

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

Número de publicación: 2 215 984

(51) Int. Cl.:

A61K 31/485 (2006.01) A61K 9/20 (2006.01) A61P 25/04 (2006.01)

		,
(12	n)	TRADUCCION DE PATENTE FUROPEA MODIFICADA
(14	4)	TRADUCULON DE PATEINTE EUROPEA MUJUIELCADA

T5

- 86 Número de solicitud europea: 03006022 .2
- 86 Fecha de presentación : **25.11.1992**
- 87 Número de publicación de la solicitud: 1327446 87 Fecha de publicación de la solicitud: 16.07.2003
- 54 Título: Composiciones de oxicodona de liberación controlada.
- (30) Prioridad: **27.11.1991 US 800549**

- 73 Titular/es: Mundipharma Pharmaceuticals S.L. Velázquez, 21 - 3º Dcha. 28001 Madrid, ES
- (45) Fecha de publicación de la mención y de la traducción de patente europea: **16.10.2004**
- (72) Inventor/es: Oshlack, Benjamin; Chasin, Mark; Minogue, John Joseph y Kaiko, Robert Francis
- (45) Fecha de la publicación de la mención de la patente europea modificada BOPI: 16.03.2008
- Fecha de publicación de la traducción de patente europea modificada: 16.03.2008
- (74) Agente: Gallego Jiménez, José Fernando

DESCRIPCIÓN

Composiciones de oxicodona de liberación controlada.

Antecedentes de la invención

Estudios de dosificaciones diarias de analgésicos opioides requeridos para controlar el dolor sugieren que en dosificaciones diarias se requiere aproximadamente un margen con un factor de multiplicación de ocho para controlar el dolor en aproximadamente el 90% de los pacientes. Este margen extraordinariamente amplio en la dosificación apropiada hace que el proceso de titulación consuma particularmente mucho tiempo y muchos recursos, al mismo tiempo que deja al paciente sin un control aceptable del dolor durante un período de tiempo inaceptablemente largo.

Habitualmente, en el tratamiento del dolor con analgésicos opioides, se ha observado y se ha reportado que hay una variación interindividual considerable en la respuesta a una dosis dada de un fármaco dado, y, consecuentemente, una variabilidad considerable entre pacientes en la dosificación del analgésico opioide requerido para controlar el dolor sin efectos secundarios inaceptables. Esto necesita de un esfuerzo considerable por parte de los clínicos en el establecimiento de la dosis apropiada en un paciente individual a través del proceso de titulación de larga duración, el cual requiere una valoración cuidadosa de los efectos tanto terapéuticos como secundarios y unos ajustes de la dosificación durante un período de días y a veces más tiempo antes de que se determine la dosificación apropiada. La 3a. edición de Principles of Analgesic Use in the Treatment of Acute Pain and Cancer Pain de la American Pain Society explica que se debería "saber que la dosis óptima del analgésico varía ampliamente entre los pacientes. Estudios han mostrado que en todos los grupos de edades, existe una variabilidad enorme en las dosis de opioides requeridas para proporcionar alivio, incluso entre pacientes no tratados con opioides con lesiones quirúrgicas idénticas.... Esta gran variabilidad enfatiza la necesidad de recetar analgésicos que incluyen el suministro de dosis suplementarias, y de utilizar bolos e infusiones intravenosos para proporcionar un alivio rápido del dolor severo.... Aplíquese un ensayo adecuado a cada analgésico mediante una titulación de la dosis... antes de cambiar a otro fármaco".

Por esta razón, un tratamiento con analgésicos opioides que controle aceptablemente el dolor durante un margen de dosificación diaria sustancialmente menor mejoraría sustancialmente la eficiencia y la calidad del tratamiento del dolor.

En la técnica se ha sabido anteriormente que se podrían preparar en una matriz adecuada composiciones de liberación controlada de analgésicos opioides tales como morfina, hidromorfona o sales de las mismas. Por ejemplo, la patente U.S. No. 4.990.341 (Goldie), transferida también al cesionario de la presente invención, describe composiciones de hidromorfona en las que la tasa de disolución *in vitro* de la forma de dosificación, medida con el Método de la Paleta de la USP a 100 rpm en 900 ml de tampón acuoso (pH entre 1,6 y 7,2) a 37°C, está entre el 12,5 y el 42,5% (en peso) de hidromorfona liberada después de 1 hora, entre el 25 y el 55% (en peso) liberada después de 2 horas, entre el 45 y el 75% (en peso) liberada después de 6 horas.

40 Sumario de la invención

50

Es un objeto de la presente invención proporcionar una utilización para mejorar sustancialmente la eficiencia y la calidad del tratamiento del dolor.

Es otro objeto de la presente invención proporcionar una formulación analgésica opioide que mejore sustancialmente la eficiencia y la calidad del tratamiento del dolor.

Es otro objeto de la presente invención proporcionar una utilización y una formulación o formulaciones que reduzcan sustancialmente el margen de un factor aproximado de multiplicación de ocho en las dosificaciones diarias requeridas para controlar el dolor en aproximadamente el 90% de los pacientes.

Es otro objeto de la presente invención proporcionar una utilización y una formulación o formulaciones que reduzcan sustancialmente la variabilidad en las dosificaciones diarias y los requisitos de las formulaciones necesarios para controlar de manera substancial el dolor en todos los pacientes.

Es todavía otro objeto de la presente invención proporcionar una utilización para reducir sustancialmente el tiempo y los recursos necesarios para titular pacientes que requieren alivio del dolor con analgésicos opioides.

Es todavía otro objeto de la presente invención proporcionar formulaciones opioides de liberación controlada que tengan una variación interindividual sustancialmente menor con respecto a la dosis de analgésico opioide requerida para controlar el dolor sin efectos secundarios inaceptables.

Los objetos anteriores y otros se consiguen gracias a la presente invención, que se refiere a una forma oral de dosificación sólida de liberación controlada, comprendiendo la forma de dosificación de unos 10 a unos 40 mg de oxicodona o una sal de la misma en una matriz en la que la tasa de disolución *in vitro* de la forma de dosificación, cuando se mide por el Método de la Paleta de la USP a 100 rpm en 900 ml de tampón acuoso (pH de entre 1,6 y 7,2) a 37°C está entre 12,5 y 42,5% (en peso) de oxicodona liberada después de 1 hora, entre 25 y 56% (en peso) de oxicodona liberada después de 2 horas, entre 45 y 75% (en peso) de oxicodona liberada después de 4 horas y entre

55 y 85% (en peso) de oxicodona liberada después de 6 horas, siendo la tasa de liberación *in vitro* sustancialmente independiente del pH, de modo que el nivel plasmático de pico de la oxicodona obtenida *in vivo* sucede entre 2 y 4,5 horas después de la administración de la forma de dosificación.

El Método de la Paleta de la USP es el Método de la Paleta descrito, por ejemplo, en la Farmacopea XXII de U.S. (1990).

En la presente especificación, "sustancialmente independiente del pH" significa que la diferencia, en cualquier momento dado, entre la cantidad de oxicodona liberada con, por ejemplo, un pH 1,6, y la cantidad liberada con cualquier otro pH, por ejemplo, pH 7,2 (medida *in vitro* utilizando el Método de la Paleta de la USP a 100 rpm en 900 ml de tampón acuoso), es del 10% (en peso) o menor. En todos los casos, las cantidades liberadas son una media de por lo menos tres experimentos.

La presente invención se refiere además a una utilización para reducir sustancialmente el margen de las dosificaciones diarias requeridas para controlar el dolor en aproximadamente el 90% de los pacientes, que comprende la administración de una formulación oral de dosificación sólida de liberación controlada que comprende de unos 10 a unos 40 mg de oxicodona o una sal de la misma, proporcionando dicha formulación una concentración plasmática máxima promediada de oxicodona de unos 6 a unos 60 ng/ml entre unas 2 y 4,5 horas de media después de la administración, y una concentración plasmática mínima promediada de unos 3 a unos 30 ng/ml entre unas 10 y 14 horas de media después de una administración repetida "q12h" (es decir, cada 12 horas) en condiciones de régimen permanente.

La presente invención se refiere además a una utilización para reducir sustancialmente el margen de las dosificaciones diarias requeridas para controlar el dolor en sustancialmente todos los pacientes, que comprende la administración de una formulación oral de dosificación sólida de liberación controlada que comprende hasta unos 160 mg de oxicodona o una sal de la misma, proporcionando dicha formulación una concentración plasmática máxima promediada de oxicodona de hasta unos 240 ng/ml entre unas 2 y 4,5 horas de media después de la administración, y una concentración plasmática mínima promediada de unos 120 ng/ml entre unas 10 y 14 horas de media después de una administración repetida "q12h" (es decir, cada 12 horas) en condiciones de régimen permanente.

La presente invención se refiere además a formulaciones de liberación controlada de oxicodona que comprenden de unos 10 a unos 40 mg de oxicodona o una sal de la misma, proporcionando dichas formulaciones una concentración plasmática máxima promediada de oxicodona de unos 6 a unos 60 ng/ml entre unas 2 y 4,5 horas de media después de la administración, y una concentración plasmática mínima promediada de unos 3 a unos 30 ng/ml entre unas 10 y 14 horas de media después de una administración repetida q12h en condiciones de régimen permanente.

La presente invención se refiere además a formulaciones de liberación controlada de oxicodona que comprenden hasta unos 160 mg de oxicodona o una sal de la misma, proporcionado dichas formulaciones una concentración plasmática máxima promediada de oxicodona de hasta unos 240 ng/ml de entre unas 2 y 4,5 horas de media después de la administración, y una concentración plasmática mínima promediada de hasta unos 120 ng/ml entre unas 10 y 14 horas de media después de una administración repetida q12h en condiciones de régimen permanente.

Breve descripción de los dibujos

Los siguientes dibujos son ilustrativos de realizaciones de la invención y no pretenden limitar el ámbito de la invención indicado por las reivindicaciones.

Las Figuras 1 a 4 son gráficas que muestran las curvas de tiempo-efecto para las diferencias de intensidad del dolor y el alivio del dolor para el Ejemplo 17;

La Figura 5 es una gráfica que muestra la concentración plasmática media de oxicodona para una formulación de oxicodona de liberación controlada de 10 mg preparada según la presente invención y un estándar de referencia del estudio.

Descripción detallada

55 Descripcion detanac

15

30

45

Se ha descubierto sorprendentemente que las formulaciones de oxicodona de liberación controlada reivindicadas en el presente documento controlan de manera aceptable el dolor, en un margen sustancialmente más estrecho aproximado de un factor de multiplicación de cuatro (de 10 a 40 mg cada 12 horas en una dosificación continua) en aproximadamente el 90% de los pacientes. Esto contrasta claramente con el margen aproximado de un factor de multiplicación de ocho requerido para aproximadamente el 90% de pacientes para los analgésicos opioides en general.

La utilización de entre unos 10 mg y unos 40 mg de dosis cada 12 horas de oxicodona de liberación controlada para controlar el dolor en aproximadamente el 90% de los pacientes con respecto a un margen mayor de dosificación de otros analgésicos mµ-agonistas, indicados para el dolor de moderado a severo, es un ejemplo de las características únicas de la presente invención. Se debería observar además que el 10% restante de pacientes se trataría también de manera exitosa con oxicodona de liberación controlada cada 12 horas en un margen de dosificación relativamente más estrecho que con la utilización de otros analgésicos similares. Sustancialmente todos aquellos pacientes del 10% restante no tratados con oxicodona de liberación controlada, 10 mg a 40 mg cada 12 horas, se tratarían utilizando

dosificaciones mayores que 40 mg cada 12 horas hasta 160 mg cada 12 horas utilizando cualquiera de entre un número o múltiplos de fortaleza de formulación tales como dosificaciones unitarias de 10, 20, 40, 80 y 160 mg o combinaciones de las mismas. En contraste, la utilización de otros analgésicos similares tales como la morfina requerirían un margen mayor de dosificaciones para tratar el 10% restante de pacientes. Por ejemplo, se han observado dosificaciones diarias de equivalentes de morfina oral en el margen de 1 gramo a más de 20 gramos. De manera similar, se requerirían también márgenes grandes de dosificación de hidromorfona oral.

La morfina, que se considera como el analgésico opioide prototípico, se ha formulado en formulaciones de liberación controlada de 12 horas (por ejemplo, comprimidos de MS Contin[®], disponibles comercialmente de Purdue Pharma, L.P.). A pesar del hecho de que tanto la oxicodona de liberación controlada como la morfina de liberación controlada administrada cada 12 horas de manera continua poseen unas características farmacocinéticas clínicas cualitativamente comparables, las formulaciones de oxicodona de la invención reivindicada en el presente documento se pueden utilizar en aproximadamente 1/2 del margen de dosificación en comparación con las formulaciones de morfina de liberación controlada disponibles comercialmente (tales como el MS Contin[®]) para controlar el 90% de los pacientes con dolor considerable.

Los estudios de dosis repetidas con las formulaciones de oxicodona de liberación controlada administradas cada 12 horas en comparación con la oxicodona oral de liberación inmediata administrada cada 6 horas con la misma dosis diaria total dan como resultado un grado comparable de absorción, así como unas concentraciones máxima y mínima comparables. El momento de concentración máxima se produce aproximadamente entre las 2 y las 4,5 horas después de la administración oral con el producto de liberación controlada en comparación con la aproximadamente 1 hora con el producto de liberación inmediata. Estudios similares de dosis repetidas con comprimidos de MS Contin[®] en comparación con morfina de liberación inmediata proporcionan unos resultados relativos comparables en relación con las formulaciones de oxicodona de liberación controlada de la presente invención.

25

No existe una desviación sustancial con respecto al paralelismo de las curvas de dosis-respuesta para la oxicodona bien en las formas de las formulaciones de oxicodona de liberación controlada de la presente invención, bien en la oxicodona oral de liberación inmediata o bien en la oxicodona parenteral en comparación con los opioides orales y parenterales con los que se ha comparado la oxicodona en términos de estudios de dosis-respuesta y ensayos de potencia analgésica relativa. "Analgesic Studies of Codeine and Oxycodone in Patients with Cancer. II. Comparisons of Intramuscular Oxycodone with Intramuscular Morphine and Codeine", de Beaver y col., J. Pharmacol. y Exp. Ther., Vol. 207, nº 1, págs. 101 a 108, reportan unas pendientes de dosis-respuesta comparables para la oxicodona parenteral en comparación con la morfina parenteral y unas pendientes de dosis-respuesta comparables para la oral en comparación con la oxicodona parenteral.

Una revisión de los estudios de dosis-respuesta y los ensayos de analgésicos relativos de analgésicos opioides mµ-agonistas, entre los que se incluyen oxicodona, morfina, hidromorfona, levorfanol, metadona, meperidina, heroína, no indican en ningún caso una desviación significativa con respecto al paralelismo en sus relaciones de dosis respuesta. Esto está tan bien establecido que la provisión del establecimiento de unos factores de potencia analgésica relativa y unas ratios de dosis que se utilizan comúnmente cuando se cambian los pacientes de un analgésico mµ-agonista a otro con independencia de la dosificación del primero se ha convertido en un puntal muy importante. A no ser que las curvas de dosis-respuesta sean paralelas, los factores de conversión no serían válidos a través del gran margen de dosificaciones involucrado cuando se sustituye un fármaco por otro.

La importancia clínica proporcionada por las formulaciones de oxicodona de liberación controlada de la presente invención en un margen de dosificación de entre unos 10 y unos 40 mg cada 12 horas para un tratamiento aceptable del dolor en aproximadamente el 90% de pacientes con dolor de moderado a severo, en comparación con otros analgésicos opioides que requieren aproximadamente dos veces el margen de dosificación, proporciona el procedimiento más eficiente y humano de tratamiento del dolor que requiere una dosificación repetida. La pericia y el tiempo de médicos y enfermeras, así como la duración en que los pacientes deben soportar un dolor inaceptable durante el proceso de titulación de los analgésicos opioides se reduce sustancialmente con la eficiencia de las formulaciones de oxicodona de liberación controlada de la presente invención.

Además, es clínicamente significativo que una dosis de unos 80 mg de oxicodona de liberación controlada administrada cada 12 horas proporcionará un tratamiento del alivio del dolor aceptable en, por ejemplo, aproximadamente el 95% de pacientes con dolor de moderado a severo, y que unos 160 mg de oxicodona de liberación controlada administrada cada 12 horas proporcionará un tratamiento del alivio del dolor aceptable en, por ejemplo, aproximadamente todos los pacientes con dolor de moderado a severo.

Para obtener una forma de dosificación de un fármaco de liberación controlada que tenga por lo menos un efecto terapéutico de 12 horas, es habitual en la técnica farmacéutica producir una formulación que proporciona un nivel plasmático de pico del fármaco entre unas 4 a 8 horas después de la administración (en un estudio de dosis (nica). Los presentes inventores han descubierto sorprendentemente que, en el caso de la oxicodona, un nivel plasmático de pico entre 2 y 4,5 horas después de la administración proporciona un alivio del dolor de por lo menos 12 horas y, lo que es más sorprendente, el alivio del dolor obtenido con dicha formulación es mayor que el conseguido con formulaciones que proporcionan niveles plasmáticos de pico (de oxicodona) en el período normal de hasta 2 horas después de la administración.

Una ventaja más de la presente composición, que libera oxicodona a una tasa que es sustancialmente independiente del pH, es que evita la descarga rápida de la dosis al producirse una administración oral. En otras palabras, la oxicodona se libera uniformemente por todo el tracto gastrointestinal.

La presente forma de dosificación oral se puede presentar como, por ejemplo, gránulos, esferoides o bolas en una cápsula o en cualquier otra forma sólida adecuada. No obstante, preferentemente la forma de dosificación oral es un comprimido.

La presente forma de dosificación oral contiene preferentemente entre 1 y 500 mg, más específicamente entre 10 y 160 mg, de hidrocloruro de oxicodona. Como alternativa, la forma de dosificación puede contener unas cantidades equivalentes molares de otras sales de oxicodona o de la base de oxicodona.

La presente matriz puede ser cualquier matriz que proporcione tasas de disolución *in vitro* de la oxicodona dentro de los márgenes estrechos requeridos y que libera la oxicodona de una forma independiente del pH. Preferentemente la matriz es una matriz de liberación controlada, aunque se pueden utilizar matrices de liberación normal que tienen un recubrimiento que controla la liberación del fármaco. Los materiales adecuados a incluir en una matriz de liberación controlada son

- (a) Polímeros hidrófilos, tales como gomas, éteres de celulosa, y materiales derivados de proteínas. De entre estos polímeros, se prefieren los éteres de celulosa, especialmente, las hidroxialquilcelulosas y las carboxialquilcelulosas. La forma de dosificación oral puede contener entre un 1% y un 80% (en peso) de por lo menos un polímero hidrófilo o hidrófobo.
- (b) Hidrocarburos sustituidos o no sustituidos, de cadena larga (C₈-C₅₀, especialmente C₁₂-C₄₀), digeribles, tales como ácidos grasos, alcoholes grasos, gliceril ésteres de ácidos grasos, aceites minerales y vegetales y ceras. Se prefieren los hidrocarburos que tienen un punto de fusión de entre 25° y 90°C. De entre estos materiales de hidrocarburos de cadena larga, se prefieren los alcoholes grasos (alifáticos). La forma de dosificación oral puede contener hasta el 60% (en peso) de por lo menos un hidrocarburo digerible de cadena larga.
 - (c) Polialquilenglicoles. La forma de dosificación oral puede contener hasta el 60% (en peso) de por lo menos un polialquilenglicol.

Una matriz adecuada específica comprende por lo menos una hidroxialquilcelulosa soluble en agua, por lo menos un alcohol alifático C_{12} - C_{36} , preferentemente C_{14} - C_{22} , y, opcionalmente, por lo menos un polialquilenglicol.

La por lo menos una hidroxialquilcelulosa es preferentemente una hidroxi (C_1 a C_6) alquilcelulosa, tal como hidroxipropilcelulosa, hidroxipropilmetilcelulosa y, especialmente, hidroxietilcelulosa. La cantidad de la por lo menos una hidroxialquilcelulosa en la presente forma de dosificación oral se determinará, entre otros factores, por medio de la tasa precisa de liberación de oxicodona requerida. No obstante, preferentemente la forma de dosificación oral contiene entre el 5% y el 25%, especialmente entre el 6,25% y el 15% (en peso) de la por lo menos una hidroxialquilcelulosa.

El por lo menos un alcohol alifático puede ser, por ejemplo, alcohol laurílico, alcohol mirístílico o alcohol estearílico. No obstante, en realizaciones particularmente preferidas de la presente forma de dosificación oral, el por lo menos un alcohol alifático es alcohol cetílico o alcohol cetoestearílico. La cantidad del por lo menos un alcohol alifático en la presente forma de dosificación oral se determinará, tal como anteriormente, por medio de la tasa precisa de liberación de oxicodona requerida. Dependerá también de si en la forma de dosificación oral hay presente o ausente por lo menos un polialquilenglicol. En la ausencia de por lo menos un polialquilenglicol, la forma de dosificación oral contiene preferentemente entre el 20% y el 50% (en peso) del por lo menos un alcohol alifático. Cuando en la forma de dosificación oral hay presente por lo menos un polialquilenglicol, en ese caso el peso combinado del por lo menos un alcohol alifático y el por lo menos un polialquilenglicol constituye preferentemente entre el 20% y el 50% (en peso) de la dosificación total.

En la presente forma de dosificación preferida, la ratio de, por ejemplo, la por lo menos una hidroxialquilcelulosa con respecto al por lo menos un alcohol alifático/polialquilenglicol, determina, en gran medida, la tasa de liberación de la oxicodona de la formulación. Se prefiere una ratio de la por lo menos una hidroxialquilcelulosa con respecto al por lo menos un alcohol alifático/polialquilenglicol de entre 1:2 y 1:4, prefiriéndose particularmente un ratio de entre 1:3 y 1:4.

El por lo menos un polialquilenglicol puede ser, por ejemplo, polipropilenglicol o, más preferentemente, polietilenglicol. El peso molecular medio del por lo menos un polialquilenglicol se prefiere que esté entre 1000 y 15000, especialmente entre 1500 y 12000.

Otra matriz adecuada de liberación controlada comprendería una alquilcelulosa (especialmente etilcelulosa), un alcohol alifático C_{12} a C_{36} y, opcionalmente, un polialquilenglicol.

Además de los ingredientes mencionados, una matriz de liberación controlada también puede contener cantidades adecuadas de otros materiales, por ejemplo, diluyentes, lubricantes, aglutinantes, medios de granulación, colorantes, aromatizantes y fluidificantes que son convencionales en la técnica farmacéutica.

5

65

15

30

35

Como alternativa a una matriz de liberación controlada, la presente matriz puede ser una matriz de liberación normal que tenga un recubrimiento que controle la liberación del fármaco. En realizaciones particularmente preferidas de este aspecto de la invención, la presente forma de dosificación comprende esferoides recubiertas de una película que contienen un ingrediente activo y un agente esferonizante no soluble en agua. El término esferoide es conocido en la técnica farmacéutica y significa un gránulo esférico que tiene un diámetro comprendido entre 0,5 mm y 2,5 mm, especialmente entre 0,5 mm y 2 mm.

El agente esferonizante puede ser cualquier material aceptable farmacéuticamente que, junto con el ingrediente activo, se puede esferonizar para formar esferoides. Se prefiere la celulosa microcristalina.

Una celulosa microcristalina adecuada es, por ejemplo, el material vendido como Avicel PH 101 (marca comercial, FMC Corporation). Según un aspecto preferido de la presente invención, las esferoides recubiertas de una película contienen entre un 70% y un 99% (en peso), especialmente entre un 80% y un 95% (en peso), del agente esferonizante, especialmente celulosa microcristalina.

Además del ingrediente activo y el agente esferonizante, las esferoides también pueden contener un aglutinante. Los aglutinantes adecuados, tales como polímeros solubles en agua, de baja viscosidad, serán bien conocidos para aquellos expertos en la técnica farmacéutica. No obstante, se prefiere la hidroxialquilcelulosa de alquilo inferior soluble en agua, tal como la hidroxipropilcelulosa. Adicionalmente (o como alternativa) las esferoides pueden contener un polímero insoluble en agua, especialmente un polímero acrílico, un copolímero acrílico, tal como un copolímero de ácido metacrílico-acrilato de etilo, o etilcelulosa.

Las esferoides preferentemente se recubren con una película con un material que permite la liberación de la oxicodona (o sal) a una tasa controlada en un medio acuoso. El recubrimiento pelicular se escoge de manera que consigue, en combinación con los otros ingredientes, la tasa de liberación in vitro resumida anteriormente (una liberación de entre el 12,5% y el 42,5% (en peso) después de 1 hora, etcétera).

El recubrimiento pelicular incluirá generalmente un material insoluble en agua tal como

- (a) una cera, bien sola o mezclada con un alcohol graso,
- (b) goma laca o ceína,
- (c) celulosa insoluble en agua, especialmente etilcelulosa,
- (d) un polimetacrilato, especialmente Eudragit[®].

Preferentemente, el recubrimiento pelicular comprende una mezcla del material insoluble en agua y un material soluble en agua. La relación del material insoluble en agua con respecto al soluble en agua está determinada, entre otros factores, por la tasa de liberación requerida y las características de solubilidad de los materiales seleccionados.

El material soluble en agua puede ser, por ejemplo, polivinilpirrolidona o, más preferentemente, una celulosa soluble en agua, especialmente hidroxipropilmetilcelulosa.

Entre las combinaciones adecuadas de materiales insolubles en agua y solubles en agua para el recubrimiento pe-45 licular se incluyen goma laca y polivinilpirrolidona o, más preferentemente, etilcelulosa e hidroxipropilmetilcelulosa.

Para facilitar la preparación de una forma sólida de dosificación oral de liberación controlada según esta invención se proporciona, en otro aspecto de la presente invención, un proceso para la preparación de una forma sólida de dosificación oral de liberación controlada según la presente invención que comprende la incorporación de hidromorfona o una sal de la misma en una matriz de liberación controlada. La incorporación en la matriz se puede efectuar, por ejemplo

- (a) formando gránulos que comprenden por lo menos una hidroxialquilcelulosa soluble en agua y oxicodona o una sal de oxicodona.
 - (b) mezclando la hidroxialquilcelulosa que contiene gránulos con por lo menos un alcohol alifático C_{12} - C_{36} , y
- (c) opcionalmente, comprimiendo y conformando los gránulos. Preferentemente, los gránulos se forman granulando en húmedo la hidroxialquilcelulosa/oxicodona con agua. En una realización particularmente preferida de este proceso, la cantidad de agua añadida durante la etapa de granulación en húmedo está preferentemente entre 1,5 y 5 veces, especialmente entre 1,75 y 3,5 veces, el peso seco de la oxicodona.

La presente forma sólida de dosificación oral de liberación controlada se puede preparar también en forma de esferoides recubiertas de una película, mediante

(a) realizar una mezcla que comprende oxicodona o una sal de oxicodona y un agente esferonizante no soluble en agua,

6

15

30

25

- (b) extrudiendo la mixtura mezclada para proporcionar un extrudido,
- (c) esferonizando el extrudido hasta que se forman esferoides, y
- 5 (d) recubriendo las esferoides con un recubrimiento pelicular.

A continuación se describirán, únicamente a modo de ejemplo, la presente forma sólida de dosificación oral de liberación controlada y los procesos para su preparación.

O Descripción detallada de las realizaciones preferidas

Los siguientes ejemplos ilustran varios aspectos de la presente invención. No se deben considerar en absoluto como limitativos de las reivindicaciones bajo ningún aspecto.

Ejemplo 1

15

(Comparativo)

20 Comprimidos de 30 mg de HCl de Oxicodona de Liberación Controlada - Fabricación Acuosa

Las cantidades requeridas de hidrocloruro de oxicodona, lactosa secada por atomización, y Eudragit[®] RS PM se transfieren a un mezclador del tamaño adecuado, y se mezclan durante aproximadamente 5 minutos. Mientras los polvos se mezclan, la mezcla se granula con el agua suficiente como para producir una masa granular húmeda. A continuación los gránulos se secan en una secadora de lecho fluidizado a 60°C, y seguidamente se hacen pasar a través de un tamiz de malla 8. Después de esto, los gránulos se vuelven a secar y se empujan a través de un tamiz de malla 12. La cantidad requerida de alcohol estearílico se funde a aproximadamente entre 60 y 70°C, y mientras los gránulos se mezclan, se añade el alcohol estearílico fundido. Los gránulos tibios se devuelven al mezclador.

Los gránulos recubiertos se retiran del mezclador y se dejan enfriar. A continuación los gránulos se hacen pasar a través de un tamiz de malla 12. Seguidamente el granulado se lubrica mezclando la cantidad requerida de talco y estearato de magnesio en un mezclador adecuado. Los comprimidos se comprimen a 375 mg en peso en una máquina adecuada de formación de comprimidos. La fórmula para los comprimidos del Ejemplo 1 se expone a continuación en la Tabla 1:

TABLA 1

Fórmula de comprimidos de 30 mg de HCl de Oxicodona

40

35

30

	Componente	mg/comprimido	<u>% (en peso)</u>
	Hidrocloruro de oxicodona	30,0	8
45	Lactosa (secada por atomización)	213,75	57
	Eudragit [®] RS PM	45,0	12
	Agua purificada	c.s*	
50	Alcohol estearílico	75,0	20
	Talco	7,5	2
	Estearato de magnesio	3,75	1
55	Total:	375,0	100

*Utilizada en la fabricación y permanece en el producto final únicamente como cantidad residual.

60

A continuación, se prueban los comprimidos del Ejemplo 1 en disolución a través del Método de Cesta de la USP, a 37°C, 100 RPM, la primera hora en 700 ml de fluido gástrico con un pH de 1,2, y seguidamente se cambió a 900 ml con un 7,5. Los resultados se exponen a continuación en la Tabla 2:

TABLA 2 Disolución de Comprimidos de Liberación Controlada de 30 mg de Oxicodona

5		
	<u>Tiempo</u>	% Oxicodona Disuelta
	1	33,1
10	2	43,5
	4	58,2
	8	73,2
15	12	81,8
	18	85,8
	24	89,2

Ejemplo 2

20

2.5

(Comparativo)

Comprimidos de 10 mg de HCl de Oxicodona de Liberación Controlada - Fabricación Orgánica

Las cantidades requeridas de hidrocloruro de oxicodona y lactosa secada por atomización se transfieren a un mezclador de un tamaño adecuado y se mezclan durante aproximadamente 8 minutos. Aproximadamente el 40 por ciento del polvo de Eudragit[®] RS PM requerido se dispersa en etanol. Mientras se mezclan los polvos, dichos polvos se granulan con la dispersión y la mezcla continúa hasta que se forma una masa granular húmeda. Si es necesario se añade etanol adicional para alcanzar el punto final de granulación. La granulación se transfiere a una secadora de lecho fluidizado y se seca a 30°C; y a continuación se hace pasar a través de un tamiz de malla 12. El Eudragit[®] RS PM restante se dispersa en un disolvente de 90 partes de etanol y 10 partes de agua purificada; y se pulveriza sobre los gránulos en el granulador/secadora de lecho fluidizado a 30°C. Seguidamente, el granulado se hace pasar a través de un tamiz de malla 12. La cantidad requerida de alcohol estearílico se funde a entre aproximadamente 60 y 70°C. Los gránulos tibios se devuelven al mezclador. Mientras se produce la mezcla, se añade el alcohol estearílico fundido. Los gránulos recubiertos se retiran del mezclador y se dejan enfriar. Después de esto, se hacen pasar a través de un tamiz de malla 12.

Seguidamente, el granulado se lubrica mezclando las cantidades requeridas de talco y estearato de magnesio en un mezclador adecuado. A continuación el granulado se comprime en comprimidos de 125 mg en una máquina adecuada de formación de comprimidos.

La fórmula para los comprimidos del Ejemplo 2 (oxicodona de liberación controlada de 10 mg) se expone a continuación en la Tabla 3:

TABLA 3

Fórmula de Comprimidos de Liberación Controlada de 10 mg de HCl de Oxicodona

55			<u>Porcentaje</u>
	<u>Componente</u>	mg/comprimido	(en peso)
	Hidrocloruro de oxicodona	10,00	8

65

	Lactosa (secada por atomización)	71,25	57
	Eudragit [®] RS PM	15,00	12
5	Etanol	c.s.*	
3	Agua purificada	c.s.*	
	Alcohol estearílico	25,00	20
10	Talco	2,50	2
	Estearato de magnesio	<u>1,25</u>	1_
	Total:	125,00 mg	100

^{*}Utilizados únicamente en la fabricación y permanecen en el producto final solamente como cantidad residual.

A continuación se prueban los comprimidos del Ejemplo 2 en disolución a través del Método de Cesta de la USP, a 37°C, 100 RPM, la primera hora en 700 ml de fluido gástrico simulado (pH 1,2) y seguidamente se cambia a 900 ml con un pH de 7,5.

Los resultados se exponen a continuación en la Tabla 4:

TABLA 4

Disolución de Comprimidos de Liberación Controlada de 10 mg de Oxicodona

30	<u>Hora</u>	<u>% disuelto</u>
	1	35,9
	2	47,7
35	4	58,5
	8	67,7
	12	74,5
40	18	76,9
	24	81,2

Ejemplos 3 - 4

45

65

15

20

(Comparativo)

Comprimidos de 10 y 20 mg de Oxicodona de Liberación Controlada (Fabricación Acuosa)

Se combinan Eudragit® RS 30D y Triacetin® mientras se hacen pasar a través de un tamiz de malla 60, y se mezclan con una cizalladura baja durante aproximadamente 5 minutos o hasta que se observa una dispersión uniforme.

Seguidamente, las cantidades adecuadas de HCl de oxicodona, lactosa, y povidona se sitúan en un recipiente granulador/secador de lecho fluidizado (FBD), y la suspensión se pulveriza sobre el polvo en el lecho fluidizado. Si es necesario, después de la pulverización, la granulación se hace pasar a través de un tamiz de número 12 para reducir los grumos. La granulación seca se sitúa en un mezclador.

Mientras tanto, la cantidad requerida de alcohol estearílico se funde a una temperatura de aproximadamente 70°C. El alcohol estearílico fundido se incorpora a la granulación mientras se mezcla. La granulación encerada se transfiere a un granulador/secadora de lecho fluidizado o a unas bandejas y se deja enfriar a temperatura ambiente o inferior. A continuación la granulación enfriada se hace pasar a través de un tamiz del número 12. Después de esto, la granulación encerada se sitúa en un mezclador/licuador y se lubrica con las cantidades requeridas de talco y estearato de magnesio durante aproximadamente 3 minutos, y a continuación el granulado se comprime en comprimidos de 125 mg en una máquina adecuada de formación de comprimidos.

La fórmula para los comprimidos del Ejemplo 3 se expone a continuación en la Tabla 5:

TABLA 5 Fórmula de Comprimidos de 10 mg de Oxicodona de Liberación Controlada

5	<u>Componente</u>	mg/comprimido	% (en peso)
	Hidrocloruro de oxicodona	10,0	8,0
	Lactosa (secada por atomización)	69,25	
10	Povidona	5,0	4,0
	Eudragit® RS 30D (sólidos)	10,0*	8,0
	Triacetin®	2,0	1,6
15	Alcohol estearílico	25,0	20,0
	Talco	2,5	2,0
	Estearato de magnesio	1,25	1,0
20	Total:	125,0	100,0

*Aproximadamente una dispersión acuosa de Eudragit® RS 30D de 33,33 mg es equivalente a 10 mg de Eudragit® RS 30D de sustancia seca.

TABLA 6

Disolución de Comprimidos de Liberación Controlada de 10 mg de Oxicodona

	<u>Hora</u>	% Oxicodona Disuelta
25	1	38,0
35	2	47,5
	4	62,0
40	8	79,8
40	12	91,1
	18	94,9
45	24	98,7

30

50

La fórmula para los comprimidos del Ejemplo 4 se expone a continuación en la Tabla 7:

TABLA 7

Fórmula de Comprimidos de 20 mg de Oxicodona de Liberación Controlada

	3	
	Componente	mg/Comprimido
	Hidrocloruro de oxicodona	20,0
55	Lactosa (secada por atomización)	59,25
	Povidona	5,0
60	Eudragit® RS 30D (sólidos)	10,0*
60	Triacetin [®]	2,0
	Alcohol estearílico	25,0
65	Talco	2,5
03	Estearato de magnesio	1,25
	Total:	125,0

A continuación se prueban los comprimidos del Ejemplo 3 en disolución a través del Método de Cesta de la USP a 37°C, 100 RPM, la primera hora en 700 ml de fluido gástrico simulado con un pH 1,2, y seguidamente se cambia a 900 ml con un pH de 7,5. Los resultados se exponen a continuación en la Tabla 6:

A continuación se prueban los comprimidos del Ejemplo 4 en disolución a través del Método de la Cesta de USP a 37°C, 100 RPM, la primera hora en 700 ml de fluido gástrico simulado con un pH 1,2, y seguidamente se cambia a 900 ml con un pH de 7,5. Los resultados se exponen a continuación en la Tabla 8:

TABLA 8

Disolución de Comprimidos de Liberación Controlada de 20 mg de Oxicodona

10	<u>Hora</u>	% Oxicodona Disuelta
	1	31
	2	44
15	4	57
	8	71
	12	79
20	18	86
	24	89

²⁵ Ejemplos 5 - 6

5

(Comparativo)

En el Ejemplo 5, se preparan comprimidos de hidrocloruro de oxicodona de liberación controlada de 30 mg según el proceso expuesto en el Ejemplo 1.

En el Ejemplo 6, se preparan comprimidos de hidrocloruro de oxicodona de liberación controlada de 10 mg según el proceso expuesto en el Ejemplo 2.

Después de esto, se llevan a cabo estudios de la disolución de los comprimidos de los Ejemplos 5 y 6 con unos niveles diferentes de pH, a saber, pH 1,3, 4,56, 6,88 y 7,5.

Los resultados se proporcionan a continuación en las Tablas 9 y 10:

45

40

30

TABLA 9

Ejemplo 5

Porcentaje de los Comprimidos de 30 mg de HCl de Oxicodona
Disuelto a lo Largo del Tiempo

50	рН	1	2	4	8	12	18	24
	1,3	29,5	43,7	61,8	78,9	91,0	97,0	97,1
55	4,56	34,4	49,1	66,4	82,0	95,6	99,4	101,1
	6,88	33,8	47,1	64,4	81,9	92,8	100,5	105,0
60	7,5	27,0	38,6	53,5	70,0	81,8	89,7	96,6

TABLA 10
Ejemplo 6

Porcentaje de los Comprimidos de 10 mg de HCl de Oxicodona Disuelto a lo Largo del Tiempo

10	рН	1	2	4	8	12	18	24
	1,3	25,9	41,5	58,5	73,5	85,3	90,7	94,2
15	4,56	37,8	44,2	59,4	78,6	88,2	91,2	93,7
	6,88	34,7	45,2	60,0	75,5	81,4	90,3	93,9
20	7,5	33,2	40,1	51,6	66,3	75,2	81,7	86,8

Ejemplos 7 - 12

5

En los Ejemplos 7 a 12, se prepararon comprimidos de HCl de oxicodona de 4 mg y 10 mg según las formulaciones y los procedimientos expuestos en la patente U.S. No. 4.990.341 del cesionario.

En el Ejemplo 7, se granuló en húmedo hidrocloruro de oxicodona (10,00 gm) con monohidrato de lactosa (417,5 gm) e hidroxietilcelulosa (100,00 gm), y los gránulos se tamizaron a través de un tamiz de malla 12. A continuación, los gránulos se secaron en una secadora de lecho fluidizado a 50°C y se tamizaron a través de un tamiz de malla 16.

A la oxicodona calentada que contenía gránulos se le añadió alcohol cetoestearílico fundido (300,0 gm), y todo ello se mezcló minuciosamente. La mezcla se dejó enfriar al aire, se volvió a granular y se tamizó a través de un tamiz de malla 16.

A continuación, se añadió talco purificado (15,0 gm) y estearato de magnesio (7,5 gm) y se mezclaron con los gránulos. A continuación, los gránulos se comprimieron en comprimidos.

El Ejemplo 8 se prepara de la misma manera que el Ejemplo 7; no obstante, la formulación incluye 10 mg de HCl de oxicodona/comprimido. Las fórmulas para los Ejemplos 7 y 8 se exponen respectivamente en las Tablas 11 y 12.

TABLA 11 Formulación del Ejemplo 7

50	<u>Ingrediente</u>	mg/Comprimido	g/Lote	
50	Hidrocloruro de oxicodona	4,0	10,0	
	Monohidrato de lactosa	167,0	417,5	
55	Hidroxietilcelulosa	40,0	100,0	
33	Alcohol cetostearílico	120,0	300,0	
	Talco purificado	6,0	15,0	
60	Estearato de magnesio	3,0	7,5	

65

35

TABLA 12 Formulación del Ejemplo 8

3			
	<u>Ingrediente</u>	mg/Comprimido	g/Lote
	Hidrocloruro de oxicodona	10,0	25,0
10	Monohidrato de lactosa	167,0	417,5
	Hidroxietilcelulosa	40,0	100,0
	Alcohol cetostearílico	120,0	300,0
15	Talco	6,0	15,0
	Estearato de magnesio	3,0	7,5

En el Ejemplo 9, se preparan comprimidos de liberación controlada de HCl de oxicodona de 4 mg según la fórmula del excipiente citada en el Ejemplo 2 de la patente U.S. nº 4.990.341. El procedimiento de fabricación es el mismo que se ha expuesto anteriormente en los Ejemplos 7 y 8. El Ejemplo 10 se prepara según el Ejemplo 9, excepto que se incluyen 10 mg de HCl de oxicodona por comprimido. Las fórmulas para los Ejemplos 9 y 10 se exponen respectivamente en las Tablas 13 y 14.

TABLA 13
Formulación del Ejemplo 9

30	<u>Ingrediente</u>	mg/Comprimido	g/Lote	
	Hidrocloruro de oxicodona	4,0	10,0	
	Lactosa anhidra	167,0	417,5	
35	Hidroxietilcelulosa	30,0	75,0	
	Alcohol cetoestearílico	90,0	225,0	
	Talco	6,0	15,0	
40	Estearato de magnesio	3,0	7,5	

TABLA 14

Formulación del Ejemplo 10

25

	<u>Ingrediente</u>	mg/Comprimido	g/Lote
50	Hidrocloruro de oxicodona	10,0	25,0
	Lactosa hidratada	167,0	417,5
	Hidroxietilcelulosa	30,0	75,0
55	Alcohol cetoestearílico	90,0	225,0
	Talco	6,0	15,0
60	Estearato de magnesio	3,0	7,5

En el Ejemplo 11 comparativo, se preparan comprimidos de liberación controlada de 4 mg de oxicodona con la misma fórmula del excipiente citada en el Ejemplo 3 de la patente U.S. No. 4.990.341.

Se granuló en húmedo hidrocloruro de oxicodona (32,0 gm) con monohidrato de lactosa (240,0 gm), hidroxietil-celulosa (80,0 gm) y copolímero de ácido metacrílico (240,0 gm, Eudragit® L-100-55), y los gránulos se tamizaron a través de un tamiz de malla 12. A continuación, los gránulos se secaron en una Secadora de Lecho Fluidizado a 50°C y se hicieron pasar a través de un tamiz de malla 16.

A la oxicodona calentada que contenía gránulos se le añadió alcohol cetoestearílico fundido (240,0 gm), y el conjunto se mezcló minuciosamente. La mezcla se dejó enfriar al aire, se volvió a granular y se tamizó a través de un tamiz de malla 16. A continuación, los gránulos se comprimieron en comprimidos.

El Ejemplo 12 comparativo se prepara de forma idéntica al Ejemplo 11, excepto que se incluyen 10 mg de HCl de oxicodona por comprimido. Las formulaciones para los Ejemplos 11 y 12 se exponen respectivamente en las Tablas 15 y 16.

TABLA 15
Formulación del Ejemplo 11

	<u>Ingrediente</u>	mg/Comprimido	g/Lote
15	Hidrocloruro de oxicodona	4,0	32,0
	Monohidrato de lactosa	30,0	240,5
	Hidroxietilcelulosa	10,0	80,0
20	Copolímero de ácido metacrílico	30,0	240,0
	Alcohol cetoestearílico	30,0	240,0

25 TABLA 16 Formulación del Ejemplo 12

10

45

20	<u>Ingrediente</u>	mg/Comprimido	g/Lote
30	Hidrocloruro de oxicodona	10,0	80,0
	Monohidrato de lactosa	30,0	240,5
35	Hidroxietilcelulosa	10,0	80,0
	Copolímero de ácido metacrílico	30,0	240,0
	Alcohol cetoestearílico	30,0	240.0

Seguidamente, con los comprimidos de los Ejemplos 7 a 12 se llevaron a cabo estudios de disolución utilizando el método de cesta de la USP según se describe en la Farmacopea XXII de U.S. (1990). La velocidad era de 100 rpm, el medio era fluido gástrico simulado durante la primera hora seguido por fluido intestinal simulado a partir de entonces, a una temperatura de 37°C. Los resultados se ofrecen en la Tabla 17.

TABLA 17
Estudios de disolución de los ejemplos 7 - 12

50	Tiempo	% Oxicodona Disuelta					
	(horas)	Ej. 7	Ej. 8	Ej. 9	Ej. 10	Ej. 11	Ej. 12
55	1	23,3	25,5	28,1	28,3	31,3	40,9
	2	35,6	37,5	41,5	43,2	44,9	55,6
60	4	52,9	56,4	61,2	63,6	62,1	74,2
	8	75,3	78,2	83,7	88,0	82,0	93,9
65	12	90,7	94,5	95,2	100,0	91,4	100,0

Ejemplos 13 - 16

Estudios clínicos

10

En los Ejemplos 13 a 16, se llevaron a cabo estudios de biodisponibilidad cruzados aleatorios empleando la formulación de los Ejemplos 2 (fabricación orgánica) y 3 (fabricación acuosa).

En el Ejemplo 13, se llevó a cabo un estudio de dosis única en ayuno/con alimentación sobre 24 sujetos con comprimidos de oxicodona preparados según el Ejemplo 3.

En el Ejemplo 14, se llevó a cabo un estudio en régimen permanente sobre 23 sujetos después de 12 horas con comprimidos de oxicodona preparados según el Ejemplo 2, y se comparó con una disolución de liberación inmediata de oxicodona de 5 mg.

En el Ejemplo 15, se llevó a cabo un estudio de dosis única sobre 22 sujetos utilizando comprimidos de oxicodona preparados según el Ejemplo 3, y se comparó con una disolución de liberación inmediata de oxicodona de 20 mg.

En el Ejemplo 16, se llevó a cabo un estudio de dosis única de 12 sujetos utilizando 3 comprimidos de oxicodona de 10 mg preparados según el Ejemplo 3, y se comparó con una disolución de liberación inmediata de oxicodona de 30 mg.

Los resultados de los Ejemplos 13 a 16 se exponen en la Tabla 18.

TABLA 18

			AUC	Cmax	Tmax
30	<u>Ejemplo</u>	<u>Dosificación</u>	ng/ml/h	ng/ml	<u>h</u>
	13	10 mg LC en ayuno	63	6,1	3,8
35		10 mg LC alimentados	68	7,1	3,6
	14	5 mg LI q6h	121	17	1,2
40		10 mg LC q12h	130	17	3,2
	15	20 mg Ll	188	40	1,4
45		2 x 10 mg LC	197	18	2,6
	16	30 mg LI	306	53	1,2
50		3 x 10 mg LC	350	35	2,6
		30 mg LC	352	36	2,9

LI indica disolución de oxicodona de liberación inmediata. LC indica comprimidos de liberación controlada.

Ejemplo 17

Estudios clínicos

60

55

En el Ejemplo 17, un estudio aleatorio, doble ciego, de dosis única, determinó la eficacia analgésica relativa, la aceptabilidad, y la duración relativa de la acción de una administración oral de oxicodona de liberación controlada de 10, 20 y 30 mg preparada según la presente invención (OXI LC) en comparación con la oxicodona de liberación inmediata de 15 mg (OXI LI), oxicodona de liberación inmediata de 10 mg en combinación con acetaminofén de 650 mg (OXI LI/APAP) y placebo en 180 pacientes con dolor moderado o severo después de una cirugía abdominal o ginecológica. Los pacientes valoraron su intensidad del dolor y alivio del dolor cada hora durante hasta 12 horas después de la dosis. Los tratamientos se compararon utilizando escalas estándares para la intensidad y el alivio del dolor, y el comienzo y la duración del alivio del dolor.

Todos los tratamientos activos fueron significativamente superiores al placebo para muchas de las mediciones realizadas cada hora, y para las diferencias de intensidad de dolor sumadas (SPID) y el alivio total del dolor (TOTPAR). Se observó una respuesta a la dosis de entre los 3 niveles de dosis de OXI LC para el alivio del dolor y la diferencia de la intensidad del dolor de pico (PID), siendo la OXI LC de 20 mg y 30 mg significativamente mejores que la dosis de 10 mg. La OXI LI fue significativamente superior a la OXI LC de 10 mg a 1 y 2 h. La OXI LI/APAP fue significativamente superior a las 3 dosis de OXI LC a 1 h, y a la OXI LC de 10 mg entre las 2 y las 5 h. El tiempo de comienzo fue significativamente más corto para los grupos de tratamiento de OXI LI y OXI LI/APAP en comparación con los 3 tratamientos de OXI LC. Las funciones de distribución para la duración del alivio revelaron una duración significativamente más prolongada del alivio para las tres dosis de OXI LC que para la OXI LI y la OXI LI/APAP. No se reportaron experiencias adversas serias. Los resultados se reportan más particularmente a continuación en la Tabla 19.

TABLA 19

Disposición de los pacientes

15

	GRUPO DE TRATAMIENTO						
	OXI LI			OXI LC-			
	15 mg PL	ACEBO	10 mg	20 mg	30 mg	2 PERC*	TOTAL
Inscritos y aleatorios pa-							
ra el tratamiento del es-							
tudio	31	31	30	30	30	30	182
Entraron en la fase de							
tratamiento del estudio	31	31	30	30	30	30	182
Completaron el estudio	31	30	30	30	30	30	181
Interrumpieron el estu-				_			-
dio	0	1	0	0	0	0	1
Excluidos del análisis de							
eficacia:							
- Vómitos antes de 1							
hora tras la dosis	0	1	0	0	0	0	1
- Asistencia recibida in-							
voluntariamente durante							
el estudio	1	0	0	0	0	0	1
Población del análisis:							
- Evaluable en cuanto a							
seguridad y eficacia	30	30	30	30	30	30	180
- Evaluable en cuanto a							
seguridad	31	31	30	30	30	30	182

16

* 2 comprimidos de Percocet®

En las Figuras 1 a 4 se muestran las curvas de tiempo-efecto para la intensidad del dolor, las diferencias de intensidad del dolor y el alivio del dolor. La OXI LC de 10 mg tenía unas puntuaciones de intensidad del dolor significativamente menores (p < 0,05) que los pacientes tratados con placebo entre las 3 y las 11 horas y unas puntuaciones de dolor menores que la OXI LI de 15 mg y el Percocet® a las 10 horas. La OXI LC de 20 mg tenía unas puntuaciones de intensidad del dolor significativamente menores (p < 0,05) en comparación con el placebo entre las 2 y las 11 horas y unas puntuaciones de dolor significativamente menores (p < 0,05) que la OXI LC de 10 mg, la OXI LI de 15 mg, y el Percocet entre las 9 y las 11 horas. La OXI LC de 30 mg tenía unas puntuaciones de intensidad del dolor significativamente menores (p < 0,05) que el placebo entre las 2 y las 11 horas y unas puntuaciones de dolor menores que la OXI LC de 10 mg a las 2, 3 y 5 horas, y unas puntuaciones menores que el Percocet[®] a las 10 horas.

Para las puntuaciones de alivio del dolor en cada hora en escalas analógicas categóricas y visuales (CAT y VAS), la OXI LC de 10 mg tenía puntuaciones de alivio del dolor significativamente mayores (p < 0,05) que el placebo entre las 3 y las 11 horas y puntuaciones de alivio mayores que la OXI LI y el Percocet[®] a las 10 horas (y el Percocet[®] a las 11 horas). La OXI LC de 20 mg tenía puntuaciones de alivio significativamente mayores (p < 0,05) que el placebo entre las 2 y las 12 horas y puntuaciones de alivio mayores que el Percocet® entre las 9 y las 12 horas. Además, la OXI LC tenía un alivio del dolor significativamente mayor (p < 0,05) que la OXI LI entre las 10 y las 12 horas. La OXI LC de 30 mg tenía puntuaciones de alivio del dolor significativamente mayores (p < 0,05) que el placebo entre las 2 y las 12 horas y puntuaciones mayores que el Percocet[®] entre las 9 y las 12 horas y la OXI LI de 15 mg a las 10 horas.

Cada grupo de tratamiento era significativamente mejor (p < 0.05) que el placebo con respecto a la suma de las diferencias de intensidad del dolor (SPID) y el alivio total del dolor (TOTPAR).

La duración del alivio del dolor medida con el método del cronómetro por el paciente mostró que la OXI LC de 10 mg, 20 mg y 30 mg tenía una duración de la acción significativamente más larga (p < 0,05) en comparación con la OXI LI de 15 mg y 2 comprimidos de Percocet[®]. Además, las tres formulaciones de liberación controlada tenían unos tiempos para la remedicación significativamente más largos (p < 0.05) en comparación con el Percocet[®].

Antes de la remedicación, un total de 104 (57%) de los pacientes reportaron 120 experiencias adversas. Las más comunes fueron somnolencia, fiebre, mareo y dolor de cabeza.

30

Sobre la base de los resultados de este estudio se concluye que las formulaciones de oxicodona de liberación controlada de la presente invención alivian el dolor postoperatorio de moderado a severo, por ejemplo, debido a la cirugía abdominal o ginecológica en las mujeres. Se ha observado una respuesta a la dosis en la que el placebo < 10 mg < 20 mg < 30 mg de OXI LC después de una dosis única. El comienzo de la acción se produjo en una hora, observándose los efectos de pico entre las 2 y las 5 horas y una duración del efecto comprendida entre 10 y 12 horas. En la situación de dolor crónico la dosificación en régimen permanente puede prolongar este efecto. Se esperan efectos secundarios y los mismos se tratan fácilmente. El dolor de cabeza puede estar relacionado con la dosis. Se reportó sobre la existencia de mareo y somnolencia.

La OXI LI de 15 mg tiene un efecto de pico intermedio en comparación con la oxicodona de liberación controlada. Su duración de la acción es más corta (de 6 a 8 horas). El Percocet® es bastante eficaz en términos de comienzo, efecto de pico y seguridad. La duración de la acción es de 6 a 8 horas.

45

En resumen, la OXI LC resultó ser claramente un analgésico oral eficaz, con un comienzo más lento pero una duración del efecto mayor que la OXI LI o bien la OXI LI/APAP.

Ejemplo 18

Estudios clínicos

50

En el Ejemplo 18, se llevó a cabo un ensayo cruzado en régimen permanente en 21 sujetos varones normales comparando

a. 10 mg de OXI LC administrada cada 12 horas (q12h); y

55

b. 5 mg de una disolución oral de Roxicodona[®] (ROX) administrada cada 6 horas (q6h).

El tratamiento (b) era el estándar de referencia del estudio. La edad media era de 34 años, la altura de 176 cm y el peso de 75 kg. No se observaron características inusuales sobre el grupo.

60

La Figura 5 muestra las concentraciones plasmáticas medias de oxicodona para las dos formulaciones durante el intervalo de dosificación de 12 horas. Los resultados se resumen en la Tabla 20 en términos de valores medios, ratios de valores medios e intervalos de confianza del 90%.

Tal como revela una inspección de la Tabla 20, con una excepción, entre las dos formulaciones no se detectaron diferencias significativas. La única excepción es el t_{max} medio para la OXI LC de 3,18 horas que, tal como se esperaba para una formulación de liberación controlada, superaba significativamente la media de la ROX de 1,38 horas. La biodisponibilidad basada en la AUC media (ROX = 100%) era del 104,4% con unos límites de confianza del 90%

comprendidos entre el 90,9 y el 117,9%. De este modo, se cumple la especificación FDA del ±20% de manera que los resultados del estudio respaldan la afirmación de una igual disponibilidad de oxicodona.

TABLA 20

Resumen de los parámetros farmacocinéticos para la oxicodona después de una única dosis de OXI LC (10 mg q12h) y una disolución oral de roxicodona[®] (5 mg q6h)

PARÁMETRO	OXI LC	DISOLUCIÓN DE ROXICODONA	OXI/ ROXI (%)	IC 90 %*
C _{max} (ng/mL)				
MEDIA ARIT. (SD)	15,11(4,69)	15,57(4,41)	97,08	85,59-108,50
MEDIA GEOMÉTRICA	14,43	15,01	95,14	
C _{min} (ng/mL)		<u> </u>		
MEDIA ARIT. (SD)	6,24(2,64)	6,47(3,07)	96,41	80,15-112,74
MEDIA GEOMÉTRICA	5,62	5,83	96,48	
t _{max} (horas)				
MEDIA ARIT. (SD)	3,18(2,21)	1,38(0,71)*	230,17	160,71-298,71
AUC (0 a 12 horas)				
MEDIA ARIT. (SD)	103,50(40,03)	99,10(35,04)	104,44	90,92-117,94
MEDIA GEOMÉTRICA	97,06	93,97	103,29	
% oscilación				
MEDIA ARIT. (SD)	176,36(139,0)	179,0(124,25)	98,53	62,06-134,92
% fluctuación				
MEDIA ARIT. (SD)	108,69(38,77)	117,75(52,47)	92,22	76,81-107,57
Punto final	-			
MEDIA ARIT. (SD)	-1,86(2,78)	-1,86(2,19)	99,97	117,77-22,23

^{*}Intervalo de confianza del 90 %

Ejemplo 19

55

Estudios clínicos

En el Ejemplo 19, veinticuatro sujetos varones, sanos y normales se inscribieron en un estudio cruzado de dos vías, aleatorios, de dosis única, para comparar las concentraciones plasmáticas de oxicodona obtenidas después de la dosificación con dos comprimidos de 10 mg de oxicodona de liberación controlada con respecto a 20 mg (20 ml de 5 mg/5 ml) de solución de hidrocloruro de oxicodona de liberación inmediata (LI). Veintitrés sujetos completaron el estudio y fueron elegibles para el análisis.

⁻⁻ Diferencia significativa p < 0,05

Se determinaron las concentraciones plasmáticas de oxicodona mediante un procedimiento de cromatografía líquida de altas prestaciones. Las medias aritméticas de C_{max} , t_{max} , AUC, y las semividas calculadas a partir de los datos individuales de la concentración plasmática de oxicodona con respecto al tiempo se exponen en la Tabla 21:

TABLA 21

10	Parámetro farmaco- cinético	Producto de referencia Oxicodona LI 20 mg	Producto de prueba Oxicodona LC 2 x 10 mg	F. (%)	Intervalo de confianza del 90 %
15	C _{max} (ng/ml)	41,60	18,62	44,75	32,5-57,0
20	t _{max} (horas)	1,30	2,62	200,83	169,8-232,6
25	AUC (0-36) (mg x h/ml)	194,35	199,62	102,71	89,5-115,9
30	AUC (0 a ∞) (ng x h/ml)	194,38	208,93	107,49	92,9-121,9
	t _{1/2 (elim)} (horas)	3,21	7,98*	249,15	219,0-278,8
35	t _{1/2 (abs)} (horas)	0,35	0,92*	264,17	216,0-310,7

F. % = Biodisponibilidad oral

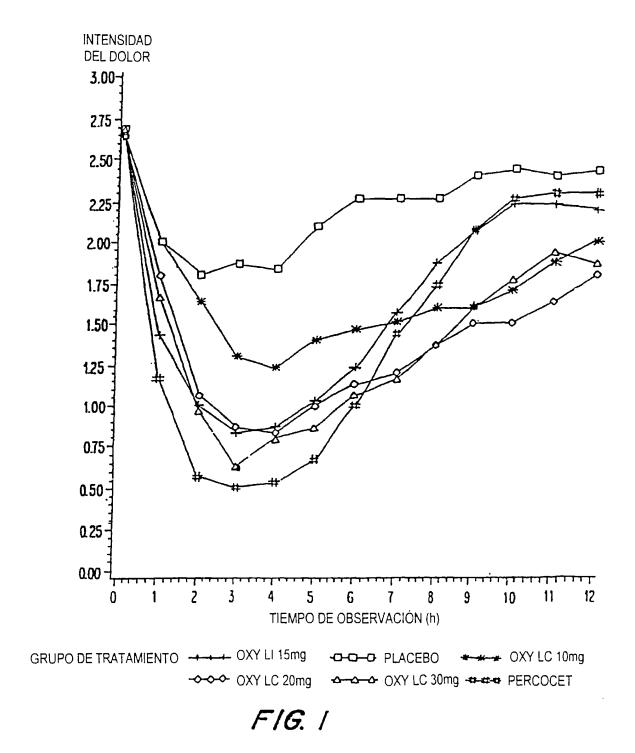
40

(Oxicodona LC 2 x 10 mg/Oxicodona LI 20 mg)

Para C_{max}, t_{max}, t_{1/2 (elim)} y t_{1/2 (abs)} existían diferencias estadísticamente significativas entre la OXI LC y la OXI LI. No existían diferencias estadísticamente significativas entre los dos tratamientos en el ámbito de la absorción [AUC (0,36), AUC (0,∞)]. El intervalo de confianza del 90% para la OXI LC con respecto a la OXI LI estaba comprendido entre 89,5% y 115,9% para la AUC (0,36) y entre 92,9% y 121,9% para AUC (0,∞). Basándose en el análisis del intervalo de confianza del 90%, los comprimidos de oxicodona de liberación controlada eran equivalentes en términos de absorción (AUC 0,36) a la disolución de oxicodona de liberación inmediata. La absorción de la oxicodona de liberación controlada fue más lenta en aproximadamente 1,3 horas. Entre los dos tratamientos no se observaron diferencias estadísticamente significativas con respecto a experiencias adversas, ninguna de las cuales se consideró clínicamente inhabitual para opioides para este tipo de estudio.

Los estudios anteriores demuestran una relación significativa de dosis-respuesta que utiliza las formulaciones de oxicodona de liberación controlada de la presente invención en dosificaciones de 10, 20 y 30 mg que no se desvía con respecto al paralelismo con las pendientes de dosis-respuesta para el MS Contin en estudios diseñados de manera similar bien controlados de la eficacia analgésica del MS Contin, reportados por Kaiko R.S., Van Wagoner D., Brown J., et al., "Controlled-Release Oral Morphine (MS Contin® Tablets, MSC) in Postoperative Pain", Pain Suppl., 5:S149 1990, quienes compararon 30, 60, 90, y 120 mg de MS Contin en comparación con 10 mg de morfina intramuscular y placebo y Bloomfield, et al., "Analgesic Efficacy and Potency of Two Oral Controlled-Release Morphine Preparations", Clinical Pharmacology & Therapeutics, (en prensa), quienes compararon 30 y 90 mg de MS Contin en comparación con 30 y 90 mg de otra preparación de morfina oral de liberación controlada, comprimidos de 30 mg de Oramorph SR.

Los ejemplos proporcionados anteriormente no están destinados a ser exclusivos. Muchas otras variantes de la presente invención serían obvias para los entendidos en la técnica y se considera que se hallan dentro del alcance de las reivindicaciones anexas.


^{*}Estadísticamente significativo (p = 0,0001)

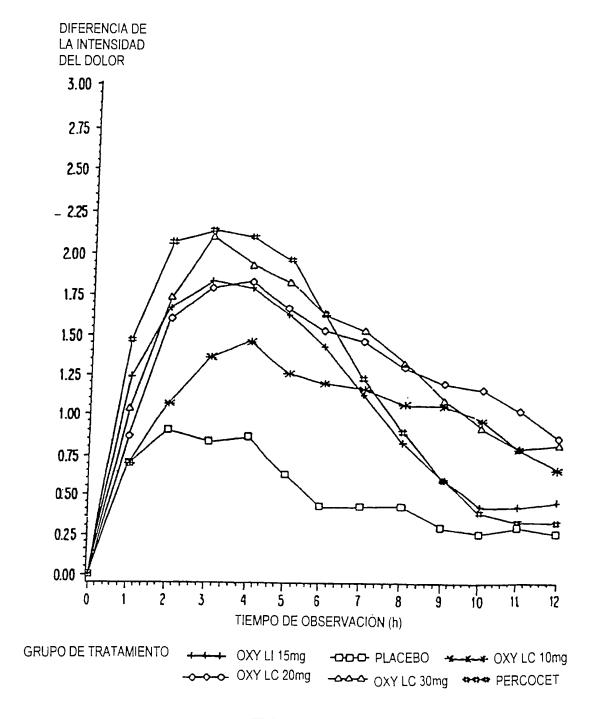
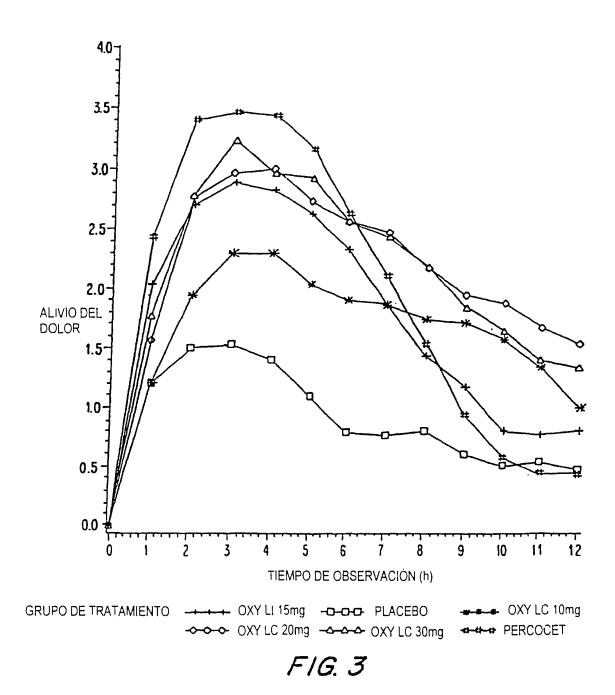
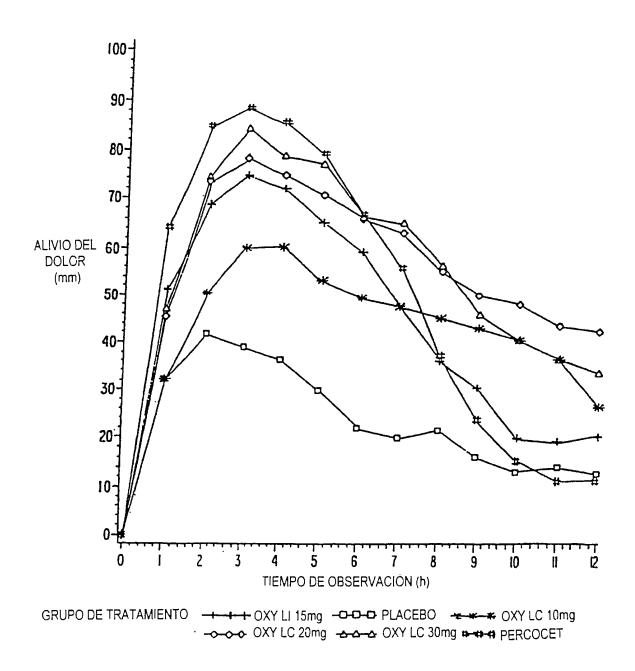
REIVINDICACIONES

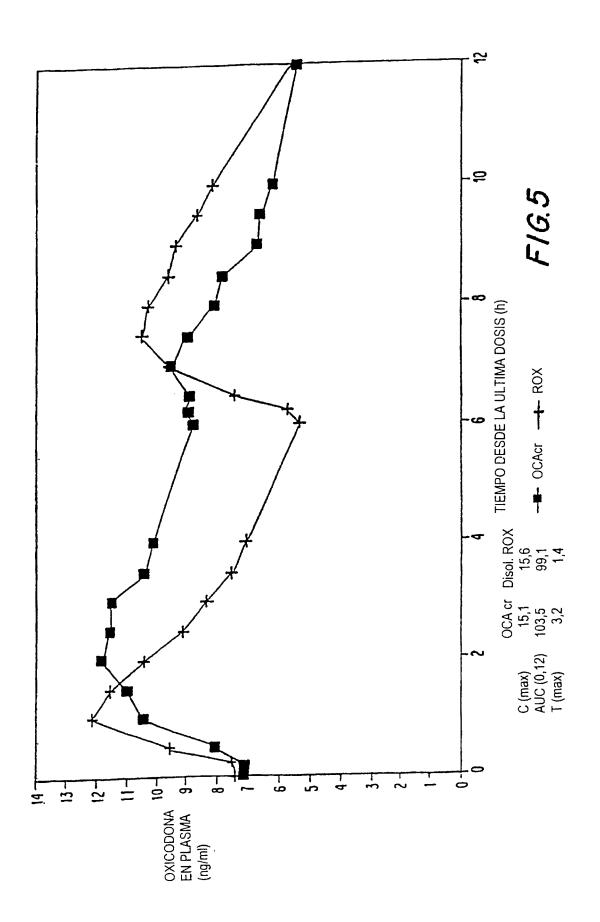
- 1. Utilización de un material de matriz de liberación controlada que comprende un éter de celulosa para la fabricación de una formulación de sal de oxicodona de liberación controlada para administración oral a pacientes humanos, que comprende sal de oxicodona en una cantidad equivalente a entre 10 mg y 40 mg de hidrocloruro de oxicodona, caracterizada porque dicha formulación proporciona una tasa de disolución *in-vitro*, medida con el Método de la Paleta de la USP a 100 rpm en 900 ml de tampón acuoso (pH entre 1,6 y 7,2) a 37°C, entre el 12,5% y el 42,5% (en peso) de sal de oxicodona liberada después de 1 hora, entre el 25% y el 55% (en peso) de sal de oxicodona liberada después de 2 horas, entre el 45% y el 75% (en peso) de sal de oxicodona liberada después de 4 horas y entre el 55% y el 85% (en peso) de sal de oxicodona liberada después de 6 horas, la tasa de disolución *in-vitro* es sustancialmente independiente del pH, de manera que el pico del nivel de plasma de oxicodona obtenido en vivo ocurre entre 2 y 4.5 horas después de la administración de la formulación.
- 2. Utilización de un material de matriz de liberación controlada que comprende un éter de celulosa para la fabricación de una formulación de sal de oxicodona de liberación controlada para administración oral a pacientes humanos, que comprende sal de oxicodona en una cantidad equivalente a entre 10 mg y 160 mg de hidrocloruro de oxicodona, caracterizada porque dicha formulación proporciona una tasa de disolución *in-vitro*, medida con el Método de la Paleta de la USP a 100 rpm en 900 ml de tampón acuoso (pH entre 1,6 y 7,2) a 37°C, entre el 12,5% y el 42,5 (en peso) de sal de oxicodona liberada después de 1 hora, entre el 25% y el 55% (en peso) de sal de oxicodona liberada después de 2 horas, entre el 45% y el 75% (en peso) de sal de oxicodona liberada después de 6 horas, la tasa de disolución *in-vitro* es sustancialmente independiente del pH, de manera que el pico del nivel de plasma de oxicodona obtenido ocurre entre 2 y 4.5 horas después de la administración de la formulación, y caracterizada porque dicha formulación proporciona, en régimen permanente después de una administración repetida en intervalos de 12 horas, una concentración plasmática máxima de oxicodona promediada por encima de los 240 ng/ml entre 2 y 4,5 horas después de la administración y una concentración plasmática mínima promediada por encima de los 120 ng/ml entre 10 y 14 horas después de la administración.
 - 3. Utilización según las reivindicaciones 1 ó 2, caracterizada porque el éter de celulosa es hidroxialquilcelulosa.
 - 4. Utilización según las reivindicaciones 1 ó 2, **caracterizada** porque la hidroxialquilcelulosa es hidroxipropilmetilcelulosa.
- 5. Utilización según una cualquiera de las reivindicaciones anteriores, **caracterizada** porque dicha formulación comprende 10 mg, 20 mg, 40 mg, 80 mg o 160 mg de hidrocloruro de oxicodona.

- 6. Utilización según una cualquiera de las reivindicaciones anteriores, **caracterizada** porque dicha formulación contiene 10 mg de sal de oxicodona.
- 7. Utilización según una cualquiera de las reivindicaciones anteriores, caracterizada porque dicha formulación contiene 20 mg de sal de oxicodona.
 - 8. Utilización según una cualquiera de las reivindicaciones anteriores, **caracterizada** porque dicha formulación contiene 40 mg de sal de oxicodona.
 - 9. Utilización según las reivindicaciones 2 a 8, **caracterizada** porque dicha formulación contiene 80 mg de sal de oxicodona.
- 10. Utilización según las reivindicaciones 2 a 9, **caracterizada** porque dicha formulación contiene 160 mg de sal de oxicodona.
 - 11. Utilización según las reivindicaciones 2 a 10, **caracterizada** porque dicha formulación comprende entre 10 mg y 160 mg de hidrocloruro de oxicodona y es utilizable para controlar el dolor de modo aceptable en sustancialmente todos los pacientes humanos en régimen permanente, después de una administración repetida de entre 10 y 160 mg de hidrocloruro de oxicodona en intervalos de 12 horas.
 - 12. Utilización según las reivindicaciones 1 a 8, **caracterizada** porque dicha formulación comprende entre 10 mg y 40 mg de hidrocloruro de oxicodona y es utilizable para proporcionar un control aceptable del dolor en aproximadamente el 90% de los pacientes humanos en régimen permanente, después de una administración repetida de entre 10 y 40 mg de hidrocloruro de oxicodona en intervalos de 12 horas.
 - 13. Utilización según las reivindicaciones 2 a 10, **caracterizada** porque dicha formulación proporciona, en régimen permanente después de una administración repetida en intervalos de 12 horas, una concentración plasmática máxima promediada de oxicodona de 6 a 240 ng/ml entre 2 y 4,5 horas después de la administración y una concentración plasmática mínima promediada de 3 a 120 ng/ml en vivo entre 10 y 14 horas después de la administración.

14. Utilización según las reivindicaciones 1 a 8, **caracterizada** porque dicha formulación proporciona, en régimen permanente después de una administración repetida en intervalos de 12 horas, una concentración plasmática máxima promediada de oxicodona de 6 a 60 ng/ml entre 2 y 4,5 horas después de la administración y una concentración plasmática mínima promediada de 3 a 30 ng/ml entre 10 y 14 horas después de la administración.

22


FIG.2

24

F/G. 4

