wO 20147210501 A1 I 0N OO OO0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/210501 A1

31 December 2014 (31.12.2014) WIPO I PCT
(51) International Patent Classification: (72) Inventors: FLEURY, Eduardo Madeira; Google Inc.,
GO6F 9/54 (2006.01) G06Q 10/06 (2012.01) 1600 Amphtitheatre Parkway, Mountain View, California
(21) International Application Number: 94043 (US). BANADAKI? Seyed Vahab errokgl;
PCT/US2014/044642 Google Inc., 1600 Amphtitheatre Parkway, Mountain
View, California 94043 (US). HAJAJ, Nissan; Google
(22) International Filing Date: Inc., 1600 Amphtitheatre Parkway, Mountain View, Cali-
27 June 2014 (27.06.2014) fornia 94043 (US). DING, Jerry Yi; Google Inc., 1600
. . Amphtitheatre Parkway, Mountain View, California 94043
(25) Filing Language: English (US). LATTANZI, Silvio; Google Inc., 1600 Am-
(26) Publication Language: English phtitheatre Parkway, Mountain View, California 94043
(US).
(30) Priority Data:
61/841,334 29 June 2013 (29.06.2013) Us (74) Agents: GROVER, Melanie et al.; Brake Hughes Beller-
14/145,127 31 December 2013 (31.12.2013) Us mann LLP, PO Box 52050, Minneapolis, Minnesota 55402
(US).
(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application: (81) Designated States (unless otherwise indicated, for every
Us 14/145,127 (CON) kind of national protection available): AE, AG, AL, AM,
Filed on 31 December 2013 (31.12.2013) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(71) Applicant: GOOGLE INC. [US/US]; 1600 Amphitheatre DO, DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT,

Parkway, Mountain View, California 94043 (US).

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

[Continued on next page]

(54) Title: ASYNCHRONOUS MESSAGE PASSING FOR LARGE GRAPH CLUSTERING

(57) Abstract: Systems and methods for sending asynchronous

1088 QUEUE

NOPE d

10EC LE)UEL;E NC!T‘}E f ND?E L NDPTE K

i i { t
i 1 - 1
| L activa}

i
i [g, activer K, active} [

My M- NNy
P Loy
N Kbl

["Send L~ N g
| i
;

i
!
1
i
i |
! B Mo, M
i

i

messages include receiving, using at least one processor, at a node
in a distributed graph, a message with a first value and determining,
at the node, that the first value replaces a current value for the node.
In response to determining that the first value replaces the current
value, the method also includes setting a status of the node to active
and sending messages including the first value to neighboring
nodes. The method may also include receiving the messages to the
neighboring nodes at a priority queue. The priority queue propag-
ates messages in an intelligently asynchronous manner, and the pri-
ority queue propagates the messages to the neighboring nodes, the
status of the node is set to inactive. The first value may be a cluster
identifier or a shortest path identifier.

WO 2014/210501 A1 WK 00V 000 00 T

84)

KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZM, ZW.

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Designated States (unless otherwise indicated, for every Published:

kind of regional protection available): ARIPO (BW, GH, __

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

with international search report (Art. 21(3))

WO 2014/210501 PCT/US2014/044642

ASYNCHRONOUS MESSAGE PASSING FOR
LARGE GRAPH CLUSTERING

RELATED APPLICATION

[0001] This application claims priority to, and is a continuation of, U.S.
Nonprovisional Patent Application Serial No. 14/143,894, entitled “COMPUTING
CONNECTED COMPONENTS IN LARGE GRAPHS,” filed on December 30,
2013, which claims priority to U.S. Provisional Patent Application Serial No.
61/841,334, entitled “ASYNCHRONOUS MESSAGE PASSING FOR LARGE
GRAPH CLUSTERING” filed on June 29, 2013. This application also claims
priority to U.S. Provisional Patent Application Serial No. 61/841,334, entitled
“ASYNCHRONOUS MESSAGE PASSING FOR LARGE GRAPH
CLUSTERING” filed on June 29, 2013. The subject matter of these earlier filed

applications are hereby incorporated by reference.

BACKGROUND

[0002] Graphs are a basic modeling tool to model social, communication,
and information networks. A graph G(V, E) consists of a set of nodes V , and a set of
edges E € V2 where each edge connects two nodes in the graph. In many
applications, analysis is performed on large graphs that do not fit on one machine.
Consequently, the graph is stored in several machines and mined in a distributed
manner, for example by applying distributed programming tools like Map-Reduce or
Hadoop. A basic analysis tool for graphs is to compute connected components of the
graph. A connected component of a graph G(V,E) is a maximal set of nodes that can
be reached from each other via sequences of edges of the graph. Computing
connected components of graph G results in a partitioning of the nodes V into one of
several clusters, where each cluster is a connected component. For example, FIG. 2
illustrates a graph G with three connected components. Connected component 205
includes nodes A, B, C, and D, connected component 210 includes nodes F, G, 1,
and H, and connected component 215 includes nodes J, K, L, and M. The connected

components may also be referred to as a cluster of nodes.

WO 2014/210501 PCT/US2014/044642

[0003] Computing connected components in graphs is a basic tool for
computing coherent clusters of nodes and also to perform hierarchical clustering.
But computing clusters of nodes distributed across multiple machines can be time
and cost prohibitive as the running time of the hashing functions are dependent on
the size of the graph, the number of messages sent between machines during the
rounds of Map-Reduce, and the number of rounds of Map-Reduce performed. It is a
challenge is to compute connected components for a large graph in a small number

of rounds of Map-Reduce.

SUMMARY

[0004] Implementations provide an asynchronous message passing
framework for computing connected components in a large distributed graph. The
asynchronous message passing frameworks utilizes a priority queue to pass
messages between nodes. Each node is able to perform its share of the computations
and send messages regardless of the state of its peers, unlike synchronous message
passing frameworks such as Map-Reduce and Hadoop. Using the priority queue
allows the system to send blocks of requests between distributed computing devices
for more efficient processing. The framework also uses a smaller memory footprint
because each node tracks only a minimum identifier for a potential connected
component, rather than a set of possible identifiers. This also makes message sizes
smaller. Because messaging is asynchronous, each node may independently
checkpoint its state and can restart after failure at the last checkpointed state.
Recovering from failure is also more efficient because the number of messages that
need to be replayed to recover a single machine is significantly less than
synchronous message passing frameworks.

[0005] One aspect of the disclosure can be embodied in a system that
includes distributed computing devices represented by leaf servers and memory
storing a graph of nodes and edges, the graph being distributed across the leaf
servers. A leaf server can include memory storing a cluster identifier for each node
assigned to the leaf server, at least one processor, and memory storing instructions
that, when executed by the at least one processor, cause the leaf server to send
asynchronous messages between neighboring nodes, the messages comprising an

asynchronous message from a first node to a second node including the cluster

WO 2014/210501 PCT/US2014/044642

identifier for the first node, wherein sending the asynchronous message is triggered
by an update to the cluster identifier. The graph may include more than one billion
nodes.

[0006] The system can include one or more of the following features, for
example, the memory may further store instructions that, when executed by the at
least one processor, cause the leaf server to propagate the message to the second
node and compare the cluster identifier from the message with the cluster identifier
for the second node to determine whether to update the cluster identifier for the
second node. When it is determined that the cluster identifier of the second node is
to be updated, the instructions may cause the leaf server to update the cluster
identifier for the second node with the cluster identifier from the message and
genecrate messages to neighboring nodes of the second node, the messages including
the updated cluster identifier. In such implementations, the leaf server may set a
status of the second node to active as part of the updating and set the status of the
second node to inactive in response to propagation of the messages to neighboring
nodes. In some such implementations the instructions may further cause the leaf
server to store the updated cluster identifier in persistent memory.

[0007] As another example, the leaf server may also include a priority queue
engine that propagates messages between neighboring nodes. In such an
implementation, the priority queue engine may be capable of bundling together
messages directed to nodes on another leaf server before propagation of the
messages and/or of intelligently skipping redundant messages rather than
propagating the messages. As another example, the cluster identifier may represent
the smallest identifier seen by the first node and the cluster identifier for the second
node is to be updated when the cluster identifier from the message is smaller than
the cluster identifier for the second node. In another example, at least one leaf server
includes a plurality of processors and the at least one leaf server uses the plurality of
processors to concurrently send multiple messages departing from nodes and to
receive multiple messages arriving at nodes.

[0008] Another aspect of the disclosure can be embodied in a method that
includes propagating, using at least one processor, messages sent between nodes in a
distributed graph in an asynchronous manner, the messages including respective

cluster identifiers. In response to a first node of the distributed graph receiving one

WO 2014/210501 PCT/US2014/044642

of the messages, the method may also include comparing a cluster identifier from
the received message with a cluster identifier for the first node to determine whether
to update the cluster identifier for the first node and, when it is determined that the
cluster identifier of the first node is to be updated, updating the cluster identifier for
the first node with the cluster identifier from the message and generating messages
to neighboring nodes of the first node, the messages including the updated cluster
identifier.

[0009] The method can include one or more of the following features. For
example, a priority queue engine may control the propagating. The priority queue
engine may propagate the messages in an arbitrary manner rather than a first-in-first-
out or last-in-last-out manner. In some implementations, nodes in the distributed
graph are assigned to one of a plurality of leaf servers with each leaf server having a
respective priority queue engine, the priority queue engine being one of the
respective priority queue engines, and wherein the priority queue engine bundles
messages directed to nodes assigned to a remote leaf server of the plurality of leaf
servers prior to propagating the messages. Propagating the messages at a particular
leaf server can continue despite a failure of another leaf server.

[00010] As another example, the method may further include storing the
updated cluster identifier in persistent memory and, in response to the first node
determining that it experienced a failure, obtaining the cluster identifier from the
persistent memory and generating messages to the neighboring nodes of the first
node, the messages requesting a cluster identifier from the respective neighboring
nodes. In some implementations, the cluster identifier for the first node represents
the smallest identifier seen by the first node and the cluster identifier for the first
node is to be updated when the cluster identifier from the message is smaller than
the cluster identifier for the first node.

[00011] As another example, the method may also include setting a status of
the first node to active as part of the updating, and setting the status of the first node
to inactive in response to propagating the messages to the neighboring nodes. In
some implementations, the propagating is performed without regard to respective
states of the nodes in the distributed graph.

[00012] In another aspect, a method includes receiving, using at least one

processor, at a node in a distributed graph, a message with a first value and

WO 2014/210501 PCT/US2014/044642

determining, at the node, that the first value replaces a current value for the node.
Responsive to the determining, the method also includes setting a status of the node
to active and sending messages that include the first value to neighboring nodes. The
method may also include receiving, using the at least one processor, the messages to
the neighboring nodes at a priority queue, wherein the priority queue propagates
messages in an intelligently asynchronous manner, and wherein when the message is
propagated to the neighboring nodes, the status of the node is set to inactive.

[00013] The method may include one or more of the following features, for
example, the node may be a first node and the method may further include receiving,
at the first node, a request from a second node for messages sent after a first time
and determining, at the first node, whether the messages to neighboring nodes were
sent after the first time. When the messages were sent after the first time, the method
includes re-sending the message to the second node and when the messages were not
sent after the first time, the method includes ignoring the request. In some
implementations the second node sends the request after recovering a current value
for the second node from a checkpoint. As another example, the first value and the
current value may be cluster identifiers or the first value and the current value may
be shortest path identifiers.

[00014] Another aspect of the disclosure can be embodied on a computer-
readable medium having recorded and embodied thereon instructions that, when
executed by a processor of a computer system, cause the computer system to
perform any of the methods disclosed herein.

[00015] One or more of the implementations of the subject matter described
herein can be implemented so as to realize one or more of the following advantages.
As one example, the system may reduce the time and cost of performing operations
on a large distributed graph, such as determining connected components in a graph,
computing the shortest path between two nodes, search, etc. Implementations not
only reduce the number of messages sent, but also reduce the size of the messages.
Also, because message passing is asynchronous, the processing time is reduced as
nodes need not wait for other nodes to finish processing. The asynchronous nature
also permits efficient recovery when a node or leaf stops responding temporarily,
making the system robust under frequent failures. To confirm the fault-tolerance

property of the system, an experiment was conducted in which a subset of machines

WO 2014/210501 PCT/US2014/044642

were made to artificially fail periodically over time and the increase in total running
time and number of messages exchanged was recorded. Surprisingly, the running
times increased only 10% to 20% with a 20% machine failure rate. Even with a 70%
failure rate, the running time was multiplied by a factor of 2, demonstrating the high
level of fault tolerance achieved with implementations. Connected component
generation is a building block for graph clustering, which can be used in various
fields, such as network analysis, vision and image processing, machine learning,
knowledge discovery, search, etc.

[00016] The details of one or more implementations are set forth in the
accompanying drawings and the description below. Other features will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[00017] FIG. 1 illustrates an example system in accordance with the disclosed
subject matter.

[00018] FIG. 2 illustrates an example graph distributed across three leaves
and including three clusters.

[00019] FIG. 3 illustrates a flow diagram of an example process for
computing connected components of a large distributed graph.

[00020] FIG. 4 illustrates an example of asynchronous message passing, in
accordance with an implementation.

[00021] FIG. 5 shows an example of a computer device that can be used to
implement the described techniques.

[00022] FIG. 6 shows an example of a distributed computer device that can be
used to implement the described techniques.

[00023] Like reference symbols in the various drawings indicate like

elements.

DETAILED DESCRIPTION
[00024] FIG. 1 is a block diagram of a distributed graph system 100 in
accordance with an example implementation. The system 100 may be used to
calculate connected components of a large distributed graph using the techniques

described herein. The graph system 100 may include root 120 and graph cluster 160.

WO 2014/210501 PCT/US2014/044642

Root 120 and graph cluster 160 may be computing devices that take the form of a
number of different devices, for example a standard server, a group of such servers,
or a rack server system. In some implementations, the root 120 and the graph cluster
160 may be distributed systems implemented in a series of computing devices, such
as a group of servers. In some implementations, the servers may be organized into a
tree structure, with at least a root server 120 and leaf servers 150A to 150x. In some
implementations (not shown), the tree may include intermediate servers, so that
there are one or more layers between the root 120 and the leaf servers 150A to 150x.
The root 120 and graph cluster 160 may be examples of computer device 600, as
depicted in FIG. 6.

[00025] The graph system 100 illustrated in FIG. 1 operates over a large
graph with, for example, billions of nodes. The root 120 may include one or more
servers that operate with the graph cluster 160 to perform operations on the data
graph represented by nodes and edges 154. The nodes and edges 154 may be stored
in one or more data structures that represent each node of the graph and an
adjacency list for each node. The data structure may also represent other
information, for example the attributes of the edges that link a node to its neighbors
in the adjacency list. The root 120 may include one or more servers that receive
commands or requests from a requester, such as client 170. The root 120 may
initiate and monitor calculations performed on the graph and may manage the results
of the calculations. In some implementations, the root 120 may facilitate searches
and queries on the graph. The root 120 may also store instructions in memory 144
that, when executed by the hardware processor 142, cause the system 100 to perform
operations. For example, the root 120 and/or graph cluster 160 may include logic to
process messages sent from one node to its neighbors.

[00026] System 100 may also include a graph cluster 160. Graph cluster 160
may be a collection of distributed computing devices each with its own hardware
processor and memory. The number of computing devices that comprise graph
cluster 160 can vary. The graph cluster 160 may be divided into one or more leaf
servers, such as leaf 150A, leaf 150B, leaf 150n, with n representing any positive
integer. A leaf server may be a logical division of nodes in the graph, with each
graph node being assigned to a leaf server. Thus, a leaf server may correspond to

one computing device, or a leaf server may be a logical computing device and may

WO 2014/210501 PCT/US2014/044642

share a physical computing device with other leaves. In some implementations, a
node’s assigned leaf may change as the graph is updated, making leaf assignments
flexible. The root 120 may determine which nodes are assigned to each leaf as the
nodes are added to the graph or updated.

[00027] The root 120 may route processing requests to the leaf servers and act
as the primary means of coordination between the leaves at processing time. In some
implementations, leaves may send messages directly to each other rather than going
through the root 120. The messages may be messages from a node in the graph to its
neighbors. In addition to the leaf servers 150, the graph cluster 160 may include one
or more layers of intermediate servers between the root node 120 and the leaf
servers 150, but are not shown in FIG. 1 for the sake of brevity. Thus, for example,
an intermediate server may be associated with, for example, 20 leaf servers. The
intermediate server may be connected directly to the root 120, or there may be one
or more additional layers between the intermediate server and the root 120. Thus,
although FIG. 1 shows communications directly between the root 120 and leaf
servers 150, it is to be understood that intermediate devices may be used to direct
communications and aggregate results using known methods, such as remote
procedure calls. The root, intermediate, and leaf servers that make up the tree may,
collectively, be referred to as the graph.

[00028] Each of the leaf servers 150 that make up graph cluster 160 can
include node states 152 and nodes and edges 154. A state for a node may be used in
calculating connected components for the graph and may include a status and a
cluster identifier. The cluster identifier identifies the cluster, or potential connected
component, that a node belongs to. During the calculation of connected components,
the cluster identifier in the state of a node V may change, but it generally represents
the smallest identifier that the node V has seen. This is similar to a Hash-Only-Min
hashing algorithm. Alternatively, in some implementations the identifier may
represent an identifier for the node with the greatest identifier received. At the
conclusion of the computation, the state for a node will contain the identifier of the
connected component to which the node belongs. The state of a node may not be
altered by messages sent between nodes, only by the node itself or the priority queue
engine 156. In addition to the identifier, each node state may include a status. The

status may indicate whether the node is active or inactive. An active status indicates

WO 2014/210501 PCT/US2014/044642

that the identifier in the state has changed and the node needs to send a message with
the new identifier to its neighbors. After the message has been propagated the state
status may be changed to inactive. When all nodes in the graph are inactive, and all
messages have been sent by the priority queue engine 156, the system has computed
the connected components for the graph. At this point the state identifier for each
node contains the identifier of the connected component to which the node belongs.

[00029] Each leaf server 150 may also include a priority queue engine 156.
Messages sent between nodes may be handled by the priority queue engine 156. The
priority queue engine 156 may track which messages have been sent and which still
need to be sent, but does not need to send messages in the order at which they arrive.
In some implementations, the priority queue engine 156 may arbitrarily choose
which message to propagate next. In some implementations, the priority queue
engine 156 may bundle messages destined for other leaf servers together, and send
the bundled messages together. This makes messaging more efficient. Furthermore,
if a leaf is not responding, the priority queue engine 156 can keep track of messages
not successfully acknowledged so that these messages can be resent when the leaf
begins responding again. In some implementations, when the priority queue engine
156 propagates the messages from a node it may set the status of the node to
inactive.

[00030] Graph system 100 may be in communication with clients 170 over
network 180. The network 180 may be for example, the Internet or the network 180
can be a wired or wireless local area network (LAN), wide area network (WAN),
etc., implemented using, for example, gateway devices, bridges, switches, and/or so
forth. Via the network 180, the system 100 may communicate with and transmit data
to/from clients 170 or other computing devices.

[00031] FIG. 3 illustrates a flow diagram of an example process 300 for
computing connected components of a large distributed graph. The process 300
shown in FIG. 3 may be performed by a graph system distributed across multiple
computing devices, such as graph system 100 of FIG. 1. The process 300 may speed
the calculation of connected components in a distributed graph by using an
asynchronous message passing protocol to calculate the cluster each node belongs
to. A root, such as root 120, may initiate process 300 to determine which cluster

each node in the graph belongs to. Process 300 is described for one node, but it is

WO 2014/210501 PCT/US2014/044642

understood that the process 300 occurs for all nodes simultaneously. Furthermore,
while FIG. 3 illustrates a cluster identifier being passed in the message, the message
may pass other values, such as a shortest path identifier.

[00032] The process may begin with the system initializing the state of the
node (305). The initial state for a node will be an active status and an identifier set
equal to the identifier of the node. Because each node is active, it will send a
message to each neighbor, the message including its state identifier (310). This
message may be sent to the priority queue and distributed by the priority queue
engine. Any known or later developed method of sending messages between nodes
may be used. Once the message is propagated, the status of the node may change
from active to inactive (315). In some implementations this can be done by the
priority queue engine.

[00033] The node may then enter a waiting stage, represented by the dashed
line in FIG. 3. The node is waiting for a message with a cluster identifier. If no
message ever arrives, the node will remain in the waiting stage. When it receives
such a message (320) it may compare the value, e.g., the cluster identifier, from the
message with the value, e.g., the cluster identifier, in its state (325). If the message
cluster identifier is greater than or equal to the identifier in the state (325, No), the
node does nothing and continues waiting for another message. While waiting the
node has an inactive status. If the message cluster identifier is less than the identifier
in the state (325, Yes), the node may change its status to active and change the
cluster identifier in its state to the message cluster identifier (330). Because the
node’s status is active, it sends a message to its neighbors, via the priority queue
(335). The message contains the updated cluster identifier received in the message.
When the message is propagated by the priority queue engine, the status may change
back to inactive (340). The node then returns to a waiting stage, waiting for another
message. The system may also checkpoint the states of the nodes at various points
while nodes are performing process 300. Checkpointing the state may cause the
system to store the states for the nodes in persistent memory so that if the leaf fails
or needs to restart for any reason, the node can determine the most recent state, and
begin from that point. Different implementations may use different criteria to decide
when to write checkpoints, as this can be a relatively expensive procedure. For

example, cach leaf server may checkpoint the states of the nodes assigned to the leaf

10

WO 2014/210501 PCT/US2014/044642

after a predetermined number of messages have been sent or propagated. As another
example, the leaf may checkpoint the states after a predetermined amount of time.
Other checkpointing criteria may also be used.

[00034] If a node or a leaf server fails (e.g., does not respond), the connected
component computation process need not restart. Because the messaging is
asynchronous and nodes can independently checkpoint their state, each node
affected by the failure may pick up where it left off. For example, after a fault a
node may initialize its state to the last checkpointed state for the node (345). This
checkpointed state may be stored in persistent memory, as described above. As part
of the initialization process, the node may use information in the checkpoint to
determine whether to set its status to active or inactive. The node may then request
from its neighbors any messages sent since the time of the checkpoint (350). The
node may then set its status to inactive (355) and wait for messages, as indicated by
the dashed line. The neighbors that receive the recovery request may ignore the
request if they have no information to send. For example the neighbor node may
determine whether it sent a message since the time of the checkpoint. If it has not,
the request may be ignored. If the neighbor node did send a message, and the
neighbor node is inactive, the neighbor node may send its cluster identifier to the
node that sent the recovery request. If the neighbor nodes status is active, the priority
queue engine already includes a message for the node that sent the recovery
message, so another message does not need to be sent. Once the node that sent the
recovery request begins receiving messages, it may process the messages as
indicated above, with regard to steps 320 through 340.

[00035] The priority queue engine may be propagating messages arbitrarily as
it receives them. When the priority queue has no other messages to send, it may
check the state of the nodes. If all nodes are inactive, the leaf may report that its
nodes are inactive. Of course, if the priority queue receives a message from another
leaf, it may report that its nodes are once again active (e.g., no longer inactive). A
root node may track the status of each leaf in the distributed system. When each leaf
is inactive, the clusters are stable and the system has computed the connected
components for the graph. Process 300 has thus ended for all nodes in the graph and
the value of the state cluster identifier for each node indicates which connected

component in the graph the node belongs to. The system may store the cluster

11

WO 2014/210501 PCT/US2014/044642

identifier from the node’s state as an attribute of the node. The cluster identifier or
other value sent via message can be used in various ways for additional graph
processing such as suggesting new connections in a social networking graph, load
distribution for traffic in a computer network graph, vision or image processing,
machine learning, responding to search queries, knowledge discovery, etc.
Additionally, although the process 300 is illustrated as sending a lowest identifier, it
is understood that the asynchronous messaging techniques may be used with a
highest identifier with appropriate modifications.

[00036] FIG. 4 illustrates an example of asynchronous messaging using
cluster 215 of FIG. 2. While cluster 215 is used an example for brevity, it is
understood that the computation of connected components would occur for all nodes
of the graph simultaneously, and not just for the nodes of cluster 215. It is also
understood that the representation of the states below uses alphanumeric values, e.g.,
{value, status}, for ease of explanation and the actual data structure implementation
may use other representations that are more memory conscious. Upon initialization
of the state, the nodes in cluster 215 may begin with the following states (Sv):

Sy ={J, active}
Sk = {K, active}
SL = {L, active}
Sm = {M, active}

[00037] The identifier in each state may be propagated to its neighbors. Thus,
Node J sends J to Node L, Node L sends L to Node J and Node M, Node M sends M
to Node L and Node K, and Node K sends K to Node M. The messages can be sent
simultaneously and independently from each other. Node J is on a different leaf than
Nodes K, L, and M. Thus, the priority queue of Leaf 150B may delay sending Node
J’s message to Node L so it can bundle the message with other messages directed to
Leaf 150C. For example, Node B may also be sending messages to Nodes D and C.
These messages may be bundled with Node J’s message to Node L and delivered
together to the priority queue engine of Leaf 150C, thus making more efficient use
of network resources.

[00038] The priority queue engine on Leaf 150C may choose to propagate
Node L’s messages to Nodes M and J first, leaving the messages of M to Node L, M
to Node K, and K to Node M in the queue. The priority queue engine may also set

12

WO 2014/210501 PCT/US2014/044642

the status of L to inactive. Node M receives L’s message and determines that L is
less than M. Thus, Node M changes its cluster identifier to L. and marks itself as
active. Node M then sends a message to Node L and Node K with the identifier of L.
Node J also receives Node L’s message, but J is less than L, so Node J takes no
action.

[00039] In the meantime, the priority queue of Leaf 150B may propagate
Node J’s message to Node L to the priority queue of Leaf 150C, causing Node L to
receive the identifier J. Because J is less than L, Node L changes its status to active,
and sends a message to Node J and Node M with J as an identifier. Thus, the priority
queue on Leaf 150C may have messages of M to Node L, M to Node K, K to Node
M, L to Node L, L to Node K, J to Node J and J to Node M in the queue. The queue
engine my propagate the messages J to Node M and J to Node J next, setting L’s
status to inactive. Because J is lower than L Node M’s current identifier, Node M
changes its status to active, changes its identifier to J and sends a message to Node L
and Node K with identifier J. The priority queue engine may propagate the message
K to Node M next, setting K’s status to inactive. Node M does nothing because K is
not less than J, M’s current status. Although not discussed above in the example, the
nodes may also checkpoint their state at appropriate times.

[00040] As demonstrated, the order of message propagation can be random
without affecting the outcome of the computation. Because it is safe to change the
order of message propagation, the priority queue engine may intelligently choose
which messages to send first, so that the total number of messages sent by the
system is reduced. As one example, if the system uses a smallest identifier, the
priority queue engine may propagate messages that include smaller identifiers and
skip messages with higher identifiers to the same nodes because the latter would be
redundant. Accordingly, using the example above the queue includes three messages
to Nodes K and L, one with J, one with M, and one with L. Because J is lower than
both M and L, the priority queue engine may propagate the message with J but skip
the messages with M and L. When the priority queue engine skips the messages
sending M and L it may still change the status of Node M, which sent the message to
Nodes L and K, to inactive.

[00041] Furthermore, the asynchronous message passing reduces contention

and increases parallelism. The tradeoff for the ability to perform asynchronous

13

WO 2014/210501 PCT/US2014/044642

message passing is that messages sent between two nodes must be idempotent, e.g.,
not alter the state of the source nor target nodes if the framework decides to resent
them one or more times, and the messages must supersede all previous messages
sent between the source and target nodes. In other words, the system is allowed to
suppress any but the last message sent between two nodes without changing the
behavior of the implemented algorithm.

[00042] The processes described above may be used with additional
parameters. For example, in considering what constitutes a neighbor node, the
system may consider only edges in the graph that meet certain criteria. This will, of
course, result in a higher number of clusters, or connected components, for the
graph. Other such parameters may be used in conjunction with this disclosure.

[00043] The asynchronous message passing framework described above may
also be used with other techniques of graph analysis beyond computing connected
components. For example, the asynchronous message passing framework can be
used to calculate a shortest path between nodes using the priority queue engine and
checkpointing. In such implementations the information included in the message
sent between nodes and the operations performed at the nodes may differ from those
discussed above, but the role of the priority queue engine and the fault tolerant
techniques are similar.

[00044] FIG. 5 shows an example of a generic computer device 500, which
may be system 100 or client 170 of FIG. 1, which may be used with the techniques
described here. Computing device 500 is intended to represent various example
forms of computing devices, such as laptops, desktops, workstations, personal
digital assistants, cellular telephones, smart phones, tablets, servers, and other
computing devices, including wearable devices The components shown here, their
connections and relationships, and their functions, are meant to be exemplary only,
and are not meant to limit implementations of the inventions described and/or
claimed in this document.

[00045] Computing device 500 includes a processor 502, memory 504, a
storage device 506, and expansion ports 510 connected via an interface 508. In some
implementations, computing device 500 may include transceiver 546,
communication interface 544, and a GPS (Global Positioning System) receiver

module 548, among other components, connected via interface 508. Device 500 may

14

WO 2014/210501 PCT/US2014/044642

communicate wirelessly through communication interface 544, which may include
digital signal processing circuitry where necessary. Each of the components 502,
504, 506, 508, 510, 540, 544, 546, and 548 may be mounted on a common
motherboard or in other manners as appropriate.

[00046] The processor 502 can process instructions for execution within the
computing device 500, including instructions stored in the memory 504 or on the
storage device 506 to display graphical information for a GUI on an external
input/output device, such as display 516. Display 516 may be a monitor or a flat
touchscreen display. In some implementations, multiple processors and/or multiple
buses may be used, as appropriate, along with multiple memories and types of
memory. Also, multiple computing devices 500 may be connected, with each device
providing portions of the necessary operations (e.g., as a server bank, a group of
blade servers, or a multi-processor system).

[00047] The memory 504 stores information within the computing device
500. In one implementation, the memory 504 is a volatile memory unit or units. In
another implementation, the memory 504 is a non-volatile memory unit or units. The
memory 504 may also be another form of computer-readable medium, such as a
magnetic or optical disk. In some implementations, the memory 504 may include
expansion memory provided through an expansion interface.

[00048] The storage device 506 is capable of providing mass storage for the
computing device 500. In one implementation, the storage device 506 may be or
contain a computer-readable medium, such as a floppy disk device, a hard disk
device, an optical disk device, or a tape device, a flash memory or other similar solid
state memory device, or an array of devices, including devices in a storage area
network or other configurations. A computer program product can be tangibly
embodied in such a computer-readable medium. The computer program product
may also contain instructions that, when executed, perform one or more methods,
such as those described above. The computer- or machine-readable medium is a
storage device such as the memory 504, the storage device 506, or memory on
processor 502.

[00049] The interface 508 may be a high speed controller that manages
bandwidth-intensive operations for the computing device 500 or a low speed

controller that manages lower bandwidth-intensive operations, or a combination of

15

WO 2014/210501 PCT/US2014/044642

such controllers. An external interface 540 may be provided so as to enable near
area communication of device 500 with other devices. In some implementations,
controller 508 may be coupled to storage device 506 and expansion port 514. The
expansion port, which may include various communication ports (e.g., USB,
Bluetooth, Ethernet, wireless Ethernet) may be coupled to one or more input/output
devices, such as a keyboard, a pointing device, a scanner, or a networking device
such as a switch or router, e.g., through a network adapter.

[00050] The computing device 500 may be implemented in a number of
different forms, as shown in the figure. For example, it may be implemented as a
standard server 530, or multiple times in a group of such servers. It may also be
implemented as part of a rack server system. In addition, it may be implemented in a
personal computer such as a laptop computer 522, or smart phone 536. An entire
system may be made up of multiple computing devices 500 communicating with
cach other. Other configurations are possible.

[00051] FIG. 6 shows an example of a generic computer device 600, which
may be system 100 of FIG. 1, which may be used with the techniques described
here. Computing device 600 is intended to represent various example forms of large-
scale data processing devices, such as servers, blade servers, datacenters,
mainframes, and other large-scale computing devices. Computing device 600 may
be a distributed system having multiple processors, possibly including network
attached storage nodes, that are interconnected by one or more communication
networks. The components shown here, their connections and relationships, and
their functions, are meant to be exemplary only, and are not meant to limit
implementations of the inventions described and/or claimed in this document.

[00052] Distributed computing system 600 may include any number of
computing devices 680. Computing devices 680 may include a server or rack
servers, mainframes, etc. communicating over a local or wide-area network,
dedicated optical links, modems, bridges, routers, switches, wired or wircless
networks, etc.

[00053] In some implementations, each computing device may include
multiple racks. For example, computing device 680a includes multiple racks 658a —
658n. Each rack may include one or more processors, such as processors 652a-652n

and 662a-662n. The processors may include data processors, network attached

16

WO 2014/210501 PCT/US2014/044642

storage devices, and other computer controlled devices. In some implementations,
one processor may operate as a master processor and control the scheduling and data
distribution tasks. Processors may be interconnected through one or more rack
switches 658, and one or more racks may be connected through switch 678. Switch
678 may handle communications between multiple connected computing devices
600.

[00054] Each rack may include memory, such as memory 654 and memory
664, and storage, such as 656 and 666. Storage 656 and 666 may provide mass
storage and may include volatile or non-volatile storage, such as network-attached
disks, floppy disks, hard disks, optical disks, tapes, flash memory or other similar
solid state memory devices, or an array of devices, including devices in a storage
area network or other configurations. Storage 656 or 666 may be shared between
multiple processors, multiple racks, or multiple computing devices and may include
a computer-readable medium storing instructions executable by one or more of the
processors. Memory 654 and 664 may include, ¢.g., volatile memory unit or units, a
non-volatile memory unit or units, and/or other forms of computer-readable media,
such as a magnetic or optical disks, flash memory, cache, Random Access Memory
(RAM), Read Only Memory (ROM), and combinations thereof. Memory, such as
memory 654 may also be shared between processors 652a-652n. Data structures,
such as an index, may be stored, for example, across storage 656 and memory 654.
Computing device 600 may include other components not shown, such as
controllers, buses, input/output devices, communications modules, etc.

[00055] An entire system, such as system 100, may be made up of multiple
computing devices 600 communicating with each other. For example, device 680a
may communicate with devices 680b, 680c, and 680d, and these may collectively be
known as system 100. As another example, system 100 of FIG. 1 may include one or
more computing devices 600 as root 120 and one or more of leaves 150, a separate
computing device 600 as root 120, and one or more computing devices 600 as graph
cluster 160. Furthermore, some of the computing devices may be located
geographically close to each other, and others may be located geographically distant.
The layout of system 600 is an example only and the system may take on other

layouts or configurations.

17

WO 2014/210501 PCT/US2014/044642

[00056] Various implementations can include implementation in one or more
computer programs that are executable and/or interpretable on a programmable
system including at least one programmable processor, which may be special or
general purpose, coupled to receive data and instructions from, and to transmit data
and instructions to, a storage system, at least one input device, and at least one
output device.

[00057] These computer programs (also known as programs, software,
software applications or code) include machine instructions for a programmable
processor, and can be implemented in a high-level procedural and/or object-oriented
programming language, and/or in assembly/machine language. As used herein, the

k13

terms “machine-readable medium” “computer-readable medium” refers to any non-
transitory computer program product, apparatus and/or device (e.g., magnetic discs,
optical disks, memory (including Read Access Memory), Programmable Logic
Devices (PLDs)) used to provide machine instructions and/or data to a
programmable processor but not to transitory signals.

[00058] The systems and techniques described here can be implemented in a
computing system that includes a back end component (e.g., as a data server), or that
includes a middleware component (e.g., an application server), or that includes a
front end component (e.g., a client computer having a graphical user interface or a
Web browser through which a user can interact with an implementation of the
systems and techniques described here), or any combination of such back end,
middleware, or front end components. The components of the system can be
interconnected by any form or medium of digital data communication (e.g., a
communication network). Examples of communication networks include a local area
network (“LAN”), a wide area network (“WAN”), and the Internet.

[00059] The computing system can include clients and servers. A client and
server are generally remote from each other and typically interact through a
communication network. The relationship of client and server arises by virtue of
computer programs running on the respective computers and having a client-server
relationship to each other.

[00060] A number of implementations have been described. Nevertheless,
various modifications may be made without departing from the spirit and scope of

the invention. In addition, the logic flows depicted in the figures do not require the

18

WO 2014/210501 PCT/US2014/044642

particular order shown, or sequential order, to achieve desirable results. In addition,
other steps may be provided, or steps may be eliminated, from the described flows,
and other components may be added to, or removed from, the described systems.

Accordingly, other implementations are within the scope of the following claims.

19

WO 2014/210501 PCT/US2014/044642

WHAT IS CLAIMED IS:

L. A system comprising:
distributed computing devices represented by leaf servers; and
memory storing a graph of nodes and edges, the graph being distributed
across the leaf servers,
wherein a leaf server includes:
memory storing a cluster identifier for each node assigned to the leaf
server,
at least one processor, and
memory storing instructions that, when executed by the at least one
processor, cause the leaf server to send asynchronous messages
between neighboring nodes, the messages including the cluster
identifier for the first node, wherein sending the asynchronous message

is triggered by an update to the cluster identifier.

2. The system of claim 1 wherein the memory further stores instructions that,
when executed by the at least one processor, cause the leaf server to:
propagate the message to the second node;
compare the cluster identifier from the message with the cluster identifier for

the second node to determine whether to update the cluster identifier for
the second node; and
when it is determined that the cluster identifier of the second node is to be
updated:
update the cluster identifier for the second node with the cluster identifier
from the message, and
generate messages to neighboring nodes of the second node, the messages

including the updated cluster identifier.

3. The system of claim 2 wherein memory further stores instructions that, when
executed by the at least one processor, cause the leaf server to:

set a status of the second node to active as part of the updating.

20

WO 2014/210501 PCT/US2014/044642

10.

11.

The system of claim 3 wherein the memory further stores instructions that,
when executed by the at least one processor, cause the leaf server to:
set the status of the second node to inactive in response to propagation of the

messages to neighboring nodes.

The system of any of claims claim 2 through 4, wherein the memory further
stores instructions that, when executed by the at least one processor, cause the
leaf server to:

store the updated cluster identifier in persistent memory.

The system of any of claims 2 through 5, wherein the leaf server includes a

priority queue engine that propagates messages between neighboring nodes.

The system of claim 6 wherein the priority queue engine is capable of
bundling together messages directed to nodes on another leaf server before the

propagation of the messages.

The system of claim 6, wherein the priority queue engine is capable of
intelligently skipping redundant messages rather than propagating the

redundant messages.

The system of any of claims 2 through 8, wherein the cluster identifier
represents the smallest identifier seen by the first node and the cluster
identifier for the second node is to be updated when the cluster identifier from

the message is smaller than the cluster identifier for the second node.

The system of any of claims 1 through 9 wherein the graph includes more than

one billion nodes.

The system of any of claims 1 through 10, wherein at least one leaf server
includes a plurality of processors and the at least one leaf server uses the
plurality of processors to concurrently send multiple messages departing from

nodes and to receive multiple messages arriving at nodes.

21

WO 2014/210501 PCT/US2014/044642

12. A computer-implemented method comprising:
propagating, using at least one processor, messages sent between nodes in a
distributed graph in an asynchronous manner, the messages including
respective cluster identifiers; and
in response to a first node of the distributed graph receiving one of the
messages:
comparing, using the at least one processor, a cluster identifier from the
received message with a cluster identifier for the first node to
determine whether to update the cluster identifier for the first node, and
when it is determined that the cluster identifier of the first node is to be
updated:
updating the cluster identifier for the first node with the cluster
identifier from the message, and
generating messages to neighboring nodes of the first node, the

messages including the updated cluster identifier.

13. The method of claim 12, wherein a priority queue engine controls the
propagating.
14. The method of claim 13, wherein the priority queue engine propagates the

messages in an arbitrary manner rather than a first-in-first-out or last-in-last-

out manner.

15. The method of any of claims 13 through 14, wherein nodes in the distributed
graph are assigned to one of a plurality of leaf servers with each leaf server
having a respective priority queue engine, the priority queue engine being one
of the respective priority queue engines, and wherein the priority queue engine
bundles messages directed to nodes assigned to a remote leaf server of the

plurality of leaf servers prior to propagating the messages.

16. The method of claim 15, wherein propagating the messages at a particular leaf

server continues despite a failure of another leaf server.

22

WO 2014/210501 PCT/US2014/044642

17. The method of any of claims 12 through 16, further comprising storing the

updated cluster identifier in persistent memory.

18. The method of claim 17, further comprising, in response to the first node
determining that it experienced a failure:
obtaining the cluster identifier from the persistent memory; and
generating messages to the neighboring nodes of the first node, the messages

requesting a cluster identifier from the respective neighboring nodes.

19. The method of claim 18 wherein the cluster identifier for the first node
represents the smallest identifier seen by the first node and the cluster
identifier for the first node is to be updated when the cluster identifier from the

message is smaller than the cluster identifier for the first node.

20. The method of any of claims 12 through 19, further comprising:

setting a status of the first node to active as part of the updating.

21. The method of claim 20, further comprising:
setting the status of the first node to inactive in response to propagation of

the messages to the neighboring nodes.

22. The method of any of claims 12 through 21, wherein the propagating is
performed without regard to respective states of the nodes in the distributed

graph.

23. A computer-implemented method comprising:

receiving, using at least one processor, at a node in a distributed graph, a
message with a first value;

determining, at the node, that the first value replaces a current value for the
node;

responsive to the determining, setting a status of the node to active and
sending messages that include the first value to neighboring nodes;

receiving, using the at least one processor, the messages to the neighboring

nodes at a priority queue, wherein the priority queue propagates messages

23

WO 2014/210501 PCT/US2014/044642

24.

25.

26.

27.

in an intelligently asynchronous manner, and wherein when the message
is propagated to the neighboring nodes, the status of the node is set to

inactive.

The method of claim 23, wherein the node is a first node and the method

further comprises:

receiving, at the first node, a request from a second node for messages sent
after a first time;

determining, at the first node, whether the messages to neighboring nodes
were sent after the first time;

when the messages were sent after the first time, re-sending the message to
the second node; and

when the messages were not sent after the first time, ignoring the request.

The method of claim 24, wherein the second node sends the request after

recovering a current value for the second node from a checkpoint.

The method of claim 23, wherein the first value and the current value are

cluster identifiers.

The method of claim 23, wherein the first value and the current value are

shortest path identifiers.

24

PCT/US2014/044642

WO 2014/210501

O4LF ANING

L Ol

EE

swbuy snengy AoLH

PGl
sebpg

B SOROR

gL H3LEMI0 HaVHD

¢S S3IBIG BpON

UOGE ¥

L DO 831 BPON

0 POV SC01 8PON

YOS AvET

&

081
MIOMIBN

¥

N\

/
v

7T
AloWwsy

v
JSE8I04]

027 LOOY

PCT/US2014/044642

WO 2014/210501

2091 Av3n

HOGL AvHT

mv.u....a!in.a:

Y0G1 4van

WO 2014/210501 PCT/US2014/044642

initialize state.cluster to self and 300 miﬁaii?i ‘:%tasti.fiistﬁte‘r;(f c{ijuster
state.status to active = O‘tjbt C:(ffb\ ?Oi,n t('jm
205 state.s a{;&s o active
. ¥
Send a message to each FSend a message {0 each
neighbor with state.cluster neighbor requesting messages
310 sent since last checkpoint
e 350
" ¥
Set state.status o inaclive T
when message propagated when me;s;aqv propagated
318 age p G

Receive a message with a cluster

T 320

“Message cluster
less than siate.cluster?
325
Yes

i
i
|
i
i
i
!
!
i
!
i
i
i Set state.clusier 1o message cluster and set
i
!
!
i
i
i
i
|
i
i
|
!

state.status {o active
230

-4

Send message to neighbors with new slate.cluster
335

¥

Set state.status 1o inactive when messags is
b e o propagated
3440

FIG. 3

WO 2014/210501 PCT/US2014/044642
4/6
NDFEDE 4 1058 EQ,UEUE 105C ?UEUE NO?E i NO?E L NQ?E K
i i i i { {
i i i { i i
{4, active} i i {M, active} {L, active} {K, active}
¥ i i f i I
E Ny N, Mgy M>N_ Ny 5 | |
] . N My LN Ny i | |
! f Nk K—Ny f ! !
i i . i i i
i i i i | |
:"“‘ ; Send L NyNy - bl 3"! {i, inactive} g
i] i] i i
{4, active) ; R >N L. active) | |
i | Nyg KNy ; ; ;
; i Ny L—NU N | i i
— N i i { {
{4, inactive} Send J—N, 3 7 »y {
i { i i i i
] ! N M-—N Nk ! {J, active} i
] { Nk KNy { i
] i M L—N; Nk i i i
i i N J—NjNy i i i
] i T i i i
i i i i i i
i i : i i i
i $ Send J— NyNy s 34 {4, inactive} i
i]] !] i
: ; N M—N Nk {J, active} ; ;
! | i 1My | | |
E E NM E.,---?NLNK E i i
; ; Ny J—N Nk i | |
i i i i i i
i i i { i i
i : Send K— Ny, mmﬂ;,; ; {K, inactive}
E ¥ ¥
E ; {4, active} i i
{ { My M—NLNg R i i
i i My LN Ny { i i
i i NM J-*NLNK i | |
i i i i i
i i i i | |
i { {J, inactive} i i
i i Send J— N Nk H ;.j i
] i i ! B
] i i i | |
E ; Ny J—Nu ; : {J, act;ve;
i i I i | |
i i i i | |
i {] { i i
i] i i i i
’ ’) i i i

PCT/US2014/044642

WO 2014/210501

LG
p—
wk LG
324
204G
FARS 206
o]
VA%
P05
905 g i
.......................... m.m 1% 2 PG

4/ 0%

PCT/US2014/044642

WO 2014/210501

——
-
P
——
—

B89

2069 a08s

uzes

.......................

47/ 0038

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/044642

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/54 G06Q10/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F GO6Q

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 20107083194 Al (BAGHERJEIRAN ABRAHAM 1,12,23
[US] ET AL) 1 April 2010 (2010-04-01)

A abstract 2-11,
paragraph [0005] - paragraph [0006] 13-22,
paragraph [0023] - paragraph [0024] 24-27
paragraph [0030] - paragraph [0032]
paragraph [0034] - paragraph [0036]

X US 20137024479 Al (GONG NAN [SE] ET AL) 1,12,23
24 January 2013 (2013-01-24)

A abstract 2-11,
paragraph [0008] 13-22,
paragraph [0026] - paragraph [0027] 24-27
paragraph [0061] - paragraph [0064]

- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

30 September 2014

Date of mailing of the international search report

08/10/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Archontopoulos, E

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/044642

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X
A

US 2011/066649 Al (BERLYANT MIKHAIL [US]
ET AL) 17 March 2011 (2011-03-17)
abstract

paragraph [0035] - paragraph [0037]
paragraph [0044] - paragraph [0052]
NUUTILA ESKO ET AL: "On finding the
strongly connected components in a
directed graph",

INFORMATION PROCESSING LETTERS, AMSTERDAM,
NL,

vol. 49, no. 1,

14 January 1994 (1994-01-14), pages 9-14,
XP002712565,

ISSN: 0020-0190, DOI:
10.1016/0020-0190(94)90047-7

[retrieved on 2013-09-09]

the whole document

THOMAS SEIDL ET AL: "CC-MR Finding
Connected Components in Huge Graphs with
MapReduce",

24 September 2012 (2012-09-24), MACHINE
LEARNING AND KNOWLEDGE DISCOVERY IN
DATABASES, SPRINGER BERLIN HEIDELBERG,
BERLIN, HEIDELBERG, PAGE(S) 458 - 473,
XP047016935,

ISBN: 978-3-642-33459-7

the whole document

DIP SANKAR BANERJEE ET AL: '"Hybrid
algorithms for 1ist ranking and graph
connected components”,

HIGH PERFORMANCE COMPUTING (HIPC), 2011
18TH INTERNATIONAL CONFERENCE ON, IEEE,
18 December 2011 (2011-12-18), pages 1-10,
XP032116109,

DOI: 10.1109/HIPC.2011.6152655

ISBN: 978-1-4577-1951-6

the whole document

HILLEL GAZIT ED - RICHARD COLE: ™"An
optimal randomized parallel algorithm for
finding connected components in a graph",
FOUNDATIONS OF COMPUTER SCIENCE, 1985.,
27TH ANNUAL SYMPOSIUM ON, IEEE,
PISCATAWAY, NJ, USA,

27 October 1986 (1986-10-27), pages
492-501, XP031288052,

I1SBN: 978-0-8186-0740-0

the whole document

1,12,23

2-11,
13'22 L]
24-27

1-27

1-27

1-27

1-27

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/044642

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

VA CLAV KOUBEK ET AL: "Parallel algorithms
for connected components in a graph",

9 September 1985 (1985-09-09),
FUNDAMENTALS OF COMPUTATION THEORY,
SPRINGER BERLIN HEIDELBERG, BERLIN,
HEIDELBERG, PAGE(S) 208 - 217,
XP019192859,

ISBN: 978-3-540-15689-5

the whole document

ABRAMOWSKI S ET AL: "Searching connected
components in very large grid graphs",

17 June 1986 (1986-06-17), GRAPH-THEORETIC
CONCEPTS IN COMPUTER SCIENCE, SPRINGER
BERLIN HEIDELBERG, BERLIN, HEIDELBERG,
PAGE(S) 118 - 130, XP019187497,

ISBN: 978-3-540-17218-5

the whole document

1-27

1-27

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 3 of 3

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/044642
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2010083194 Al 01-04-2010 NONE
US 2013024479 Al 24-01-2013 NONE
US 2011066649 Al 17-03-2011 US 2011066649 Al 17-03-2011
US 2011066894 Al 17-03-2011

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - wo-search-report
	Page 34 - wo-search-report
	Page 35 - wo-search-report
	Page 36 - wo-search-report

