro	Ile	Ala	Gly 560
	Glu	Gly	Ala	Ser	Gln 565	Met	Glu	Ile	Glu	Arg 570	Glu	Thr	His	Phe	Asp 575	Gly
	Thr	Asn	Tyr	Leu 580	Ala	Ile	Arg	Pro	Gly 585	Val	Val	Ile	Gly	Tyr 590	Ser	Arg
	Asn	Glu	Lys 595	Thr	Asn	Ala	Ala	Leu 600	Glu	Ala	Ala	Gly	Ile 605	Lys	Val	Leu

P6890US01 - Complete Sequence Listing (Clean).txt Pro Phe His Gly Asn Gln Leu Ser Leu Gly Met Gly Asn Ala Arg Cys 615 610 620 Met Ser Met Pro Leu Ser Arg Lys Asp Val Lys Trp 625 630 635 <210> 44 1452 <211> DNA <212> Artificial Sequence <213> <220> His-ABD-PolyN-ADI-DNA, synthesized in lab <223> <400> 44 atgcatcatc accatcacca tgatgaagcc gtggatgcga attccttagc tgaagctaaa gtcttagcta acagagaact tgacaaatat ggagtaagtg actattacaa gaacctaatc aacaatgcca aaactgttga aggtgtaaaa gcactgatag atgaaatttt agctgcatta ccttcgggta gtaacaacaa taataacaat ggtagcggcg gttctgtatt tgacagtaaa tttaaaggaa ttcacgttta ttcagaaatt ggtgaattag aatcagttct agttcacgaa ccaggacgcg aaattgacta tattacacca gctagactag atgaattatt attctcagct atcttagaaa gccacgatgc tagaaaagaa cacaaacaat tcgtagcaga attaaaagca

60

120

180

240

300

360

420

aacgacatca atgttgttga attaattgat ttagttgctg aaacatatga tttagcatca 480 caagaagcta aagacaaatt aatcgaagaa tttttagaag actcagaacc agttctatca 540 600 gaagaacaca aagtagttgt aagaaacttc ttaaaagcta aaaaaacatc aagagaatta 660 gtagaaatca tgatggcagg gatcacaaaa tacgatttag gtatcgaagc agatcacgaa ttaatcgttg acccaatgcc aaacctatac ttcacacgtg acccatttgc atcagtaggt 720 780 aatggtgtaa caatccacta catgcgttac aaagttagac aacgtgaaac attattctca agatttgtat tctcaaatca ccctaaacta attaacactc catggtacta cgacccttca 840 ctaaaattat caatcgaagg tggggacgta tttatctaca acaatgacac attagtagtt 900 P6890US01 - Complete Sequence Listing (Clean).txt

-							
	ggtgtttctg	aaagaactga	cttacaaaca	gttactttat	tagctaaaaa	cattgttgct	960
	aataaagaat	gtgaattcaa	acgtattgtt	gcaattaacg	ttccaaaatg	gacaaactta	1020
-	atgcacttag	acacatggct	aacaatgtta	gacaaggaca	aattcctata	ctcaccaatc	1080
1	gctaatgacg	tatttaaatt	ctgggattat	gacttagtaa	acggtggagc	agaaccacaa	1140
1	ccagttgaaa	acggattacc	tctagaagga	ttattacaat	caatcattaa	caaaaaacca	1200
j	gttttaattc	ctatcgcagg	tgaaggtgct	tcacaaatgg	aaatcgaaag	agaaacacac	1260
	ttcgatggta	caaactactt	agcaattaga	ccaggtgttg	taattggtta	ctcacgtaac	1320
	gaaaaaacaa	acgctgctct	agaagctgca	ggcattaaag	ttcttccatt	ccacggtaac	1380
	caattatcat	taggtatggg	taacgctcgt	tgtatgtcaa	tgcctttatc	acgtaaagat	1440
	gttaagtggt	aa					1452

<210> 45 <211> 1455 <212> DNA <213> Artificial Sequence

<220><223> His-ABD-PolyN-bcADI-DNA, synthesized in lab

<400> 45

60 atgggtcatc atcaccatca ccatgatgaa gccgtggatg cgaacagctt agctgaagct aaagtcttag ctaacagaga acttgacaaa tatggagtaa gtgactatta caagaaccta 120 180 atcaacaatg ccaaaactgt tgaaggtgta aaagcactga tagatgaaat tttagctgca 240 ttaccttcgg gtagtaacaa caataataac aatggtagcg gcggtaaaca tccgatacat 300 gttacttcag aaattgggga attacaaacg gttttattaa aacgaccggg taaagaagtg gaaaacttga cgccagatta tttgcagcaa ttattatttg acgatattcc atacctacca 360 attattcaaa aagagcatga ttattttgca caaacgttac gcaatcgggg tgttgaagtt 420 ctttatttag aaaaactagc cgctgaggcg ttagtagata aaaaacttcg agaagaattt 480 gttgatcgta ttttaaaaga aggacaggcc gacgtaaatg ttgcacatca aactttaaaa 540 Page 60

P6890US01 - Complete Sequence Listing (Clean).txt

gaatatttac tttccttttc aaatgaagaa ttaattcaaa aaattatggg cggtgtacgg 600 aaaaacgaaa ttgaaacaag taagaagaca catttatatg aattaatgga agatcattat 660 ccgttttact tagatccaat gcctaattta tattttactc gtgatccagc agctagcgtg 720 ggcgatggct taacgataaa taagatgaga gaaccagcgc gtagacgtga atcattattc 780 atggagtaca tcattaaata tcatccaaga tttgcaaaac ataatgtacc aatctggtta 840 gatcgtgatt ataaatttcc aattgaaggt ggcgacgagc taattttaaa tgaagaaaca 900 attgcgattg gagtatctgc tcgtacttca gctaaagcaa ttgaacgttt agcaaaaaat 960 ctctttagcc gacaaaataa aattaagaaa gtgttagcaa tagaaattcc aaaatgccga 1020 gcatttatgc atttagatac agtatttaca atggttgatt atgataagtt tacaattcac 1080 ccagctattc aagggccaaa agggaatatg aatatttata ttttagaaaa aggagcagat 1140 gaggaaactc ttaaaattac acatcgtact tctttaatgg aagcattaaa agaggtatta 1200 gacttaagtg aattagttct tattccatgt ggaggaggag atgtaattgc ttctgctcgt 1260 gaacaatgga atgatggctc gaacacatta gcaatcgcgc caggtgtagt tgttacatat 1320 gatcgcaact atgtatccaa tacgttatta cgggaacacg gtatagaagt gattgaggtg 1380 1440 ctaagttcag aattatctcg tggtcgtggg ggtccacgtt gcatgagtat gccaattgtt 1455 cgtaaagata tttaa

<210> 46 <211> 46 PRT <212> Artificial Sequence <213> <220> <223> ABD without Linker, synthesized in lab <400> 46 Leu Ala Glu Ala Lys Val Leu Ala Asn Arg Glu Leu Asp Lys Tyr Gly 1 10 15

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Val Ser Asp Tyr Tyr Lys Asn Leu Ile Asn Asn Ala Lys Thr Val Glu 20 25 30 Gly Val Lys Ala Leu Ile Asp Glu Ile Leu Ala Ala Leu Pro 35 40 45 2014225712 <210> 47 <211> 57 PRT <212> Artificial Sequence <213> <220> ABD with Linker, synthesized in lab <223> <400> 47 Ala Gln His Asp Glu Ala Val Asp Ala Asn Ser Leu Ala Glu Ala Lys 5 1 10 15 Val Leu Ala Asn Arg Glu Leu Asp Lys Tyr Gly Val Ser Asp Tyr Tyr 20 25 30 Lys Asn Leu Ile Asn Asn Ala Lys Thr Val Glu Gly Val Lys Ala Leu 35 40 45 Ile Asp Glu Ile Leu Ala Ala Leu Pro 50 55 <210> 48 <211> 46 <212> PRT <213> Artificial Sequence <220> ABD1 without Linker, synthesized in lab <223> <400> 48 Leu Ala Glu Ala Lys Val Leu Ala Asn Arg Glu Leu Asp Lys Tyr Gly 5 1 10 15

08 Jun 2017 P6890US01 - Complete Sequence Listing (Clean).txt Val Ser Asp Phe Tyr Lys Arg Leu Ile Asn Lys Ala Lys Thr Val Glu 20 25 30 Gly Val Glu Ala Leu Lys Leu His Ile Leu Ala Ala Leu Pro 35 40 45 4225712 <210> 49 <211> 57 PRT <212> <213> Artificial Sequence <220> ABD1 with Linker, synthesized in lab <223> <400> 49 Gly Ser His His His His His Ala Asn Ser Leu Ala Glu Ala Lys 1 5 10 15 Val Leu Ala Asn Arg Glu Leu Asp Lys Tyr Gly Val Ser Asp Phe Tyr 20 25 30 Lys Arg Leu Ile Asn Lys Ala Lys Thr Val Glu Gly Val Glu Ala Leu 35 40 45 Lys Leu His Ile Leu Ala Ala Leu Pro 50 55 <210> 50 <211> 11 <212> PRT <213> Artificial Sequence <220> Linker 1, synthesized in lab <223> <400> 50 Gly Ser His His His His His His Ala Asn Ser 5 1 10

```
Jun 2017
                       P6890US01 - Complete Sequence Listing (Clean).txt
    <210>
            51
    <211>
            11
            PRT
08
    <212>
    <213>
            Artificial Sequence
    <220>
2014225712
    <223>
            Linker 2, synthesized in lab
    <400>
            51
    Ala Gln His Asp Glu Ala Val Asp Ala Asn Ser
                      5
                                           10
    1
            52
    <210>
    <211>
            8
    <212>
            PRT
    <213>
            Artificial Sequence
    <220>
            Linker 3, synthesized in lab
    <223>
    <400>
            52
    Asp Glu Ala Val Asp Ala Asn Ser
    1
                      5
            53
    <210>
    <211>
            4
    <212>
            PRT
    <213>
            Artificial Sequence
    <220>
    <223>
            Linker 5, synthesized in lab
    <400>
            53
    Gly Ser Gly Gly
    1
```