PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION &I
International Bureau — -

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7

HO4L A2

(11) International Publication Number:

(43) International Publication Date:

WO 00/21232

13 April 2000 (13.04.00)

(21) International Application Number: PCT/US99/23008

(22) International Filing Date: 1 October 1999 (01.10.99)

(30) Priority Data:
60/102,957 2 October 1998 (02.10.98) Us
60/117,595 27 January 1999 (27.01.99) Us
(71) Applicant (for all designated States except US): INTER-

NATIONAL BUSINESS MACHINES CORPORATION
[US/US]; Old Orchard Road, Armonk, NY 10504 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GOPALAKRISHNAN,
Ponani [IN/US]; 3073 Radcliff Drive, Yorktown Heights,
NY 10598 (US). LUCAS, Bruce, D. [US/US]; 2408 Mill
Pond Road, Yorktown Heights, NY 10598 (US). MAES,
Stephane, H. [BE/US]; 1 Wintergreen Hill Road, Danbury,
CT 06811 (US). NAHAMOO, David [IR/US]; 12 Elm-
wood Road, White Plains, NY 10605 (US). SEDIVY, Jan
[CZ/CZ]}; U lesa 11, Praha (CZ).

(74) Agent: OTTERSTEDT, Paul, J.; International Business Ma-
chines Corporation, Yorktown IP Law Department, T.J.
Watson Research Center, Route 134 and Kitchawan Road,
Yorktown Heights, NY 10598 (US).

(81) Designated States: CA, CN, IL, IN, JP, KR, US, European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: CONVERSATIONAL BROWSER AND CONVERSATIONAL SYSTEMS

(57) Abstract

A conversational browsing system (10) comprising a
conversational browser (11) having a command and con-
trol interface (12) for converting speech commands or
multi-modal input from /O resources (27) into navigation
request, a processor (14) for parsing and interpreting a CML
(conversational markup language) file, the CML file compris-
ing meta—information representing a conversational user in-
terface for presentation to a user. The system (10) compriseés
conversational engines (23) for decoding input commands
for interpretation by the command and control interface and
decoding meta—information provided by the CML proces-
sor for generating synthesized audio output. The browser
(11) accesses the engine (23) via system calls through a sys-
tem platform (15). The system includes a communication
stack (19) for transmitting the navigation request to a con-
tent server and receiving a CML file from the content server
based on the navigation request. A conversational transcoder
(13) transforms presentation material from one modality to
a conversational modality. The transcoder (13) includes a
functional transcoder (13a) to transform a page of GUI to
a page of CUI (conversational user interface) and a logical
transcoder (13b) to transform business logic of an applica-
tion, transaction or site into an acceptable dialog. Conver-
sational transcoding can convert HTML files into CML files
that are interpreted by the conversational browser (11).

1

Conversafional Browser 13
12
Command/Request
Processor
10 ¥
! m
Parser/Processor
]
y A
16 19
| comciond o0t Ll Commurcaon Skek gy
} Contentional Profocols
(TCP/ie, HTTP, WAP, eic.)
v s 17 2
Conversational Virtual Mechine (CVH) 1 Conversational Profocols
(Kemnel) - (Coordination, Reglsiration, Discovery,
y yY Negofiafion, Speech Coding, elc)
[

A 18 y vy o2
H Converactional Engine APls H Conventional Drivers/APls I
4 4]
y % \ Y 2 |]
ftional Englnes Ofhwr Dialog =1/0 Resourcas Audlo Capture
Compression
EEEEES
wlbe Reconstruction
4 N5 8 Vg V29 Va0 Va1 \ge

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ)
BR
BY
CA

CG
CH
CI

CM
CN
Cu

DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

‘The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
T™
TR
TT
UA
uG
us
Uz
VN
YU
VAL

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/21232 PCT/US99/23008

CONVERSATIONAL BROWSER AND
CONVERSATIONAL SYSTEMS

This application is based on provisional applications U.S. Serial Number 60/102,957,
filed on October 2, 1998, and U.S. Serial No. 60/117,595 filed on January 27, 1999.

BACKGROUND

1. Technical Field:

The present invention relates generally to systems and methods for accessing information
and, more particularly, to a conversational browser that provides unification of the access to
various information sources to a standard network protocol (such as HTTP) thereby allowing a
pure GUI (graphical user interface) modality and pure speech interface modality to be used
individually (or in combination) to access the same bank of transaction and information services
without the need for modifying the current networking infrastructure.

2. Description of Related Art:

Currently, there is widespread use of IVR (Interactive Voice Response) services for
telephony access to information and transactions. Am IVR system uses spoken directed dialog
and generally operates as follows. A user will dial into an IVR system and then listen to an
audio prompts that provide choices for accessing certain menus and particular information. Each
choice is either assigned to one number on the phone keypad or associated with a word to be
uttered by the user (in voice enabled IVRs) and the user will make a desired selection by pushing
the appropriate button or uttering the proper word. Conventional IVR applications are typically
written in specialized script languages that are offered by manufacturers in various incarnations
and for different HW (hardware) platforms. The development and maintenance of such IVR
applications requires qualified staff. Conventional IVR applications use specialized (and
expensive) telephony HW, and each IVR applications uses different SW (software) layers for
accessing legacy database servers. These layers must be specifically designed for each
application.

Furthermore, IVR systems are not designed to handle GUI or other modalities other

than DTMF and speech. Although it is possible to mix binary data

10

15

20

25

30

WO 00/21232 PCT/US99/23008

and voice on a conventional analog connection, it is not possible to do so with a conventional
VR as the receiver. Therefore, IVR systems typically do not allow data/binary input and voice
to be merged. Currently, such service would require a separate system configured for handling
binary connections (e.g. a form of modem). In the near future, Voice over IP (VolIP) and wireless
communication (e.g., GSM) will allow simultaneous transmission of voice and data. Currently,
more than one simultaneous call is needed for simultaneous exchange of binary and voice (as it
is explained to be useful later to adequately handle specialized tasks) or it will require a later
call or callback for asynchronous transmission of the data. This is typically not convenient. In
particular, the data exchange can be more than sending or receiving compressed speech and
information related to building a speech Ul it can also be the necessary information to add
modalities to the UI (e.g. GUI). Assuming that services will be using multiple lines to offer, for
example, a voice in / web out (or voice in / web and voice out) modality where the result of the
queries and the presentation material also result into GUI material (e.g. HTML displayed on a
GUI browser like Netscape Navigator), the service provider must now add all the IT
infrastructure and backend to appropriately networked and synchronize its backends, IVR and
web servers. A simple but very difficult task is the coordination between the behavior/evolution
of the speech presentation material with respect to the GUI or HTML portion of the presentation.

With the rapidly increasing evolution of mobile and home computing, as well as the
prevalence of the Internet, the use of networked PCs, NCs, information kiosks and other
consumer devices (as opposed to IVR telephony services) to access information services and
transactions has also become widespread. Indeed, the explosion of Internet and Intranet has
afforded access to virtually every possible information source, database or transaction accessible
through what is generally known as a GUI "Web browser," with the conversion of the data and
the transactions being performed via proxies, servers and/or transcoders.

In general, a Web browser is an application program (or client program) that allows a
user to view and interact with information on the WWW (World Wide Web or the "Web") (i.e.,
a client program that utilizes HTTP (Hypertext Transfer Protocol) to make requests of HTTP
servers on the Internet). The HTTP servers on the Internet include "Web pages" that are written
in standard HTML (Hypertext Markup language). An Internet Web page may be accessed from
an HTTP server over a packet-switched network, interpreted by the Web browser, and then

presented to the user in graphical form. The textual information presented to the user includes
2-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

highlighted hyperlinks to new sources of information. The user can then select a hyperlink by,
e.g., clicking on the with mouse, to download a new Web page for presentation by the Web
browser. The access to legacy databases over the Internet is enabled by several known standards
such as LiveWire and JDBC (Java Database Connectivity). Furthermore, Web pages can
include executable code such as applets (e.g., java programs) that can be downloaded from a
server and executed on the browser or on a JVM (java virtual machine) of the system on top of
which the browser is built. Other information can be provided by servlets (e.g., java programs)
running on the server and pushing changes in the connected browser. The applets and servlets
can include CGI (common gateway interface) functions which allow a Web server and
applications to communicate with each other. In addition, other information accessing methods
include scripts which are predetermined program languages that are interpreted and executed on
the browser. This includes, for example, javascripts and DHTML (Dynamic HTML) languages.
Plug-ins are programs outside the browser that can be downloaded by the browser and
automatically recognized by the browser to run native on the local device and be executed on
arguments that are subsequently provided (via download) by the browser. CGI scripts are server
side scripts that implement the business logic and produce as output of them running the next
presentation material. Applets and plugins can communicate via RMI (remote method
invocation), socket connections, RPC (remote procedure call), etc. In addition, complex
transcoding schemes, XML (Extensible Markup Language) extensions and scripting languages
are used for specific information or services or to simplify the interaction.

As explained above, the purpose of the Internet Web browser and IVR is to access
information. The following example describes a typical scenario in connection with a banking
application to demonstrate that the paradigm used for accessing the information via IVR with a
telephone and via the Internet using a PC and Web browser is similar. For instance, the typical
banking ATM transaction allows a customer to perform money transfers between savings,
checking and credit card accounts, check account balances using IVR over the telephone. These
transactions can also be performed using a PC with Internet access and a Web browser. In
general, using the PC, the customer can obtain information in a form of a text menus. In the case
of the telephone, the information is presented via audio menus. The mouse clicks on the PC
application are transformed to pushing telephone buttons or spoken commands. More

specifically, a typical home banking IVR application begins with a welcome message. Similarly,
-3

10

15

20

25

30

WO 00/21232 PCT/US99/23008

the Internet home page of the Bank may display a picture and welcome text and allow the user to

choose from a list of services, for example:

a. instant account information;
b. transfer and money payment;
C. fund information;

d. check information;

e. stock quotes; and

f. help.

With the IVR application, the above menu can be played to the user over the telephone,
whereby the menu messages are followed by the number or button the user should press to select

the desired option:

a "for instant account information, press one;"
b. "for transfer and money payment, press two;"
c. "for fund information, press three;"

d. "for check information, press four;"

€. "for stock quotes, press five;"

f. "for help, press seven;"

The IVR system may implement speech recognition in lieu of, or in addition to, DTMF
keys. Let's assume that user wants to get the credit card related information. To obtain this
information via the Internet based application, the user would click on a particular hypertext link
in a menu to display the next page. In the telephone application, the user would press the

appropriate telephone key to transmit a corresponding DTMF signal. Then, the next menu that

is played back may be:
a. "for available credit, press one";
b. "for outstanding balance, press two";
C. "if your account is linked to the checking account, you can pay ~ your credit

card balance, press three."
Again, the user can make a desired selection by pressing the appropriate key.

To continue, the user may be prompted to provide identification information. For this
purpose, the Internet application may display, for example, a menu with an empty field for the

user's account number and another for the users social security number. After the information is
-4-

10

15

20

25

WO 00/21232 PCT/US99/23008

filled in it is posted to the server, processed, the replay is formatted and sent back to the user.
Over the telephone the scenario is the same. The IVR system may playback (over the telephone)
an audio prompt requesting the user to enter his/her account number (via DTMF or speech), and
the information is received from the user by processing the DTMF signaling or recognizing the
speech. The user may then be prompted to input his/her SSN and the reply is processed in a
similar way. When the processing is complete, the information is sent to a server, wherein the
account information is accessed, formatted to audio replay, and then played back to the user over
the telephone.

As demonstrated above, IVRs use the same paradigm for information access as Web
browsers and fulfill the same functionality. Indeed, beyond their interface and modality
differences, IVR systems and Web browsers are currently designed and developed as
fundamentally different systems. In the near future, however, banks and large corporations will
be moving their publicly accessible information sources to the Internet while keeping the old
IVRs. Unfortunately, this would require these institutions to maintain separate systems for the
same type of information and transaction services. It would be beneficial for banks and
corporations to be able to provide information and services via IVR over the Internet using the
existing infrastructure. In view of this, a universal system and method that would allow a user to
access information and perform transactions over the Internet using IVR and conventional

browsers is desired.

SUMMARY OF THE INVENTION

The present invention is directed to a system and method for unifying the access to
applications to a standard protocol, irrespective of the mode of access. In particular, the present
invention provides a universal method and system for accessing information and performing
transactions utilizing, for example, a standard networking protocol based on TCP/IP (such as
HTTP (Hypterext Transfer protocol) or WAP (wireless application protocol) and architecture to
access information from, e.g., a HTTP server over the Internet such that a pure GUI (graphical
user interface) modality and pure speech interface modality can be used individually (or in
combination) to access the same bank of transaction and information services without requiring

modification of the current infrastructure of currently available networks.

-5-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

In one embodiment of the present invention, a conversational browser is provided that
translates commands over the telephone to an HTTP protocol. The introduction of the
conversational browser allows us to unify Internet and Telephone (IVR) and thereby decrease the
cost, enlarge the coverage and flexibility of such applications. In particular, for IVR
applications, the conversational browser or (telephony browser) can interpret DTMF signaling
and/or spoken commands from a user, generate HTTP requests to access information from the
appropriate HTTP server, and then interpret HTML-based information and present it to the user
via audio messages. The conversational browser can also decode compressed audio which is
received from the HTTP server in the HTTP protocol, and play it reconstructed to the user.
Conversely, it can capture the audio and transmit it (compressed or not) to the server for
distributed recognition and processing. When the audio is captured locally and shipped to the
server, this can be done with a plug-in (native implementation) or for example with a java
applet or java program using audio and multimedia API to capture the user's input.

For the new proposed IVR architecture and conversational browser, the content pages
are on the same HTTP server that are accessed by conventional modes such as GUI browsers,
and use the same information access methods, sharing the legacy database access SW layer, etc.
In other words, an IVR is now a special case of a HTTP server with a conversational browser.
Similar to the conventional GUI browser and PC, the conversational browser, the information
and queries will be sent over the switched packed network using the same protocol (HTTP).

The present invention will allow an application designer to set up the application using
one framework, irrespective of the mode of access, whether it is through telephone or a WWW
browser. All interactions between the application and the client are standardized to the HTTP
protocol, with information presented through html and its extensions, as appropriate. The
application on the WWW server has access to the type of client that is accessing the application
(telephone, PC browser or other networked consumer device) and the information that is
presented to the client can be structured appropriately. The application still needs to only
support one standard protocol for client access. In addition, the application and content is
presented in a uniformed framework which is easy to design, maintain and modify.

In another aspect of the present invention, a conversational browser interprets
conversational mark-up language (CML) which follows the XML specifications. CML allows

new experienced application developers to rapidly develop conversational dialogs. In another
-6-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

aspect, CML may follow other declarative syntax or method. Pursuing further the analogy with
HTML and the World Wide Web, CML and conversational browser provide a simple and
systematic way to build a conversational user interface around legacy enterprise applications and
legacy databases.

CML files/documents can be accessed from HTTP server using standard networking protocols.
The CML pages describe the conversational Ul to be presented to the user via the conversational
browser. Preferably, CML pages are defined by tags which are based on the XML application.
The primary elements are <page>, <body><menu>, and <form>. Pages group other CML
elements, and serve as the top-level element for a CML document (as required by XML). Bodies
specify output to be spoken by the browser. Menus present the user with a list of choices, and
associate with each choice a URL identifying a CML element to visit if the user selects that
choice. Forms allow the user to provide one or more pieces of information, where the content of
each piece of information is described by a grammar. The form element also specifies a URL to
visit when the user has completed the form.

In another aspect, conversational mark-up language rules can be added by a content
provider to an HTML file (or used in place of HTML) to take full advantage of the
conversational browser.

In yet another aspect, a conversational transcoder transforms presentation material form
one modality to a conversational modality (typically, speech only and/or speech and GUI). This
involves functional transformation to transform one page of GUI to a page of CUI
(conversational user interface), as well as logical transcoding to transform business logic of an
application, transaction or site into an acceptable dialog. Conversational transcoding can convert
HTML files into CML files that are interpreted by the conversational browser. The transcoder
may be a proprietary application of the server, browser or content provider.

In another aspect, HTML/GUI based structure skeletons can be used to capture the dialog
logic or business logic of a GUI site. This information can be used to map the sit, logic or
application. After appropriate organization of the dialog flow, each element can undergo
functional transcoding into a speech only content or a multi-modal (synchronized GUI and
speech interface) page.

In another aspect, a conversational proxy is provided to modify and/or prepare the

content description of the application, logic or site to the capabilities of , e.g., the device,
-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

browser and/or engines, preferences of the user or application, load on the servers, traffic on the
network, location of the conversational arguments (data files). For instance, the conversational
proxy can directly convert proprietary formats such as screen maps of corporate software.

These and other aspects, features and advantages of the present invention will be
described and become apparent from the following detailed description of preferred

embodiments, which is to be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a diagram of a conversational browsing system according to a preferred
embodiment of the present invention;

Fig. 2 is a block diagram of a system for accessing information implementing a
conversational browsing system according to an embodiment of the present invention;

Fig. 3 is a block diagram of a system for accessing information implementing a
conversational browsing system according to another embodiment of the present invention;

Fig. 4a is a block diagram illustrating a distributed system for accessing information
implementing a conversational browsing system according to an embodiment of the present
invention;

Fig. 4b is a block diagram illustrating a distributed system for accessing information
implementing a conversational browsing system according to another embodiment of the present
invention;

Fig. 5 is a block diagram of a conversational information accessing system using
conversational markup language according to an embodiment of the present invention;

Fig. 6 is a general diagram of a distributed conversational system using conversational
markup language accordance to an embodiment of the present invention;

Fig. 7 is a diagram of an exemplary distributed conversational system using
conversational markup language according to an embodiment of the present invention;

Fig. 8 is a diagram of another exemplary distributed conversational system using
conversational markup language according to another embodiment of the present invention;

Fig. 9 is a diagram of a yet another distributed conversational information accessing
system using conversational markup language according to an embodiment of the present

invention; and
-8-

10

15

20

25

WO 00/21232 PCT/US99/23008

Fig. 10 is a diagram of another exemplary distributed conversational information
accessing system using conversational markup language according to an embodiment of the

present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention is directed to a conversational browsing system and CML
(conversational markup language) for building a conversational browsing system using a set of
interlinked CML pages. This conversational system is conceptually analogous to building
conventional GUI browser applications using a set of interlinked pages written using HTML
(hypertext markup language). Moreover, just as HTML provides a set of mechanisms for
translating GUI actions into application actions such as visiting other pages or communicating
with a server, the conversational browser and CML are used for translating spoken inputs into
similar application actions. A CML page describes the conversational Ul to be interpreted and
presented to the user via the conversational browser. Preferably, CML pages are defined by tags
which are based on the current XML (extensible markup language) application (as described in
detail below).

It is to be understood that the conversational systems and methods described herein may
be implemented in various forms of hardware, software, firmware, special purpose processors, or
a combination thereof. In particular, the conversational browser is preferably implemented as
an application comprising program instructions that are tangibly embodied on a program storage
device (e.g., magnetic floppy disk, RAM, ROM, CD ROM and/or Flash memory) and executable
by any device or machine comprising Suitable architecture such as personal computers and
pervasive computing devices such as PDAs and smart phones.

It is to be further understood that, because some of the constituent components of the
conversational browser and other system components depicted in the accompanying Figures are
preferably implemented in software, the actual connections between such components may differ
depending upon the manner in which the present invention is programmed. Given the teachings
herein, one of ordinary skill in the related art will be able to contemplate these and similar

implementations or configurations of the present invention.

10

15

20

25

30

WO 00/21232 PCT/US99/23008

Conversational Browser Architecture

Referring now to Fig. 1, a block diagram illustrates a conversational browser system
according to a preferred embodiment of the present invention. In general, a conversational
browsing system 10 allows a user to access legacy information services and transactions through
voice input (either uniquely or in conjunction with other modalities such as DTMF, keyboard,
mouse, etc) using a standard networking protocol such as HTTP. In addition, it is to be
understood that the HTTP protocol is a preferred embodiment of the present invention but other
similar protocols can be used advantageously. For example, this can be deployed on top of any
protocol that such as TCP/IP, WAP (Wireless Application Protocol), GSM, VolIP, etc., or any
other protocol that supports IP (and therefore provide TCP/IP or similar features. Even more
generally, if TCP/IP is not available we can implement another protocol offering features
similar to TCP/IP or at least performing network and transport functions (the present invention is
not dependent on the transport and network layer)..

In Fig. 1, a conversational browsing system 10 according to one embodiment of the
present invention comprises a conversational browser 11 (conversational application) which
executes on top of a CVM (conversational virtual machine) system 15. The conversational
browser 11 comprises a transcoder module 11 which, in general, transcodes conventional
(legacy) structured document formats such as HTML or DB2 into an intermediate document, or
CML (conversational markup language) document in accordance with prespecified transcoding
rules (as discussed below). A CML document describes the conversational UI of the legacy
information format to be presented to the user. More specifically, a CML document comprises
meta- information which is processed by a CML parser/ processor 14 to present, for example,
HTML-based information to a user as synthesized audio messages. It is to be understood that
various embodiments for a CML document are contemplated for implementation with the
present invention. In a preferred embodiment described in detail below, a CML document is
defined by tags which are based on XML (extensible markup language). It is to be understood,
however, that any declarative method for implementing CML may be employed. XML is
currently preferred because of its simplicity, power and current popularity.

The conversational browser 11 further comprises a command/ request processor 12 (a
command and control interface) which converts user command (multi- modal) inputs such as

speech commands, DTMF signals, and keyboard input into navigation requests such as HTTP
-10-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

requests. It is to be understood that in a pure speech conversational browser, the only input is
speech. However, the conversational browser 11 can be configured for multi-modal input.

When certain conversational functions or services are needed, the conversational browser
11 will make API calls to the CVM 15 requesting such services (as described below). For
instance, when interpreting a CML document (via the CML parser/processor 14), the
conversational browser 11 may hook to a TTS (text-to-speech syntheses) engine 26 (via the
CVM 15) to provide synthesized speech output to the user. In addition, when speech commands
or natural language queries (e.g., navigation requests) are input, the conversational browser 11
may hook to a speech recognition engine 24 and NLU (natural language understanding) engine
25 to process such input commands, thereby allowing the command/request processor to
generate, e.g., the appropriate HTTP requests. The CVM system 15 is a shell that can run on top
of any conventional OS (operating system) or RTOS (real-time operating system). A detailed
discussion of the architecture and operation of the CVM system 15 is provided in the patent
application IBM Docket No. Y0999-111P, filed concurrently herewith, entitled
“Conversational Computing Via Conversational Virtual Machine,” which is commonly assigned
and fully incorporated herein by reference.

Briefly, as shown in Fig. 1, the CVM system 15 comprises a conversational API layer 16
through which the conversational browser 11 can “talk” to a CVM kernel layer 17 to access (via
system calls) certain conversational services and behaviors including the conversational engines
23. The CVM kernel 17 is responsible for allocating conversational resources such as engines
and arguments (either local and/or distributed) and managing and controlling the dialog and
context across applications and deviceé (locally and/or distributed) on the basis of their
registered conversational capabilities and requirements to provide a universal and coordinated
CUI (conversational user interface). The CVM system 15 performs conversational services and
functions by implementing calls to local conversational engines 23, e.g., a speech recognition
engine 24, a NLU (natural language understanding) engine 25 a TTS (text-to-speech) engine 26
(as well as other engines such as an NLG (natural language generation) engine, speaker
recognition engine) through a conversational engine API layer 18 (such as SAPI, SRAPL, JSAPI,
SVAPI or extensions of such engine APIs). In addition, engine calls can be made to remote
speech engines in distributed topologies. In addition, calls to an audio subsystem 33 (providing

audio capture, compression, decompression and reconstruction) and any other multi-modal I/O
-11-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

resources (such as a keyboard 28, Mouse 29, touch screen, microphone/speaker 31 and DTMF
32) are performed via a conventional drivers/API layer 22.

The CVM system 15 further comprises a communication stack 19 for providing network
communication via conventional protocols 20 such as TCP/IP, HTTP, WAP, etc. The
communication stack 19 further comprises conversational protocols 21(or distributed
conversational protocols) which are utilized for distributed applications. As described in the
above-incorporated IBM Docket No. Y0999-111P, the conversational protocols (or methods) 21
include protocols for (1) discovering network devices and applications that are “conversationally
aware” (i.e., that speak conversational protocols); (2) registering conversational capabilities
(resources) such as conversational engines and arguments between network devices; (3)
negotiating network configurations (such as master/slave, peer-to-peer) based on registered
conversational capabilities; (4) exchanging information to coordinate a conversation between
network connected devices such as information regarding the state, context and history of a
dialog, conversational arguments, applets, ActiveX components, procedural objects, and other
executable code; and (5) speech coding protocols to transmit and receive compressed speech
(waveforms or features). These conversational protocols 21, as well as their role for providing
conversational coordination between networked devices is also disclosed in the patent
application IBM Docket No. YO999-113P, filed concurrently herewith, entitled “System and
Method For Providing Network Coordinated Conversational Services,” which is commonly
assigned and incorporated herein by reference.

It is to be understood that the engines 23 and I/O resources 27, conventional drivers/APIs
22 and audio subsystem 33 illustrated in Fig. 1 are components that are part of the underlying
device, machine or platform on which the conversational browser 11 and CVM system 15 are
executed. It is to be further understood that the conversational browser 11 and CVM system 15
can be provided as separate systems or, alternatively, the conversational browser 11 can be
implemented as a stand-alone application carrying its own CVM system 15 (in which case the
browser and CVM platform would be the same, i.e., indistinguishable entities). In addition, in
the absence of a CVM system 15 as specifically described above, it is to be understood that the
conversational browser 11implements functions that are similar to that discussed above for the
CVM system 15 (e.g. the conversational browser would make API calls to appropriate engines

locally and/or distributed). Indeed, the API, services, features, behaviors, access to engine and
-12-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

communication mechanisms can all be built directly into, and made part of, the conversational
browser application 11 as part of the features and services provided by the browser (this would
be analogous as having a JVM (java virtual machine) provided by the underlying operating
system to a Netscape browser or having the browser implement its own JVM). In addition, the
conversational browser can take advantage of similar existing services provided by the
underlying operating system and/or applications running in parallel of the browser.

It is to be understood that the transcoder 13 may be part of the conversational browserl1
as illustrated in Fig. 1. Alternatively, as described below, the transcoder 13 may be located in a
network and running, for example, on another machine, conversational proxy server, on a server
of the content provider (server-side), or distributed on various machines in the network. In
addition, the transcoder may be a proprietary application of the proxy server, browser or content
provider. The transcoder should also be able to directly convert other proprietary formats like

screen map of corporate software. The transcoder 13 comprises a functional transcoding module

13a for converting , e.g., an HTML document (or other format page) into a CML

document. Various rules for implementing this conversion will be explained below. In addition,
the transcoder 13 comprises a logical transcoding module 13b which accesses and interprets the
logic information behind the application to build a meaningful dialog. This often requires in
depth information about the application and /or business logic. It can be conveyed with extra
XML or meta information that can define some of these intent. Another method which may be
employed for performing logical transcoding is described in described in the patent application
IBM Docket No. Y099-114, filed concurrently herewith, entitled “Structure Skeletons For
Efficient Voice Navigation Through Geheric Hierarchical Objects”, which is commonly
assigned and fully incorporated herein by reference. This application describes how
conversational structure skeletons may be used to encode and transmit logical transcoding
information.

Preferably, the transcoder 35 is a generic, general purpose converter, which is capable of
transforming any transaction form or HTML page to a CML page. With respect to
straightforward dialog like ATM dialog or IVR dialogs, wherein HTML dialog pages with form
filling (HTML or CGI) or ATM dialog (and other 3270 type of screen dialogs) have limited
information or provide limited user choices, the transcoding may be readily formulated in terms

of CML pages. Other complex HTML documents can instead be tagged as CML in the first
-13-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

instance on the server side (as explained below) without requiring a transcoder for the
conversion. Indeed, as explained below, in a preferred embodiment, all the content provided to
the conversational browser is directly written in CML without the need for a transcoder or
transcoding proxy, as opposed to generic HTML pages, for instance, being transcoded on the fly
by the browser or a server- side transcoder. Otherwise, basic composition and design rules can
be imposed to simplify the conversion from HTML to CML. For instance, news and
e-mail/voice-mail can be converted by filtering the incoming text with conventional TTS filters
before tagging it with intonation and TTS markup information 4 la JSAPL.. In practice, these
conversion rules can be either proprietary based on the service provider or the object of a
standard. These rules may comprise the following:

1. If the HTML page comprises images, the transcoder will discard the images and
generate the necessary meta information for presenting the image name and comment added (if
any) in the image tag for audibly presenting such information.

2. If the HTML page comprises scripts and/or applets that have no component which may
be presented audibly, the transcoder can generate meta- information for running special warning
messages. The warning has several purposes. For instance, the warning message can inform the
user that the HTML page contains a script or applet. Indeed in the absence of any speech output
provided by the script or applet, the user may never know about the script or applet (as opposed
to a GUI browser where an applet animation is immediately visible). In addition, the warning
message serves to inform the user that he/she may be missing some information/content
contained in the applet that is not capable into being transcoded into meaningful CUI
(conversational user interface) features- (this holds true for situations where the applet is written
in conventional GUI languages like Java, instead of being written with the conversational
foundation classes as part of CVM libraries (such as described in the above incorporated IBM
Docket No. Y0999-111P) to incorporate a CUI component.

In addition, meta-information ca be used to synchronize the GUI (visual) side of a multi- modal
browser with the speech side, such as described in provisional application U.S. Serial No.
60/128,081, filed April 7, 1999, entitled “Multi-Modal Shell”, which is commonly assigned and
incorporated herein by reference. According to that invention, even procedural components (like
applets and ActiveX components) can be transcoded into a GUI only or speech only (and

variation of this) based on the capabilities of the device/browser. This automatically solves the
-14-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

problem of the transcoding that was inherently coded by the application developer or the author
of the components (foundation classes) the application used to build his procedure.

3. With HTML pages comprising frames, the transcoder can generate meta information
for presenting the frames either by their name first or an index number. For instance, the audio
playback may be "there are 4 frames on this page: frame 1 presents" All the frame links and
functions created by HTML and CML can be activated as soon as the entire page is downloaded.
This will allow the frames to be used as a menu. Alternatively, a rule can be applied such that
only the main frame is presented, while the remaining frames are active but not read.

4. HTML pages can be filtered using TTS filters to produce JSAPI markup (or similar
variations).

5. Any hyperlinks in an HTML page can be converted into basefornis, and FSG (finite
state grammar). More specifically, hyperlinks and other commands and input that can be
followed by the user (by voice commands) may be added to an active list of
commands of the browser. This involves adding the vocabulary, the pronunciation
rules of these words when needed (i.e the baseforms) and modifying appropriately
the grammar or the NLU framework / context to support these new commands.

6. Text may be synthesized with different voices for different fonts. However, the
conversational browser can elect not to change the voice.

7. Hyperlinks can be presented with an audio icon (sound, or a different voice, or a
background music).

8. Each hyperlink can also be presented as a hidden menu, which may carry over to the
following pages, if indicated, for example, with a <!--CML tag-->.

9. Pull down menus and constrained menus can be automatically converted to dialog
with appropriate vocabulary and commands.

10. Free fields can activate NLU or dictation capabilities. In general, for general
purpose dictation, the speech recognition engine used can be the local default engine of the
conversational browser. Alternatively, for distributed systems (as discussed below), the content
provider can provide a suggested URL of a speech recognition engine if the browser does not
have the necessary capabilities or if the remote speech recognition engine is specifically tuned
for the NLU or dictation application. NLU dialogs with NLU form filling can be performed by

either passing the appropriate URL of the NLU engine as a CML comment tag in the HTML
-15-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

page or by directly providing CML pages instead of HTML pages (as discussed in further detail
below).

11. Multiple form based screen based transaction GUI dialogs can be directly converted
into menus of sequential dialogs if each menu is a stand-alone component (e.g., performing a
complete task such as obtaining an address or ordering an item)

The conversational browser 11 may also include a "barge-in" feature that allows the user
to utter an attention word or otherwise interrupt the output flow of a TTS presentation before
giving a new command or input (as explained in more detail below). This may be implemented
with buttons to press when a person speaks, whereby the button is pressed to talk or pressed to
start and/or press to stop.

Preferably, the CML documents generated by the transcoder (or the CML documents
directly provided by the content provider as discussed below) comprise any combination of the
following exemplary features and necessary tags to indicate:

1. Active links which are either spoken to, or hidden from, the user;

2. Links to conversational arguments (e.g., data files of vocabularies, grammars and
baseforms) that may be used to decode possible input given by the user for the page;

3. For distributed systems, links to speech recognition URLs, speaker recognition URLSs,
TTS URLs and/or NLU engine URLs, etc., which may be used to decode user inputs and/or
provide location(s) where to send a given page so as to generate the audio output. A local host
may be used to impose a local (default) engine. Therefore, if no URL is given, the browser
default engine is used. This may be set based on the browser, device, user preference or the
service provider (ISP or ASP) preferenée. This amounts to using any relevant meta-information
on the browser or on the server to set the browser default location;

4. URLSs to audio files to play back to the user (e.g. IVR prompts);

5. Confirmation request tags that impose user confirmation to some input before
following a given link;

6. DTMF code associated to a given link, as well as DTMF grammar for complex key
entry;

7. TTS markup (a la JSAPI) describing how text should be played back to a user;

8. Scripting language and procedural code (such as Java, Javascript, ActiveX, etc.) so as

to run conversational applications that direct their own dialog. Conversational programming
-16-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

languages and foundation classes (i.e. CVM libraries) can be used when the browser is built on
top of CVM (as discussed above). Otherwise, the code and services can be provided by the
browser, the underlying operating system or other applications or services that are available in
parallel with the browser.

9. Conversational capability tags, describing the browser minimum requirement for a
resource (e.g. a script, an image, etc). For example, non-audio enabled scripts should not be
downloaded or run on a speech only device, except if such scripts perform a meaningful task. In
addition, images should not be downloaded on a speech only browser (although they are relevant
on multimodal and GUI only browsers). When the presentation material is converted according
the capabilities of the browser (i.e., the underlying engines), the entity that performs the
conversion is a conversational proxy;

10. URLSs of plug-ins to use/download for some specific processing (e.g. an encryption
plug-in for speaker recognition stage or compression routine and front-end for a specific engine);
and/or

11. Meta-information tag(s) for bookmarking and subsequent return to the page (e.g. set
of keywords with their corresponding baseforms, grammars, etc.) which, when invoked, will
propose the page on the list of the possible link to follow. This is typically a feature related to
the categorization / meta-information service as provided by a CVM (as discussed in the
above-incorporated IBM Docket No. YO999-111P).

It is to be appreciated that a specific comment <!--CML proxy url=... --> tag can be
incorporated in an HTML page to specify a custom conversational proxy or transcoding to
perform a desired transcoding function (conversational proxy, functional transcoding or logical
transcoding). Alternatively, the conversion can be performed by a default transcoder (which is
part of a browser, a server or a distributed proxy). CML pages may also be customized by the
(proxy) transcoder based on the capabilities of the conversational browser. This functionality
can be performed differently than by using the URL tag as a proxy (which implies that the
browser connects to a proxy server and sends its HTTP requests through the proxy). Ifa CVM
is present, an underlying
handshake can occur to exchange meta-information about the conversational capabilities of the

engines available to CVM for the browser, and then based on that the proxy can automatically

-17-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

tailor the pages. Also an alternative consists of having in such case the browser forwarded to a
different page suitable for the engine capabilities.

In addition, <!--CML tag...--> can introduce direct CML tags into an HTML or XML
page, which will be directly processed by the conversational browser or conversational proxy.
Each of these CML features will be discussed in more detail below.

While CVM is multi-modal, for specific browser/client capabilities (e.g. only a IVR),
only the relevant functions are tagged. In the preferred embodiment, the browser typically
ignores unknown tag instead of forcing a consistency of the ML. Furthermore, for general
purpose systems, the browser should register its capabilities to the proxy or server, using a
cookie mechanism or filling a hidden form when connecting for on the first page of that content
provider or to the server gateway/portal. The cookie can carry the needed information to
identify or authenticate a user. It can also carry all the context information about the current
dialog status of the browser. This can also include the rest of the local context, history and/or
preference information to be sent or shared with the server upon connection to it. The capability
to send dialog information, context and other meta-information to a server via a cookie or other
registration protocol enables the server to immediately participate in the conversation. Other
registration mechanism may be implemented other than the cookie mechanism.

Conversational mark-up language rules can be added by the content provider to an
HTML file or substitute to an HTML file to take full advantage of the conversational browser.
This language should present tags to indicate the feature described in the previous section (as

described below).

Telephony Applications Using Conversational Browser

Referring now to Fig. 2, a block diagram illustrates a conversational system for providing
telephony services according to an embodiment of the present invention. The system 100
comprises an IVR 101 (or call center) which is accessible by a client device 102 over a telephone
network 104 (e.g., PSTN (public switched telephone network)). The IVR 101 is connected to
one or more content servers 105 over network 104 . In this embodiment, it is assumed that the
IVR 101 runs on a machine on the premises of a telephone company (telco). The IVR 101 may
be, for example, associated with a service provider of a banking application to provide ATM

telephony services. The client device 10 may be, for example, a conventional telephone, a
-18-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

mobile telephone, or a PC having a telephony card, to establish communication over the
telephone network 103 to the IVR 101. The network 104 may be the Internet, an intranet, a
LAN, ad hoc networks, etc. The content servers 105 may be HTTP servers, for example, which
comprise the content pages (HTML, CML, etc) fhat are associated with the IVR 101 ATM
services.

The IVR 101 comprises a conversational browser 106 which is illustrated as a stand
alone application running a CVM 106a. It is to be understood that the conversational browser
106 and CVM 106a of Fig. 2 are similar in architecture and functionality as the conversational
browser 11 and CVM 15 described above with respect to Fig. 1 (whereby the CVM can be
included within the browser or in an underlying operating system. The IVR system100 further
comprises an audio system 107 providing audio functions such as audio capture, acoustic fronf
end (acoustic processing) and an audio subsystem (e.g., soundcard). The IVR 101 further
comprises a DTMF processor 108 and conversational engines 109 (e.g., speech , NLU, TTS
engines, etc.).

When the client 102 is connected to the IVR 101, input commands such as speech
commands and DTMF signals are received by the acoustic front end of the audio system 107
and sent to the appropriate conversational engine 109 (e.g., speech engine) and DTMF processor
108, respectively. The processed speech/DTMF commands are then passed as calls to
appropriate functions in the conversational browser 106. The conversational browser 106, in
turn, generates appropriate requests (e..g, HTTP requests) to obtain desired information from
one or more of the content servers 105 over the network 104. The content server 105 retrieves
the appropriate information (or complétes the specified action) and then transmits results,
messages and/or menu options (using TCP/IP or similar protocols discussed above) in either
HTML (or other similar formats), CML, compressed audio, or a combination thereof (depending
on the manner in which the information is structured on the content server 105). As discussed
above, for HTML (and other structure documents), the conversational browser will transcode the
information (via a transcoder 13 discussed above) to generate a CML document for processing
(via the CML parser/processor 14 discussed above), whereas CML documents from the servers
105 can be directly processed (without transcoding). The conversational browser 106 can hook
to necessary conversational engines (via the CVM 106a) to establish a dialog with the user. As

discussed below, the conversational engines may be distributed over the network 104.
-19-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

The conversational browser can also decode compressed audio which transmitted from
the content server 105 using a standard network protocol (such as HTTP), and then play back
the audio to the user as telephone audio. (thereby allowing, e.g., IP telephony via the
conversational browser 106). Conversely, audio input can be captured via the audio capture
portion of the audio system 107 and transmitted (via the conversational browser 106) in
compressed or non-compressed format to a server over the network 104 for distributed
recognition and processing (such as described in the above incorporated patent application IBM
Docket No. Y0999-113P). As indicted above, the transmission of the compressed speech is
performed by the communication stack of the CVM 106a (such as discussed in YO999-111P, as
well as YO999-113P). In the absence of a CVM, other communication engines will perform the
handshake , communication and coding/decoding. It is to be understood that such
communication is not limited to HTTP or VolIP, it can involve any TCP/IP and related
protocols. For example, WAP, Bluetooth, Hopping communication protocols may be employed
with the present invention. When the audio is captured locally and shipped to a remote server,
this can be performed using a plug-in (native implementation) or for example with a java applet
or java program using audio and multimedia API to capture the user's input. In addition, the
conversational communication(coding) protocols may be used for transmitting compressed
speech using, for example, socket connections, RPC, RM], etc. (such as described in the above
incorporated patent applications IBM Docket Nos. YO999-111P and YO999-113P).

It is to be appreciated that the system described in Fig. 2 is only one possible
embodiment for providing IVR services. In another embodiment, for instance, the IVR can
behave solely as "soundcard" of the sysfem in the sense that it provides the audio capture
functionality to capture input speech from a user and then transmit the captured speech to a web
server having a conversational browser (similarly
it receives audio output from the server and transmits it to the IVR for play back to the user). In
this case, the IVR acts as a soundcard or an audio subsystem for the conversational browser.
Alternatively, the IVR may be providing the conversational engines (speech recognition engine,
TTS engine, speaker recognition engine etc...) as well as the audio capture and all the system
management, call balancing, load balancing functions etc. and only use the conversation browser

as a driver of the dialog. Alternatively, also the IVR can only performs the audio capture and the

220-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

load balancing/system management while having the conversational engines running on other
servers and the conversational browser running also on other servers. Eventually there is a
possibility that the IVR or call center is implemented with a farm of networks small workstations
(typically NT machines) each with a telephony card that will own the audio capture, the
conversational engines and the conversational browser associated to one or a very limited of
active ports (i.e active calls).

In the embodiment illustrated in Fig. 2, it is assumed that all the functions of playing
back prompts, synthesizing speech, generating dialog, understanding DTMF input or speech
input are performed at the level of the IVR 101. It is to be understood that in the absence of a
CVM 106a, it is the responsibility of the system integrator or IVR vendor to provide a concrete
implementation a system providing abstract layers similar to those provided by the CVM (as
discussed above). The actual implementation of the system will determine the actual
architecture of the IVR 101, but such architecture would be independent with respect to the
functionality and operation of the conversational browser 106.

Advantageously, the conversational browser 106 effectively changes the IVR 101 from
what is known in the art as the "all-time" connection to a packet switched network on the service
side. In addition, with the universal IVR architecture employing a conversational browser, it is
to be appreciated that the content pages are on the same HTTP servers and use the same
information access methods, sharing the legacy database access SW layer, etc. as web servers for
information access. In other words, an IVR can now be considered a special case of a HTTP
server with a conversational browser. Depending on the device, server and content/service
provider capabilities, the conversationail browser can be located on the client, on the server,
shared between the client and the server or distributed across the network.

Referring now to Fig. 3, a block diagram illustrates a conversational system for proving
telephony services according to another exemplary embodiment of the present invention. In this
example, the conversational browser 106 is located entirely on the client device. All the
processing performed by the IVR (as explained above with reference to Fig. 2) is now performed
locally on the client device and only the fetching of HTML documents, for example, is
performed through HTTP on the content servers 105. The content servers 105 can be HTTP
servers having applications executed thereon which are associated with IVR applications.

Alternatively, the system of Fig. 3 can simply be used for browsing the WWW.
21-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

For instance, as illustrated in Fig. 3, the client device can be a PC 60 (personal computer)
having a conversational browser 106 (and CVM 106a) and conventional telephony platform 61
(comprising, for example, a modem, soundboard, speakerphone and voicemail system) for
providing telephony services via the PC 60. The PC 60 can be used to establish a dial-up
connection via modem (through the conversational browser 106) over the telephone lines 102 to
the telco or any other remote access server (RAS) 70 (e.g., Internet Service Provider (ISP)) to
access content servers 105 over the network 40 (e.g., Internet, intranet). The PC 60 can also
access local/private resources or the Internet through remote connections via IP connection using
a dedicated line L. The PC 60 with the browser 106 can be used to provide conversational
browsing of, e.g., the WWW. As explained above, the conversational browser 106 performs,
e.g., the recognition of voice commands and the conversion of the voice messages from HTTP
server coming compressed over Internet. The conversational browser 106 can access any speech
enabled local applications 62 (calendar, etc) running on the PC 60 or local client.

The client device may be a mobile phone 80 (e.g., a GSM terminal) having suitable
architecture and CPU power to run the conversational browser 106 locally. The mobile
telephone 80 can download DSP code (or any other type of CPU programming language) to
interpret the Internet protocols for speech (Internet telephone) (or other protocols such as WAP)
as well as compression algorithms for speech purposes and any other application or speech
processing programs written, for example, in some derivation of Java. It is to be understood
that the DSP code may be native and preloaded on the phone (especially if an instantiation of

CVM 106a is present on the device). Furthermore, even higher Jevel mobile phone with screen

* can have higher level of locally running browser with text capabilities or even display

capabilities. In addition, the new telephones can be equipped with higher sampling rate A/D
converters. This would enable to take advantage of the cepstrum coefficient compression to
send the speech more effectively over the communication lines and increase the speech
recognition quality (for distributed Speech recognition such as explained in the
above-incorporated IBM Docket No. YO999-113P).

It is to be appreciated that the functions of the conversational browser 106 may be
partially located on a local client device and partially located on a remote server. For example,
the acoustic features can be computed by the client device (e.g., via the front end module 107,

Fig. 2)), compressed and then transmitted to the server at low bit rate for processing. In
22-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

addition, a portion of the browser processing can be done locally, e.g., playing back regular text
and getting simple input, and some processing can be performed on the server side, e.g.,
obtaining street addresses or complicated input or ascii input to forms. It is to be further
appreciated that the browser functions can be distributed across a client device, one or more
servers, and a network of resources. For instance, the browser can be located on the server, the
client or shared between the two, with conversational subsystems (e.g., speech recognition
engine, NLU engine, TTS) being located at other areas on the network. It is to be appreciated
that even the browsing functions can be shared between networked devices (servers, computers,
PDAs etc). Again, a CVM is a key element to "manage" such cases through communication
protocols similar to those described in the incorporated patent applications IBM Docket Nos.
Y0999-111P and YO0999-113P. In addition, for domain specific applications, a content
provider can directly provide its own TTS, NLU or speech recognition engine.

Advantageously, the deployment of the present invention can afford the preservation of
legacy applications that provide information pages in HTML format, by allowing such
information to be presented for pure conversational interaction (besides the capability to display
the pages or portions of the pages with multi-modal devices). Each of these concepts will now
be illustrated with reference to the illustrative embodiments of Figs. 4a and 4b.

Referring now to Fig. 4a, a block diagram illustrates a distributed system wherein the
resources for providing conversational browsing and IVR service are shared across one or more
networks. It is to be understood that the dotted circles in Fig. 4a represent, for example,
different locations of a given network or individual networks (or subnetworks) on an intranet or
the Internet, each comprising correspohding servers, hosts, which interact with one another via
standard network protocols (e.g., TCP/IP, HTTP). A PC 302 having a GUI terminal 300 and
conversational browser 302a can be used to provide a combination of GUI and conversational
browsing (it is to be understood that the device 302 can be any client device (other than a PC)
such as a phone which is connected the distributed network via a PSTN , or a bluetooth device
connected through bluetooth to a TCP/IP network, a setopbox connected through ISDN or cable
or satellite link to the distributed network). Alternatively, if the PC 302 can access a remote
server 303 having a conversational browser a via IP connection. Likewise a user can dial into an
IVR server/PC 302 via telephone 301 (e.g., regular, cellular, or smart phone) obtain perform

conversational browsing or IVR via the local browser 302a or via the remote server 303 and
23-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

conversational browser 303a. Alternatively, as explained above, the phone 301, PC/IVR server
302 and remote server 303 can share the functions of the conversational browser depending on
their respective architecture and processing power capabilities. In addition, the conversational
browser 303a can be shared across one or more servers 304 distributed across a given network or
subnetwork. Alternatively, each of the remote server 304 can support one or more specific
functions of the browser 304a. Depending on the respective conversational browser function,
the PC/IVR server 302 or remote severs 303, 304, each may hook (as necessary) via TCP/IP,
HTTP, API (for CVM instantiations using the communication protocols discussed above) to one
or more conversational subsystems 309 distributed over the network. In addition, any required
conversational arguments 308 can be accessed for use by the conversational browsers 302a, 303a
and/or 304a or conversational subsystems 309 over the network.

The exemplary system further includes a conversational proxy server 305 with transcoder
305a, which may be accessed over the network to convert HTML documents and other
applications to CML in circumstances where the conversational browsers 302a, 303a, 304a
cannot perform such conversion due to inadequate processing power of the device on which the
browser runs. In addition, the conversational proxy and transcoder 305a may be associated with
a content service provider to perform conversion of HTML documents in instances when the
conversational browsers 302a, 303a and/or 304a lack specific proprietary information about the
application to perform such conversion (which is known only by the content provider). As
shown in Fig. 4a, the HTML documents are generated via web server application of the content
provider using a traditional transcoder 306 that interacts with database 307 via SQL or a
proprietary API to convert proprietary ihformation into HTML form. It is to be appreciated that
the communication between elements 306 and 305/305a can involve the transfer of XML or
meta-information to assist the conversational transcoding/proxy task. In addition, structure
skeletons can be used as described in the above-incorporated application Y0999-114.

Fig. 4a illustrates a voice portal, which is a CML server where transactions allow the
search of HTML or CML pages or web sites, which is similar to today’s web portals. The voice
portal can retrieve desired sites and pages. These CML pages are directly presented to the
conversational browser. Pages retrieved in another presentation language (e.g., HTML) are
transcoded before being transmitted to the browser. The main difference between a voice and

web portal (i.e., HTML or WML (wireless markup language) based) is that the portal downloads
04-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

the requested pages and transcodes them appropriately before sending them to the browser. For
client devices (or browsers) having transcoders, the pages can be send to the browser in another
format (HTML and Vor HTML-based structure skeleton) and transcoded on the fly by the
browser into CML as an intermediate internal language. The voice portal service can be
subscription based, paid by the carrier/wireless provider, paid by the referred content provider
(on a hit basis), on complete profitable transaction basis, on a percentage of profit from referred
business, on a subscription basis to have the service present in the search engine, or the service
ranking high as result of the search engine, or for quality CML pages (hand prepared or
reviewed) as compared to the automated approach.

Referring now to Fig. 4b, a diagram illustrates an exemplary embodiment of the present
invention for providing conversational browsing or IVR services in conjunction with legacy
corporate software applications. The system of Fig. 4b is similar to the system described above
(Fig. 4a) except that Fig. 4b specifically illustrates conversational browsing of a conventional
3-tier (distributed) corporate application on a given corporate network. The 3-tier application
includes a front end terminal/presentation server 310 (Tier 1) which contains the programming
to create and present HTML-based documents, a middle tier business logic server 311 or
application server (which contains the business applications and serves client requests from
workstations in a LAN, for example), and a back-end or third tier 312, 313, which comprises the
legacy database and transaction management (data control) applications. As shown,
conventional presentation is accomplished via GUI 314, telephone (IVR) 315 and 3270 type
screen dialogs (3270 terminal are types of terminals that are typically supported by mainframes
and CISC systems, e.g., the traditional greenish terminals that may be found at ATMs which are
mostly ascii character only-based screen). Straightforward HTML dialog pages such as form
filling (HTML or CGI) or ATM dialog (and other 3270 type of screen dialogs) or other dummy
terminals (CT 100, Palm Pilot screen, etc.) can be readily converted to CML via transcoder 305a
of proxy server 305, for example, since the business logic of such transactions is typically driven
by simple dialog so that limited amount of information or choices is presented at once to the
user. The choice or menu can also be conveyed through skeletons as described in the above
incorporated IBM Docket No. YO0999-114P. In addition, transcoding can be readily extended to
other proprietary APIs or screen maps (e.g., maps of the 3270 screens or other screens into an

HTML page usually performed by mapping programs called screen scrapers). In particular,
25-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

since programs currently exist for transcoding screen maps to HTML pages, and screen maps are
limited to simple dialogs driving the business logic, the conversion of the resulting HTML pages
is a trivial case of the conversational proxy.

Advantageously, each of the above-described exemplary system architectures
advantageously allow universal access via pure speech interface (conversational browser), pure
GUI, and a combination of speech and GUI to the same bank of transaction and information
services through a same protocol without requiring any redesign of the content currently

provided over HTML and other XML/HTTP protocol.

Conversational Applications Employing CML

The following discussion of exemplary embodiments describe network- based
conversational applications using CML (conversational markup language) in accordance with
the present invention. The term "conversational application" used herein refers to an application
that interacts with the user via voice input/output. The term "network-based conversational
application" used herein refers to one in which the elements of the conversion that define spoken
output and input, i.e., pages of CML, may be obtained over a network or locally. Indeed, just as
GUI applications can be built using a set of interlinked pages written using HTML markup
language, conversational systems can be built using a set of interlinked pages written in
conversational markup language - CML. Moreover, just as HTML provides a set of mechanisms
for translating GUIT actions into application actions such as visiting other pages or
communicating with a server, CML similarly can be implemented to provide mechanisms for
translating spoken inputs into applicatidn actions. The term application in this context should be
understood in the same broad sense in which a set of related HTML pages containing text, links,
and forms, together with the code on a server which processes the forms (e.g., servlets or CGI
scripts), constitute an application. In addition, similar to the manner in which procedures (such
as conversational foundation classes or other dialog components) can also be loaded via Java or
ActiveX components, conversational applets and foundation classes can be loaded /downloaded
to execute procedural conversational actions (which is a feature of CVM).

Referring now to Fig. 5, a diagram illustrates an exemplary network-based conversational
system comprising various classes of conversational applications enabled by CML according to

the present invention. The illustrative system comprises a client device 500 having a
26-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

conversational browser 501. The client device 500 may be, for example, a desktop PC, a PDA,
an automobile computer, a smart telephone, or a "dumb" telephone (the term "dumb" telephone
refers to herein as a device that functions as a microphone at the end of a long cord and needs to
be connected to a browser at the other end of the phone line). The client device 500 may also
comprise one or more speech- enabled local applications 502 running on the client 500 using
CML to communicate with the conversational browser 501. For example, the local application
may be a car navigation application in which a "Speech Navigation Application" interacts with
computer mapping software and a GPS (Global Positioning System) device to provide
conversational driving directions. Similarly, other applications and services provided locally by
the underlying conventional OS, or other applications can be used to provide services (such as
disambiguation, context access, etc.) and dialog modules to the browser when there is no
underlying CVM to provide such services.

The client device 500 can access any one of a plurality of server systems S1, S2, and S3
over network 503 (e.g., the Internet) using a standard network protocol (e.g., HTTP, TCP/IP) to
transmit CML pages to the client device 500, which are processed by the conversational browser
501 to provide a conversational Ul to the user of the device 500. For example, the client device
500 can connect to server S1 to access existing HTML information via a transcoding proxy
which, as described above, is capable of interpreting HTML, extracting relevant information,
and generating CML information. In addition, the client device 500 can connect to a specialized
web server application (S2) such as Lotus Domino server to access Notes data (e.g., Notes
e-mail) via a CGI application. In particular, the Domino server can be configured to generating
CML and transmit the CML using HTTP. In another example, the client device 500 can connect
to a web server application (S3), using a CGI application or Java Servlet to access an legacy
database of an enterprise, wherein the web application generates and transmits the information in
CML.

This lead to another interesting application example: a CML based universal messaging
system. In particular, the same way that conventional and currently available mail and messaging
systems can be provided with HTML by ISP, ASP (Application service providers) and web
portals, a voice portal or voice web service provider can use CML to offer e-mail access and
processing and universal messaging. Universal messaging, means that you can now access via

voice different messaging services and program paging, e-mail, voicemail and call processing by
27

10

15

20

25

30

WO 00/21232 PCT/US99/23008

voice. Because the interface is now built in CML through the conversational browser, the user
can process his/her messages automatically. Similarly call transfer and processing can be seen as
a combination of a CML interface announcing the caller information and possibly call topics and
offering a menu of options. The user can select actions (transfer, store, take the call). Each of
these actions are processed as procedural call to the call processing unit and

the call is accordingly processed (e.g. forwarded or transferred to the user). With a pure
speech conversational browser such as shown in Fig. 5, speech and audio are the only output
provided to the user. When a user desires, a page is downloaded from the service provider (in
CML). The CML is used to describe the conversational Ul to be presented to the user. Using
the TTS markup information, the conversational browser will read the page to the user and listen
for commands from the user to be decoded by the speech recognizer (using possibly clues from
the speech recognition portion of the CML page) to follow links, fill forms, or command the
browser. For non-embedded applications, the conversational browser preferably utilizes a large
vocabulary continuous speech recognition system (e.g., IBM Via Voice) and a "Free text
rule-based TTS using JSAPI (java speech) - including dynamic grammar compilation and NL
process for example as described in the reference by K.A. Kishore, et al. entitled “Free-flow
dialog Management Using Forms,” Proc Eurospeech 1999, Budapest Hungary, September 1999
and Davies et al., “The IBM Conversational Telephony System For Financial Applications,”
Proc. Eurospeech 99, Budapest Hungary, September 1999>

Advantageously, the above capabilities such as server-based CGI scripts and Java
Servlets, and local plugins, can provide mechanisms for application-specific code to participate
in the conversational application. The interface between the application code and the
conversational browser 501 can take the form of URLSs for requests and markup data stream
(HTML or CML) or sets of attribute value n-uples. Note that instead of URL, other addressing
schemes (e.g., sockets and ports) to access local or distributed services may be used.

It is to be appreciated that each of the preceding IVR and conversational browsing
applications could alternatively be built with application code with the applications
communicating via API and remote calls (i.e., not implementing a conversational browser and
CML). In particular, such applications can be written directly to a speech API such as the Java
Speech API (JSAPI). However, for distributed applications, the currently available engine APIs

(SAPI, JSAPI) have not been designed with network considerations in mind. Therefore,
8-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

networked/distributed speech applications directly written on top of the conversational engine
APIs will always require re-implementation of the distributed functionalities. It is to be
appreciated, however, for applications written on top of the CVM system (IBM Docket No.
Y0999- 111P), these limitations of the current engine APIs are virtually eliminated through the
conversational application APIs that are communicated via the communication stack which
hides most of the complexity of the engine APIs through the services and behaviors offered by
the CVM shell. Indeed, complex dialog tasks can be efficiently performed though procedural
implementations. Such procedures allow simple use of macros for such complex tasks. In
addition, procedures are inherently expected to be more efficient than interpreted declarative
language such as XML. Depending on the context of use (the importance of the efficiency vs.
programming, portability across platforms, etc) , however, both alternative (declarative and
procedural) may be used.

CML and the conversational browser, on the other hand, advantageously allow
distributed conversational systems to be implemented which take advantage of legacy
applications that have already been develop using HTML, for example. Unlike the currently
available speech APIs, CML can readily support networked conversational applications. The
conversational browser can interpret streams of CML originating from multiple locations thereby
providing a user with the same kind of seamless experience provided by a desktop windowing
system or by a visual browser. For example, while completing an airline ticket purchase the user
can temporarily suspend the transaction and interact with a banking application on a different
server to check an account balance. This is related to the concept noted above of having an
appropriate mechanism to keep and trénsmit/restore the context of a dialog with the browser and
possibly the server side processing. Furthermore, CML provides a higher-level tool that
simplifies the construction of conversational applications (similar to the manner in which HTML
simplifies the building of visual applications). A conversational markup language also reduces
the amount of expertise in speech required. In addition, as stated above, building distributed
applications on heterogenous platforms using an currently available speech APIs is difficult.

The large-scale deployment of distributed GUI applications on heterogeneous platforms via the
WWW demonstrates the feasibility of a CML data stream approach.
Referring to Fig. 6, a block diagram illustrates a general distributed conversational

browsing system using CML in accordance with an embodiment of the present invention. In
-20.

10

15

20

25

30

WO 00/21232 PCT/US99/23008

general, a distributed conversational browsing system comprises an information server 600, a
presentation server 601, a speech server 602, speech models 603 and a conversational browser
604. The information server 600 represents, for example, enterprise databases, newswire feeds
and/or WWW servers. The information server 600 provides data in an "information format"
which represents application-specific information in a device-independent manner. Examples of
this data format include APIs for data access (e.g., Notes DB API, SQL) and application-specific
data streams (news wire feeds, information marked up with XML content tags).

The presentation server 601 retrieves information from the information server 600 using
an API or a protocol defined by the information server 600. The presentation server 601 then
transcodes the received "information format" to a "presentation format" for presentation to a
user. The "presentation format" represents information in a device-specific,
application-independent manner for presentation to a user which, in accordance with the present
invention, is CML (as described in further detail below). Conventional "presentation formats"
include, for example, APIs such as the Windows GUI, API and data streams such as HTML,
HDML (Handheld-device Markup Language) and WAP (wireless application protocol). The
presentation server 601 can be, for example, an HTML server, CGI scripts and Java Servlets,
Domino as an HTML server, and the Notes Client, which are configured for transcoding the
information received from information server 600 into CML. The CML generated by the
presentation server 601 is used to describe the conversational Ul to be presented to the user via a
conversational browser 604 and provides the mechanisms for translating spoken inputs into
application actions.

The speech server 602 comprisés the engines which are responsible for speech
recognition and parsing and other conversational engines. The speech server 602 addresses the
problem unique to speech: the speech recognition process may require large application-specific
data sets (i.e., speech models 603) which it is not feasible to transmit to the client. This implies
that the speech recognition process must be carried out where the language models reside near
the presentation server 601 (in a transmission bandwidth sense). A standard network protocol
such as HTTP, XML, VoIP, WAP protocol, as well as the conversational speech coding
protocols describe in the above-incorporated YO999- 113P application may be used for

transmitting audio from the conversational browser 604 to the speech server 602 and returning

-30-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

the parsed results, as well as transmitting audio, such as recorded or synthesized speech, from
the speech server 602 to the conversational browser 604.

Referring now to Fig. 7, a diagram illustrates an exemplary distributed conversational
system using CML in accordance with an embodiment of the present invention. More
specifically, the exemplary embodiment illustrates a speech only client device 606 having a
conversational browser 604 and microphone/speaker 605. The client device 606 represents, for
example, a speech-only PDA (Personal Digital Assistant) or PVA (Personal Vehicle Assistant)
client device connected, for example, by a wireless link to a network 607 (e.g., the Internet).

The information server 600, presentation server 601 and speech server 602 (with speech models
603) together provide an application (e.g., weather information) to the client device using CML.
The dotted line around the presentation server 601, speech server 602 and speech models 603
indicates that these elements are tightly coupled, in that the speech server 602 has speech models
specific to the application. In addition, the presentation server provides a GUI to other browsers
608 using HTML. It is to be understood that the conversational browser 604 may access other
conversational applications over the network 607.

Referring now to Fig. 8, a diagram illustrates another exemplary distributed
conversational system wherein the client device 606 is a speech and GUI client. The client
device 606 comprises a display screen 609, a microphone speaker 605 and a conversational +
GUI browser 604a for presenting information to a user using speech, GUI and a combination
thereof. In this embodiment, the presentation server 601 can provide both HTML and CML
documents depending the request by the client 606. In addition, this system can be implemented
by embedding CML markup can be embedded in HTML markup and extending a standard
HTML browser (using a supplied browser extension mechanism) to run the conversational
browser alongside the standard browser to provide a conversational interface alongside the GUI
interface. A system and method for integrating and coordinating between A GUI and speech Ul
is explained in the provisional application U.S. Serial No. 60/128,081, filed April 7, 1999,
entitled “Multi- Modal Shell”, which is commonly assigned and incorporated herein by reference

Referring now to Fig. 9, another distributed conversational system using distributed
telephony is shown. In this exemplary embodiment, a user can dial into a telephony platform
610 of the client 606 (such as a PC) to be connected to a conversational browser 604, which

gives the user access to a selection of speech applications via the network 607 (e.g., Internet).
31-

10

15

20

25

WO 00/21232 PCT/US99/23008

Alternatively, a user can connect to the speech server via dial in or directly via another existing
connection (LAN, Bluetooth,, DSL etc...). In this case, the conversational coding algorithm
presented earlier can be used to ship the data to the browser. Note that the client "device" is
now essentially a telephone handset coupled to the conversational browser 604 running on the
telephony platform 610.

Next, in the exemplary embodiment of Fig. 10, the user will dial into a given phone
number to access one application. The system is a simplified version of the distributed
telephony system of Fig. 9, wherein the conversational browser 604 and application are the
same. In this embodiment, however, the conversational browser 604 is not connected to a
network but can access only the specific application. The dotted line 611 in this embodiment
emphasizes that the presentation server 601, the speech server 602 (and models 603), the
conversational browser 604, and the telephony platform 610 are all operated as an integrated
service. This is essentially a traditional telephony application, with the conversational browser

604 serving as dialog engine.

Conversational Markup Language: CML

This following describes a preferred embodiment CML which may be employed in the
conversational browsing applications described above. In a preferred embodiment, CML is an
application of the Extensible Markup Language (XML). XML is an emerging and popular web
standard for HTML-style markup languages, defined by W3C, the same body that maintains the
HTML standard. XML is essentially a generalization of HTML which borrows a number of
design points from HTML. More generiéally, XML is a declarative universal format for
structured documents and data. Advantageously, the use of XML as a basis for CML allows
CML to be readily embedded in HTML or combined with HTML to create multi-modal
applications (e.g., speech and GUI). It also allows JSML (Java Synthesis Markup Language),
another XML application, to be embedded in CML and used as the speech synthesis markup
language for CML. Advantageously, the standardization and popularity of XML make it
probable that authoring tools for creating CML pages, as well as programming tools for the
server code to generating CML, will become standard, therefore providing open architecture for

the conversational browsing systems described herein.

-32-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

XML comprises markup symbols to describe the contents of a page or file. The XML
entities comprises pairs of tags of the form:

<tag attr]="val2" attr2="val2"> arbitrary text</tag>.

The extensibility of XML arises from the fact that the markup symbols of the XML application
(and CML in this case) are unlimited and self-defining (i.e., the programmer is free to define
his/her own tag names, attribute names and value sets).

In one embodiment of the present invention, CML is written in JAVA and a
conversational browser utilizes a "what you hear is what you can say" style of speech input for
purposes of local speech recognition and parsing. In other embodiments, the CML is extended
for NLU speech input, and distributed client-server speech applications, wherein digitized
speech is sent from the client via HTTP, for example, to a speech server and the parsed results
are returned using CML (as noted above). Again, besides using HTTP or other conventional
protocols, it is to be understood that speech can be transmitted to the speech server via the
conversational communication protocols as discussed in the above-incorporated patent
applications IBM Docket Nos. YO999-111P and YO999-113P. These embodiments will be
discussed in detail below.

In general, CML is preferably defined as a set of tags, wherein the primary CML
elements are <page>, <body>, <menu>, and <form>. In general, a "page" element groups
other CML elements, and serves as the top-level element for a CML document. A <body>
element specifies output to be spoken by the conversational browser. A <menu> element
presents the user with a list of choices, and associates with each choice with a target, e.g., a
URL, identifying a CML element to visit if the user selects that choice. A <form> elements
allows the user to provide one or more pieces of information, where the content of each piece of
information may be described by a grammar. The <form> element may also specify a URL to
visit when the user has completed the form. The phrase "visiting an element" (or "visiting a
CML element") refers to an action taken by the conversational browser, typically in response to a
spoken user input (although it may also be in response to some other kind of user input or some
other kind of asynchronous event). Visiting a CML element will cause the conversational
browser to produce a spoken output, depending on the type and content of the CML element
visited. For example, a <body> element is read, the choices of a <menu> element are listed,

and so on. Visiting an element can also affect the set of spoken response that the browser will
-33-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

accept from the user, as described for each element in the following sections and as discussed
more fully in the section on dialog issues.

The following describes in further detail the tags (elements) and attributes that comprise
a CML document or file according to a preferred embodiment.

Page Elements: A <page> element is the top-level CML document element that

comprises one or more related nested CML pages or units (a unit is a <body>, <menu>, or
<form> element) and is preferably structured as follows:

<page ttI="seconds"> (bodies, menus, and/or forms units) or nested pages </page>

The attribute ttl ("time-to-live") specifies the number of seconds that the CML page may be
stored in a cache, wherein a value of 0 prevents caching of the page. A <page> element per se
does not contribute (no spoken output or input) to the conversation between the conversational
browser application and the user, but serves as a container to group other CML elements (e.g.,
menu, body, and form elements). A <page> element may also contain nested pages. The
function of the <page> element as a (nested) container will be explained later. Visiting a
<page> element is equivalent to visiting the first unit in the page. The nested page can also
include conversational dialog objects or foundation classes. This can be implemented
procedurally or with some equivalent CML pages. When a page is reloaded, a cookie or
appropriate protocol/service/API is provided to reload the previous context.

Menu Elements: A <menu> element serves a function for CML which is analogous to

the function that hypertext link and menu serves for HTML in that it presents the user with a set
of choices. In general, a <menu> element specifies an introductory message and a menu of
prompts to be spoken when the entity is visited, and a corresponding set of possible responses,
and for each choice a URL, for example, to visit if the user selects that choice:
<menu>
introductory message text
<choice target="URLI">prompt text 1</choice>
<choice target="URL2">prompt text 2</choice>
</menu>
When a <menu> element is visited, its title text (introductory text) is spoken followed by the

prompt text of any contained <choice> elements. A grammar for matching the title text of the

-34-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

<menu> may be activated when the <menu> is loaded, and remains active thereafter. When the
user utters a word or phrase which matches the title text of a <menu> element, that <menu>
element is visited.

Each <choice> has a target URL that the conversational browser visits if the user selects
that choice:

<choice target="target">prompt text</choice>

A target may be any valid URL (including relative URLs and URLs specifying HTTP:,
file:, FTP:, and local: protocols (see below for a description of the local: protocol) or a URL plus
a reference (using the standard URL#reference syntax.). Any other addresses, schemes, and
protocols may be employed. The reference (i.e., the part of a URL after the #) is a string that
names the unit within the document that has a name attribute whose value is the reference string.
A URL without a reference is considered to refer to the first unit within the document. A
relative URL is resolved relative to the URL of the containing document.

Furthermore, a “target” may be another address such as a socket address (IP address and
port ID). In such case, other IP protocols such as the conversational protocols described in the
above-incorporated patent applications IBM Docket No. Y0999-111P and Y0999-113Pcan be
implemented. In situations where a specific non-conventional protocol is used, an additional
argument can be used to activate communication such as the following:

<choice target="target" Protocol="protocolidentifier"> </choice>
This provides a mechanism to ship the context and meta-information. It also provides a way to
provide system calls to CVM services or, in the absence of CVM, to present calls to equivalent
services implemented as applications on top of the underlying OS, or within the browser
platform itself. If the browser supports the protocol, the identifier is enough to activate
appropriate communication. This is especially applicable for a conversational browser built on
top
of CVM (as described above and in IBM Docket No. Y0999-111P). In other cases, the protocol
identifier can also point to a URL (plug-in or applet) to download so as to initiate the
communication. It can also directly point to a local executable on the client platform supporting
the conversational browser. Typical examples are “choices” that require distributed recognition
(e.g., where the recognition is performed on a remote networked server) (as described in IBM

Docket No. Y0999-113P). Other examples include choices that download procedural functions
-35-

10

15

20

25

WO 00/21232 PCT/US99/23008

(or local functions) which implement the dialog. Again these conversational procedures are
built on top of CVM. It is to be understood that these concepts are valid for all “targets” and not
just “choice.”

The "prompt text" of a <choice> element is spoken when the containing <menu> is
visited. A grammar for matching the prompt text of a <choice> element is activated when the
containing <menu> is loaded, and remains active thereafter. When the user utters a word or
phrase that matches the prompt text of a <choice> element, the specified target is visited. For
instance, the user may select one of those choices by saying an attention word or phrase
("computer", "go to" or "select"), followed by one or more significant words from the choice.

The following example will illustrate the menu element:

<menu>
Please choose from the main menu.
<choice target="file:e-mail">E-mail.</choice>
<choice target="file:news">News.</choice>
<choice target="file:nav">Navigation.</choice>
<choice target="file:mcform">Food Ordering.</choice>
<choice target="file.weather">Weather information.</choice>
<choice target="file:tutorial">Tutorial.</choice>
</menu>
The main menu may serve as the top-level menu which is heard first when the user
initiates a session with a conversational browser. More specifically, when the conversational
browser visits this menu it produces the spoken output "Please choose from the main menu"
followed by a list of choices: "E-mail. News. Navigation. Food Ordering. Weather Information.
Tutorial." Once the conversational browser has loaded this menu, the user may activate (select)
any of the choices (during the remainder of the session) by speaking a command. The allowable
commands will depend on the input technology being used. In one embodiment which
implements a "what you hear is what you can say" approach, the allowable commands may
comprise attention phrases (such as "go to" or "select") followed by a subsequence of the words

of the prompt text, e.g., "go to e-mail" and "select news."
promp g

-36-

10

15

20

25

WO 00/21232 PCT/US99/23008

After the user has uttered a selection, the conversational browser will visit the target
address (e.g., URL, socket address) specified by the target attribute associated with the given
choice (e.g., the contents of a target URL are fetched and interpreted as a CML entity, and that
entity is visited). Note that in the above example menu, all of the target URLs are relative to the
URL of the containing page, which in this case is a file: URL that refers to the demo\main file -
for example, the target "file:news" is interpreted as a file called "news" in the same directory as
the file that contains the main menu.

In summary, the user may speak a phrase that matches the title text of a <menu> element
to visit the <menu> element. The user may speak a phrase that matches the text of a <choice>
element to visit the target specified by the element. A user's phrase matches the text of a
<menu> or <choice> element if it comprises an attention phrase followed by one or more words
from the text in the same sequence that they appear in the text (but not necessarily contiguously).

An attention phrase is a phrase such as "go to" that indicates that a command follows.

Body Elements: A <body> element specifies some text to be converted to spoken

output when the entity is visited:
<body name="name" next="target"> text </body>:

When a <body> element is visited, its text is spoken, and then the target specified by the next
parameter is visited. The CML <bedy> entity with JSML markup serves a function for speech
which is analogous to the function that an HTML body entity with presentation-oriented markup
(such as headings, lists, etc.) provides for GUI. For information-retrieval applications (such as
e-mail and news), a <body> element will typically contain information that the user is seeking.
A body element is preferably marked up using Java Synthesis Markup Language (JSML) so as to

obtain accurate and efficient text-to-speech synthesis:
<body>Text to be spoken, marked up using <EMP>JSML</EMP></body>

The "next" attribute of the <body> element has a value that is a target address (e.g.,

URL) which specifies another CML element (such as a <menu> element or a <form> element)
37-

10

15

20

25

WO 00/21232 PCT/US99/23008

that is to be visited after the body has been spoken to the user. The following example will
illustrate the function and operation of the <body> element and the use of JSML markup and the

"next" attribute.

<body next="#menul">
<JSML>
Welcome to the IBM ViaVoice<EMP>Speech Browser</EMP>. This tutorial will
familiarize you with the spoken commands that you can use to control your
speech browser.
</JSML>
<body>

The body is formatted using JSML to place emphasis on the term "Speech Browser."
The "next" attribute in this case is a relative URL (or target address) that instructs the browser to
visit the element with the name "menul" on the current page.

As described above, in one embodiment of CML, the <body> and <menu> elements
provide spoken presentation and navigation of static information using spoken menus. As with
HTML, this level of functionality is sufficient for static information that can be organized as a
set of interlinked CML pages. A much richer set of applications is possible, however, if the user
can supply to the application information taken from large sets, such as search words, dollar
amounts, dates, stock names, etc. Such sets of possible inputs are too large to be presented in a
menu, so another mechanism for collecting the input at the client is required. Furthermore, a
mechanism may be used to compute the application response "on-the-fly" at the presentation
server rather than being stored as with menu and body elements. This can be done, for example,
via CGI (Common Gate Interface) programs and servlet programs running on the server, or any
other backend logic. In cases where a complex logic is hidden behind the transaction or the
server application, such server side on-the-fly modification of the response is the only way to
proceed (except of course when information about the logic is transmitted using the
conversational skeleton methods described in the above incorporated IBM Docket No.
Y0999-114 or if the information is transmitted t the client: structure skeleton to disambiguate

parts of the dialog).

-38-

10

15

20

25

WO 00/21232 PCT/US99/23008

Collecting such user input may also be accomplished in CML using a <form> elements.

Form Elements: A <form> element collects one or more pieces of information, or

fields, from the user. A <form> element is typically used for collecting information, such as
names, addresses, telephone numbers, and any other types of information that would be

impractical to present as a list of choices in a menu, and has the general form:

<form action="URL">
introductory message ftext
<field name="name 1" rule="JSGF">prompt text 1</field>

<field name="name 2" rule="JSGF">prompt text 2</field>

</form>

An action is a target URL used in a <form>. The values of the <field>s of the form are
appended to the action as attribute-value pairs, in the same manner as in HTML. A form groups
together a set of user inputs that together are sufficient to warrant going back to a presentation
server (which may in turn send a request to an information server) to obtain an application
response. When a <form> element is visited, its title text (introductory text) is spoken, and the
user is then prompted one by one for the values of any contained <field> elements. A grammar
for matching the title text of the <form> element is activated when the <form> is loaded, and
remains active thereafter. The <field> tag has the general form:

<field name="name" rule="ruleName" value="value">prompt text</field>
If a value has not already been supplied (either by the user or by the value parameter of the
<field> tag) and if the prompt text is not empty, the user is prompted for the value of a field by
speaking the specified prompt text. Acceptable responses for filling a field will depend on the
input technology being used. For the "what you hear is what you can say" approach, acceptable
responses includes a subsequence of the words of the prompt text followed by a phrase matching
a specified grammar (which is preferably in Java Speech Grammar Format (JSGF)) that provides
the set of possible values for the field. The portion of the response matching the grammar
becomes the value of the field. As discussed below, this can be extended to NLU input. If the

user's response fills a field, the user is then prompted for the next unfilled field, and so on.

-39.

10

15

20

25

30

WO 00/21232 PCT/US99/23008

When all the field values have been specified, the action target is visited using, for example, an
HTTP GET method (i.e., the results are transmitted to the presentation server), an a page of
CML is returned containing an entity which is then visited. It is to be appreciated that the user
may fill in the value of any field either when prompted or at any point as long as the form is still
in scope by speaking a portion of the prompt followed by a legal value of the field (i.e., by
speaking the prompt text followed by a phrase matching the ruleName specified by the rule
parameter, wherein the "ruleName" is a fully qualified JSGF rule name).

The following example will illustrate the function and operation of a form element.
<form action="HTTP://localhost:8080/serviet/McServiet/>

Please complete the order form.

<field name="sandwich"rule="mcgrammar.sandwich">Sandwich is?</field>
<field name="drink"rule="mcgrammar.drink">Drink is?</field>
<form> ‘

When the above form is visited, the conversational browser outputs the introduction:
"Please complete the order form." The user is then prompted "Sandwich is?". The user may
then respond "Sandwich is chicken sandwich" or "Sandwich is hamburger" based on the
following: The specified JSGF rule, "<mcgrammar.sandwich>", is found in JSGF grammar
"mcgrammar", which reads

grammar mcgrammar;

public <sandwich> = hamburger chicken sandwich;

public <drink> = coke pepst;

Note that the user may also fill in this or any field by saying "sandwich is sandwich" or
"drink is drink" before being prompted for the value, and for as long as the sandwich form
remains active. In this case, the browser selects a value for the field and then prompts the user
one by one for the unfilled fields. This is a dialog feature known as "mixed initiative." This
means that the user may take the initiative by saying "sandwich is sandwich," or the system may
take the initiative by prompting the user for sandwich because, for example, the user has
activated a menu choice that leads to a food-ordering form.

CML forms are similar to HTML forms, and in one embodiment, CML uses a
mechanism similar to HTML to transmit the field values to the server: when the user completes

the form, specifying a value for each field, the browser appends the name=value pairs for each
-40-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

field to the specified form action URL, and the resulting URL is requested from the server via
HTTP. Preferably, the form action URL incorporates the name of an application-specific
function, such as a CGI script or a Java Servlet, which the server will call on to process the
name=value pairs and return a response.

As with the case of a graphical web browser wherein the response to a completed form
will be a page of HTML to be presented to the user on a display, with the conversational
browser, the response will be a page of CML to be presented to the user using speech (by
visiting the specified body, menu, or form entity). In either case, the new page will affect the

interpretation of subsequent input actions.

Dialog Issues: One consideration in the design of a spoken dialog application is the
ability to allow a user to readily determine what he/she can say at any point in the
"conversation." Ideally, the application would accept any reasonable spoken input from the user
(NLU), which is sometimes difficult to implement. Instead, an application can be designed to
accept a limited set of inputs. This design, however, presents the user with the burdensome task
of having to learn and remember a "language" comprising an arbitrary subset of his/her natural
spoken language.

The CML browser advantageously mitigates this problem by implementing various
approaches. One approach is referred to as the “what you hear is what you can say" approach, in
which (as explained above) acceptable spoken inputs always echo the spoken prompts that are
presented to the user. Each time a CML element is visited, the set of user inputs that the
browser will accept is changed. For example, after the user visits a <menu> or <form>, the
browser will accept responses appropriate to that menu or form. Following the "what you hear is
what you can say " approach, the inputs accepted are in general echoes of the menu or form
prompts, or some abbreviated version of the prompt.

For example, if the user hears: "Choose from the main menu: E-mail. Stock Quotes," the
user can say: "Go to [the] main menu"; "Go to stock quotes"; and/or "Go to e-mail." In addition,
if the user hears "You have 2 messages: New message 1 from Bill; Smith about Golf tee time.
Message 2 from Jane Jones about Project meeting", the user can say: "Go to new messages"; "Go
to new message 1"; "Go to message 2"; "Go to message from Bill"; "Go to message about tee

time"; and/or "Go to message about project." Moreover, if the user hears: " Stock quotations.
-41-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

Stock symbol is?", the user can say: "Go to stock quotations"; "Go to quotations"”; "Stock symbol
is I B M"; "Symbol is | B M" and/or "Stock is I B M."

As described above, the first two examples above may be accomplished in CML using a
<menu> element that contains some title text ("Choose from the main menu") and a number of
<choice> elements containing some prompt text ("E-mail", "Stock quotes"). The last example
may be accomplished using a <form> element that contains some title text ("Stock quotations")
and one <field> element containing some prompt text ("Stock symbol is?"). Accordingly, the
title text of the <menu> or <form> and the prompt text of the <choice> or <field> define what
the user may say.

Other options for implementing the dialog may be used. For instance, it is possible to
pre-load answers to some of the forms. Namely, some scripting elements can be introduced to
pre-program via procedures or script based on the answers or the selection from the user (i.e.
variables are, for example, the fields of the prompts). Of course, this scripting can use/refer to a
variable assigned by other event and procedures local or distributed (e.g. date, result from a
query to the presentation server, etc...). It implies catching events, adding logical operations,
loops and redirection (e.g. go to) statements. For situations using multiple forms, the capability
to catch events is needed. Such events in the context of CVM could catch events also coming
from applets and other conversational procedures, or scripts. Scripting can be done in a manner
similar to Javascript or ECMAscript. The script may be embedded within the form
<script>...</script>. This means also that forms, menus, etc., can throw and catch events. This
enables appropriate programming capabilities. Scripts can be embedded anywhere within a
CML page. Procedures, dialog components, conversational foundation classes and other
services can be implemented by <object>...</object> tags.

In another aspect, a "Say what you heard" approach allows the user to be in control of the
conversation (rather than the browser as described above). More specifically, during a
conversational session, every previously visited <menu> or <form> that has been heard remains
active. By way of example, assume the user has heard the main menu choices for "e-mail" and
"news." With the "Say what you heard approach,” the user can either immediately select the
e-mail application by saying "select e-mail" or, at any time subsequent to hearing the main menu,
select the news application by saying "go to news" without having to navigate back to the main

menu. If the user has forgotten selections that were on the main menu, the use can get back to
-42-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

the main menu by saying "go to main menu". This principle applies to every menu and form that
a user has heard.

Another approach is "Say what you will hear," wherein the menus and forms become
active before being visited and remain active throughout the browser session. More specifically,
a menu or form becomes active when it is first loaded by the browser, which may be before the
menu or form has been visited such as in the case where a page containing several menus and
forms is loaded. Even if only one of the menus or forms on that page is visited (depending on
the specifics of the URL), generally, all the menus or forms of the page will become active.
This is illustrated in the following example:

<page>
<body text="#new2menu">

New message 2 from Steve about Pay raise.

Bruce,

We've decided to give you a 250% pay increase this year.

Don’t spend it all in one place.

Steve

</body>

<menu name="new2menu'">
Choose from the message menu
<choice target="#new3">Next message.</choice>
<choice target="#new2forward">Forward message.</choice>
</menu>
</page>
In the above example, assume the user requested to hear message 2. The conversational
browser will visit the URL for the page (i.e., it will fetch the page and visit the first unit on the
page), which in this case is the body of the message. After the message is finished, the "next"
attribute of the <body> element causes the conversational browser to visit the "new2menu",
which offers the user a couple of choices for disposition of the message. The user does not have
to wait, however, to hear the menu before selecting one of the choices. Instead, the user may

interrupt the message at any time to say, for example, "go to next message," since the menu
-43-

10

15

20

25

WO 00/21232 PCT/US99/23008

becomes active when the page is first loaded. Advantageously, this feature is useful in
frequently used applications where the user learns to anticipate menus and forms that have not
yet been presented. It is to be appreciated that the “say what you will hear” approach may be
implemented using the skeletons as described in the above-incorporated IBM Docket No.
Y099-114 to preload a dialog object when the conversational browser is built above CVM using
Conversational Foundation Classes. Alternatively, the dialog object or dialog component can be
implemented in CML.

It is be be appreciated that the "say what you heard" and "say what you will hear"
mechanisms contribute to a dialog feature known as "mixed initiative." This means that in some
cases the computer takes the initiative in the conversation - for example when the browser
prompts the user for a set of menu items - and sometimes the user take the initiative - for
example, when the user ignores the prompts and selects a menu item that was heard in the past,
or interrupts the computer and selects a menu item that hasn't been presented yet. Thus, the set
of spoken responses that are acceptable by the browser is defined by the entire set of CML
elements visited and/or loaded by the browser, and not just by the most recent element visited.
However, this can sometimes lead to unexpected results because of menus or forms that are no
longer relevant being active. Consequently, CML according to the present invention offers a
mechanism to limit the scope of activation for menus and forms.

Scope: Scope is a feature that allows a CML application designer to control the
duration for which the spoken input associated with a particular <menu> or <form> is active.
The "scope" feature is specified by a scope attribute that may be associated with a <menu> or
<form> element: |
<menu name="name" scope="scope"> title text, choices </menu>
<form name="name" action="target" scope="scope"> fitle text, fields </form>

Exemplary values of the "scope" attribute are the following:

Local: The menu or form is only active if the menu or form itself is the last element that
the browser visited.

| Page: The menu or form is only active if the last element visited by the browser is on the

page (or a subpage of) the page that directly contains the menu or form.

-44-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

Global: This is a default value, wherein the menu or form is active for the entire
duration of the browser session beginning when it is first loaded by the browser (even if the form
or menu itself has not yet been visited).

Application specific: This refers to all the page identified with the site or the application

(e.g., via meta-information tag).

In many cases, the greatest flexibility for the user is provided if a menu or form becomes
active as soon as the browser has first seen the menu or form and remains active thereafter. For
example, as explained above, it is advantageous to have main menus or major topic menus
active for the entire sessions so that a user can jump directly to the choices provided by the
menus without first having to navigate back through a "maze" of menus. In some circumstances,
however, this can decrease speech recognition accuracy and produce unexpected results.
Consider the following example.

<page name="new2">
<body next="#new2menu">

New message 2 from Steve about Pay raise.

Bruce,

We've decided to give you a 250% pay increase this year.

Don't spend it all in one place.

Steve

</body>

="

<menu name=

—

new2menu" scope="page">

Choose from the message menu.

<choice target="#new3">Next message.</choice>

<choice target="#new2forward">Forward message.</choice>

</menu>

The menu associated with each message allows the user to say "go to next message." This
selection, however, probably makes little sense after the user has left the e-mail message to do
another task, and it could be very surprising if it were activated as the result of a speech
recognition error. Therefore, in this example, the message menu is given a scope of "page,"

meaning that it will only be active as long as the last element visited by the browser was in the
-45-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

page that contains the message menu. In this case it means that "go to next message" is only
active as long as the last browser action involved visiting the body of the e-mail item.

Additional use of the scope and behavior with the scope are provided in the embedded
CML (as discussed below) Another scope tag that may be used in conjunction with CML is
"Multiple". A discussion on the use of multiple form (not in CML form) is provided in: Kishore,
et al, “Free-Flow Dialog Management Using Forms,” Proc. Eurospeech 1999, Budapest
Hungary, September 1999 and Davies et. al., “The IBM Conversational Telephony System For
Financial Applications, Proc. Eurospeech 99, Budapest Hungary, September 1999. Note that
according to this, instead of having multiple pages active, multiple forms can be simultaneously
activated on a page. These pages can be explicitly nested in the document or they can be
referenced by address (to be loaded). Similarly some of these forms can be presented as
procedural components.

Typically as described above, under one NL modality, the NL dialog is implemented by
activating multiple forms. The forms are filled simultaneously until all the mandatory fields of
one form are filled. When filled, the corresponding action or query is executed. When multiple
forms are filled, disambiguation dialog is added (e.g. by activating a new form). Multiple scope
forms are typically loaded via a page which indicates to load these different forms:

<menu name =mainnl scope =global>

Introduction dialog

<form name = form1 scope = multiple>....</form>

<form name = form2 scope = multiple> ...</form>

<form name = form3 scope = ‘multiple> «.</form>

</menu>
Upon any input that implies an action, a new page will be loaded after completion of the action:
<menu name=mainnl scope = global> (we "update" the global menu)
<form name = form1 scope = multiple context = maintain> ...</form>
<form name = form2 scope = multiple context = reset>....</form>
<form name = form3 scope = deactivated context = reset> </form>

<form name = formnew scope = multiple context = reset>....</form>

-46-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

</menu>

Alternatively all these forms can be loaded by :

<form name ... scope ... load = target> </form>
When a load argument is present, the content of the form is to be downloaded from the target
and placed between the <form> </form> tags. The same concept can be
used for any other element of the language. Typically, the menu is updated and new forms are
added and some of the forms can be deactivated (scope deactivated).

The “context” tag in the above example indicates how to handle past conversation
history. In the two examples given above, the form with a context "maintain” will keep the
value filled in the form from the previous steps of the dialog (previous input from the user).
The “reset” tag refers to resetting the values to default values. Note also that scope can be
defined with a duration stamp: scope =5 s or scope = 1 minute or scope = the name of a scope.
The scope is introduced as

<scope name=scopel status = active> </scope>
When not defined, a scope is non-active. When defined, it can be active or non-active. Elements
scoped with that name are activated when the scope is activated and deactivated otherwise.

It is to be understood that the forms used here can be implemented with a procedural
object:
<form name=form3 scope = multiple context = reset load = target> </form>
where the target page contains applets, procedures, services etc for example:

<Dialog Object>
<applet ...>
</applet>
</Dialog object>

Again, a dialog object can be an applet (java), a script (interpreted by the browser), a
conversational object (Conversational dialog written on top of CVM using conversational
foundation classes), plug-in or servlet activation, or any other procedural implementation or
service providers.

In the present case, multiple objects can be loaded in parallel. This is typically a case

where the browser is implemented on top of CVM, w here the CVM is able to register these
47-

WO 00/21232 PCT/US99/23008

different objects and their context and to determine which dialog is active as a function of the
user input.

This last item illustrates that with CML and a browser hooked to appropriate dialog
management capabilities, CML can be used to design NL dialogs, independently of the
underlying NL technology. Form based, procedural based (decision networks) and grammar
based NL dialog managers are fully supported by this approach.

It is also possible to have overloaded tags (i.e., modifying the action associated with a
tag). Typically, this can be done via XML or other mechanisms allowing a description of the
new meaning of the tag and the scope of the overloading definition.

Browser features: So far we have discussed CML and described how a browser

behaves, with respect to spoken output and spoken input, in response to the markup language.
The following discussion is directed to features of the conversational browser that are not
intrinsic to CML, but rather are characteristic of the browser implementation.

To begin, the conversational browser preferably implements a number of built-in
commands (which are similar in spirit to the built-in functions presented on menus and toolbars
in a visual browser). Examples of such commands are as follows:

[be] quiet; shut up: These commands will cause the Browser to stop a current spoken

output and wait for further instructions from user. This feature is known as "barge-in" and
applies to all spoken input so that a user may interrupt the browser at any time. So, for example,
the user may interrupt the browser by saying "quiet please," in which case the browser will stop
the current output and wait for further instruction. To cause the browser to repeat the interrupted
output, the user may then utter, for exafnple, "repeat that please." The user may also interrupt
the browser at any point with a spoken command, such as a menu item selection.

say again; repeat that: These commands will cause the Browser to repeat a most

recently visited element (menu, form, or body).

go back: This command will cause the Browser to return to a previously visited element
in history list.

go forward: This command will cause the Browser to advance to a next visited element
in history list. (Only meaningful after some number of "go back"” commands).

[[[go]to]the]beginning: These commands will cause the Browser to go to the first

element visited (e.g., the "home" page).
-48-

10

15

20

25

WO 00/21232 PCT/US99/23008

The brackets in the above exemplary commands indicate optional words. Any of these
commands may be preceded or followed by "please." Other classical commands can be defined
for the browser or added by the user.

Inevitably, ambiguities may arise between these various types of spoken input.
Ambiguity resolution is handled at the level of units (forms and menus) by maintaining a
most-recently-used (MRU) queue of units. More specifically, a spoken input is resolved against
a unit if it matches a spoken phrase allowed by the unit (attention phrase followed by title text or
choice prompt, field prompt followed by legal field value). The browser attempts to resolve
every spoken input against each unit in the MRU queue in order. In one embodiment, the MRU
queue may be maintained as follows:

1. When a spoken input is resolved against a unit in the queue, that unit is moved to the
head of the queue.

2. Then, if the spoken input causes a target to be visited, all the units in the page
containing the target are moved to the head of the queue.

3. Finally, the unit corresponding to the visited target is moved to the head of the queue.

It is to be understood that with a browser built on top of a CVM, the CVM will perform
the appropriate ambiguity resolution and dialog with the user if any ambiguity is suspected to
arise as discussed in the IBM Docket No. YO999-111P. Essentially, once a CML specification
is produced, it will virtually prescribe the manner in which a dialog should be handled. If this
needs to be overwritten, or if other behavior(s) need to be introduced, this can be performed by

express calls to the underlying CVM, OS, or platform (if available).,

Plugins: The present invention provides a mechanism that provides a plugin- or applet- like

capability. A URL specifying a <choice> target or a <form> action may invoke local plugin

code by using the local: protocol, following one of several exemplary forms:
local:service/function; or

local:service/function?argl=valuel,arg2=value2,...

The first form is useful for <choice> targets which have no arguments and for <form>

actions where the arguments are supplied by the browser from the values of the contained

-49-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

<field>s. The second form is useful for <choice> targets where the arguments are supplied in
the URL.

In a preferred embodiment of the browser implementation using Java, a local: URL is
implemented by looking up the service in a local table that maps it to a class name, instantiating
an object of that class if it is not already instantiated, and then interpreting the function as the
name of a method to be called. The table of services is preferably located in the file services of
the conversational browser, wherein the file itself contains a description of its format. This
includes registration of all the available services and other objects (procedural or not)

The plugin code invoked by the local: URL returns a string containing the CML
document represented by the URL. Visiting a local: URL causes the returned document to be
interpreted in just the same way as visiting any other URL. It is to be appreciated that these
features may also be implemented using applets (downloaded or locals), conversational objects
and servlets/cgi as well as distributed applications (with for example socket connections and
RPC protocols) to act as a local application.

The service may subsequently interact asynchronously with the browser (e.g., to notify
the user asynchronously of important events) by starting a thread and causing the browser to
asynchronously visit specified URLs (including local: URLs) via an API provided by the
browser. The browser API allows local plugin code to cause the browser to visit a specified
URL, just as if the user had spoken something that caused the browser to visit the URL. This
can be used to provide asynchronous user notifications based on local events. The local plugin
will extend the class CML, Service, from which the local plugin inherits a method visit which,
when invoked, causes the browser to visit the specified URL with the specified parameters:
public class Service {public void visit(URL url, Dictionary parameters) throws IOException;}.

Considerations for Embedded Conversational Browser Applications

Registration mechanism: In situations wherein the functions of an embedded

conversational browser may be limited due to inadequate resources (memory, CPU power, etc), a
cookie mechanism can be used that allows the browser to transfer to a server a description of its
capabilities. For example: Speech Reco = 1:Speaker Reco = 0; TTS = I; Dialog_Manager =
0,NLU = 0; Speech_Reco.Vocabulary_Size=500; Speech_Reco.FSG=1 etc. Upon receiving the

cookie, the server side can examine its content and then modify the CML page accordingly. For

-50-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

example, if the cookie indicates that the vocabulary size is 50, the CML menus can be generated
with very limited vocabularies (e.g. selection of a number per item instead of the actual link).

In another embodiment, rather than using a cookie, registration conversational protocols
can be used as described in the above incorporated patent applications IBM Docket Nos.
Y0999-111P and Y0999-113P. In such an embodiment, objects are exchanged which describe
the characteristics and properties of the engines as well as possibly the requirements of the
application. The handshake will determine the conversational responsibilities of the applications.
Again, in such case, the preliminary handshake can use HTTP or other protocols such as RPC,
RM]I, etc. This is especially important for Dialog Objects that can directly dialog with the server
to check an possibly adapt their behavior to the capabilities of the local browser. Note also that
like in a conventional browsers, these cookies (or procedural protocols) can perform other tasks
such as customization of the presentation or service to the user's preference or persistence of
these preferences or of the history across sessions. In other words, if it is an option selected by
the user, persistence across devices of the context history is guaranteed by having cookies with
the past history of a site uploaded upon connection. When performed via a CVM or procedural
objects, the information is transmitted via procedural protocols. Now ID cookies are also used
to guarantee persistence across devices when stored on the server. When connecting from
different devices, the cookies (or procedural protocol) can be stored on the server or the
presentation server. Identification of the user can be done using conventional techniques such as
userID, caller ID, speaker recognition or speech biometrics. Any other meta-information
(persistence, user preference, application preference, and usage history, context, etc) must be
transferred (via a cookie or via conversational protocols)

Therefore, if the conversational engine cannot generate the baseforms, the tag can
provide a baseform. Various approaches can be utilized: 1) upon determination of the browser
capabilities, the browser is sent a different CML page; 2) a transcoder can dynamically modify a
CML page sent to the browser based on the registered capabilities; or 3) a CML page can be
modified to send the speech and perform complex functions on a networked server (as discussed

in IBM Docket No. YO999-113P).

Dynamic deactivation: The conversational browser may use dynamic activities of CML. This is

another solution which allows modification of the behavior of the conversational browser for
-51-

10

15

20

25

30

WO 00/21232 PCT/US99/23008

embedded applications. In particular, instead of completely following the paradigm of "what
you hear is what you can say," the conversational browser may only activate locally the markup
unless explicitly limited by CML. Furthermore, upon reaching the maximum amount of
supported active vocabulary, the speech browser can progressively and hierarchically be
deactivated: the oldest command which is not a browser shell command or a global command
(as defined by the CML with a Global Tag <Global></Global> or priority level tags; this is
equivalent to a concept of scope tags). A top menu remains active as long as possible
commands under a menu item are deactivated first etc. Deactivated commands are cached in
series of command caches. When the likelihood (or other confidence measure of the recognized
input) obtained for a command are too low or the command is rejected by the user, the utterance
is re-decoded against the most recent command cache etc until an acceptable recognition is
obtained. Recently, efforts have been initiated to develop appropriate confidence measures for
the recognized speech. For instance, In “LVCSR Hub5 Workshop,” April 29 - May 1, 1996,
MITAGS, MD, organized by NIST and DARPA, different approaches are proposed to attach a
confidence level to each word. One method uses decision trees trained on word-dependent
features (amount of training utterances, minimum and average triphone occurrences, occurrence
in language model training, number of phonemes/lefemes, duration, acoustic score (fast match
and detailed match), speech non-speech), sentence-dependent features (signal-to-noise ratio,
estimates of speaking rates: number of words or of lefemes or of vowels per seconds, sentence
likelihood provided by the language model, trigram occurrence in the language model), word in
a context features (trigram occurrence in language model) as well as speaker profile features
(accent, dialect, gender, age, speaking fate, identity, audio quality, SNR, etc.). A probability of
error is computed on the training data for each of the leaves of the tree. Algorithms for building
such trees are described in Breiman et al, “Classification and regression trees,” Chapman &
Hal,1993. At recognition, all or some of these features are measured during recognition and for
each word the decision tree is walked to a leave which provides a confidence level. In the
reference by C. Neti, S. Roukos and E. Eide entitled "Word based confidence measures as a
guide for stack search in speech recognition,” ICASSP97, Munich, Germany, April, 1997, a
method is described which relies entirely on scores returned by an IBM stack decoder (using
log-likelihood -actually the average incremental log-likelihood, detailed match, fast match). In

the LVCSR proceeding, another method to estimate the confidence level is performed using
-5D.

10

15

20

25

30

WO 00/21232 PCT/US99/23008

predictors via linear regression. The predictor used are: the word duration, the language model
score, the average acoustic score (best score) per frame and the fraction of the NBEST list with
the same word as top choice. The present embodiment offers a combination of these two
approaches (confidence level measured via decision trees and via linear predictors) to
systematically extract the confidence level in any translation process, not limited to speech
recognition.

A "rewind” or “reload” command can be implemented to read back to the user all the
commands met on a page. [t follows the same principal of dynamic deactivation. More
specifically, a entire voice navigation interface is provided by the
browser to enable navigation through the previous forms and menus. It can be implemented by a
command and control interface such as IBM’s ViaVoice VoiceCenter (which performs
Command and Control for Windows).

Capability-based frames: Similarly to the frame structure, the CML developers can offer

multiple dialog based on different levels of capabilities [cfr<frame> and </frame> tags in
HTML].

Forms with minimum requirement: Of course only forms (or menus or other

components) which have a limited set of possible entries (limited vocabulary and FSG, selected
menu) can be used with the embedded engines. To maintain the capability to have forms, the
browser offers at least two other modalities: 1) form filling with prescribed grammar
(compilation done on the server) and vocabulary list: the other commands, except the <Global>
commands are deactivated, ii) applet capturing the audio, computing special features and
sending them to a server indicated by a URL, iii) applet to send or receive raw audio to the
server. The selection of the form filling method is done by the server or by the browser. This
requires that each grammar/vocabulary list to load must contain also a description of the engine
requirements. (ii and iii need server/communication capabilities as described in YO999-113P).

A tool will be needed to determine roughly the engine minimum requirements for a given
FSG, for the transcoding approach as well as the multiple pages or frame approaches.

MULTI-MODAL BROWSER

With multi-model browsing, HTML and CML can provided on the same page or sent
separately and synchronized. Tags to distinguish what is to show on a visual browser (<GUI>)

vs. what to show on a multi-modal browser (<M-M>) and speech browser (<speech>): a GUI
-53.

WO 00/21232 PCT/US99/23008

browser displays everything while a multi-modal browser can display selectively some items.
This is illustrated by the following examples:
<GUI>

</Speech+GUI+M-M>
<GUIHM-M>
<img=...>
</GUIH+M-M>

<Speech>

</GUI>

<M-M>
</M-M>
<M-M+Speech>

</M-M+Speech>

In other words, CML and HTML are preserved. Some dynamic HTML features and functions as
well as combinations rules are added.

Additional tags to offer Dynamic ML (HTML and CML combined): For example as the
TTS reads the text, the item change colors or a local background change color. Change of color
of the link selected by voice etc... Selection of recognized text by voice (change color can be

selected and modified).

-54.

10

15

20

25

30

WO 00/21232 PCT/US99/23008

In summary, the introduction of the conversational browser allows Internet and
Telephone (IVR) to be unified and thereby decrease the cost, enlarge the coverage and flexibility
of such applications. The architecture uses the same access protocols and the information
structure (HTML, XML, CML and/or other ML such as WML). The present invention can be
applied to many different business solutions. The main advantages are that it is easy to
implement, high flexible, platform independent, uses the existing infrastructure, deployed and
managed centrally, provides high security, low cost maintenance, and is readily
expandable/scalable, all of which are typical for any Internet solutions. Advantageously, the
application provider need support only one HW platform which provides ease of maintenance.
The content provider can administer various applications from the same WWW server so as to
service a large number of different clients (pure speech, pure GUI and a combination of
speech/GUI), which provides ease of maintenance. Moreover, the Internet technology enables
automatic updating of all servers on the network. The access rights can be also managed
centrally from any place accessible over Internet. High level of security can be maintained. The
current architecture can be extended to other clients in addition to regular telephones, such as
GSM terminals. This is very attractive from the perspective of the investment that is required to
maintain a service such as personal banking.

In addition, when only HTTP protocols are used, the traffic on the network between the
browser (conversational/GUI) and the WWW server is minimized, the network is used for
sending the completed replay in one batch. For example, while entering the account Number
and the SSN only the browser/conversational browser are active, the network is idle. The
browsers are intelligent enough to catéh many errors before the server is queried. Error
correction and local disambiguation can for example be performed via CVM services or
downloaded applets. The information to the WWW server is sent in both cases using the same
protocol the HTTP protocol. The replay information is sent back always using the same protocol
and it is the task of the browser to get it to the user in the right form. The suggested architecture
enables the designers of these applications to use applets, small programs (java or other
conversational procedures, especially if the browser is written over a CVM)), which are executed
in the browser to preprocess the input and output information. This further increases the
flexibility of the application and furthermore decreases the load of the network. For the

conversational browser we can easily imagine a custom "Text to Speech" applet will be sent over
-55-

10

15

20

WO 00/21232 PCT/US99/23008

and then the required bandwidth will be the same or smaller then the graphical one. In
particular, this can be done to synthesize prompts in another language and recognize input in
other languages.

Indeed, the present invention provides these advantages to the current telephony
applications, typically the IVR applications. The telephone number is perfect for billing
purposes. The latency of Internet does not pose any problem to IVR. In any event, latency can
be reduced using services like Qos (quality of service) and RSVP (resource reservation
protocol). The capability of connecting on the Internet to other servers (IVRs) makes the
capabilities much larger. The server can be located anywhere on a computer network with the
access to required speech recognition systems being also available anywhere on the network.
The packet switching technology with the TCP/IP protocol utilized the net resources better then
regular phone connections. The billing may be based on the quality of used channel. The
switched packet network is cheaper and transfers less data, therefore, requiring less bandwidth.
This will result in providing the services with lower cost. This concept gives anybody chance to
set a server and put the information on net.

Although illustrative embodiments have been described herein with reference to the
accompanying drawings, it is to be understood that the present system and method is not limited
to those precise embodiments, and that various other changes and modifications may be affected
therein by one skilled in the art without departing from the scope or spirit of the invention. All
such changes and modifications are intended to be included within the scope of the invention as

defined by the appended claims.

-56-

WO 00/21232 PCT/US99/23008

WHAT IS CLAIMED IS:

1. A conversational browsing system, comprising:
a conversational browser comprising:
a command and control interface for converting an input command into a
5 navigation request, the input command comprising a speech command; and
a CML (conversational markup language) processor for parsing
and interpreting a CML file, the CML file comprising meta- information
representing a conversational user interface for presentation to a user;
a conversational engine for decoding input commands for interpretation by the command
10 and control interface and decoding meta-information provided by the CML processor for
generating synthesized audio output; and
a communication stack for transmitting the navigation request to a content server and

receiving a CML file from the content server based on the navigation request.

2. The conversational browsing system of claim 1, where the input

15 command comprise multi-modal input.

3. The conversational browsing system of claim 1, further comprising a (CVM)
conversational virtual machine, wherein the conversational browser executes on top of the CVM

and makes requests for conversational services to the conversational engines through the CVM.

4. The conversational browsing system of claim 3, wherein the conversational browsing
20 system executes in a client device, and wherein the communication stack comprises
conversational protocols for registering conversational capabilities of the client device with the

content server.

5. The conversational browsing system of claim 3, wherein one of the conversational

browser, CVM and conversational engines are distributed over a network.

-57-

10

15

20

25

WO 00/21232 PCT/US99/23008

6. The conversational browsing system of claim 1, wherein the communication stack
implements standard networking protocols for transmitting the navigation request and receiving

the CML file.

7. The conversational browsing system of claim 6, wherein the standard networking
protocols comprise one of TCP/IP (transmission control protocol/internet protocol), HTTP
(hypertext transmission protocol), WAP (wireless application protocol), VoIP (voice over

internet protocol) and a combination thereof.

8. The conversational browsing system of claim 1, further comprising a transcoder for

converting legacy information formats of a content server to a CML file.

9. The conversational browsing system of claim 8, wherein the transcoder accesses and
interprets logic information of an application to generate a dialog with a user through the

conversational browser.

10. The conversational browsing system of claim 8, wherein the transcoder is executed
on one of the conversational browser, a conversational proxy server, the content server, or

distributed among a combination thereof.

11. The conversational browsing system of claim 8, wherein the transcoder generates a
custom CML file based on conversational capabilities of the machine on which the

conversational browsing system executes.

12. The conversational browsing system of claim 1, wherein the CML file comprises one
of (1) a page elements that group other CML elements; (2) a body element which specifies
output to be spoken by the conversational browser (3) a menu element comprising introductory
text that is spoken to a user and a list of choices, each choice having prompt text and being
associated with a target address identifying a CML element if the corresponding choice is
selected; (4) a form element for inputting at least on item of information and a target address to

sent the at least one item of information; and (5) a combination thereof.
-58-

10

15

20

25

WO 00/21232 PCT/US99/23008

13. The conversational browsing system of claim 12, wherein a target address comprises

one of a URL (uniform resource locator) and a socket address.

14. A method for providing conversational browsing, comprising the steps of:

receiving an input command, the input command comprising a speech command;

decoding the input command with at least one of a plurality of conversational engines;

generating a navigation request based on the decoded input command for retrieving a
CML (conversational markup language), the CML file comprising meta- information
representing a conversational user interface for presentation to a user;

transmitting the navigation request and accessing the requested CML file using a
standard networking protocol; and

parsing and interpreting meta information comprising the CML file to provide an audio

presentation of the information content of the CML file.

15. The method of claim 14, further comprising the step of:
registering conversational capabilities with an entity from which the CML file is
accessed; and

customizing the CML file based on the registered capabilities.

16. The method of claim 14, further comprising the step of:
generating a navigation request for accessing a file comprising a legacy information
format; and

converting the legacy information format to a CML file.

17. The method of claim 16, wherein the step of converting is performed by a

transcoding proxy associated with a content server from which the file is accessed.

18. The method of claim 14, further comprising the steps of accessing and interpreting

logic information of an application associated with the CML file to generate a dialog.

-590-

10

15

20

WO 00/21232 : PCT/US99/23008

19. A program storage device readable by a machine, tangibly embodying a program of
instructions executable by the machine to perform method steps for providing conversational
browsing, the method steps comprising:

receiving an input command, the input command comprising a speech command;

decoding the input command with at least one of a plurality of conversational engines;

generating a navigation request based on the decoded input command for retrieving a
CML (conversational markup language), the CML file comprising meta- information
representing a conversational user interface for presentation to a user;

transmitting the navigation request and accessing the requested CML file using a
standard networking protocol; and

parsing and interpreting meta information comprising the CML file to provide an audio

presentation of the information content of the CML file.

20. The program storage device of claim 19, further comprising instructions for
performing the step of:
registering conversational capabilities with an entity from which the CML file is

accessed such that the entity can customize the CML file based on the registered capabilities.

21. The program storage device of claim 19, further comprising instructions for
performing the step of:

generating a navigation request for accessing a file comprising a legacy information
format; and

converting the legacy information format to a CML file.
22. The program storage device of claim 19, further comprising instructions for

performing the step of accessing and interpreting logic information of an application associated

with the CML file to generate a dialog.

-60-

WO 00/21232 PCT/US99/23008

/11
1
Conversational Browser 13 ‘
g 12 Transcoder - 13a
Command,/Request Functional
Processor Transcoder
é" I ; 14 13
‘) ‘ 1
CML Logical
Parser/Processor I Transcoder

Conversational Profocols
(Coordination, Registration, Discovery,
Negotiation, Speech Coding, etc)

Conversational Virtual Machine (CVM)
(Kernel)

Conversational Engines Other Dialog ~1/0 Resources Audio Capture
Speech Touch] [Mic/ Compression
e e

FIG. |

SUBSTITUTE SHEET (RULE 26)

PCT/US99/23008

WO 00/21232

2/

(spanisg
Jusjuo)

orany

3SS4dH0I

#

TH)

JTRY/THIH

<<

dl/doL
JdLIH

60}

80}

090}

19s

M0Jg |DUOLDSIZAUO)

¢ "9ld

sauibu3
|[DUOYDSI3AUOY)

wajshsqng oipny
[pu3 juol4 aysnody
[ainydoy oipny

90

801

e

yaaadg
N

opny
fiuoydajag

spupwAwuo)
mduj

a0l

2019

LN

SUBSTITUTE SHEET (RULE 26)

PCT/US99/23008

WO 00/21232

3/11

¢ "9ld

4]
(s)uoyoayddy
p20]

9

ULIOHD)d

—E Ruoydaje]

_- T8

Jaskolg
[DUOYDSIBAU0)

$13M3G
Juajuo?

A
Svd/0%18]
)Y,

N

13sMoJg
|DUOLDSI3AUO)

auoyq 3|Iq0N

Aomajog /1apoasupi] 4y
[1apin0lg 801AIBG SSOIRLIp

2

08~

SUBSTITUTE SHEET (RULE 26)

PCT/US99/23008

WO 00/21232

L/

‘ll

~i TN °
_ szm_.m@____w%ﬁ_vsa . v7 °9l4

- N\
JaIag
" uoljosuDi)
/uotjouriojuj
e - s ~
/ sjuawnBay /382.&\::\ /0 TN
_ jpuoyossenuo) | di/ddL | é swayshks-qng)
p— / \ |DUOI{DSI8AUO?) .
jpuoypo.] — U y _’
§8o 1dv -
§s§\5 it soﬁm -
d1/dol tostjostIdy
oggg- /% &\&&
-~ //
" Jap0dSUDI] / 19sMOIg " 10SA0Jg
|DUOKDSIBAUOY) ¢ [DUOYDSIBAUOY) [DUOYDSI3AU?) »csc_cu)
Janiag Axolg // JaNIag 2jouiay N 10 94 _oEamS
.

3989&
T0U0YDSLAAUO)
di/dl
—

1asmolg
[DUOLDSIBAUOY

(spaniag ajoway

SUBSTITUTE SHEET (RULE 26)

PCT/US99/23008

WO 00/21232

S/11

/
/
/
/
/
/
/
/ €€
[
/
)
|
|
{13
_
|
1
. \
Em\\\ IL,

7 uoyojssald \ /I
\ puoliipoi| \ W
_~ 0LIS dl/dJl

\
\ suoydaje
\ J9smolg N9 dLIH
w;./N\: _ - THIH
vIg
D508\

—————

~ “uoyoayddy

ajpiodio) N

oM
' uoljoDsup.}
Juoijouniojuy

18MI3S j01ju0) DjDq
¢ By

IEIVEN
91607 ssauisng

7 dal)

0i€

180G UODjUaSalg
puD [DUIULIA

sdof uaalag

18poasuDl|
|DUOI|DS.13AUO)

19n1ag Axoid

g7 "old

| sjuswnbly
[DUO}{DSIBALO)

Jasmolg

19MIaG Bjoussy

-~
—

ipuoyossaAuo) |

N
N\

N\ dI/dol

10003044/ 1 ¥ \\

10003044 /4y
dl/doL

0U0YDSLAU0)

~—

10307047

dl/dol
di/d

Jasholg
|DUOIjDSIaAUO)

(shanssg sjoway

swaysks-qng
|DUOlDS18AU0?)

-

—JLLH 40

0 dl/ddl
N

" Jasmolg
[DUO}|DSIAAUO)

YA d0 Od

10003048 /14§

N\

\

Aomajpg -
Jouiojsny

/

SUBSTITUTE SHEET (RULE 26)

PCT/US99/23008

WO 00/21232

6/11

£
m
V1Ya Ezm_m <><= YINIS
ISIIdY3ING [NOILYONddY 197] LEL AE_._
R
llllllllllllllllllllllllllll d
T ——y 1%
| " NOLLYANddY 190 m\
| | S3LON SnLo7 | YIS | LA
| ONINOG SILOT | T g
S S]

MMM TALH ONIQOISNYYL

]
m YINGES AX04d
“
L

805

YHOMLIN

005

A

s ——— s ——— |

10$

N INITM

43SModa
TYNOILYSYIANOD

A

(S)NOILYOddY
%201

SUBSTITUTE SHEET (RULE 26)

WO 00/21232

771

600

Information
Server

A J

Presentation
Server

il

Conversational
Browser

FIG. 6

PCT/US99/23008

602 603

604

SUBSTITUTE SHEET (RULE 26)

WO 00/21232 PCT/US99/23008

8/1

600

Information
Server

Microphone/
Speaker

Browsers

SUBSTITUTE SHEET (RULE 26)

WO 00/21232 PCT/US99/23008

9/1

. 600
Information

Server

605

74;___ ____7f:___1
GUI Microphone/
Browsers Conversational Speaker

GUI Browser

|
|
|
|
|
} Browser and
|
|
|
|
|

e e e e o e e e e e e e

609

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 00/21232 PCT/US99/23008

10/11

600

Information
Server

Conversational
Browser

SUBSTITUTE SHEET (RULE 26)

WO 00/21232 PCT/US99/23008

/1

600

Information
Server

601 602 603
IR Y Sy A A .|

<

| —Speech
Models |

e ——

FIG. 10

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

