wo 2007/033300 A2 |10 0 0O T R

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O R 0 00

International Bureau

(43) International Publication Date
22 March 2007 (22.03.2007)

(10) International Publication Number

WO 2007/033300 A2

(51) International Patent Classification:
GOG6F 15/18 (2006.01)

(21) International Application Number:
PCT/US2006/035775

(22) International Filing Date:
12 September 2006 (12.09.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/716,615 13 September 2005 (13.09.2005) US

(71) Applicant (for all designated States except US): THE
TRUSTEES OF COLUMBIA UNIVERSITY IN THE
CITY OF NEW YORK [US/US]; 116th Street and

Broadway, New York, NY 10027 (US).

(72)
(75)

Inventors; and

Inventors/Applicants (for US only): LONG, Philip, M.
[US/US]; 35 Coleman Terrace, Tenafly, NJ 07670 (US).
SERVEDIO, Rocco, A. [US/US]; 600 West 113th Street,
Apt. 4F, New York, NY 10025 (US).

(74) Agent: RAGUSA, Paul, A.; Baker Botts L..L..P., 30 Rock-

efeller Plaza, New York, NY 10112-4498 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: SYSTEMS AND METHODS FOR MARTINGALE BOOSTING IN MACHINE LEARNING

/\o/\o

Uo T+l V1, T+1 Vr-1,7+1

The branching program
produced by the boosting algo-
rithm. Each node w;,: is labeled
with a 0/1-valued function his;
left edges correspond to 0 and
right edges to 1.

/\o/\o

VT, T41

output 0 output 1

(57) Abstract: Boosting algorithms are provided for accelerated machine learning in the presence of misclassification noise. In an
exemplary embodiment, a machine learning method having multiple learning stages is provided. Each learning stage may include
partitioning examples into bins, choosing a base classifier for each bin, and assigning an example to a bin by counting the number
of positive predictions previously made by the base classifier associated with the bin.

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775

SYSTEMS AND METHODS FOR MARTINGALE BOOSTING IN MACHINE
LEARNING

SPECIFICATION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of United States provisional
application Serial No. 60/716,615 filed September 13, 2005, which is hereby

incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

The present invention relates to systems and methods for machine

learning.

BACKGROUND OF THE INVENTION

Computational learning or machine learning is about computer
programs or algorithms that automatically improve their performance through
experience over time. Machine learning algorithms can be exploited for automatic
performance improvement through learning in many fields including, for example,
planning and scheduling, bio-informatics, natural language processing, information
retrieval, speech processing, behavior prediction, and face and handwriting
recognition.

An approach to developing useful machine learning algorithms is
based on statistical modeling of data. With a statistical model in hand, probability
theory and decision theory can be used to develop machine learning algorithms.
Statistical models that are commonly used for developing machine learning
algorithms may include, for example, regression, neural network, linear classifier,
support vector machine, Markov chain, and decision tree models. This statistical
approach may be contrasted to other approaches in which training data is used merely
to select among different algorithms or to approaches in whiéh heuristics or common
sense is used to design an algorithm.

In mathematical terms, a goal of machine learning is to be able to ‘
predict the value of a random variable y from a measurement x (e.g., predicting the

value of engine efficiency based on a measurement of oil pressure in an engine). The

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
2

machine learning processes may involve statistical data resampling techniques or
procedures such as bootstrapping, bagging, and boosting, which allow extraction of
additional information from a training data set.

The technique of bootstrapping was originally developed in statistical
data analysis to help determine how much the results extracted from a training data set
might have changed if another random sample had been used instead, or how different
the results might be when a model is applied to new data. In bootstrapping,
resampling is used to generate multiple versions of the training data set (replications).
A separate analysis is conducted for each replication, and then the results are
averaged. If the separate analyses differ considerably from each other, suggesting, for
example, decision tree instability, the averaging will stabilize the results and yield
predictions that are more accurate. In bootstrap aggregation (or bagging) procedures,
each new resample is drawn in the identical way. In boosting procedures, the way a
resample is drawn for the next tree depends on the performance of prior trees.

‘ Although boosting procedures may theoretically yield significant
reduction in predictive error, they perform poorly when error or noise exists in the
training data set. The poor performance of boosting procedures is often a result of
over-fitting the training data set, since the later resampled training sets can over-
emphasize examples that are noise. Further, recent attempts to provide noise-tolerant
boosting algorithms fail to provide acceptable solutions for practical or realistic data
situations, for example, because their methods for updating probabilities can over-
emphasize noisy data examples. Accordingly, a need exists for a boosting procedure
having good predictive characteristics even when applied to practical noisy data sets.

Consideration is now being given to improving prior art systems and
methods for machine learning. Attention is particularly directed to improvinig
boosting procedures. Desirable boosting procedures are noise-tolerant in realistic or

practical data situations.

SUMMARY OF THE INVENTION

Systems and methods are provided for machine learning in the
presence of noise.
In an exemplary embodiment, a machine learning method having

multiple learning stages is provided. Each learning stage may include partitioning

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
3

examples into bins, choosing a base classifier for each bin, and assigning an example
to a bin by counting the number of positive predictions previously made by the base

classifier associated with the particular bin.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features of the invention, its nature, and various advantages
will be more apparent from the following detailed description and the accompanying
drawing in which:

~ FIG. 1 is a schematic illustration of a machine learning branching
program pfoduced by a martingale boosting algorithm in accordance with the
principles of the present invention.

FIG. 2 illustrates a machinellearning process for ranking feeders in an
electrical power distribution system in order of their predicted likelihood of failure, in

accordance with the principles of the present invention.

DETAILED DESCRIPTION

Machine learning systems and methods are provided. The systems and
methods are based on noise-tolerant boosting algorithms. The systems and methods
use boosting techniques that can achieve high accuracy in the presence of
misclassification noise. The boosting algorithms (referred to herein as “martingale”
boosting algorithms) are designed to reweigh data examples so that error rates are
balanced or nearly balanced at each successive learning stage. The error rates are
balanced or nearly balanced in a manner that preserves noise tolerance.

A machine learning system for automated learning using martingale
boosting combines simple predictors into more sophisticated aggregate predictors.
Learning proceeds in stages. At each stage, the algorithm partitions training data
examples into bins. A bin consists of examples that are regarded as roughly
equivalent by the simple predictors chosen in earlier stage. The boosting algorithm
chooses a simple model for each bin. The simple models are chosen so as to ensure
nontrivial accuracy on examples in the bins for each of several types of bins.

An embodiment of the martingale boosting technique ranks items or
objects in order of the likelihood that they have a particular property, behavior or
characteristic. This embodiment has been applied to order power distribution cables

(i-e., feeders) in an electrical power distribution system by how likely they are to fail.

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
4

A machine learning system used for predicting the failure of feeders in
an electrical power distribution system includes a boosting algorithm. Past feeder
failure events are known and the feeders are associated with a plurality of scores that
are predictive of feeder failure. The algorithm processes a list of feeders and the
associated plurality of scores in a number of successive learning stages. At each
learning stage, the list of feeders is partitioned into a number of sublists so that the
past feeder failure events are distributed substantially evenly across the number of
sublists. For each sublist, a predictive score is chosen from the plurality of predictive
scores associated with the objects in the sublist. Next, the feeders in the sublist are
ranked according to the chosen predictive score. Then, the sublists are rec?mbil1ed to
generate a list in which the feeders are ranked according to the predictive scores
chosen for the respective sublists.

An example of the martingale boosting technique concerns the
prediction of binary classifications (i.e., 0 and 1). Here, the simple predictors are
simple binary classifiers (“base classifiers”). Learning proceeds incrementally in
stages. At each stage, data examples are partitioned into bins, and a separate base
classifier is chosen for each bin. A data example is assigned to a bin by counting the
number of positive (i.e., “1”) predictions made by the appropriate base classifiers
from earlier learning stages or iterations. Preferred embodiments of the boosting
techniques are designed to classify an object by a random walk on the number of base
classifiers that are positive predictions. When the error rates are balanced between
false positives and false negatives, and are slightly better than random guessing, more
than half the algorithmic learning steps are in the correct direction (i.e., the data
examples are classified correctly by the boosted classifier).

Certain embodiments of the martingale boosting algorithms achieve
noise tolerance by virtue of the fact that, by design, the probability of a data example
reaching a given bin depends on the predictions made by the earlier base classifiers,
and not on the label of the data example. In particular, the probability of a data
example reaching a given bin, unlike the case in prior art boosting algorithms such as
“Boost-by-Majority” algorithms, does not depend on the number of predictions that
are correct or incorrect.

Certain embodiments of the martingale boosting algorithms also make
it possible to force a standard weak learner to produce a classifier with balanced error

rates in appropriate situations. For example, if decision tree stumps are used as the

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
5

base classifiers, the threshold of the stump may be chosen to balance the error rates on
positive and negative examples. In some embodiments of the inventive martingale
boosting algorithms, the balanced error rates may be promoted directly, for example,
by using decision stumps as base classifiers (“martingale ranking algorithms™). Such
embodiments allow easy adjustment of the threshold required to balance the error
rates on the training data.

The general architecture or framework of a martingale boosting
algorithm is described herein with reference to FIG. 1, which shows the graph
structure of a machine learning branching program produced by the martingale
boosting algorithm. In the figure, each node vi; of the branching program is labeled
with a binary-valued function h;; having values 0 or 1. At each node shown in the

figure, the left edges correspond to 0 and the right edges to 1.

As an aid in understaﬁding the martingale boosting algorithms, it is
useful at this stage in the description to consider the training data examples as being
generated from a probability distribution. Further, it is useful to introduce the
following notation: X is the set of items to be classified, and ¢ : X —{0,1} is the
target concept, which assigns the correct classification to each item. The distribution
over X generating the data is called D. D" denotes the distribution D restricted to the

positive examples {x € X: ¢(x) =1}. Thus, for any event:

Sc{xeX:cx)=1},Prpt[x € S|=Prp [x € S] /PrD[c(x) =1].)

Similarly, D™ denotes D restricted to the negative examples {x € X : ¢(x) = 0}.

The boosting algorithm shown in FIG. 1 works in a series of T stages.
The hypothesis of the boosting algorithm is a layered branching program with T + 1
layers in a grid graph structure, where layer t has t nodes (see FIG. 1). The i-th node
from the left is referred to and labeled as viy, where i ranges from 1 to t-1. For 1<t <
T, each node v;; in layer t has two outgoing edges — a left edge to node i, and a
right edge to node vi+1, 1. In FIG. 1 the left and right edges are labeled 0 and 1,
respectively. Nodes v in layer T+1 have no outgoing edges.

Before stage t of the boosting algorithm begins, each node v; jat levels
1,.. ., t-1is labeled with a 0/1 valued hypothesis function b; ;. In the t-th stage,

hypothesis functions are assigned to each of the t nodes vy jthrough vju, at level t.

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
6

Given an example x e X in stage t, the branching program routes the example by
evaluating ho; on x and then sending the example on the outgoing edge whose label
is ho,1 (%), i.e., sending it to node v g1 o0, 1. The example is then routed through
successive levels in this way until it reaches level t. In other words, when example x
reaches some node vy in level j, it is routed from there via the outgoing edge whose
label is hj (x) to the node Viwije+1. In this fashion, the example x eventually
reaches the node v;; after being evaluated on (t-1) hypotheses, where / is the number
of these (t-1) hypotheses that evaluated to 1 on x.

Thus, in the t-th stage of boosting, given an initial distribution D over
examples x, the hypotheses that have been assigned to nodes at levels 1, . . ., t-1 of the
branching program induce t different distributions Dq s, . . ., Dy, ¢ corresponding to the
t nodes oy, - . ., V.1t in layer t. It will be understood that a random draw x from
distribution Dy, is a draw from D conditioned on x reaching v .

Once all T stages of boosting have been performed, the resulting
branching program routes any example x to some node vo1+; at level T+ 1. Let !
denote the number of hypotheses that evaluated to 1 out of the T hypotheses, which
were evaluated on x. The final classifier computed by the branching program is
simple: given an example x to classify, if the final node vy r+1 that x reaches has [>
T/2, then the output is 1; otherwise the output is 0.

It will be noted that the martingale boosting algorithm described with
reference to FIG. 1 invokes the weak learner t separate times in stage t, once for each
of the t distinct Dy, . . ., Dy corresponding to the t nodes voy, . . »Ve.1 ¢ in layer t. The
hypothesis h;; is not obtained merely by running the weak learner on D;; and taking
the resulting hypothesis to be hiy, but by constructing a total of T(T + 1)/2 weak
hypotheses. Any single example x encounters only T of these hypotheses in its path
through the branching program.

The martingale boosting algorithms are designed to combine predictor
methods for sorted objects into classes, each of which are weak on their own, but
which might be combined to form a strong aggregate predictor. The algorithms may
be modified to combine continuous scores or figures of merit instead of combining
discrete or binary (e.g., yes or no) predictions.

The martingale boosting algorithms of the present invention can be

used for boosting a two-sided weak learner h. For example, ¢ : X — {0,1} may be a

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
7

target function to be learnt with high accuracy with respect to the distribution D over
X. In this example, the distributions D" and D~ are defined with respect to ¢. By
definition, a hypothesis h : X — {0,1} is said to have a two-sided advantage y with
respect to D if it satisfies both:

Prxe pe[h(x) =1] > Y% +y, (2a)
and
Prxe p [h(x)=0]> % +7. (2b)

Such a hypothesis performs noticeably better than random guessing both on positive
examples and on negative examples. A two-sided weak learner h, when invoked on
target concept ¢ and distribution D, outputs a hypothesis with a two-sided advantage
v. The analysis of a standard weak learner may be reduced to the case of the two-
sided model.

The general boosting framework described above with reference to
FIG. 1 can be used to boost a two-sided weak learner h to high accuracy. In a two-
sided boosting scheme (“Basic MartiBoost™), in learning stage t at each node v;; the
two-sided weak learner is run on examples drawn from Dy, which is the distribution
obtained by filtering D to accept only those examples that reach node vi;. The
resulting hypothesis, which has a two-sided advantage y with respect to Djy, is then
used as the hypothesis function h;; labeling node vi;.

In the Basic MartiBoost scheme, let h denote the final branching
program that is constructed by the algorithm. A random example x drawn from D"
(i-e., arandom positive example) is routed through h according to a random walk that
is biased toward the right, and a random example x drawn from D™ is routed through h
according to a random walk that is biased toward the left. Example x is classified by
h according to whether x reaches a final node vt with I >T/2 or I <T/2. This
classification implies that h has high accuracy on both random positive examples and
random negative examples. A random positive example x (i.e., x is distributed
according to D-+) follows a random walk biased to the right. Conversely, a random
negative example follows a random walk biased to the left. For any node v;,
conditioned on positive example x reaching node v,,, x is distributed according to
(Diy)". Consequently, by the definition of two-sided advantage, x goes from node v;,,

to node Vj+1,1+1, with a probability of at least % +y (i.e., x follows a random walk

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
8

biased to the right). Similarly, for any node v;,, a random negative example x that
reaches node v;; will proceed to node vy,t+1 with a probability of at least ¥z +y. Thus
random negative examples follow a random walk biased to the left.

The standard bounds on random walks imply that if T = O (log (1/g) /
v%), then the probability that a random positive example x ends up at a node v,r; is at
most €. The same holds for random negative examples, and thus h has an overall
accuracy at least 1-& with respect to D. Theorem 1 below holds for the two-sided
Basic MartiBoosting algorithm.

Theorem 1. Letyy, v, - . ., Y1 be any sequence of values between 0 and
72. Foreachvaluet=1, ..., T, suppose that each of the t invocations of the weak
learner on distributions D;; with 0 < i < t- 1 yields a hypothesis h;;, which has a two-
sided advantage vy with respect to Dj;. In these conditions, the final output hypothesis

that the Basic MartiBoost algorithm computes will satisfy:
Pty < p+[h(x) # o(x)] < exp(- (Z v)* / 2T)). 3)

For brevity, formal mathematical proofs of Theorem 1 and other
related Theorems 2-6 discussed herein are not included herein. However, formal
mathematical proofs of the theorems, properties, and features of the inventive
martingale boosting algorithms can be found in P. Long and R. Servedio, “Martingale
Boosting,” Eighteenth Annual Conference on Computational Learning Theory
(COLT), 2005, pp. 79-94, which is incorporated by reference herein in its entirety.

The usual assumption made in boosting data analysis is the availability
of access to a standard weak learning algorithm, which when invoked on target
concept ¢ and distribution D outputs a hypothesis h that has an advantage with respect
to D. By definition, a hypothesis h : X — {0,1} is said to have advantage y with

respect to D if it satisfies:

Prye p[h(X) = c(x)] = Y2 +. €))

This assumption is less demanding than the two-sided weak learner considered above.
However, the Basic MartiBoost algorithm for the two-sided weak learner can be
modified to boost a standard weak learner to high accuracy.

The modified algorithm (“MartiBoost™) to boost a weak learner works
as follows: In stage t, at each node v;, the weak learning algorithm is run on D;;,

which is a balanced version of the distribution D;; (i.e., which puts equal weight on

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
9

positive and negative examples). If gi;denotes the hypothesis that the weak learner
returns, the hypothesis h;; that is used to label vi;is given by gi:, namely g;;balanced
with respect to the balanced distribution Dj.

Theorem 2 below holds for the MartiBoosting algorithm.

Theorem 2. Let vy, 72, . . -, ¥ T be any sequence of values between 0
and %. For each valuet=1, ..., T, suppose that each of the t invocations of the weak
learner on balanced distributions Dj, with 0 < i < t- 1, yields a hypothesis gj, which
has advantage y; with respect to the balanced D;;. In these conditions, the final
branching program hypothesis that MartiBoost constructs will satisfy:

Pry e b [h(X) # c(X)] <exp(- (T ¥+ v)° /8T).)

In an exemplary embodiment, the MartiBoost algorithm is run on a
fixed sample. In this case all relevant probabilities can be maintained explicitly in a
look-up table, and then Theorem 2 bounds the training set accuracy of the MartiBoost.
In another exemplary embodiment, the MartiBoost algorithm is given access to an
example oracle EX(c, D). In this version of the algorithm, for efficiency the
execution of the algorithm may be frozen at nodes vi, where it is too expensive to
simulate the balanced distributions D;.

Weak learning in the example oracle EX(c, D) framework may be
defined as follows: Given a target function ¢ : X —{0,1}, an algorithm A is said to be
a weak learner if it satisfies the following property: for any & > 0 and any distribution
D over X, if A is given § and access to EX(c, D), then algorithm A outputs a
hypothesis h : X —{0,1}, which with a probability of at least 1- § satisfies:

Pryxep[h(xX) =c(x)] > % +Y. (6)

By definition, ma(d) is the running time of algorithm A, where one
time step is charged for each invocation of the oracle EX(c, D). In instances where
algorithm A is run using a simulated oracle EX(c, D’), but with access only to oracle
EX(c, D), the running time will be at most ma(8) times the amount of time it takes to
simulate a draw from EX(c, D”) given EX(c, D).

An idealized version of the oracle algorithm (“Sampling MartiBoost”,
or “SMartiBoost”) is designed to work with random examples assuming that all
required probabilities can be computed exactly. For convenience, let r denote all of

the random bits used by all the hypotheses h;;. It may be convenient to think of r as

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
10

an infinite sequence of random bits that is determined before the algorithm starts and
then read off one at a time as needed by the algorithm. In stage t of SMartiBoost, all
nodes at levels t’ <t have been labeled and the algorithm is labeling the t nodes vy, . .
. Vi.1,¢ in layer t. In the following, the probability that Pr x p ([x reaches v;] may be
denoted as pi;. Further, for each b € {0, 1}, the probability that Prycp ([x reaches
vit and the label of x is b] is denoted by pbi,t, sothatpit= poi,t “pt it

In stage t, for each node vi; the SMartiBoost algorithm does the
following operations:

1. If min pego, 1 pb it <&/ T(T+1), then the SMartiBoost algorithm
“freezes” node vi; by labeling it with the bit (1 - b) and making it a terminal node with
no outgoing edges so that any example x which reaches vi; will be assigned label (1 -

b) by the branching program hypothesis.

2. In the converse case min peo, 1y P i¢ > &/ T(T+1), the SMartiBoost
algorithm works just like the MartiBoost algorithm in that it runs the weak learning
algorithm on the balanced version D;; to obtain a hypothesis gi;. The algorithm labels

vig with hiz = g, which is g;; balanced with respect to D;y.

Each node v;; which is frozen in operation (1) above contributes at
most & / T(T+1) to the error of the final branching program hypothesis. The total error
induced by all frozen nodes is at most € / 2, since there are at most T(T + 1)/2 nodes in
the branching program. Conversely, in the case min pe o, 13 p° it > e/ T(T+1) for any
node v;; which is not frozen, the expected number of draws from EX(c, D) that are
required to simulate a draw from EX(c, D) is O(T?/). Thus, the weak learner can be
run efficiently on the desired distributions.

Theorem 3 below establishes the correctness of the SMartiBoost
algorithm when all required probabilities are known exactly.

Theorem 3. Let T =8 In(2/g)/ (y*). Suppose that each time the
SMartiBoost algorithm is invoked on some balanced distribution Djy, the weak learner
outputs a hypothesis that has an advantage y with respect to D;;. Then, the final
branching program hypothesis h that SMartiBoost constructs will satisfy:

Pry e p[h(X) # c(x)] <. , @)

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
11

In the case where all required probabilities are not known exactly (i.e.,
in the presence of sampling error), Theorem 4 below establishes the correctness of the

SMartiBoost algorithm.

Theorem 4. Let T =@ (log (1/€)/ (v?), and the notation O hide
polylogarithmic factors for the sake of readability. If A is a weak learning algorithm
that requires s, many examples to construct a y-advantage hypothesis, then
SMartiBoost makes O(sa)-O (1/g)- poly(1/ v) many calls to EX(c, D) and with a
probability of (1- 8) outputs a final hypothesis h that satisfies:

Py e p[h(x) # c(x)] <=.) o (8)

The SMartiBoost algorithm can be further modified to withstand
random classification noise. Given a distribution D and a value 0 <n < 1/2, a noisy
example oracle is an oracle EX(c, D, n) which is defined as follows: each time EX(c,
D, n) is invoked, it returns a labeled example (x, b) € X x {0, 1}, where x € X is
drawn from the distribution D, and b is chosen to be c(x) with a probability of (1 - 1)
and chosen to be (1-c(x)) with a probability of 1.

It is useful here to recount the definition of weak learning. Weak
learning may be defined as follows: Given a target function ¢ : X —{0,1}, an
algorithm A is said to be a noise-tolerant weak learning algorithm with an advantage y
if' it satisfies the following property: for any 8 > 0 and any distribution D over X, if A
is given 6 and access to a noisy example oracle EX(c, D,) where 0 <n < 1/2, then A
runs in time poly(1/(1-21),1/8) and, with a probability of at least (1- §), A outputs a
hypothesis h that satisfies:

Pry e p[h(x) =c(x)] > 1/2 +n. 9)

In general for boosting algorithms, it is mathematically impossible to
achieve an arbitrarily low error rate & below the noise rate . However, the noise-
tolerant variant of the SMartiBoost algorithm, like the known modified Mansour and
McAllester boosting algorithm, can achieve an error rate € = i + 7, in time polynomial
in 1/ 7 and the other relevant parameters. (See e.g., Mansour and McAllester,
“Boosting Using Branching Programs,” Journal of Computer and System Sciences,
64(1), pp. 103-112, 2002).

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
12

A reason why SMartiBoost can be easily modified to withstand
random classification noise is because in each stage t of boosting, the label b of a
labeled example (x, b) plays only a limited role in the reweighting that the example
experiences. Since this role is limited, it is possible to efficiently simulate the
distributions that the weak learner requires at each stage of boosting and thus for the
overall boosting process to succeed.

For example, as a labeled example (x, b) proceeds through levels 1, . .
., t-1 of the branching program in stage t, the path it takes is completely independent
of b. Thus, given a source EX(c, D, 1) of noisy examples, the distribution of examples
that arrive at a particular node v, is precisely EX(c, D3,). However, once a labeled
example (X, b) arrives at some node viy, label b must be consulted in the “rebalancing”
of the distribution Dj; to obtain distribution D;;. More precisely, the labeled examples
that reach node vj; are distributed according to EX(c, D;4,), but to use SMartiBoost

with a noise-tolerant weak learner requires simulation of the balanced distribution D

- corrupted with random classification noise, i.e., EX(c, Dig,). It is not necessary that

the noise rate n’ in the balanced case be the same as 1. The SMartiBoost algorithm
will work as long as the noise rate)’ is not to close to 1/2.

Simulation of the balanced distribution Di,t corrupted with random
classification noise EX(c, Dj;, /') can take place according to the following rejection
sampling procedure Lemma, which is similar to that described in A. Kalai and R.
Servedio, “Boosting In The Presence Of Noise,” Proc. 35th Annual Symposium on
Theory of Computing (STOC), pages 196-205, 2003.

Rejection Sampling Procedure Lemma: Let t > 0 be any value
satisfying n + /2 < 1/2. Suppose we have access to EX(c, D, n). Let p denote
Pry ¢ p[e(x) = 1]. Further, suppose that 1+ 1/2 <p <1/2. Given a draw (x, b) from
EX(c, D, n):

1. If b = 0, then with a probability of p, = (1-2p)/(1- p-n) reject (x,
b), and with a probability of 1- p; = (p -n)/(1- p-1) set b’ = b and accept (x, b");

2. If b= 1, then set b’ = 1- b with probability
pr=(1-2p) n(1- n)/(1- p - M) /(p + n - 2pn) reject (X, b), set b’ = b with a probability of
1- p, and accept (x, b').

10

15

20

25

WO 2007/033300 PCT/US2006/035775
13

Given a draw from EX(c, D, n), the foregoing procedure rejects with a

probability:

prej = (1-2p) (pn +(1- p)(I-n)) /(1- p - 1- 2pn) (102)

and accepts with a probability:

1- prej = 2(1- 2m)(1- p)p /(1- p - M- 2pm). (10b)

Moreover, if the procedure accepts, then the (x, b") that it accepts is distributed
according to EX(c, D, 1), where 1) = 1/2 — (p - 0)/2(p + 1- 2pn).

The operation of the noise-tolerant SMartiBoost is described in the
following: As previously, p;; denotes the probability that Pry < p, [x reaches vig].
Further, qbi,t denotes the probability Prx < p, [c(X) =b | x reaches Vit] =Pry e p [c(X)
=b], so that q%; +q'i; =0. The noise-tolerant SMartiBoost takes as input a parameter
T, where n + 7 is a desired final accuracy. Without loss of generality, it may be
assumed that n +t < 1/2.

In stage t, the noise-tolerant SMartiBoost algorithm does the following
operations for each node v ;: '

1. Ip°<2t/3T(T+1), then the algorithm “freezes” node vit by

labeling it with an arbitrary bit and making it a terminal node with no outgoing edges.

2. fminbe g 1 qbi,t <n /+1/3, then the algorithm “freezes” node vi;
by making it a terminal node labeled (1- b) with no outgoing edges.

3. Otherwise, the algorithm runs the weak learning algorithm using
EX(C, Di,m") as described in the Rejection Sampling Procedure Lemma to obtain a
hypothesis gjr. The algorithm labels vi; with h;; = g;;, which is g;;, balanced with

respect to D ;.

Theorem 5 below establishes the correctness of the noise-tolerant
SMartiBoost algorithm when all required probabilities are known exactly.

Theorem 5. Let T = 8 In(2/g)/ (y2). Suppose that each time a weak
learner is invoked with some oracle EX(C, D 4, n'), and the weak learner outputs a
hypothesis g+ with Pry e piglgis - ¢(X)] > 1/2 +y. Then the final branching program
hypothesis h that the noise-tolerant SMartiBoost constructs will satisfy:

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
14

Prx e piglh(X) #c(x)] <+ 7. (1)

In the case where all required probabilities are not known exactly,
sufficiently accurate estimates of the probabilities can be obtained via a polynomial
amount of sampling. Theorem 6 below establishes the correctness of the noise-
tolerant SMartiBoost algorithm in such case.

Theorem 6. Given any 7 such thatn +1<1/2,let T = ® (log (1/g)/
(). IfAisa noise-tolerant weak learning algorithm with an advantage v, then the
noise-tolerant SMartiBoost makes poly(1/ vy, 1/ 1, 1/8) many calls to EX(c, D, 1) and
with a probability of (1- §) outputs a final hypothesis h that satisfies:

Pry e plh(x) #cx)]| <+ T (12)

Because of their simplicity and attractive theoretical properties, the
inventive martingale boosting algorithms may advantageously be used in practical
machine learning applications. A practical algorithm may involve repeatedly dividing
the training data into bins, as opposed to using fresh examples during each stage as
discussed above, for example, with respect to FIG. 1 and Theorem 1.

In an exemplary application, a machine learning system based on a
martingale ranking algorithm is utilized for feeder failure prediction in a commercial
electrical power distribution system.

In the commercial power distribution system, power generated at
remote power plants is delivered to residential, business, or industrial customers via a
transmission network or grid. Power is first transmitted as high voltage transmissions
from the remote power plants to geographically diverse substations. At the
substations, the receivéd high voltage power is sent over “feeders” to transformers
that have low voltage outputs. The outputs of the transformers are connected to a
local low voltage power distribution grid that can be tapped directly by the customers.

In metropolitan areas (e.g., Manhattan) the feeders run under city
streets, and are spliced together in manholes. Multiple or redundant feeders may feed
the customer-tapped grid, so that individual feeders may fail without causing power
outages. However, multiple or collective feeder failures appear to be a potential
failure mode through which power outages could occur. Preventive maintenance of
the feeders is desirable. However, preventive maintenance schemes based on

maintenance of every feeder in the system are expensive, cumbersome, and

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
15

disruptive. Accordingly, power companies and utilities have developed empirical
models for evaluating the danger that a feeder could fail. These models provide
likelihood-of-failure scores, which may be used to prioritize repairs or maintenance.
However, in practice, the scores obtained by using the empirical models are a weak
guide and provide only a rough indication of likely failure events.

Machine learning systems and methods based on martingale boosting
or ranking algorithms may be advantageously applied to improve feeder failure
predictions.

One such machine learning system utilizes an input database, which
includes a list of feeders, a list of scores for each feeder, and a historical record or
count of recent failures for each feeder. The list of scores may capture the strength of
evidence from a variety of sources or models that the particular feeder is error or
faiture prone. «

FIG. 2 shows exemplary learning process 200 in the machine learning
system for feeder failure predictions. At 210, the martingale boosting algorithm in the
machine learning system, finds the score or variable that has the strongest association
with the past failure rate. For this purpose, the algorithm may be suitably coded, for
example, to maximize a popular measure called the “Area Under The ROC Curve.”
Alternative measures may be used. At 220, the algorithm sorts the feeder list by the
score or variable that has the strongest association with past failure. Then at 230, the
algorithm divides the sorted list into two sublists so that past outages or failures are
apportioned equally or at least approximately equally between the two sublists. At
240, the algorithm determines the scores or variables that are best associated with the
failure rate in each of the sublists and accordingly sorts the feeders in each of the
sublists (250). At 260, the two sublists are combined together in one list. Next at
270, the combined list is divided into three sublists so that past outages or failures are
apportioned equally or at least approximately equally between the three sublists.

Training continues iteratively in the manner of 210-270. In the
iterations, the list of feeders is progressively divided into finer and finer sublists. The
algorithm determines the scores or variables that are best associated with the failure
rate in each of the sublists and accordingly sorts each of the sublists. The sorted
sublists are then recombined before the next finer iteration or division. After a
number of iterations of sublist divisions, re-sorting and recombinations, the particular

feeders that are predicted to be the most likely to fail are expected to rise to the top of

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
16

the recombined list. Thus, the feeders are ranked in order of their predicted likelihood
of failure. Maintenance schedules for the feeders may advantageously give priority to
the feeders at the top of the list.

In machine learning practice, the number of sublist divisions and
resorting steps may be suitably limited by considerations of processing time, cost, and
return.

In accordance with the present invention, software (i.e., instructions)
for implementihg the aforementioned machine learning systems and methods
(algorithms) can be provided on computer-readable media. It will be appreciated that
each of the steps (described above in accordance with this invention), and any
combination of these steps, can be implemented by computer program instructions.
These computer program instructions can be loaded onto a computer or other
programmable apparatus to produce a machine such that the instructions, which
execute on the computer or other programmable apparatus, create means for
implementing the functions of the aforementioned machine learning systems and
methods. These computer program instructions can also be stored in a computer-
readable memory that can direct a computer or other programmable apparatus to
function in a particular manner such that the instructions stored in the computer-
readable memory produce an article of manufacture including instruction means,
which implement the functions of the aforementioned machine learning systems and
methods. The computer program instructions can also be loaded onto a computer or
other programmable apparatus to cause a series of operational steps to be performed
on the computer or other programmable apparatus to produce a computer-
implemented process such that the instructions which execute on the computer or
other programmable apparatus provide steps for implementing the functions of the
aforementioned machine learning systems and methods. It will also be understood
that the computer-readable media on which instructions for implementing the
aforementioned machine learning systems and methods are to be provided include,
without limitation, firmware, microcontrollers, microprocessors, integrated circuits,
ASICS, and other available media.

The foregoing merely illustrates the principles of the invention.
Various modifications and alterations to the described embodiments will be apparent
to those skilled in the art in view of the teachings herein, including by combining

different features from different disclosed embodiments. Tt will thus be appreciated

WO 2007/033300 PCT/US2006/035775
17

that those skilled in the art will be able to devise numerous techniques which,

although not explicitly described herein, embody the principles of the invention and

are thus within the spirit and scope of the invention.

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775
18

Claims:

1. A machine learning method having a multiple number of learning stages, each
learning stage comprising:

partitioning examples into bins;

choosing a base classifier for each bin; and

assigning an example to a bin by counting the number of positive predictions
previously made by the base classifier associéted with the bin.
2. The method of claim 1, wherein assigning an example to a in comprises
classifying an example by a random walk on the number of base classifiers that are

positive predictions.

3. The method of claim 1, wherein assigning an example to a bin comprises

balancing error rates substantially equally between false positives and false negatives.

4. The method of claim 1, wherein assigning an example to a in comprises
assigning a particular example to a particular bin independent of any label associated

with the example.

5. The method of claim 1, further comprising using decision stumps as base
classifiers.
6. A machine learning system for automated learning in stages, the system

comprising a boosting algorithm that is configured at each learning stage to:

partition training examples into bins;

choose a base classifier for each bin; and

assign an example to a bin by counting the number of positive predictions
previously made by the base classifier associated with the bin,
whereby at each learning stage the false positive and false negative error rates are
substantially balanced.
7. A computer readable medium for machine learning from a training data set,
the computer readable medium comprising a set of instructions for:

partitioning the training data set into bins;

choosing a base classifier for each bin; and

assigning a datum to a bin by counting the number of positive predictions

previously made by the base classifier associated with the bin.

10

15

20

25

30

WO 2007/033300 PCT/US2006/035775

19

8. A machine learning method for predicting the behavior of objects, wherein
past behaviors of the objects are known and wherein the objects are associated with a
plurality of scores that are predictive of object behavior, the method having a multiple
number of learning stages, each learning stage comprising:

partitioning a list of objects into a number of sublists so that past behaviors of
the objects are distributed substantially evenly across the number of sublists;

for each sublist, choosing a predictive score from the plurality of predictive
scores associated with the objects in the sublist;

for each sublist, ranking objects in the sublist according to the chosen
predictive score; and then

recombining the sublists to generate a list in which the objects are ranked
according to the predictive scores chosen for the respective sublists.
9. The method of claim 8, wherein choosing a predictive score for each sublist
comprises selecting the predictive score that most accurately predicts the past

behavior of the objects in the sublist.

10. The method of claim 8, wherein partitioning a list of objects into a number of
sublists comprises partitioning the list of objects into an increasing number of sublists

at each successive learning stage.

11. The method of claim 8, wherein the objects are feeders in an electrical power

distribution system, and wherein the past behaviors are feeder failure events.

12. A machine learning system for predicting the failure of feeders in an electrical
power distribution system, wherein past feeder failure events are known and wherein
the feeders are associated with a plurality of scores that are predictive of feeder
failure, the system comprising an algorithm configured to process a list of feeders and
the associated plurality of scores in a number of successive learning stages, each
learning stage comprising:

partitioning the list of feeders into a number of sublists so that the past feeder
failure events are distributed substantially evenly across the number of sublists; |

for each sublist, choosing a predictive score from the plurality of predictive
scores associated with the objects in the sublist;

for each sublist, ranking feeders in the sublist according to fhe chosen

predictive score; and then

WO 2007/033300 PCT/US2006/035775
20

recombining the sublists to generate a list in which the feeders are ranked
according to the predictive scores chosen for the respective sublists.
13. The machine learning system of claim 12, wherein the algorithm is configured
to partition the list of feeders into an increasing number of sublists at each successive
learning stage.
14. The machine learning system of claim 12, wherein the algorithm is configured
to choose for a sublist the predictive score that most accurately predicts the past

feeder failure events for the feeders in the sublist.

WO 2007/033300 PCT/US2006/035775
1/2

Fig. 1. The branching program
produced by the boosting algo-
rithm. Each node v;,: is labeled
with a 0/1-valued function hit;
left edges correspond to 0 and
right edges to 1.

o

Vo, T+1 Vi, T+1 Vr-1,7+1 VT, T4+1

AT

output 0 output 1

WO 2007/033300

2/2

Learning process 200

210
Find score having the strongest association

with the past failure rate

220
Sort feeder list by the score most associated

with past failure

230

Divide sorted list into two sublists

240
Find the score having the strongest
association with the past failure rate in each

sublist

250
Sort the feeders in each of the sublists by the

score most associated with past failure

260
Combine the two sublists together in one
list

270

Divide the combined list into three sublists

PCT/US2006/035775

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings

