
(12) United States Patent
Czajkowski et al.

USOO7685597 B1

US 7,685,597 B1
Mar. 23, 2010

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMAND METHOD FOR
MANAGEMENT OF CHARACTERIZED
RESOURCES

(75) Inventors: Grzegorz J. Czajkowski, Mountain
View, CA (US); Glenn C. Skinner, Palo
Alto, CA (US); Ciaran J. Bryce, Geneva
(CH); Stephen C. Hahn, Redwood City,
CA (US); Peter James Soper, Apex, NC
(US)

(73) Assignee: Sun Microsystems, Inc., Santa Clara,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1798 days.

(21) Appl. No.: 10/783,625

(22) Filed: Feb. 20, 2004

(51) Int. Cl.
G06F 9/46 (2006.01)
G06F 9/44 (2006.01)

(52) U.S. Cl. 718/100; 718/104; 717/120
(58) Field of Classification Search 718/104-105;

707/9
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,003,061 A * 12/1999 Jones et al. T18, 104
7,096,219 B1 8/2006 Karch 707/9

OTHER PUBLICATIONS

Banga et al., “Resource containers: A new facility for resource man
agement in server systems', 1999, USENIX Association. Third
Sympsium on Operating Systems Design and Implementation, pp.
45-58.*

Consumer

Resource
Implementation

13A

Consumer
isolate

Back, Godmar, et al., Processes in Kaffe0S: Isolation, Resource
Management, and Sharing in Java, 4" OSDI, San Diego, CA, 2000,
14 pages.
Binder, Walter, et al., Portable Resource Control in Java: The
J-SEAL2 Approach, 16 ACMOOPSLA, Tampa Bay, FL, Oct. 2001,
17 pages.
Vitek, J. and Bryce, C., The JavaSeal Mobile Agent Kernel. 3"
International Symposium on Mobile Agents, Palm Springs, CA, Oct.
1999, pp. 89-113.
Czajkowski, G., et al., JRes: A Resource Accounting Interface for
Java, 13 ACMOOPSLA, Vancouver, BC, Oct. 1998, 15 pageS.
Czajkowski, G., et al., Multitasking without Compromise: A Virtual
Machine Evolution, ACM OOPSLA, Tampa, FL, Oct. 14-18, 2001,
14 pages.
Golm, Michael, et al., The JX Operating System. The USENIX
Annual Technical Conf. Monterey, CA. Jun. 2002, 14 pages.

(Continued)
Primary Examiner Meng-Ai An
Assistant Examiner Eric C Wai
(74) Attorney, Agent, or Firm Robert C. Kowert:
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT

Providing a resource domain structure allows flexible man
agement of resources. With flexible management, computa
tions, such as threads and processes, do not have to be related
to be bound to the same resource domain. Since resource
domains do not require the parent-child relationship, unre
lated computations can bind each other to their resource
domains. A data structure identifies a resource domain, the
resource of the domain, and implementation of a resource
management policy. The implementation of the resource
management policy includes policy action, which when
executed invoke policy imposing isolates. The resource
domain data structure also indicates availability of usage of
the resource.

41 Claims, 17 Drawing Sheets

Policy imposing

Policy Policy
121 123

US 7,685,597 B1
Page 2

OTHER PUBLICATIONS

Gong, Li, et al., Inside JavaTM 2 Platform Security, Second Edition,
Addison-Wesley, 2003, Chapter 3, pp. 31-39, Chapter 5, pp. 57-86,
Chapter 6, pp. 87-112, Chapter 9, pp. 157-176.
Gosling, James, et al., The JavaM Language Specification, Second
Edition, Addison-Wesley, 2000, Chapter 8, pp. 135-197. Chapter 9,
pp. 199-208.
Hall, Marty and Brown, Larry, Core Servlets and JavaServer Pages,
vol. 1: Core Technologies, Second Edition, Prentice Hall, 2000,
Chapter 3, pp. 65-92.
Emmerson, Steven R., et al., Java Community Process, JSR 108:
Units Specification. http://jcp.org/jsr/detail/108.jsp., Mar. 6, 2001, 4
pageS.

Soper, Pete, Java Community Process, JSR 121: Application Isola
tion API Specification, http://jcp.org/sri detail/121.jsp., Apr. 17.
2001, 6 pages.
Suri, N., et al., State Capture and Resource Control for Java: The
Design and Implementation of the Aroma Virtual Machine, Java
Virtual Machine Research and Technology Symposium, Monterey,
CA, Apr. 2001, pp. 1-13.
Sun Microsystems, Inc., The Java HotSpot TMVirtual Machine, v 1.4.
1, d2, A Technical White Paper, Sep. 2002, pp. 1-25.

* cited by examiner

US 7,685,597 B1 Sheet 1 of 17 Mar. 23, 2010 U.S. Patent

F.G. 1

U.S. Patent

Computation
N. 207 u : -.

Mar. 23, 2010 Sheet 2 of 17

Computation Computation
i\ 209 N. 211 v

Solate lsolate
201 203 ----------

Operating Environment
2O2

FG. 2A

Isolate

Ap
-

plication) (Application

Application 22 22 31
227A u?

- as - a (Application

Operating : Pion
Environment

225 Operating
Environment

235

Operating Environment
220

FIG. 2B

Computation
\ 213M u?i

US 7,685,597 B1

Computation
\ 213A v.

N

U.S. Patent Mar. 23, 2010 Sheet 3 of 17 US 7,685,597 B1

f Process Process

Child Child \ .
Process Process :

Process
i\ 241

249 250

isolate isolate T
242 246

Operating Environment
240

FIG. 2C

U.S. Patent Mar. 23, 2010 Sheet 4 of 17 US 7,685,597 B1

RECEIVE REOUEST FOR
RESOURCE RESERVATION

301

PE OFs DECREASE
RESERVATION

RECRUEST? DECREASE Accosy
303 302

INCREASE

DENY
RESERVATION

SERVAT
WITHIN SYSTEM
AVAILABLITY OF

ESOURCET)

NO
REGUEST

305

INDICATE RESERVATION
OF RESOURCE

307

COMMUNICATE GRANT
RESERVATION OF RESOURCE

309

FIG. 3

U.S. Patent Mar. 23, 2010 Sheet 5 Of 17 US 7,685,597 B1

Policy
Imposing
Isolate
409

policy
411

Dispenser Isolate
401

execute pres
decision

policy action Trigger
403A

Policy
Imposing
Isolate
419

-/ notification
policy
412

execute posts
decision

policy action Trigger
403B

FG. 4

U.S. Patent Mar. 23, 2010 Sheet 6 of 17 US 7,685,597 B1

RECEIVE RESOURCE REGUEST
501

DETERMINE CORRESPONDING
TRIGGER(S) AND/OR POLICYDECISION

ACTIONS
503

EVALUATE
TRIGGERS

505

ONE
TRIGGER 2

AT LEAST ONE TRIGGER
EVALUATE TO TRUE 2

YES

EXECUTE POLICYDECISION ACTION(S)
ASSOCIATED WITH THOSE TRIGGERS THAT

EVALUATED TO TRUE
511

WAIT FOR DECISIONS
513

MERGE DECISIONS
515

ADJUST REQUESTED AMOUNT
ACCORDING TO MERGED DECISION

516

FIG. 5A

U.S. Patent Mar. 23, 2010 Sheet 7 Of 17 US 7,685,597 B1

IS RESOURCE
RESERVABLE 2

517

NO

YES

AJUSTED REOUES
1-NO AMOUNT EXCEED

RESERVATION?
519

PROVIDE
RESPONSE IN YES
ACCORDANCE
WITH ADJUSTED

WILL
ADJUSTED

RECQUESTED AMOUNT
VIOLATE OTHER
RESERVATIONST

REOUESTED NO
AMOUNT

521

YES

PROVIDE RESPONSE
INDICATING DENY

525

FIG. 5B

U.S. Patent

Resource Domain
607

Policy for
Resource B

609

Mar. 23, 2010 Sheet 8 of 17

601

Usage Limit
Policy for

Resource A

Resource Domain

US 7,685,597 B1

Reservation
Policy for

Resource A
605.

Consumer
isolate
621

Consumer
solate

Resource Domain
611

Policy for
Resource A

613

F.G. 6

Consumer
Isolate
623

U.S. Patent Mar. 23, 2010 Sheet 9 Of 17 US 7,685,597 B1

Resource Domain Structures
7O6A - 706F

Resource
Domain D

Resource
Domain D

Resource Resource

Policy
Action(s) and

Triggers

Policy
Action(s) and

Triggers Isolate Registry
709

Reservations Reservations

Resource Domain
Registry
707

retrieve
isolates of

create interest (1)

Manager
solate

retrieve retrieve
reSOUCe (3b)resou Ce
domain domain

information information policy decision

Consumer Consumer invoke
solate solate according
701 703 to resource

domain info
Policy

invoke according Imposing
isolate
717

to reSOUrCe (4a)
domain info

policy decision (5a)

FIG. 7

U.S. Patent

YES

ASSOCATE RESOURCE

Mar. 23, 2010 Sheet 10 of 17 US 7,685,597 B1

INDICATING POLICY AND RESOURC
CONSTRUCT RESOURCE DOMAIN

E
801

ASSOCATE RESOURCE DOMAIN WITH
GLOBAL DISPENSER

803

THERE ALOCAL
DISPENSER IN THE
URRENT SOLAT NO

DOMAIN WITH LOCAL
DSPENSER SET CURRENT IS

811 SOLATE TO THERE A
PARENT YES PARENT
SOLATE SOLATE2
809 807

RETAINASSOCATION WITH NO
GLOBAL DISPENSER

813

FIG. 8

U.S. Patent Mar. 23, 2010 Sheet 11 of 17 US 7,685,597 B1

CONSTRUCT DISPENSER FOR
RESOURCE

901

INDICATE TOTAL AMOUNT OF RESOURCE MANAGED BY
DISPENSER IN LIGHT OF RESERVATIONS, IF MANAGED

RESOURCE IS BOUNDED
903

RECEIVE RESOURCE REOUEST THAT
INDICATES RESOURCE DOMAIN

907
UPDATE

AVAILABLE
AMOUNT OF

CONSUME OR
UNCONSUME UNCONSUME?

RESOURCE
ACCORDINGLY 908

910
CONSUME
- Y -

RETRIEVE TRIGGERS AND POLICY
DECISION ACTIONS FOR DOMAIN

909.

EVALUATE TRIGGERS AND DETERMINE SET OF
PRE-DECISION POLICY ACTIONS TOEXECUTE
FORTRIGGERS THAT EVALUATE TO TRUE

911

N

DECISION POLIC
ACTIONS TO
EXECUTE 2

NO

YES
y

EXECUTE APPROPRIATE
PRE-DECISION POLICY

ACTIONS
913

FIG. 9A

U.S. Patent Mar. 23, 2010 Sheet 12 of 17 US 7,685,597 B1

RECEIVE ZERO ORMORE DECISIONS FROM
NVOKED POLICY IMPOSING SOLATES

921

MERGE DECISIONS
923

ADJUST REGUESTED AMOUNT TO MERGED
DECISION AND GRANULARITY F

APPROPRIATE
925

S
RESOURCE

RESERVABLET)
927

YES

t
EXECUTE POST-DECISION

YES POLICY ACTIONS
937.

FEOUESTED
AMOUNT VALD

AGAINST
RESERVATION?

PROVIDE RESPONSE
INACCORD WITH

NO ADJUSTED REO UESTED
AMOUNT

939
INDICATE THAT RESPONSE
SHOULD NOT GRANT ANY
ADDITIONAL RESOURCES

931 UPDATE RESOURCE
AVAILABILITY ACCORDINGLY

941

FIG. 9B

U.S. Patent Mar. 23, 2010 Sheet 13 of 17 US 7,685,597 B1

Resource Domain Registry

Resource
Domain

Resource
Domain

Resource
Domain

is A.
determine determine
GSOUCS eSOUCe

domain domain invoke
policy

Consumer Consumer actions
Isolate Isolate according
1001 1003 to triggers

request indicating response request
resource domain indicating

response route 2B) domain

Dispenser isolate
1005

eval triggers
of indicated
eSOUCe policy

invoke
determine Set

determine set policy Of actions and
of actions and action policy s

according decision triggers
a triggers to triggers

Policy
Imposing
solate
1021

Resource
Domain
1008

Resource
Domain
1 OO6

F.G. 1 OA

U.S. Patent Mar. 23, 2010 Sheet 14 of 17 US 7,685,597 B1

Resource Domain Registry
1007

Resource
Domain

N Resource

Domain

(7) binding(s)

(6) binding(s) register constructed
resource domain

request
Construction of Policy Di

Imposing resource domain spenser
Isolate actions and t 3.
1021 triggers 8

CS
cd ge
a

(5)stall actions a d 92
triggers S'

(3)resource domain - D Resource
DOmain
1 OO6

F.G. 1 OB

U.S. Patent Mar. 23, 2010 Sheet 15 Of 17 US 7,685,597 B1

RECEIVE CONSUMEREOUEST
1101

2RANT OF CONSU
REOUEST CAUSE

REGUESTOR TO EXCEED
ALLOWED THRESHOLD

COMPUTE
SLEEP TIME

1109

SLEEP FOR
COMPUTED
SLEEP TIME

1111

EVALUATE REMAINING
TRIGGERS AND INVOKE

--> POLICY IMPOSING
SOLATES ACCORDINGLY

1107

FIG. 11

U.S. Patent Mar. 23, 2010 Sheet 16 of 17 US 7,685,597 B1

RECEIVE CONSUMEREQUEST
INDICATING ARESOURCE DOMAIN

120.1

YES

DETERMINE AMOUNT
PREVIOUSLY CONSUMED
OVER GIVEN INTERVAL

12O7

y
DETERMINE POTENTIAL

CONSUMPTION RATE BASED
ON PREVIOUSLY

CONSUMED AND CONSUME
REOUEST

1209

UPDATE RATE MONTORING
PARAMETERS TO REFLECT

CURRENT REQUEST
1211

POTENTIAL
2ONSUMPTION RATs

EXCEED
HRESHOLD RATE

1213

CONTINUE PROCESSING
CONSUMEREOUEST

1215

HAS
THERE BEEN A

PREVIOUS REGUEST
FROM THE INDICATED
RESOURCE DOMA

DETERMINE POTENTIAL
CONSUMPTION RATE
BASED ON CONSUME
REGUEST AND GIVEN

INTERVAL
1205

DETERMINE SLEEP TIME BASED ON
GIVEN INTERVAL PREVIOUS

CONSUMPTION, AND CONSUME
RECRUEST

1217

YES-o-

SLEEP FOR DETERMINED
SLEEP TIME

1219

FIG. 12

U.S. Patent Mar. 23, 2010 Sheet 17 Of 17 US 7,685,597 B1

EMBODES CLASS DEFINITIONS
FOR RESOURCE

MANAGEMENT INTERFACE

MACHINE
READABLE
MEDIA

1307A - 1307F

NETWORK
INTERFACE

1305

PROCESSOR
UNIT
1301

N SYSTEM
BUS
1303

STORAGE
DEVICE(S)

COMPUTER 1309A - 1309D
SYSTEM

FIG. 13

US 7,685,597 B1
1.

SYSTEMAND METHOD FOR
MANAGEMENT OF CHARACTERIZED

RESOURCES

BACKGROUND

1. Field of the Invention
The present invention relates to the field of computers.

More specifically, the present invention relates to resource
management.

2. Description of the Related Art
Traditionally, resource management is handled by operat

ing system environments. Resource management includes
management of CPU time, heap memory, and network band
width. Since resource management is typically handled by
operating system environments, application and generation
of resource management policies are limited by operating
system environment constraints and complicated by native/
proprietary code or shell Scripts necessary to interact with the
operating system.

Meeting performance requirements and satisfying various
tasks, such as load balancing or preventing denial of service
attacks, are difficult if not impossible within the limitations of
operating system controlled resource management. Safe lan
guages, such as the Java R language, provide a vehicle for
meeting performance requirements and satisfying various
tasks that are difficult or impossible within the traditional
operating system environment limitations.
A safe language (e.g., Java R., Tcl, TeleScript, etc.) allows

untrusted program components to be incorporated in a frame
work where untrusted program components interact safely
and efficiently with other program components. A safe lan
guage prohibits a program component from circumventing
programming abstractions and access restrictions (e.g., ille
gal type casts, function calls with arguments of inappropriate
type or causing stack overflow). An example design aspect for
a safe language is removal of pointers. Many access protec
tion problems stem from a programs ability to forge pointers.
A program can use pointers and pointer arithmetic to violate
access restrictions by accessing objects as something they are
not (e.g., a byte array oran object with the same data layout as
the actual object but without its access-restrictions). A safe
language can provide separate name-spaces to prevent con
fusion of variables and functions between programs, and
ways to insure provision of a service. Generally, safe lan
guages use one or more of three approaches to ensure that a
programs access privileges are constrained: restrict or disal
low access to the underlying system; analyze a program to
ensure that it conforms to certain stipulated restrictions; or
use a computational model that makes certain actions impos
sible to implement.

Safe languages are increasingly being used as the primary
vehicle for organizing computing resources into applications,
network services, etc. As part of this evolutionary trend, safe
languages are being used to implement complete computing
platforms, assuming responsibilities that have historically
belonged to the underlying operating system environment.

However, the conventional use of safe languages to imple
ment complete computing platforms falls short to the extent
that safe languages do not provide Some of the features of
operating system environments. This shortfall and the lack of
a standard, programmatic way to manage resources outside of
the operating system environment has forced developers to
take cognizance of the underlying operating system environ
ment, thus leading to a number of awkward, ad-hoc tech
niques, limiting the expressiveness of safe languages.

10

15

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

Providing a resource domainstructure allows flexible man
agement of resources. With flexible management, computa
tions, such as threads and processes, do not have to be related
to be bound to the same resource domain. Since resource
domains do not require the parent-child relationship, unre
lated computations can bind each other to their resource
domains. For example, separate user threads can be bound to
a resource domain for a collaborative application.

In accordance with some embodiments of the invention, a
resource domain is instantiated for a resource. Policy impos
ing isolates install policy actions corresponding to resource
management policy in the resource domain. The policy
imposing isolates may also set reservations on the resource in
the resource domain. The policy imposing isolates or other
isolates can bind unrelated isolates to the resource domain
structure. The bindings can be indicated in a registry that
encodes isolates bound to various resource domains.

These and other aspects of the described invention will be
better described with reference to the Description of the Pre
ferred Embodiment(s) and accompanying Figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1 depicts a conceptual diagram of isolate interaction
for resource consumption according to some realizations of
the invention.

FIGS. 2A-2C depict various examples of isolates accord
ing to some realizations of the invention. FIG. 2A depicts
isolates comprising computations according to some realiza
tions of the invention. FIG.2B depicts applications as isolates
according to some realizations of the invention. FIG. 2C
depicts processes as isolates according to some realizations of
the invention.

FIG.3 depicts establishment of a reservation according to
Some realizations of the invention.

FIG. 4 depicts an exemplary dispenser isolate according to
Some realizations of the invention.

FIGS. 5A-5B depict flowcharts for a dispenser handling a
resource request in light of reservations according to some
realizations of the invention. FIG. 5A depicts a flowchart for
a dispenser to execute triggers and policy decision actions
according to some realizations of the invention. FIG. 5B
depicts a flowchart, which continues from FIG. 5B, for veri
fying a merged decision against a standing reservation
according to some realizations of the invention.

FIG. 6 depicts a conceptual example of resource domains
according to some realizations of the invention.

FIG. 7 depicts consumer isolates accessing a resource
domain registry according to some realizations of the inven
tion.

FIG. 8 depicts a flowchart for establishing a resource
domain with a dispenser according to Some realizations of the
invention.

FIGS. 9A-9B depict flowcharts for a dispenser handling a
resource request that indicates a resource domain according
to some realizations of the invention. FIG.9A depicts a flow
chart for a dispenser to collect actions for a resource request
that indicates a resource domain according to some realiza
tions of the invention. FIG.9B continues from FIG. 9A and
depicts a flowchart for handling received policy decisions
according to some realizations of the invention.

US 7,685,597 B1
3

FIG. 10A depicts a conceptual diagram illustrating exem
plary operation of a dispenser with resource domains accord
ing to some realizations of the invention. FIG. 10B depicts
creation of a resource domain using a dispenser according to
realizations of the invention.

FIG. 11 depicts a flowchart for controlling consumption
rate according to Some realizations of the invention.

FIG. 12 depicts a flowchart for throttling consumption rate
based on a dispenser and resource domains according to some
realizations of the invention.

FIG. 13 depicts an exemplary computer system according
to Some realizations of the invention.

The use of the same reference symbols in different draw
ings indicates similar or identical items.

DESCRIPTION OF THE PREFERRED
REALIZATION(S)

The description that follows includes exemplary systems,
methods, techniques, instruction sequences and computer
program products that embody techniques of the present
invention. However, it is understood that the described inven
tion may be practiced without these specific details. In other
instances, well-known protocols, structures and techniques
have not been shown in detail in order not to obscure the
invention.

Overview
The following description uses several terms to describe

the invention. These terms include computation, resource,
isolate, and resource management policy. A computation is
one or more executing pieces of code that cause one or more
tasks to be performed. Computations include entities that
occupy an address space in System memory (e.g., processes,
threads, applications, etc.). A resource is a measurable entity
that one or more computations consume. Availability of a
resource impacts performance, Such that a shortfall may
negatively affect performance and an abundance may
improve performance. Conventional examples of resources
include heap memory, the number of database connections or
server threads in use, and processor time. An isolate is one or
more computations that do not share state or objects with
other computations (i.e., isolates do not share objects or state
with other isolates). Java Specification Request 121 entitled
Application Isolation API Specification’ provides an
instance of a guideline for implementation of isolates. The
described invention utilizes isolates as a unit of management.
A resource management policy defines guidelines for con
Suming or unconsuming a resource. Such as availability of a
resource for computations requesting the resource.

Abstraction of resource management from platforms and
native code (e.g., operating systems) provides extensibility
and flexibility in resource management. Implementing an
isolate that monitors and controls provision of a resource
separate from definition of the resource, such as an interme
diate posting facility for resource requests, abstracts manage
ment of the resource from consumption and provision of the
resource. An isolate that monitors and controls provision of a
resource is referred to herein as a dispenser isolate. A dis
penser isolate monitors and controls provision of a resource
by acting as a gateway for resource requests and responses.

Although management of a resource is separate from
implementation of the managed resource, a dispenser isolate
manages the resource based on some representation of the
resource. Providing a generic representation of a resource
facilitates abstraction of the resource while providing a basis
for management of the resource. Common properties across a

10

15

25

30

35

40

45

50

55

60

65

4
range of resources including conventional resources and new
resources made possible by the described invention have been
identified. These common properties or attributes across dif
ferent resources allow a resource management facility (e.g.,
the dispenser isolate) to control and monitor resources with
out being aware of specific aspects of the resource’s imple
mentation. Abstracting resources from their implementation
allows a dispenser class to be defined that is instantiable for
any resource, regardless of specific implementation.

Providing a mechanism for representing association of a
resource with a resource management policy, hereinafter
referred to as a resource domain, and for binding isolates to
resource domains provides efficient policy management and
flexible application of resource management policies to iso
lates that consume resources. A single resource management
policy independent of the particular resource implementation
can be generated and associated with different resources. In
addition, application of resource management policies to
resource consuming isolates is not hindered by relationships
between the resource consuming isolates, thus enhancing
resource management in areas such as collaborative applica
tions.

Furthermore, the separation of resource management and
resource implementation illuminates novel techniques for
controlling resource consumption. For example, a dispenser
isolate can be used to control an isolate’s rate of resource
consumption by regulating or throttling resource requests.

Each of the described techniques and/or concepts is
described in more detail below. The described subject matter
can be implemented in a range of combinations including
separately implementing each of them to implementing a
resource management interface that includes all of the tech
niques and/or concepts described herein. The described
invention also may be combined with other techniques or
concepts not described herein.
Resource Management Interface

FIG. 1 depicts a conceptual diagram of isolate interaction
for resource consumption according to some realizations of
the invention. FIG. 1 includes consumer isolates 101, 107,
and 111; dispenser isolates 115 and 117; and policy imposing
isolates 119, 127, and 131. The consumer isolate 101 includes
resource implementations 103A and 105A. A resource may
be implemented by the underlying operating system, a virtual
machine, a core library, trusted middleware code, a program
ming language runtime system, application classes, etc.
The consumer isolate 101 generates a resource request,

which corresponds to the resource implementation 103A, and
sends the resource request to the dispenser isolate 115 at a
time 1a. The dispenser isolate 115 processes the resource
request and invokes the policy imposing isolate 119 at a time
2a. The policy imposing isolate 119 imposes resource man
agement policies 121, 123, and 125. The policy 121 corre
sponds to the resource of the resource implementation 103A.
At a time 3a, the policy imposingisolate 119 makes a decision
about the resource request based on the policy 121. At a time
4a, the policy imposing isolate provides its policy decision to
the dispenser isolate 115. In this scenario, multiple policies
are applied for the resource of resource implementation
103A, so the dispenser isolate 115 invokes the policy impos
ing isolate 119 again at a time 5a. Although the policy impos
ing isolate 119 is invoked for a second policy decision, dif
ferent policy imposing isolates can be involved in various
realizations of the invention. For example, a different policy
imposingisolate may apply the policy 123. The policy impos
ing isolate 119 makes a decision based on the policy 123 at a
time 6a and provides the decision to the dispenser isolate 115

US 7,685,597 B1
5

at a time 7a. Although the separate policies are applied
sequentially in FIG. 1, various realizations of the invention
invoke policy imposing isolates differently (e.g., in parallel,
in batches, etc.). In addition, the policies 121 and 123 may be
combined into a single policy. At a time 8a, the dispenser
isolate 115 merges the decisions provided by the policy
imposing isolate 119. Although FIG. 1 depicts the dispenser
isolate 115 merging policy decisions from a single policy
imposing isolate, the described invention is not limited to
merging decisions from a single policy imposing isolate.
Realizations of the invention merge policy decisions from
different policy imposing isolates.

After receiving and merging the policy decisions, the dis
penser isolate 115 invokes a policy imposing isolate 127 at a
time 9a. In FIG. 1, the invocation of the policy imposing
isolate 127 is paired with one or more of the invocations of the
policy imposing isolate 119. Various realizations of the inven
tion implement association of pre-decision invocation and
post-decision invocations differently (e.g., Zero or more pre
decision invocations associated with Zero or more post-deci
sion invocations). At a time 10a, the dispenser isolate 115
responds to the consumer isolate 101 indicating the merged
policy decision. The decision may be a full grant of the
requested resource amount, a partial grant of the requested
resource amount, or a deny of the request. At a time 11a, the
policy imposing isolate 127 makes a policy decision with a
policy 129. In FIG. 1, the policy imposing isolate 127 sends a
notification to a third party isolate at a time 12a. The policy
129 may be any of a variety of policies defined by a user or
generated by one or more computations that causes one or
more operations to be performed based at least in part on the
notification from the dispenser (e.g., the policy imposing
isolate 127 may modify its behavior according to the notifi
cation, modify another isolates behavior, etc.). As previously
stated, the timing illustrated in FIG. 1 is meant to aid in
understanding the described invention and not meant to be
limiting upon the invention. The response at time 10a, the
invocation at time 9a, the decision at time 11a, and the noti
fication at time 12a can occur in a myriad of different timings.
In addition, the letters a-dare used to indicate the relationship
of actions with isolates and not meant to indicate sequential
time relationships.

Isolates

Modularization of resource consuming computations into
isolates allows for unambiguous resource usage accounting
and clean reclamation upon computation termination. FIGS.
2A-2C depict various examples of isolates according to some
realizations of the invention. FIG. 2A depicts isolates com
prising computations according to some realizations of the
invention. An operating environment 202 (e.g., an operating
system, virtual machine, etc.) includes isolates 201, 203, and
205. The isolate 201 includes computations 207 and 209. The
isolate 203 includes a computation 211. The isolate 205
includes computations 213A-213M. The isolates in FIG. 2A
illustrate the possible various number of computations com
prising an isolate.

FIG. 2B depicts applications as isolates according to some
realizations of the invention. An operating environment 220
(e.g., Windows.(R), Unix, Linux, DOS, OS/2, etc.) supports
operating environments 225 and 235 (e.g., Java R. virtual
machines, Net application domains, communication proto
cols, Java Runtime Environment, Net common language
runtime, Database Management Systems, etc.), which are
each isolates in FIG. 2B. The isolate operating environment
225 Supports applications 221 and 223 (e.g., applets, servlets,

5

10

15

25

30

35

40

45

50

55

60

65

6
Enterprise beans, message services, SOAP services, etc.).
The isolate operating environment 235 hosts applications
227A-227H.

FIG. 2C depicts processes as isolates according to some
realizations of the invention. An operating environment 240
includes isolates 242 and 246. The isolate 242 comprises a
process 241 and its child processes 243 and 245. The isolate
246 comprises a process 247, a child process 249 of the
process 247, a process 248, and a child process 250 of the
process 248.
The isolates depicted in FIGS. 2A-2C can assume any

combination of the roles of a consumer isolate, a policy
imposing isolate, and a dispenser isolate. In addition, an
isolate can manage other isolates. For example, the isolate
203 may consume a resource, manage isolates 201 and 205,
and impose policies on the isolates 201 and 205 that it man
ages. In another example, the isolates 201 and 203 consume a
resource and the isolate 201 imposes that resource's manage
ment policy on the isolate 203 as well as on itself. The mecha
nism that allows for unrelated isolates to impose policies
arbitrarily, referred to herein as a resource domain, will be
described later.

Resource Management Policies
In addition to imposing resource management policies,

isolates generate resource management policies. Resource
management policies are configured directly by a user, loaded
from a boot file, loaded from over a network, dynamically
derived from another policy, etc. Various examples of types of
resource management policies include usage limits, notifica
tions, and reservations. A resource management usage limit
policy defines when a computation may gain access to, or
consume, one or more units of a given resource. Such a policy
defines when a resource request is wholly granted, partially
granted, or denied, or influences the decision to grant a par
ticular request to consume a resource. Usage limit policies
can range from simple to relatively complex. For example, a
usage limit policy may be reactive (i.e., define provision of a
decision based simply on being invoked). Another usage limit
policy may define various calculations to be performed as a
basis for a decision, define a threshold for comparison of
proposed resource usage, or define various determinations
with respect to another resource as a basis for providing a
decision for the corresponding resource, etc. Resource man
agement reservation policies specify reservations (guaran
teed resource availability). Reservations are established and
utilized in determining grant of a resource consume request.

FIG.3 depicts establishment of a reservation according to
some realizations of the invention. At block 301, a request for
resource reservation is received. For example, the dispenser
receives the request to establish a reservation from an isolate
acting as a policy imposing isolate, which may also be a
consumer isolate. At block 303, the type of resource reserva
tion request is determined. If the reservation request requests
an increase, then control flows to block 306. If the reservation
request requests a decrease, then control flows to block 302.
At block 302, the reservation is decreased accordingly.
At block 306, it is determined if the reservation request is

within system wide availability of the resource. For example,
the managing isolate would determine if other reservations
will allow the requested reservation, if current usage allows
the requested reservation, etc. If the reservation is not within
system availability of the resource, then control flows to block
305. If the reservation is within system-wide availability of
the resource, then control flows to block 307.

US 7,685,597 B1
7

At block 305, the reservation request is denied.
At block 307, reservation of the resource is indicated. For

example, an indication that 50 megabytes of system memory
has been reserved is indicated. At block 309, grant of the
reservation is communicated. For example, the managing
isolate sends a message to the requesting isolate, either
directly or indirectly, acknowledging establishment of the
requested reservation.
As previously stated, policies include resource manage

ment notification type policies. Resource management noti
fication policies notify interested isolates of an occurrence of
a specific event, as with the depicted policy 129 of FIG.1. An
interested isolate's behavior is modified in accordance with
the notification. These various policies allow for an expres
sive set of resource management policies to be coded.

Returning to FIG. 1, the consumer isolate 101 requests a
resource that corresponds to the resource implementation
105A. The consumer isolate 101 communicates a resource
request at a time 1b to the dispenser isolate 117, which man
ages the corresponding resource. The isolate 101 includes
resource implementations for different resources, 103A and
105A, and communicates with distinct dispensers, which
handle requests for distinct resources. The dispenser isolate
115 handles requests for the resource that corresponds to the
resource implementation 103A and the dispenser isolate
105A handles requests for the resource that corresponds to
the resource implementation 105A. The dispenser isolate 117
invokes the policy imposing isolate 131 at a time 2b. The
policy imposing isolate 131 makes a decision about the
resource request based on a policy 133 at a time 3b and
provides the decision to the dispenser isolate 117 at a time 4b.
The dispenser isolate 117 does not have additional policy
decisions to merge and does not have another policy imposing
isolate to invoke after the policy decision has been made, so
the dispenser isolate 117 provides a response to the consumer
isolate 101 at a time 5b.

The consumer isolate 107 also requests the resource man
aged by the dispenser isolate 117. The requested resource is
reflected in the consumer isolate 107 as a resource implemen
tation 103B. The consumer isolate 107 causes a resource
request to be generated and communicated by the consumer
isolate 107 at a time 1c to the dispenser isolate 117. At a time
2c, the dispenser isolate 117 invokes the policy imposing
isolate 131. The policy imposing isolate 131 makes a policy
decision with the policy 133 at a time 3c and passes the
decision back to the dispenser isolate 117 at a time 4c. At a
time 5c, the dispenser isolate 117 provides a response in
accordance with the policy decision to the consumer isolate
107. The actions for the consumer isolate 111 to request the
resource implemented in resource implementation 105B are
similar to the already described request and response actions.
The consumer isolate 111 requests the resource managed by
the dispenser isolate 117. The resource implementation 105B
causes a resource request to be generated at a time 1d, which
is sent from the consumer isolate 111 to the dispenser isolate
117. At a time 2d, the dispenser isolate 117 invokes the policy
imposing isolate 119. The policy imposing isolate 119 makes
a policy decision with the policy 125 at a time 3d and passes
the decision back to the dispenser isolate 117 at a time 4d. At
time a 5d, the dispenser isolate 117 provides a response in
accordance with the policy decision to the consumer isolate
111.

Dispenser
If management of the resources requested by consumer

isolates 101 and 107 is not separated from implementations of
those resources, then specific pieces of code would be devel

10

15

25

30

35

40

45

50

55

60

65

8
oped for each resource. A dispenser allows the same code to
be utilized for handling resource requests for different
resources and for different consumer isolates. As illustrated in
FIG.1, monitoring and controlling resource consumption can
be centralized with separation of resource management and
resource implementation using a dispenser mechanism.

FIG. 4 depicts an exemplary dispenser isolate according to
some realizations of the invention. A dispenser isolate 401
receives a request that is Subject to a usage limit policy 411
and a notification policy 412. The dispenser isolate 401 deter
mines an appropriate set of triggers and policy decision
actions (described in more detail below) for the received
request. Triggers and actions are not depicted in FIG. 1,
because various realizations of the invention implement the
functionality of monitoring and controlling resource requests
differently. The policy decision actions relevant to a resource
request can be executed and/or determined in a variety of
ways. For example, realizations of the invention may execute
all relevant policy decision actions for a resource request, and
the policy decision actions include or activate facilities that
make determinations with respect to the resource request. In
other words, the functionality of regulating a resource
request, performing calculations and/or making decisions
about the resource request, providing the decisions, and
merging decisions can be separated and/or merged in numer
ous ways, as well as implementing Such separation and merg
ing of functionality in many different ways. However, to
avoid confusion and obfuscation, illustrations of the
described invention include descriptions of triggers, thus aid
ing in understanding the described invention. The dispenser
determines the appropriate set of action and triggers from the
request (e.g., the request indicates the requester, the request
includes the name of a policy imposing isolate that imposes
the appropriate actions and triggers, a reference to one or
more memory locations that host the appropriate actions and
triggers, an object or structure that indicates the appropriate
actions and triggers, etc.), by looking up the set of actions and
triggers (e.g., looking up the actions and triggers based at
least in part on a request identifier, a requester identifier, a
hash of the requestor identifier and the resource, etc.), etc.
Various realizations of the invention indicate the policies
differently (e.g., names of policies, names of isolates that
impose the policies, a reference value that corresponds to the
policies or isolate, etc.). In FIG. 4, the dispenser isolate 401
has determined triggers 403 A-403B as appropriate for the
received request.
A dispenser isolate evaluates resource requests against a

corresponding policy (e.g., a policy associated with the
resource requestor, a policy associated with the dispenser
isolate, a policy associated with the requested resource, a
policy associated with a separate entity representing associa
tion between a resource and policies, etc.) Various realiza
tions of the invention evaluate a resource request differently
(e.g., directly against the corresponding policy, indirectly
against one or more corresponding policies, against gate
functions, etc.). For example, one or more policy decision
actions may be executed upon receiving a resource request
without resolving any triggers orgate functions; one or more
triggers may be resolved before Zero or more policy decision
actions may be executed, etc.

Triggers function as gates in determining whetheran asso
ciated policy decision action should be executed (e.g.,
whether a policy imposing isolate should be invoked). Trig
gers are executed by a dispenser and in an example imple
mentation are serializable so they can be transported between

US 7,685,597 B1

isolates. The following is an illustration, in the form of Java R.
interface, of methods defined for a trigger:
public interface Trigger extends java.io. Serializable {

public boolean shouldFire(long current);
public boolean shouldFire(long current, long proposed);

}
As previously discussed, policy decision actions may be

pre-decision (e.g., invocation of an isolate that imposes a
usage limit policy) or post-decision (e.g., invocation of an
isolate that imposes a notification policy). A dispenser utiliz
ing the above exemplary definition of a trigger executes the
shouldFire (long current) method from the trigger of a newly
installed policy decision action to allow that action a chance
to react to the resource's utilization state at the time of instal
lation (perhaps by establishing a baseline that records current
use. In addition, the dispenser, upon receiving a request to
consume its resource, executes the shouldFire (long current,
long proposed) method for each policy decision action to
determine whether that action should be executed.

Triggers can be utilized to avoid unnecessary round trip
inter-isolate communications by filtering out actions that do
not need to be executed upon a given consume? unconsume
resource request action. For example, assume the policy that
corresponds to the trigger 403A rejects requests to consume
more than 64 total megabytes of memory. If a consume
request is for 5 megabytes of memory when current usage is
at 50 megabytes of memory, then the trigger will not execute
the corresponding policy decision action, which invokes a
policy imposing isolate that would grant the consume request.
Instead, the trigger grants the request. Hence, an unnecessary
inter-isolate communication is avoided.

In FIG. 4, the dispenser isolate 401 evaluates the triggers
403A and 403B. If the trigger 403A resolves to true, then a
pre-decision policy action that invokes a policy imposing
isolate 409 is executed. If the trigger 403B resolves to true,
then a post-policy decision action that invokes a policy
imposing isolate 412 is executed. If either trigger resolves to
false, then their corresponding actions are not executed. This
does not suggest that if no triggers resolve to true then a
resource request is implicitly denied (e.g., the resource
request is further processed, the resource request is implicitly
granted, etc.). Although FIG. 4 depicts two separate policy
imposing isolates corresponding to two separate policy deci
sion actions, the same policy imposing isolate may be
invoked by both pre- and post-decision policy actions.

In FIG. 4, the trigger 403A corresponds to a pre-decision
action that invokes the policy imposing isolate 409, which
imposes the usage limit policy 411. The trigger 403B corre
sponds to a post-decision action that invokes the policy
imposing isolate 419, which imposes the notification policy
412. The triggers 403A and 403B correspond to only one
policy decision action for purposes of providing an illustra
tive example. In accordance with some previously described
realizations of the invention, the trigger 403A may corre
spond to pre- and post-decision actions of a varying number.
For example, the trigger 403A may cause the dispenser to
invoke both pre- and post-decision policy actions associated
with the policy-imposing isolate 409. If the policy imposing
isolate 409 is invoked, then the policy imposing isolate 409
returns a policy decision to the dispenser isolate 401. If the
post-decision policy action is executed, then the dispenser
isolate 401 communicates to the policy imposing isolate 419
information related to the policy decision provided by the
policy imposing isolate 411 (e.g., the decision corresponding
to the pre-decision policy action, a Sum decision that takes the
decision from the isolate 411 into account, additional criteria,

5

10

15

25

30

35

40

45

50

55

60

65

10
such as common resource attribute values, which will be
described later, etc.). The policy imposing isolate 419 evalu
ates the notification policy 411 with regard to the communi
cated information and acts accordingly (e.g., modifying its
own behavior, communicating with another isolate regarding
the resource, modifying another isolate’s behavior, etc.).

Various realizations of the invention implement a dispenser
isolate, triggers, and policy decision actions differently. For
instance, a dispenser isolate may resolve all triggers that
correspond to a resource request before executing policy
decision actions that correspond to triggers that resolve to
true, execute a policy decision action after each trigger is
resolved, etc. Triggers may be resolved asynchronously or
synchronously. Policy decision actions without correspond
ing triggers may be executed before triggers are resolved,
while triggers are being resolved, or after triggers are
resolved. In addition, policy decision actions and triggers
may have a dynamic relationship with a resource request or
static relationship (i.e., the same set of triggers and policy
decision actions may be executed each time a given consume
isolate requests a particular resource or the set of policy
decision actions may be different over time because policy
imposing isolates add, remove, and/or modify triggers and/or
policy decision actions).

FIGS. 5A-5B depict flowcharts for a dispenser handling a
resource request in light of reservations according to some
realizations of the invention. FIG. 5A depicts a flowchart for
a dispenser to execute triggers and policy decision actions
according to some realizations of the invention. At block 501,
a resource request is received. At block 503, the correspond
ing trigger(s) and/or policy decision action(s) are determined.
At block 504, it is determined if there is at least one trigger. If
there is not at least one trigger, then control flows to block
517. If there is at least one trigger, then control flows to block
505. At block 505, the determined triggers are evaluated or
resolved. At block 507, it is determined if at least one trigger
evaluated to true. If there is at least one policy decision action
to execute, then control flows to block 511. If there is not at
least one policy decision action to execute, then control flows
to block 517.
At block 511, the one or more policy decision actions are

executed. At block 513, the dispenser waits for policy deci
sions from the invoked policy imposing isolates. At block
515, the decisions are merged. At block 516, the requested
amount is adjusted in accordance with the merged decision.
Various realizations of the invention implement merging dif
ferently. A merging mechanism may select the lowest granted
amount, the highest granted amount, the mean granted
amount, etc. A merging mechanism may be dynamic, or
adjustable. From block 516 control flows to block 517.

FIG. 5B depicts a flowchart, which continues from FIG.
5A, for verifying a merged decision against a standing reser
Vation according to Some realizations of the invention. At
block 517, it is determined if the requested resource is reserv
able. If the requested resource is reservable, then control
flows to block 519. Otherwise, control flows to block 521.
At block 521, a response in accordance with the adjusted

requested amount is provided to the requesting consumer
isolate.
At block 519, it is determined if the adjusted requested

amount exceeds the reservation. If the adjusted requested
amount exceeds the reservation, then control flows to block
523. If the adjusted requested amount does not exceed the
reservation, then control flows to block 521.
At block 523, it is determined if the adjusted requested

amount violates other reservations. If the adjusted requested
amount violates other reservations, then control flows to

US 7,685,597 B1
11

block 525. If the adjusted requested amount does not violate
other reservations, then control flows to block 521.
At block 525, a response that indicates denial of the

resource request is provided to the requesting consumer iso
late. Denial of the resource request may be explicit (e.g., a
deny response), or implicit (e.g., a response that indicates
Zero granted amount, a response that indicates the currently
used amount of the resource, which indicates that no more is
granted, etc.).

Providing a single class definition of an entity to manage
availability of resources increases developer efficiency and
reduces the size and complexity of code. The following is an
example class definition of a dispenser:
public abstract class Dispenser {

public static Dispenser new Instance(String name.String
args);

public static Void registerDispenser(Dispenser dispenser);
public static Void unregisterDispenser(Dispenser dis

penser);
protected boolean isGlobal();
protected final void setTotal Ouantity (long total Quantity);
protected ResourceAttributes getResource Attributes();

A dispenser is created by invoking new Instance(). This
method takes the name of a Dispenser Subclass as an argu
ment, along with other arguments that define a particular
instance of a dispenser. Once the dispenser is created, it can be
registered—from that moment until de-registration, the dis
penser is active. An active dispenser instance can begin to
manage its resource. Once the instance of the dispenser is
unregistered, it becomes inactive and cannot manage its
resource unless registered again. After the instance of the
dispenser becomes inactive, the dispenser can be destroyed.
The exemplary class definition above also provides for

instantiating two kinds of dispensers: 1) a global dispenser
and 2) a local dispenser. A global dispenser is shared by all
isolates making use of the resource it manages. There is one
global dispenser per resource per system (e.g., single com
puter system, a distributed system, etc.). However, there can
be multiple instances of local dispensers in the system, but not
more than one for the same resource in an isolate. Global
dispensers model resources with a single source of “produc
tion.” Some examples are heap memory in a single-heap
system and the number of open sockets. Local dispensers
model resources with multiple independent sources of pro
duction.
An example of multiple independent sources of production

is execution of several web servers in a single virtual machine
where each instance of the web server and each servlet is a
separate isolate. Each server may independently control the
maximum number of concurrent requests each of its servlets
can execute. A dispenser can be instantiated locally for each
server instance, because the servers need not coordinate with
each other.
The example dispenser class also provides for associating

the instantiated dispenser with the resource to be managed.
The routine setTotalOuantity() sets a total quantity of a
resource, if applicable, to be managed by the instantiated
dispenser. The routine getResource Attributes() attains
attributes of a dispenser's resource to manage the resource.
The attributes attained for the dispenser instance are common
attributes across a broad range of resources. A dispenser
instance manages a resource based on these common
attributes. With these common attributes, a dispenser can be
defined regardless of the resource.

10

15

25

30

35

40

45

50

55

60

65

12
Characterization of Resources Based on Common Attributes
The dispenser manages resource requests separately from

the resource definitions, but the dispenser monitors and con
trols the resource requests based on more than the name of the
resource. Various attributes have been identified that are com
mon across conventional resources and that can be utilized to
treat objects or entities, both logical (e.g., Sockets, ports,
servlets, etc.) and physical (e.g., CPU time, memory, etc.), as
new resources in a uniform manner. Characterizing resources
with a set of common attributes allows separation of resource
management from resource definition and eases defining new
resources. The single dispenser class handles resource
requests based at least on the following attributes: disposable,
revocable, bounded, and reservable. These four common
attributes, and possibly more, determine the semantics of
handling resource requests.
A resource is disposable if it is possible to identify a span

of program execution over which a given resource instance is
considered to be consumed. Outside of this span, the resource
instance is available for (re)use. As a consequence, usage is
not necessarily monotonic. A page of memory is a disposable
resource: CPU time is not. An example of the usefulness of
this attribute is in allowing unconsuming (i.e., returning to the
pool of resources) of disposable resources only. The same
operation for a non-disposable resource is erroneous.
A resource is revocable if units of the resource previously

granted to the resource consumer can be withdrawn without
affecting the consumer's behavior, except possibly for its rate
of progress. An example is physical memory: the operating
system can alter the size of the page frame pool it dedicates to
a process's address space without the process noticing.
A resource is bounded if there is a fixed limit on the amount

available. For example, in the absence of a constraint, such as
a policy that constrains availability of a resource to a
requestor when imposed, (perhaps issued by the underlying
host platform), “absolute CPU time' is an unbounded
SOUC.

After a successful reservation request of a reservable
resource, it is guaranteed that the system is able to Supply the
reserved units of resource. This does not imply that a client
may consume the resource, as that is also dependent on the
resource usage limit policy. The definition is phrased in terms
of resulting usage, rather than in terms of number of units
requested. This distinction is emphasized, since the Sum of
requested units might overstate actual usage.

With the identified common attributes, dispensers can be
instantiated from a single class definition to handle resource
requests for a variety of resources (e.g., CPU time, memory,
Sockets, network bandwidth, interconnect bandwidth, etc.).
Characterizations of resources with common attributes
allows flexible management of an array of resources, both
conventional and unconventional.

In addition to the described common resource attributes,
the following additional attributes provide for precise
accounting: granularity and measurement delay. The granu
larity of a resource is the indivisible amount of the resource in
a given implementation. For instance, a heap might be man
aged as a set of pages; in this case, although the resource's
unit is bytes or kilobytes, the deliverable granularity is the
underlying system's page size, e.g., four kilobytes. Various
realizations of the invention automatically round specified
resource quantities to conform to granularity of the resource
or round results of policy decisions to conform to granularity
of the particular resource.
The measurement delay is the maximum amount of time

that can pass between resource consumption and updating the
usage information. For example, controlling the number of

US 7,685,597 B1
13

open file descriptors can be done accurately at any time (mea
Surement delay is Zero), whereas controlling CPU time usage
via sampling once a second has a measurement delay of one
second. An implication of measurement delay is the possibil
ity of uncontrolled consumption during the delay interval. To
reduce the possibility of uncontrolled consumption during a
delay interval, the measurement delay can be made as Small as
desired.

Another common attribute that can be used to characterize
resources is explicit. A resource is explicit if it is possible to
identify a proper subset of the resource consumer'sbytecodes
Such that a bytecode in the Subset corresponds to a point at
which the resource is consumed. A file descriptor is an
example of an explicit resource: CPU time is not explicit. This
property supports determination of whether and where in the
program error handling related to resource shortage should be
placed.
The following is an example of a resource attributes class

definition:

public abstract class ResourceAttributes {
public abstract long getGranularity();
public abstract long getMeasurement Delay Millis();
public final String getName()

{return getClass().getName();
public abstract Unit getUnit();
public abstract boolean isDisposable();
public abstract boolean isReservable();
public abstract boolean isRevokable();
public abstract boolean is Unbounded();
public static ResourceAttributes getInstance(String

name);
public static Resource Attributes getRegistered();

Quantities of resources are expressible as long integers for
usage, reservations, etc., in accordance with the exemplary
dispenser class definition from above. An integer comparison
is employed to tell whether two values are the same or one of
them is greater than the other. The getUnit() method of
ResourceAttributes returns a description of the unit, which
may be expressed in several different systems (e.g., metric,
US, etc.) and which can contain standard Scaling prefixes
(e.g., milli, kilo, etc.).
Resource Domains

With the dispenser class and the common resource
attributes, resource management policies can be written
abstractly for resources exhibiting common behavioras indi
cated by the common attributes, without regard for specific
implementation of the resources. Resource domains extend
policy utility from a different angle. Resource domains
encapsulate a policy for a resource and allow for application
of resource management policies to various unrelated com
putations. The resource domain provides a mechanism for
associating a resource, a policy, and isolates that consume the
resource. The representation of a resource and a particular
policy for that resource allows for expression of numerous
resource management scenarios and flexible application of
resource management policies across isolates.

FIG. 6 depicts a conceptual example of resource domains
according to some realizations of the invention. A resource
domain 601 includes a usage limit policy 603 for a resource A
and a reservation policy 605 for the resource A. A resource
domain 607 includes a policy 609 for a resource B. A resource
domain 613 includes a policy 613 for the resource A.
A consumer isolate 623 is bound to the resource domain

601. A consumer isolate 621 is also bound to the resource

10

15

25

30

35

40

45

50

55

60

65

14
domain 601. Even though the consumer isolates 621 and 623
are otherwise unrelated, both are bound to the same resource
domain. Both of the consumer isolates 621 and 623 will be
subject to the policies 603 and 605. Without resource
domains, a single policy was applicable only to related pro
cesses and not applicable to unrelated processes. With
resource domains, arbitrary application of policies to isolates
allows for flexibility in resource management scenarios. For
example, resources for a collaborative application can be
managed with a set of policies applied to various isolates that
cooperate on the collaborative application regardless of rela
tionship. Hence, a set of policies for the collaborative appli
cation can be applied to unrelated computations without rep
licating the policy for each computation and without making
Such multiple policies coordinate their own operation.

In FIG. 6, the consumer isolate 621 is also bound to the
resource domain 607. A consumer isolate 625 is bound to the
resource domain 607 and the resource domain 611. The
resource domain 611 includes a resource management policy
613 for resource A that is distinct from the policy for resource
A defined by resource domain 601. From FIG. 6, it can be
seen that resource domains enhance the expressiveness of
policies. A policy can be written and applied to different
resources with resource domains. For example, the policy 609
may be the same as the policy 603, or a combination of the
policies 603 and 605, but applied to different resources via
resource domains. The ability to utilize non-resource specific
policies and apply them to different resources reduces the
occurrence of redundant policies and allows users to more
efficiently develop policies. In addition, relationships can be
constructed between various client isolates and policies and
modified over time using resource domains.

FIG. 7 depicts consumer isolates accessing a resource
domain registry according to some realizations of the inven
tion. A manager isolate 715 retrieves isolates of interest from
an isolate registry 709 at a time 1. The isolate registry includes
isolate identifiers. For example, a user selects from an isolate
registry those isolates that the user wants to bind to a particu
lar resource domain. The manager isolate 715 creates bind
ings at a time 2 in a resource domain registry 707. The
resource domain registry 707 includes indications of the
bindings between resource domains and isolates.
At a time 3a, a consumer isolate 701 retrieves resource

domain information from the resource domain registry 707.
At a time 3b, a consumer isolate 703 retrieves resource
domain information from the resource domain registry 707.
Assuming both of the consumer isolates 701 and 703 are
bound to the same resource domain, the resource domain
registry provides the same resource domain indication to the
consumer isolates 701 and 703. For example, the consumer
isolates 701 and 703 communicate their isolate identifier to
the resource domain registry 707. An isolate that manages the
resource domain registry 707 looks up the consumer isolate
identifiers (e.g., a structure of resource domain references
may be keyed or indexed by bound consumer isolate identi
fiers, a hash of bound consumer isolate identifiers, etc.). The
consumer isolates 701 and 703 utilize the resource domain
indications to access an appropriate one of the resource
domain structures 706A-706F. In FIG. 7, a resource domain
structure indicates a resource domain identifier, a resource
(e.g., a resource name and/or resource attributes, one or more
policy actions and triggers, reservations, and consumer iso
lates bound to the resource domain). The described resource
domain structure and resource domain registry are exemplary
and not meant to be limiting upon the invention. Various
realizations of the invention implement a mechanism for
relaying resource domain information to consumer isolates

US 7,685,597 B1
15

differently (e.g., a single access without indirection for look
ing up resource domain information, multiple levels of indi
rection, etc.) and/or encode resource domain information dif
ferently (e.g., with any of a variety of data structures,
hardware, and organization of the resource domain informa
tion, which may include more or less than illustrated in FIG.
7). At a time 3b, the consumer isolate 703 retrieves resource
domain information from the appropriate one of the resource
domain structures 706A-706F.
At a time 4a the consumer isolate 701 invokes a policy

imposing isolate 717 according to the retrieved resource
domain information. The consumer isolate 703 also invokes,
at a time 4b, the policy imposing isolate 717 according to the
retrieved resource domain information. The policy imposing
isolate 717 provides policy decisions to both consumer iso
lates 701 and 703. The policy imposing isolate 717 provides
policy decisions to the consumer isolates 701 and 703 at times
5a and 5b, respectively.
The following provides an example class definition for a

resource domain:

public final class ResourceDomain {
public static ResourceDomain current Domains();
public static ResourceDomain currentIdomain(String

name);
public static ResourceDomain newDomain (String name);
public Resource Attributes getResource Attributes();
public void bind(Isolate isolate);
public void unbind(Isolate isolate);
public Isolate getIsolates();
public long consume(long quantity);
public long consumeAllOrNothing(long quantity);
public long unconsume(long quantity);
public Void setConsumeAction(ConsumeAction action);
public Void removeconsumeAction (ConsumeAction

action);
public Reservation getReservation();
public void setReservation(Reservation reservation);
public long getUsage();
public void terminate();
public boolean is Terminated();

The static routines of the exemplary resource domain class
return the set of resource domains to which the current isolate
is bound, return a specific current resource domain given the
resource name (throwing an exception if the resource is reg
istered but not bound in the current isolate), and create a new
resource domain. The attributes for the resource for which a
resource domain is created are obtained via getResourceAt
tributes(). This example shows how an isolate can discoverall
the resource domains it is bound to:

ResourceDomain rds=ResourceDomain.current
Domains();
for (int i=0; i-rds.length; i+) {

String name rdsi.getResourceAttributes().getName();
System.out.println("I am bound to'+name);

The bind() method binds an isolate to a resource domain.
This method fails if the isolate is already bound to a domain
for the same resource. The unbind() routine succeeds when
the isolate has been terminated, when its consumption of the
resource is Zero or when the resource is non-disposable. An
array of isolates bound to a given domain can be obtained via
getIsolates(). This is useful, for example, in determining
whether an isolate is the only one bound to the domain and,

10

15

25

30

35

40

45

50

55

60

65

16
consequently, the only one Subject to the given resource man
agement policy. Any isolate bound to a resource domain can
request to consume units of the resource as well as uncon
Sume units previously obtained, provided that the resource is
disposable. These operations typically are invoked by core or
middleware code implementing the resource. For example,
client applications opening and closing sockets remain
unchanged, but some of the Socket operations may invoke
consume() and unconsume() on the client's resource
domain.
The consume() method can return less of a resource quan

tity than requested. Such partial grants of requests may be
acceptable for certain resources. If an entire requested quan
tity is necessary for a given operation to Succeed, resource
implementations should use consumeAllOrNothing() (e.g.,
an attempt to allocate a 1 MBarray should fail if only 512KB
of heap memory can be allocated). Invoking this routine does
not guarantee the Success of the request, but does prevent
futile partial request satisfaction. Resource management poli
cies are dynamically set by setting and removing consume
actions and reservations on resource domains. Setting the
reserved value to 0 removes a reservation.

Computations can learn about the quantities reserved. The
getUsage() routine returns the number of resource units
consumed by the resource domain. In realizations of the
invention, all usage and reservation statements are with
respect to resource domains, and no provisions are made for
distinguishing consumption and reservations within isolates
bound to the same resource domain. How much a given
isolate consumes a given resource is not known unless it is the
only isolate bound to its resource domain. Various realiza
tions of the invention account resource usage based on indi
vidual requestors and/or provide mechanisms for distinguish
ing between reservations and consumption of resources for
Current usage.

Defining and generating a single set of one or more policies
and applying the set of policies without replication to a group
of unrelated computations provides efficient policy manage
ment and flexible application of resource management poli
cies to consumer isolates. Resource domains reduce the bur
den on developers by providing an alternative to computation
specific resource policies and reduce the burden of resource
policy management on users.
Utilizing Resource Domains with Dispensers
A resource management interface that implements both a

dispenser and a resource domain provides a powerful mecha
nism for managing resources and policies.

FIG. 8 depicts a flowchart for establishing a resource
domain with a dispenser according to Some realizations of the
invention. At block 801, a resource domain that indicates a
policy (e.g., a set of actions) and a resource is constructed. At
block 803, the resource domain is associated with a global
dispenser. At block 805, it is determined if there is a local
dispenser in the current isolate. If there is not a local dispenser
in the current isolate, then control flows to block 807. If there
is a local dispenser in the current isolate, then control flows to
block 811.
At block 811, the resource domain is associated with the

local dispenser.
At block 807, it is determined if there is a parent isolate. If

there is a parent isolate for the current isolate, then control
flows to block 809. If there is not a parent isolate, then control
flows to block 813. At block 813, an association with the
global dispenser is retained.
At block 809, the current isolate is set to the parent isolate.

Control flows from 809 to 805. After association of a resource

US 7,685,597 B1
17

domain with a dispenser, client isolates (i.e., consumer iso
lates) can be bound and unbound by isolates through the
dispenser.

FIGS. 9A-9B depict flowcharts for a dispenser handling a
resource request that indicates a resource domain according
to some realizations of the invention. FIG.9A depicts a flow
chart for a dispenser to collect actions for a resource request
that indicates a resource domain according to some realiza
tions of the invention. At block 901, a dispenser is constructed
for a resource. At block 903, an amount of the resource to be
managed by the dispenser is indicated, if appropriate. If the
resource is unbounded, then an amount is not indicated, an
infinite amount is indicated, the unbounded attribute is indi
cated, etc. In addition, the amount indicated for management
by the dispenser may take into consideration reservations of
the resource. At block 907, a resource request that indicates a
resource domain is received for the resource. At block 908,
the type of resource request is determined. If the resource
request is an unconsume request, then control flows to block
910. If the resource request is a consume request, then control
flows to block 909.

At block 910, the available amount of the resource is indi
cated. An unconsume request will probably not be submitted
for an unbounded resource. In realizations of the invention,
the dispenser isolate verifies the legitimacy of an unconsumed
resource request with the resource's disposable attribute. If
the resource is disposable, then the unconsume resource
request is legitimate. Otherwise, the unconsumed resource
request is not legitimate, and an error indication is provided.

At block 909, triggers and policy decision actions for the
indicated resource domain are retrieved (it may be that one or
more policy imposing isolates have not installed triggers or
actions with the resource domain). At block 911, the retrieved
triggers are evaluated and a set of pre-decision policy actions
to execute are determined. The set of pre-decision policy
actions to execute includes those associated with triggers that
resolved to true. At block 912, it is determined if there are any
pre-decision policy actions to execute. If there are pre-deci
sion policy actions to execute, then control flows to block 913.
If there are no pre-decision policy actions to execute, then
control flows to block 921.
At block 913, the appropriate pre-decision policy actions

are executed. From block 913, control flows to block 921.
FIG.9B continues from FIG. 9A and depicts a flowchart

for handling received policy decisions according to some
realizations of the invention. At block 921, Zero (e.g., there
are no pre-decision policy actions to execute because none of
the triggers resolved to true) or more policy decisions are
received from the policy imposing isolates invoked by the
executed pre-decision policy actions. At block 923, the
received policy decisions are merged. At block 925, the
merged decision is adjusted in accordance with granularity of
the resource. If the resource does not have a granularity indi
cation, then block 925 may not be performed. At block 927, it
is determined if the requested resource is reservable. If the
resource is reservable, then control flows to block 929. If the
resource is not reservable, then control flows to block 937.
At block 929, it is determined if the merged decision to be

communicated (or policy decision without merging to be
communicated) is valid against a reservation (e.g., does it
exceed a corresponding reservation, violate another reserva
tion, etc.). If the decision to be communicated is valid against
the reservation, then control flows to block 937. If the deci
sion to be communicated is not valid against the reservation,
then control flows to block 931.

At block 931, it is indicated that a response should not grant
any additional resources to the requestor. As previously

5

10

15

25

30

35

40

45

50

55

60

65

18
stated, a request may be denied in accordance with different
techniques (e.g., an explicit deny response indicating a nega
tive value or flag, an implicit deny indicating a granted
amount equal to current usage, an explicit deny indicating a
granted amount of Zero, etc.). A post-decision policy action
may be executed that notifies interested isolates that the
request has been denied.
At block 937, those post-decision policy actions whose

triggers resolved to true are executed. At block 939, a
response is provided in accordance with the merged policy
decision. At block941, availability of the resource is updated
accordingly.

FIG. 10A depicts a conceptual diagram illustrating exem
plary operation of a dispenser with resource domains accord
ing to Some realizations of the invention. A resource domain
registry 1007 includes association of isolate indications and
resource domain indications. The association or encoding of
isolate indications and resource domain indications can be
implemented with a variety of data structures (e.g., an array of
isolate indicators referencing an array of resource domain
indicators, a hash table with isolate indicators as keys or
indices or hashes of the isolate indicators as keys or indices, a
tree of isolate indicators that reference a list of resource
domain indicators, etc.). In addition, the isolates and resource
domains may be indicated in accordance with any of a num
ber of techniques (e.g., alphanumeric identifiers, memory
addresses, process identifiers, etc.). At a time 1a, a consumer
isolate 1001 determines a resource domain from the resource
domain registry 1007. The consumer isolate 1001 is bound to
the determined resource domain. At a time 2a, the consumer
isolate 1001 communicates a request that indicates the deter
mined resource domain to a dispenser isolate 1005. A con
Sumer isolate determines the identity of the dispenser isolate
with a local mapping, which maps the consumer isolate's
resource domain to the corresponding dispenser isolate. At a
time 3a, the dispenser isolate 1005 accesses a resource
domain 1006, indicated by the request from the consumer
isolate 1001, and determines a set of triggers to evaluate and
policy decision actions to execute for the resource request. At
a time 4a, the dispenser isolate 1005 evaluates the triggers. At
a time 5a, the dispenser isolate 1005 invokes a policy impos
ing isolate 1021 according to the evaluated triggers (i.e.,
actions that correspond to the triggers that evaluated to true
are executed). If the executed policy decision action(s) is
indicated as persistent, then it will continue to participate in
the processing of subsequent resource consumption requests.
Otherwise, the policy imposing isolate 1021 is eliminated
(i.e., does not remain active) after providing its policy deci
Sion. At a time 6a, the policy imposing isolate 1021 delivers a
policy decision to the dispenser isolate 1005. The dispenser
isolate 1005 in turn provides a response to the consumer
isolate at a time 7a.

Although not illustrated in FIG. 10, post-decision actions
may be executed between times 6a and 7a. For example, the
set of actions determined at times 3a and 4a may include
post-decision actions. After the policy decision is provided at
time 6a, a post-decision actions may be executed that causes
the policy imposing isolate 1021 or another policy imposing
isolate (in addition or instead of the policy imposing isolate
1021) to modify its own behavior, another isolate's behavior,
etc.

Likewise, a consumer isolate 1003 determines its current
resource domain from the resource domain registry 1007 at a
time 1b. In various realizations of the invention, a consumer
determines its corresponding resource domain a first time and
maintains an indication of its resource domain as long as the
consumer isolate persists if the binding between the con

US 7,685,597 B1
19

Sumer isolate and its resource domain is static. At a time 2b,
the consumer isolate 1003 communicates a request that indi
cates the determined resource domainto the dispenser isolate
1005. At a time3b the dispenser isolate 1005 determines a set
of actions and triggers from a resource domain 1008 as indi
cated by the consumer isolate 1003. At a time 4b, the dis
penser isolate 1005 determines the set of actions and triggers.
If the consumer isolate 1003 was bound to the same resource
domain as the consumer isolate 1001, then the dispenser
isolate would evaluate the same set of triggers. In some real
izations of the invention a set of triggers and actions are static
in the dispenser across different consumer isolates bound to
the same resource domain. If the set of triggers and actions are
static, then the dispenser 1005 maintains the set of triggers
and policy actions with an indication of the corresponding
resource domain. The information indicated by the resource
domains 1006 and 1008 may be the same as the resource
domain information indicated by the resource domain struc
tures illustrated in FIG.7, possibly including less information
or more information, such as current usage.

At a time 5b, the dispenser isolate 1005 invokes a policy
imposing isolate (i.e., executes actions of triggers that resolve
to true), which happens to be the consumer isolate 1003 in this
example. The consumer isolate 1003 provides a policy deci
sion to the dispenser 1005 at a time 6b. At a time 7b, the
dispenser isolate 1005 provides a response to the consumer
isolate 1003. As discussed above, post-decision policy
actions may be executed between times 6b and 7b.

FIG. 10B depicts creation of a resource domain using a
dispenser according to realizations of the invention. The
policy imposing isolate 1021 requests construction of a new
resource domain at a time 1. At a time 2a, the dispenser isolate
1005 constructs the resource domain 1006. At a time 2b, the
dispenser isolate 1005 registers the resource domain 1006 in
the resource domain registry 1007. The registering of the
resource domain 1006 may also include indicating the dis
penser isolate’s identity. The operations at times 2a and 2b
may occur in parallel, 2a may occur before 2b, 2b may occur
before 2a, etc. At a time 3, the dispenser isolate indicates the
resource domain's identifier to the policy imposing isolate
1021. At a time 4, the policy imposing isolate 1021 indicates
actions and triggers to the dispenser 1005. The dispenser
isolate 1005 installs the actions and triggers from the policy
imposing isolate 1021 in the resource domain 1006 at a time
5. As previously stated, the policy imposing isolate 1021 (and
possibly other policy imposing isolates) can request installa
tion of actions and/or triggers at various times and in different
numbers. The illustration of the triggers and actions being
installed immediately after construction of the resource
domain 1006 is for illustrative purposes alone. At a time 6, the
policy imposing isolate 1021 and/or another isolate indicates
one or more isolates to be bound to the resource domain 1006.
The dispenser isolate 1005 indicates the binding(s) in the
resource domain registry 1007 at a time 7. The dispenser
isolate 1005 may be visible or transparent in the actions
illustrated in FIG. 10B. In addition, as previously discussed,
a dispenser isolate may not be involved in creation of resource
domains and bindings of isolates and resource domains.
An exemplary resource management interface as described

in FIG. 10 utilizing the exemplary class definitions described
above may also include the following routines in the resource
domain class definition:

public long getTotalUsage();
public long getTotal Quantity();
public long getTotalReservedQuantity();

10

15

25

30

35

40

45

50

55

60

65

20
These routines are provided to obtain information related

to all resource domains associated with the same dispenser:
getTotalUsage() returns the total amount of consumption,
getTotal Quantity() returns the total amount of the resource in
care of the dispenser, and getTotalReservedOuantity()
returns the sum of all reservations on the resource domains
associated with the dispenser. These routines are particularly
useful in determining how large new reservations can be.
A resource management application programming inter

face that provides for a dispenser and/or a resource domain is
applicable to a variety of resource management scenarios and
allows for expression of numerous resource management
policies. Such a resource management API hides from com
putations whether a resource is managed by an underlying
operating system, a virtual machine, a core library, trusted
middleware code, etc. Although implementation based on
Such a resource management API may take advantage of
specialized hardware support of a particular platform, the
implementation will not depend on Such support.
The following is example code implemented with the

exemplary class definitions provided above. The following
code example refers to policy decision actions as “callbacks.”
Accordingly, pre-decision policy actions are referred to a
pre-consume callbacks and post-decision policy actions are
referred to as post-consume callbacks.
public static void main(String largs) {//class Manager

String R argSO; //get name of resource to manage
ResourceDomain rd0=ResourceDomain.current)omain

(R):
ResourceDomain rd1 =ResourceDomain.newDomain(R):
long reservation rd0.getReservation().getValue();
rd0.setReservation(new Reservation(reservation-100));
rd1.setReservation(new Reservation(100));
ConsumeCallback. Pre precallback new ConsumeCall

back. Pre()
{
public long preConsume(ResourceDomain rd.long cur

rent, long proposed) {
String name=rd.getResourceAttributes.(
Name();

log(“Reject'+(proposed-current)+"of+name);
return current; //veto the request

).get

}}:
Trigger trigger Triggers.new AbsolutelJp(100);
ConsumeAction action new ConsumeAction (false, true,

precallback, trigger);
rd1.setConsumeAction(action);
Isolate iA new Isolate(“Trusted’, new String O);
rd0. bind(iA):
Isolate iB-new Isolate('App', new String OI);
rd1.bind(iB);
iA.start(new Link 0):
iB.start(new Link 0):

Manager is the initial isolate, which is assumed to be bound
to a domain for a resource denoted by a string variable R. R
can be any resource for this particular example of the resource
management interface—the code to manage it is the same.
The example code illustrates that policies can be expressed
abstractly and parameterized by resource names.
The manager obtains a handlerdO to its domain and creates

another domain rd1 for the same resource. Then it sets a
reservation for 100 units of R on the new resource domain
after lowering its own reservation by the same amount and
sets a consume action. The action consists of a non-persistent
(removed after the first execution; the false argument), Syn

US 7,685,597 B1
21

chronous (blocking the consume request; the true argument)
pre-event (also referred to as a pre-callback) (“pre’ indicates
that it is invoked before requests to consume resources are
granted) and a trigger, which determines under what circum
stances the callback should be executed. A trigger is pre
defined that causes the actions callback to be executed when
usage increases to or beyond the specified threshold value.
The callback, an example of which will be provided later,
itselfhas three arguments: the resource domain against which

5

the requested usage will be charged if granted (it is the same 10
domain on which the consume action has been set), the cur
rent usage, and the proposed usage.

Returning the current usage value indicates that the request
for an additional quantity (proposed minus current) is
refused. This consume action constitutes a constraint that
prevents isolates bound to rd1 from using more than 100 units
of R. After completing this setup, the manager creates a new
isolate iA, which will execute the Trusted main class and
binds it to rd0 from now on the manager and iA will share
rd0. This means that any usage of R by the manager or by
Trusted is accounted against rd0, and the two isolates share
the same resource management policy (reservations, con
Sume actions, etc.) Finally, a new isolate iB executing main
class App is created and bound to rd1; iB is thus subject to the
policy the manager defined.
An example implementation of callbacks is as follows:

public interface ConsumeCallback {
public interface Pre extends ConsumeCallback {

public long preConsume(ResourceDomain domain,
long
currentusage, long proposed Usage);

public interface Post extends Consumecallback {
public Void postConsume(ResourceDomain domain,

long
previousUsage, long granted Usage);

public interface PreAndFost extends Pre, Post { }
}

Pre-consume callbacks are executed prior to the dispens
er's handling of the consume request. The preconsume()
routine has three arguments: the resource domain on which
the consume request has been issued, the current usage, and
the proposed usage—that is, the current usage increased by
the requested amount, rounded up to meet granularity
requirements. The value returned by preConsume() indicates
to the dispenser how much of the request should be granted. A
pre-consume callback that always denies the request would
return currentlJsage. Return values outside of the curren
tUsage, proposed Usage range are ignored. As multiple con
Sume actions may be invoked on any consume, the dispenser
combines the return values of pre-callbacks (merges policy
decisions). The default policy is to take the minimum,
rounded up to the nearest granularity multiple. Finally, pre
consume callbacks are executed synchronously with respect
to the consume request and prior to its completion.

Pre-consume callbacks and their triggers can be thought of
as programmable constraints. In addition to denying the
request, they can lower it or grant it unaltered, and, regardless
of the outcome, they can arbitrarily modify the behavior of an
isolate bound to the resource domain.

In contrast to pre-consume callbacks, post-consume call
backs execute after the dispenser executes the triggered con
straints and decides how much of the request should be
granted. Post-consume callbacks can be viewed as notifica
tions. They inform the isolate that set them about resource
consumption decisions and allow for adjusting behavior to
operate in changed conditions. A callback may implement

15

25

30

35

40

45

50

55

60

65

22
any of ConsumeCallback's Subinterfaces, including Con
sumecallback itself. For example, a callback that implements
ConsumeCallback itself can be useful in conjunction with
rate-limiting triggers that never actually fire. There is no
requirement that all consume actions to which a given isolate
is bound be set by the same entity. Isolates can impose noti
fications on themselves so that they can react to triggered
constraints. An isolate can impose constraints on other iso
lates and thereby act as a resource manager for a set of
isolates. For instance, a computation may require notification
whenever its heap memory usage exceeds a certain threshold,
and upon receiving the notification, it may remove some
items from its private in memory cache to lower its memory
consumption and thus avoid violating a constraint. In the
following example, an isolate sender is bound by its creator to
resource domains for CPU time and outgoing network traffic:
ResourceDomain.current Domain(CPU TIME).bind
(sender):
ResourceDomain.current Domain.(NET OUT).bind(sender):
The isolate can then specify notification policies for these

two resources to be informed about excessive usage of either
of the two resources and Switch between two states: sending
data in the uncompressed format if the most recent callback
was caused by using more than 90% of the CPU time or
sending data in the compressed format if the most recent
callback was caused by using more than 1 MB/s of network
bandwidth. An example code implementation is provided
below:

//code in sender's main:

class ToggleCallback implements Consumecallback. Post {
public void postConsume(ResourceDomain rd, long

previousUsage.long granted Usage) {
String name rd.getResourceAttributes().getName();
if (name.equals(CPU TIME))

setCompressing(false);
else if (name.equals (NET OUT))

setCompressing(true);
}}

ConsumeCallback callback new ToggleCallback();
ResourceDomain.current Domain(CPU TIME).setCon

SumeAction (new
ConsumeAction (true, false, callback, new
RateDetectingTrigger(1000, 900))); //ms

ResourceDomain.current Domain.(NET OUT).setCon
SumeAction (new
ConsumeAction (true, false, callback, new
RateDetectingTrigger(1000, 1*MB)));

RateDetectingTrigger triggers the associated callback
when the rate of consumption is too high.

Another example code implementation with the already
described exemplary class definitions is provided below to
further illustrate realizations of the invention.

public static void main(String largs) {//class App
String R argSO; //get name of resource to manage

ResourceDomain rd=ResourceDomain.current)omain
(R):

long reserved domain.getReservation().getValue();
if (rd.getIsolates().length =1 || reserved.<50)

error(“I don't like this...');
Consumecallback cRed-new Consumecallback. Post() {

Void postConsume(ResourceDomain rd, long previous,
long granted) {
//Arrange to decrease consumption immediately

US 7,685,597 B1
23

Trigger tRed-Triggers.new Absolutel Jp(reserved-5);
ConsumeAction red-new ConsumeAction (true, false,

cRed, tRed);
rd.setConsumeAction (red);
ConsumeCallback cgreen-new ConsumeCallback. Post()

{
Void postConsume(ResourceDomain rd, long previous,

long granted) {
//Rabundant, OK to increase its consumption

}}
Trigger t0reen=Triggers.new AbsolutelDown(5):
ConsumeAction green new ConsumeAction(true, false,

cGreen, tGreen);
rd.setConsumeAction (green);

//go about consuming . . .

After obtaining a handle to its domain for R, App makes
sure that there are no other isolates bound to it and that at least
50 units of the resource are available. It then creates two
consume actions. Both are persistent, asynchronous, and
"post, which means that when they trigger, they are executed
asynchronously immediately after the dispenser commits to
allowing (or denying) a resource consumption request. The
red consume action triggers when usage is just five units
below the reserved quantity; the goal of its associated call
back is to inform the rest of the computation that lowering its
consumption of R is imperative. The green consume action
has a dual goal: whenever R is abundant (its consumption
drops to no more than five units), the imperative conservation
state is rescinded, and the computation may resume consum
ing R freely. Both of these actions behave as notifications;
they inform the application of a change in its resource con
Sumption state.
Controlling Rate of Resource Consumption

In addition to exerting control over the amount of resource
consumption, actions can be utilized for controlling the rate
of resource consumption. Instead of extending a conventional
thread scheduler with interfaces for influencing its scheduling
decisions, or adding a set of rate-controlling routines to the
resource management class definitions, consumption
requests can be throttled until they match a desired or thresh
old consumption rate. Throttling resource requests to control
resource consumption rate utilizes the ability to gain control
at every resource consumption point with an intermediate
resource request handler (e.g., the dispenser) and implies the
ability to delay the consuming computation or isolate at each
of those points.

FIG. 11 depicts a flowchart for controlling consumption
rate according to some realizations of the invention. At block
1101, a consume request is received from a client (e.g., con
Sumer isolate, user thread, application, etc.). At block 1105, it
is determined if granting of the received consume request will
cause the requester to exceed its allowed threshold consump
tion rate. If the threshold consumption rate would be
exceeded, then control flows to block 1109. If the threshold
consumption rate will not be exceeded, then control flows to
block 1107.

At block 1107, the remaining triggers are evaluated and
their actions invoked accordingly.

At block 1109, a sleep time is computed. At block 1111, the
dispenser sleeps for the computed sleep time. Control flows
from block 1111 to block 1107.

For example, assume control over rate of bandwidth con
Sumption is desired. Rate of bandwidth consumption per
client is allowed up to 3 Mb/s. A client first requests trans
mission of 2 Mb. Next, the client requests transmission of

10

15

25

30

35

40

45

50

55

60

65

24
another 2 Mb. If the client submits both of these requests
within a second, then the first request will be granted (assum
ing there are no contrary resource management policies or
shortage of bandwidth). When the second request is received,
then the dispenser goes to sleep with the request until a
Sufficient amount of time has passed so that granting of the
request will be within the threshold rate. If the client requests
5 Mb of bandwidth, then the dispenser may grant the request
and sleep with the next request, deny the request, or initially
sleep with the request until a sufficient amount of time has
passed.

FIG. 12 depicts a flowchart for throttling consumption rate
based on a dispenser and resource domains according to some
realizations of the invention. At block 1201, a consume
request is received that indicates a resource domain. At block
1203, it is determined if there has been a previous resource
request, which indicated the same resource domain. If there
has been a previous resource request that indicated the same
resource domain, then control flows to block 1207. If there
has not been a previous resource request that indicates the
same resource domain as the current resource request, then
control flows to block 1205.
At block 1205, a potential consumption rate is determined

based on the current consume request and a given interval.
Control flows from block 1205 to block 1211.
At block 1207, the amount previously consumed over the

given interval is determined. At block 1209, a potential con
Sumption rate is determined based on the determined previ
ously consumed amount and the current consume request. At
block 1211, rate monitoring parameters are updated to reflect
the current request. For example, historical requests are
updated to include the current request (i.e., currently
requested amount) and historical data that falls outside of the
given interval is removed. Various realizations of the inven
tion will implement tracking of resource consumption rate
differently (e.g., taking unconsume requests into consider
ation, maintaining a data structure separate from a managing
dispenser to persist even if the dispenser is destructed, main
taining a data structure that tracks resource requests with the
dispenser, tracking consume requests with a persistentaction,
tracking requests in the resource domain, etc.). At block 1213,
it is determined if the determined potential consumption rate
exceeds a threshold or desired rate of consumption. If the
determined potential consumption rate exceeds the threshold
rate, then control flows to block 1217. If the determined
potential consumption rate does not exceed the threshold rate,
then control flows to block 1215.
At block 1215, processing of the consume request contin

CS.

At block 1217, a sleep time is determined based on the
given interval, the previous consumption, and the consume
request. At block 1219, the controlling computation (e.g., a
dispenser instance) sleeps for the determined sleep time. Con
trol flows from block 1219 to block 1215.
The following code is an exemplary implementation of

controlling consumption rate, similar to that illustrated in
FIG. 12, utilizing previously described example class defini
tions.

//The time and current usage of the previous request.
long previousTime -1, previousUsage -1;
boolean
dUsage) {

if (previousTime =-1)
record(previousTime, currentlusage-previousUsage);

previousUsage-currentusage;

shouldFire(long currentusage, long propose

US 7,685,597 B1
25

previousTime-currentTime:
removeRecords.WithTstamps3efore(currentTime-inter

val);
long

Events();
long delta proposedUsage-currentusage;
if (amount--deltadthreshold) {

long interval1=(interval (amount--delta))/
threshold; /threshold;

Thread.sleep (interval 1-interval);

return false; //no need to invoke callback

amount=totalAmountRequestedInRecorded

As in the above examples, triggers are invoked as the first
step of processing a consume request. The shouldFire() rou
tine above can know how much of the current request has
been granted subsequent to the first time it is invoked. The
first lines of shouldFire() are responsible for this: if this is not
the first time the routine is invoked, the time of the previous
request was recorded along with the quantity granted, which
is the difference between the usage then and now. Afterwards,
records older than interval are removed, and the total amount
of requested quantities is computed over the remaining
records. If the amount increased by the quantity currently
being requested exceeds the threshold, the trigger sleeps long
enough to bring the rate of consumption downto the required
range. Since triggers in various realizations of the invention
operate within a critical section within the dispenser path,
other potential consumers are held off during such a sleep. An
alternative to controlling consumption rate is to control the
rate of consume requests themselves.

Throttling resource requests with an intermediate request
handler provides a mechanism for developers to adjust con
Sumption rate (or request rate) independent of the platform,
native code, or middleware code. Providing Such a mecha
nism that can be implemented in a safe language facilitates
development of diverse techniques for controlling resource
consumption rates. In addition, these techniques can take
advantage of the flexibility and portability of safe language
instead of being hampered by constraints of proprietary code.

While the flow diagrams show a particular order of opera
tions performed by certain realizations of the invention, it
should be understood that such order is exemplary (e.g., alter
native realizations may perform the operations in a different
order, combine certain operations, overlap certain operations,
perform certain operations in parallel, etc.). For example, in
FIGS. 5 and 9, as each policy decision action is determined it
can be set aside and the next policy action determined, the
respective operations of the determined policy action be per
formed before the next policy decision action is determined,
a thread can be spawned to perform respective operations as
each policy decision action is determined, etc. Also in FIGS.
5 and 9, triggers may be evaluated in parallel or sequentially.
As each trigger is evaluated, its one or more corresponding
policy decision actions may be executed upon evaluation, its
one or more corresponding policy decision actions may be
executed after all other triggers are evaluated, etc. In addition,
after evaluation of triggers, their corresponding policy deci
sion actions may be executed in parallel or sequentially.
Blocks that indicate operations related to merging decisions
and reservations may not be performed: FIG.8 may not take
into account global and local dispensers; block 1211 of FIG.
12 may be performed in parallel or combined with block
1209; etc.

10

15

25

30

35

40

45

50

55

60

65

26
Exemplar System
The described invention may be provided as a computer

program product, or software, that may include a machine
readable medium having Stored thereon instructions, which
may be used to program a computer system (or other elec
tronic devices) to perform a process according to the present
invention. A machine readable medium includes any mecha
nism for storing or transmitting information in a form (e.g.,
Software, processing application) readable by a machine
(e.g., a computer). The machine-readable medium may
include, but is not limited to, magnetic storage medium (e.g.,
floppy diskette); optical storage medium (e.g., CD-ROM);
magneto-optical storage medium; read only memory (ROM);
random access memory (RAM); erasable programmable
memory (e.g., EPROM and EEPROM); flash memory; elec
trical, optical, acoustical or other form of propagated signal
(e.g., carrier waves, infrared signals, digital signals, etc.); or
other types of medium Suitable for storing electronic instruc
tions.

FIG. 13 depicts an exemplary computer system according
to some realizations of the invention. A computer system
1300 includes a processor unit 1301 (possibly including mul
tiple processors and/or implementing multi-threading). The
computer system 1300 includes a machine-readable media
1307A-1307F. The machine-readable media may be system
memory (e.g., one or more of cache, SRAM DRAM,
RDRAM, EDO RAM, DDR RAM, EEPROM, etc.) or any
one or more of the above already described possible realiza
tions of machine-readable media. The computer system 1300
includes also a system bus 1303 (e.g., LDT. PCI, ISA, etc.), a
network interface 1305 (e.g., an ATM interface, an Ethernet
interface, a Frame Relay interface, etc.), and a storage
device(s) 1309 A-1309D (e.g., optical storage, magnetic stor
age, etc.). One or more of the machine-readable media
1307A-1307F embodies class definitions for a resource man
agement interface that defines a dispenser, resource domain,
triggers, callbacks, etc. Realizations of the invention may
include fewer or additional components not illustrated in FIG.
13 (e.g., video cards, audio cards, additional network inter
faces, peripheral devices, etc.). The processor unit 1301, the
storage device(s) 1309A-1309D, and the network interface
1305 are coupled to the system bus 1303. The machine
readable media 1307A-1307F is either coupled directly or
indirectly to the system bus 1303.

While circuits and physical structures are generally pre
Sumed, it is well recognized that in modern semiconductor
and design fabrication, physical structures and circuits may
be embodied in computer readable descriptive form suitable
for use in Subsequent design, test, or fabrication stages as well
as in resultant fabricated semiconductor integrated circuits.
Accordingly, claims directed to traditional circuits or struc
ture may, consistent with particular language thereof, read
upon computer readable encodings and representations of
same, whether embodied in media or combined with suitable
reader facilities to allow fabrication, test, or design refine
ment of the corresponding circuits and/or structures.

While the invention has been described with reference to
various realizations, it will be understood that these realiza
tions are illustrative and that the scope of the invention is not
limited to them. Many variations, modifications, additions,
and improvements are possible. More generally, realizations
in accordance with the present invention have been described
in the context of particular realizations. These realizations are
meant to be illustrative and not limiting. Accordingly, plural
instances may be provided for components described herein
as a single instance. Boundaries between various compo
nents, operations and data stores are somewhat arbitrary, and

US 7,685,597 B1
27

particular operations are illustrated in the context of specific
illustrative configurations. Other allocations of functionality
are envisioned and may fall within the scope of claims that
follow. Finally, structures and functionality presented as dis
crete components in the exemplary configurations may be
implemented as a combined structure or component. These
and other variations, modifications, additions, and improve
ments may fall within the scope of the invention as defined in
the claims that follow.
What is claimed is:
1. A computer-readable storage medium storing program

instructions computer-executable to perform operations com
prising:

encoding a first association between a single computer
resource and one or more resource management policies
for the single computer resource;

encoding a second association between the single com
puter resource and one or more resource management
policies for the single computer resource, wherein at
least one of the one or more resource management poli
cies associated with the single resource by the second
encoding is different from the one or more policies asso
ciated with the single resource by the first encoding:

a policy imposing isolate installing in a first resource
domain structure a set of one or more policy actions
corresponding to the one or more resource management
policies associated with the single resource by the first
encoding:

binding one or more encapsulated computations that are
consumers of the single resource to a single one of the
first and second encodings; and

executing the one or more encapsulated computations in
accordance with the one or more resource management
policies for the single computer resource that are asso
ciated with the single computer resource by the single
encoding that is bound to the one or more encapsulated
computations.

2. The computer-readable storage medium of claim 1,
wherein the encapsulated computations correspond to a col
laborative application.

3. The computer-readable storage medium of claim 1,
wherein an encapsulated computation does not share state
with other encapsulated computations.

4. The computer-readable storage medium of claim 1,
wherein said encoding the first association includes instanti
ating the first resource domain structure, wherein the first
resource domain structure includes data indicating the single
computer resource.

5. The computer-readable storage medium of claim 4,
wherein said encoding further includes indicating the set of
one or more policy actions for the single resource.

6. The computer-readable storage medium of claim 5,
wherein the first resource domainstructure also indicates a set
of one or more triggers for the single resource, wherein the
one or more triggers correspond to respective actions of the
set of policy actions.

7. The computer-readable storage medium of claim 4,
wherein the first resource domainstructure also indicates that
a reservation on the single resource has been established.

8. The computer-readable storage medium of claim 4.
wherein said binding the one or more encapsulated compu
tations to a single one of the first and second encodings
comprises indicating in a registry each of the encapsulated
computations and the single encoding.

9. The computer-readable storage medium of claim 5,
wherein the program instructions are further executable to
implement a dispenser retrieving the set of policy actions

5

10

15

25

30

35

40

45

50

55

60

65

28
from the first resource domain structure and executing one or
more of the policy actions to handle a resource request for the
single resource, wherein the dispenser is an isolate that
handles requests for the single resource.

10. The computer-readable storage medium of claim 1,
wherein said binding the one or more encapsulated compu
tations to a single one of the first and second encodings
comprises indicating to each of the encapsulated computa
tions the single encoding.

11. The computer-readable storage medium of claim 1,
wherein the single computer resource comprises a physical
computer resource or a logical computer resource.

12. A computer-implemented method, comprising:
encoding a first association between a single computer

resource and one or more resource management policies
for the single computer resource:

encoding a second association between the single com
puter resource and one or more resource management
policies for the single computer resource, wherein at
least one of the one or more resource management poli
cies associated with the single resource by the second
encoding is different from the one or more policies asso
ciated with the single resource by the first encoding:

binding one or more isolates that are consumers of the
single resource to a single one of the first and second
encodings, wherein each isolate includes one or more
encapsulated computations that do not share state with
of other computations; and

executing the one or more isolates in accordance with the
one or more resource management policies for the single
computer resource that are associated with the single
computer resource by the single encoding that is bound
to the one or more isolates;

wherein each of the one or more resource management
policies associated with the single computer resource by
the encoding of the first association is defined by a policy
imposing isolate that installs the resource management
policy in the encoding of the first association.

13. The method of claim 12, wherein the encoding of the
first association indicates the single computer resource.

14. The method of claim 13, wherein the encoding of the
first association further indicates a set of one or more policy
actions corresponding to the one or more resource manage
ment policies, wherein execution of the set of policy actions
causes a policy decision to be generated for the single com
puter resource.

15. The method of claim 13, further comprising a dispenser
isolate retrieving the set of policy actions from the encoding
of the first association and executing one or more of the policy
actions to invoke a policy imposing isolate.

16. The method of claim 13, wherein the encoding of the
first association also indicates availability of the single com
puter resource.

17. The method of claim 13, wherein the encoding of the
first association also indicates that a reservation on the single
computer resource has been established.

18. The method of claim 1, wherein the bound isolates
include the policy imposing isolate.

19. The method of claim 12, further comprising indicating
the encoding of the first association in a registry of resource
management policy-computer resource association encod
ings.

20. The method of claim 12, further comprising character
izing the single computer resource with generic attributes,
and wherein the generic attributes comprise disposable, revo
cable, reservable, and bounded.

US 7,685,597 B1
29

21. The method of claim 12, wherein the one or more
isolates correspond to a collaborative application.

22. A machine-readable storage medium storing two or
more encodings of a data structure, each encoding of data
structure comprising:

a first data field configured to store data indicating a same
single computer resource:

a second data field configured to store data indicating one
or more resource management policies for the single
computer resource, wherein data stored in the second
data field of one of the two or more encodings indicates
at least one resource management policy for the single
computer resource that is different from the one or more
resource management policies for the single computer
resource indicated by the data stored in the second data
field of another one of the two or more encodings;

a third data field configured to store data indicating avail
ability of the single computer resource; and

a fourth data field configured to store data indicating usage
of the single computer resource by a set of one or more
encapsulated computations bound to the data structure;

wherein the data stored in the first, second, third and fourth
data fields of the two or more encodings is accessible by
a computer for managing the single computer resource.

23. The storage medium of claim 22, wherein each encod
ing of the data structure further comprises a fifth data field
configured to store data indicating an identifier to identify an
association between the single computer resource indicated
in the first data field and a resource management policy indi
cated in the second field.

24. The storage medium of claim 22, wherein the first data
field is further configured to store data indicating attributes of
the single computer resource.

25. The storage medium of claim 24, wherein the attributes
of the single computer resource comprise: disposable, revo
cable, reservable, and bounded.

26. The storage medium of claim 22, wherein each encod
ing of the data structure further comprises a fourth data field
configured to store data indicating that a reservation of the
single computer resource has been established.

27. A computer-readable storage medium storing program
instructions computer-executable to perform operations com
prising:

preventing binding of an encapsulated computation that is
a consumer of one or more computer resources to two or
more resource domain structures that indicate the same
computer resource, wherein each of the resource domain
structures represents an association between the com
puter resource and one or more resource management
policies, and wherein at least one of the one or more
resource management policies associated with the com
puter resource by a first one of the resource domain
structures is different from the one or more policies
associated with the computer resource by a second one
of the resource domain structures;

allowing binding of an encapsulated computation that is a
consumer of one or more computer resources to two or
more resource domain structures that indicate different
computer resources; and

executing the bound encapsulated computation in accor
dance with the one or more resource management poli
cies associated with the computer resource by the
resource domain structure bound to the encapsulated
computation;

5

10

15

25

30

35

40

45

50

55

60

65

30
wherein each of the resource domain structures identifies

its resource domain and indicates a respective computer
resource and one or more associated resource manage
ment policies.

28. The computer-readable storage medium of claim 27,
wherein each of the resource domain structures indicates
generic attributes of the respective computer resource,
wherein the generic attributes comprise one or more of dis
posable, revocable, reservable, and bounded.

29. The computer-readable storage medium of claim 27,
wherein each of the resource domain structures indicates
usage of the respective computer resource.

30. The computer-readable storage medium of claim 27,
wherein each of the resource domain structures indicates
whether a reservation has been established on the respective
computer resource.

31. A computer-readable storage medium comprising pro
gram instructions computer-executable to implement:

instantiating two or more instances of a resource domain
according to a resource domain class definition, wherein
the resource domain class definition provides for asso
ciating a single computer resource with one or more
resource management policies and for binding one or
more isolates to the instance, and wherein each of the
two or more resource domain instances associates a
same computer resource with a different set of one or
more resource management policies for the same com
puter resource:

binding a set of one or more isolates to one of the two or
more resource domain instances, wherein each of the
isolates includes a set of one or more encapsulated com
putations that do not share state with other isolates; and

executing the set of one or more bound isolates in accor
dance with the one or more resource management poli
cies associated with the same computer resource by the
one of the two or more resource domain instances that is
bound to the set of one or more isolates;

wherein each of the one or more resource management
policies associated with the single computer resource is
defined by a policy imposing isolate that installs the
resource management policy in one or more of the
resource domain instances.

32. The computer-readable storage medium of claim 31,
wherein the resource domain class definition provides a rou
tine for determining current usage corresponding to an
instance of the resource domain class.

33. The computer-readable storage medium of claim 31,
wherein the program instructions are further executable to
implement one or more routines for unconsuming computer
SOUCS.

34. The computer-readable storage medium of claim 31,
wherein the program instructions are further executable to
implement one or more routines for attempting to consume a
given amount of a computer resource, with the possibility of
Success or failure.

35. The computer-readable storage medium of claim 31,
wherein the program instructions are further executable to
implement one or more routines for indicating computations
bound to each of the two or more resource domain class
instances.

36. The computer-readable storage medium of claim 31,
wherein the program instructions are further executable to
implement regulating association of computations with
instances of the resource domain class.

37. The computer-readable storage medium of claim 31,
wherein the program instructions are further executable to
implement associating resource domain class instances with

US 7,685,597 B1
31

dispensers that handle resource requests separately from
implementation of the single computer resource indicated in
each resource domain class instance.

38. An apparatus, comprising:
a memory;

means for representing a first association between a single
computer resource and one or more resource manage
ment policies for the single computer resource:

means for representing a second association between the
single computer resource and one or more resource man
agement policies for the single computer resource,
wherein at least one of the one or more resource man
agement policies associated with the single computer
resource by the second representation is different from
the one or more policies associated with the single
resource by the first representation;

means for installing in a first resource domainstructure one
or more policy actions corresponding to the one or more
resource management policies associated with the single
computer resource by the first representation;

32
means for binding one or more isolates that are consumers

of the single computer resource to a single one of the first
and second representations of the association of the
single computer resource and the one or more resource
management policies, wherein an isolate includes a set
of one or more computations that do not share state with
other computations; and

means for executing the one or more isolates in accordance
with the one or more resource management policies for
the single computer resource that are associated with the
single computer resource by the single representation
that is bound to the one or more isolates.

39. The apparatus of claim 38, wherein the one or more
policy actions provide policy decisions to computer resource

15 requests.
40. The apparatus of claim 39, wherein the one or more

resource management policies comprise triggers that gate
execution of policy actions.

41. The apparatus of claim 38, further comprising means
20 for indicating usage of the single computer resource.

k k k k k

