wo 2016/077393 A1 |]I NF 1 0O 0 OO A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

19 May 2016 (19.05.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/077393 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 17/50 (2006.01) GO6F 15/78 (2006.01)

International Application Number:

PCT/US2015/060025
International Filing Date:
10 November 2015 (10.11.2015)
Filing Language: English
Publication Language: English
Priority Data:
14/539,985 12 November 2014 (12.11.2014) US
14/539,975 12 November 2014 (12.11.2014) US

Applicant: XILINX, INC. [US/US]; Attn: Legal Dept.,
2100 Logic Drive, San Jose, CA 95124 (US).

Inventors: STYLES, Henry, E.; 2100 Logic Drive, San
Jose, CA 95124 (US). FIFIELD, Jeffrey, M.; 2100 Logic
Drive, San Jose, CA 95124 (US). WITTIG, Ralph, D.;
2100 Logic Drive, San Jose, CA 95124 (US). JAMES-
ROXBY, Philip, B.; 2100 Logic Drive, San Jose, CA
95124 (US). SANTAN, Sonal; 2100 Logic Drive, San
Jose, CA 95124 (US). VARMA, Devadas; 2100 Logic

(74

(8D

(84)

Drive, San Jose, CA 95124 (US). MARTINEZ VAL-
LINA, Fernando, J.; 2100 Logic Drive, San Jose, CA
95124 (US). ZHOU, Sheng; 2100 Logic Drive, San Jose,
CA 95124 (US). LO, Kwok-wah; 2100 Logic Drive, San
Jose, CA 95124 (US).

Agents: PARANDOOSH, David, A. et al,; Xilinx, Inc.,
Attn: Legal Dept., 2100 Logic Drive, San Jose, CA 95124
(Us).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

[Continued on next page]

(54) Title: HETEROGENEOUS MULTIPROCESSOR PROGRAM COMPILATION TARGETING PROGRAMMABLE INTEG-
RATED CIRCUITS

Runtime Layer
405

Host

Common Low-Level Driver Interface
p
410
Target Platform Software Layer
415
Target Platform-Specific Programming Interface
420
Target r ¢
Platform < Static Region
260 335
Memory Memory Mapped
Programmable Clock and Mapped Bus Slave Interface
Reset . y
IC < Signals Master Interface | | (into Kernel Region
270 4%30 (to RAM 345) Control Register)
435 440
Kernel Region
340
N ~

(57) Abstract: OpenCL program compilation may include
generating (705), using a processor, a register transfer level
(RTL) description of a first kernel of a heterogeneous, multi-
processor design and integrating (710) the RTL description
of the first kernel with a base platform circuit design. The
base platform circuit design provides a static interface within
a programmable integrated circuit to a host of the heterogen-
eous, multiprocessor design. A first configuration bitstream
may be generated (715) from the RTL description of the first
kernel using the processor. The first configuration bitstream
specifies a hardware implementation of the first kernel and
supporting data for the configuration bitstream. The first con-
figuration bitstream and the supporting data may be included
within a binary container (720).

WO 2016/077393 A1 |IIWAK 00T 0 0TS 0

TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Published:

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,

GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

HETEROGENEOUS MULTIPROCESSOR PROGRAM COMPILATION
TARGETING PROGRAMMABLE INTEGRATED CIRCUITS

FIELD OF THE INVENTION
This disclosure relates to integrated circuits (ICs) and, more particularly,

to incorporating programmable ICs into a heterogeneous, multiprocessor design.

BACKGROUND

A heterogeneous, multiprocessor framework provides a standard that is
cross-platform and supports parallel programming of modern processors,
servers, handheld/embedded devices, and the like. Open Computing Language,
referred to as "OpenCL," is an example of a heterogeneous, multiprocessor
framework for writing programs that may be executed across heterogeneous
computing platforms. A heterogeneous computing platform may include a
central processing unit (CPU), a graphics processing unit (GPU), a digital signal
processor (DSP), or the like.

A heterogeneous, multiprocessor program, e.g., an OpenCL program,
includes a portion that executes on a host system and one or more other
portions that execute on devices. Typically, the host system includes the CPU
while the devices may be implemented as GPUs, DSPs, etc. The portions that
execute on devices, which may be referred to as kernels, may be coded in
OpenCL, OpenCL C, or another high level programming language adapted to
the heterogeneous, multiprocessor framework or OpenCL. The portion that
executes on the host may be programmed in C or C++, for example, and
controls the heterogeneous, multiprocessor environment across the various
devices.

While the environment described above is heterogeneous in nature, each
specific device, whether a DSP or a GPU, has a static architecture. By
comparison, a programmable IC such as a field programmable gate array
(FPGA) has an extremely flexible hardware architecture that may be used for
purposes of hardware acceleration. In order to utilize a programmable IC as a
device, however, the circuitry implemented within the programmable IC must be
able to interact with the host and operate within the context of the

heterogeneous, multiprocessor environment.

1

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

SUMMARY

A method includes generating, using a processor, a register transfer level
(RTL) description of a first kernel of a heterogeneous, multiprocessor design,
integrating the RTL description of the first kernel with a base platform circuit
design providing a static region within a programmable integrated circuit (IC) that
provides an interface to a host of the heterogeneous, multiprocessor design, and
generating, from the RTL description of the first kernel and using the processor,
a first configuration bitstream specifying a hardware implementation of the first
kernel and supporting data for the configuration bitstream. The method also
includes including the first configuration bitstream and the supporting data within
a binary container.

A method includes generating, using a processor, an RTL description of a
first kernel of a heterogeneous, multiprocessor design, integrating the RTL
description of the first kernel with a base platform circuit design providing a static
interface within a programmable IC to a host of the heterogeneous,
multiprocessor design, and generating, from the RTL description of the first
kernel and using the processor, supporting data for the RTL description of the
first kernel. The method also includes including the RTL description of the first
kernel and the supporting data within a binary container.

A system may include a processor programmed to initiate executable
operations. The executable operations include generating an RTL description of
a first kernel of a heterogeneous, multiprocessor design, integrating the RTL
description of the first kernel with a base platform circuit design providing a static
region within a programmable IC that provides an interface to a host of the
heterogeneous, multiprocessor design, and generating, from the RTL description
of the first kernel, a first configuration bitstream specifying a hardware
implementation of the first kernel and supporting data for the configuration
bitstream. The method may also include including the first configuration
bitstream and the supporting data within a binary container.

This Summary section is provided merely to introduce certain concepts
and not to identify any key or essential features of the claimed subject matter.
Other features of the inventive arrangements will be apparent from the

accompanying drawings and from the following detailed description.

2

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

The inventive arrangements are illustrated by way of example in the
accompanying drawings. The drawings, however, should not be construed to be
limiting of the inventive arrangements to only the particular implementations
shown. Various aspects and advantages will become apparent upon review of
the following detailed description and upon reference to the drawings.

FIG. 1 is a block diagram illustrating an exemplary architecture for an
integrated circuit (IC).

FIG. 2 is a block diagram illustrating an exemplary data processing
system (system).

FIG. 3 is a block diagram illustrating an exemplary architecture for the
target platform of FIG. 2.

FIG. 4 is a block diagram illustrating exemplary layers of a
heterogeneous, multiprocessor runtime system including the target platform of
FIGs. 2 and 3.

FIG. 5 is a block diagram illustrating exemplary circuitry implemented
within the IC of FIG. 3.

FIG. 6 is a block diagram illustrating an exemplary implementation of a
kernel region.

FIG. 7 is a flow chart illustrating an exemplary method of implementing a
kernel of a heterogeneous, multiprocessor design.

FIG. 8 is a block flow diagram illustrating an exemplary process for
implementing a kernel of a heterogeneous, multiprocessor design within a
programmable IC.

FIG. 9 is a flow chart illustrating an exemplary method of processing a
kernel specified in a heterogeneous, multiprocessor computing language for
implementation within a programmable IC.

FIG. 10 is a block diagram illustrating exemplary processing of a kernel
specified in a heterogeneous, multiprocessor computing language.

FIG. 11 is a block diagram illustrating exemplary processing of a kernel
specified in a heterogeneous, multiprocessor computing language.

FIG. 12 is a block diagram illustrating exemplary processing of a kernel

specified in a heterogeneous, multiprocessor computing language.

3

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

FIGs. 13-1 and 13-2, taken collectively, illustrate processing of a kernel
specified in a heterogeneous, multiprocessor computing language.

FIG. 14 is a block diagram illustrating exemplary processing of a kernel
specified in a heterogeneous, multiprocessor computing language.

FIG. 15 is an exemplary directory structure.

FIG. 16 is a flow chart illustrating an exemplary method of kernel

execution.

DETAILED DESCRIPTION OF THE DRAWINGS

While the disclosure concludes with claims defining novel features, it is
believed that the various features described within this disclosure will be better
understood from a consideration of the description in conjunction with the
drawings. The process(es), machine(s), manufacture(s) and any variations
thereof described herein are provided for purposes of illustration. Specific
structural and functional details described within this disclosure are not to be
interpreted as limiting, but merely as a basis for the claims and as a
representative basis for teaching one skilled in the art to variously employ the
features described in virtually any appropriately detailed structure. Further, the
terms and phrases used within this disclosure are not intended to be limiting, but
rather to provide an understandable description of the features described.

This disclosure relates to integrated circuits (ICs) and, more particularly,
to incorporating programmable ICs into a heterogeneous, multiprocessor
system. In accordance with the inventive arrangements described within this
disclosure, a programmable |IC may be used within a heterogeneous,
multiprocessor design to implement one or more kernels. One or more of the
kernels of the heterogeneous, multiprocessor may be compiled and transformed
into hardware that is implemented using the programmable circuitry of a
programmable IC. In this regard, a kernel implemented using a programmable
IC is hardware accelerated because the kernel is implemented using circuitry as
opposed to being implemented as executable program code that is offloaded for
execution to a processor other than the central processing unit (CPU). The
kernel portion of the heterogeneous, multiprocessor design, being synthesized
into hardware, operates in cooperation with the host of the heterogeneous,

multiprocessor design.

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

In one aspect, the programmable IC may provide a base platform.
Kernel(s) may be implemented over and/or in cooperation with the base
platform. The base platform provides the infrastructure necessary for the kernels
to communicate with a target platform to which the programmable IC is coupled
and the host. The base platform, for example, may be implemented or
determined by the vendor of the target platform. Thus, the base platform may
vary according to the particular model or type of programmable IC that is used
and the model or type of target platform used with the programmable IC.

The inventive arrangements described herein may be implemented as a
method or process performed by a data processing system. In one example, the
method may be directed to implementation of a heterogeneous, multiprocessor
design where one or more kernels are implemented in programmable circuitry of
a programmable IC. In another example, the method may be directed to
operation, e.g., runtime operation, of a heterogeneous, multiprocessor system
that includes a kernel implemented using a programmable IC.

In another aspect, the inventive arrangements may be implemented as a
data processing system having a CPU. The data processing system may
perform a method directed to implementation of a heterogeneous,
multiprocessor design, e.g., a compile time method, where one or more kernels
are implemented in programmable circuitry of a programmable IC. The data
processing system also may include a programmable IC. In that case, the data
processing system may perform a method directed to operation, e.g., runtime
operation, of a heterogeneous, multiprocessor design that includes a kernel
implemented using a programmable IC.

In still another aspect, the inventive arrangements may be implemented
as an IC. The IC may include a base platform. The IC may also be configured
to include one or more kernels implemented therein that operate cooperatively
with the base platform. The IC may implement a runtime method of operating
involving the kernel(s) implemented within the |C and/or various host
interactions.

In yet another aspect, the inventive arrangements may be implemented
as a non-transitory computer-readable storage medium storing program code
that, when executed, causes a processor and/or a system to perform and/or

initiate the various methods and/or processes described herein.

5

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

For purposes of simplicity and clarity of illustration, elements shown in the
figures have not necessarily been drawn to scale. For example, the dimensions
of some of the elements may be exaggerated relative to other elements for
clarity. Further, where considered appropriate, reference numbers are repeated
among the figures to indicate corresponding, analogous, or like features.

FIG. 1 is a block diagram illustrating an exemplary architecture 100 for an
IC. In one aspect, architecture 100 is implemented within a field programmable
gate array (FPGA) type of IC. In the case where architecture 100 includes a
processor, architecture 100 is also representative of an SOC type of IC. An
SOC is an IC that includes a processor that executes program code and one or
more other circuit systems. The circuit systems are implemented in the same
substrate as the processor. The circuit systems may operate cooperatively with
one another and with the processor.

As shown, architecture 100 includes several different types of
programmable circuit, e.g., logic, blocks. For example, architecture 100 may
include a large number of different programmable tiles including multi-gigabit
transceivers (MGTs) 101, configurable logic blocks (CLBs) 102, random access
memory blocks (BRAMs) 103, input/output blocks (IOBs) 104, configuration and
clocking logic (CONFIG/CLOCKS) 105, digital signal processing blocks (DSPs)
106, specialized I/O blocks 107 (e.g., configuration ports and clock ports), and
other programmable logic 108 such as digital clock managers, analog-to-digital
converters, system monitoring logic, and so forth.

In some ICs, each programmable tile includes a programmable
interconnect element (INT) 111 having standardized connections to and from a
corresponding INT 111 in each adjacent tile. Therefore, INTs 111, taken
together, implement the programmable interconnect structure for the illustrated
IC. Each INT 111 also includes the connections to and from the programmable
logic element within the same tile, as shown by the examples included at the top
of FIG. 1.

For example, a CLB 102 may include a configurable logic element (CLE)
112 that may be programmed to implement user logic plus a single INT 111. A
BRAM 103 may include a BRAM logic element (BRL) 113 in addition to one or
more INTs 111. Typically, the number of INTs 111 included in a tile depends on
the height of the tile. As pictured, a BRAM tile has the same height as five

6

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

CLBs, but other numbers (e.qg., four) also may be used. A DSP tile 106 may
include a DSP logic element (DSPL) 114 in addition to an appropriate number of
INTs 111. An |IOB 104 may include, for example, two instances of an 1/O logic
element (IOL) 115 in addition to one instance of an INT 111. As will be clear to
those of skill in the art, the actual /0 pads connected, for example, to IOL 115
typically are not confined to the area of IOL 115.

In the example pictured in FIG. 1, a columnar area near the center of the
die, e.g., formed of regions 105, 107, and 108, may be used for configuration,
clock, and other control logic. Horizontal areas 109 extending from this column
are used to distribute the clocks and configuration signals across the breadth of
the programmable IC.

Some ICs utilizing the architecture illustrated in FIG. 1 include additional
logic blocks that disrupt the regular columnar structure making up a large part of
the IC. The additional logic blocks may be programmable blocks and/or
dedicated circuitry. For example, an optional processor block depicted as PROC
110 spans several columns of CLBs and BRAMs.

In one aspect, PROC 110 is implemented as a dedicated circuitry, e.g., as
a hardwired processor, that is fabricated as part of the die that implements the
programmable circuitry of the IC. PROC 110 may represent any of a variety of
different processor types and/or systems ranging in complexity from an individual
processor, e.g., a single core capable of executing program code, to an entire
processor system having one or more cores, modules, co-processors, interfaces,
or the like.

In another aspect, PROC 110 is omitted from architecture 100 and
replaced with one or more of the other varieties of the programmable blocks
described. Further, such blocks may be utilized to form a "soft processor" in that
the various blocks of programmable circuitry may be used to form a processor
that can execute program code as is the case with PROC 110.

The phrase "programmable circuitry” refers to programmable circuit
elements within an IC, e.g., the various programmable or configurable circuit
blocks or tiles described herein, as well as the interconnect circuitry that
selectively couples the various circuit blocks, tiles, and/or elements according to

configuration data that is loaded into the IC. For example, portions shown in

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

FIG. 1 that are external to PROC 110 such as CLBs 102 and BRAMs 103 are
considered programmable circuitry of the IC.

In general, the functionality of programmable circuitry is not established
until configuration data is loaded into the IC. A set of configuration bits may be
used to program programmable circuitry of an IC such as an FPGA. The
configuration bit(s) typically are referred to as a "configuration bitstream.” In
general, programmable circuitry is not operational or functional without first
loading a configuration bitstream into the IC. The configuration bitstream
effectively implements or instantiates a particular circuit design within the
programmable circuitry. The circuit design specifies, for example, functional
aspects of the programmable circuit blocks and physical connectivity among the
various programmable circuit blocks.

Circuitry that is "hardwired" or "hardened," i.e., not programmable, is
manufactured as part of the IC. Unlike programmable circuitry, hardwired
circuitry or circuit blocks are not implemented after the manufacture of the IC
through the loading of a configuration bitstream. Hardwired circuitry is generally
considered to have dedicated circuit blocks and interconnects, for example, that
are functional without first loading a configuration bitstream into the IC, e.g.,
PROC 110.

In some instances, hardwired circuitry may have one or more operational
modes that may be set or selected according to register settings or values stored
in one or more memory elements within the IC. The operational modes may be
set, for example, through the loading of a configuration bitstream into the IC.
Despite this ability, hardwired circuitry is not considered programmable circuitry
as the hardwired circuitry is operable and has a particular function when
manufactured as part of the IC.

In the case of an SOC, the configuration bitstream may specify the
circuitry that is to be implemented within the programmable circuitry and the
program code that is to be executed by PROC 110 or a soft processor. In some
cases, architecture 100 includes a dedicated configuration processor that loads
the configuration bitstream to the appropriate configuration memory and/or
processor memory. The configuration processor, unlike PROC 110 when
included, does not execute user program code. In other cases, architecture 100

may utilize PROC 110 to receive the configuration bitstream, load the

8

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

configuration bitstream into appropriate configuration memory, and/or extract
program code for execution.

FIG. 1 is intended to illustrate an exemplary architecture that may be used
to implement an IC that includes programmable circuitry, e.g., a programmable
fabric. For example, the number of logic blocks in a column, the relative width of
the columns, the number and order of columns, the types of logic blocks
included in the columns, the relative sizes of the logic blocks, and the
interconnect/logic implementations included at the top of FIG. 1 are purely
exemplary. In an actual IC, for example, more than one adjacent column of
CLBs is typically included wherever the CLBs appear, to facilitate the efficient
implementation of a user circuit design. The number of adjacent CLB columns,
however, may vary with the overall size of the IC. Further, the size and/or
positioning of blocks such as PROC 110 within the IC are for purposes of
illustration only and are not intended as limitations.

FIG. 2 is a block diagram illustrating an exemplary data processing
system (system) 200. In one aspect, system 200 may represent a compile-time
system that may be programmed to implement kernels of a heterogeneous,
multiprocessor design, e.g., a program, as circuitry within a programmable IC.
As defined herein, a "heterogeneous, multiprocessor design” is a program that
includes a portion that executes on a host system and at least one additional
portion called a kernel that executes on a different device or processor. An
example of a heterogeneous, multiprocessor design is an OpenCL program or
design. In one example, the portion that executes on the host may be specified
in a different programming language than the portion that executes on the
different device or processor. The programmable IC may have an architecture
as described with reference to FIG. 1.

In another aspect, system 200 may represent a runtime, heterogeneous,
multiprocessor system where the processor functions as the host and the
programmable IC implements one or more kernels. A "heterogeneous,
multiprocessor system," as defined herein, is a computing system that includes
two or more processors. The two or more processors may be different types of
processors. For example, the heterogeneous, multiprocessor system may

include a central processing unit (CPU), a graphics processing unit (GPU), a

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

digital signal processor (DSP), a programmable IC such as an FPGA, or the like.
The heterogeneous, multiprocessor system may be an OpenCL system.

As pictured, system 200 includes at least one processor, e.g., a central
processing unit (CPU), 205 coupled to memory elements 210 through a system
bus 215 or other suitable circuitry. System 200 stores program code within
memory elements 210. Processor 205 executes the program code accessed
from memory elements 210 via system bus 215. In one aspect, system 200 is
implemented as a computer or other data processing system that is suitable for
storing and/or executing program code. It should be appreciated, however, that
system 200 may be implemented in the form of any system including a
processor and memory that is capable of performing the functions described
within this disclosure. Further, system 200 may be implemented as one or more
networked data processing systems, e.g., servers.

Memory elements 210 include one or more physical memory devices
such as, for example, a local memory 220 and one or more bulk storage devices
225. Local memory 220 refers to random access memory (RAM) or other non-
persistent memory device(s) generally used during actual execution of the
program code. Bulk storage device 225 may be implemented as a hard disk
drive (HDD), solid state drive (SSD), or other persistent data storage device.
System 200 may also include one or more cache memories (not shown) that
provide temporary storage of at least some program code in order to reduce the
number of times program code must be retrieved from bulk storage device 225
during execution.

Input/output (I/O) devices such as a keyboard 230, a display device 235,
and a pointing device 240 optionally may be coupled to system 200. The I/O
devices may be coupled to system 200 either directly or through intervening 1/0O
controllers. A network adapter 245 may also be coupled to system 200 to
enable system 200 become coupled to other systems, computer systems,
remote printers, remote storage devices, and/or a target platform 260 through
intervening private or public networks. Modems, cable modems, Ethernet cards,
and wireless transceivers are examples of different types of network adapter 245
that may be used with system 200. A communication port 250 such as a
Universal Serial Bus port, a FireWire port, a Peripheral Component Interconnect

(PCI) and/or PCI Express (PCle) port, or the like also may be coupled to system
10

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

200 to allow system 200 to become coupled to another system such as any of
the aforementioned systems including target platform 260.

In one aspect, memory elements 210 store an electronic design
automation (EDA) application 255. EDA application 255 may be stored, for
example, in an implementation where system 200 represents a compile-time
system. EDA application 255 may include one or more different components or
modules. EDA application 255, being implemented in the form of executable
program code, is executed by system 200. As such, EDA application 255 is
considered an integrated part of system 200. EDA application 255 and any data
items used, generated, and/or operated upon by system 200 while executing
EDA application 255 are functional data structures that impart functionality when
employed as part of system 200. As a compile-time system, host application
258 may be excluded from system 200.

In the case of a compile-time system, a user works through system 200,
executing EDA application 255. System 200 may receive a heterogeneous,
multiprocessor design 275 as an input and synthesize one or more kernels of
heterogeneous, multiprocessor design 275 into circuitry that may be
implemented within IC 270. System 200 may generate and output a binary
container 280. In one aspect, binary container 280 may include a description of
the contents therein and one or more configuration bitstreams, whether partial or
full. In another aspect, binary container 280 may include a description of the
contents therein, one or more executable simulation files, and/or one or more
register transfer level (RTL) files that may be simulated within an RTL or
hardware description language simulator. In that case, binary container 280 may
include, in addition to the executable simulation file(s) and/or the RTL file(s), one
or more configuration bitstreams, whether partial or full. Binary container 280
may be stored in memory elements 210 and/or provided to another system by
way of network adapter 245 and/or communication port 250.

In another aspect, memory elements 210 store a host application 258.
Host application 258 may be stored, for example, in an implementation where
system 200 represents a heterogeneous, multiprocessor runtime system. Host
application 258 may include one or more different components or modules. Host
application 258, being implemented in the form of executable program code, is

executed by system 200. As such, host application 258 is considered an

11

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

integrated part of system 200. Host application 258 and any data items used,
generated, and/or operated upon by system 200 while executing host application
258 are functional data structures that impart functionality when employed as
part of system 200. As a runtime system, EDA application 255 may be excluded
from system 200.

System 200 may be coupled to target platform 260 through a
communication link 265. In the case of a runtime system implementation, target
platform 260 is coupled to, or considered part of, system 200. Thus, it should be
appreciated that in the case of a compile-time system target platform 260 may
be excluded. Continuing with target platform 260, communication link 265 may
be implemented as any of a variety of different wired and/or wireless connections
that are operable to couple to communication port 250 and/or network adapter
245,

Target platform 260 may be implemented as a circuit board such as a
printed circuit board having circuitry implemented thereon. Target platform may
be implemented as a card that may be plugged into a mechanical connector for
communication port 250, e.g., within system 200, or external to system 200.
Target platform 260 may include a connector that couples to communication link
265. The connector may be coupled, using circuitry of target platform 260, to an
IC 270.

IC 270 may be coupled to target platform 260 using a socket, a
receptacle, another mounting technique such as soldering IC 270 directly to
target platform 260, or the like. IC 270 couples to communication link 265
through target platform 260. In one aspect, IC 270 is a programmable IC. IC
270, for example, may be implemented using the architecture described with
reference to FIG. 1. In another aspect, IC 270 may be implemented as an SOC.
IC 270 may implement one or more kernels of a heterogeneous, multiprocessor
design as circuitry. The heterogeneous, multiprocessor design may be an
OpenCL design.

In the case of a runtime system, processor 205 may operate as the host.
One or more kernels of a heterogeneous, multiprocessor design may be
implemented within IC 270. During operation, new and/or different kernels may
be implemented within IC 270 as needed since IC 270 may be configured, or re-

configured as the case may be, dynamically while in operation without causing

12

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

interruption to other portions of IC 270 that are not being configured or re-
configured as the case may be.

FIG. 3 is a block diagram illustrating an exemplary architecture for target
platform 260 of FIG. 2. As shown, IC 270 and RAM 345 are coupled to target
platform 260. Target platform 260 also includes a connector 350 that is coupled
to IC 270. While illustrated as a card edge type of connector, it should be
appreciated that connector 350 may be implemented as any of a variety of
different connector types. Further, target platform 260 may include one or more
other components (not shown). The additional components, for example, may
be coupled between connector 350 and IC 270.

IC 270 includes a static region 335 and a kernel region 340. In one
aspect, static region 335 includes infrastructure IP needed to support the
heterogeneous, multiprocessor programming model. In one example, the
heterogeneous, multiprocessor programming model is an OpenCL model. Static
region 335, for example, communicatively links kernel region 340 with other
components located on target platform 260 such as RAM 345 and/or other
systems such as the host, e.g., processor 205, during runtime. Static region
335, for example, may implement a software interface used to communicate with
the host. In one aspect, static region 335 may be a circuit implementation that is
provided by the vendor and/or manufacturer of target platform 260.

Kernel region 340 represents the portion of IC 330 where kernels are
implemented. In one aspect, kernel region 340 may have a memory mapped
interface with static region 335. Kernel region 340, unlike static region 335, may
be dynamically generated and integrated with static region 335. For example,
different kernels and different combinations of kernels may be implemented at
different times within kernel region 340 during runtime.

FIG. 4 is a block diagram illustrating exemplary layers of a
heterogeneous, multiprocessor runtime system including target platform 260. In
one example, the heterogeneous, multiprocessor runtime system is an OpenCL
system. As pictured, the host executes a runtime layer 405 that is implemented
within a host application. As discussed, the host may be implemented as
processor 205 of system 200 described with reference to FIG. 2. A target
platform software layer 415 is implemented within the target platform circuitry.

Runtime layer 405 communicates with target platform software layer 415 through

13

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

a common low-level driver interface 410. For example, runtime layer 405 uses
standard, documented application programming interfaces (APIs) defined in
common low level driver 410 to communicate with target platform software layer
415. Target platform software layer 415, for example, may be implemented as a
kernel driver.

Target platform software layer 415, executing in circuitry of target platform
260, communicates with static region 335 through a target platform-specific
programming interface 420, e.g., a hardware programming interface. Static
region 335 provides kernel region 340 with clock and reset signals 430. Static
region 335 also provides information to kernel region 340 through a memory
mapped slave interface 440 that is coupled to a control register (not shown).
Kernel region 340 provides information to static region 335 through a memory
mapped bus master interface 435 that is coupled to RAM 345.

FIG. 5 is a block diagram illustrating exemplary circuitry implemented
within IC 270 of FIG. 3. More particularly, FIG. 5 illustrates an exemplary
architecture that may be used to implement static region 335. Each of blocks
505, 510, 515, 520, and 525 represents a circuit block. Each of blocks 505-525,
as part of static region 335, and kernel region 340, may be implemented within
programmable circuitry of IC 270.

As pictured, static region 335 may include a bus endpoint 505 coupled to
a bus direct memory access (DMA) controller 510. Bus DMA controller 510 is
coupled to interconnect 515. Interconnect 515 couples to interconnect 520 and
to kernel region 340. Interconnect 520 couples to kernel region 340 and to
memory controller 525. Memory controller 525 couples to RAM 345, which is
implemented off-chip IC 270.

Bus endpoint 505 is configured to communicate over a bus with the host
of the heterogeneous, multiprocessor design. Bus DMA controller 510 may be
included to support DMA functionality between host RAM, e.g., local memory
220, and RAM 345 on target platform 260. In one aspect, bus DMA controller
510 includes a master interface 530. Interconnect 515 may include a slave
interface 535 and master interfaces 540 and 545. As shown, slave interface 535
is coupled to master interface 530. Kernel region 340 includes a slave interface
550 and a master interface 555. Master interface 545 of interconnect 515 is

coupled to slave interface 550 of kernel region 340.

14

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

Interconnect 520 includes slave interfaces 560 and 565 and a master
interface 570. Memory controller 525 includes a slave interface 575. As
pictured, master interface 540 of interconnect 515 is coupled to slave interface
560 of interconnect 520. Master interface 555 of kernel region 340 is coupled to
slave interface 565 of interconnect 520.

Interconnects 515 and 520 are circuit blocks configured to couple two or
more other circuit blocks together. In one aspect, interconnects 515 and 520
may be implemented as circuit blocks that couple one or more memory-mapped
master devices with one or more memory mapped slave devices. An example of
an interconnect circuit block implementation is one that conforms to the AMBA®
AXl version 4 specifications from ARM® Ltd. of Cambridge, UK. It should be
appreciated, however, that other interconnect types and/or technologies may be
used to implement interconnects 515 and 520. The disclosure is not intended to
be limited by the exemplary interconnect circuit blocks provided.

Within the architecture illustrated in FIG. 5, bus DMA controller 510 and
kernel region 340 function as masters for memory controller 525. Interconnect
515 allows the host, for example, to read and write RAM 345 over the bus.
Interconnect 520 supports the creation of two bus masters, i.e., bus DMA
controller 510 and kernel region 340, for memory controller 525.

Kernel Region 340 may initially be implemented as a container for
compiled heterogeneous, multiprocessor design kernels. In one aspect, kernel
region 340 may be implemented as a hierarchical IP having a placeholder for
compiled kernels. One or more kernels may be included within kernel region
340. In one example, up to 16 kernels may be included in kernel region 340.
Commands from the host may be received through slave interface 550. Kernel
region 340 may provide commands to memory controller 525 through master
interface 555. Clock and reset signals are provided to kernel region 340 and to
any kernels implemented therein through the connection between master
interface 545 and slave interface 550.

FIG. 6 is a block diagram illustrating an exemplary implementation of
kernel region 340. As pictured, kernel region 340 includes additional
interconnects 605 and 615. Interconnect 605 includes slave interface 550
coupled to master interface 545 of interconnect 515. Interconnect 605 further

includes a master interface 625 coupled to a slave interface 630 of a kernel

15

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

circuitry 610-1. Master interface 625 also may couple to one or more other
kernel circuitries 610-N, where N is an integer value.

Kernel circuitries 610, collectively illustrated as kernel circuitry 610-1
through 610-N, may represent a plurality of instances of same kernel circuitry
and, as such, a plurality of instances of a same kernel. In another example,
kernel circuitries 610 may represent two or more different kernel circuitries. In
still another example, kernel circuitries 610 may represent one or more instances
of a first kernel circuitry and one or more additional, different kernel circuitries.
Interconnect 615 has a slave interface 650 that couples to a master interface
640 and 645 of each kernel circuitry 610. Interconnect 615 includes master
interface 555 that couples to slave interface 565 of interconnect 520.

In one aspect, interconnects 605 and 615 may support up to 16 different
instances of kernel circuitry, 16 different kernel circuitries, or a combination
thereof not to exceed 16. As discussed, the particular number of kernels and/or
kernel instances that may be implemented within kernel region 340 is provided
for purposes of illustration and not limitation.

Within a heterogeneous, multiprocessor framework such as OpenCL,
parallel kernel invocation may be described as a 1, 2, or 3-D index space
referred to as an NDRange. The NDRange is subdivided into work groups.
Work groups include multiple work items. For example, each point in the
NDRange is referred to as a work item.

The kernel of a heterogeneous, multiprocessor design is compiled into
one or more compute units. The system designer, e.g., a user, determines the
number of compute units that are to be implemented in parallel for a given
kernel. In one aspect, the number of compute units for the kernel indicates the
number of instances of the kernel circuitry implemented within kernel region 340
and operating in parallel. Each compute unit is able to process one work group
as determined and provided by the host.

In the example of FIG. 6, each kernel circuitry block 610-1 through 610-N
represents the circuitry of a work unit. Kernel circuitry blocks 610-1 through 610-
N may represent work units of a same kernel, e.g., multiple instances operating
in parallel, or work units of two or more kernels operating in parallel where one or
more of the kernels are implemented within kernel region 340 with multiple

instances.

16

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

FIG. 7 is a flow chart illustrating an exemplary method 700 of
implementing a kernel of a heterogeneous, multiprocessor design. In one
example, the heterogeneous, multiprocessor design may be an OpenCL design.
Method 700 may be performed by a compile-time system such as the system
described with reference to FIG. 2. Method 700 may begin in a state where a
heterogeneous, multiprocessor design includes a kernel that is specified in C,
C++, OpenCL, OpenCL C, an OpenCL compatible high level programming
language, or other high level programming language. In one aspect, any of a
variety of high level programming languages may be used to specify the kernel.
In a further aspect, the high level programming language used to specify the
kernel may be one that supports an explicit specification, or notation, of
parallelism or parallel operations. The system has access to the kernel.

In block 705, the system generates an RTL description of the kernel. The
RTL description may be specified using a hardware description language (HDL).
As defined herein, the term "hardware description language" or "HDL" is a
computer-language that facilitates the documentation, design, and
manufacturing of a digital system, such as an integrated circuit. An HDL
combines program verification techniques with expert system design
methodologies. Using an HDL, for example, a user can design and specify an
electronic circuit, describe the operation of the circuit, and create tests to verify
operation of the circuit. An HDL includes standard, text-based expressions of
the spatial and temporal structure and behavior of the electronic system being
modeled. HDL syntax and semantics include explicit notations for expressing
concurrency. In contrast to most high level programming languages, an HDL
also includes an explicit notion of time, which is a primary attribute of a digital
system.

In block 710, the system integrates the RTL description of the kernel with
a base platform. In one aspect, the base platform may be similar to, or the same
as, the circuit design implemented within static region 335 and described with
reference to FIGs. 4 and/or 5.

In block 715, the system generates a configuration bitstream and
supporting data. The configuration bitstream specifies a hardware
implementation of the kernel, e.g., the compute units as described with reference

to FIG. 6. In one aspect, the configuration bitstream may be a partial bitstream

17

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

that specifies only the kernel or one or more kernels, for example. In another
aspect, the configuration bitstream may be a full bitstream that specifies the
kernel, or kernels as the case may be, and the base platform.

The supporting data describes the configuration bitstream and/or the
contents of the configuration bitstream. In one aspect, the supporting data may
specify a list of IP blocks and/or cores included in the kernel implementation. In
another aspect, the supporting data may specify a two-dimensional coordinate
location within the programmable IC at which the hardware implementation of
the kernel will be implemented when specified as a partial configuration
bitstream.

In block 720, the system includes the configuration bitstream and the
supporting data within a binary container. In one aspect, the binary container
may include multiple individual files. For example, the binary container may
include one or more configuration bitstreams and one or more supporting data
files.

In another aspect, RTL descriptions of the kernel(s) may be included
within the binary container. The RTL descriptions may then be used with an RTL
simulator to test the kernel implementations as part of an overall heterogeneous,
multiprocessor design simulation. For example, the host may provide the binary
container including the RTL description(s) to the RTL simulator during a runtime
simulation of the heterogeneous, multiprocessor design. The RTL simulator may
access the RTL descriptions from the binary container. In still another aspect,
an executable version of the kernel(s) may be included in the binary container
that may be executed using a processor for testing and/or simulation purposes.
For example, the host may provide the binary container including the executable
version of the kernel to a simulator during a runtime simulation of the
heterogeneous, multiprocessor design. It should be appreciated that the
executable version of the kernel may be an executable model of a hardware
implementation of the kernel. The simulator may access the executable version
of the kernel from the binary container. Thus, the binary container supports
multiple different kernel implementations whether as configuration bitstreams for
runtime with a programmable IC, executable versions for simulation on a data

processing system, and/or RTL versions for simulation using an RTL simulator.

18

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

The binary container may include only configuration bitstream(s); only
executable version(s) of the kernel(s); only RTL version(s) of the kernel(s); a
configuration bitstream and an RTL version of the kernel; a configuration
bitstream and an executable version of the kernel; an executable and RTL
versions of the kernel(s); or a configuration bitstream, an executable version of
the kernel(s), and RTL versions of the kernel(s). The supporting data also may
be included for any of the aforementioned combinations of kernel versions
implemented within the binary container. Existing containers used by CPU
and/or GPU vendors in heterogeneous, multiprocessor designs and, in
particular, OpenCL designs, work with "in memory" and address mapped
objects. Such containers do not support simulation versions of the kernel or
multiple different kernel types within the same container.

While the binary container used may support multiple different types of
kernel implementations, in one aspect, a first container may include a first type of
kernel implementation, e.g., a configuration bitstream, an RTL description, or an
executable, while a second binary container may include a different type of
kernel implementation. In still another aspect, a first container may include a
partial configuration bitstream specifying a first kernel while a second container
may include a partial configuration bitstream specifying a second and different
kernel.

Standard APls for a heterogeneous, multiprocessor computing language
such as OpenCL for communication between host and kernels support only
binary object files. The binary container generated by the system complies with
this binary requirement that all pre-compiled kernels are to be accessible through
a self-contained object. The binary container generated in block 720 may be
used by the host to implement kernel circuitry, e.g., compute units, within the
programmable |C during runtime.

FIG. 8 is a block flow diagram illustrating an exemplary process 800 for
implementing a kernel of a heterogeneous, multiprocessor design within a
programmable IC. In one example, the heterogeneous, multiprocessor design
may be an OpenCL design. Process 800 may be performed by a system such
as the system described with reference to FIG. 2 executing EDA application 255.

In one aspect, EDA application 255 may be implemented as an OpenCL

19

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

compiler tool. Process 800 illustrates an exemplary compile-time system
implementation.

As shown, heterogeneous, multiprocessor design 275, e.g., also referred
to as a heterogeneous, multiprocessor application, an OpenCL design, or an
OpenCL application, may include host code 805 and kernel 815. It should be
appreciated that while one kernel is pictured, heterogeneous, multiprocessor
design 275 may include more than one kernel that may be implemented through
process 800. Host code 805 is the portion of heterogeneous, multiprocessor
design 275 that executes in the host. Host code 805 may be specified in a high
level programming language such as C, C++, or the like.

As defined herein, the term "high level programming language” means a
programming language, or set of instructions, used to program a data processing
system where the instructions have a strong abstraction from the details of the
data processing system, e.g., machine language. For example, a high level
programming language may automate or hide aspects of operation of the data
processing system such as memory management. The amount of abstraction
typically defines how "high level" the programming language is. When a high
level programming language, the user need not contend with registers, memory
addresses, etc. of the data processing system upon which the high level
programming language will execute. In this regard, a high level programming
language includes little or no instructions that translate directly, on a one-to-one
basis, into a native opcode of a data processing system. Examples of high level
programming languages include, but are not limited to, C, C++, SystemC, or the
like.

Host code 805 is provided to C compiler 840 or other high level language
compiler. C compiler 840 generates an object code version of host code 805
depicted as App.o 860. Linker 885 receives a heterogeneous, multiprocessor
runtime library 875, app.o 860, and generates a host application 894.
Heterogeneous, multiprocessor runtime library 875 may include a common low
level driver used to communicate with the target platform. Host application 894
is executed by the CPU of a runtime, heterogeneous, multiprocessor system.

Heterogeneous, multiprocessor high level synthesis block 890 receives
kernel 815 and generates kernel.hdl 892. Kernel.hdl 892 is an RTL version of

kernel 815. System assembler 850 receives kernel.hdl 892 and base platform

20

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

description 825. In one aspect, base platform description 825 may be a
metadata file describing aspects of the actual base platform. As noted, the base
platform is the circuitry implemented within static region 335 of programmable IC
270.

From base platform description 825, system assembler 850, for example,
determines the target platform and the particular type of programmable IC to be
used for kernel implementation. For example, system assembler 850 may
identify a directory that specifies implementation details about the base platform
and the low level driver needed by the host to communicate with the target
platform and base platform. The identified directory may include one or more
packaged IPs of the base platform. System assembler 850 may retrieve the
packaged IPs of the base platform, including interconnect IPs coupling the base
platform with the kernel. The interconnect IPs, for example, may specify the
various interconnect circuit blocks needed to integrate, or incorporate, kernel.hdl
892 with the packaged IPs of the base platform. System assembler 850
generates binary container 280. System assembler 850 may generate a
configuration bitstream specifying a hardware implementation of kernel 815 that
integrates with the base platform that is included in binary container 280.

Each configuration bitstream included in binary container 280, for
example, may implement one or more compute units determined from kernel
815, or kernel.hdl 892, as the case may be. As discussed, the system designer
determines the number of compute units that are to be implemented in parallel
for a given kernel.

System assembler 850, depending upon user preference, may include
kernel.ndl 892, e.g., an RTL version of kernel 815 for RTL simulation, and/or an
executable, e.g., an object code version, of kernel 815 for simulation, within
binary container 280 as previously described. System assembler 850 also
includes the supporting data (not shown) within binary container 280.

In one aspect, system assembler 850 integrates kernel 815 with the base
platform. System assembler 850, having information specified in base platform
description 825 and kernel.hdl 892, for example, may integrate kernel 815 with
the base platform by performing functions such as technology mapping,
placement, routing, etc., resulting in a configuration bitstream. The configuration

bitstream may be a full configuration bitstream specifying both the base platform

21

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

and the kernel or a partial configuration bitstream specifying only the kernel. In
any case, system assembler 850 uses the specified interconnect IPs to couple
the base platform with the kernel.

In still another aspect, system assembler 850 may generate binary
container 280 to include files other than a configuration bitstream. For example,
as noted, kernel 815 may be provided to a heterogeneous, multiprocessor
compiler that generates a processor-executable, e.g., an object code, version of
kernel 815. The executable version of kernel 815, e.g., an executable model of
a hardware implementation of kernel 815, may be provided to system assembler
850. System assembler 850 may include the executable version of kernel 815
within binary container 280 in place of the configuration bitstream. In another
example, system assembler 850 may include kernel.hdl 892 within binary
container 280 in place of the configuration bitstream.

FIG. 9 is a flow chart illustrating an exemplary method 900 of processing
a kernel specified in heterogeneous, multiprocessor computing language for
implementation within IC 270. In one example, the heterogeneous,
multiprocessor computing language may be OpenCL. Method 900 may be
performed by a compile-time system such as the system described with
reference to FIG. 2. In one aspect, method 900 illustrates various operations
performed during the generation of an RTL description of a kernel initially
specified in OpenCL C, C, C++, another high level programming language, or a
derivative and/or variant of one of the languages noted within this disclosure.

In block 905, the system identifies and maps memory accesses of the
kernel. The heterogeneous, multiprocessor global memory may be mapped to a
master memory bus. For example, the OpenCL global memory may be mapped
to an AXI master memory bus. Kernel parameters may be mapped to a slave
control bus. For example, the kernel parameters may be mapped to an AXI
slave control bus.

In block 910, the system identifies parameters utilized by the kernel and
includes the parameters within a memory map for the hardware implementation
of the kernel in the IC. In block 915, the system correlates variables to memory
structures of the IC as private memory for the kernel. In block 920, the system
correlates local memory instructions to memory structures of the IC as local

memory for the kernel.

22

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

In block 925, the system generates a control flow graph for the kernel. In
one aspect, the system converts the kernel into LLVM Intermediate
Representation (IR) format. From the LLVM IR format, the system generates the
control flow graph by identifying data flows therein. In block 930, the system
identifies parallel regions of the kernel using the control flow graph. The parallel
regions may be isolated in the control flow graph. For example, for each parallel
region in the control flow graph, the region will have one control edge coming
into the region and one control edge leaving the region.

In block 935, the system optionally constructs a "for" loop around each
parallel region. Identifying the parallel regions and representing each as a "for"
loop allows the kernel, which is a data parallel implementation, to be represented
as a sequential high level programming language such as C, C++, or the like. In
block 940, the system generates a circuit description using pipelining. For
example, the system, by representing the parallel region as a "for" loop, may
synthesis the region as a high level programming language such as C, C++, or
the like, would be synthesized.

FIG. 10 is a block diagram illustrating an exemplary memory architecture
1000 of a heterogeneous, multiprocessor system. In one example, the
heterogeneous, multiprocessor system is an OpenCL system. As shown, a host
1005 includes host memory 1010. Host 1005 may be implemented as processor
205, while host memory 1010 may be implemented as memory elements 210.
Host 1005 is coupled to target platform 260 and to global memory and constant
memory 1015. As discussed, access to global memory and constant memory
1015 may be provided by a memory controller (not shown). Global memory and
constant memory 1015 may be implemented as RAM 345 with the memory
controller being implemented within IC 270. It should be appreciated, however,
that the memory controller may be implemented as a memory controller on
target platform 260 that is external to IC 270, but which is configured to
communicate with IC 270.

IC 270 includes compute units 1020 and 1025. While two compute units
are pictured in IC 270, it should be appreciated that IC 270 may include fewer
than two compute units or more than two compute units. Further, the particular
compute units and the particular number of compute units implemented within IC

270 may change during runtime. Compute units 1020 and 1025 are
23

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

implemented as part of kernel region 340. For purposes of illustration, static
region 335 is not shown.

As pictured, compute unit 1020 includes a local memory 1030, processing
elements 1040 and 1045, and private memories 1060 and 1065. Local memory
1030 is shared by processing elements 1040 and 1045. Each of processing
units 1040 and 1045 is coupled to an individual, unshared one of private
memories 1060 and 1065. Compute unit 1025 includes a local memory 1035,
processing elements 1050 and 1055, and private memories 1070 and 1075.
Local memory 1035 is shared by processing elements 1050 and 1055. Each of
processing units 1050 and 1055 is coupled to an individual, unshared one of
private memories 1070 and 1075. Compute units 1020 and 1025 both have
access to global memory and constant memory 1020.

In one exemplary implementation, host memory 1010 and global memory
and constant memory 1020 may be implemented using RAM on the target
platform, host RAM, and/or one or more cache memories of the host. Local
memories 1030 and 1035, for example, may be implemented within IC 270 using
one or more BRAMs 103. Private memories 1060, 1065, 1070, and 1075 may
be implemented using look-up table RAMs included within CLBs 102.

The allocation of memory structures of IC 270 to memories of memory
architecture 1000 of FIG. 10 is provided for purposes of illustration only. It
should be appreciated that, during synthesis, one or more other memory
structures of IC 270 may be used to implement private memory and/or local
memory depending upon availability of the memory structures of IC 270 and the
amount of memory needed.

FIG. 11 is a block diagram illustrating exemplary processing of a kernel
specified in a heterogeneous, multiprocessor computing language. While FIG.
11 illustrates an OpenCL example, it should be appreciated that kernels may be
specified in a high level programming language other than OpenCL and that the
inventive arrangements described within this disclosure are not intended to be
limited to the examples provided. In one aspect, FIG. 11 illustrates processing
performed in block 905 of FIG. 9. As pictured, the system identifies the "global
int" instruction within the kernel. The "global int" instruction indicates the
particular buffer that is passed from the host to the kernel. The system maps the

memory accesses as transactions on the interconnects.

24

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

In another aspect, FIG. 11 illustrates processing performed in block 910 of
FIG. 9. In the example of FIG. 11, the system determines that an identifier (id) is
used as illustrated by the "get_local_id(0);" function. Pointers, for example, that
are passed into the kernel from the host are specified within a register map
implemented within the kernel. Data, such as the id, is written to the kernel by
the host, e.g., by the host application executing in the host during runtime. For
example, the host may write any necessary data such as the id to the
appropriate register of the register map of the kernel circuitry 610.

The system further, from analysis of the program code of the kernel,
identifies any implicit parameters used by the kernel. Examples of implicit
parameters that may need to be provided to the kernel from the host include, but
are not limited to, a size of an ND range, a size of a work group, or the like. In
some cases, implicit parameters may not be passed through the interface
between the host and the kernel. Such parameters, however, may be passed
through the register map.

FIG. 12 is a block diagram illustrating exemplary processing of a kernel
specified in a heterogeneous, multiprocessor computing language. While FIG.
12 illustrates an OpenCL example, it should be appreciated that kernels may be
specified in a high level programming language other than OpenCL and that the
inventive arrangements described within this disclosure are not intended to be
limited to the examples provided. In one aspect, FIG. 12 illustrates processing
performed in blocks 920 and 925 of FIG. 9. In the example of FIG. 12, referring
to block 920, variables such as "id" are correlated to memory structures that
implement private memory 1060 of the kernel. Examples of private memory may
include pipeline registers, a small array, BRAMs, look-up table RAM, or the like.
Referring to block 925, the system correlates each "local int" memory instruction
with a local memory 1030 such as a BRAM within the kernel.

FIGs. 13-1 and 13-2, taken collectively and referred to collectively as FIG.
13, illustrate processing of a kernel specified in a heterogeneous, multiprocessor
computing language. In one aspect, FIG. 13 illustrates processing performed in
blocks 930 and 935 of FIG. 9. Referring to FIG. 13-1, exemplary OpenCL C
source code for a kernel 1300 is pictured. While FIG. 13 illustrates an OpenCL
example, it should be appreciated that kernels may be specified in a high level

programming language other than OpenCL and that the inventive arrangements

25

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

described within this disclosure are not intended to be limited to the examples
provided.

The system identifies parallel regions of kernel 1300 as regions 1305,
1310, and 1315. As part of recognizing parallelism in block 930, the system may
recognize specific instructions and/or constructs that control parallelism. The
system may identify instances of the "barrier” instruction within kernel 1300. The
"barrier" instruction for example, indicates that all work-items must reach the
barrier instruction before any work items may proceed beyond the barrier
instruction. The barrier instruction may be used as a memory fence or a
synchronization mechanism. The system may identify instances of the
"async_work_group_copy()" instruction (referred to as "async" herein). The
"async" instruction specifies that all work-items must reach the copy with the
same arguments. Thus, in one aspect, the system recognizes parallel regions of
kernel 1300 by identifying instructions that control parallelism within kernel 1300.

The heterogeneous, multiprocessor execution and memory models
guarantee that each of regions 1305, 1310, and 1315 may be implemented fully
in parallel, fully sequentially, or in varying combination. The serialization that
must be observed occurs with the instructions and/or constructs that directly
influence parallelism, e.g., the barrier and/or async instructions.

FIG. 13-2 illustrates a data flow graph generation of block 925 for kernel
1300. Parallel regions 1305, 1310, and 1315 are indicated. A fourth parallel
region 1305-1 is included corresponding to the end or return of the "for" portion
included in region 1305.

FIG. 14 is a block diagram illustrating exemplary processing of a kernel
specified in a heterogeneous, multiprocessor computing language. In one
example, the heterogeneous, multiprocessor computing language may be
OpenCL. In one aspect, FIG. 14 illustrates processing performed in blocks 935
and 940 of FIG. 9. In the example of FIG. 14, processing of region 1310
corresponding to the grayscale conversion is illustrated. Each loop iteration
processes one work-item. An entire loop processes one work-group. The loop
may be implemented as a pipeline with a new work-item being introduced into
the pipeline each clock cycle. As shown, the system creates a "for" loop

construct around parallel region 1310. The circuit description is generated using

26

WO 2016/077393 PCT/US2015/060025

pipelining as shown where each column of work-items corresponds to a pipeline
stage of the kernel. Each row of work-items corresponds to a cycle.
The following illustrates an exemplary register map for a kernel.
// 0x00 : Control signals
5 /[bit 0 - ap_start (Read/Write/COH)
// bit 1 - ap_done (Read/COR)
/[bit 2 - ap_idle (Read)
// bit 3 - ap_ready (Read)
/[bit 7 - auto_restart (Read/Write)
10 / others - reserved
// 0x04 : Global Interrupt Enable Register
// bit 0 - Global Interrupt Enable (Read/Write)
/ others - reserved
// 0x08 : IP Interrupt Enable Register (Read/Write)
15 // bit 0 - Channel 0 (ap_done)
/[bit1 - Channel 1 (ap_ready)
/ others - reserved
// 0xOc : IP Interrupt Status Register (Read/TOW)
// bit 0 - Channel 0 (ap_done)
20 // bit 1 - Channel 1 (ap_ready)
/ others - reserved
// 0x10 : Data signal of group_id_x
// bit 31~0 - group_id_x[31:0] (Read/Write)
// 0x14 : reserved
25 // 0x18 : Data signal of group_id_y
/1 bit 31~0 - group_id_y[31:0] (Read/Write)
// Ox1c : reserved
/[0x20 : Data signal of group_id_z
// bit 31~0 - group_id_2z[31:0] (Read/Write)
30 // 0x24 : reserved
// 0x28 : Data signal of global_offset_x
/1 bit 31~0 - global_offset_x[31:0] (Read/Write)
// Ox2c¢ : reserved

// 0x30 : Data signal of global_offset_y
27

WO 2016/077393

10

15

PCT/US2015/060025

/1 bit 31~0 - global_offset_y[31:0] (Read/Write)
// 0x34 : reserved

// 0x38 : Data signal of global_offset_z

/1 bit 31~0 - global_offset_z[31:0] (Read/Write)
// 0x3c : reserved

// 0x40 : Data signal of matrix

// bit 31~0 - matrix[31:0] (Read/Write)

// Ox44 : reserved

// 0x48 : Data signal of maxIndex

/1 bit 31~0 - maxIndex[31:0] (Read/Write)

// Ox4c : reserved

// 0x50 : Data signal of s1

/1 bit 31~0 - s1[31:0] (Read/Write)

// 0x54 : reserved

/[0x58 : Data signal of s2

/1 bit 31~0 - s2[31:0] (Read/Write)

// Ox5c¢ : reserved

/I (SC = Self Clear, COR = Clear on Read, TOW = Toggle on

Write, COH = Clear on Handshake)

20 Heterogeneous, multiprocessor HLS 890, as described with reference to

FIG. 8, generates a custom register map as illustrated above for each kernel that

is compiled into RTL. The host may use the register map to pass addresses of

buffers, e.g., OpenCL buffers, in the device memory located on the target

platform, scalar arguments to the kernel, and control signals to control the

25 kernel. The register map may also be used by the host to pass a group id and a

group offset to the kernel as required by the OpenCL specification. In one

aspect, the register map may be included within the binary container that is

generated. For example, the register map may be part of the supporting data

that is incorporated into the binary container previously described.

30 The following illustrates an exemplary platform metadata file.

<platform name="vc690-admpcie7v31slot" ipiboard=

cfplatform="">

Single

<description>Alphadata ADM-PCIE-7V3 Partial Reconfiguration

28

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

DIMM</description>
<device name="cpuQ" type="2">
<core name="cpu0" type="cpu" numComputeUnits="1"/>
</device>
<device name="fpga0" type="8"
fpgaDevice="virtex:xc7vx690t:ffg1157:-2">
<core name="OCL_REGION_0" type="clc_region"
clockFreq="100MHZz"
numComputeUnits="10">
<port name="M_AX|_GMEMO" portType="addressable"
mode="master"
base="0x00000000" range="0x40000000"
dataWidth="512"/>
<port name="S_AX|_CONTROLOQ" portType="addressable"
mode="slave" base="0x0" range="0x00010000"
dataWidth="32"/>
</core>
</device>
</platform>
In one aspect, the platform metadata file illustrated above is an
implementation of base platform description 825 described with reference to FIG.
8 and provided to system linker 830. As illustrated, the platform metadata file
specifies the type of target platform, or board, to which the programmable IC is
coupled. Further, the platform metadata file indicates the particular features of
the programmable IC on the board, e.g., the model and/or type as well as clock
frequencies of particular regions, e.g., the static region. Linker 830 may identify
the target platform from the platform metadata file and access a directory
structure named for the target platform specified in the platform metadata file.
FIG. 15 is an exemplary directory structure 1500. The top level directory
indicated uses the same name as the target platform which may be read by
system linker 830 from the platform metadata file. In this example, the top level
directory is called "Board Name." Referring to the exemplary platform metadata
file provided above, however, the top level directory may be specified as

"VC690" or a derivative thereof. In any case, system linker 830 obtains platform

29

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

FPGA 845 using the directory structure of FIG. 15. Directories are bolded in
FIG. 15 for purposes of illustration. For example, "Board Name," "driver," "ipi,"
and "local_lib" are directories. The remaining items listed are files and/or
packages.

The system may automatically locate any newly added target platform
with the files being correctly packaged and added to a designated platform
directory of the system. In the example shown, "driver_file.so" is the low level
driver used by the host to communicate with the target platform over the bus. As
illustrated, driver_file.so is located within the "driver" directory. The platform
metadata file, referred to as "platform.xml" in the example of FIG. 15, is placed in
the root directory. Any packaged IPs used in the static region of the IC as
described with reference to FIGs. 3, 4, and 5 may be stored in the "local_lib"
directory. A base platform block diagram TCL file called "bp.tcl" and any top
level design constraint files, e.g., timing and/or physical constraints, on the static
region circuit design are included in the "ipi" directory.

The common low level driver pictured as "driver_file.so" in FIG. 15 may
include an API having a plurality of functions. The common low level driver API
(hereafter "driver API") allows the heterogeneous, multiprocessor runtime
program code executing in the host to communicate with the target platform.
The driver API, for example, supports configuration bitstream download into the
programmable IC, allocating and/or de-allocating buffers, migrating buffers from
host memory to target platform memory, migrating target platform memory to
host memory, and communicating with the kernel as implemented within the
programmable IC through a control port of the kernel.

The driver API also supports address spaces. The address spaces may
be used for accessing peripherals of the target platform. Each peripheral of the
target platform, for example, may have its own memory mapped range of the
address space. A target platform optionally may have a flat memory space that
may be used to address all peripherals of the target platform.

The driver_file.so may support various quantities such as the minimum
size of buffer, e.g., a DMA buffer, that may be read or written on the target
platform. Further, one or more enumerated address spaces, referred to as
"enums” may be supported. Memory operations may use flat addressing or

relative addressing. Exemplary enums may include, but are not limited to,

30

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

XCL_ADDR_SPACE_DEVICE_FLAT, XCL_ADDR_SPACE_DEVICE_RAM,
XCL_ADDR_KERNEL_CTRL, and XCL_ADDR_SPACE_MAX.
The driver API supports multiple device access operations including, but
not limited to:
¢ xclDeviceHandle xclOpen(const char *deviceName)
¢ void xclClose(xclDeviceHandle handle)
¢ int xclGetDevicelnfo(xclDeviceHandle handle, xcIDevicelnfo *info)

(xclDeviceHandle handle).

The driver API supports configuration bitstream load operations with the
operation "int xclLoadBitstream(xclDeviceHandle handle, const char *fileName)".
As such, the host may initiate loading of a configuration bitstream, whether full or
partial, into the IC to implement one or more different kernels in hardware as
needed during runtime.

The driver API provides various operations for managing memory of the
target platform. The vendor of the target platform, for example, is required to
provide memory management with the following APls:

¢ uint64_t xclAllocDeviceBuffer(xclDeviceHandle handle, size_t size)

The operation "xclAllocDeviceBuffer" allocates a buffer of the specified
size on the target platform and returns the offset of the allocated buffer in the
target platform RAM as a return value. The offset acts as buffer handle. The
OpenCL runtime will subsequently pass the returned handle to the OpenCL
kernel. The OpenCL kernel will use the returned handle to perform bus master
read and/or write operations on the allocated buffer in the target platform RAM.
The host does not write to the target platform RAM directly. In the event that
there are no free blocks remaining, the function should return -1.

¢ void xclFreeDeviceBuffer(xclDeviceHandle handle, uint64_t buf)

The operation "xclFreeDeviceBuffer" frees the memory previously
allocated by xclAllocDeviceBuffer. The freed memory may be reused later for
another call to xclAllocDeviceBuffer. An error condition results from passing a
buffer handle not previously allocated by xclAllocDeviceBuffer.

e size_t xclCopyBufferHost2Device (xclDeviceHandle handle, uint64_t dest,
const void *src, size_t size, size_t seek)

The operation "xclCopyBufferHost2Device" copies the contents of the
host buffer into a destination buffer resident on the target platform. The element

31

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

src refers to the host buffer pointer and dest refers to the device buffer handle.
An error results in passing a dest handle not previously allocated by
xclAllocDeviceBuffer. The element seek specifies the offset in the dest handle.
An error results from passing size where size plus seek is greater than the size
of the device buffer previously allocated. In the examples provided, a PCle DMA
is used to migrate the buffers.

o size_t xclCopyBufferDevice2Host(xclDeviceHandle handle, void *dest,

uint64_t src, size_t size, size_t skip)

The operation xclCopyBufferDevice2Host copies the contents from the
target platform resident buffer to the host buffer. The element srs refers to the
device buffer handle and the element dest refers to the host buffer pointer. An
error results from passing a src handle not previously allocated by
xclAllocDeviceBuffer. The element skip specifies the offset in src handle. An
error results from passing size where size plus skip is greater than the size of
device buffer previously allocated. In the examples provided, a PCle DMA is
used to migrate the buffer.

e size_t xclWrite(xclDeviceHandle handle, xclAddressSpace space,
uinte4_t offset, const void *hostBuf, size_t size)

The operation xclWrite copies the contents of the host buffer hostBufto a
specific location in the target platform address map. The contents of hostBufis
used to program peripherals of the target platform. For example, the OpenCL
runtime executing in the host uses this operation to send the arguments to the
kernel within the programmable IC. The offsets are relative to the address
space.

o size_t xclRead(xclDeviceHandle handle, xclAddressSpace space,
uint64_t offset, void *hostbuf, size_t size)

The operation xclRead copies data from a specific location in the target
platform address map to the host buffer hostBuf. The operation is used to read
the status of peripherals of the target platform. For example, the OpenCL
runtime library uses this operation to determine whether the kernel is finished
running. The offsets are relative to the address space.

The operating system of the host needs a kernel DMA driver to
communicate with the target platform. In one aspect, the common low level

driver AP may be layered on top the kernel DMA driver to insulate the OpenCL
32

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

runtime from the details of the driver. The driver should be multi-threading safe.
The OpenCL runtime optionally uses more than one thread to read and write to
the device at the same time.

In another aspect, the driver APl may include interrupt functions. For
example, the register map for the kernel may include one or more memory
locations at which a flag may be stored by the kernel. Detection of the flag at the
designated memory location of the register map may cause the static region to
trigger an interrupt to the host through a function provided as part of the driver
API.

While the examples illustrated above are directed to an OpenCL
implementation, it should be appreciated that any heterogeneous, multiprocessor
computing language may be used and that the various operations described as
part of the APl may be adapted accordingly.

FIG. 16 is a flow chart illustrating an exemplary method 1600 of kernel
execution. Method 1600 begins in a state where the kernel is implemented
within the programmable IC and the target platform is communicatively linked
with the host. The host, for example, may include one or more binary containers
or have access to one or more binary containers. The host accesses a binary
container and provides the configuration bitstream file from the binary container
to the IC, e.g., to RAM 345. The host may initiate the configuration bitstream
load operation described as part of the driver API thereby causing the IC to load
the configuration bitstream and implement a kernel specified by the configuration
bitstream. As discussed, the host may cause one or more different configuration
bitstreams, whether partial or full, to be loaded to implement one or more
different kernels within the IC at various times during runtime.

In block 1605, the host application is initialized. The host application
includes the heterogeneous, multiprocessor runtime library as illustrated in FIG.
8. In block 1610, the host application allocates buffers in host memory. In block
1615, the host application initiates a transfer to send the buffer contents from the
host memory to the target platform memory.

In block 1620, the host application signals the kernel through the slave
interface to start operating. In block 1625, the host application optionally starts
polling the target platform to monitor for a done signal. In block 1630, the kernel,

i.e., the hardware implementation of the kernel, executes, or begins to operate.

33

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

The kernel loads and stores data from the target platform memory. In block
1635, the kernel changes the status in the memory map register to done
responsive to finishing processing or generates an interrupt. In block 1640, the
host application transfers the updated buffer contents of the target platform
memory, i.e., the results, to the host memory. In block 1645, the heterogeneous,
multiprocessor runtime, e.g., executing in the host or host application, reads the
buffer from the host memory.

For purposes of explanation, specific nomenclature is set forth to provide
a thorough understanding of the various inventive concepts disclosed herein.
The terminology used herein, however, is for the purpose of describing particular
aspects of the inventive arrangements only and is not intended to be limiting.

As defined within this disclosure, the terms "a" and "an" mean one or
more than one. The term "plurality,” as defined herein, means two or more than
two. The term "another," as defined herein, means at least a second or more.
The term "coupled," as defined herein, means connected, whether directly
without any intervening elements or indirectly with one or more intervening
elements, unless otherwise indicated. Two elements may also be coupled
mechanically, electrically, or communicatively linked through a communication
channel, pathway, network, or system.

As defined herein, the term “automatically” means without user
intervention. As defined herein, the term “user” means a human being. The
term "and/or" as defined herein means any and all possible combinations of one
or more of the associated listed items. The terms "includes" and/or "including,"
when used in this disclosure, specify the presence of stated features, integers,
steps, operations, elements, and/or components, but do not preclude the
presence or addition of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof. Although the terms "first,"
"second," etc. may be used herein to describe various elements, these elements
should not be limited by these terms, as these terms are only used to distinguish

one element from another unless the context indicates otherwise.

As defined herein, the term "if" means "when," "upon,” "in response to

determining," "in response to detecting,

responsive to determining,” or
"responsive to detecting,” depending on the context. Similarly, the phrase "if it is

determined” or the phrase "if [a stated condition or event] is detected," as

34

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

defined herein, means "upon determining,” "in response to determining,”

"responsive to determining,” "upon detecting [the stated condition or event]," "in
response to detecting [the stated condition or event],” or "responsive to detecting
[the stated condition or event]," depending on the context.

Within this disclosure, the same reference characters are used to refer to

terminals, signal lines, wires, and their corresponding signals. In this regard, the

terms "signal," "wire," "connection," "terminal,” and "pin" may be used

interchangeably, from time-to-time, within this disclosure. It also should be

appreciated that the terms "signal,” "wire," or the like may represent one or more
signals, e.g., the conveyance of a single bit through a single wire or the
conveyance of multiple parallel bits through multiple parallel wires. Further, each
wire or signal may represent bi-directional communication between two, or more,
components connected by a signal or wire as the case may be.

One or more aspects described within this disclosure may be realized in
hardware or a combination of hardware and software. One or more aspects may
be realized in a centralized fashion in one system or in a distributed fashion
where different elements are spread across several interconnected systems.
Any kind of data processing system or other apparatus adapted for carrying out
at least a portion of the methods described herein is suited.

One or more aspects further may be embedded in a computer program
product, which includes all the features enabling the implementation of the
methods described herein. The computer program product includes a computer-
readable data storage medium. As defined herein, the phrase "computer-
readable storage medium" means a storage medium that contains or stores
program code for use by or in connection with an instruction execution system,
apparatus, or device. As defined herein, a "computer-readable storage medium"
is non-transitory and, as such, is not a transitory propagating signal per se.
Examples of a computer-readable storage medium may include, but are not
limited to, optical media, magnetic media, magneto-optical media, computer
memory such as RAM, a bulk storage device, e.g., hard disk, or the like.

The flowchart and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods
and computer program products according to various aspects of the inventive

arrangements disclosed herein. In this regard, each block in the flowchart or

35

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

block diagrams may represent a module, segment, or portion of code, which
includes one or more executable instructions for implementing the specified
function(s). It will also be noted that each block of the block diagrams and/or
flowchart illustration, and combinations of blocks in the block diagrams and/or
flowchart illustration, can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or combinations of special
purpose hardware and computer instructions.

In one aspect, the blocks in the flow chart illustration may be performed in
increasing numeric order corresponding to the numerals in the various blocks. In
other aspects, the blocks may be performed in an order that is different, or that
varies, from the numerals in the blocks. For example, two or more blocks shown
in succession may be executed substantially concurrently. In other cases, two or
more blocks may sometimes be executed in the reverse order, depending upon
the functionality involved. In still other cases, one or more blocks may be
performed in varying order with the results being stored and utilized in

subsequent or other blocks that do not immediately follow.

The terms "computer program,” "software," "application," "computer-

usable program code," "program code,” "executable code," variants and/or
combinations thereof, in the present context, mean any expression, in any
language, code or notation, of a set of instructions intended to cause a data
processing system to perform a particular function either directly or after either or
both of the following: a) conversion to another language, code, or notation; b)
reproduction in a different material form. For example, program code may
include, but is not limited to, a subroutine, a function, a procedure, an object
method, an object implementation, an executable application, an applet, a
servlet, source code, object code, a shared library/dynamic load library and/or
other sequence of instructions designed for execution on a computer system.
Thus, throughout this disclosure, statements utilizing terms such as
"processing” or "computing” or "calculating" or "determining" or "displaying” or
the like, refer to the action and processes of a data processing system, e.g., a
computer system, or similar electronic computing device, that manipulates and
transforms data represented as physical (electronic) quantities within the

computer system’s registers and/or memories into other data similarly

36

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

represented as physical quantities within the computer system memories and/or
registers or other such information storage, transmission or display devices.

The corresponding structures, materials, acts, and equivalents of all
means or step plus function elements in the claims below are intended to include
any structure, material, or act for performing the function in combination with
other claimed elements as specifically claimed.

A method includes generating, using a processor, an RTL description of a
first kernel of a heterogeneous, multiprocessor design, integrating the RTL
description of the first kernel with a base platform circuit design providing a static
region within a programmable IC that provides an interface to a host of the
heterogeneous, multiprocessor design, and generating, from the RTL description
of the first kernel and using the processor, a first configuration bitstream
specifying a hardware implementation of the first kernel and supporting data for
the configuration bitstream. The method also includes including the first
configuration bitstream and the supporting data within a binary container.

In one example, the heterogeneous, multiprocessor design is an OpenCL
design and the first kernel is specified in OpenCL.

In one aspect, the supporting data includes a two-dimensional location of
the hardware implementation of the first kernel as implemented within the
programmable IC.

The method may include loading the configuration bitstream of the first
kernel creating an instance of the hardware implementation of the first kernel
within the programmable IC during runtime of the heterogeneous, multiprocessor
design.

The method may also include loading the configuration bitstream of the
first kernel creating a plurality of instances of the hardware implementation of the
first kernel within the programmable |C during runtime of the heterogeneous,
multiprocessor design.

The method further may include including a second configuration
bitstream specifying a hardware implementation of a second kernel of the
heterogeneous, multiprocessor design within a second binary container. At least
one instance of the hardware implementation of the second kernel may be

created within the programmable IC.

37

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

In one aspect, generating the first configuration bitstream may include
generating the first configuration bitstream as a partial configuration bitstream
specifying kernel circuitry. In another aspect, generating the first configuration
bitstream may include generating the first configuration bitstream as a full
configuration bitstream specifying the kernel circuitry and base platform circuitry.

A method includes generating, using a processor, an RTL description of a
first kernel of a heterogeneous, multiprocessor design, integrating the RTL
description of the first kernel with a base platform circuit design providing a static
interface within a programmable IC to a host of the heterogeneous,
multiprocessor design, and generating, from the RTL description of the first
kernel and using the processor, supporting data for the RTL description of the
first kernel. The method also includes including the RTL description of the first
kernel and the supporting data within a binary container.

In one example, the heterogeneous, multiprocessor design is an OpenCL
design and the first kernel is specified in OpenCL.

The method may include generating an executable version of the kernel
and including the executable version of the kernel within the binary container.

The method may also include a host providing the RTL description from
the binary container, during runtime, to an RTL simulator and simulating the RTL
description of the kernel in the RTL simulator.

The method further may include including an RTL description of a second
kernel of the heterogeneous, multiprocessor design within a second binary
container.

A system may include a processor programmed to initiate executable
operations. The executable operations include generating an RTL description of
a first kernel of a heterogeneous, multiprocessor design, integrating the RTL
description of the first kernel with a base platform circuit design providing a static
region within a programmable IC that provides an interface to a host of the
heterogeneous, multiprocessor design, and generating, from the RTL description
of the first kernel, a first configuration bitstream specifying a hardware
implementation of the first kernel and supporting data for the configuration
bitstream. The method may also include including the first configuration

bitstream and the supporting data within a binary container.

38

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

In one example, the heterogeneous, multiprocessor design is an OpenCL
design and the first kernel is specified in OpenCL.

The supporting data may include a two-dimensional location of the
hardware implementation of the first kernel as implemented within the
programmable IC.

The executable operations may include loading the configuration
bitstream of the first kernel creating an instance of the hardware implementation
of the first kernel within the programmable IC during runtime of the
heterogeneous, multiprocessor design.

The executable operations may also include loading the configuration
bitstream of the first kernel creating a plurality of instances of the hardware
implementation of the first kernel within the programmable IC during runtime of
the heterogeneous, multiprocessor design.

The executable operations further may include including a second
configuration bitstream specifying a hardware implementation of a second kernel
of the heterogeneous, multiprocessor design within a second binary container.
The executable operations may include creating at least one instance of the
hardware implementation of the second kernel within the programmable IC.

In one aspect, generating the first configuration bitstream may include
generating the first configuration bitstream as a partial configuration bitstream
specifying kernel circuitry. In another aspect, generating the first configuration
bitstream may include generating the first configuration bitstream as a full
configuration bitstream specifying the kernel circuitry and base platform circuitry.

In another example, an IC includes a first region being static and
providing an interface between the IC and a host processor. The first region
includes a first interconnect circuit block having a first master interface and a
second interconnect circuit block having a first slave interface. The IC includes a
second region coupled to the first region. The second region implements a
kernel of a heterogeneous, multiprocessor design and includes a slave interface
coupled to the first master interface of the first interconnect circuit block and
configured to receive commands from the host processor. The second region
also includes a master interface coupled the first slave interface of the second
interconnect circuit block, wherein the master interface of the second region is a

master for a memory controller.

39

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

In one example, the heterogeneous, multiprocessor design is an OpenCL
design.

In one aspect, the second region may be dynamically reconfigurable
during runtime to implement a different kernel under control of the host
processor. In another aspect, the second region may be dynamically
reconfigurable during runtime to implement a different kernel under control of the
host processor while keeping the first region intact.

The first region may include a bus endpoint and a DMA controller coupled
to the bus endpoint. The first region may include a master interface coupled to a
slave interface of the first interconnect circuit block. The first interconnect circuit
block may include a second master interface. The second interconnect circuit
block may include a second slave interface coupled to the second master
interface of the first interconnect circuit block.

The first region also may include the memory controller. The memory
controller may include a slave interface coupled to a master interface of the
second interconnect circuit block.

The first interconnect circuit block and the second interconnect circuit
block may be implemented as AXI interconnect circuit blocks.

The IC also may be coupled to the host processor, programmed with host
program code of the heterogeneous, multiprocessor design.

The DMA controller may be configured as a master to the memory
controller.

The first region may be configured to provide a clock signal and a reset
signal to the second region through the first interconnect circuit block.

The second region may include memory mapped registers coupled to the
first interconnect circuit block.

In one aspect, the second region includes a third interconnect circuit block
having the slave interface of the second region coupled to the first master
interface of the first interconnect circuit block and a master interface coupled to
an input of a first kernel circuit block 610-1. The second region also may include
a fourth interconnect circuit block having a slave interface coupled to an output
of the first kernel circuit block 610-1 and the master interface coupled to the first
slave interface of the second interface circuit block.

The second region may also include a second kernel circuit block having

40

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

an input coupled to the master interface of the third interconnect circuit block and
an output coupled to the slave interface of the fourth interconnect circuit block.

In another example, a method includes providing a first region being static
within an IC implementing an interface between the IC and a host processor,
including, within the first region, a first interconnect circuit block having a first
master interface and a second interconnect circuit block having a first slave
interface, and providing a second region coupled to the first region. The method
may also include implementing a kernel of a heterogeneous, multiprocessor
design within the second region and including, within the second region, a slave
interface coupled to the first master interface of the first interconnect circuit
block. The kernel is configured to receive commands from the host processor.
The method further includes including, within the second region, a master
interface coupled the first slave interface of the second interconnect circuit block,
wherein the master interface of the second region is a master for a memory
controller.

In one example, the heterogeneous, multiprocessor design is an OpenCL
design.

In one aspect, the method may include dynamically reconfiguring the
second region during runtime of the IC to implement a different kernel under
control of the host processor. In another aspect, the method may include
dynamically reconfiguring the second region during runtime of the IC to
implement a different kernel under control of the host processor while
maintaining the first region intact.

The method may include providing, within the first region, a bus endpoint
and providing, within the first region, a DMA controller coupled to the bus
endpoint and including a master interface coupled to a slave interface of the first
interconnect circuit block. The first interconnect circuit block may include a
second master interface. The second interconnect circuit block may include a
second slave interface coupled to the second master interface of the first
interconnect circuit block.

The method may also include providing, within the first region, the
memory controller having a slave interface coupled to a master interface of the
second interconnect circuit block.

The method further may include providing the host processor with host

41

WO 2016/077393 PCT/US2015/060025

10

15

20

program code of the heterogeneous, multiprocessor design.

The method may also include providing, within the second region, a third
interconnect circuit block having the slave interface of the second region coupled
to the first master interface of the first interconnect circuit block and a master
interface coupled to an input of a first kernel circuit block. A fourth interconnect
circuit block may be provided within the second region. The fourth interconnect
circuit block may include a slave interface coupled to an output of the first kernel
circuit block and the master interface coupled to the first slave interface of the
second interface circuit block.

The method also may include providing, within the second region, a
second kernel circuit block having an input coupled to the master interface of the
third interconnect circuit block and an output coupled to the slave interface of the
fourth interconnect circuit block.

The features described within this disclosure may be embodied in other
forms without departing from the spirit or essential attributes thereof.
Accordingly, reference should be made to the following claims, rather than to the
foregoing disclosure, as indicating the scope of such features and

implementations.

42

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

CLAIMS

What is claimed is:

1. A method, comprising:

generating, using a processor, a register transfer level description of a
first kernel of a heterogeneous, multiprocessor design;

integrating the register transfer level description of the first kernel with a
base platform circuit design providing a static region within a programmable
integrated circuit that provides an interface to a host of the heterogeneous,
multiprocessor design;

generating, from the register transfer level description of the first kernel
and using the processor, a first configuration bitstream specifying a hardware
implementation of the first kernel and supporting data for the configuration
bitstream; and

including the first configuration bitstream and the supporting data within a

binary container.

2. The method of claim 1, wherein the supporting data comprises a two-
dimensional location of the hardware implementation of the first kernel as

implemented within the programmable integrated circuit.

3. The method of claim 1, further comprising:
loading the configuration bitstream of the first kernel creating an instance
of the hardware implementation of the first kernel within the programmable

integrated circuit during runtime of the heterogeneous, multiprocessor design.

4, The method of claim 1, further comprising:

loading the configuration bitstream of the first kernel creating a plurality of
instances of the hardware implementation of the first kernel within the
programmable integrated circuit during runtime of the heterogeneous,

multiprocessor design.

43

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

5. The method of claim 1, further comprising:
including a second configuration bitstream specifying a hardware
implementation of a second kernel of the heterogeneous, multiprocessor design

within a second binary container.

6. The method of claim 1, wherein generating the first configuration
bitstream comprises:
generating the first configuration bitstream as a partial configuration

bitstream specifying kernel circuitry.

7. The method of claim 1, wherein generating the first configuration
bitstream comprises:
generating the first configuration bitstream as a full configuration bitstream

specifying the kernel circuitry and base platform circuitry.

8. A system, comprising:

a processor programmed to initiate executable operations comprising:

generating a register transfer level description of a first kernel of a
heterogeneous, multiprocessor design;

integrating the register transfer level description of the first kernel with a
base platform circuit design providing a static region within a programmable
integrated circuit that provides an interface to a host of the heterogeneous,
multiprocessor design;

generating, from the register transfer level description of the first kernel, a
first configuration bitstream specifying a hardware implementation of the first
kernel and supporting data for the configuration bitstream; and

including the first configuration bitstream and the supporting data within a

binary container.
9. The system of claim 8, wherein the supporting data comprises a two-

dimensional location of the hardware implementation of the first kernel as

implemented within the programmable integrated circuit.

44

WO 2016/077393 PCT/US2015/060025

10

15

20

25

30

10. The system of claim 8, wherein the executable operations further include:
loading the configuration bitstream of the first kernel creating an instance
of the hardware implementation of the first kernel within the programmable

integrated circuit during runtime of the heterogeneous, multiprocessor design.

11. The system of claim 8, wherein the executable operations further include:
loading the configuration bitstream of the first kernel creating a plurality of

instances of the hardware implementation of the first kernel within the

programmable integrated circuit during runtime of the heterogeneous,

multiprocessor design.

12. The system of claim 8, wherein the executable operations further include:
including a second configuration bitstream specifying a hardware
implementation of a second kernel of the heterogeneous, multiprocessor design

within a second binary container.

13. The system of claim 12, wherein the executable operations further
include:
creating at least one instance of the hardware implementation of the

second kernel within the programmable integrated circuit.

14. The system of claim 8, wherein generating the first configuration bitstream
comprises:
generating the first configuration bitstream as a partial configuration

bitstream specifying kernel circuitry.

15. The system of claim 8, wherein generating the first configuration bitstream
comprises:
generating the first configuration bitstream as a full configuration bitstream

specifying the kernel circuitry and base platform circuitry.

45

PCT/US2015/060025

1/12

WO 2016/077393

BSIE hisnmm) |
| I
"l o] stT | __
_ “ T[0T S1OW
F{l1hor] 1o | ————
e | 20l s919
_ 1 1 3 i
oL 1 T | €01 SNVH4
| o —
_ 20l sg19
ﬂ A1 T,/ T
=1 0l sgol
B I Ll
I 201 sg10
901 e J Sl
TN T T 0T sdsa
1 1 1 1 T | I A I I I] [T
— — | I o o A LSS o 11
VLIl o || BV " TOTSNVYE
1984 =8 = H 2ot sa0 .
T 301 e ;
TIT H%H_n o W W “ JHLO=$::L01:0/ 01xSYD0710 / ©OIdNOD 2010/
| o
,_._M.—.Z_ 1NI LNI 1NI 1INI _ NN EENEEN 0F S910 -
_ _ _ N o _ III— L L
o R — — — A — — T — — —12 - (leuondo) E0TSNVYg
“ 0lT 00¥d LZ0T s91D -
Vit o || BV ! COTSAVg
1dsda THag | ﬂmm._w
A I A LT LI
LT T K T Y e 70T s9ol
LN [P NI P NI P INE PLINE [o
M I 20l sg12
€0l - COISNVYg
) | o T 1T
miicak Z0F sgT10
1Edks
A g T | TOT SLOW
20l [
00l T K
INI [/ll \
[! 607 NOILNGIMLSIA ¥0010 / DIANOD

WO 2016/077393 PCT/US2015/060025
2/12

Display Pointing || Network | | Communication 265
Ke)élgc())ard Device Device Adapter Port 4—[
235 240 245 250
A A *
2
v v 270 60
EE 3
v
Memory Elements
Processor 210
205 :
Local Memory | | Bulk Storage Device
220 225
(Electronic Design R
Automation Host Application
Application 258
Y 255 y,
200
Heterogeneous, Binary
Multiprocessor Container
Design 280 FIG. 2
275

RAM
345
A
v
Static Region
335

350

270

Kernel Region
340

_|IIIIIIIIIIIIIIIIIIII{III|—
|l\)
O
o

FIG. 3

WO 2016/077393 PCT/US2015/060025
3/12

Runtime Layer
405
Host
Common Low-Level Driver Interface
-
410
\- J
\ 4
Target Platform Software Layer
415
Target Platform-Specific Programming Interface
420
\- J
Target - Y
Platform & Static Region
260 335
Memory Memory Mapped
Programmable CI;c;kS:tnd Mapped Bus Slave Interface
IC < Sianals Master Interface (into Kernel Region
270 230 (to RAM 345) Control Register)
435 440
A 4 ¢
Kernel Region
340
. .

FIG. 4

WO 2016/077393 PCT/US2015/060025

4/12
540 560
Interconnect i e Interconnect
515 % 520
g 335 =
530 @ 335 545 565 575~y 0
HEE -
Bus DMA Controller Memory Controller
510 525
¢ 550 Kernel Region 555 *
340 7
Bus Endpoint RAM
505 345
340
Kernel
Interconnect Interconnec h Circuitr : Interconnect Interconnect
515 605 610_1y 615 520
545 |550 625 (630 : 640(650 555 | 565
635 N 645
Kernel
Circuitry H
610-N

FIG. 6

WO 2016/077393 PCT/US2015/060025

5/12

700

Generate a register transfer level
description of a kernel of a

heterogeneous, multiprocessor design
705

Integrate the register transfer level
description of the kernel with a base
platform

710

Generate a configuration bitstream and

supporting data
715

Include configuration bitstream and
supporting data within binary container
720

FIG. 7

WO 2016/077393 PCT/US2015/060025
6/12
Heterogeneous, 800
Multiprocessor
Design
275
Host Code Kernel Bgzesg:zgg;m
805 815 825
\ 4 A 4
. Heterogeneous,
C Compiler Multiprocessor High
840 Level Synthesis
890
\ 4 \ 4

Heterogeneous,

Multiprocessor App.o Kernel.hdl

Runtime Library 860 892

875
\ 4 \ 4 \ 4 \ 4
Linker System Assembler
885 850
255

Host

Application
894

FIG. 8

Binary

Container

280

WO 2016/077393 PCT/US2015/060025
7/12

00

Map memory accesses
905

h 4

Identify parameters utilized by
kernel and include in memory map
910

Correlate variables to memory
structures as private memory of
kernel
915

Correlate local memory instructions
to memory structures as local
memory

920

Generate control flow graph
925

Identify parallel regions in the
control flow graph
930

h 4

Create a “for” loop construct
around each parallel region
935

Generate circuit description using
pipelining
940

FIG. 9

WO 2016/077393

PCT/US2015/060025
8/12
1000
Private Private Private Private
Memory Memory Memory Memory
1060 1065 1070 1075
Processing || Processing Processing || Processing
Element Element Element Element
1040 1045 1050 1055

i

A
h 4

!

!

Local Memory

Local Memory

1030 1035
Compute Unit Compute Unit
1020 1025
IC 270
A 4
Target Global Memory and Constant Memory
Platform 1020
260 'y
Host
1005

Host Memory
1010

FIG. 10

_kernel void sobel(_global int *input, _global int *output)

{

_kernel void sobel(_global int *input, _global int *output)

{

WO 2016/077393

9/12

/1 1-D kernel

unsigned int id 4 get_local)id(0);

_local int lineQ[width];
_local int line1[width];
_local int line2[width];
_local int result[width];

// 1-D kerpel

FIG. 11

unsigned int id]= get_local)id(0);

_local int lineQ[width];
_local int line1[width];

_local int line2[width];

_local int result[width];

PCT/US2015/060025

Kernel Circuitry
610

» 1060

> 1060 B 1060

-

1060

.

FIG. 12

Local Memory
1030

Kernel Circuitry
610

WO 2016/077393 PCT/US2015/060025
10/12

#define WIDTH 1920

#define LINES 1080

__kernel void sobel(__global int *input, __global int *output)

r// 1-D kernel
B 1305

unsigned int id = get_local_id(0); /

__local int lineO[WIDTH];
__local int line1[WIDTH];
__local int line2[WIDTH];
__local int resultfWIDTH];

[for each output line in the frame
for (unsigned line = 1; line < LINES-1; line++)

[/l Fetch values

__global int *in = input + line*WIDTH;
—event_t ev[a],

ev[0] = async_work_group_copy(line0, in - WIDTH, WIDTH, 0);

ev[1] = async_work_group_copy(line1, in , WIDTH, 0);

ev[2] = async_work_group_copy(line2, in + WIDTH, WIDTH, 0); 1310

wait_group_events(3, ev);

/I Convert to Grayscale

lineO[id] = ((lineO[id] & 0xFF) + ((lineO[id] >> 8) & OxFF) + ((line0[id] >> 16) & OxFF) + 64) >> 2;
line1[id] = ((line1[id] & OxFF) + ((line1[id] >> 8) & OxFF) + ((line1[id] >> 16) & OxFF) + 64) >> 2;
line2[id] = ((line2[id] & OxFF) + ((line2[id] >> 8) & OxFF) + ((line2[id] >> 16) & OxFF) + 64) >> 2;

barrier(CLK_LOCAL_MEM_FENCE);

/l Calculate Sobel Filter v 1315
if (id = 0 && id != width-1) {
int gx = - line0Q[id-1] - 2*line1[id-1] - line2[id-1] + line0[id+1] + 2*line1[id+1] + line2[id+1];
int gy = - line0[id-1] - lineO[id] - lineO[id+1] + line2[id-1] + 2*line2[id] + line2[id+1];
if (gx < 0) gx = -gx;
if (9y < 0) gy = -gy;
resultfid] = (gx + gy) & OxFF;
if (result[id] < 55)
result[id] = OxFFFFFFFF;
else if (result[id] > 155)
result[id] = 0xFF000000;
else {
result[id] = 255 - result[id];
result[id] = result[id] | (result[id] << 8) | (result[id] << 16) | OxFF000000;
}

I
barrier(CLK_LOCAL_MEM_FENCE);

event_t ev0 = async_work_group_copy(output+line*WIDTH+1, result, width-2, 0);
wait_group_events(1, &ev0);

}
}

FIG. 13-1

WO 2016/077393

FIG. 13-2

11/12

—
(]
[ww]

Entry

v

For Begin

v

Burst Read

End If

v

Barrier

v

Burst Write

v

For End

v

Return

item

For each work-

1310

FIG. 14

v
)

End For —

1305

> 1315

PCT/US2015/060025

1310¢

Cycles

13104

13109

,
’

13102

13104 |

™| 1310,

13107 |

*| 13104

1310n-1

131001 |~

| 1310,

™ [131004

WO 2016/077393

12/12

1500

Board Name

driver
driver_file.so
ipi
bp.tcl
bp.xdc
local_lib
axi_master_terminator
axi_slave_terminator
memory_controller
dma
bridge
platform.xmi
README

FIG. 15

PCT/US2015/060025

1600

Host application is initialized
1605

Host application allocates buffers in
host memory
1610

Host application initiates a transfer
of buffer contents from host
memory to the target platform
memory

1615

Host application signals kernel to
start operating
1620

Host application optionally polls
target platform for done signal
1625

Kernel executes (operates)
1630

Kernel changes status in memory
register to done or generates
interrupt

1635

Host application transfers updated
buffer contents in target platform
memory to host memory

1640

Host application reads buffer from
host memory
1645

FIG. 16

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/060025

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/50 GO6F15/78
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

XP047031078,

ISBN: 978-3-642-36948-3
pages 507-517,

abstract

page 507 - page 509
page 511

X ALEXANDROS BARTZAS ET AL: "A Methodology
for Efficient Use of OpenCL, ESL and FPGAs
in Multi-core Architectures",

27 August 2012 (2012-08-27), EURO-PAR
2012: PARALLEL PROCESSING WORKSHOPS,
SPRINGER BERLIN HEIDELBERG, BERLIN,
HEIDELBERG, PAGE(S) 507 - 517,

1-15

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 March 2016

Date of mailing of the international search report

22/03/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Radev, Boyan

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/060025

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 2013/212365 Al (CHEN DORIS TZU-LANG
[CA] ET AL) 15 August 2013 (2013-08-15)
abstract

paragraph [0001]

paragraph [0007] - paragraph [0009]
paragraph [0025] - paragraph [0041]
paragraph [0057] - paragraph [0063]
TOMASZ S CZAJKOWSKI ET AL: "From opencl
to high-performance hardware on FPGAS",
FIELD PROGRAMMABLE LOGIC AND APPLICATIONS
(FPL), 2012 22ND INTERNATIONAL CONFERENCE
ON, IEEE,

29 August 2012 (2012-08-29), pages
531-534, XP032265186,

DOI: 10.1109/FPL.2012.6339272

ISBN: 978-1-4673-2257-7

the whole document

KAVYA SHAGRITHAYA ET AL: "Enabling

development of OpenCL applications on FPGA

platforms",

APPLICATION-SPECIFIC SYSTEMS,
ARCHITECTURES AND PROCESSORS (ASAP), 2013
IEEE 24TH INTERNATIONAL CONFERENCE ON,
IEEE,

5 June 2013 (2013-06-05), pages 26-30,
XP032441593,

DOI: 10.1109/ASAP.2013.6567546

ISBN: 978-1-4799-0494-5

the whole document

1-15

1-15

1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/060025
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2013212365 Al 15-08-2013 CN 103324512 A 25-09-2013
EP 2626801 A2 14-08-2013
JP 2013165490 A 22-08-2013
US 2013212365 Al 15-08-2013
US 2015121321 Al 30-04-2015

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - wo-search-report
	Page 61 - wo-search-report
	Page 62 - wo-search-report

