wo 2011/065929 A1 I 0K 00 D00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intelectual Peoperty Organization /g3 | 1IN AN KA O RO
International Bureau Wi))
sIMPIS 10) International Publicati
(43) International Publication Date \'{:/_?___/ (10) International Publication Number
3 June 2011 (03.06.2011) PCT WO 2011/065929 A1l
(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GO6T 1/00 (2006.01) CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
. . EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN,
(21) International Application Number: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
PCT/US2008/084282 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
21 November 2008 (21.11.2008) NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
) SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
(25) Filing Language: English UG, US, UZ, VC, VN, ZA, ZM, ZW.

(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
60/989,881 23 November 2007 (23.11.2007) US S\I\{f) KEE LS, M(\Xl’\/[MZA’Z NAB» YSqu%,L’ KSZZ ;é URGI} Z%’[J»
, Burasian , AZ, , , KZ, , RU, TJ,
(71) Applicant (for all designated States except US): MER- TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
CURY COMPUTER SYSTEMS, INC. [US/US]; 199 ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Riverneck Road, Chelmsford, MA 01824 (US). MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI

(72) Inventors; and (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,

(75) Inventors/Applicants (for US only): WESTERHOFF, NE, SN, TD, TG).
Malte [DE/DE]; Leo-Baeck-str. 70, D-14165 Berlin Published:
(DE). STALLING, Detlev [DE/DE]; Garystrabe 20,

D-14195 Berlin (DE).
) .) — before the expiration of the time limit for amending the
(74) Agents: POWSNER, David, J. et al.; Nutter Mcclennen claims and to be republished in the event of receipt of

& Fish Llp, World Trade Center West, 155 Seaport amendments (Rule 48.2(h))
Boulevard, Boston, MA 02210-2604 (US).

— with international search report (Art. 21(3))

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(54) Title: MULTI-USER MULTI-GPU RENDER SERVER APPARATUS AND METHODS

Client 3 \\ 1/0 [y #
Client 2 [mon- ~
s 18
com- [com=- , A
Pater \ [pater
Link 1 I
14|
12 Network 1
H Switch | Vi
22
13 Switch 2 23
a Netwark 2
Link 2 ‘—‘
mon- mon-
itor itor
pure o]] R
19 20 2l
Client 4 Client 5 Client &
Figure 1

(57) Abstract: The invention provides a system for rendering images, having one or more client digital data processors and a serv-
er digital data processor in communications coupling with the one or more client digital data processors, the server digital data
processor having one or more graphics processing units. The system additionally comprises a render server module executing on
the server digital data processor and coupling with the graphics processing units, where the render server module issues a com-
mand in response to a request from a first client digital data processor. The graphics processing units on the server digital data
processor simultaneously process image data in response to interleaved commands from (i) the render server module on behalf of
the first client digital data processor, and (ii) one or more requests from the render server module on behalf of any of the other
client digital data processors.

WO 2011/065929 PCT/US2008/084282

MULTI-USER MULTI-GPU RENDER SERVER APPARATUS AND METHODS

Background of the Invention

This application claims the benefit of priority of United States Patent Application
Serial No. 60/989,881, filed November 23, 2007, the teachings of which are incorporated

herein by reference.

The invention pertains to digital data processing and, more particularly, by way of
example, to the visualization of image data. It has application to areas including medical

imaging, atmospheric studies, astrophysics, and geophysics.

3D and 4D image data is routinely acquired with computer tomographic scanners
(CT), magnetic resonance imaging scanners (MRI), confocal microscopes, 3D ultrasound
devices, positron emission tomographics (PET) and other imaging devices. The medical
imaging market is just one example of a market that uses these devices. It is growing rapidly,
with new CT scanners collecting ever greater amounts of data even more quickly than
previous generation scanners. As this trend continues across many markets, the demand for
better and faster visualization methods that allow users to interact with the image data in real-

time will increase.

Standard visualization methods fall within the scope of volume rendering techniques
(VRT), shaded volume rendering techniques (sVRT), maximum intensity projection (MIP),
oblique slicing or multi-planar reformats (MPR), axial/sagittal and coronal slice display, and
thick slices (also called slabs). In the following, these and other related techniques are
collectively referred to as “volume rendering.” In medical imaging, for example, volume
rendering is used to display 3D images from 3D image data sets, where a typical 3D image
data set is a large number of 2D slice images acquired by a CT or MRI scanner and stored in

a data structure.

WO 2011/065929 PCT/US2008/084282

The rendition of such images can be quite compute intensive and therefore takes a
long time on a standard computer, especially, when the data sets are large. Too long compute
times can, for example, prevent the interactive exploration of data sets, where a user wants to
change viewing parameters, such as the viewing position interactively, which requires several
screen updates per second (typically 5 — 25 updates/second), thus requiring rendering times

of fractions of a second or less per image.

Several approaches have been taken to tackle this performance problem. Special-
purchase chips have been constructed to implement volume rendering in hardware. Another
approach is to employ texture hardware built into high-end graphics workstations or graphics
super-computers, such as for example Silicon Graphics Onyx computers with Infinite Reality
and graphics. More recently, standard graphics boards, such as NVIDIA's Geforce and
Quadro FX series, as well as AMD/ATT's respective products, are also offering the same or

greater capabilities as far as programmability and texture memory access are concerned.

Typically hardware for accelerated volume rendering must be installed in the
computer (e.g., workstation) that is used for data analysis. While this has the advantage of
permitting ready visualization of data sets that are under analysis, it has several drawbacks.
First of all, every computer which is to be used for data analysis needs to be equipped with
appropriate volume-rendering hardware, as well as enough main memory to handle large data
sets. Second the data sets often need to be transferred from a central store (e.g.,, a main
enterprise server), where they are normally stored, to those local workstations prior to
analysis and visualization, thus potentially causing long wait times for the user during

transfer.

Several solutions have been proposed in which data processing applications running
on a server are controlled from a client computer, thus, avoiding the need to equip it with the
full hardware needed for image processing/visualization and also making data transfer to the
client unnecessary. Such solutions include Microsoft's Windows 2003 server (with the
corresponding remote desktop protocol (RDP)), Citrix Presentation Server, VNC, or SGI's
OpenGL Vizserver. However, most of these solutions do not allow applications to use

graphics hardware acceleration. The SGI OpenGL Vizserver did allow hardware accelerated

2D

WO 2011/065929 PCT/US2008/084282

graphics applications to be run over the network: it allocated an InfiniteReality pipeline to an
application controlled over the network. However that pipeline could then not be used
locally any longer and was also blocked for other users. Thus effectively all that the
Vizserver was doing was extending a single workplace to a different location in the network.

The same is true for VNC.

For general graphics applications (i.e., not specifically volume rendering
applications), such as computer games, solutions have been proposed to combine two
graphics cards on a single computer (i.c., the user’s computer) in order to increase the
rendering performance, specifically NVIDIA's SLI and AMD/ATI's Crossfire products. In
these products, both graphics cards receive the exact same stream of commands and duplicate
all resources (such as textures). Each of the cards then renders a different portion of the
screen — or in another mode one of the cards renders every second image and the other card
renders every other image. While such a solution is transparent to the application and
therefore convenient for the application developers it is very limited, too. Specifically the
duplication of all textures effectively eliminates half of the available physical texture

memory.

An object of the invention is to provide digital data processing methods and
apparatus, and more particularly, by way of example, to provide improved such methods and

apparatus for visualization of image data.

A further object of the invention is to provide methods and apparatus for rendering

images.

A still further object of the invention is to provide such methods and apparatus for

rendering images as have improved real-time response to a user’s interaction.

Yet a still further object of the invention is to provide such methods and apparatus as

allow users to interactively explore the rendered images.

WO 2011/065929 PCT/US2008/084282

Summary of the Invention

The aforementioned are among the objects attained by the invention, which provides,
in one aspect, a graphics system including a render server that has one or more graphics
boards in one or more host systems. One or more client computers can simultancously
connect to the render server, which receives messages from the client computers, creates
rendered images of data set and sends those rendered images to the client computers for

display.

Related aspects of the invention provide a graphics system, for example, as described
above in which rendered data sets are kept in memory attached to the render server, such as
RAM memory installed in the host systems, e.g., for reuse in response to subsequent

messaging by the client computers.

Further related aspects of the invention provide a graphics system, for example, as
described above in which the render server maintains a queue of so-called render requests,
1.e., a list of images to render. These can comprise render requests received directly in
messages from the client computers and/or they can comprise requests generated as a result
of such messages. One message received from the client computer can result in zero, one, or

multiple render requests being generated.

A further aspect of the invention provides a graphics system, for example, of the type
described above, in which the render server breaks down selected ones of the render requests
into multiple smaller requests, i.e., requests which require less compute time and/or less
graphics resources. A related aspect of the invention provides for scheduling the smaller (and
other) requests so as to minimize an average time that a client computer waits for a response
to a request. This allows (by way of non-limiting example) for concurrent treatment of
requests and for serving multiple client computers with a single GPU without compromising

interactivity.

Another aspect of the invention provides a graphics system, for example, of the type

described above, that processes render requests in an order determined by a prioritization

4.

WO 2011/065929 PCT/US2008/084282

function that takes into account the nature of the request (e.g., interactive rendering vs. non-
interactive), the client from which the request was received, the order in which the requests
were received, the resources currently allocated on the graphics boards, and/or other

parameters.

Yet another aspect of the invention provides a graphics system, for example, of the
type described above that processes multiple render requests simultaneously. The render
server of such a system can, for example, issue multiple render commands to a single
graphics board and process them in time slices (in a manner analogous to a multi-tasking
operating system on a CPU), thereby switching between processing different render requests

multiple times before a single render request is completed.

A related aspect of the invention provides a system, for example, as described above
wherein the render server combines render requests for simultancous processing in such a
way, that their total graphics resource requirements can be satisfied by resources (e.g., texture
and frame buffer memory) on-board a single graphics board. This allows (by way of
example) time-slicing between the simultancously processed render requests without the
computationally expensive swapping of graphics memory chunks in and out of main memory

of the host (i.e., “host memory™).

Another aspect of the invention provides a graphics system, for example, of the type
described above, that renders images at different resolution levels, e.g., rendering a low-
resolution image from a low-resolution version of the input data while rotating the data set,
thus enabling faster rendering times and thereby smoother interaction. A related aspect of the
invention provides such a system that adapts the resolution to the network speed and or the
available processing resources. Another related aspect of the invention provides such a
system wherein the render server continuously monitors one or more of these parameters and

thereby allows for continuous adaptation of the resolution.

Another aspect of the invention provides a graphics system, for example, of the type
described above, wherein the render server keeps local resources (such as texture memory) on

one of the graphics boards allocated for the processing of a particular set of related render

-5

WO 2011/065929 PCT/US2008/084282

requests. Related aspects of the invention provide (for example) for re-use of such allocated
resources for the processing of a subsequent render request in the set, thus eliminating the
need to re-upload the data from host memory to texture memory for such subsequent render
requests. By way of example, the render server of such a system can keep the texture
memory of a graphics board allocated to the rendition of interactive render requests for low
resolution versions of a data set (e.g., user-driven requests for rotation of the data set), which
need to be processed with a minimal latency to allow for smooth interaction but only require

a small amount of texture memory.

Another aspect of the invention provides a graphics system, for example, of the type
described above, wherein the render server dispatches render commands to different graphics
boards. A related aspect provides such a system that takes into account the data sets resident

on these different graphics boards and uses this information to optimize such dispatching.

Further aspects of the invention provide systems employing combinations of the

features described above.

Further aspects of the invention provide methods for processing images that parallel

the features described above.

These and other aspects of the invention are evident in the drawings and in the

description that follows.

WO 2011/065929 PCT/US2008/084282

Brief Description of the Drawings

A more complete understanding of the invention may be attained by reference to the

drawings, in which:

Figure 1 depicts a client-server system according to one practice of the invention;

Figure 2 depicts the host system of the render server of the type used in a system of

the type shown in Figure 1;

Figure 3 depicts a timeline of incoming render requests from client computers in a

system of the type shown in Figure 1;

Figures 4 — 6 depict timelines for processing requests of the type shown in Figure 3;

Figure 7 depicts a 3D data set of the type suitable for processing in a system

according to the invention;

Figure 8 depicts sub-volumes making up the data set of Figure 7;

Figures 9 — 12 depict images resulting from MIP renderings of an image utilizing sub-

volumes of the type shown in Figure 8;

Figures 13 is a flowchart illustrating a method of operation of the system of the type

shown in Figure 1;

Figure 14 is a flowchart illustrating a method of utilizing bricking to perform

rendering in a system of the type shown in Figure 1;

Figure 15 is a flowchart illustrating a method of multi-resolution rendering in a

system of the the type shown in Figure 1; and

WO 2011/065929 PCT/US2008/084282

Figures 16a — 16b are flowcharts illustrating data upload from host memory to

graphics memory in a host system of the type shown in Figure 2; and

Figure 17 are flow charts illustrating a method of breaking down render requests into

smaller requests in connection with concurrent rendering.

WO 2011/065929 PCT/US2008/084282

Detailed Description of the Illustrated Embodiment

Overview

Figure 1 depicts a system 10 according to one practice of the invention. A render
server (or server digital data processor) 11, which is described in more detail below, is
connected via one or more network interfaces 12, 13 and network devices such as switches or
hubs 14, 15 to one or more networks 22, 23. The networks 22, 23 can be implemented
utilizing Ethernet, WIFI, DSL and/or any other protocol technologies and they can be part of
the Internet and/or form WANs (wide area networks), LANs (local area networks), or other

types of networks known in the art.

One or more client computers (or “client digital data processors”) 16 — 21 are coupled
to render server 11 for communications via the networks 22, 23. Client software running on
cach of the client computers 16 — 21 allows the respective computers 16 — 21 to establish a
network connection to render server 11 on which server software is running. As the user
interacts with the client software, messages are sent from the client computers 16 — 21 to the
render server 11. Render server 11, generates render commands in response to the messages,
further processing the render requests to generate images or partial images, which are then

sent back to the respective client computer s 16 — 21 for further processing and/or display.

The make-up of a typical such client computer is shown, by way of example, in the
break-out on Figure 1. As illustrated, client computer 18 includes CPU 18a, dynamic
memory (RAM) 18b, input/output section 18c and optional graphics processing unit 18d, all
configured and operated in the conventional manner known in the art — as adapted in accord

with the teachings hereof.

The components illustrated in Figure 1 comprise conventional components of the type
known in the art, as adapted in accord with the teachings hereof. Thus, by way of non-
limiting example, illustrated render server 11 and client computers 16 — 21 comprise
conventional workstations, personal computers and other digital data processing apparatus of

the type available in the market place, as adapted in accord with the teachings hereof.

.9.

WO 2011/065929 PCT/US2008/084282

It will be appreciated that the system 10 of Figure 1 illustrates just one configuration
of digital data processing devices with which the invention may be practiced. Other
embodiments may, for example, utilize greater or fewer numbers of client computers,
networks, networking apparatus (e.g., switches or hubs) and so forth. Moreover, it will be
appreciated that the invention may be practiced with additional server digital data processors.
Still further, it will be appreciated that the server digital data processor 11 may, itself,
function — at least in part — in the role of a client computer (e.g., generating and servicing

its own requests and/or generating requests for servicing by other computers) and vice versa.

Render server

In the following section we describe the render server in more detail and how it is

used to perform volume rendering.

Figure 2 depicts render server 11, which includes one or more host systems 30, each
equipped with one or more local graphics (GPU) boards 33, 34. As those skilled in the art
will appreciate, a host system has other components as well, such as a chipset, I/O
components, etc., which are not depicted in the figure. The host system contains one or more
central processing units (CPU) 31, 32, for example AMD Opteron or Intel Xeon CPUs. Each
CPU 31, 32 can have multiple CPU cores. Connected to CPUs 31, 32 is a host memory 41.

GPU Boards 33, 34. can be connected to other system components (and, namely, for
example, to CPUs 31, 32) using the PCI-Express bus, but other bus systems such as PCI or
AGP can be used as well, by way of non-limiting example. In this regard, standard host
mainboards exist, which provide multiple PCI-Express slots, so that multiple graphics cards
can be installed. If the host system does not have sufficient slots, a daughter card can be used
(e.g., of a type such as that disclosed in co-pending commonly assigned United States Patent
Application Serial No. 11/129,123, entitled “Daughter Card Approach to Employing Multiple
Graphics Cards Within a System,” the teachings of which are incorporated herein by
reference). Alternatively, or in addition, such cards can be provided via external cable-

connected cages.

-10-

WO 2011/065929 PCT/US2008/084282

Each graphics board 33, 34 has amongst other components local, on-board memory
36, 38, coupled as shown (referred to elsewhere herein as “graphics memory,” “Graphics

2% &¢

Memory,” “texture memory,” and the like) and a graphics processing unit (GPU) 35, 37. In
order to perform volume rendering of a data set, the data set (or the portion to be processed)

preferably resides in graphics memories 36, 38.

The texture (or graphics) memory 36, 38 is normally more limited than host memory
41 and often smaller than the total amount of data to be rendered, specifically for example, as
in the case of the illustrated embodiment, if server 11 is used by multiple users concurrently
visualizing different data sets. Therefore not all data needed for rendering can, at least in the

illustrated embodiment, be kept on graphics boards 33, 34.

Instead, in the illustrated embodiment, in order to render an image, the respective
portion of the data set is transferred from either an external storage device or, more typically,
host memory 41 into the graphics memories 36, 38 via the system bus 42. Once the data is
transferred, commands issued to GPUs 35, 37 by Render Server Software (described below)
cause it to render an image with the respective rendering parameters. The resulting image is
generated in graphics memories 36, 38 on graphics boards 33, 34 and once finished can be
downloaded from graphics boards 33, 34, i.c., transferred into host memory 41, and then after
optional post-processing and compression be transferred via network interfaces 39,40 to

client computer s 16 — 21.

The components of host 30 may be interconnected by a system bus 42 as shown.
Those skilled in the art will appreciate that other connections and interconnections may be

provided as well or in addition.

Render Server Software and Client Software

The process described above, as well as aspects described subsequently, is controlled
by software, more specifically software running on Render Server 11 ("Render Server
Software") and software running on client computers 16 — 21 ("Client Software"). The

Render Server Software handles network communication, data management, actual

-11-

WO 2011/065929 PCT/US2008/084282

rendering, and other data processing tasks such as filtering by way of employing CPUs 31,
32, GPUs 35, 37, or a combination thereof. The Client Software is responsible for allowing
the user to interact, for example, to choose a data set to visualize, to choose render parameters
such as color, data window, or the view point or camera position when e.g., rotating the data
set. The client software also handles network communication with server 11 and client side

display.

In the following we describe one way how the Render Server Software and Client
software can be implemented. In this regard, see, for example, Figure 13, steps 1301 — 1310.
A component of the Render Server software listens for incoming network connections. Once
a Client computers attempts to connect, the Render Server Software may accept or reject that
connection potentially after exchanging authentication credentials such as a username and
password and checking whether there are enough resources available on the render server.
The Render Server software listens on all established connections for incoming messages.
This can be implemented for example by a loop sequentially checking each connection or by
multiple threads, one for each connection, possibly being executed simultancously on
different CPUs or different CPU cores. Once a message is received, it is either processed
immediately or added to a queue for later processing. Depending on the message type a
response may be sent. Examples for message types are: (i) Request for a list of data sets
available on the server — potentially along with filter criteria, (ii)) Request to load a data set
for subsequent rendering, (iii) Request to render a data set with specified rendering
parameters and a specified resolution level, (iv) Message to terminate a given connection, (v)

message to apply a filter (for example noise removal or sharpening) etc.

Figure 13, steps 1311-1315, illustrate the typical case in which the client computer
sends a render request and the Render Server Software handles the render request using GPU
35, 37. The Render Server Software transfers the data set in question (or, as is discussed
below, portions of it) into local graphics memories 36, 38 via the system bus 42, issues
commands to GPUs 35, 37 to create a rendered image in graphics memories 36, 38 and
transfers the rendered image back into host memory 41 for subsequent processing and

network transfer back to the requesting client computer.

-12-

WO 2011/065929 PCT/US2008/084282

In the illustrated embodiment, a component (e.g., software module) within the Render
Server Software prioritizes the requests added to the queue of pending requests thereby
determining the order in which they are executed. Other such components of the illustrated
embodiment alter requests in the queue, i.c., remove requests which are obsoleted or break
down requests into multiple smaller ones (see, step 1311b). In these and other embodiments,
still another such component of the Render Server Software determines which resources are
used to process a request. Other embodiments may lack one or more of these components
and/or may include additional components directed toward image rendering and related

functions.

In the following, details of these components as well as other aspects are described.

Bricking

When the Render Server Software handles a render request by way of using the GPU,
it transfers the data set in question (or, as is discussed below, portions of it) into the local
Graphics Memory via the system bus, then issues the commands necessary to create a
rendered image, and then transfers back the rendered image into main memory for subsequent
processing and network transfer. Even a single data set can exceed the size of the graphics
memory. In order to render such a data set efficiently, it is broken down into smaller pieces
which can be rendered independently. We refer to this process as bricking. As discussed
later, the ability to break down one render request into multiple smaller requests, where
smaller can mean that less graphics memory and/or less GPU processing time is required, is

also helpful for efficiently handling multiple requests concurrently.

We now describe how such a break down can be performed. As an example, we first
discuss the MIP rendering mode, though, it will be appreciated that such a methodology can
be used with other rendering modes. The 3D data set can be viewed as a cuboid in three-
space, consisting of a number of voxels carrying gray values. Figure 7 depicts that data
volume viewed from a certain camera position by way of displaying a bounding box.
Referring to Figure 14 (which illustrates a method for bricking according to one practice of

the invention), for a given camera position, each pixel on a computer screen (screen pixel)

-13-

WO 2011/065929 PCT/US2008/084282

can be associated with a viewing ray. See, step 1402a. The voxels intersected by each such
viewing ray which intersects the cuboid are then determined. See, step 1402b. In the MIP
rendering mode, the screen pixel is assigned the maximum gray value of any of the voxels,
which the viewing ray corresponding to the screen pixel intersects. See, step 1402c. The

resulting rendered image can be seen in Figure 9.

If the Render Server Software subdivides the original data volume into multiple
smaller data volumes — for example if it divides the data volume into four sub volumes —
then each of the sub volumes can be rendered independently, thus, effectively producing four
rendered images. See, Figure 14, steps 1401 and 1402. The subdivision for this example is
illustrated in Figure 8 by way of showing the bounding boxes of the four sub-volumes.
Figure 10 shows the individual MIP rendition of each of the four sub volumes for an example
data set depicting an Magnet Resonance Angiography image. For better orientation, the
bounding box of the original data volume is shown as well. If the rendered images are then
composed in such a way that for each pixel in the composed image the brightest value for that
pixel from the four rendered images is chosen (see, Figure 14, step 1403), then the resulting
composed image, which is shown in Figure 11, is identical to the MIP rendition of the full

data set, seen in Figure 8.

Using the correct composition function, the same break-down approach can be used
for other rendering modes as well. For example, for VRT mode, standard alpha-blending
composition can be used, i.e., for each pixel of the resulting image the color an opacity is
computed as follows. The sub images are blended over each other in back to front order, one
after the other using the formula ¢_result = (1 — a_front) * ¢ _back +a_front * ¢_front, where,
a_front and ¢_front denote the opacity and color of the front picture respectively, and ¢_back
denotes the color of the back picture. As those skilled in the art will appreciate, other
schemes such as front to back or pre-multiplied alpha may be used with the respective
formulas found in general computer graphics literature. The resulting image for VRT

rendering is shown in Figure 12.

-14-

WO 2011/065929 PCT/US2008/084282

Multi-Resolution Rendering

The time it takes to render an image depends on several criteria, such as the rendering
mode, the resolution (i.e., number of pixels) of the rendered (target) image and the size of the
input data set. For large data sets and high-resolution renditions, rendering can take up to
several seconds, even on a fast GPU. However, when a user wants to interactively
manipulate the data set, i.e., rotate it on the screen, multiple screen updates per second
(typically 5 — 25 updates/second) are required to permit a smooth interaction. This means
that the rendition of a single image must not take longer than few hundred milliseconds,

ideally less than 100 milliseconds.

One way to ensure smooth rendering during users’ interactive manipulations of data
sets is by rendering images at a resolution according to the level of a user’s interaction. One
way to guarantee this is illustrated in Figure 15. Here, by way of example, the system checks
whether the user is rotating the data set (see, Step 1502). If so, the render server uses a lower
resolution version of the input data and renders the images at a lower target resolution. See,
steps 1503b and 1504b. Once the user stops interacting, ¢.g., by releasing the mouse button,
a full resolution image is rendered with the full-resolution data set and the screen is updated
with that image, potentially a few seconds later. See, steps 1503a and 1504a. Schemes with

more than two resolutions can be used in the same way.

In the subsequent discussion we refer to the above scenario to illustrate certain aspects
of the invention. We refer to the low-resolution renderings as "interactive render requests”
and to the larger full resolution renditions as "high-resolution render requests". The
methodologies described below are not restricted to an interaction scheme which uses two

resolutions in the way described above.

Scheduling Strategies

In order to build an effective multi-user multi-GPU render server, another component
of the Render Server Software is provided which dispatches, schedules and processes the

render requests in a way that maximizes rendering efficiency. For example, the number of

-15-

WO 2011/065929 PCT/US2008/084282

client computers which can access the render server concurrently may not be limited to the
number of GPUs. That is, two or more clients might share one GPU. Render requests
received by such clients therefore need to be scheduled. This section describes some factors
that may be considered for the scheduling and illustrates why a trivial scheduling may not be

sufficient in all cases.

Figure 3 illustrates, by way of non-limiting example, render requests coming in from
three different client computers. The render requests A1, A2, ..., A5 shall come in from a
client computer A, while the render requests B1 ... B5 come in from client computer B and
the render request C1 comes from client computer C. The different sizes of the render
requests in Figure 3 symbolize the different size in the sense that larger boxes (such as C1)
require more processing time and require more graphics memory than smaller ones (such as
for example Al). The horizontal axis symbolizes the time axis, depicting when the render
requests have been received, i.e., render request Al has been received first, then C1, then B1,

then A2, then B2, and so forth.

In one example, the "smaller" render requests Al...A5 and B1...B5 are interactive
render requests, e.g., requests received while the user is rotating the data set, while C1 may
be a high-resolution render request. By way of example, the interactive render requests might
require 50 ms to process, while the high-resolution render request might take 2 seconds to
render. If only one GPU was available to handle these render requests, and if the render
requests were scheduled in a trivial way, on a first come-first serve basis, the result would not
yield a good user experience. Figure 4 illustrates such a case where request Al is processed
first, followed by C1, B1, A2, ... While render request C1 is processed, which in this
example is assumed to take 5 seconds, no render requests for client A and client B would be
processed. However this example assumes that the users using client A and client B are at
this given time interactively manipulating, e.g., rotating, the data sets. Therefore if those
clients would not receive a screen update for 2 seconds, the interaction would stall,

prohibiting a smooth and interactive user experience.

An alternative strategy of not processing any high-resolution render requests as long

as any interactive render requests are still pending also would not be optimal. If, in the above

-16-

WO 2011/065929 PCT/US2008/084282

example, the users using clients A or B rotated their data sets for a longer period of time, e.g.,
half a minute or longer, then during that time they would constantly generate render requests,
effectively prohibiting the request from client C to be processed at all (until both other users

have completed their interaction). This is also not desired.

Methods of improved scheduling to reduce average wait time for a response to a client
computer’s render request are needed. We are now going to describe two alternative
strategies for a better scheduling and will later describe how a combination of both leads to

even better results.

The first strategy, illustrated in Figures 5 and 6, involves the situation where "large"
render requests are broken down into multiple smaller render requests which are processed
individually. For example, here, request C1 is broken down into multiple smaller requests.
Once this is done, those smaller requests can be scheduled more flexibly, for example as
shown in Figure 6. Such a scheduling has the advantage that none of the clients would see
any significant stalling — only a somewhat reduced rate of screen updates per second. Still
however also the high-resolution render request would not be postponed indefinitely but be

processed in a timely manner.

Concurrent Rendering

The second strategy is to issue multiple render commands to the same graphics board
simultaneously, i.e., issue a first command (e.g., in response to a request received from a first
client computer) and then issue a second command (e.g., in response to a request received
from a second client computer) before the first request is completed. Preferably, this is done
so as to interleave commands that correspond to different respective client requests so that the

requests are processed in smaller time slices in an alternating fashion.

This can be done in multiple ways. One way is to use multiple processes or multiple
threads, each rendering using the same graphics board. In this case the operating system and
graphics driver respectively handle the "simultancous" execution of the requests. In fact, of

course, the execution is not really simultancous but broken down into small time slices in

217-

WO 2011/065929 PCT/US2008/084282

which the requests are processed in an alternating fashion. The same can be achieved by a
single thread or process issuing the primitive graphics commands forming the render requests
in an alternating fashion, thereby assuring that texture bindings and render target assignments

are also switched accordingly.

The reason why it may be advantageous to issue multiple render commands
simultaneously in contrast to a fully sequential processing as depicted, e.g., in Figure 6, is
two-fold. First, it can be the case that, even after breaking down larger render requests into
smaller ones, each request may still take more processing time than one would like to accept
for stalling other, smaller, interactive requests. Second, a graphics board is a complex sub-
system with many different processing and data transfer units, some of which can work in
parallel. Therefore, certain aspects of two or more render requests being processed
simultaneously can be executed truly simultancously, e.g.,, while one render request
consumes the compute resources on the GPU, the other consumes data transfer resources.
Thus, executing the two requests simultancously may be faster than executing them
sequentially. Additionally, although the GPU simultancously processes render commands
issued by the render server CPU on behalf of multiple remote client computers, the GPU may
also simultaneously process render requests (or other requests) issued by or on behalf of other
functionality (e.g., requests issued by the render server CPU on behalf of a local user

operating the server computer directly).

Another aspect taken into account by the Render Server Software when issuing render
requests simultaneously is the total graphics resource consumption. If the sum of required
graphics memory for all simultaneously processed render requests would exceed the total
graphics resources on the graphics board, then a significant performance decrease would be
the consequence. The reason is, that whenever the operating system or graphics driver
switched from execution of request 1 to request 2, then first the data required for the
processing of request 1 would have to be swapped out from graphics memory to host memory
to make room for the data needed for request 2. Then the data needed for the processing of
request 2 would have to be swapped in from host memory into graphics memory. This would

be very time consuming and inefficient.

- 18-

WO 2011/065929 PCT/US2008/084282

Figure 17 illustrates how the method described above of breaking down render
requests into smaller requests can be used with concurrent rendering. Specifically, when
scheduling requests, the Render Server Software insures that requests are broken down
sufficiently so that the total resource requirements for all simultaneously processed requests
do fit into the totally available graphics memory of the graphics board processing these
requests. See, steps 1702 and 173b.

Persistent Data

The Render Server Software additionally implements schemes to take advantage of
data persistency, during scheduling and/or dispatching of requests. Very often subsequent
render requests use some of the same data. For example if a user rotates a data set, then
many different images will be generated all depicting the same input data set only rendered
from different viewing angles. Therefore, if one request has been processed, it can be of
advantage to not purge the input data from the graphics memory, but instead keep it persistent
in anticipation of a future render request potentially requiring the same data. As illustrated in
Figure 16a, in this way a repeated data upload from host memory into graphics memory can

be avoided. See, step 1606.

In single-GPU systems, a scheduler component of the Render Server Software may
take data persistency into account and re-arrange the order of requests in such a way as to
optimize the benefit drawn from persistency. In the case of Figure 16a, for example, the
scheduler might rearrange the order of the requests so that render request 3 is processed

immediately subsequent to render request 1.

In a multi-GPU system, on the other hand, the dispatcher component of the Render
Server Software takes persistency into account when deciding which GPU to use to satisfy a
specific render request. For example, as mentioned above and depicted in Figure 16b, render
requests in multi-GPU systems are typically dispatched to all of the GPUs following the same
basic scheme as described above. See, step 1652. To take advantage of data persistency, the
dispatcher component attempts to dispatch the current request to a graphics processing unit in

which the data set specified by the request is stored. See, steps 1653 and 1656. This will

-19-

WO 2011/065929 PCT/US2008/084282

often lead to subsequent interactive render requests from the same client computer being

handled by the same GPUs.

But, not all render requests need to be executed on the GPUs. Depending on resource
use and the type of request, it may also be feasible to use one or more CPU cores on one or
more CPUs to process a render request, or a combination of CPU and GPU. For example,
rendering requests for MPR mode and oblique slicing can be executed on the CPU unless the

data required is already on the GPU. See, steps 1654 and 1655b.

Rendering requests are only one example. As those skilled in the art will appreciate,
the described embodiment can also be used in the same way to perform other data processing

tasks, such as filtering, feature detection, segmentation, image registration and other tasks.

Described above are methods and systems meeting the desired objects, among others.
It will be appreciated that the embodiments shown and described herein are merely examples
of the invention and that other embodiments, incorporating changes therein may fall within

the scope of the invention, of which we claim:

-20-

WO 2011/065929 PCT/US2008/084282

A system for rendering images comprising:

one or more client digital data processors,

a server digital data processor in communications coupling with the one or more
client digital data processors, the server digital data processor comprising one or more

graphics processing units,

a render server, executing on the server digital data processor and in communications
coupling with the graphics processing units, the render server responding to a render
request from a said client digital data processor by issuing one or more render

commands to the one or graphics processing units,

the render server responding to render requests from a plurality of said client digital
data processors by issuing interleaved render commands to the one or more graphics
processing units so that commands corresponding to different respective render are

processed by the one or more graphics processing units in an alternating fashion.

The system of claim 1 wherein the server digital data processor further comprises one
or more central processing units, in communications coupling with the render server,
the one or more central processing units processing image data in response to plural

interleaved commands from the render server.

The system of claim 1, wherein the server digital data processor comprises a host
memory, in communications coupling with the render server, the host memory storing

one or more data sets to be rendered.

The system of claim 1, wherein

the server digital data processor comprises one or more queues in communications
coupling with the render server and with the one or more graphics processing units,

and

221-

10.

I1.

WO 2011/065929 PCT/US2008/084282

the render server maintaining render requests in the one or more queues.

The system of claim 4, wherein the render server prioritizes render requests in the one

or morc qucucs.

The system of claim 5, wherein the render server prioritizes a said render request
based on at least one of a rendering mode associated with that render request, a client
digital data processor associated with that render request, an order of receipt of that

render request, and available resources.

The system of claim 4, wherein the render server breaks down a said render request in

a said queue into plural smaller render requests.

The system of claim 1, wherein the render server breaks down requests received from
the one or more client digital data processors into multiple smaller render requests,
cach requiring less compute time and/or less graphics resources than the render

request from which it was broken down.

The system of claim 1, wherein the render server schedules one or more of the smaller

requests to minimize an average wait time.

The system of claim 1, wherein a said graphics processing unit renders an image at a
rendering resolution determined by one or more parameters, including, at least one of

a user interaction type, a network speed, and available processing resources.

The system of claim 10, wherein the render server

monitors at least one of user interaction type, network speed, and available processing

resources, and

generates said one or more parameters in response thereto.

_22.

WO 2011/065929 PCT/US2008/084282

12. The system of claim 1, wherein the render server allocates at least a portion of one or

more server digital data processor resources in response to one of the render requests.

13. The system of claim 12, wherein the one or more server digital data processor
resources comprise a graphics memory that is coupled to any of said one or more

graphics processing units.

14. The system of claim 13, wherein the render server allocates, as a said digital data
processor resource, a said graphics memory having a data set specified by a said

request.

15. The system of claim 14, wherein the render server causes a said graphics memory to

maintain a said data set.

16. The system of claim 1, wherein a said graphics processing unit concurrently renders
images in response to the one or more interleaved commands, each of the commands
associated with a different request, by using one of multi-processing or multi-

threading.

17. A system for rendering images comprising:

A. one or more client digital data processors,

B. a server digital data processor in communications coupling with the one or more
client digital data processors, the server digital data processor comprising one or more

graphics processing units,

C. a render server, executing on the server digital data processor and in communications
coupling with the graphics processing units, the render server responding to a render
request from a said client digital data processor by issuing one or more render

commands to the one or graphics processing units,

203

18.

19.

20.

21.

WO 2011/065929 PCT/US2008/084282

the render server responding to render requests from a plurality of said client digital
data processors by issuing interleaved render commands to the one or more graphics
processing units so that commands corresponding to different respective render are

processed by the one or more graphics processing units in an alternating fashion, and

the render server breaking down render requests received from the one or more client
digital data processors into multiple smaller render requests, each requiring less
compute time and/or less graphics resources than the render request from which it was

broken down.

The system of claim 17, wherein

the render server breaks down render requests so that the amount of memory required
for concurrent rendering of the smaller render requests generated as a result thereof is

less than or equal to the amount of memory available on the graphics processing unit.

A method for rendering images comprising:

executing, on a server digital data processor, a render server,

issuing one or more interleaved commands with the render server in response to one

or more render requests from one or more client digital data processors,

rendering images with one or more graphics processing units in response to the
interleaved commands from the render server on behalf of the one or more client

digital data processors.

The method of claim 19, comprising storing one or more data sets in a host memory

associated with the server digital data processor.

The method of claim 19, comprising maintaining requests received from one or more
said client digital data processors in one or more queues associated with the server

digital data processor, such maintaining including any of prioritizing the requests,

224 .

22.

23.

24.

25.

26.

27.

28.

WO 2011/065929 PCT/US2008/084282

removing requests, and/or breaking down one or more requests into two or more

smaller requests.

The method of claim 21, wherein the prioritizing step includes any of prioritizing a
said render request based on at least one of a rendering mode associated therewith, a

client associated therewith, an order of receipt thereof, and available resources.

The method of claim 21, comprising breaking down render requests received from
one or more client digital data processors into multiple smaller render requests, each
requiring less compute time and/or fewer graphics resources than the request from

which it was broken down.

The method of claim 19, comprising scheduling one or more of the smaller requests to

minimize an average wait time.

The method of claim 23, wherein the rendering step comprises rendering images, with
the one or more graphics processing units, in response to interleaved commands that

are based on the multiple smaller render requests.

The method of claim 25, comprising processing, with the one or more graphics
processing units, multiple interleaved commands, each based on smaller requests
broken down from a said render request received from the one or more client digital
data processors, before completing rendering of an image associated with any such

received request.

The method of claim 19, comprising rendering with a said graphics processing unit an
image at a rendering resolution determined by one or more parameters, including, at
least one of a user interaction type, a network speed, and available processing

resources.

The method of claim 19, comprising allocating at least a portion of one or more server
digital data processor resources in response to one or more requests received from a

said client digital data processor.

-25.-

29.

30.

WO 2011/065929 PCT/US2008/084282

The method of claim 28, comprising allocating, as a said server digital data processor
resource, a graphics memory that is coupled to any of said one or more graphics

processing units.

A system for rendering images comprising:

one or more client digital data processors,

a server digital data processor in communications coupling with the one or more
client digital data processors, the server digital data processor comprising one or more

graphics processing units,

a render server, executing on the server digital data processor and in communications
coupling with the graphics processing units, the render server issuing one or more
interleaved commands in response to one or more render requests from one or more

client digital data processors,

one or more graphics processing units rendering images in response to the one or
more interleaved commands from the render server on behalf of the one or more client

digital data processors.

-26 -

PCT/US2008/084282

WO 2011/065929

1/15

I 2anbi4

(ndo)

Ndo

O/1

WYY

9 {$uaNd

—

12
Jaynd
-Wwoo

4041

- -~

"k
[-dioo
N

8]

Jaynd| |

S $UdlD

02
J2ynd
-w02

oyl

£e

ce

104}

-uowt

€ {u21D

2 YJomiaN

¥ $uaiD

—

61
Jaynd
-U0d

oyl

I YdomiaN
12ynd
s .H::...OU
[]
2 +uain | ;o

2 un

N\

2 Yaums €l

T Yapms - N
21
24
T Juin
Jaynd
| | -wod
9t []
1 4uano | joi

J2AJD
Japu?

SUBSTITUTE SHEET (RULE 26)

WO 2011/065929

2/18

PCT/US2008/084282

Host Memory

CPUL

GPU
35

Graphics
Memory
36

33

GPU Board 1

cPU2

GPU
37

Graphics
Memory

38

34

GPU Board 2

NIC1 39

NIC 2 40

Figure 2

SUBSTITUTE SHEET (RULE 26)

WO 2011/065929 i PCT/US2008/084282
3/15

A5 | | M

[Bs] [84] [83] [B2] [T81 Figure 3

Lime (request received)

Figure 4
'“J n N Figure 4
procassing order
Figure 5
[»s M| |] | A Al
85| [| [B3] [B2] [B1] _Figure 5
HERRECEEREN
lime {reques! received)
- EEJEEOECA]| Figure 6

processing order

SUBSTITUTE SHEET (RULE 26)

WO 2011/065929 PCT/US2008/084282
4/15

Figure 7

SUBSTITUTE SHEET (RULE 26)

WO 2011/065929 PCT/US2008/084282
5/18

Figure 8

SUBSTITUTE SHEET (RULE 26)

WO 2011/065929 PCT/US2008/084282
6/15

Figure 9

SUBSTITUTE SHEET (RULE 26)

WO 2011/065929 PCT/US2008/084282
7/15

Figure 10

SUBSTITUTE SHEET (RULE 26)

WO 2011/065929 PCT/US2008/084282
8/15

Figure 11

SUBSTITUTE SHEET (RULE 26)

WO 2011/065929 PCT/US2008/084282
9/15

Figure 12

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/084282

WO 2011/065929
10/15
Render Server Software] A————>|Client sends message to /
listens for incoming : RSS
network connection
request
Y
1308
. RSS receives client e
1302 / message ,
Client attempts 1310
connection to RSS \ 4
1309 No
l ™~ Process now? t—)| Add message to queue
1303 : J
~JRSS and client exchang Yes 1311b \
authentication Y h 4
credentials 13104 :
N Message is a render Manage queue (i.e.,
request? - prioritize, alter requests)
1311 Yes No
1304 Y Y
| RSS checks render , B3lla
server resources RSS transfers detaset tq Respond to message /
GPU
A A
1305 . 1312
| RSS accepts (rejects) RSS issues commands to
connection GPU to render image
Y
1306 y 1313
N . . . GPU renders image in /
RSS listens for incoming Graphics Memory
messages on established
connections
1314
RSS transfers image to /
host memory
h 4 1315
/
RSS transfers image to
client

SUBSTITUTE SHEET (RULE 26)

Figure 13

WO 2011/065929

1401

1402

1403

Subdivide original data
volume into smaller
datasets

Y

Render image for each
smaller dataset
individually

Compose rendered
images, choosing
brightest value among
separate images for
each pixel

PCT/US2008/084282

Associate each pixel in
smaller dataset with a
viewing ray

4

1402b

Determine voxels
intersected by each
viewing ray

M

1402¢

\

Determine maximum
gray value among edach
intersected voxel group

v

1402d

Assign maximum gray
value fo corresponding
pixel

Y

All datasets rendered?

Figure 14

SUBSTITUTE SHEET (RULE 26)

WO 2011/065929

1501

N

1502

12/15

Incoming render request

l

User interacting with
data set (e.g., rotating
image)?

]

l Yes

RSS transfers low-res
dataset to GPU

_ 1503a | rss transfers full-res
] dataset to GPU
Y
1504a
~ GPU renders full-res
image
1505

1506

GPU renders low-res

image

e

Image transferred to
host memory

'

~

Image transferred to
client

PCT/US2008/084282

1503b

1504b

‘Figure 15

SUBSTITUTE SHEET (RULE 26)

WO 2011/065929

13/15

Render request 1 using
dataset A

l

Load dataset A from
host memory to GPU
and process request 1

l

Render request 2 using
dataset B

l

Load dataset B from
host memory to GPU
and process request 2

l

Render request 3 using
dataset A

i

Process request 2

1601

1602

1603

1604

1605

1606

Figure 16a

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/084282

WO 2011/065929 PCT/US2008/084282
14/15

Render request 1 using 1651
dataset A ~

l

Send render request 1 /
to all GPUs

l

1652

Yes
Dataset A stored in any| 1653
GPU? -
No
\ 4
Render mode = MPR or | 1654
oblique slicing? ¥V
1655a No Yes
\ \ 4 A
Load dataset A from Process request 1 on
host memory to GPU \
1655b
» Process request 1 on
GPU
1656
Figure 16b

SUBSTITUTE SHEET (RULE 26)

WO 2011/065929 PCT/US2008/084282

15/15
1701
Receive multiple
requests
A
1702 1703b

GPU resources greater
N than required for data
from multiple requests? No

lYes
17030_

\ Load data for requests
to GPU and process
requests "concurrently”

.| Break down requests /
7| into smaller requests 1

Figure 17

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 08/84282

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBT 1/00 (2011.01)
USPC - 345/522

According to Intemnational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC 345/522

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC 345/420, 520, 522, 619; 709/207, 231; 715/740, 744 (text search—see below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PubWest (PGPB,USPT,EPAB,JPAB); Google Scholar (Patents,Articles)

Search terms: GPU, graphics, video, card, processor, accelerator, server, remote, render, command, call, request, break, split, brick,
alternate, interleave, queue, buffer, FIFO, stream, pipeline, priority, preference, smaller, shorter, faster

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2006/0028479 A1 (CHUN et al.) 09 February 2006 (09.02.2006) entire document, especially | 1-30
Abstract; Figs. 3, 5, 10; para [0023], [0032]-{0036], [0074]), [0075]; [0097]
Y US 2007/0097133 A1 (STAUFFER et al.) 03 May 2007 (03.05.2007) entire document, 1-30
especially Abstract; Fig. 3; para [0031}
Y US 2004/0066384 A1 (OHBA) 08 April 2004 (08.04.2004) entire document, especially Abstract; | 7, 8, 17, 18, 23, 25, 26
Figs. 1A, B; para [0015], {0061)
Y US 2007/0156955 A1 (ROYER, JR. et al.) 05 July 2007 (05.07.2007) entire document, 9,24
especially Abstract; Fig. 1; para [0009], [0010]
Y US 7,076,735 B2 (CALLEGARI) 11 July 2006 (11.07.2006) entire document, especially 10, 11, 27
Abstract; Fig. 4; col. 8, In 28-47
A US 7,274,368 B1 (KESLIN) 25 September 2007 (25.09.2007) entire document, especially 1-30
Abstract; Figs. 1, 2; col. 3, In 30 to col. 4, In 22
A US 6,798,417 B1 (TAYLOR) 28 September 2004 (28.09.2004) entire document, especially 1-30
Abstract; Figs. 4-6; col. 4, In 46 to col. 5, In 52

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the a;iﬁlication but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered 1o involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

13 April 2011 (13.04.2011)

Date of mailing of the international search report

05 MAY 201

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/JUS, Commissioner for Patents
P.0. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571.273-3201

Authorized officer:
Lee W. Young

PCT Helpdask: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - wo-search-report

