(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property

Organization

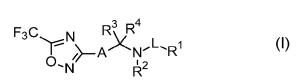
International Bureau



(43) International Publication Date 19 October 2017 (19.10.2017)

- (51) International Patent Classification: *C07D 271/06* (2006.01) *A01N 43/836* (2006.01) *A01P 3/00* (2006.01)
- (21) International Application Number: PCT/EP2017/057669
- (22) International Filing Date: 31 March 2017 (31.03.2017)
- (25) Filing Language: English
- (26) Publication Language:
   English
- (30) Priority Data: 16164698.9 11 April 2016 (11.04.2016) EP
- (71) Applicant: BASF SE [DE/DE]; Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein (DE).
- (72) Inventors: TERTERYAN-SEISER, Violeta; Feldbergstrasse 18, 68163 Mannheim (DE). GRAMMENOS, Wassilios; Alexander-Fleming-Str. 13, 67071 Ludwigshafen (DE). WIEBE, Christine; Dammstrasse 31, 68169 Mannheim (DE). KRETSCHMER, Manuel; 1801 16th St. NW, Apt. 611, Washington D.C., 20009 (US). CRAIG, Ian Robert: Carl-Bosch-Strasse 70, 67063 Ludwigshafen (DE). ESCRIBANO CUESTA, Ana; L8, 5, 68161 Mannheim (DE). FEHR, Marcus; Hermann-Langlotz-Str. 22, 67346 Speyer (DE). MENTZEL, Tobias; Gartenstrasse 4, 67354 Roemerberg (DE). QUINTERO PALOMAR, Maria Angelica; Tullastrasse 19, 68161 Mannheim (DE). GROTE, Thomas; Im Hoehnhausen 18, 67157 Wachenheim (DE). CAMBEIS, Erica; Breslauer Strasse 19, 67258 Hessheim (DE). MUELLER, Bernd; Stockinger

# (10) International Publication Number WO 2017/178245 A1


Str. 7, 67227 Frankenthal (DE). LOHMANN, Jan Klaas; Muehltorstr 2a, 67245 Lambsheim (DE). WINTER, Christian; Eschenbachstr. 42, 67063 Ludwigshafen (DE).

- (74) Agent: BASF IP ASSOCIATION; BASF SE, G-FLP C006, 67056 Ludwigshafen (DE).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

#### Published:

- with international search report (Art. 21(3))

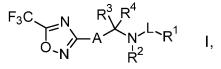
(54) Title: SUBSTITUTED OXADIAZOLES FOR COMBATING PHYTOPATHOGENIC FUNGI



(57) Abstract: The present invention relates to novel trifluoromethyloxadiazoles of the formula I, or an N-oxide and/or their agriculturally useful salts and to their use for controlling phytopathogenic fungi; to a method for combating phytopathogenic harmful fungi, which process comprises treating the fungi or the plants, the soil or seeds to be protected against fungal attack, with an effective amount of at least one compound of the formula I, or an N-oxide, or an agriculturally acceptable salt thereof; to a process for preparing compounds of the formula I; to intermediate compounds of the formula II.a for the preparation of compounds of the formula I; to agrochemical compositions comprising at least one compound of the formula I; and to agrochemical compositions further comprising seeds. Substituted oxadiazoles for combating phytopathogenic fungi

The present invention relates to novel trifluoromethyloxadiazoles of the formula I, or an N-oxide and/or their agriculturally useful salts and to their use for controlling phytopathogenic fungi; to a

- 5 method for combating phytopathogenic harmful fungi, which process comprises treating the fungi or the plants, the soil or seeds to be protected against fungal attack, with an effective amount of at least one compound of the formula I, or an N-oxide, or an agriculturally acceptable salt thereof; to a process for preparing compounds of the formula I; to intermediate compounds of the formula II.a for the preparation of compounds of the formula I; to agrochemical
- 10 compositions comprising at least one compound of the formula I; and to agrochemical compositions further comprising seeds.


EP 276432 A2 relates to 3-phenyl-5-trifluoromethyloxadiazole derivatives and to their use to combat phytopathogenic microorganisms. WO 2015/185485 A1 describes similar derivatives of trifluoromethyloxadiazoles and their use to combat phytopathogenic microorganisms.

15 WO 97/30047 A1 describes certain trifluoromethyloxadiazole analogues with fungicidal activity, wherein the trifluoromethyloxadiazole group and an amide functional group are attached to a phenyl ring in an *ortho*-relationship.

The Chemical Abstracts database reveals the structure of certain oxadiazoles, namely 5-ethyl-2,4-dimethyl-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]pyrazole-3-carbox-

- 20 amide (CAS 932742-84-2), 5-ethyl-2-methyl-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]pyrazole-3-carboxamide (CAS 932742-82-0), 4-chloro-2,5-dimethyl-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]pyrazole-3-carboxamide (CAS 932742-80-8), 4-bromo-5-ethyl-2-methyl-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl] pyrazole-3-carboxamide (CAS 932742-77-3) and 4-chloro-5-ethyl-2-methyl-N-[[4-[5-(trifluoro-methyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]
- 1,2,4-oxadiazol-3-yl]phenyl]methyl]pyrazole-3-carboxamide (CAS 932742-72-8).
   Intermediate compound [4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methanamine is described in WO 2013/066839 A2 (CAS Registry number 510771-81-0).
   In many cases, in particular at low application rates, the fungicidal activity of known fungicidal compounds is unsatisfactory. Based on this, it was an objective of the present invention to
- 30 provide compounds having improved activity and/or a broader activity spectrum against phytopathogenic fungi. This objective is achieved by the oxadiazoles of the formula I and/or their agriculturally useful salts for controlling phytopathogenic fungi.

Accordingly, the present invention relates to compounds of the formula I, or the N-oxides, or the 35 agriculturally acceptable salts thereof



wherein:

A is phenyl or a 5- or 6-membered aromatic heterocycle, wherein the ring member atoms of the aromatic heterocycles include besides carbon atoms 1, 2, 3 or 4 heteroatoms selected

40

from N, O and S as ring member atoms; and wherein the phenyl ring or the aromatic

heterocycles are unsubstituted or substituted with 1, 2, 3 or 4 identical or different groups  $R^{A}$ ; wherein

- R<sup>A</sup> is halogen, cyano, NO<sub>2</sub>, OH, SH, NH<sub>2</sub>, diC<sub>1</sub>-C<sub>6</sub>-alkylamino, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy,
   C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>-alkylsulfonyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl,
  - C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkoxy; and wherein any of the aliphatic and cyclic moieties are unsubstituted or substituted with 1, 2, 3 or 4 identical or different groups  $R^a$ ; wherein
    - R<sup>a</sup> is halogen, cyano, NO<sub>2</sub>, OH, SH, NH<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-haloalkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-haloalkylthio or C<sub>3</sub>-C<sub>8</sub>cycloalkyl or C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl;

L is  $-(C=O)-, -(C=S)- \text{ or } -S(=O)_p-;$ 

- p is 0, 1 or 2;
- R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, heteroaryl-C<sub>1</sub>-C<sub>4</sub>-alkyl, phenyl, naphthyl or a 3- to 10-membered saturated, partially unsaturated or aromatic mono- or bicyclic heterocycle, wherein the ring member atoms of said mono- or bicyclic heterocycle include besides carbon atoms further 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms and wherein 1 or 2 carbon ring member atoms of the heterocycle may be replaced by 1 or 2 groups independently selected from -C(=O)- and -C(=S)-; and wherein the heteroaryl group in heteroaryl-C<sub>1</sub>-C<sub>4</sub>-alkyl is a 5- or 6-membered aromatic heterocycle, wherein the ring member atoms of the heterocyclic ring include besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms selected from N, O and S as ring member atoms selected from N, O and S as ring member atoms the ring member atoms of the heterocycle, wherein the ring member atoms of the heterocyclic ring include besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein any of the above-mentioned aliphatic or cyclic groups are unsubstituted or substituted with 1, 2, 3 or up to the maximum possible number of identical or different groups R<sup>1a</sup>; wherein
- 25

30

35

5

10

R<sup>1a</sup> is halogen, oxo, cyano, NO<sub>2</sub>, OH, SH, NH<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-haloalkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-haloalkylthio, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, -NHSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>-alkyl, (C=O)-C<sub>1</sub>-C<sub>4</sub>-alkyl, C(=O)-C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylsulfonyl,

hydroxyC<sub>1</sub>-C<sub>4</sub>-alkyl, C(=O)-NH<sub>2</sub>, C(=O)-NH(C<sub>1</sub>-C<sub>4</sub>-alkyl), C<sub>1</sub>-C<sub>4</sub>-alkylthio-C<sub>1</sub>-C<sub>4</sub>-alkyl, aminoC<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkylamino-C<sub>1</sub>-C<sub>4</sub>-alkyl, diC<sub>1</sub>-C<sub>4</sub>-alkylamino-C<sub>1</sub>-C<sub>4</sub>-alkyl, aminocarbonyl-C<sub>1</sub>-C<sub>4</sub>-alkyl or C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>-C<sub>4</sub>-alkyl.

- R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl-C<sub>1</sub>-C<sub>6</sub>-alkyl, phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, phenyl, C(=O)-C<sub>1</sub>-C<sub>6</sub>-alkyl or C(=O)-C<sub>1</sub>-C<sub>6</sub>-alkoxy; and wherein any of the aliphatic or cyclic groups are unsubstituted or substituted with 1, 2, 3 or up to the maximum possible number of identical or different groups R<sup>1a</sup>;
- R<sup>3</sup>, R<sup>4</sup> independently of each other are selected from the group consisting of hydrogen, halogen, cyano, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkenyl, C<sub>1</sub>-C<sub>4</sub>-alkynyl and C<sub>1</sub>-C<sub>4</sub>-haloalkyl;
- or R<sup>3</sup> and R<sup>4</sup> together with the carbon atom to which they are bound form a 3- to 7- membered
   40 carbocycle or a saturated 3- to 6-membered heterocycle, wherein the heterocycle includes
   beside carbon atoms 1, 2 or 3 heteroatoms independently selected from N-R<sup>N</sup>, S, -S(=O)-,
   -S(=O)<sub>2</sub>- and O as ring member atoms; wherein

RN

5

10

- is H, C<sub>1</sub>-C<sub>6</sub>-alkyl, SO<sub>2</sub>CH<sub>3</sub>, SO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub> or SO<sub>2</sub>-aryl;
- and wherein one or two CH<sub>2</sub> groups of the carbocycle or heterocycle may be replaced by one or two groups independently selected from the group of -C(=O)- and -C(=S)-; and wherein the carbocycle, the heterocycle and aryl is unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>3a</sup>; wherein
  - R<sup>3a</sup> is halogen, cyano, NO<sub>2</sub>, OH, SH, NH<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-haloalkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-haloalkylthio, C<sub>3</sub>-C<sub>8</sub>cycloalkyl, NHSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>-alkyl, (C=O)-C<sub>1</sub>-C<sub>4</sub>-alkyl, C(=O)-C<sub>1</sub>-C<sub>4</sub>-alkoxy or C<sub>1</sub>-C<sub>6</sub>-alkylsulfonyl;
- with the exception of 5-ethyl-2,4-dimethyl-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]pyrazole-3-carboxamide, 5-ethyl-2-methyl-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]pyrazole-3-,4-chloro-2,5-dimethyl-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]pyrazole-3-carboxamide, 4-bromo-5-ethyl-2-methyl-N-[[4-[5-
- 15 (trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]pyrazole-3-carboxamide and 4-chloro-5ethyl-2-methyl-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]pyrazole-3carboxamide.

Agriculturally acceptable salts of the compounds of the formula I encompass especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the fungicidal action of the compounds I. Suitable cations are thus in particular the ions of the alkali metals, preferably sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, of the transition metals, preferably manganese, copper, zinc and iron, and also the ammonium ion which, if desired, may be

- 25 substituted with one to four C<sub>1</sub>-C<sub>4</sub>-alkyl substituents and/or one phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri(C<sub>1</sub>-C<sub>4</sub>-alkyl)sulfonium, and sulfoxonium ions, preferably tri(C<sub>1</sub>-C<sub>4</sub>-alkyl)sulfoxonium. Anions of acceptable acid addition salts are primarily chloride, bromide, fluoride,
- 30 hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of C<sub>1</sub>-C<sub>4</sub>-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting a compound I with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
- 35 Compounds of the formula I can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers arising from restricted rotation about a single bond of asymmetric groups and geometric isomers. They also form part of the subject matter of the present invention. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s)
- 40 or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. The compounds of the invention may be present as a mixture of stereoisomers, e.g. a racemate, individual stereoisomers, or as an optically active form.

Compounds of the formula I can be present in different crystal modifications whose biological activity may differ. They also form part of the subject matter of the present invention. In respect of the variables, the embodiments of the intermediates obtained during preparation of compounds I correspond to the embodiments of the compounds of formula I. The term "

- 5 compounds I" refers to compounds of formula I. In the definitions of the variables given above, collective terms are used which are generally representative for the substituents in question. The term "C<sub>n</sub>-C<sub>m</sub>" indicates the number of carbon atoms possible in each case in the substituent or substituent moiety in question. The moieties having two ore more possibilities to be attached apply following:
- 10 The moieties having no brackets in the name are bonded via the last moiety e.g. heteroaryl-C<sub>1</sub>-C<sub>4</sub>-alkyl is bonded via C<sub>1</sub>-C<sub>4</sub>-alkyl. etc.

The moieties having brackets in the name are bonded via the first moiety e.g.  $C(=O)-C_1-C_6$ -alkyl is bonded via C=O, etc.

The term "halogen" refers to fluorine, chlorine, bromine and iodine.

15 The term "C<sub>1</sub>-C<sub>6</sub>-alkyl" refers to a straight-chained or branched saturated hydrocarbon group having 1 to 6 carbon atoms, for example methyl, ethyl, propyl, 1-methylethyl, butyl, 1methylpropyl, 2-methylpropyl, and 1,1-dimethylethyl. The term "C<sub>1</sub>-C<sub>6</sub>-haloalkyl" refers to a straight-chained or branched alkyl group having 1 to 6

carbon atoms (as defined above), wherein some or all of the hydrogen atoms in these groups

- 20 may be replaced by halogen atoms as mentioned above, for example chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl and pentafluoroethyl, 2-
- fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 2-chloropropyl, 3chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl, 3,3,3trichloropropyl, CH<sub>2</sub>-C<sub>2</sub>F<sub>5</sub>, CF<sub>2</sub>-C<sub>2</sub>F<sub>5</sub>, CF(CF<sub>3</sub>)<sub>2</sub>, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl, 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl or nonafluorobutyl.
- 30 The term "C<sub>1</sub>-C<sub>6</sub>-alkoxy" refers to a straight-chain or branched alkyl group having 1 to 6 carbon atoms (as defined above) which is bonded via an oxygen, at any position in the alkyl group, for example methoxy, ethoxy, n-propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy or 1,1-dimethylethoxy.

The term " $C_1$ - $C_6$ -haloalkoxy" refers to a  $C_1$ - $C_6$ -alkoxy group as defined above, wherein some or

- 35 all of the hydrogen atoms may be replaced by halogen atoms as mentioned above, for example, OCH<sub>2</sub>F, OCHF<sub>2</sub>, OCF<sub>3</sub>, OCH<sub>2</sub>Cl, OCHCl<sub>2</sub>, OCCl<sub>3</sub>, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, OC<sub>2</sub>F<sub>5</sub>, 2-fluoropropoxy, 3-fluoropropoxy, 2,2-
- difluoropropoxy, 2,3-difluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2,3-dichloropropoxy,
   2-bromopropoxy, 3-bromopropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, OCH<sub>2</sub>-C<sub>2</sub>F<sub>5</sub>,
   OCF<sub>2</sub>-C<sub>2</sub>F<sub>5</sub>, 1-(CH<sub>2</sub>F)-2-fluoroethoxy, 1-(CH<sub>2</sub>Cl)-2-chloroethoxy, 1-(CH<sub>2</sub>Br)-2-bromoethoxy,
   4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy.

The terms "phenyl-C1-C4-alkyl or heteroaryl-C1-C4-alkyl" refer to alkyl having 1 to 4 carbon

#### PCT/EP2017/057669

atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a phenyl or hetereoaryl radical respectively.

The term " $C_1$ - $C_4$ -alkoxy- $C_1$ - $C_4$ -alkyl" refers to alkyl having 1 to 4 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a  $C_1$ - $C_4$ -alkoxy group (as

5 defined above). Likewise, the term " $C_1$ - $C_4$ -alkylthio- $C_1$ - $C_4$ -alkyl" refers to alkyl having 1 to 4 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a  $C_1$ - $C_4$ -alkylthio group.

The term " $C_1$ - $C_6$ -alkylthio" as used herein refers to straight-chain or branched alkyl groups having 1 to 6 carbon atoms (as defined above) bonded via a sulfur atom. Accordingly, the term

"C1-C6-haloalkylthio" as used herein refers to straight-chain or branched haloalkyl group having
 1 to 6 carbon atoms (as defined above) bonded through a sulfur atom, at any position in the haloalkyl group.

The term "C<sub>1</sub>-C<sub>6</sub>-alkylsulfinyl" refers to straight-chain or branched alkyl groups having 1 to 6 carbon atoms (as defined above) bonded through a -S(=O)- moiety, at any position in the alkyl

- 15 group, for example methylsulfinyl and ethylsulfinyl, and the like. Accordingly, the term " $C_1$ - $C_6$ haloalkylsulfinyl" refers to straight-chain or branched haloalkyl group having 1 to 6 carbon atoms (as defined above), bonded through a -S(=O)- moiety, at any position in the haloalkyl group. The term " $C_1$ - $C_6$ -alkylsulfonyl" refers to straight-chain or branched alkyl groups having 1 to 6 carbon atoms (as defined above), bonded through a  $-S(=O)_2$ - moiety, at any position in the alkyl
- group, for example methylsulfonyl. Accordingly, the term "C<sub>1</sub>-C<sub>6</sub>-haloalkylsulfonyl" refers to straight-chain or branched haloalkyl group having 1 to 6 carbon atoms (as defined above), bonded through a –S(=O)<sub>2</sub>- moiety, at any position in the haloalkyl group. The term "C<sub>3</sub>-C<sub>8</sub>-cycloalkyl-C<sub>1</sub>-C<sub>6</sub>-alkyl" refers to alkyl having 1 to 6 carbon atoms, wherein one hydrogen atom of the alkyl radical is replaced by a C<sub>3</sub>-C<sub>8</sub>-cycloalkyl group.
- The term "hydroxyC<sub>1</sub>-C<sub>4</sub>-alkyl" refers to alkyl having 1 to 4 carbon atoms, wherein one hydrogen atom of the alkyl radical is replaced by a OH group.
   The term "aminoC<sub>1</sub>-C<sub>4</sub>-alkyl" refers to alkyl having 1 to 4 carbon atoms, wherein one hydrogen atom of the alkyl radical is replaced by a NH<sub>2</sub> group.
   The term "diC<sub>1</sub>-C<sub>6</sub>-alkylamino" refers to an amino group, which is substituted with two residues
- 30 independently selected from the group that is defined by the term C<sub>1</sub>-C<sub>6</sub>-alkyl. The term "C<sub>1</sub>-C<sub>4</sub>-alkylamino-C<sub>1</sub>-C<sub>4</sub>-alkyl" refers to refers to alkyl having 1 to 4 carbon atoms (as defined above), wherein one hydrogen atom of the alkyl radical is replaced by a C<sub>1</sub>-C<sub>4</sub>-alkyl-NH-group which is bound through the nitrogen. Likewise the term "diC<sub>1</sub>-C<sub>4</sub>-alkylamino-C<sub>1</sub>-C<sub>4</sub>-alkyl" refers to refers to alkyl having 1 to 4 carbon atoms (as defined above), wherein one hydrogen
- 35 atom of the alkyl radical is replaced by a (C<sub>1</sub>-C<sub>4</sub>-alkyl)<sub>2</sub>N- group which is bound through the nitrogen.

The term "aminocarbonyl-C<sub>1</sub>-C<sub>4</sub>-alkyl" refers to alkyl having 1 to 4 carbon atoms, wherein one hydrogen atom of the alkyl radical is replaced by a  $-(C=O)-NH_2$  group.

The term "C<sub>2</sub>-C<sub>6</sub>-alkenyl" refers to a straight-chain or branched unsaturated hydrocarbon radical
 having 2 to 6 carbon atoms and a double bond in any position, such as ethenyl, 1-propenyl, 2-propenyl (allyl), 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl 1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl.

The term " $C_2$ - $C_6$ -alkynyl" refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and containing at least one triple bond, such as ethynyl, 1-propynyl,

2-propynyl (propargyl), 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl. The term "C<sub>3</sub>-C<sub>8</sub>-cycloalkyl" refers to monocyclic saturated hydrocarbon radicals having 3 to 8 carbon ring members such as cyclopropyl (C<sub>3</sub>H<sub>5</sub>), cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.

- The term "C<sub>3</sub>-C<sub>8</sub>-cycloalkyloxy" refers to a cycloalkyl radical having 3 to 8 carbon atoms (as defined above), which is bonded via an oxygen.
   The term "C(=O)-C<sub>1</sub>-C<sub>4</sub>-alkyl" refers to a radical which is attached through the carbon atom of the-C(=O)-group as indicated by the number valence of the carbon atom.
   The term "aliphatic" refers to compounds or radicals composed of carbon and hydrogen and
- which are non-aromatic compounds. An alicyclic compound or radical is an organic compound that is both aliphatic and cyclic. They contain one or more all-carbon rings which may be either saturated or unsaturated, but do not have aromatic character.
   The terms "cyclic moiety" or "cyclic group"refer to a radical which is an alicyclic ring or an
- aromatic ring, such as, for example, phenyl or heteroaryl.
  The term "and wherein any of the aliphatic or cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup>" refers to aliphatic groups, cyclic groups and groups, which contain an aliphatic and a cyclic moiety in one group, such as in, for example, phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl; therefore a group which contains an aliphatic and a cyclic moiety both of these moieties may be substituted or unsubstituted independently of
- 20 each other.

The term "aryl" refers to aromatic monocyclic or polycyclic ring systems which may or may not include, besides carbon atoms, 1, 2, 3 or 4 heteroatoms independently selected from the group consisting of N, O and S.

The term "heteroaryl" refers to aromatic monocyclic or polycyclic ring systems incuding besides carbon atoms, 1, 2, 3 or 4 heteroatoms independently selected from the group consisting of N, O and S.

The term "phenyl" refers to an aromatic ring systems incuding six carbon atoms (commonly referred to as benzene ring). In association with the group A the term "phenyl" is to be interpreted as a benzene ring or phenylene ring, which is attached to both, the oxadiazole

30 moiety and the  $-S(=O)_p$ - group.

The term "3- to 10-membered saturated, partially unsaturated or aromatic mono- or bicyclic heterocycle, wherein the ring member atoms of said mono- or bicyclic heterocycle include besides carbon atoms further 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms", is to be understood as meaning both, aromatic mono- and bicyclic

35 heteroaromatic ring systems, and also saturated and partially unsaturated heterocycles, for example:

a 3- or 4-membered saturated heterocycle which contains 1 or 2 heteroatoms from the group consisting of N, O and S as ring members such as oxirane, aziridine, thiirane, oxetane, azetidine, thiethane, [1,2]dioxetane, [1,2]dithietane, [1,2]diazetidine;

and a 5- or 6-membered saturated or partially unsaturated heterocycle which contains 1, 2 or 3 heteroatoms from the group consisting of N, O and S as ring members such as 2-tetrahydro-furanyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3-tetrahydrothienyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 3-isoxazolidinyl, 4-isoxazolidinyl, 5-isoxazolidinyl, 3-isothiazolidinyl, 4-oxazolidinyl, 5-pyrazolidinyl, 5-pyrazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl,

5-oxazolidinyl, 2-thiazolidinyl, 4-thiazolidinyl, 5-thiazolidinyl, 2-imidazolidinyl, 4-imidazolidinyl, 1,2,4-oxadiazolidin-3-yl, 1,2,4-oxadiazolidin-5-yl, 1,2,4-thiadiazolidin-3-yl, 1,2,4-thiadiazolidin-5-yl, 1,2,4-thiadiazolidin-2-yl, 1,3,4-thiadiazolidin-2-yl, 2,3-dihydrofur-2-yl, 2,3-dihydrofur-3-yl, 2,4-dihydrofur-2-yl, 2,4-dihydrofur-3-yl, 2,3-dihydrothien-

- 2-yl, 2,3-dihydrothien-3-yl, 2,4-dihydrothien-2-yl, 2,4-dihydrothien-3-yl, 2-pyrrolin-2-yl, 2-pyrrolin-3-yl, 3-pyrrolin-2-yl, 3-pyrrolin-3-yl, 2-isoxazolin-3-yl, 3-isoxazolin-3-yl, 4-isoxazolin-3-yl, 2-isoxazolin-4-yl, 3-isoxazolin-4-yl, 3-isoxazolin-5-yl, 3-isoxazolin-5-yl, 2-isothiazolin-5-yl, 2-isothiazolin-3-yl, 3-isothiazolin-3-yl, 4-isothiazolin-3-yl, 2-isothiazolin-4-yl, 3-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2-isothiazolin-5-yl, 3-isothiazolin-5-yl, 2-isothiazolin-5-yl, 2-isothiazolin-5-yl, 3-isothiazolin-5-yl, 2-isothiazolin-5-yl, 2-isothiazolin-5-yl, 3-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2-isothiazolin-5-yl, 2-isothiazolin-5-yl, 3-isothiazolin-5-yl, 2-isothiazolin-5-yl, 2-isothiazolin-5-yl, 3-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2-isothiazolin-5-yl, 2-isothiazolin-5-yl, 3-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2-isothiazolin-5-yl, 2-isothiazolin-5-yl, 3-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2-isothiazolin-5-yl, 2-isothiazolin-5-yl, 3-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2-isothiazolin-5-yl, 2-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2-isothiazolin-5-yl, 2-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2-isothiazolin-5-yl, 4-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2-isothiazolin-5-yl, 4-isothiazolin-5-yl, 4-isothiazolin-5-y
- 10 dihydropyrazol-1-yl, 2,3-dihydropyrazol-2-yl, 2,3-dihydropyrazol-3-yl, 2,3-dihydropyrazol-4-yl, 2,3-dihydropyrazol-5-yl, 3,4-dihydropyrazol-1-yl, 3,4-dihydropyrazol-3-yl, 3,4-dihydropyrazol-4yl, 3,4-dihydropyrazol-5-yl, 4,5-dihydropyrazol-1-yl, 4,5-dihydropyrazol-3-yl, 4,5-dihydropyrazol-4-yl, 4,5-dihydropyrazol-5-yl, 2,3-dihydrooxazol-2-yl, 2,3-dihydrooxazol-3-yl, 2,3-dihydrooxazol-4-yl, 2,3-dihydrooxazol-5-yl, 3,4-dihydrooxazol-2-yl, 3,4-dihydrooxazol-3-yl, 3,4-dihydrooxazol-4-
- yl, 3,4-dihydrooxazol-5-yl, 3,4-dihydrooxazol-2-yl, 3,4-dihydrooxazol-3-yl, 3,4-dihydrooxazol-4yl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1,3-dioxan-5-yl, 2-tetrahydropyranyl, 4tetrahydropyranyl, 2-tetrahydrothienyl, 3-hexahydropyridazinyl, 4-hexahydropyridazinyl, 2-hexahydropyrimidinyl, 4-hexahydropyrimidinyl, 5-hexahydropyrimidinyl, 2-piperazinyl, 1,3,5hexahydrotriazin-2-yl and 1,2,4-hexahydrotriazin-3-yl and also the corresponding -ylidene

20 radicals; and

a 7-membered saturated or partially unsaturated heterocycle such as tetra- and hexahydroazepinyl, such as 2,3,4,5-tetrahydro[1H]azepin-1-,-2-,-3-,-4-,-5-,-6- or-7-yl, 3,4,5,6- tetrahydro[2H]azepin-2-,-3-,-4-,-5-,-6- or-7-yl, 2,3,4,7-tetrahydro[1H]azepin-1-,-2-,-3-,-4-,-5-,-6- or-7-yl, 2,3,6,7-tetrahydro[1H]azepin-1-,-2-,-3-,-4-,-5-,-6- or-7-yl, hexahydroazepin-1-,-2-,-3- or-

- 4-yl, tetra- and hexahydrooxepinyl such as 2,3,4,5-tetrahydro[1H]oxepin-2-,-3-,-4-,-5-,-6- or-7-yl, 2,3,4,7-tetrahydro[1H]oxepin-2-,-3-,-4-,-5-,-6- or-7-yl, 2,3,6,7-tetrahydro[1H]oxepin-2-, -3-,-4-,-5-,-6- or-7-yl, hexahydroazepin-1-,-2-,-3- or-4-yl, tetra- and hexahydro-1,3-diazepinyl, tetra- and hexahydro-1,4-diazepinyl, tetra- and hexahydro-1,3-oxazepinyl, tetra- and hexahydro-1,4-dioxepinyl, tetra- oxazepinyl, tetra- and hexahydro-1,3-dioxepinyl, tetra- and hexahydro-1,4-dioxepinyl and the
- 30 corresponding -ylidene radicals; and the term "5- or 6-membered heteroaryl" or the term "5- or 6-membered aromatic heterocycle" refer to aromatic ring systems incuding besides carbon atoms, 1, 2, 3 or 4 heteroatoms independently selected from the group consisting of N, O and S, for example, a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl,
- 35 pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1,2,4-triazolyl-1-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl and 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl; or
- 40 a 6-membered heteroaryl, such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.

In respect of the variables, the embodiments of the intermediates of the formula II.a correspond

to the embodiments of the compounds I. Preference is given to those compounds I and, where applicable, also to compounds of all sub-formulae and intermediate compounds provided herein, e. g. formulae (I.1) to (I.8) and compounds of the formula I.A, I.B, I.C, I.D, I.E, I.F, I.G, I.H; I.J, I.K, I.L, I.M, I.N, I.O, I.P, I.Q, I.R, I.S, I.T, I.U and I.V, wherein variables such as R<sup>1</sup>, R<sup>2</sup>,

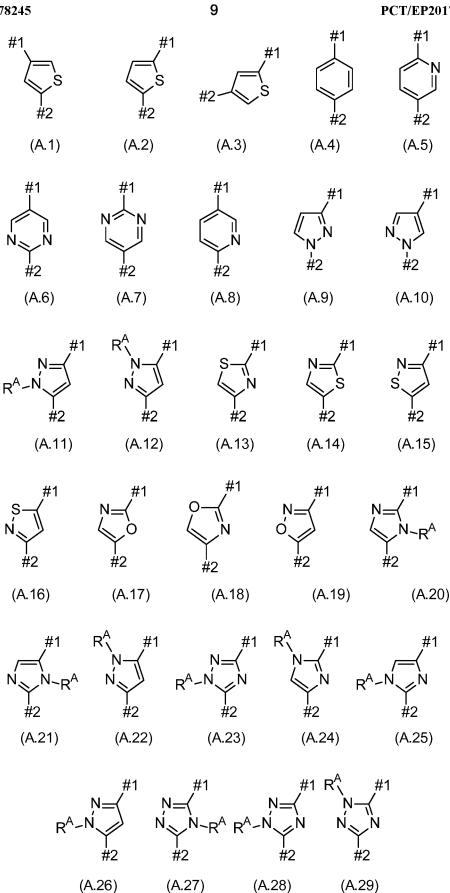
5 R<sup>3</sup>, R<sup>4</sup>, L, A, R<sup>A</sup>, R<sup>a</sup>, R<sup>1a</sup>, R<sup>N</sup>, R<sup>3a</sup> and p have independently of each other or more preferably in combination (any possible combination of 2 or more substituents as defined herein) the following meanings:

In one aspect of the invention A is phenyl which is unsubstituted or substituted with 1, 2, 3 or 4
 identical or different groups R<sup>A</sup> as defined or preferably defined herein and wherein the group -CR<sup>3</sup>R<sup>4</sup>- is attached to the phenyl ring in *para*-position with regard to the trifluoromethyloxadiazole group.

In a further aspect of the invention A is phenyl which is substituted with 1 or 2 identical or different groups R<sup>A</sup> as defined or preferably defined herein and wherein the group -CR<sup>3</sup>R<sup>4</sup>- is

15 attached to the phenyl ring in *para*-position with regard to the trifluoromethyloxadiazole group. In another aspect of the invention A is phenyl which is unsubstituted and wherein the group -CR<sup>3</sup>R<sup>4</sup>- is attached to the phenyl ring in *para*-position with regard to the trifluoromethyloxadiazole group.

In one embodiment A is a 6-membered aromatic heterocycle, wherein the ring member atoms


20 of the aromatic heterocycle include besides carbon atoms 1 or 2 nitrogen atoms as ring member atoms; and wherein the aromatic heterocycle is unsubstituted or substituted with 1 or 2 identical or different groups R<sup>A</sup> as defined or preferably defined herein; particularly R<sup>A</sup> is chlorine, fluorine or methyl.

In a further embodiment A is a 6-membered aromatic heterocycle, wherein the ring member

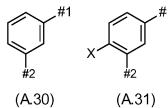
- 25 atoms of the aromatic heterocycle include besides carbon atoms 1 or 2 nitrogen atoms as ring member atoms; and wherein the aromatic heterocycle is unsubstituted or substituted with 1 or 2 identical or different groups R<sup>A</sup> as defined or preferably defined herein; particularly R<sup>A</sup> is chlorine, fluorine or methyl; and wherein the group -CR<sup>3</sup>R<sup>4</sup>- is attached to the 6-membered aromatic heterocycle in *para*-position with regard to the trifluoromethyloxadiazole group.
- 30 In a further preferred embodiment A is a 5-membered aromatic heterocycle, in particular a thiophene ring, more particularly a 2,5-thiophenyl ring, wherein the ring member atoms of the heterocycle include besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein the cyclic groups A are unsubstituted or substituted with 1 or 2 identical or different groups R<sup>A</sup> as defined or preferably defined herein; particularly R<sup>A</sup> is

 chlorine, fluorine or methyl.
 In a further preferred embodiment A is a 5-membered aromatic heterocycle, wherein the ring member atoms of the heterocycle include besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein the cyclic groups A are unsubstituted.

40 In one embodiment the invention relates to compounds of the formula I, wherein the cyclic moiety A is defined as in subformulae (A.1) to (A.29),



wherein #1 denotes the position which is bound to the trifluoromethyloxadiazole moiety and #2 denotes the position, which is connected to the -CR<sup>3</sup>R<sup>4</sup>- group of compounds of the formula I; and wherein the cyclic moiety A is unsubstituted or substituted with 1 or 2 identical or different


5

10

groups R<sup>A</sup> and wherein R<sup>A</sup> is as defined or preferably defined herein. In another embodiment the cyclic moieties A as defined in any one of subformulae (A.1) to (A.29) is unsubstituted or substituted with 1 or 2 identical or different groups R<sup>A</sup>; and wherein R<sup>A</sup> is chlorine, fluorine or methyl. In a preferred embodiment the cyclic moiety A as defined in any one of subformulae

5 (A.1) to (A.29) is unsubstituted.

In another aspect the invention relates to compounds of the formula I, wherein the cyclic moiety A is defined as in subformulae (A.30) or (A.31),



wherein #1 denotes the position which is bound to the trifluoromethyloxadiazole moiety and #2

- 10 denotes the position, which is connected to the -CR<sup>3</sup>R<sup>4</sup>- group of compounds of the formula I; wherein X in (A.31) is halogen or methyl; and wherein the cyclic moiety (A.30) or (A.31) is unsubstituted or substituted with 1 or 2 groups R<sup>A</sup>, and wherein R<sup>A</sup> is as defined or preferably defined herein. Preferably the cyclic moiety (A.30) or (A.31) is unsubstituted or substituted with 1 or 2 identical or different radicals selected from the group consisting of fluorine, chlorine or
- 15 methyl.

In a preferred embodiment of the invention  $R^A$  is halogen, cyano,  $C_1$ - $C_6$ -alkyl,  $C_1$ - $C_6$ -alkoxy,  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyl or  $C_3$ - $C_8$ -cycloalkyl; and wherein any of the aliphatic and cyclic moieties are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups  $R^a$  as defined or preferably defined herein.

- of identical or different groups R<sup>a</sup> as defined or preferably defined herein.
   In another preferred embodiment of the invention R<sup>A</sup> is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alk-oxy, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl; and wherein any of the the aliphatic and cyclic moieties are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups selected from halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy
- and C<sub>3</sub>-C<sub>8</sub>-cycloalkyl; in particular fluorine.
   More preferably R<sup>A</sup> is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>1</sub>-C<sub>6</sub>-haloalkoxy; in particular halogen, C<sub>1</sub>-C<sub>6</sub>-alkyl; more particularly chlorine, fluorine or C<sub>1</sub>-C<sub>6</sub>-alkyl.
   In a more preferable embodiment R<sup>A</sup> is chlorine, fluorine or methyl.
- 30 R<sup>a</sup> according to the invention is halogen, cyano, NO<sub>2</sub>, OH, SH, NH<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-haloalkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-haloalkylthio or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl. In a preferred embodiment of the invention R<sup>a</sup> is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl. More preferably R<sup>a</sup> is halogen, in particular fluorine.
- 35 According to the invention L is -C(=O)-, -C(=S)- or  $-S(=O)_p$ -, wherein p is 0, 1 or 2. In one embodiment L is  $-S(=O)_p$ -, wherein p is 0, 1 or 2; preferably p is 2. In a preferred embodiment L is -C(=O)- or -C(=S)-, in particular L is -C(=O)-.

In one embodiment R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl,

phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, heteroaryl-C<sub>1</sub>-C<sub>4</sub>-alkyl, phenyl, naphthyl or heteroaryl; and wherein the heteroaryl group is a 5- or 6-membered aromatic heterocycle, wherein the aromatic heterocycle includes besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein any of the aliphatic or cyclic groups are unsubstituted or

- substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.
   In another embodiment R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl, phenyl or heteroaryl; and wherein the heteroaryl group is a 5- or 6-membered aromatic heterocycle, wherein the aromatic heterocycle includes besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S
- as ring member atoms; and wherein any of the aliphatic or cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl. In a further aspect of the invention R<sup>1</sup> is phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, heteroaryl-C<sub>1</sub>-C<sub>4</sub>-alkyl, phenyl or heteroaryl; and wherein the heteroaryl group is a 5- or 6-membered aromatic heterocycle
- 15 wherein the aromatic heterocycle includes besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein any of the aliphatic or cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.
- In a further aspect of the invention R<sup>1</sup> is phenyl or heteroaryl; and wherein the heteroaryl group is a 5- or 6-membered aromatic heterocycle wherein the aromatic heterocycle includes besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein any of the cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined
- herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.
   In one aspect of the invention R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl C<sub>2</sub>-C<sub>6</sub>-alkenyl or C<sub>2</sub>-C<sub>6</sub>-alkynyl,; and wherein any of the cyclic or aliphatic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl. In another aspect of the
- invention R<sup>1</sup> is C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>3</sub>-C<sub>8</sub>- cycloalkenyl; and wherein any of the cyclic or aliphatic groups are unsubstituted.
   In one aspect of the invention R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl or C<sub>2</sub>-C<sub>6</sub>-alkynyl; and wherein any of the cyclic or aliphatic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably
- defined herein, in particular  $R^{1a}$  is halogen or  $C_1$ - $C_6$ -alkyl. In another aspect of the invention  $R^1$  is  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyl or  $C_3$ - $C_8$ -cycloalkenyl; and wherein any of the cyclic or aliphatic groups are unsubstituted.

In one aspect of the invention  $R^1$  is  $C_3$ - $C_8$ -cycloalkyl; and wherein any of the cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or

40 different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl. In another aspect of the invention R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl; and wherein any of the cyclic groups are unsubstituted.

In one aspect of the invention  $R^1$  is  $C_3$ - $C_8$ -cycloalkenyl; and wherein any of the cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or

different groups  $R^{1a}$  as defined or preferably defined herein, in particular  $R^{1a}$  is halogen or  $C_1$ - $C_6$ -alkyl. In another aspect of the invention  $R^1$  is  $C_3$ - $C_8$ -cycloalkenyl; and wherein any of the cyclic groups are unsubstituted.

# 5

In one aspect of the invention  $R^2$  is hydrogen,  $C_1$ - $C_6$ -alkyl,  $C_1$ - $C_6$ -alkoxy,  $C_2$ - $C_6$ -alkenyl, ethynyl, propargyl,  $C_3$ - $C_8$ -cycloalkyl,  $C_3$ - $C_8$ -cycloalkenyl; and wherein any of the aliphatic or cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups  $R^{1a}$  as defined or preferably defined herein, in particular  $R^{1a}$  is

10 halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl; more preferably halogen, in particular R<sup>1a</sup> is fluorine.

In a preferred aspect of the invention  $R^2$  is hydrogen,  $C_1$ - $C_6$ -alkyl,  $C_2$ - $C_6$ -alkenyl, ethynyl, propargyl or  $C_3$ - $C_8$ -cycloalkyl; and wherein any of the aliphatic or cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different

15 radicals selected from the group consisting of halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl, in particular fluorine. In a further preferred aspect of the invention R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkenyl, C<sub>3</sub>-C<sub>8</sub>cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl-C<sub>1</sub>-C<sub>4</sub>-alkyl.

In one embodiment  $R^2$  is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkenyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl-C<sub>1</sub>-C<sub>4</sub>-alkyl.

# 20 In a preferred embodiment R<sup>2</sup> is hydrogen, methyl, ethyl, iso-propyl, cyclopropyl, cyclopropyl, cyclopropyl-CH<sub>2</sub>- or allyl.

In another preferred aspect of the invention R<sup>2</sup> is hydrogen, methy or ethyl.

In one embodiment R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkenyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-

- 25 cycloalkyl-C<sub>1</sub>-C<sub>4</sub>-alkyl; and R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, heteroaryl-C<sub>1</sub>-C<sub>4</sub>-alkyl, phenyl or heteroaryl; and wherein the heteroaryl group is a 5- or 6-membered aromatic heterocycle, wherein the ring includes besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein any of the aliphatic or cyclic groups in R<sup>1</sup> or R<sup>2</sup> are unsubstituted or substituted with 1,
- 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein; in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.
  In one embodiment R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkenyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl-C<sub>1</sub>-C<sub>4</sub>-alkyl; and R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl or phenyl; and wherein any of the aliphatic or cyclic groups in R<sup>1</sup> or R<sup>2</sup> are unsubstituted
- or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein; in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl. In one embodiment R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkenyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl-C<sub>1</sub>-C<sub>4</sub>-alkyl; preferably hydrogen, methyl, ethyl, iso-propyl, cyclopropyl, cyclopropyl-CH<sub>2</sub>- or allyl; and R<sup>1</sup> is phenyl or a 5- or 6-membered aromatic heterocycle, wherein the ring
- 40 member atoms of the heterocyclic ring include besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein any of the cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>1</sub>-C<sub>6</sub>-haloalkoxy.

In one embodiment  $R^2$  is hydrogen,  $C_1$ - $C_6$ -alkyl,  $C_1$ - $C_6$ -alkenyl,  $C_3$ - $C_8$ -cycloalkyl or  $C_3$ - $C_8$ -cycloalkyl- $C_1$ - $C_4$ -alkyl; preferably hydrogen, methyl, ethyl, iso-propyl, cyclopropyl, cyclopropyl, cyclopropyl- $CH_2$ - or allyl; and  $R^1$  is  $C_3$ - $C_8$ -cycloalkyl,  $C_3$ - $C_8$ -cycloalkenyl,  $C_2$ - $C_6$ -alkenyl or  $C_2$ - $C_6$ -alkynyl; and wherein any of the cyclic or aliphatic groups are unsubstituted or substituted with 1,

- 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.
  In one embodiment R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkenyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl-C<sub>1</sub>-C<sub>4</sub>-alkyl; preferably hydrogen, methyl, ethyl, iso-propyl, cyclopropyl, cyclopropyl-CH<sub>2</sub>- or allyl; and R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl or C<sub>2</sub>-C<sub>6</sub>-alkynyl; and
- wherein any of the cyclic or aliphatic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.
  In one embodiment R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkenyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl-C<sub>1</sub>-C<sub>4</sub>-alkyl; preferably hydrogen, methyl, ethyl, iso-propyl, cyclopropyl-
- 15  $CH_2$  or allyl; and R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl; and wherein any of the aliphatic or cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.

In yet another embodiment R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-

20 cycloalkyl- $C_1$ - $C_4$ -alkyl; preferably hydrogen, methyl, ethyl, iso-propyl, cyclopropyl, cyclopropyl-CH<sub>2</sub>- or allyl; and R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl; and wherein the cycloalkyl group in R<sup>1</sup> is unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different radicals selected from halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.

In one embodiment R<sup>2</sup> is hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl; preferably hydrogen, methyl or ethyl; and R<sup>1</sup>

- is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl; and wherein any of the cyclic groups are unsubstituted or substituted with 1,
  2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.
  In one embodiment R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkenyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl-C<sub>1</sub>-C<sub>4</sub>-alkyl; preferably hydrogen, methyl, ethyl, iso-propyl, cyclopropyl-
- 30 CH<sub>2</sub>- or allyl; and R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl; and wherein any of the cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.
- 35 In still another aspect of the invention R<sup>1</sup> and R<sup>2</sup> together with L and the nitrogen to which R<sup>2</sup> is bound form a saturated or partially unsaturated 3- to 6-membered heterocycle, wherein the heterocycle includes beside one nitrogen atom, L and one or more carbon atoms no further heteroatoms or one additional heteroatom selected from N, O and S as ring a member atom; and wherein the heterocycle is unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum
- 40 possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein; and wherein one or two CH<sub>2</sub> groups of the heterocycle may be replaced by one or two groups independently selected from the group of -S(O)<sub>2</sub>-, -C(=O)- and -C(=S)-, preferably -C(=O)-. In yet another aspect of the invention R<sup>1</sup> and R<sup>2</sup> together with L and the nitrogen to which R<sup>2</sup> is

bound form a saturated or partially unsaturated 3- to 6-membered heterocycle, wherein the heterocycle includes beside one nitrogen atom, L and one or more carbon atoms no further heteroatoms; and wherein the heterocycle is unsubstituted; and wherein one or two CH<sub>2</sub> groups of the heterocycle may be replaced by one or two groups independently selected from the group

- of -S(O)<sub>2</sub>-, -C(=O)- and -C(=S)-, preferably -C(=O)-.
   In a further aspect of the invention R<sup>1</sup> and R<sup>2</sup> together with L and the nitrogen to which R<sup>2</sup> is bound form a saturated or partially unsaturated 5- or 6-membered heterocycle, wherein the heterocycle includes beside one nitrogen atom, L and one or more carbon atoms no further heteroatoms; and wherein L is -C(=O)- or -S(O)<sub>2</sub>-.
- In one special preferred embodiment of the invention R<sup>1</sup> and R<sup>2</sup> together with L and the nitrogen to which R<sup>2</sup> is bound form a azetidin-2-one ring, which is unsubstituted or substituted with 1, 2 or 3 identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.

In one special preferred embodiment of the invention  $R^1$  and  $R^2$  together with L and the nitrogen

15 to which R<sup>2</sup> is bound form a pyrrolidin-2-one ring, which is unsubstituted or substituted with 1, 2 or 3 identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.

In one special preferred embodiment of the invention  $R^1$  and  $R^2$  together with L and the nitrogen to which  $R^2$  is bound form a piperidine-2-one ring, which is unsubstituted or substituted with 1, 2

20 or 3 identical or different groups  $R^{1a}$  as defined or preferably defined herein, in particular  $R^{1a}$  is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.

In one special preferred embodiment of the invention  $R^1$  and  $R^2$  together with L and the nitrogen to which  $R^2$  is bound form an azepan-2-one ring, which is unsubstituted or substituted with 1, 2 or 3 identical or different groups  $R^{1a}$  as defined or preferably defined herein, in particular  $R^{1a}$  is halogen or  $C_1$ - $C_6$ -alkyl.

25 halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl. In one special preferred embodiment of the invention R<sup>1</sup> and R<sup>2</sup> together with L and the nitrogen to which R<sup>2</sup> is bound, and wherein L is -S(=O)<sub>2</sub>-, form an 1,2-thiazolidine-1,1-dioxide ring, which is unsubstituted or substituted with 1, 2, 3 or 4 identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.

- 30 In one special preferred embodiment of the invention R<sup>1</sup> and R<sup>2</sup> together with L and the nitrogen to which R<sup>2</sup> is bound, and wherein L is -S(=O)<sub>2</sub>-, form an 1,2-thiazinane-1,1-dioxide ring, which is unsubstituted or substituted with 1, 2, 3 or 4 identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl.
- In one embodiment of the invention R<sup>1a</sup> is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>1</sub>-C<sub>6</sub>-haloalkoxy. In another preferred aspect of the invention R<sup>1a</sup> is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>1</sub>-C<sub>6</sub>-haloalkoxy. In another preferred aspect of the invention R<sup>1a</sup> is fluorine, chlorine, cyano, methyl, methoxy, trifluoromethyl, trifluoromethoxy, difluoromethyl or difluoromethoxy. In a more preferred aspect of the invention R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl; particularly fluorine, chlorine or methyl.

In one embodiment the invention relates to compounds of the formula I, wherein  $R^3$  and  $R^4$ 

independently of each other are hydrogen, halogen,  $C_1$ - $C_6$ -alkyl or  $C_1$ - $C_6$ -haloalkyl; or  $R^3$  and  $R^4$  together with the carbon atom to which they are bound form a vinyl group or a saturated

monocyclic 3- to 5-membered heterocycle or carbocycle, wherein the heterocycle includes beside one or more carbon atoms no heteroatoms or 1 or 2 heteroatoms independently selected from N, O and S as ring member atoms; and wherein the vinyl group, the heterocycle or the carbocycle is unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible

- 5 number of identical or different groups R<sup>3a</sup>; wherein R<sup>3a</sup> is halogen, cyano or C<sub>1</sub>-C<sub>2</sub>-alkyl. In another embodiment the invention relates to compounds of the formula I, wherein R<sup>3</sup> and R<sup>4</sup> are both fluorine; or R<sup>3</sup> and R<sup>4</sup> together with the carbon atom to which they are bound form a vinyl group or a 3- or 4-membered carbocylic ring; and wherein the vinyl group or the carbocylic ring is unsubstituted; or R<sup>3</sup> and R<sup>4</sup> together with the carbon atom to which they are bound form a
- 10 saturated 3-membered heterocycle; wherein the heterocycle includes beside two carbon atoms one heteroatom selected from N, O and S as ring member atoms; and wherein the heterocycle is unsubstituted.

In a further embodiment R<sup>3</sup> and R<sup>4</sup> are independently of each other hydrogen, fluorine, methyl or trifluoromethyl; or R<sup>3</sup> and R<sup>4</sup> together with the carbon atom to which they are bound form a vinyl

15 group or a 3-membered carbocylic ring and wherein the vinyl group or the carbocylic ring is unsubstituted.

In another aspect R<sup>3</sup> and R<sup>4</sup> together with the carbon atom to which they are bound form vinyl group or a cyclopropyl group, wherein the vinyl group or the cyclopropyl group is unsubstituted. In another aspect R<sup>3</sup> and R<sup>4</sup> are both hydrogen.

- In a further aspect R<sup>3</sup> and R<sup>4</sup> are both fluorine.
  In yet another aspect R<sup>3</sup> and R<sup>4</sup> are both methyl.
  In still another aspect R<sup>3</sup> is hydrogen and R<sup>4</sup> is methyl.
  In one embodiment R<sup>3</sup> and R<sup>4</sup> are both trifluoromethyl.
- 25 In one embodiment R<sup>3a</sup> is halogen, cyano or C<sub>1</sub>-C<sub>2</sub>-alkyl. In a preferred embodiment R<sup>3a</sup> is fluorine, chlorine, cyano or methyl, in particular fluorine.

In a further embodiment the invention relates to compounds (I.1) of formula I, or the N-oxides, or the agriculturally acceptable salts thereof, wherein:

- 30 A is selected from the group consisting of subformulae (A.1) to (A.31), which is unsubstituted or substituted with 1 or 2 identical or different groups R<sup>A</sup>; wherein
  - R<sup>A</sup> is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>3</sub>-C<sub>8</sub>cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkoxy; and wherein the aliphatic or cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>a</sup>; wherein
    - $R^a$  is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl;
  - L is -C(=O)-, -C(=S)- or  $-S(=O)_p-$ ;
  - p is 0, 1 or 2;

35

R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl,
 40 heteroaryl-C<sub>1</sub>-C<sub>4</sub>-alkyl, phenyl, naphthyl or heteroaryl; and wherein the heteroaryl group is a 5- or 6-membered aromatic heterocycle, wherein the ring includes besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and

# 16

wherein any of the aliphatic or cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein; and

R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, ethynyl, propargyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl;

- R<sup>3</sup>, R<sup>4</sup> independently of each other are hydrogen, halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl or C<sub>1</sub>-C<sub>6</sub>haloalkyl; particularly both are hydrogen; or
- R<sup>3</sup> and R<sup>4</sup> together with the carbon atom to which they are bound form a vinyl group or a saturated monocyclic 3- to 5-membered heterocycle or carbocycle, wherein the heterocycle includes beside carbon atoms 1 or 2 heteroatoms independently selected
- 10 from N, O and S as ring member atoms; and wherein the vinyl group, the heterocycle or the carbocycle is unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups  $R^{3a}$ ; wherein  $R^{3a}$  is halogen, cyano or C<sub>1</sub>-C<sub>2</sub>-alkyl.

In a further embodiment the invention relates to compounds (I.1), wherein A is (A.2). In a further

- embodiment the invention relates to compounds (I.1), wherein A is (A.2), and wherein A is substituted with 1 group R<sup>A</sup> as defined or preferably defined herein; and wherein L is -C(=O)-. In yet another embodiment the invention relates to compounds (I.1), wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.1), wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.1), wherein A is unsubstituted; and wherein L is -C(=O)-.
- -C(=S)-. In a further embodiment the invention relates to compounds (I.1), wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -S(=O)<sub>2</sub>-.
   In another embodiment the invention relates to compounds (I.1), wherein A is (A.4) or (A.30). In a further embodiment the invention relates to compounds (I.1), wherein A is (A.4) or (A.30), and wherein A is substituted with 1 group R<sup>A</sup> as defined or preferably defined herein; and wherein L
- is -C(=O)-. In yet another embodiment the invention relates to compounds (I.1), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.1), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.1), wherein A is (A.4) or (A.30), and wherein L is -C(=S)-.
  S(=O)<sub>2</sub>-.

In a further embodiment the invention relates to compounds (I.2) of formula I, or the N-oxides, or the agriculturally acceptable salts thereof, wherein:

A is selected from the group consisting of subformulae (A.1) to (A.31), which is unsubstituted or substituted with 1 or 2 identical or different groups R<sup>A</sup>; wherein

R<sup>A</sup> is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>3</sub>-C<sub>8</sub>cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkoxy; and wherein the aliphatic and cyclic moieties are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>a</sup>; wherein

$$R^a$$
 is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl;

- L is -C(=O)-, -C(=S)- or  $-S(=O)_p$ -;
- p is 0, 1 or 2;

5

10

15

R<sup>1</sup> is phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, heteroaryl-C<sub>1</sub>-C<sub>4</sub>-alkyl, phenyl, naphthyl or heteroaryl; and wherein the heteroaryl group is a 5- or 6-membered aromatic heterocycle wherein the aromatic heterocycle includes besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein any of the aliphatic or cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>1a</sup> as defined or preferably defined herein, in particular R<sup>1a</sup> is halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl; and

 $R^2$  is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, ethynyl, propargyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl;

R<sup>3</sup>, R<sup>4</sup> independently of each other are hydrogen, halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl or C<sub>1</sub>-C<sub>6</sub>-haloalkyl; particularly both are hydrogen; or

R<sup>3</sup> and R<sup>4</sup> together with the carbon atom to which they are bound form a vinyl group or a saturated monocyclic 3- to 5-membered heterocycle or carbocycle, wherein the heterocycle includes beside carbon atoms 1 or 2 heteroatoms independently selected from N, O and S as ring member atoms; and wherein the vinyl group, the heterocycle or the carbocycle is unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum

possible number of identical or different groups R<sup>3a</sup>; wherein

 $R^{3a}$  is halogen, cyano or C<sub>1</sub>-C<sub>2</sub>-alkyl.

In a further embodiment the invention relates to compounds (I.2), wherein A is (A.2). In a further embodiment the invention relates to compounds (I.2), wherein A is (A.2), and wherein A is

- 20 substituted with 1 group R<sup>A</sup> as defined or preferably defined herein; and wherein L is -C(=O)-. In yet another embodiment the invention relates to compounds (I.2), wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.2), wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.2), wherein A is (A.2),
- 25 and wherein A is unsubstituted; and wherein L is -S(=O)<sub>2</sub>-. In another embodiment the invention relates to compounds (I.2), wherein A is (A.4) or (A.30). In a further embodiment the invention relates to compounds (I.2), wherein A is (A.4) or (A.30), and wherein A is substituted with 1 group R<sup>A</sup> as defined or preferably defined herein; and wherein L is -C(=O)-. In yet another embodiment the invention relates to compounds (I.2), wherein A is
- 30 (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.2), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.2), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -S(=O)<sub>2</sub>-.

35

40

In a further embodiment the invention relates to compounds (I.3) of formula I, or the N-oxides, or the agriculturally acceptable salts thereof, wherein:

- A is selected from the group consisting of subformulae (A.1) to (A.31), which is unsubstituted or substituted with 1 or 2 identical or different groups R<sup>A</sup>; wherein
- $R^{A}$  is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>1</sub>-C<sub>6</sub>-haloalkoxy;
- L is -C(=O)-, -C(=S)- or  $-S(=O)_p$ -;
- p is 0, 1 or 2;

#### 18

- R<sup>1</sup> is phenyl or a 5- or 6-membered aromatic heterocycle; and wherein the heteroaryl group is a 5- or 6-membered aromatic heterocycle; and wherein the heteroaromatic moiety includes besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein any of the cyclic groups are unsubstituted or substituted with
- 5 1, 2, 3, 4 or up to the maximum possible number of identical or different groups selected from the group consisting of halogen, cyano,  $C_1$ - $C_6$ -alkyl,  $C_1$ - $C_6$ -haloalkyl,  $C_1$ - $C_6$ -alkoxy and  $C_1$ - $C_6$ -haloalkoxy;

 $R^2$  is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, ethynyl, propargyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl;

R<sup>3</sup>, R<sup>4</sup> independently of each other are hydrogen, halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl or C<sub>1</sub>-C<sub>6</sub>haloalkyl; particularly both are hydrogen; or

R<sup>3</sup> and R<sup>4</sup> together with the carbon atom to which they are bound form a vinyl group or a saturated monocyclic 3- to 5-membered heterocycle or carbocycle, wherein the heterocycle includes beside carbon atoms 1 or 2 heteroatoms independently selected from N, O and S as ring member atoms; and wherein the vinyl group, the heterocycle or the carbocycle is unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum

possible number of identical or different groups R<sup>3a</sup>; wherein

 $R^{3a}$  is halogen, cyano or C<sub>1</sub>-C<sub>2</sub>-alkyl.

In a further embodiment the invention relates to compounds (I.3), wherein A is (A.2). In a further embodiment the invention relates to compounds (I.3), wherein A is (A.2), and wherein A is

- 20 substituted with 1 group R<sup>A</sup> as defined or preferably defined herein; and wherein L is -C(=O)-. In yet another embodiment the invention relates to compounds (I.3), wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.3), wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.3), wherein A is (A.2),
- 25 and wherein A is unsubstituted; and wherein L is -S(=O)<sub>2</sub>-. In another embodiment the invention relates to compounds (I.3), wherein A is (A.4) or (A.30). In a further embodiment the invention relates to compounds (I.3), wherein A is (A.4) or (A.30), and wherein A is substituted with 1 group R<sup>A</sup> as defined or preferably defined herein; and wherein L is -C(=O)-. In yet another embodiment the invention relates to compounds (I.3), wherein A is
- 30 (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.3), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.3), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -S(=O)<sub>2</sub>-.

35

40

10

15

In a further embodiment the invention relates to compounds (I.4) of formula I, or the N-oxides, or the agriculturally acceptable salts thereof, wherein:

- A is selected from the group consisting of subformulae (A.1) to (A.31), which is unsubstituted or substituted with 1 or 2 identical or different groups R<sup>A</sup>; wherein
- $R^{A}$  is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>1</sub>-C<sub>6</sub>-haloalkoxy;
- L is -C(=O)-, -C(=S)- or  $-S(=O)_p$ -;
- p is 0, 1 or 2;

### )

- R<sup>1</sup> is phenyl or a 5- or 6-membered aromatic heterocycle; and wherein the heteroaryl group is a 5- or 6-membered aromatic heterocycle; and wherein the heteroaromatic moiety includes besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein any of the cyclic groups are unsubstituted or substituted with
- 5 1, 2, 3, 4 or up to the maximum possible number of identical or different groups selected from the group consisting of halogen, cyano,  $C_1$ - $C_6$ -alkyl,  $C_1$ - $C_6$ -haloalkyl,  $C_1$ - $C_6$ -alkoxy

10

30

35

and  $C_1$ - $C_6$ -haloalkoxy;

 $R^2$  is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, ethynyl, propargyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl; and

R<sup>3</sup>, R<sup>4</sup> independently of each other are hydrogen, halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl or C<sub>1</sub>-C<sub>6</sub>haloalkyl; particularly both are hydrogen.

- In a further embodiment the invention relates to compounds (I.4), wherein A is (A.2). In a further embodiment the invention relates to compounds (I.4), wherein A is (A.2), and wherein A is substituted with 1 group  $R^A$  as defined or preferably defined herein; and wherein L is -C(=O)-. In yet another embodiment the invention relates to compounds (I.4), wherein A is (A.2), and
- 15 wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.4), wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.4), wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -S(=O)<sub>2</sub>-.

In another embodiment the invention relates to compounds (I.4), wherein A is (A.4) or (A.30). In

- 20 a further embodiment the invention relates to compounds (I.4), wherein A is (A.4) or (A.30), and wherein A is substituted with 1 group R<sup>A</sup> as defined or preferably defined herein; and wherein L is -C(=O)-. In yet another embodiment the invention relates to compounds (I.4), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.4), wherein A is (A.4) or (A.30), and wherein
- A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.4), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is S(=O)<sub>2</sub>-.

In yet another embodiment the invention relates to compounds (I.5) of formula I, or the Noxides, or the agriculturally acceptable salts thereof, wherein:

- A is selected from the group consisting of subformulae (A.1) to (A.31), which is unsubstituted or substituted with 1 or 2 identical or different groups R<sup>A</sup>; wherein
  - R<sup>A</sup> is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>-alkylsulfonyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkoxy; and wherein the aliphatic and cyclic moieties are unsubstituted or substituted with 1, 2, 3 or 4 or up to the maximum possible number of identical or different groups R<sup>a</sup>; wherein
    - $R^a$  is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl;
- L is -C(=O)-, -C(=S)- or  $-S(=O)_p-$ ;

40 p is 0, 1 or 2;

R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl; and wherein any of the cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of

identical or different groups selected from the group consisting of halogen, cyano,  $C_1-C_6$ -alkyl,  $C_1-C_6$ -haloalkyl,  $C_1-C_6$ -alkoxy and  $C_1-C_6$ -haloalkoxy;

 $R^2$  is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, ethynyl, propargyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl;

- R<sup>3</sup>, R<sup>4</sup> independently of each other are hydrogen, halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl or C<sub>1</sub>-C<sub>6</sub>haloalkyl; particularly both are hydrogen; or
- R<sup>3</sup> and R<sup>4</sup> together with the carbon atom to which they are bound form a vinyl group or a saturated monocyclic 3- to 5-membered heterocycle or carbocycle, wherein the heterocycle includes beside carbon atoms 1 or 2 heteroatoms independently selected from N, O and S as ring member atoms; and wherein the vinyl group, the heterocycle or
- 10 the carbocycle is unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups R<sup>3a</sup>; wherein

 $R^{3a}$  is halogen, cyano or C<sub>1</sub>-C<sub>2</sub>-alkyl.

In a further embodiment the invention relates to compounds (I.5), wherein A is (A.2). In a further embodiment the invention relates to compounds (I.5), wherein A is (A.2), and wherein A is

- 15 substituted with 1 group R<sup>A</sup> as defined or preferably defined herein; and wherein L is -C(=O)-. In yet another embodiment the invention relates to compounds (I.2), wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.5), wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.5), wherein A is (A.2),
- 20 and wherein A is unsubstituted; and wherein L is -S(=O)<sub>2</sub>-. In another embodiment the invention relates to compounds (I.5), wherein A is (A.4) or (A.30). In a further embodiment the invention relates to compounds (I.5), wherein A is (A.4) or (A.30), and wherein A is substituted with 1 group R<sup>A</sup> as defined or preferably defined herein; and wherein L is -C(=O)-. In yet another embodiment the invention relates to compounds (I.5), wherein A is
- 25 (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.5), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.5), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -S(=O)<sub>2</sub>-.

# 30

35

40

5

In a further embodiment the invention relates to compounds (I.6) of formula I, or the N-oxides, or the agriculturally acceptable salts thereof, wherein:

- A is selected from the group consisting of subformulae (A.1) to (A.31), which is unsubstituted or substituted with 1 or 2 identical or different groups R<sup>A</sup>; wherein
  - $R^{A}$  is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>1</sub>-C<sub>6</sub>-haloalkoxy;
- L is -C(=O)-, -C(=S)- or  $-S(=O)_p-$ ;
- p is 0, 1 or 2;
- R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl; and wherein any of the cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups selected from the group consisting of halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy and C<sub>1</sub>-C<sub>6</sub>-haloalkoxy;
  - $R^2$  is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, ethynyl, propargyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl;

#### 21

R<sup>3</sup>, R<sup>4</sup> independently of each other are hydrogen, halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl or C<sub>1</sub>-C<sub>6</sub>haloalkyl; particularly both are hydrogen.

In a further embodiment the invention relates to compounds (I.6), wherein A is (A.2). In a further embodiment the invention relates to compounds (I.6), wherein A is (A.2), and wherein A is

- 5 substituted with 1 group R<sup>A</sup> as defined or preferably defined herein; and wherein L is -C(=O)-. In yet another embodiment the invention relates to compounds (I.6), wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.6), wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.6), wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.6), wherein A is (A.2),
- 10 and wherein A is unsubstituted; and wherein L is -S(=O)<sub>2</sub>-. In another embodiment the invention relates to compounds (I.6), wherein A is (A.4) or (A.30). In a further embodiment the invention relates to compounds (I.6), wherein A is (A.4) or (A.30), and wherein A is substituted with 1 group R<sup>A</sup> as defined or preferably defined herein; and wherein L is -C(=O)-. In yet another embodiment the invention relates to compounds (I.6), wherein A is
- 15 (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.6), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.6), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=S)-.

20

In still another embodiment the invention relates to compounds (I.7) of formula I, or the Noxides, or the agriculturally acceptable salts thereof, wherein:

A is selected from the group consisting of subformulae (A.1) to (A.31), which is unsubstituted or substituted with 1 or 2 identical or different groups R<sup>A</sup>; wherein

25

30

 $R^{A}$  is halogen, cyano, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy or C<sub>1</sub>-C<sub>6</sub>-haloalkoxy; L is -C(=O)-, -C(=S)- or -S(=O)<sub>p</sub>-;

- p is 0, 1 or 2;
- R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl or C<sub>2</sub>-C<sub>6</sub>-alkynyl; and wherein the aliphatic and the cyclic groups are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different groups selected from the group consisting of

halogen, cyano,  $C_1$ - $C_6$ -alkyl,  $C_1$ - $C_6$ -haloalkyl,  $C_1$ - $C_6$ -alkoxy and  $C_1$ - $C_6$ -haloalkoxy; and

 $R^2$  is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, ethynyl, propargyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl;

R<sup>3</sup> and R<sup>4</sup> are both hydrogen; or R<sup>3</sup> and R<sup>4</sup> are both fluorine; or R<sup>3</sup> and R<sup>4</sup> are both methyl; or R<sup>3</sup> is hydrogen and R<sup>4</sup> is methyl; or R<sup>3</sup> and R<sup>4</sup> are both trifluoromethyl; or R<sup>3</sup> and R<sup>4</sup> together

- 35 with the carbon atom to which they are bound form a 3- or 4-membered carbocylic ring and wherein the carbocylic ring is unsubstituted; or R<sup>3</sup> and R<sup>4</sup> together with the carbon atom to which they are bound form a saturated 3-membered heterocycle; wherein the heterocycle includes beside two carbon atoms one heteroatom selected from N, O and S as ring member atoms; and wherein the heterocycle is unsubstituted.
- 40 In a further embodiment the invention relates to compounds (I.7), wherein A is (A.2). In a further embodiment the invention relates to compounds (I.7), wherein A is (A.2), and wherein A is substituted with 1 group RA as defined or preferably defined herein; and wherein L is -C(=O)-. In

yet another embodiment the invention relates to compounds (I.7), wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.7), wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.7), wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.7), wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and wherein A is unsubstituted; and wherein A is (A.2), and a is (A.2), and a is (A.2), and a is (A.2), and (A.

- 5 is unsubstituted; and wherein L is -S(=O)<sub>2</sub>-.
  In another embodiment the invention relates to compounds (I.7), wherein A is (A.4). In a further embodiment the invention relates to compounds (I.7), wherein A is (A.4) or (A.30), and wherein A is substituted with 1 group R<sup>A</sup> as defined or preferably defined herein; and wherein L is C(=O)-. In yet another embodiment the invention relates to compounds (I.7), wherein A is (A.4)
- 10 or (A.30), and wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.7), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.7), wherein A is (A.4) or (A.30), and wherein A is unsubstituted; and wherein L is -C(=S)-.
- 15

In a further embodiment the invention relates to compounds (I.8) of formula I, or the N-oxides, or the agriculturally acceptable salts thereof, wherein:

- A is the subformula (A.4) or (A.30), which is unsubstituted or substituted with 1 or 2 identical or different groups R<sup>A</sup>; wherein
- R<sup>A</sup> is chlorine, fluorine or methyl;

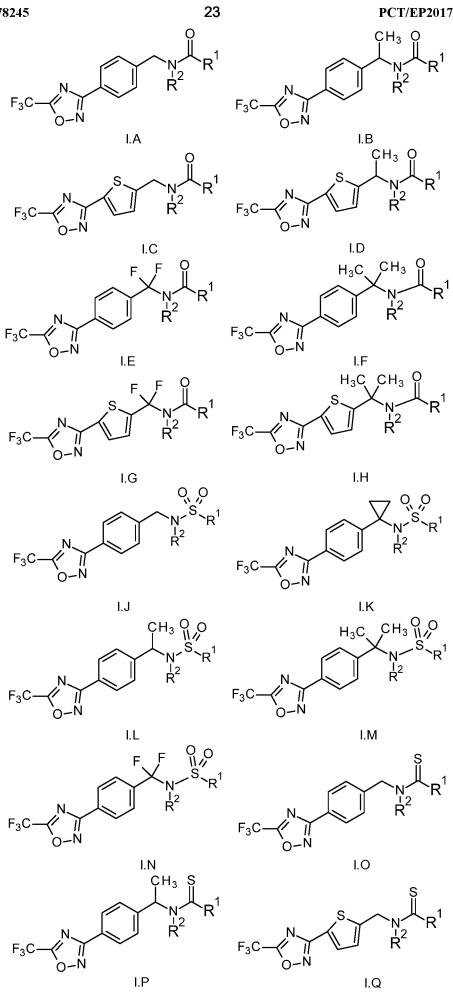
 $L \qquad \text{is -C(=O)-, -C(=S)- or -S(=O)_p-;} \\$ 

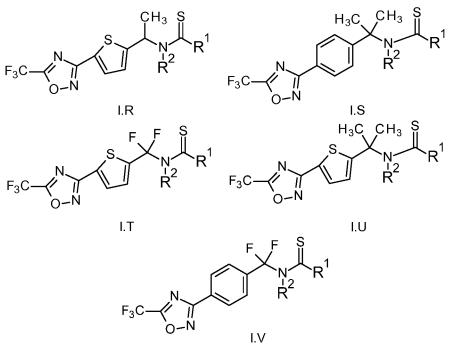
p is 0, 1 or 2;

R<sup>1</sup> is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl or phenyl; and wherein any of the aliphatic or cyclic groups in R<sup>1</sup> or R<sup>2</sup> are unsubstituted or substituted with 1, 2, 3, 4 or up to the maximum possible number of identical or different radicals selected from the group consisting of halogen or C<sub>1</sub>-C<sub>6</sub>-alkyl;

 $R^2$  is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-alkenyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl-C<sub>1</sub>-C<sub>4</sub>-alkyl;  $R^3$  and  $R^4$  are independently of each other hydrogen, fluorine, methyl or trifluoromethyl; or  $R^3$  and

R<sup>4</sup> together with the carbon atom to which they are bound form a 3-membered carbocylic ring and wherein the carbocylic ring is unsubstituted.


In a further embodiment the invention relates to compounds (I.8), wherein A is substituted with 1 group  $R^A$  as defined or preferably defined herein; and wherein L is -C(=O)-. In yet another embodiment the invention relates to compounds (I.8), wherein A is unsubstituted; and wherein L is -C(=O)-. In a further embodiment the invention relates to compounds (I.8), wherein A is


35 unsubstituted; and wherein L is -C(=S)-. In a further embodiment the invention relates to compounds (I.8), wherein A is unsubstituted; and wherein L is -S(=O)<sub>2</sub>-.

According to one embodiment, the present invention relates to compounds of the formula I.A, I.B, I.C, I.D, I.E, I.F, I.G, I.H; I.J, I.K, I.L, I.M, I.N, I.O, I.P, I.Q, I.R, I.S, I.T, I.U and I.V,

25

30





- or to their use for controlling phytopathogenic fungi. Here, the variables R<sup>1</sup> and R<sup>2</sup> are as defined elsewhere herein for formula I, or as defined as being preferred for formula I.
   Preference is given to the compounds I used according to the invention and to the compounds according to the invention compiled in Tables 1 to 21 below. The groups mentioned for a substituent in the tables are furthermore per se, independently of the combination in which they
- are mentioned, a particularly preferred aspect of the substituent in question.
   Table 1 : Compounds of the formula I.A, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound corresponds in each case to one line A-1 to A-948 of Table A (compounds I.A.A-1 to I.A.A-948). This means, for example, that a compound of formula I.A, wherein R<sup>1</sup> is cyclobutyl and R<sup>2</sup> is hydrogen (corresponding to the definition A-4 in Table A) is named I.A.A-4.
- 15 Table 2 : Compounds of the formula I.B, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound corresponds in each case to one line A-1 to A-948 of Table A (compounds I.B.A-1 to I.B.A- 948). This means, for example, that a compound of formula I.B, wherein R<sup>1</sup> is 2-F-phenyl and R<sup>2</sup> is hydrogen (corresponding to the definition A-18 in Table A) is named I.B.A-18.
- Table 3 : Compounds of the formula I.C, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound
  corresponds in each case to one line A-1 to A-948 of Table A (compounds I.C.A-1 to I.C.A- 948)
  Table 4 : Compounds of the formula I.D, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound
  corresponds in each case to one line A-1 to A-948 of Table A (compounds I.D.A-1 to I.D.A- 948).
  Table 5 : Compounds of the formula I.E, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound
  corresponds in each case to one line A-1 to A-948 of Table A (compounds I.D.A-1 to I.D.A- 948).
- Table 6 : Compounds of the formula I.F, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound corresponds in each case to one line A-1 to A-948 of Table A (compounds I.F.A-1 to I.F.A- 948).
  Table 7 : Compounds of the formula I.G, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound corresponds in each case to one line A-1 to A-948 of Table A (compounds I.G.A-1 to I.G.A- 948).
  Table 8 : Compounds of the formula I.H, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound
- corresponds in each case to one line A-1 to A-948 of Table A (compounds I.H.A-1 to I.H.A- 948).
   Table 9 Compounds of the formula I.J, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound corresponds in each case to one line A-1 to A-948 of Table A (compounds I.J.A-1 to I.J.A- 948).

Compounds of the formula I.K, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound Table 10 corresponds in each case to one line A-1 to A-948 of Table A (compounds I.K.A-1 to I.K.A- 948). Table 11 Compounds of the formula I.L, in which  $R^1$  and  $R^2$  for each individual compound corresponds in each case to one line A-1 to A-948 of Table A (compounds I.L.A-1 to I.L.A- 948). Compounds of the formula I.M, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound 5 Table 12 corresponds in each case to one line A-1 to A-948 of Table A (compounds I.M.A-1 to I.M.A- 948). Table 13 Compounds of the formula I.N, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound corresponds in each case to one line A-1 to A-948 of Table A (compounds I.N.A-1 to I.N.A- 948). Table 14 : Compounds of the formula I.O, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound 10 corresponds in each case to one line A-1 to A-948 of Table A (compounds I.O.A-1 to I.O.A-948). : Compounds of the formula I.P, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound Table 15 corresponds in each case to one line A-1 to A-948 of Table A (compounds I.P.A-1 to I.P.A-948). : Compounds of the formula I.Q, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound Table 16 corresponds in each case to one line A-1 to A-948 of Table A (compounds I.Q.A-1 to I.Q.A-948). 15 : Compounds of the formula I.R, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound Table 17 corresponds in each case to one line A-1 to A-948 of Table A (compounds I.R.A-1 to I.R.A-948).

: Compounds of the formula I.S, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound corresponds in each case to one line A-1 to A-948 of Table A (compounds I.S.A-1 to I.S.A-948). Table 19 : Compounds of the formula I.T, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound 20 corresponds in each case to one line A-1 to A-948 of Table A (compounds I.T.A-1 to I.T.A-948). : Compounds of the formula I.U, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound Table 20 corresponds in each case to one line A-1 to A-948 of Table A (compounds I.U.A-1 to I.U.A-948). Table 21 : Compounds of the formula I.V, in which R<sup>1</sup> and R<sup>2</sup> for each individual compound corresponds in each case to one line A-1 to A-948 of Table A (compounds I.V.A-1 to I.V.A-948).

- 25
- Table A:

Table 18

| No   | R <sup>2</sup> | R <sup>1</sup>       |
|------|----------------|----------------------|
| A-1  | н              | allyl                |
| A-2  | Н              | propargyl            |
| A-3  | н              | cyclopropyl          |
| A-4  | н              | cylobutyl            |
| A-5  | Н              | 1-methyl-cyclopropyl |
| A-6  | Н              | cylopentyl           |
| A-7  | Н              | cyclohexyl           |
| A-8  | Н              | cycloheptyl          |
| A-9  | Н              | cyclopent-1-enyl     |
| A-10 | Н              | cyclopent-2-enyl     |
| A-11 | Н              | cyclohex-1-enyl      |
| A-12 | Н              | cyclohex-2-enyl      |
| A-13 | Н              | cyclohex-3-enyl      |
| A-14 | Н              | phenyl               |
| A-15 | Н              | 2-pyridyl            |
| A-16 | Н              | 3-pyridyl            |

| No   | R <sup>2</sup> | R <sup>1</sup>     |
|------|----------------|--------------------|
| A-17 | Н              | 4-pyridyl          |
| A-18 | н              | 2-F-phenyl         |
| A-19 | н              | 3-F-phenyl         |
| A-20 | Н              | 4-F-phenyl         |
| A-21 | н              | 2-CI-phenyl        |
| A-22 | н              | 3-CI-phenyl        |
| A-23 | Н              | 4-CI-phenyl        |
| A-24 | н              | 2-methyl-phenyl    |
| A-25 | н              | 3-methyl-phenyl    |
| A-26 | Н              | 4-methyl-phenyl    |
| A-27 | Н              | 2-ethyl-phenyl     |
| A-28 | н              | 3-ethyl-phenyl     |
| A-29 | н              | 4-ethyl-phenyl     |
| A-30 | Н              | 2-isopropyl-phenyl |
| A-31 | Н              | 3-isopropyl-phenyl |
| A-32 | Н              | 4-isopropyl-phenyl |

26

PCT/EP2017/057669

| No   | R <sup>2</sup> | R <sup>1</sup>            |
|------|----------------|---------------------------|
| A-33 | Н              | 2-(2,2,2-trifluoroethyl)- |
|      |                | phenyl                    |
| A-34 | Н              | 3-(2,2,2-trifluoroethyl)- |
|      |                | phenyl                    |
| A-35 | Н              | 4-(2,2,2-trifluoroethyl)- |
|      |                | phenyl                    |
| A-36 | н              | 2-trifluoromethyl-        |
|      |                | phenyl                    |
| A-37 | Н              | 3-trifluoromethyl-        |
|      |                | phenyl                    |
| A-38 | Н              | 4-trifluoromethyl-        |
|      |                | phenyl                    |
| A-39 | Н              | 2-methoxy-phenyl          |
| A-40 | Н              | 3-methoxy-phenyl          |
| A-41 | н              | 4-methoxy-phenyl          |
| A-42 | Н              | 2-trifluoromethoxy-       |
|      |                | phenyl                    |
| A-43 | Н              | 3-trifluoromethoxy-       |
|      |                | phenyl                    |
| A-44 | Н              | 4-trifluoromethoxy-       |
|      |                | phenyl                    |
| A-45 | Н              | 2-difluoromethoxy-        |
|      |                | phenyl                    |
| A-46 | Н              | 3-difluoromethoxy-        |
| A 47 |                | phenyl                    |
| A-47 | H              | 4-difluoromethoxy-        |
| A 40 |                | phenyl                    |
| A-48 | Н              | 2-cyano-phenyl            |
| A-49 | H              | 3-cyano-phenyl            |
| A-50 | H              | 4-cyano-phenyl            |
| A-51 | Н              | 2,3-difluoro-phenyl       |
| A-52 | Н              | 2,4-difluoro-phenyl       |
| A-53 | Н              | 2,5-difluoro-phenyl       |
| A-54 | Н              | 2,6-difluoro-phenyl       |
| A-55 | Н              | 2,3-dichloro-phenyl       |
| A-56 | Н              | 2,4-dichloro-phenyl       |
| A-57 | Н              | 2,5-dichloro-phenyl       |
| A-58 | Н              | 2,6-dichloro-phenyl       |
| A-59 | Н              | 2-F-3-Cl-phenyl           |
| A-60 | Н              | 2-F-4-Cl-phenyl           |
| A-61 | Н              | 2-F-5-Cl-phenyl           |

| No    | R <sup>2</sup> | R <sup>1</sup>                |
|-------|----------------|-------------------------------|
| A-62  | Н              | 2-F-6-CI-phenyl               |
| A-63  | Н              | 3-F-4-Cl-phenyl               |
| A-64  | Н              | 3-F-5-Cl-phenyl               |
| A-65  | Н              | 2-Cl-3-F-phenyl               |
| A-66  | Н              | 2-Cl-4-F-phenyl               |
| A-67  | H              | 2-Cl-5-F-phenyl               |
| A-68  | Н              | 3-Cl-4-F-phenyl               |
| A-69  | Н              | 2-F-3-methyl-phenyl           |
| A-70  | Н              | 2-F-4-methyl-phenyl           |
| A-71  | Н              | 2-F-5-methyl-phenyl           |
| A-72  | Н              | 2-F-6-methyl-phenyl           |
| A-73  | Н              | 3-F-4-methyl-phenyl           |
| A-74  | Н              | 3-F-5-methyl-phenyl           |
| A-75  | Н              | 2-methyl-3-F-phenyl           |
| A-76  | H              | 2-methyl-4-F-phenyl           |
| A-77  | H              | 2-methyl-5-F-phenyl           |
| A-78  | H              | 3-methyl-4-F-phenyl           |
| A-79  | H              | 2-F-3-CF <sub>3</sub> -phenyl |
| A-80  | Н              | 2-F-4-CF <sub>3</sub> -phenyl |
| A-81  | Н              | 2-F-5-CF <sub>3</sub> -phenyl |
| A-82  | Н              | 2-F-6-CF <sub>3</sub> -phenyl |
| A-83  | Н              | 3-F-4-CF <sub>3</sub> -phenyl |
| A-84  | Н              | 3-F-5-CF <sub>3</sub> -phenyl |
| A-85  | Н              | 2-CF <sub>3</sub> -3-F-phenyl |
| A-86  | Н              | 2-CF <sub>3</sub> -4-F-phenyl |
| A-87  | Н              | 2-CF <sub>3</sub> -5-F-phenyl |
| A-88  | Н              | 3-CF <sub>3</sub> -4-F-phenyl |
| A-89  | Н              | 2-F-3-OMe-phenyl              |
| A-90  | Н              | 2-F-4-OMe-phenyl              |
| A-91  | Н              | 2-F-5-OMe-phenyl              |
| A-92  | Н              | 2-F-6-OMe-phenyl              |
| A-93  | Н              | 3-F-4-OMe-phenyl              |
| A-94  | Н              | 3-F-5-OMe-phenyl              |
| A-95  | Н              | 2-OMe-3-F-phenyl              |
| A-96  | Н              | 2-OMe-4-F-phenyl              |
| A-97  | Н              | 2-OMe-5-F-phenyl              |
| A-98  | Н              | 3-OMe-4-F-phenyl              |
| A-99  | Н              | 2-CI-3-methyl-phenyl          |
| A-100 | Н              | 2-Cl-4-methyl-phenyl          |
| A-101 | Н              | 2-CI-5-methyl-phenyl          |

| 2 | 7 |
|---|---|
| 2 | 1 |

| No    | R <sup>2</sup>  | R <sup>1</sup>                               |
|-------|-----------------|----------------------------------------------|
| A-102 | Н               |                                              |
| A-102 | H               | 2-CI-6-methyl-phenyl<br>3-CI-4-methyl-phenyl |
| A-103 | Н               |                                              |
| A-104 |                 | 3-Cl-5-methyl-phenyl                         |
| A-105 | H               | 2-methyl-3-Cl-phenyl                         |
|       | H               | 2-methyl-4-Cl-phenyl                         |
| A-107 | H               | 2-methyl-5-Cl-phenyl                         |
| A-108 | H               | 3-methyl-4-Cl-phenyl                         |
| A-109 | H               | 2-CI-3-CF <sub>3</sub> -phenyl               |
| A-110 | Н               | 2-Cl-4-CF <sub>3</sub> -phenyl               |
| A-111 | Н               | 2-CI-5-CF <sub>3</sub> -phenyl               |
| A-112 | Н               | 2-CI-6-CF <sub>3</sub> -phenyl               |
| A-113 | Н               | 3-CI-4-CF <sub>3</sub> -phenyl               |
| A-114 | Н               | 3-CI-5-CF <sub>3</sub> -phenyl               |
| A-115 | Н               | 2-CF <sub>3</sub> -3-Cl-phenyl               |
| A-116 | Н               | 2-CF <sub>3</sub> -4-Cl-phenyl               |
| A-117 | Н               | 2-CF <sub>3</sub> -5-Cl-phenyl               |
| A-118 | Н               | 3-CF <sub>3</sub> -4-Cl-phenyl               |
| A-119 | н               | 2-CI-3-OMe-phenyl                            |
| A-120 | Н               | 2-CI-4-OMe-phenyl                            |
| A-121 | Н               | 2-CI-5-OMe-phenyl                            |
| A-122 | н               | 2-CI-6-OMe-phenyl                            |
| A-123 | Н               | 3-CI-4-OMe-phenyl                            |
| A-124 | Н               | 3-CI-5-OMe-phenyl                            |
| A-125 | Н               | 2-OMe-3-CI-phenyl                            |
| A-126 | Н               | 2-OMe-4-CI-phenyl                            |
| A-127 | Н               | 2-OMe-5-CI-phenyl                            |
| A-128 | Н               | 3-OMe-4-CI-phenyl                            |
| A-129 | Н               | CH <sub>2</sub> -cyclopropyl                 |
| A-130 | Н               | CH <sub>2</sub> -cyclopentyl                 |
| A-131 | Н               | CH <sub>2</sub> -cyclohexyl                  |
| A-132 | Н               | benzyl                                       |
| A-133 | CH <sub>3</sub> | allyl                                        |
| A-134 | CH <sub>3</sub> | propargyl                                    |
| A-135 | CH <sub>3</sub> | cyclopropyl                                  |
| A-136 | CH <sub>3</sub> | cylobutyl                                    |
| A-137 | CH <sub>3</sub> | 1-methyl-cyclopropyl                         |
| A-138 | CH <sub>3</sub> | cylopentyl                                   |
| A-139 | CH <sub>3</sub> | cyclohexyl                                   |
| A-140 | CH <sub>3</sub> | cycloheptyl                                  |
| A-141 | CH <sub>3</sub> | cyclopent-1-enyl                             |
| A-141 |                 | оуборент-т-енуг                              |

| No    | R <sup>2</sup>  | R <sup>1</sup>            |
|-------|-----------------|---------------------------|
| A-142 |                 | cyclopent-2-enyl          |
| A-142 |                 | cyclohex-1-enyl           |
| A-143 |                 | cyclohex-2-enyl           |
| A-144 |                 |                           |
|       |                 | cyclohex-3-enyl           |
| A-146 | CH₃             | phenyl                    |
| A-147 | CH <sub>3</sub> | 2-pyridyl                 |
| A-148 | CH <sub>3</sub> | 3-pyridyl                 |
| A-149 | CH <sub>3</sub> | 4-pyridyl                 |
| A-150 | CH <sub>3</sub> | 2-F-phenyl                |
| A-151 | CH <sub>3</sub> | 3-F-phenyl                |
| A-152 | CH₃             | 4-F-phenyl                |
| A-153 | CH₃             | 2-CI-phenyl               |
| A-154 | CH₃             | 3-Cl-phenyl               |
| A-155 | CH <sub>3</sub> | 4-Cl-phenyl               |
| A-156 | CH₃             | 2-methyl-phenyl           |
| A-157 | CH₃             | 3-methyl-phenyl           |
| A-158 | CH₃             | 4-methyl-phenyl           |
| A-159 | CH₃             | 2-ethyl-phenyl            |
| A-160 | CH₃             | 3-ethyl-phenyl            |
| A-161 | CH <sub>3</sub> | 4-ethyl-phenyl            |
| A-162 | CH <sub>3</sub> | 2-isopropyl-phenyl        |
| A-163 | CH <sub>3</sub> | 3-isopropyl-phenyl        |
| A-164 | CH <sub>3</sub> | 4-isopropyl-phenyl        |
| A-165 | CH₃             | 2-(2,2,2-trifluoroethyl)- |
|       |                 | phenyl                    |
| A-166 | CH <sub>3</sub> | 3-(2,2,2-trifluoroethyl)- |
|       |                 | phenyl                    |
| A-167 | CH₃             | 4-(2,2,2-trifluoroethyl)- |
|       |                 | phenyl                    |
| A-168 | CH <sub>3</sub> | 2-trifluoromethyl-        |
|       |                 | phenyl                    |
| A-169 | CH₃             | 3-trifluoromethyl-        |
|       |                 | phenyl                    |
| A-170 | CH <sub>3</sub> | 4-trifluoromethyl-        |
|       |                 | phenyl                    |
| A-171 | CH <sub>3</sub> | 2-methoxy-phenyl          |
| A-172 | CH <sub>3</sub> | 3-methoxy-phenyl          |
| A-173 | CH <sub>3</sub> | 4-methoxy-phenyl          |
| A-174 | CH₃             | 2-trifluoromethoxy-       |
|       |                 | phenyl                    |

| No    | R <sup>2</sup>  | R <sup>1</sup>      |
|-------|-----------------|---------------------|
| A-175 | CH <sub>3</sub> | 3-trifluoromethoxy- |
|       |                 | phenyl              |
| A-176 | CH3             | 4-trifluoromethoxy- |
|       |                 | phenyl              |
| A-177 | CH₃             | 2-difluoromethoxy-  |
|       |                 | phenyl              |
| A-178 | CH₃             | 3-difluoromethoxy-  |
|       |                 | phenyl              |
| A-179 | CH3             | 4-difluoromethoxy-  |
|       |                 | phenyl              |
| A-180 | CH <sub>3</sub> | 2-cyano-phenyl      |
| A-181 | CH <sub>3</sub> | 3-cyano-phenyl      |
| A-182 | CH <sub>3</sub> | 4-cyano-phenyl      |
| A-183 | CH <sub>3</sub> | 2,3-difluoro-phenyl |
| A-184 | CH <sub>3</sub> | 2,4-difluoro-phenyl |
| A-185 | CH₃             | 2,5-difluoro-phenyl |
| A-186 | CH₃             | 2,6-difluoro-phenyl |
| A-187 | CH₃             | 2,3-dichloro-phenyl |
| A-188 | CH₃             | 2,4-dichloro-phenyl |
| A-189 | CH₃             | 2,5-dichloro-phenyl |
| A-190 | CH <sub>3</sub> | 2,6-dichloro-phenyl |
| A-191 | CH <sub>3</sub> | 2-F-3-Cl-phenyl     |
| A-192 | CH₃             | 2-F-4-Cl-phenyl     |
| A-193 | CH <sub>3</sub> | 2-F-5-Cl-phenyl     |
| A-194 | CH <sub>3</sub> | 2-F-6-Cl-phenyl     |
| A-195 | CH₃             | 3-F-4-Cl-phenyl     |
| A-196 | CH₃             | 3-F-5-Cl-phenyl     |
| A-197 | CH₃             | 2-CI-3-F-phenyl     |
| A-198 | CH₃             | 2-CI-4-F-phenyl     |
| A-199 | CH₃             | 2-CI-5-F-phenyl     |
| A-200 | CH₃             | 3-CI-4-F-phenyl     |
| A-201 | CH₃             | 2-F-3-methyl-phenyl |
| A-202 | CH <sub>3</sub> | 2-F-4-methyl-phenyl |
| A-203 | CH <sub>3</sub> | 2-F-5-methyl-phenyl |
| A-204 | CH <sub>3</sub> | 2-F-6-methyl-phenyl |
| A-205 | CH <sub>3</sub> | 3-F-4-methyl-phenyl |
| A-206 | CH <sub>3</sub> | 3-F-5-methyl-phenyl |
| A-207 | CH <sub>3</sub> | 2-methyl-3-F-phenyl |
| A-208 | CH <sub>3</sub> | 2-methyl-4-F-phenyl |
| A-209 | CH <sub>3</sub> | 2-methyl-5-F-phenyl |

| No    | R <sup>2</sup>  | R <sup>1</sup>                 |
|-------|-----------------|--------------------------------|
| A-210 | CH <sub>3</sub> | 3-methyl-4-F-phenyl            |
| A-211 | CH₃             | 2-F-3-CF <sub>3</sub> -phenyl  |
| A-212 | CH <sub>3</sub> | 2-F-4-CF <sub>3</sub> -phenyl  |
| A-213 | CH <sub>3</sub> | 2-F-5-CF <sub>3</sub> -phenyl  |
| A-214 | CH <sub>3</sub> | 2-F-6-CF <sub>3</sub> -phenyl  |
| A-215 | CH <sub>3</sub> | 3-F-4-CF <sub>3</sub> -phenyl  |
| A-216 | CH₃             | 3-F-5-CF <sub>3</sub> -phenyl  |
| A-217 | CH <sub>3</sub> | 2-CF <sub>3</sub> -3-F-phenyl  |
| A-218 | CH <sub>3</sub> | 2-CF <sub>3</sub> -4-F-phenyl  |
| A-219 | CH <sub>3</sub> | 2-CF <sub>3</sub> -5-F-phenyl  |
| A-220 | CH <sub>3</sub> | 3-CF <sub>3</sub> -4-F-phenyl  |
| A-221 | CH₃             | 2-F-3-OMe-phenyl               |
| A-222 | CH₃             | 2-F-4-OMe-phenyl               |
| A-223 | CH <sub>3</sub> | 2-F-5-OMe-phenyl               |
| A-224 | CH <sub>3</sub> | 2-F-6-OMe-phenyl               |
| A-225 | CH <sub>3</sub> | 3-F-4-OMe-phenyl               |
| A-226 | CH <sub>3</sub> | 3-F-5-OMe-phenyl               |
| A-227 | CH <sub>3</sub> | 2-OMe-3-F-phenyl               |
| A-228 | CH <sub>3</sub> | 2-OMe-4-F-phenyl               |
| A-229 | CH <sub>3</sub> | 2-OMe-5-F-phenyl               |
| A-230 | CH <sub>3</sub> | 3-OMe-4-F-phenyl               |
| A-231 | CH₃             | 2-CI-3-methyl-phenyl           |
| A-232 | CH₃             | 2-CI-4-methyl-phenyl           |
| A-233 | CH₃             | 2-CI-5-methyl-phenyl           |
| A-234 | CH <sub>3</sub> | 2-CI-6-methyl-phenyl           |
| A-235 | CH₃             | 3-CI-4-methyl-phenyl           |
| A-236 | CH₃             | 3-CI-5-methyl-phenyl           |
| A-237 | CH₃             | 2-methyl-3-Cl-phenyl           |
| A-238 | CH <sub>3</sub> | 2-methyl-4-Cl-phenyl           |
| A-239 | CH₃             | 2-methyl-5-Cl-phenyl           |
| A-240 | CH <sub>3</sub> | 3-methyl-4-Cl-phenyl           |
| A-241 | CH <sub>3</sub> | 2-CI-3-CF <sub>3</sub> -phenyl |
| A-242 | CH <sub>3</sub> | 2-CI-4-CF <sub>3</sub> -phenyl |
| A-243 | CH <sub>3</sub> | 2-Cl-5-CF <sub>3</sub> -phenyl |
| A-244 | CH <sub>3</sub> | 2-CI-6-CF <sub>3</sub> -phenyl |
| A-245 | CH <sub>3</sub> | 3-Cl-4-CF <sub>3</sub> -phenyl |
| A-246 | CH <sub>3</sub> | 3-Cl-5-CF <sub>3</sub> -phenyl |
| A-247 | CH₃             | 2-CF <sub>3</sub> -3-Cl-phenyl |
| A-248 | CH <sub>3</sub> | 2-CF <sub>3</sub> -4-Cl-phenyl |
| A-249 | CH <sub>3</sub> | 2-CF <sub>3</sub> -5-Cl-phenyl |

| 20 |  |
|----|--|
| ΖJ |  |

| WO 2017/178245 Z |                                 |                                |
|------------------|---------------------------------|--------------------------------|
| No               | R <sup>2</sup>                  | R <sup>1</sup>                 |
| A-250            | CH <sub>3</sub>                 | 3-CF <sub>3</sub> -4-CI-phenyl |
| A-251            | CH₃                             | 2-Cl-3-OMe-phenyl              |
| A-252            | CH <sub>3</sub>                 | 2-CI-4-OMe-phenyl              |
| A-253            | CH <sub>3</sub>                 | 2-CI-5-OMe-phenyl              |
| A-254            | CH <sub>3</sub>                 | 2-CI-6-OMe-phenyl              |
| A-255            | CH <sub>3</sub>                 | 3-CI-4-OMe-phenyl              |
| A-256            | CH <sub>3</sub>                 | 3-CI-5-OMe-phenyl              |
| A-257            | CH <sub>3</sub>                 | 2-OMe-3-CI-phenyl              |
| A-258            | CH <sub>3</sub>                 | 2-OMe-4-CI-phenyl              |
| A-259            | CH₃                             | 2-OMe-5-CI-phenyl              |
| A-260            | CH₃                             | 3-OMe-4-CI-phenyl              |
| A-261            | CH <sub>3</sub>                 | CH <sub>2</sub> -cyclopropyl   |
| A-262            | CH <sub>3</sub>                 | CH <sub>2</sub> -cyclopentyl   |
| A-263            | CH <sub>3</sub>                 | CH <sub>2</sub> -cyclohexyl    |
| A-264            | CH <sub>3</sub>                 | benzyl                         |
| A-265            | CH <sub>2</sub> CH <sub>3</sub> | allyl                          |
| A-266            | CH <sub>2</sub> CH <sub>3</sub> | propargyl                      |
| A-267            | CH <sub>2</sub> CH <sub>3</sub> | cyclopropyl                    |
| A-268            | CH <sub>2</sub> CH <sub>3</sub> | cylobutyl                      |
| A-269            | CH <sub>2</sub> CH <sub>3</sub> | 1-methyl-cyclopropyl           |
| A-270            | CH <sub>2</sub> CH <sub>3</sub> | cylopentyl                     |
| A-271            | CH <sub>2</sub> CH <sub>3</sub> | cyclohexyl                     |
| A-272            | CH <sub>2</sub> CH <sub>3</sub> | cycloheptyl                    |
| A-273            | CH <sub>2</sub> CH <sub>3</sub> | cyclopent-1-enyl               |
| A-274            | CH <sub>2</sub> CH <sub>3</sub> | cyclopent-2-enyl               |
| A-275            | CH <sub>2</sub> CH <sub>3</sub> | cyclohex-1-enyl                |
| A-276            | CH <sub>2</sub> CH <sub>3</sub> | cyclohex-2-enyl                |
| A-277            | CH <sub>2</sub> CH <sub>3</sub> | cyclohex-3-enyl                |
| A-278            | CH <sub>2</sub> CH <sub>3</sub> | phenyl                         |
| A-279            | CH <sub>2</sub> CH <sub>3</sub> | 2-pyridyl                      |
| A-280            | CH <sub>2</sub> CH <sub>3</sub> | 3-pyridyl                      |
| A-281            | CH <sub>2</sub> CH <sub>3</sub> | 4-pyridyl                      |
| A-282            | CH <sub>2</sub> CH <sub>3</sub> | 2-F-phenyl                     |
| A-283            | CH <sub>2</sub> CH <sub>3</sub> | 3-F-phenyl                     |
| A-284            | CH <sub>2</sub> CH <sub>3</sub> | 4-F-phenyl                     |
| A-285            | CH <sub>2</sub> CH <sub>3</sub> | 2-Cl-phenyl                    |
| A-286            | CH <sub>2</sub> CH <sub>3</sub> | 3-Cl-phenyl                    |
| A-287            | CH <sub>2</sub> CH <sub>3</sub> | 4-Cl-phenyl                    |
| A-288            | CH <sub>2</sub> CH <sub>3</sub> | 2-methyl-phenyl                |
| A-289            | CH <sub>2</sub> CH <sub>3</sub> | 3-methyl-phenyl                |

|       |                                 | CT/EP2017/057669          |
|-------|---------------------------------|---------------------------|
| No    | R <sup>2</sup>                  | R <sup>1</sup>            |
| A-290 | CH <sub>2</sub> CH <sub>3</sub> | 4-methyl-phenyl           |
| A-291 | CH <sub>2</sub> CH <sub>3</sub> | 2-ethyl-phenyl            |
| A-292 | CH <sub>2</sub> CH <sub>3</sub> | 3-ethyl-phenyl            |
| A-293 | CH <sub>2</sub> CH <sub>3</sub> | 4-ethyl-phenyl            |
| A-294 | CH <sub>2</sub> CH <sub>3</sub> | 2-isopropyl-phenyl        |
| A-295 | CH <sub>2</sub> CH <sub>3</sub> | 3-isopropyl-phenyl        |
| A-296 | CH <sub>2</sub> CH <sub>3</sub> | 4-isopropyl-phenyl        |
| A-297 | CH <sub>2</sub> CH <sub>3</sub> | 2-(2,2,2-trifluoroethyl)- |
|       |                                 | phenyl                    |
| A-298 | CH <sub>2</sub> CH <sub>3</sub> | 3-(2,2,2-trifluoroethyl)- |
|       |                                 | phenyl                    |
| A-299 | CH <sub>2</sub> CH <sub>3</sub> | 4-(2,2,2-trifluoroethyl)- |
|       |                                 | phenyl                    |
| A-300 | CH <sub>2</sub> CH <sub>3</sub> | 2-trifluoromethyl-        |
|       |                                 | phenyl                    |
| A-301 | CH <sub>2</sub> CH <sub>3</sub> | 3-trifluoromethyl-        |
|       |                                 | phenyl                    |
| A-302 | CH <sub>2</sub> CH <sub>3</sub> | 4-trifluoromethyl-        |
|       |                                 | phenyl                    |
| A-303 | CH <sub>2</sub> CH <sub>3</sub> | 2-methoxy-phenyl          |
| A-304 | CH <sub>2</sub> CH <sub>3</sub> | 3-methoxy-phenyl          |
| A-305 | CH <sub>2</sub> CH <sub>3</sub> | 4-methoxy-phenyl          |
| A-306 | CH <sub>2</sub> CH <sub>3</sub> | 2-trifluoromethoxy-       |
|       |                                 | phenyl                    |
| A-307 | CH <sub>2</sub> CH <sub>3</sub> | 3-trifluoromethoxy-       |
|       |                                 | phenyl                    |
| A-308 | CH <sub>2</sub> CH <sub>3</sub> | 4-trifluoromethoxy-       |
|       |                                 | phenyl                    |
| A-309 | CH <sub>2</sub> CH <sub>3</sub> | 2-difluoromethoxy-        |
|       |                                 | phenyl                    |
| A-310 | CH <sub>2</sub> CH <sub>3</sub> | 3-difluoromethoxy-        |
| A 044 |                                 | phenyl                    |
| A-311 | CH <sub>2</sub> CH <sub>3</sub> | 4-difluoromethoxy-        |
| A 010 |                                 | phenyl                    |
| A-312 | CH <sub>2</sub> CH <sub>3</sub> | 2-cyano-phenyl            |
| A-313 | CH <sub>2</sub> CH <sub>3</sub> | 3-cyano-phenyl            |
| A-314 | CH <sub>2</sub> CH <sub>3</sub> | 4-cyano-phenyl            |
| A-315 | CH <sub>2</sub> CH <sub>3</sub> | 2,3-difluoro-phenyl       |
| A-316 | CH <sub>2</sub> CH <sub>3</sub> | 2,4-difluoro-phenyl       |
| A-317 | CH <sub>2</sub> CH <sub>3</sub> | 2,5-difluoro-phenyl       |
| A-318 | CH <sub>2</sub> CH <sub>3</sub> | 2,6-difluoro-phenyl       |

30

PCT/EP2017/057669

| No    | R <sup>2</sup>                  | R <sup>1</sup>                |
|-------|---------------------------------|-------------------------------|
|       |                                 |                               |
| A-319 | CH <sub>2</sub> CH <sub>3</sub> | 2,3-dichloro-phenyl           |
| A-320 | CH <sub>2</sub> CH <sub>3</sub> | 2,4-dichloro-phenyl           |
| A-321 | CH <sub>2</sub> CH <sub>3</sub> | 2,5-dichloro-phenyl           |
| A-322 | CH <sub>2</sub> CH <sub>3</sub> | 2,6-dichloro-phenyl           |
| A-323 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-3-Cl-phenyl               |
| A-324 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-4-Cl-phenyl               |
| A-325 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-5-Cl-phenyl               |
| A-326 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-6-Cl-phenyl               |
| A-327 | CH <sub>2</sub> CH <sub>3</sub> | 3-F-4-Cl-phenyl               |
| A-328 | CH <sub>2</sub> CH <sub>3</sub> | 3-F-5-Cl-phenyl               |
| A-329 | CH <sub>2</sub> CH <sub>3</sub> | 2-CI-3-F-phenyl               |
| A-330 | CH <sub>2</sub> CH <sub>3</sub> | 2-CI-4-F-phenyl               |
| A-331 | CH <sub>2</sub> CH <sub>3</sub> | 2-CI-5-F-phenyl               |
| A-332 | CH <sub>2</sub> CH <sub>3</sub> | 3-CI-4-F-phenyl               |
| A-333 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-3-methyl-phenyl           |
| A-334 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-4-methyl-phenyl           |
| A-335 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-5-methyl-phenyl           |
| A-336 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-6-methyl-phenyl           |
| A-337 | CH <sub>2</sub> CH <sub>3</sub> | 3-F-4-methyl-phenyl           |
| A-338 | CH <sub>2</sub> CH <sub>3</sub> | 3-F-5-methyl-phenyl           |
| A-339 | CH <sub>2</sub> CH <sub>3</sub> | 2-methyl-3-F-phenyl           |
| A-340 | CH <sub>2</sub> CH <sub>3</sub> | 2-methyl-4-F-phenyl           |
| A-341 | CH <sub>2</sub> CH <sub>3</sub> | 2-methyl-5-F-phenyl           |
| A-342 | $CH_2CH_3$                      | 3-methyl-4-F-phenyl           |
| A-343 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-3-CF <sub>3</sub> -phenyl |
| A-344 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-4-CF <sub>3</sub> -phenyl |
| A-345 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-5-CF <sub>3</sub> -phenyl |
| A-346 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-6-CF <sub>3</sub> -phenyl |
| A-347 | CH <sub>2</sub> CH <sub>3</sub> | 3-F-4-CF <sub>3</sub> -phenyl |
| A-348 | CH <sub>2</sub> CH <sub>3</sub> | 3-F-5-CF <sub>3</sub> -phenyl |
| A-349 | CH <sub>2</sub> CH <sub>3</sub> | 2-CF <sub>3</sub> -3-F-phenyl |
| A-350 | CH <sub>2</sub> CH <sub>3</sub> | 2-CF <sub>3</sub> -4-F-phenyl |
| A-351 | CH <sub>2</sub> CH <sub>3</sub> | 2-CF <sub>3</sub> -5-F-phenyl |
| A-352 | CH <sub>2</sub> CH <sub>3</sub> | 3-CF <sub>3</sub> -4-F-phenyl |
| A-353 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-3-OMe-phenyl              |
| A-354 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-4-OMe-phenyl              |
| A-355 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-5-OMe-phenyl              |
| A-356 | CH <sub>2</sub> CH <sub>3</sub> | 2-F-6-OMe-phenyl              |
| A-357 | CH <sub>2</sub> CH <sub>3</sub> | 3-F-4-OMe-phenyl              |
| A-358 | CH <sub>2</sub> CH <sub>3</sub> | 3-F-5-OMe-phenyl              |

| No    | R <sup>2</sup>                  | R <sup>1</sup>                 |
|-------|---------------------------------|--------------------------------|
| A-359 |                                 | 2-OMe-3-F-phenyl               |
|       | CH <sub>2</sub> CH <sub>3</sub> |                                |
| A-360 | CH₂CH₃                          | 2-OMe-4-F-phenyl               |
| A-361 |                                 | 2-OMe-5-F-phenyl               |
| A-362 | CH <sub>2</sub> CH <sub>3</sub> | 3-OMe-4-F-phenyl               |
| A-363 | CH <sub>2</sub> CH <sub>3</sub> | 2-Cl-3-methyl-phenyl           |
| A-364 | CH <sub>2</sub> CH <sub>3</sub> | 2-Cl-4-methyl-phenyl           |
| A-365 | CH <sub>2</sub> CH <sub>3</sub> | 2-Cl-5-methyl-phenyl           |
| A-366 | CH <sub>2</sub> CH <sub>3</sub> | 2-Cl-6-methyl-phenyl           |
| A-367 | CH <sub>2</sub> CH <sub>3</sub> | 3-CI-4-methyl-phenyl           |
| A-368 | CH <sub>2</sub> CH <sub>3</sub> | 3-CI-5-methyl-phenyl           |
| A-369 | CH <sub>2</sub> CH <sub>3</sub> | 2-methyl-3-Cl-phenyl           |
| A-370 | CH <sub>2</sub> CH <sub>3</sub> | 2-methyl-4-Cl-phenyl           |
| A-371 | CH <sub>2</sub> CH <sub>3</sub> | 2-methyl-5-Cl-phenyl           |
| A-372 | CH <sub>2</sub> CH <sub>3</sub> | 3-methyl-4-Cl-phenyl           |
| A-373 | CH <sub>2</sub> CH <sub>3</sub> | 2-CI-3-CF <sub>3</sub> -phenyl |
| A-374 | $CH_2CH_3$                      | 2-CI-4-CF <sub>3</sub> -phenyl |
| A-375 | $CH_2CH_3$                      | 2-CI-5-CF <sub>3</sub> -phenyl |
| A-376 | $CH_2CH_3$                      | 2-CI-6-CF <sub>3</sub> -phenyl |
| A-377 | $CH_2CH_3$                      | 3-CI-4-CF <sub>3</sub> -phenyl |
| A-378 | CH₂CH₃                          | 3-CI-5-CF <sub>3</sub> -phenyl |
| A-379 | CH <sub>2</sub> CH <sub>3</sub> | 2-CF <sub>3</sub> -3-Cl-phenyl |
| A-380 | CH <sub>2</sub> CH <sub>3</sub> | 2-CF <sub>3</sub> -4-Cl-phenyl |
| A-381 | CH₂CH₃                          | 2-CF <sub>3</sub> -5-Cl-phenyl |
| A-382 | CH <sub>2</sub> CH <sub>3</sub> | 3-CF <sub>3</sub> -4-Cl-phenyl |
| A-383 | CH₂CH₃                          | 2-CI-3-OMe-phenyl              |
| A-384 | CH <sub>2</sub> CH <sub>3</sub> | 2-CI-4-OMe-phenyl              |
| A-385 | CH <sub>2</sub> CH <sub>3</sub> | 2-CI-5-OMe-phenyl              |
| A-386 | CH <sub>2</sub> CH <sub>3</sub> | 2-CI-6-OMe-phenyl              |
| A-387 | CH <sub>2</sub> CH <sub>3</sub> | 3-CI-4-OMe-phenyl              |
| A-388 | CH <sub>2</sub> CH <sub>3</sub> | 3-CI-5-OMe-phenyl              |
| A-389 | CH <sub>2</sub> CH <sub>3</sub> | 2-OMe-3-Cl-phenyl              |
| A-390 | CH <sub>2</sub> CH <sub>3</sub> | 2-OMe-4-Cl-phenyl              |
| A-391 | CH <sub>2</sub> CH <sub>3</sub> | 2-OMe-5-Cl-phenyl              |
| A-392 | CH <sub>2</sub> CH <sub>3</sub> | 3-OMe-4-Cl-phenyl              |
| A-393 | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> -cyclopropyl   |
| A-394 | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> -cyclopentyl   |
| A-395 | CH <sub>2</sub> CH <sub>3</sub> | CH <sub>2</sub> -cyclohexyl    |
| A-396 | CH <sub>2</sub> CH <sub>3</sub> | benzyl                         |
| A-397 | iso-propyl                      | allyl                          |
| A-398 | iso-propyl                      | propargyl                      |

| WO 2017/178245 31 |                |                           |
|-------------------|----------------|---------------------------|
| No                | R <sup>2</sup> | R <sup>1</sup>            |
| A-399             | iso-propyl     | cyclopropyl               |
| A-400             | iso-propyl     | cylobutyl                 |
| A-401             | iso-propyl     | 1-methyl-cyclopropyl      |
| A-402             | iso-propyl     | cylopentyl                |
| A-403             | iso-propyl     | cyclohexyl                |
| A-404             | iso-propyl     | cycloheptyl               |
| A-405             | iso-propyl     | cyclopent-1-enyl          |
| A-406             | iso-propyl     | cyclopent-2-enyl          |
| A-407             | iso-propyl     | cyclohex-1-enyl           |
| A-408             | iso-propyl     | cyclohex-2-enyl           |
| A-409             | iso-propyl     | cyclohex-3-enyl           |
| A-410             | iso-propyl     | phenyl                    |
| A-411             | iso-propyl     | 2-pyridyl                 |
| A-412             | iso-propyl     | 3-pyridyl                 |
| A-413             | iso-propyl     | 4-pyridyl                 |
| A-414             | iso-propyl     | 2-F-phenyl                |
| A-415             | iso-propyl     | 3-F-phenyl                |
| A-416             | iso-propyl     | 4-F-phenyl                |
| A-417             | iso-propyl     | 2-Cl-phenyl               |
| A-418             | iso-propyl     | 3-Cl-phenyl               |
| A-419             | iso-propyl     | 4-Cl-phenyl               |
| A-420             | iso-propyl     | 2-methyl-phenyl           |
| A-421             | iso-propyl     | 3-methyl-phenyl           |
| A-422             | iso-propyl     | 4-methyl-phenyl           |
| A-423             | iso-propyl     | 2-ethyl-phenyl            |
| A-424             | iso-propyl     | 3-ethyl-phenyl            |
| A-425             | iso-propyl     | 4-ethyl-phenyl            |
| A-426             | iso-propyl     | 2-isopropyl-phenyl        |
| A-427             | iso-propyl     | 3-isopropyl-phenyl        |
| A-428             | iso-propyl     | 4-isopropyl-phenyl        |
| A-429             | iso-propyl     | 2-(2,2,2-trifluoroethyl)- |
|                   |                | phenyl                    |
| A-430             | iso-propyl     | 3-(2,2,2-trifluoroethyl)- |
|                   |                | phenyl                    |
| A-431             | iso-propyl     | 4-(2,2,2-trifluoroethyl)- |
|                   |                | phenyl                    |
| A-432             | iso-propyl     | 2-trifluoromethyl-        |
| A 400             |                | phenyl                    |
| A-433             | iso-propyl     | 3-trifluoromethyl-        |
|                   |                | phenyl                    |

PCT/EP2017/057669

| No    | R <sup>2</sup> | R <sup>1</sup>      |
|-------|----------------|---------------------|
| A-434 | iso-propyl     | 4-trifluoromethyl-  |
|       |                | phenyl              |
| A-435 | iso-propyl     | 2-methoxy-phenyl    |
| A-436 | iso-propyl     | 3-methoxy-phenyl    |
| A-437 | iso-propyl     | 4-methoxy-phenyl    |
| A-438 | iso-propyl     | 2-trifluoromethoxy- |
|       |                | phenyl              |
| A-439 | iso-propyl     | 3-trifluoromethoxy- |
|       |                | phenyl              |
| A-440 | iso-propyl     | 4-trifluoromethoxy- |
|       |                | phenyl              |
| A-441 | iso-propyl     | 2-difluoromethoxy-  |
| A-442 | ing general    | phenyl              |
| A-442 | iso-propyl     | 3-difluoromethoxy-  |
| A-443 | iso-propyl     | 4-difluoromethoxy-  |
| 7-440 | во-ргоруг      | phenyl              |
| A-444 | iso-propyl     | 2-cyano-phenyl      |
| A-445 | iso-propyl     | 3-cyano-phenyl      |
| A-446 | iso-propyl     | 4-cyano-phenyl      |
| A-447 | iso-propyl     | 2,3-difluoro-phenyl |
| A-448 | iso-propyl     | 2,4-difluoro-phenyl |
| A-449 | iso-propyl     | 2,5-difluoro-phenyl |
| A-450 | iso-propyl     | 2,6-difluoro-phenyl |
| A-451 | iso-propyl     | 2,3-dichloro-phenyl |
| A-452 | iso-propyl     | 2,4-dichloro-phenyl |
| A-453 | iso-propyl     | 2,5-dichloro-phenyl |
| A-454 | iso-propyl     | 2,6-dichloro-phenyl |
| A-455 | iso-propyl     | 2-F-3-Cl-phenyl     |
| A-456 | iso-propyl     | 2-F-4-Cl-phenyl     |
| A-457 | iso-propyl     | 2-F-5-Cl-phenyl     |
| A-458 | iso-propyl     | 2-F-6-Cl-phenyl     |
| A-459 | iso-propyl     | 3-F-4-Cl-phenyl     |
| A-460 | iso-propyl     | 3-F-5-Cl-phenyl     |
| A-461 | iso-propyl     | 2-Cl-3-F-phenyl     |
| A-462 | iso-propyl     | 2-CI-4-F-phenyl     |
| A-463 | iso-propyl     | 2-CI-5-F-phenyl     |
| A-464 | iso-propyl     | 3-Cl-4-F-phenyl     |
| A-465 | iso-propyl     | 2-F-3-methyl-phenyl |
| A-466 | iso-propyl     | 2-F-4-methyl-phenyl |
| A-467 | iso-propyl     | 2-F-5-methyl-phenyl |

PCT/EP2017/057669

| NoR²R1A-468iso-propyl2-F-6-methyl-phenylA-469iso-propyl3-F-4-methyl-phenylA-470iso-propyl2-methyl-3-F-phenylA-471iso-propyl2-methyl-4-F-phenylA-472iso-propyl2-methyl-4-F-phenylA-473iso-propyl2-methyl-4-F-phenylA-474iso-propyl2-F-3-CF <sub>3</sub> -phenylA-475iso-propyl2-F-3-CF <sub>3</sub> -phenylA-476iso-propyl2-F-6-CF <sub>3</sub> -phenylA-477iso-propyl2-F-6-CF <sub>3</sub> -phenylA-478iso-propyl3-F-4-CF <sub>3</sub> -phenylA-479iso-propyl2-CF <sub>3</sub> -3-F-phenylA-480iso-propyl2-CF <sub>3</sub> -3-F-phenylA-481iso-propyl2-CF <sub>3</sub> -3-F-phenylA-482iso-propyl2-CF <sub>3</sub> -3-F-phenylA-483iso-propyl2-CF <sub>3</sub> -3-F-phenylA-484iso-propyl2-CF <sub>3</sub> -3-CMe-phenylA-485iso-propyl2-F-3-OMe-phenylA-486iso-propyl2-F-6-OMe-phenylA-487iso-propyl2-CMe-3-F-phenylA-488iso-propyl3-CMe-3-F-phenylA-489iso-propyl2-OMe-3-F-phenylA-490iso-propyl2-OMe-3-F-phenylA-491iso-propyl2-OMe-3-F-phenylA-492iso-propyl2-OMe-3-F-phenylA-493iso-propyl2-OMe-3-F-phenylA-494iso-propyl2-OMe-3-F-phenylA-495iso-propyl2-OMe-3-F-phenylA-496iso-propyl2-OMe-3-F-phenylA-4                                                                                                                                                                                                                                                          | WO 2017/178245 5 |                |                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|--------------------------------|--|
| A-469         iso-propyl         3-F-4-methyl-phenyl           A-470         iso-propyl         3-F-5-methyl-phenyl           A-471         iso-propyl         2-methyl-3-F-phenyl           A-472         iso-propyl         2-methyl-4-F-phenyl           A-473         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-474         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-475         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-476         iso-propyl         2-F-6-CF <sub>3</sub> -phenyl           A-477         iso-propyl         2-F-5-CF <sub>3</sub> -phenyl           A-478         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-479         iso-propyl         2-F-5-CF <sub>3</sub> -phenyl           A-478         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-480         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-481         iso-propyl         2-F-4-OMe-phenyl           A-482         iso-propyl         2-F-4-OMe-phenyl           A-483         iso-propyl         2-F-5-OMe-phenyl           A-484         iso-propyl         2-F-6-OMe-phenyl           A-485         iso-propyl         2-F-6-OMe-phenyl           A-486         iso-propyl         3-F-5-OMe-phenyl           A-489                                               | No               | R <sup>2</sup> | R <sup>1</sup>                 |  |
| A-470         iso-propyl         3-F-5-methyl-phenyl           A-471         iso-propyl         2-methyl-3-F-phenyl           A-472         iso-propyl         2-methyl-4-F-phenyl           A-473         iso-propyl         2-methyl-5-F-phenyl           A-473         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-474         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-475         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-476         iso-propyl         2-F-6-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-479         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-480         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-481         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-482         iso-propyl         2-F-4-OMe-phenyl           A-483         iso-propyl         2-F-5-OMe-phenyl           A-484         iso-propyl         2-F-6-OMe-phenyl           A-485         iso-propyl         2-F-6-OMe-phenyl           A-486         iso-propyl         2-OMe-3-F-phenyl           A-489         iso-propyl         2-OMe-4-F-phenyl           A-490                                               | A-468            | iso-propyl     | 2-F-6-methyl-phenyl            |  |
| A-471         iso-propyl         2-methyl-3-F-phenyl           A-472         iso-propyl         2-methyl-5-F-phenyl           A-473         iso-propyl         3-methyl-4-F-phenyl           A-474         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-475         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-476         iso-propyl         2-F-4-CF <sub>3</sub> -phenyl           A-477         iso-propyl         2-F-6-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-479         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-478         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-480         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-481         iso-propyl         2-CF <sub>3</sub> -5-F-phenyl           A-483         iso-propyl         2-F-3-OMe-phenyl           A-484         iso-propyl         2-F-5-OMe-phenyl           A-485         iso-propyl         2-F-6-OMe-phenyl           A-480         iso-propyl         2-F-6-OMe-phenyl           A-483         iso-propyl         2-OMe-3-F-phenyl           A-480         iso-propyl         2-OMe-4-F-phenyl           A-490         iso-propyl         2-OMe-5-F-phenyl           A-493         <                                        | A-469            | iso-propyl     | 3-F-4-methyl-phenyl            |  |
| A-472         iso-propyl         2-methyl-4-F-phenyl           A-473         iso-propyl         2-methyl-5-F-phenyl           A-474         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-475         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-476         iso-propyl         2-F-4-CF <sub>3</sub> -phenyl           A-477         iso-propyl         2-F-5-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-479         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-5-CF <sub>3</sub> -phenyl           A-480         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-481         iso-propyl         2-CF <sub>3</sub> -5-F-phenyl           A-482         iso-propyl         2-F-4-OMe-phenyl           A-483         iso-propyl         2-F-5-OMe-phenyl           A-484         iso-propyl         2-F-6-OMe-phenyl           A-485         iso-propyl         2-F-6-OMe-phenyl           A-480         iso-propyl         3-F-4-OMe-phenyl           A-480         iso-propyl         3-F-5-OMe-phenyl           A-480         iso-propyl         2-OMe-3-F-phenyl           A-490         iso-propyl         2-OMe-5-F-phenyl           A-491                                                     | A-470            | iso-propyl     | 3-F-5-methyl-phenyl            |  |
| A-473         iso-propyl         2-methyl-5-F-phenyl           A-474         iso-propyl         3-methyl-4-F-phenyl           A-475         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-476         iso-propyl         2-F-4-CF <sub>3</sub> -phenyl           A-477         iso-propyl         2-F-5-CF <sub>3</sub> -phenyl           A-478         iso-propyl         2-F-6-CF <sub>3</sub> -phenyl           A-479         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-480         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-481         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-482         iso-propyl         2-CF <sub>3</sub> -5-F-phenyl           A-483         iso-propyl         2-F-3-OMe-phenyl           A-484         iso-propyl         2-F-5-OMe-phenyl           A-485         iso-propyl         2-F-6-OMe-phenyl           A-484         iso-propyl         3-F-4-OMe-phenyl           A-485         iso-propyl         2-F-6-OMe-phenyl           A-486         iso-propyl         3-F-4-OMe-phenyl           A-487         iso-propyl         2-OMe-3-F-phenyl           A-490         iso-propyl         2-OMe-4-F-phenyl           A-492                                                     | A-471            | iso-propyl     | 2-methyl-3-F-phenyl            |  |
| A-474         iso-propyl         3-methyl-4-F-phenyl           A-475         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-476         iso-propyl         2-F-4-CF <sub>3</sub> -phenyl           A-477         iso-propyl         2-F-6-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-5-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-5-CF <sub>3</sub> -phenyl           A-480         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-481         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-482         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-483         iso-propyl         2-F-3-OMe-phenyl           A-484         iso-propyl         2-F-5-OMe-phenyl           A-485         iso-propyl         2-F-6-OMe-phenyl           A-486         iso-propyl         2-F-6-OMe-phenyl           A-487         iso-propyl         3-F-5-OMe-phenyl           A-488         iso-propyl         2-OMe-3-F-phenyl           A-490         iso-propyl         2-OMe-5-F-phenyl           A-491         iso-propyl         2-Cl-3-methyl-phenyl           A-492         iso-propyl         2-Cl-3-methyl-phenyl           A-493                                                | A-472            | iso-propyl     | 2-methyl-4-F-phenyl            |  |
| A-475         iso-propyl         2-F-3-CF <sub>3</sub> -phenyl           A-476         iso-propyl         2-F-4-CF <sub>3</sub> -phenyl           A-477         iso-propyl         2-F-5-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-479         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-5-CF <sub>3</sub> -phenyl           A-480         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-481         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-483         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-484         iso-propyl         2-F-3-OMe-phenyl           A-485         iso-propyl         2-F-4-OMe-phenyl           A-484         iso-propyl         2-F-5-OMe-phenyl           A-485         iso-propyl         2-F-6-OMe-phenyl           A-488         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         2-OMe-3-F-phenyl           A-490         iso-propyl         2-OMe-3-F-phenyl           A-491         iso-propyl         2-OMe-4-F-phenyl           A-492         iso-propyl         2-OMe-3-F-phenyl           A-493         iso-propyl         2-Cl-3-methyl-phenyl           A-494         is                                            | A-473            | iso-propyl     | 2-methyl-5-F-phenyl            |  |
| A-476         iso-propyl         2-F-4-CF <sub>3</sub> -phenyl           A-477         iso-propyl         2-F-5-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-479         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-480         iso-propyl         3-F-5-CF <sub>3</sub> -phenyl           A-481         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-482         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-483         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-484         iso-propyl         2-F-3-OMe-phenyl           A-485         iso-propyl         2-F-5-OMe-phenyl           A-486         iso-propyl         2-F-6-OMe-phenyl           A-487         iso-propyl         2-F-6-OMe-phenyl           A-488         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         2-OMe-3-F-phenyl           A-490         iso-propyl         2-OMe-5-F-phenyl           A-491         iso-propyl         2-OMe-5-F-phenyl           A-492         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-Cl-3-methyl-phenyl           A-494         iso-propyl         2-Cl-5-methyl-phenyl           A-495                                                                | A-474            | iso-propyl     | 3-methyl-4-F-phenyl            |  |
| A-477         iso-propyl         2-F-5-CF <sub>3</sub> -phenyl           A-478         iso-propyl         3-F-6-CF <sub>3</sub> -phenyl           A-479         iso-propyl         3-F-3-CF <sub>3</sub> -phenyl           A-480         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-481         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-482         iso-propyl         2-CF <sub>3</sub> -5-F-phenyl           A-483         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-484         iso-propyl         2-F-3-OMe-phenyl           A-485         iso-propyl         2-F-4-OMe-phenyl           A-486         iso-propyl         2-F-5-OMe-phenyl           A-487         iso-propyl         2-F-6-OMe-phenyl           A-488         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         2-OMe-3-F-phenyl           A-490         iso-propyl         2-OMe-5-F-phenyl           A-491         iso-propyl         2-OMe-5-F-phenyl           A-492         iso-propyl         2-Cl-3-methyl-phenyl           A-493         iso-propyl         2-Cl-3-methyl-phenyl           A-494         is                                                                  | A-475            | iso-propyl     | 2-F-3-CF <sub>3</sub> -phenyl  |  |
| A-478         iso-propyl         2-F-6-CF <sub>3</sub> -phenyl           A-479         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-480         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-481         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-482         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-483         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-484         iso-propyl         2-F-3-OMe-phenyl           A-485         iso-propyl         2-F-4-OMe-phenyl           A-486         iso-propyl         2-F-6-OMe-phenyl           A-487         iso-propyl         2-F-6-OMe-phenyl           A-488         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-489         iso-propyl         2-OMe-3-F-phenyl           A-490         iso-propyl         2-OMe-4-F-phenyl           A-491         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-Cl-3-methyl-phenyl           A-494         iso-propyl         2-Cl-3-methyl-phenyl           A-495         iso-propyl         2-Cl-4-methyl-phenyl           A-494         iso-propyl         2-Cl-6-methyl-phenyl           A-495                                                                                  | A-476            | iso-propyl     | 2-F-4-CF <sub>3</sub> -phenyl  |  |
| A-479         iso-propyl         3-F-4-CF <sub>3</sub> -phenyl           A-480         iso-propyl         3-F-5-CF <sub>3</sub> -phenyl           A-481         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-482         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-483         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-484         iso-propyl         2-F-3-OMe-phenyl           A-485         iso-propyl         2-F-4-OMe-phenyl           A-486         iso-propyl         2-F-6-OMe-phenyl           A-487         iso-propyl         2-F-6-OMe-phenyl           A-488         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-490         iso-propyl         2-OMe-3-F-phenyl           A-491         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-OMe-4-F-phenyl           A-494         iso-propyl         2-Cl-3-methyl-phenyl           A-495         iso-propyl         2-Cl-3-methyl-phenyl           A-496         iso-propyl         2-Cl-4-methyl-phenyl           A-497         iso-propyl         2-Cl-5-methyl-phenyl           A-498 <t< td=""><td>A-477</td><td>iso-propyl</td><td>2-F-5-CF<sub>3</sub>-phenyl</td><td></td></t<> | A-477            | iso-propyl     | 2-F-5-CF <sub>3</sub> -phenyl  |  |
| A-480         iso-propyl         3-F-5-CF <sub>3</sub> -phenyl           A-481         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-482         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-483         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-484         iso-propyl         2-F-3-OMe-phenyl           A-485         iso-propyl         2-F-4-OMe-phenyl           A-486         iso-propyl         2-F-5-OMe-phenyl           A-487         iso-propyl         2-F-6-OMe-phenyl           A-488         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-489         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-490         iso-propyl         2-OMe-3-F-phenyl           A-491         iso-propyl         2-OMe-4-F-phenyl           A-492         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-Cl-3-methyl-phenyl           A-494         iso-propyl         2-Cl-3-methyl-phenyl           A-495         iso-propyl         2-Cl-5-methyl-phenyl           A-496         iso-propyl         2-Cl-6-methyl-phenyl           A-497                                                                                                            | A-478            | iso-propyl     | 2-F-6-CF <sub>3</sub> -phenyl  |  |
| A-481         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-482         iso-propyl         2-CF <sub>3</sub> -3-F-phenyl           A-483         iso-propyl         2-CF <sub>3</sub> -5-F-phenyl           A-484         iso-propyl         2-F-3-OMe-phenyl           A-485         iso-propyl         2-F-5-OMe-phenyl           A-486         iso-propyl         2-F-5-OMe-phenyl           A-487         iso-propyl         2-F-6-OMe-phenyl           A-488         iso-propyl         3-F-5-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-489         iso-propyl         2-OMe-3-F-phenyl           A-491         iso-propyl         2-OMe-4-F-phenyl           A-492         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-Cl-3-methyl-phenyl           A-494         iso-propyl         2-Cl-3-methyl-phenyl           A-495         iso-propyl         2-Cl-4-methyl-phenyl           A-496         iso-propyl         2-Cl-6-methyl-phenyl           A-497         iso-propyl         3-Cl-4-methyl-phenyl           A-498         iso-propyl         3-Cl-4-methyl-phenyl           A-499                                                                                                                 | A-479            | iso-propyl     | 3-F-4-CF <sub>3</sub> -phenyl  |  |
| A-482         iso-propyl         2-CF <sub>3</sub> -4-F-phenyl           A-483         iso-propyl         2-CF <sub>3</sub> -5-F-phenyl           A-484         iso-propyl         2-F-3-OMe-phenyl           A-485         iso-propyl         2-F-3-OMe-phenyl           A-486         iso-propyl         2-F-3-OMe-phenyl           A-486         iso-propyl         2-F-5-OMe-phenyl           A-487         iso-propyl         2-F-6-OMe-phenyl           A-488         iso-propyl         3-F-5-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-490         iso-propyl         2-OMe-3-F-phenyl           A-491         iso-propyl         2-OMe-4-F-phenyl           A-492         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-Cl-3-methyl-phenyl           A-494         iso-propyl         2-Cl-4-methyl-phenyl           A-495         iso-propyl         2-Cl-5-methyl-phenyl           A-496         iso-propyl         2-Cl-6-methyl-phenyl           A-497         iso-propyl         3-Cl-4-methyl-phenyl           A-498         iso-propyl         3-Cl-5-methyl-phenyl           A-500                                                                                                                              | A-480            | iso-propyl     | 3-F-5-CF <sub>3</sub> -phenyl  |  |
| A-483         iso-propyl         2-CF <sub>3</sub> -5-F-phenyl           A-484         iso-propyl         3-CF <sub>3</sub> -4-F-phenyl           A-485         iso-propyl         2-F-3-OMe-phenyl           A-486         iso-propyl         2-F-4-OMe-phenyl           A-487         iso-propyl         2-F-5-OMe-phenyl           A-488         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         3-F-4-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-490         iso-propyl         3-F-5-OMe-phenyl           A-491         iso-propyl         2-OMe-3-F-phenyl           A-492         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-OMe-4-F-phenyl           A-494         iso-propyl         2-Cl-3-methyl-phenyl           A-495         iso-propyl         2-Cl-4-methyl-phenyl           A-496         iso-propyl         2-Cl-5-methyl-phenyl           A-497         iso-propyl         2-Cl-6-methyl-phenyl           A-498         iso-propyl         3-Cl-4-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-498         iso-propyl         2-methyl-3-Cl-phenyl           A-501                                                                                                                          | A-481            | iso-propyl     | 2-CF <sub>3</sub> -3-F-phenyl  |  |
| A-484       iso-propyl       3-CF <sub>3</sub> -4-F-phenyl         A-485       iso-propyl       2-F-3-OMe-phenyl         A-486       iso-propyl       2-F-4-OMe-phenyl         A-487       iso-propyl       2-F-5-OMe-phenyl         A-488       iso-propyl       2-F-6-OMe-phenyl         A-489       iso-propyl       3-F-4-OMe-phenyl         A-489       iso-propyl       3-F-5-OMe-phenyl         A-490       iso-propyl       3-F-5-OMe-phenyl         A-491       iso-propyl       2-OMe-3-F-phenyl         A-492       iso-propyl       2-OMe-5-F-phenyl         A-493       iso-propyl       2-OMe-4-F-phenyl         A-494       iso-propyl       2-Cl-3-methyl-phenyl         A-495       iso-propyl       2-Cl-3-methyl-phenyl         A-496       iso-propyl       2-Cl-5-methyl-phenyl         A-497       iso-propyl       2-Cl-5-methyl-phenyl         A-498       iso-propyl       3-Cl-4-methyl-phenyl         A-499       iso-propyl       3-Cl-5-methyl-phenyl         A-498       iso-propyl       3-Cl-4-methyl-phenyl         A-499       iso-propyl       3-Cl-5-methyl-phenyl         A-500       iso-propyl       2-methyl-3-Cl-phenyl         A-501                                                                                                                                                                                           | A-482            | iso-propyl     | 2-CF <sub>3</sub> -4-F-phenyl  |  |
| A-485         iso-propyl         2-F-3-OMe-phenyl           A-486         iso-propyl         2-F-4-OMe-phenyl           A-487         iso-propyl         2-F-5-OMe-phenyl           A-488         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         3-F-4-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-490         iso-propyl         3-F-5-OMe-phenyl           A-491         iso-propyl         2-OMe-3-F-phenyl           A-492         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-OMe-5-F-phenyl           A-494         iso-propyl         2-Cl-3-methyl-phenyl           A-495         iso-propyl         2-Cl-3-methyl-phenyl           A-496         iso-propyl         2-Cl-5-methyl-phenyl           A-497         iso-propyl         2-Cl-6-methyl-phenyl           A-498         iso-propyl         3-Cl-4-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-498         iso-propyl         3-Cl-5-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-500         iso-propyl         2-methyl-3-Cl-phenyl           A-501                                                                                                                                            | A-483            | iso-propyl     | 2-CF <sub>3</sub> -5-F-phenyl  |  |
| A-486         iso-propyl         2-F-4-OMe-phenyl           A-487         iso-propyl         2-F-5-OMe-phenyl           A-488         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         3-F-4-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-490         iso-propyl         3-F-5-OMe-phenyl           A-491         iso-propyl         2-OMe-3-F-phenyl           A-492         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-OMe-5-F-phenyl           A-494         iso-propyl         2-Cl-3-methyl-phenyl           A-495         iso-propyl         2-Cl-4-methyl-phenyl           A-496         iso-propyl         2-Cl-5-methyl-phenyl           A-497         iso-propyl         2-Cl-6-methyl-phenyl           A-498         iso-propyl         3-Cl-4-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-498         iso-propyl         2-methyl-3-Cl-phenyl           A-500         iso-propyl         2-methyl-5-Cl-phenyl           A-503         iso-propyl         2-methyl-4-Cl-phenyl           A-504         iso-propyl         2-Cl-3-CF <sub>3</sub> -phenyl           A-505 <td>A-484</td> <td>iso-propyl</td> <td>3-CF<sub>3</sub>-4-F-phenyl</td> <td></td>                                            | A-484            | iso-propyl     | 3-CF <sub>3</sub> -4-F-phenyl  |  |
| A-487         iso-propyl         2-F-5-OMe-phenyl           A-488         iso-propyl         3-F-4-OMe-phenyl           A-489         iso-propyl         3-F-4-OMe-phenyl           A-489         iso-propyl         3-F-5-OMe-phenyl           A-490         iso-propyl         2-OMe-3-F-phenyl           A-491         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-OMe-5-F-phenyl           A-494         iso-propyl         2-Cl-3-methyl-phenyl           A-495         iso-propyl         2-Cl-3-methyl-phenyl           A-496         iso-propyl         2-Cl-4-methyl-phenyl           A-497         iso-propyl         2-Cl-6-methyl-phenyl           A-498         iso-propyl         3-Cl-5-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-498         iso-propyl         3-Cl-5-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-500         iso-propyl         2-methyl-3-Cl-phenyl           A-501         iso-propyl         2-methyl-5-Cl-phenyl           A-502         iso-propyl         2-methyl-5-Cl-phenyl           A-503         iso-propyl         2-methyl-4-Cl-phenyl <td< td=""><td>A-485</td><td>iso-propyl</td><td>2-F-3-OMe-phenyl</td><td></td></td<>                                                           | A-485            | iso-propyl     | 2-F-3-OMe-phenyl               |  |
| A-488         iso-propyl         2-F-6-OMe-phenyl           A-489         iso-propyl         3-F-4-OMe-phenyl           A-490         iso-propyl         3-F-5-OMe-phenyl           A-491         iso-propyl         2-OMe-3-F-phenyl           A-492         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-OMe-5-F-phenyl           A-494         iso-propyl         2-Cl-3-methyl-phenyl           A-495         iso-propyl         2-Cl-3-methyl-phenyl           A-496         iso-propyl         2-Cl-5-methyl-phenyl           A-497         iso-propyl         2-Cl-6-methyl-phenyl           A-498         iso-propyl         2-Cl-6-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-498         iso-propyl         3-Cl-5-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-500         iso-propyl         2-methyl-3-Cl-phenyl           A-501         iso-propyl         2-methyl-4-Cl-phenyl           A-502         iso-propyl         2-methyl-5-Cl-phenyl           A-503         iso-propyl         3-methyl-4-Cl-phenyl                                                                                                                                            | A-486            | iso-propyl     | 2-F-4-OMe-phenyl               |  |
| A-489iso-propyl3-F-4-OMe-phenylA-490iso-propyl3-F-5-OMe-phenylA-491iso-propyl2-OMe-3-F-phenylA-492iso-propyl2-OMe-4-F-phenylA-493iso-propyl2-OMe-5-F-phenylA-494iso-propyl3-OMe-4-F-phenylA-495iso-propyl2-Cl-3-methyl-phenylA-496iso-propyl2-Cl-3-methyl-phenylA-497iso-propyl2-Cl-5-methyl-phenylA-498iso-propyl2-Cl-6-methyl-phenylA-499iso-propyl3-Cl-4-methyl-phenylA-500iso-propyl3-Cl-5-methyl-phenylA-501iso-propyl2-methyl-3-Cl-phenylA-502iso-propyl2-methyl-3-Cl-phenylA-503iso-propyl3-methyl-4-Cl-phenylA-504iso-propyl2-methyl-5-Cl-phenylA-505iso-propyl2-Cl-3-CF3-phenylA-506iso-propyl2-Cl-3-CF3-phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A-487            | iso-propyl     | 2-F-5-OMe-phenyl               |  |
| A-490         iso-propyl         3-F-5-OMe-phenyl           A-491         iso-propyl         2-OMe-3-F-phenyl           A-492         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-OMe-5-F-phenyl           A-494         iso-propyl         3-OMe-4-F-phenyl           A-495         iso-propyl         2-Cl-3-methyl-phenyl           A-496         iso-propyl         2-Cl-4-methyl-phenyl           A-497         iso-propyl         2-Cl-5-methyl-phenyl           A-498         iso-propyl         2-Cl-6-methyl-phenyl           A-499         iso-propyl         3-Cl-4-methyl-phenyl           A-498         iso-propyl         3-Cl-5-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-500         iso-propyl         3-Cl-5-methyl-phenyl           A-501         iso-propyl         2-methyl-3-Cl-phenyl           A-502         iso-propyl         2-methyl-5-Cl-phenyl           A-503         iso-propyl         3-methyl-4-Cl-phenyl           A-504         iso-propyl         2-Cl-3-CF <sub>3</sub> -phenyl           A-505         iso-propyl         2-Cl-3-CF <sub>3</sub> -phenyl                                                                                                                    | A-488            | iso-propyl     | 2-F-6-OMe-phenyl               |  |
| A-491         iso-propyl         2-OMe-3-F-phenyl           A-492         iso-propyl         2-OMe-4-F-phenyl           A-493         iso-propyl         2-OMe-5-F-phenyl           A-494         iso-propyl         3-OMe-4-F-phenyl           A-495         iso-propyl         2-Cl-3-methyl-phenyl           A-496         iso-propyl         2-Cl-3-methyl-phenyl           A-497         iso-propyl         2-Cl-5-methyl-phenyl           A-498         iso-propyl         2-Cl-6-methyl-phenyl           A-499         iso-propyl         3-Cl-4-methyl-phenyl           A-498         iso-propyl         3-Cl-5-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-500         iso-propyl         2-methyl-3-Cl-phenyl           A-501         iso-propyl         2-methyl-4-Cl-phenyl           A-502         iso-propyl         2-methyl-5-Cl-phenyl           A-503         iso-propyl         3-methyl-4-Cl-phenyl           A-504         iso-propyl         2-Cl-3-CF <sub>3</sub> -phenyl           A-505         iso-propyl         2-Cl-3-CF <sub>3</sub> -phenyl                                                                                                                                                                                | A-489            | iso-propyl     | 3-F-4-OMe-phenyl               |  |
| A-492       iso-propyl       2-OMe-4-F-phenyl         A-493       iso-propyl       2-OMe-5-F-phenyl         A-494       iso-propyl       3-OMe-4-F-phenyl         A-495       iso-propyl       2-Cl-3-methyl-phenyl         A-496       iso-propyl       2-Cl-4-methyl-phenyl         A-497       iso-propyl       2-Cl-5-methyl-phenyl         A-498       iso-propyl       2-Cl-6-methyl-phenyl         A-499       iso-propyl       3-Cl-4-methyl-phenyl         A-498       iso-propyl       3-Cl-4-methyl-phenyl         A-499       iso-propyl       3-Cl-5-methyl-phenyl         A-500       iso-propyl       3-Cl-5-methyl-phenyl         A-501       iso-propyl       2-methyl-3-Cl-phenyl         A-502       iso-propyl       2-methyl-4-Cl-phenyl         A-503       iso-propyl       2-methyl-5-Cl-phenyl         A-504       iso-propyl       3-methyl-4-Cl-phenyl         A-505       iso-propyl       2-Cl-3-CF <sub>3</sub> -phenyl         A-506       iso-propyl       2-Cl-3-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                | A-490            | iso-propyl     | 3-F-5-OMe-phenyl               |  |
| A-493         iso-propyl         2-OMe-5-F-phenyl           A-494         iso-propyl         3-OMe-4-F-phenyl           A-495         iso-propyl         2-Cl-3-methyl-phenyl           A-496         iso-propyl         2-Cl-4-methyl-phenyl           A-497         iso-propyl         2-Cl-5-methyl-phenyl           A-498         iso-propyl         2-Cl-6-methyl-phenyl           A-499         iso-propyl         3-Cl-4-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-499         iso-propyl         3-Cl-5-methyl-phenyl           A-500         iso-propyl         3-Cl-5-methyl-phenyl           A-501         iso-propyl         2-methyl-3-Cl-phenyl           A-502         iso-propyl         2-methyl-4-Cl-phenyl           A-503         iso-propyl         3-methyl-5-Cl-phenyl           A-504         iso-propyl         3-methyl-4-Cl-phenyl           A-505         iso-propyl         2-Cl-3-CF <sub>3</sub> -phenyl           A-506         iso-propyl         2-Cl-4-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                        | A-491            | iso-propyl     | 2-OMe-3-F-phenyl               |  |
| A-494iso-propyl3-OMe-4-F-phenylA-495iso-propyl2-Cl-3-methyl-phenylA-496iso-propyl2-Cl-4-methyl-phenylA-497iso-propyl2-Cl-5-methyl-phenylA-498iso-propyl2-Cl-6-methyl-phenylA-499iso-propyl3-Cl-4-methyl-phenylA-499iso-propyl3-Cl-5-methyl-phenylA-500iso-propyl2-methyl-3-Cl-phenylA-501iso-propyl2-methyl-4-Cl-phenylA-502iso-propyl2-methyl-5-Cl-phenylA-503iso-propyl3-methyl-4-Cl-phenylA-504iso-propyl2-Cl-3-CF <sub>3</sub> -phenylA-505iso-propyl2-Cl-4-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A-492            | iso-propyl     | 2-OMe-4-F-phenyl               |  |
| A-495iso-propyl2-Cl-3-methyl-phenylA-496iso-propyl2-Cl-4-methyl-phenylA-497iso-propyl2-Cl-5-methyl-phenylA-498iso-propyl2-Cl-6-methyl-phenylA-499iso-propyl3-Cl-4-methyl-phenylA-499iso-propyl3-Cl-5-methyl-phenylA-500iso-propyl2-methyl-3-Cl-phenylA-501iso-propyl2-methyl-3-Cl-phenylA-502iso-propyl2-methyl-5-Cl-phenylA-503iso-propyl3-methyl-4-Cl-phenylA-504iso-propyl2-Cl-3-CF <sub>3</sub> -phenylA-505iso-propyl2-Cl-4-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A-493            | iso-propyl     | 2-OMe-5-F-phenyl               |  |
| A-496iso-propyl2-Cl-4-methyl-phenylA-497iso-propyl2-Cl-5-methyl-phenylA-498iso-propyl2-Cl-6-methyl-phenylA-499iso-propyl3-Cl-4-methyl-phenylA-500iso-propyl3-Cl-5-methyl-phenylA-501iso-propyl2-methyl-3-Cl-phenylA-502iso-propyl2-methyl-4-Cl-phenylA-503iso-propyl3-methyl-5-Cl-phenylA-504iso-propyl2-methyl-5-Cl-phenylA-505iso-propyl2-Cl-3-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A-494            | iso-propyl     | 3-OMe-4-F-phenyl               |  |
| A-497iso-propyl2-Cl-5-methyl-phenylA-498iso-propyl2-Cl-6-methyl-phenylA-499iso-propyl3-Cl-4-methyl-phenylA-500iso-propyl3-Cl-5-methyl-phenylA-501iso-propyl2-methyl-3-Cl-phenylA-502iso-propyl2-methyl-4-Cl-phenylA-503iso-propyl3-methyl-5-Cl-phenylA-504iso-propyl2-methyl-4-Cl-phenylA-505iso-propyl2-Cl-3-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A-495            | iso-propyl     | 2-Cl-3-methyl-phenyl           |  |
| A-498iso-propyl2-Cl-6-methyl-phenylA-499iso-propyl3-Cl-4-methyl-phenylA-500iso-propyl3-Cl-5-methyl-phenylA-501iso-propyl2-methyl-3-Cl-phenylA-502iso-propyl2-methyl-4-Cl-phenylA-503iso-propyl2-methyl-5-Cl-phenylA-504iso-propyl3-methyl-4-Cl-phenylA-505iso-propyl2-Cl-3-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A-496            | iso-propyl     | 2-Cl-4-methyl-phenyl           |  |
| A-499iso-propyl3-Cl-4-methyl-phenylA-500iso-propyl3-Cl-5-methyl-phenylA-501iso-propyl2-methyl-3-Cl-phenylA-502iso-propyl2-methyl-4-Cl-phenylA-503iso-propyl2-methyl-5-Cl-phenylA-504iso-propyl3-methyl-4-Cl-phenylA-505iso-propyl2-Cl-3-CF <sub>3</sub> -phenylA-506iso-propyl2-Cl-4-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A-497            | iso-propyl     | 2-Cl-5-methyl-phenyl           |  |
| A-500iso-propyl3-Cl-5-methyl-phenylA-501iso-propyl2-methyl-3-Cl-phenylA-502iso-propyl2-methyl-4-Cl-phenylA-503iso-propyl2-methyl-5-Cl-phenylA-504iso-propyl3-methyl-4-Cl-phenylA-505iso-propyl2-Cl-3-CF <sub>3</sub> -phenylA-506iso-propyl2-Cl-4-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A-498            | iso-propyl     | 2-Cl-6-methyl-phenyl           |  |
| A-501iso-propyl2-methyl-3-Cl-phenylA-502iso-propyl2-methyl-4-Cl-phenylA-503iso-propyl2-methyl-5-Cl-phenylA-504iso-propyl3-methyl-4-Cl-phenylA-505iso-propyl2-Cl-3-CF <sub>3</sub> -phenylA-506iso-propyl2-Cl-4-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A-499            | iso-propyl     | 3-Cl-4-methyl-phenyl           |  |
| A-502iso-propyl2-methyl-4-Cl-phenylA-503iso-propyl2-methyl-5-Cl-phenylA-504iso-propyl3-methyl-4-Cl-phenylA-505iso-propyl2-Cl-3-CF <sub>3</sub> -phenylA-506iso-propyl2-Cl-4-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A-500            | iso-propyl     | 3-Cl-5-methyl-phenyl           |  |
| A-503iso-propyl2-methyl-5-Cl-phenylA-504iso-propyl3-methyl-4-Cl-phenylA-505iso-propyl2-Cl-3-CF <sub>3</sub> -phenylA-506iso-propyl2-Cl-4-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A-501            | iso-propyl     | 2-methyl-3-Cl-phenyl           |  |
| A-504iso-propyl3-methyl-4-Cl-phenylA-505iso-propyl2-Cl-3-CF <sub>3</sub> -phenylA-506iso-propyl2-Cl-4-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A-502            | iso-propyl     | 2-methyl-4-Cl-phenyl           |  |
| A-505iso-propyl2-Cl-3-CF <sub>3</sub> -phenylA-506iso-propyl2-Cl-4-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A-503            | iso-propyl     | 2-methyl-5-Cl-phenyl           |  |
| A-506 iso-propyl 2-Cl-4-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-504            | iso-propyl     | 3-methyl-4-Cl-phenyl           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-505            | iso-propyl     | 2-CI-3-CF <sub>3</sub> -phenyl |  |
| A-507 iso-propyl 2-CI-5-CF <sub>3</sub> -phenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-506            | iso-propyl     | 2-CI-4-CF <sub>3</sub> -phenyl |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-507            | iso-propyl     | 2-Cl-5-CF <sub>3</sub> -phenyl |  |

| No    | R <sup>2</sup> | R <sup>1</sup>                 |
|-------|----------------|--------------------------------|
| A-508 | iso-propyl     | 2-CI-6-CF <sub>3</sub> -phenyl |
| A-509 | iso-propyl     | 3-Cl-4-CF <sub>3</sub> -phenyl |
| A-510 | iso-propyl     | 3-Cl-5-CF <sub>3</sub> -phenyl |
| A-511 | iso-propyl     | 2-CF <sub>3</sub> -3-Cl-phenyl |
| A-512 | iso-propyl     | 2-CF <sub>3</sub> -4-Cl-phenyl |
| A-513 | iso-propyl     | 2-CF <sub>3</sub> -5-Cl-phenyl |
| A-514 | iso-propyl     | 3-CF <sub>3</sub> -4-Cl-phenyl |
| A-515 | iso-propyl     | 2-CI-3-OMe-phenyl              |
| A-516 | iso-propyl     | 2-CI-4-OMe-phenyl              |
| A-517 | iso-propyl     | 2-CI-5-OMe-phenyl              |
| A-518 | iso-propyl     | 2-CI-6-OMe-phenyl              |
| A-519 | iso-propyl     | 3-CI-4-OMe-phenyl              |
| A-520 | iso-propyl     | 3-CI-5-OMe-phenyl              |
| A-521 | iso-propyl     | 2-OMe-3-CI-phenyl              |
| A-522 | iso-propyl     | 2-OMe-4-CI-phenyl              |
| A-523 | iso-propyl     | 2-OMe-5-CI-phenyl              |
| A-524 | iso-propyl     | 3-OMe-4-CI-phenyl              |
| A-525 | iso-propyl     | CH <sub>2</sub> -cyclopropyl   |
| A-526 | iso-propyl     | CH <sub>2</sub> -cyclopentyl   |
| A-527 | iso-propyl     | CH <sub>2</sub> -cyclohexyl    |
| A-528 | iso-propyl     | benzyl                         |
| A-529 | allyl          | allyl                          |
| A-530 | allyl          | propargyl                      |
| A-531 | allyl          | cyclopropyl                    |
| A-532 | allyl          | cylobutyl                      |
| A-533 | allyl          | 1-methyl-cyclopropyl           |
| A-534 | allyl          | cylopentyl                     |
| A-535 | allyl          | cyclohexyl                     |
| A-536 | allyl          | cycloheptyl                    |
| A-537 | allyl          | cyclopent-1-enyl               |
| A-538 | allyl          | cyclopent-2-enyl               |
| A-539 | allyl          | cyclohex-1-enyl                |
| A-540 | allyl          | cyclohex-2-enyl                |
| A-541 | allyl          | cyclohex-3-enyl                |
| A-542 | allyl          | phenyl                         |
| A-543 | allyl          | 2-pyridyl                      |
| A-544 | allyl          | 3-pyridyl                      |
| A-545 | allyl          | 4-pyridyl                      |
| A-546 | allyl          | 2-F-phenyl                     |
| A-547 | allyl          | 3-F-phenyl                     |

|        | WO 2017/178245 00 |                           |  |
|--------|-------------------|---------------------------|--|
| No     | R <sup>2</sup>    | R <sup>1</sup>            |  |
| A-548  | allyl             | 4-F-phenyl                |  |
| A-549  | allyl             | 2-Cl-phenyl               |  |
| A-550  | allyl             | 3-CI-phenyl               |  |
| A-551  | allyl             | 4-CI-phenyl               |  |
| A-552  | allyl             | 2-methyl-phenyl           |  |
| A-553  | allyl             | 3-methyl-phenyl           |  |
| A-554  | allyl             | 4-methyl-phenyl           |  |
| A-555  | allyl             | 2-ethyl-phenyl            |  |
| A-556  | allyl             | 3-ethyl-phenyl            |  |
| A-557  | allyl             | 4-ethyl-phenyl            |  |
| A-558  | allyl             | 2-isopropyl-phenyl        |  |
| A-559  | allyl             | 3-isopropyl-phenyl        |  |
| A-560  | allyl             | 4-isopropyl-phenyl        |  |
| A-561  | allyl             | 2-(2,2,2-trifluoroethyl)- |  |
|        |                   | phenyl                    |  |
| A-562  | allyl             | 3-(2,2,2-trifluoroethyl)- |  |
|        | -                 | phenyl                    |  |
| A-563  | allyl             | 4-(2,2,2-trifluoroethyl)- |  |
|        |                   | phenyl                    |  |
| A-564  | allyl             | 2-trifluoromethyl-        |  |
|        |                   | phenyl                    |  |
| A-565  | allyl             | 3-trifluoromethyl-        |  |
|        |                   | phenyl                    |  |
| A-566  | allyl             | 4-trifluoromethyl-        |  |
|        |                   | phenyl                    |  |
| A-567  | allyl             | 2-methoxy-phenyl          |  |
| A-568  | allyl             | 3-methoxy-phenyl          |  |
| A-569  | allyl             | 4-methoxy-phenyl          |  |
| A-570  | allyl             | 2-trifluoromethoxy-       |  |
|        |                   | phenyl                    |  |
| A-571  | allyl             | 3-trifluoromethoxy-       |  |
|        |                   | phenyl                    |  |
| A-572  | allyl             | 4-trifluoromethoxy-       |  |
|        |                   | phenyl                    |  |
| A-573  | allyl             | 2-difluoromethoxy-        |  |
| A == 4 |                   | phenyl                    |  |
| A-574  | allyl             | 3-difluoromethoxy-        |  |
| A 575  | ماليا             | phenyl                    |  |
| A-575  | allyl             | 4-difluoromethoxy-        |  |
| A-576  | allyl             | phenyl                    |  |
| A-070  | allyl             | 2-cyano-phenyl            |  |

| No    | R <sup>2</sup> | R <sup>1</sup>                |
|-------|----------------|-------------------------------|
| A-577 | allyl          | 3-cyano-phenyl                |
| A-578 | allyl          | 4-cyano-phenyl                |
| A-579 | allyl          | 2,3-difluoro-phenyl           |
| A-580 | allyl          | 2,4-difluoro-phenyl           |
| A-581 | allyl          | 2,5-difluoro-phenyl           |
| A-582 | allyl          | 2,6-difluoro-phenyl           |
| A-583 | allyl          | 2,3-dichloro-phenyl           |
| A-584 | allyl          | 2,4-dichloro-phenyl           |
| A-585 | allyl          | 2,5-dichloro-phenyl           |
| A-586 | allyl          | 2,6-dichloro-phenyl           |
| A-587 | allyl          | 2-F-3-Cl-phenyl               |
| A-588 | allyl          | 2-F-4-Cl-phenyl               |
| A-589 | allyl          | 2-F-5-CI-phenyl               |
| A-590 | allyl          | 2-F-6-Cl-phenyl               |
| A-591 | allyl          | 3-F-4-Cl-phenyl               |
| A-592 | allyl          | 3-F-5-Cl-phenyl               |
| A-593 | allyl          | 2-CI-3-F-phenyl               |
| A-594 | allyl          | 2-CI-4-F-phenyl               |
| A-595 | allyl          | 2-CI-5-F-phenyl               |
| A-596 | allyl          | 3-CI-4-F-phenyl               |
| A-597 | allyl          | 2-F-3-methyl-phenyl           |
| A-598 | allyl          | 2-F-4-methyl-phenyl           |
| A-599 | allyl          | 2-F-5-methyl-phenyl           |
| A-600 | allyl          | 2-F-6-methyl-phenyl           |
| A-601 | allyl          | 3-F-4-methyl-phenyl           |
| A-602 | allyl          | 3-F-5-methyl-phenyl           |
| A-603 | allyl          | 2-methyl-3-F-phenyl           |
| A-604 | allyl          | 2-methyl-4-F-phenyl           |
| A-605 | allyl          | 2-methyl-5-F-phenyl           |
| A-606 | allyl          | 3-methyl-4-F-phenyl           |
| A-607 | allyl          | 2-F-3-CF <sub>3</sub> -phenyl |
| A-608 | allyl          | 2-F-4-CF <sub>3</sub> -phenyl |
| A-609 | allyl          | 2-F-5-CF <sub>3</sub> -phenyl |
| A-610 | allyl          | 2-F-6-CF <sub>3</sub> -phenyl |
| A-611 | allyl          | 3-F-4-CF <sub>3</sub> -phenyl |
| A-612 | allyl          | 3-F-5-CF <sub>3</sub> -phenyl |
| A-613 | allyl          | 2-CF <sub>3</sub> -3-F-phenyl |
| A-614 | allyl          | 2-CF <sub>3</sub> -4-F-phenyl |
| A-615 | allyl          | 2-CF <sub>3</sub> -5-F-phenyl |
| A-616 | allyl          | 3-CF <sub>3</sub> -4-F-phenyl |

| No    | R <sup>2</sup> | R <sup>1</sup>                 |
|-------|----------------|--------------------------------|
| A-617 | allyl          | 2-F-3-OMe-phenyl               |
| A-618 | allyl          | 2-F-4-OMe-phenyl               |
| A-619 | allyl          | 2-F-5-OMe-phenyl               |
| A-620 | allyl          | 2-F-6-OMe-phenyl               |
| A-621 | allyl          | 3-F-4-OMe-phenyl               |
| A-622 | allyl          | 3-F-5-OMe-phenyl               |
| A-623 | allyl          | 2-OMe-3-F-phenyl               |
| A-624 | allyl          | 2-OMe-4-F-phenyl               |
| A-625 | allyl          | 2-OMe-5-F-phenyl               |
| A-626 | allyl          | 3-OMe-4-F-phenyl               |
| A-627 | allyl          | 2-Cl-3-methyl-phenyl           |
| A-628 | allyl          | 2-CI-4-methyl-phenyl           |
| A-629 | allyl          | 2-CI-5-methyl-phenyl           |
| A-630 | allyl          | 2-CI-6-methyl-phenyl           |
| A-631 | allyl          | 3-Cl-4-methyl-phenyl           |
| A-632 | allyl          | 3-Cl-5-methyl-phenyl           |
| A-633 | allyl          | 2-methyl-3-Cl-phenyl           |
| A-634 | allyl          | 2-methyl-4-Cl-phenyl           |
| A-635 | allyl          | 2-methyl-5-Cl-phenyl           |
| A-636 | allyl          | 3-methyl-4-Cl-phenyl           |
| A-637 | allyl          | 2-CI-3-CF <sub>3</sub> -phenyl |
| A-638 | allyl          | 2-CI-4-CF <sub>3</sub> -phenyl |
| A-639 | allyl          | 2-CI-5-CF <sub>3</sub> -phenyl |
| A-640 | allyl          | 2-CI-6-CF <sub>3</sub> -phenyl |
| A-641 | allyl          | 3-CI-4-CF <sub>3</sub> -phenyl |
| A-642 | allyl          | 3-CI-5-CF <sub>3</sub> -phenyl |
| A-643 | allyl          | 2-CF <sub>3</sub> -3-CI-phenyl |
| A-644 | allyl          | 2-CF <sub>3</sub> -4-CI-phenyl |
| A-645 | allyl          | 2-CF <sub>3</sub> -5-CI-phenyl |
| A-646 | allyl          | 3-CF <sub>3</sub> -4-CI-phenyl |
| A-647 | allyl          | 2-CI-3-OMe-phenyl              |
| A-648 | allyl          | 2-CI-4-OMe-phenyl              |
| A-649 | allyl          | 2-CI-5-OMe-phenyl              |
| A-650 | allyl          | 2-CI-6-OMe-phenyl              |
| A-651 | allyl          | 3-CI-4-OMe-phenyl              |
| A-652 | allyl          | 3-CI-5-OMe-phenyl              |
| A-653 | allyl          | 2-OMe-3-CI-phenyl              |
| A-654 | allyl          | 2-OMe-4-CI-phenyl              |
| A-655 | allyl          | 2-OMe-5-CI-phenyl              |
| A-656 | allyl          | 3-OMe-4-CI-phenyl              |

|       | PCT/EP2017/057669 |                              |  |
|-------|-------------------|------------------------------|--|
| No    | R <sup>2</sup>    | R <sup>1</sup>               |  |
| A-657 | allyl             | CH <sub>2</sub> -cyclopropyl |  |
| A-658 | allyl             | CH <sub>2</sub> -cyclopentyl |  |
| A-659 | allyl             | CH <sub>2</sub> -cyclohexyl  |  |
| A-660 | allyl             | benzyl                       |  |
| A-661 | cyclopropyl       | allyl                        |  |
| A-662 | cyclopropyl       | propargyl                    |  |
| A-663 | cyclopropyl       | cyclopropyl                  |  |
| A-664 | cyclopropyl       | cylobutyl                    |  |
| A-665 | cyclopropyl       | 1-methyl-cyclopropyl         |  |
| A-666 | cyclopropyl       | cylopentyl                   |  |
| A-667 | cyclopropyl       | cyclohexyl                   |  |
| A-668 | cyclopropyl       | cycloheptyl                  |  |
| A-669 | cyclopropyl       | cyclopent-1-enyl             |  |
| A-670 | cyclopropyl       | cyclopent-2-enyl             |  |
| A-671 | cyclopropyl       | cyclohex-1-enyl              |  |
| A-672 | cyclopropyl       | cyclohex-2-enyl              |  |
| A-673 | cyclopropyl       | cyclohex-3-enyl              |  |
| A-674 | cyclopropyl       | phenyl                       |  |
| A-675 | cyclopropyl       | 2-pyridyl                    |  |
| A-676 | cyclopropyl       | 3-pyridyl                    |  |
| A-677 | cyclopropyl       | 4-pyridyl                    |  |
| A-678 | cyclopropyl       | 2-F-phenyl                   |  |
| A-679 | cyclopropyl       | 3-F-phenyl                   |  |
| A-680 | cyclopropyl       | 4-F-phenyl                   |  |
| A-681 | cyclopropyl       | 2-Cl-phenyl                  |  |
| A-682 | cyclopropyl       | 3-Cl-phenyl                  |  |
| A-683 | cyclopropyl       | 4-Cl-phenyl                  |  |
| A-684 | cyclopropyl       | 2-methyl-phenyl              |  |
| A-685 | cyclopropyl       | 3-methyl-phenyl              |  |
| A-686 | cyclopropyl       | 4-methyl-phenyl              |  |
| A-687 | cyclopropyl       | 2-ethyl-phenyl               |  |
| A-688 | cyclopropyl       | 3-ethyl-phenyl               |  |
| A-689 | cyclopropyl       | 4-ethyl-phenyl               |  |
| A-690 | cyclopropyl       | 2-isopropyl-phenyl           |  |
| A-691 | cyclopropyl       | 3-isopropyl-phenyl           |  |
| A-692 | cyclopropyl       | 4-isopropyl-phenyl           |  |
| A-693 | cyclopropyl       | 2-(2,2,2-trifluoroethyl)-    |  |
|       |                   | phenyl                       |  |
| A-694 | cyclopropyl       | 3-(2,2,2-trifluoroethyl)-    |  |
|       |                   | phenyl                       |  |

#### PCT/EP2017/057669

| No    | R <sup>2</sup> | R <sup>1</sup>               |
|-------|----------------|------------------------------|
| A-695 | cyclopropyl    | 4-(2,2,2-trifluoroethyl)-    |
|       |                | phenyl                       |
| A-696 | cyclopropyl    | 2-trifluoromethyl-           |
|       |                | phenyl                       |
| A-697 | cyclopropyl    | 3-trifluoromethyl-           |
|       |                | phenyl                       |
| A-698 | cyclopropyl    | 4-trifluoromethyl-           |
|       |                | phenyl                       |
| A-699 | cyclopropyl    | 2-methoxy-phenyl             |
| A-700 | cyclopropyl    | 3-methoxy-phenyl             |
| A-701 | cyclopropyl    | 4-methoxy-phenyl             |
| A-702 | cyclopropyl    | 2-trifluoromethoxy-          |
|       |                | phenyl                       |
| A-703 | cyclopropyl    | 3-trifluoromethoxy-          |
|       |                | phenyl                       |
| A-704 | cyclopropyl    | 4-trifluoromethoxy-          |
|       |                | phenyl                       |
| A-705 | cyclopropyl    | 2-difluoromethoxy-           |
| A-706 |                | phenyl                       |
| A-700 | cyclopropyl    | 3-difluoromethoxy-<br>phenyl |
| A-707 | cyclopropyl    | 4-difluoromethoxy-           |
| /     |                | phenyl                       |
| A-708 | cyclopropyl    | 2-cyano-phenyl               |
| A-709 | cyclopropyl    | 3-cyano-phenyl               |
| A-710 | cyclopropyl    | 4-cyano-phenyl               |
| A-711 | cyclopropyl    | 2,3-difluoro-phenyl          |
| A-712 | cyclopropyl    | 2,4-difluoro-phenyl          |
| A-713 | cyclopropyl    | 2,5-difluoro-phenyl          |
| A-714 | cyclopropyl    | 2,6-difluoro-phenyl          |
| A-715 | cyclopropyl    | 2,3-dichloro-phenyl          |
| A-716 | cyclopropyl    | 2,4-dichloro-phenyl          |
| A-717 | cyclopropyl    | 2,5-dichloro-phenyl          |
| A-718 | cyclopropyl    | 2,6-dichloro-phenyl          |
| A-719 | cyclopropyl    | 2-F-3-Cl-phenyl              |
| A-720 | cyclopropyl    | 2-F-4-Cl-phenyl              |
| A-721 | cyclopropyl    | 2-F-5-Cl-phenyl              |
| A-722 | cyclopropyl    | 2-F-6-Cl-phenyl              |
| A-723 | cyclopropyl    | 3-F-4-Cl-phenyl              |
| A-724 | cyclopropyl    | 3-F-5-Cl-phenyl              |
| A-725 | cyclopropyl    | 2-Cl-3-F-phenyl              |
|       |                |                              |

| No    | R <sup>2</sup> | R <sup>1</sup>                |
|-------|----------------|-------------------------------|
| A-726 | cyclopropyl    | 2-Cl-4-F-phenyl               |
| A-727 | cyclopropyl    | 2-Cl-5-F-phenyl               |
| A-728 | cyclopropyl    | 3-Cl-4-F-phenyl               |
| A-729 | cyclopropyl    | 2-F-3-methyl-phenyl           |
| A-730 | cyclopropyl    | 2-F-4-methyl-phenyl           |
| A-731 | cyclopropyl    | 2-F-5-methyl-phenyl           |
| A-732 | cyclopropyl    | 2-F-6-methyl-phenyl           |
| A-733 | cyclopropyl    | 3-F-4-methyl-phenyl           |
| A-734 | cyclopropyl    | 3-F-5-methyl-phenyl           |
| A-735 | cyclopropyl    | 2-methyl-3-F-phenyl           |
| A-736 | cyclopropyl    | 2-methyl-4-F-phenyl           |
| A-737 | cyclopropyl    | 2-methyl-5-F-phenyl           |
| A-738 | cyclopropyl    | 3-methyl-4-F-phenyl           |
| A-739 | cyclopropyl    | 2-F-3-CF <sub>3</sub> -phenyl |
| A-740 | cyclopropyl    | 2-F-4-CF <sub>3</sub> -phenyl |
| A-741 | cyclopropyl    | 2-F-5-CF <sub>3</sub> -phenyl |
| A-742 | cyclopropyl    | 2-F-6-CF <sub>3</sub> -phenyl |
| A-743 | cyclopropyl    | 3-F-4-CF <sub>3</sub> -phenyl |
| A-744 | cyclopropyl    | 3-F-5-CF <sub>3</sub> -phenyl |
| A-745 | cyclopropyl    | 2-CF <sub>3</sub> -3-F-phenyl |
| A-746 | cyclopropyl    | 2-CF <sub>3</sub> -4-F-phenyl |
| A-747 | cyclopropyl    | 2-CF <sub>3</sub> -5-F-phenyl |
| A-748 | cyclopropyl    | 3-CF <sub>3</sub> -4-F-phenyl |
| A-749 | cyclopropyl    | 2-F-3-OMe-phenyl              |
| A-750 | cyclopropyl    | 2-F-4-OMe-phenyl              |
| A-751 | cyclopropyl    | 2-F-5-OMe-phenyl              |
| A-752 | cyclopropyl    | 2-F-6-OMe-phenyl              |
| A-753 | cyclopropyl    | 3-F-4-OMe-phenyl              |
| A-754 | cyclopropyl    | 3-F-5-OMe-phenyl              |
| A-755 | cyclopropyl    | 2-OMe-3-F-phenyl              |
| A-756 | cyclopropyl    | 2-OMe-4-F-phenyl              |
| A-757 | cyclopropyl    | 2-OMe-5-F-phenyl              |
| A-758 | cyclopropyl    | 3-OMe-4-F-phenyl              |
| A-759 | cyclopropyl    | 2-Cl-3-methyl-phenyl          |
| A-760 | cyclopropyl    | 2-Cl-4-methyl-phenyl          |
| A-761 | cyclopropyl    | 2-Cl-5-methyl-phenyl          |
| A-762 | cyclopropyl    | 2-Cl-6-methyl-phenyl          |
| A-763 | cyclopropyl    | 3-Cl-4-methyl-phenyl          |
| A-764 | cyclopropyl    | 3-Cl-5-methyl-phenyl          |
| A-765 | cyclopropyl    | 2-methyl-3-Cl-phenyl          |

36

| No    | R <sup>2</sup>                    | R <sup>1</sup>                 |
|-------|-----------------------------------|--------------------------------|
| A-766 | cyclopropyl                       | 2-methyl-4-Cl-phenyl           |
| A-767 | cyclopropyl                       | 2-methyl-5-Cl-phenyl           |
| A-768 | cyclopropyl                       | 3-methyl-4-Cl-phenyl           |
| A-769 | cyclopropyl                       | 2-CI-3-CF <sub>3</sub> -phenyl |
| A-770 | cyclopropyl                       | 2-CI-4-CF <sub>3</sub> -phenyl |
| A-771 | cyclopropyl                       | 2-CI-5-CF <sub>3</sub> -phenyl |
| A-772 | cyclopropyl                       | 2-CI-6-CF <sub>3</sub> -phenyl |
| A-773 | cyclopropyl                       | 3-CI-4-CF <sub>3</sub> -phenyl |
| A-774 | cyclopropyl                       | 3-CI-5-CF <sub>3</sub> -phenyl |
| A-775 | cyclopropyl                       | 2-CF <sub>3</sub> -3-Cl-phenyl |
| A-776 | cyclopropyl                       | 2-CF <sub>3</sub> -4-Cl-phenyl |
| A-777 | cyclopropyl                       | 2-CF <sub>3</sub> -5-Cl-phenyl |
| A-778 | cyclopropyl                       | 3-CF <sub>3</sub> -4-Cl-phenyl |
| A-779 | cyclopropyl                       | 2-CI-3-OMe-phenyl              |
| A-780 | cyclopropyl                       | 2-CI-4-OMe-phenyl              |
| A-781 | cyclopropyl                       | 2-CI-5-OMe-phenyl              |
| A-782 | cyclopropyl                       | 2-CI-6-OMe-phenyl              |
| A-783 | cyclopropyl                       | 3-CI-4-OMe-phenyl              |
| A-784 | cyclopropyl                       | 3-CI-5-OMe-phenyl              |
| A-785 | cyclopropyl                       | 2-OMe-3-CI-phenyl              |
| A-786 | cyclopropyl                       | 2-OMe-4-CI-phenyl              |
| A-787 | cyclopropyl                       | 2-OMe-5-CI-phenyl              |
| A-788 | cyclopropyl                       | 3-OMe-4-CI-phenyl              |
| A-789 | cyclopropyl                       | CH <sub>2</sub> -cyclopropyl   |
| A-790 | cyclopropyl                       | CH <sub>2</sub> -cyclopentyl   |
| A-791 | cyclopropyl                       | CH <sub>2</sub> -cyclohexyl    |
| A-792 | cyclopropyl                       | benzyl                         |
| A-793 | cyclopropyl-                      | allyl                          |
|       | CH <sub>2</sub> -                 |                                |
| A-794 | cyclopropyl-                      | propargyl                      |
|       | CH <sub>2</sub> -                 |                                |
| A-795 | cyclopropyl-<br>CH <sub>2</sub> - | cyclopropyl                    |
| A-796 | cyclopropyl-<br>CH <sub>2</sub> - | cylobutyl                      |
| A-797 | cyclopropyl-<br>CH <sub>2</sub> - | 1-methyl-cyclopropyl           |
| A-798 | cyclopropyl-<br>CH <sub>2</sub> - | cylopentyl                     |

| No    | R <sup>2</sup>                    | R <sup>1</sup>   |
|-------|-----------------------------------|------------------|
| A-799 | cyclopropyl-<br>CH <sub>2</sub> - | cyclohexyl       |
| A-800 | cyclopropyl-<br>CH <sub>2</sub> - | cycloheptyl      |
| A-801 | cyclopropyl-<br>CH <sub>2</sub> - | cyclopent-1-enyl |
| A-802 | cyclopropyl-<br>CH <sub>2</sub> - | cyclopent-2-enyl |
| A-803 | cyclopropyl-<br>CH <sub>2</sub> - | cyclohex-1-enyl  |
| A-804 | cyclopropyl-<br>CH <sub>2</sub> - | cyclohex-2-enyl  |
| A-805 | cyclopropyl-<br>CH <sub>2</sub> - | cyclohex-3-enyl  |
| A-806 | cyclopropyl-<br>CH <sub>2</sub> - | phenyl           |
| A-807 | cyclopropyl-<br>CH <sub>2</sub> - | 2-pyridyl        |
| A-808 | cyclopropyl-<br>CH <sub>2</sub> - | 3-pyridyl        |
| A-809 | cyclopropyl-<br>CH <sub>2</sub> - | 4-pyridyl        |
| A-810 | cyclopropyl-<br>CH <sub>2</sub> - | 2-F-phenyl       |
| A-811 | cyclopropyl-<br>CH <sub>2</sub> - | 3-F-phenyl       |
| A-812 | cyclopropyl-<br>CH <sub>2</sub> - | 4-F-phenyl       |
| A-813 | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-phenyl      |
| A-814 | cyclopropyl-<br>CH <sub>2</sub> - | 3-Cl-phenyl      |
| A-815 | cyclopropyl-<br>CH <sub>2</sub> - | 4-Cl-phenyl      |
| A-816 | cyclopropyl-<br>CH <sub>2</sub> - | 2-methyl-phenyl  |
| A-817 | cyclopropyl-<br>CH <sub>2</sub> - | 3-methyl-phenyl  |
| A-818 | cyclopropyl-<br>CH <sub>2</sub> - | 4-methyl-phenyl  |

37

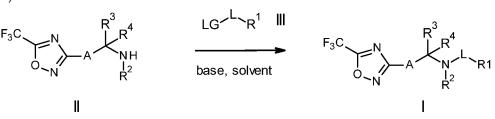
| <b>WO 2017/17024</b> 5 |                                   |                                     |
|------------------------|-----------------------------------|-------------------------------------|
| No                     | R <sup>2</sup>                    | R <sup>1</sup>                      |
| A-819                  | cyclopropyl-<br>CH <sub>2</sub> - | 2-ethyl-phenyl                      |
| A-820                  | cyclopropyl-<br>CH <sub>2</sub> - | 3-ethyl-phenyl                      |
| A-821                  | cyclopropyl-<br>CH <sub>2</sub> - | 4-ethyl-phenyl                      |
| A-822                  | cyclopropyl-<br>CH <sub>2</sub> - | 2-isopropyl-phenyl                  |
| A-823                  | cyclopropyl-<br>CH <sub>2</sub> - | 3-isopropyl-phenyl                  |
| A-824                  | cyclopropyl-<br>CH <sub>2</sub> - | 4-isopropyl-phenyl                  |
| A-825                  | cyclopropyl-<br>CH <sub>2</sub> - | 2-(2,2,2-trifluoroethyl)-<br>phenyl |
| A-826                  | cyclopropyl-<br>CH <sub>2</sub> - | 3-(2,2,2-trifluoroethyl)-<br>phenyl |
| A-827                  | cyclopropyl-<br>CH <sub>2</sub> - | 4-(2,2,2-trifluoroethyl)-<br>phenyl |
| A-828                  | cyclopropyl-<br>CH <sub>2</sub> - | 2-trifluoromethyl-<br>phenyl        |
| A-829                  | cyclopropyl-<br>CH <sub>2</sub> - | 3-trifluoromethyl-<br>phenyl        |
| A-830                  | cyclopropyl-<br>CH <sub>2</sub> - | 4-trifluoromethyl-<br>phenyl        |
| A-831                  | cyclopropyl-<br>CH <sub>2</sub> - | 2-methoxy-phenyl                    |
| A-832                  | cyclopropyl-<br>CH <sub>2</sub> - | 3-methoxy-phenyl                    |
| A-833                  | cyclopropyl-<br>CH <sub>2</sub> - | 4-methoxy-phenyl                    |
| A-834                  | cyclopropyl-<br>CH <sub>2</sub> - | 2-trifluoromethoxy-<br>phenyl       |
| A-835                  | cyclopropyl-<br>CH <sub>2</sub> - | 3-trifluoromethoxy-<br>phenyl       |
| A-836                  | cyclopropyl-<br>CH <sub>2</sub> - | 4-trifluoromethoxy-<br>phenyl       |
| A-837                  | cyclopropyl-<br>CH <sub>2</sub> - | 2-difluoromethoxy-<br>phenyl        |
| A-838                  | cyclopropyl-<br>CH <sub>2</sub> - | 3-difluoromethoxy-<br>phenyl        |

| No    | R <sup>2</sup>                    | R <sup>1</sup>      |
|-------|-----------------------------------|---------------------|
| A-839 | cyclopropyl-                      | 4-difluoromethoxy-  |
|       | CH <sub>2</sub> -                 | phenyl              |
| A-840 | cyclopropyl-<br>CH <sub>2</sub> - | 2-cyano-phenyl      |
| A-841 | cyclopropyl-<br>CH <sub>2</sub> - | 3-cyano-phenyl      |
| A-842 | cyclopropyl-<br>CH <sub>2</sub> - | 4-cyano-phenyl      |
| A-843 | cyclopropyl-<br>CH <sub>2</sub> - | 2,3-difluoro-phenyl |
| A-844 | cyclopropyl-<br>CH <sub>2</sub> - | 2,4-difluoro-phenyl |
| A-845 | cyclopropyl-<br>CH <sub>2</sub> - | 2,5-difluoro-phenyl |
| A-846 | cyclopropyl-<br>CH <sub>2</sub> - | 2,6-difluoro-phenyl |
| A-847 | cyclopropyl-<br>CH <sub>2</sub> - | 2,3-dichloro-phenyl |
| A-848 | cyclopropyl-<br>CH <sub>2</sub> - | 2,4-dichloro-phenyl |
| A-849 | cyclopropyl-<br>CH <sub>2</sub> - | 2,5-dichloro-phenyl |
| A-850 | cyclopropyl-<br>CH <sub>2</sub> - | 2,6-dichloro-phenyl |
| A-851 | cyclopropyl-<br>CH <sub>2</sub> - | 2-F-3-Cl-phenyl     |
| A-852 | cyclopropyl-<br>CH <sub>2</sub> - | 2-F-4-Cl-phenyl     |
| A-853 | cyclopropyl-<br>CH <sub>2</sub> - | 2-F-5-Cl-phenyl     |
| A-854 | cyclopropyl-<br>CH <sub>2</sub> - | 2-F-6-Cl-phenyl     |
| A-855 | cyclopropyl-<br>CH <sub>2</sub> - | 3-F-4-Cl-phenyl     |
| A-856 | cyclopropyl-<br>CH <sub>2</sub> - | 3-F-5-Cl-phenyl     |
| A-857 | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-3-F-phenyl     |
| A-858 | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-4-F-phenyl     |

38

| No    | R <sup>2</sup>                    | R <sup>1</sup>                |
|-------|-----------------------------------|-------------------------------|
| A-859 | cyclopropyl-                      | 2-CI-5-F-phenyl               |
|       | CH <sub>2</sub> -                 |                               |
| A-860 | cyclopropyl-                      | 3-CI-4-F-phenyl               |
|       | CH <sub>2</sub> -                 |                               |
| A-861 | cyclopropyl-                      | 2-F-3-methyl-phenyl           |
|       | CH <sub>2</sub> -                 |                               |
| A-862 | cyclopropyl-                      | 2-F-4-methyl-phenyl           |
|       | CH <sub>2</sub> -                 |                               |
| A-863 | cyclopropyl-                      | 2-F-5-methyl-phenyl           |
|       | CH <sub>2</sub> -                 |                               |
| A-864 | cyclopropyl-                      | 2-F-6-methyl-phenyl           |
|       | CH <sub>2</sub> -                 |                               |
| A-865 | cyclopropyl-                      | 3-F-4-methyl-phenyl           |
|       | CH <sub>2</sub> -                 |                               |
| A-866 | cyclopropyl-                      | 3-F-5-methyl-phenyl           |
|       | CH <sub>2</sub> -                 |                               |
| A-867 | cyclopropyl-                      | 2-methyl-3-F-phenyl           |
|       | CH <sub>2</sub> -                 |                               |
| A-868 | cyclopropyl-                      | 2-methyl-4-F-phenyl           |
|       | CH <sub>2</sub> -                 |                               |
| A-869 | cyclopropyl-                      | 2-methyl-5-F-phenyl           |
|       | CH <sub>2</sub> -                 |                               |
| A-870 | cyclopropyl-                      | 3-methyl-4-F-phenyl           |
|       | CH <sub>2</sub> -                 |                               |
| A-871 | cyclopropyl-                      | 2-F-3-CF <sub>3</sub> -phenyl |
|       | CH <sub>2</sub> -                 |                               |
| A-872 | cyclopropyl-                      | 2-F-4-CF <sub>3</sub> -phenyl |
|       | CH <sub>2</sub> -                 |                               |
| A-873 | CH <sub>2</sub> -                 | 2-F-5-CF₃-phenyl              |
| A 074 | cyclopropyl                       |                               |
| A-874 | cyclopropyl-                      | 2-F-6-CF <sub>3</sub> -phenyl |
| A 075 | CH <sub>2</sub> -                 | 2EACE phone                   |
| A-875 | cyclopropyl-                      | 3-F-4-CF <sub>3</sub> -phenyl |
| A-876 | CH <sub>2</sub> -                 | 3-F-5-CF <sub>3</sub> -phenyl |
| A-0/0 | cyclopropyl-<br>CH <sub>2</sub> - | 5-1-5-073-pitetiyi            |
| A-877 |                                   | 2-CF <sub>3</sub> -3-F-phenyl |
|       | cyclopropyl-<br>CH <sub>2</sub> - | 2 OI 3-0-1 -PHOHYI            |
| A-878 | cyclopropyl-                      | 2-CF <sub>3</sub> -4-F-phenyl |
|       | CH <sub>2</sub> -                 |                               |
|       |                                   |                               |

| No    | R <sup>2</sup>                    | R <sup>1</sup>                |
|-------|-----------------------------------|-------------------------------|
| A-879 | cyclopropyl-<br>CH <sub>2</sub> - | 2-CF <sub>3</sub> -5-F-phenyl |
| A-880 | cyclopropyl-<br>CH <sub>2</sub> - | 3-CF <sub>3</sub> -4-F-phenyl |
| A-881 | cyclopropyl-<br>CH <sub>2</sub> - | 2-F-3-OMe-phenyl              |
| A-882 | cyclopropyl-<br>CH <sub>2</sub> - | 2-F-4-OMe-phenyl              |
| A-883 | cyclopropyl-<br>CH <sub>2</sub> - | 2-F-5-OMe-phenyl              |
| A-884 | cyclopropyl-<br>CH <sub>2</sub> - | 2-F-6-OMe-phenyl              |
| A-885 | cyclopropyl-<br>CH <sub>2</sub> - | 3-F-4-OMe-phenyl              |
| A-886 | cyclopropyl-<br>CH <sub>2</sub> - | 3-F-5-OMe-phenyl              |
| A-887 | cyclopropyl-<br>CH <sub>2</sub> - | 2-OMe-3-F-phenyl              |
| A-888 | cyclopropyl-<br>CH <sub>2</sub> - | 2-OMe-4-F-phenyl              |
| A-889 | cyclopropyl-<br>CH <sub>2</sub> - | 2-OMe-5-F-phenyl              |
| A-890 | cyclopropyl-<br>CH <sub>2</sub> - | 3-OMe-4-F-phenyl              |
| A-891 | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-3-methyl-phenyl          |
| A-892 | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-4-methyl-phenyl          |
| A-893 | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-5-methyl-phenyl          |
| A-894 | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-6-methyl-phenyl          |
| A-895 | cyclopropyl-<br>CH <sub>2</sub> - | 3-CI-4-methyl-phenyl          |
| A-896 | cyclopropyl-<br>CH <sub>2</sub> - | 3-CI-5-methyl-phenyl          |
| A-897 | cyclopropyl-<br>CH <sub>2</sub> - | 2-methyl-3-Cl-phenyl          |
| A-898 | cyclopropyl-<br>CH <sub>2</sub> - | 2-methyl-4-Cl-phenyl          |

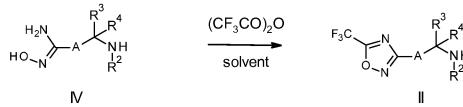

39

| WO 2017/178245 0 |                                   |                                |  |
|------------------|-----------------------------------|--------------------------------|--|
| No               | R <sup>2</sup>                    | R <sup>1</sup>                 |  |
| A-899            | cyclopropyl-<br>CH <sub>2</sub> - | 2-methyl-5-Cl-phenyl           |  |
| A-900            | cyclopropyl-<br>CH <sub>2</sub> - | 3-methyl-4-Cl-phenyl           |  |
| A-901            | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-3-CF <sub>3</sub> -phenyl |  |
| A-902            | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-4-CF₃-phenyl              |  |
| A-903            | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-5-CF <sub>3</sub> -phenyl |  |
| A-904            | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-6-CF <sub>3</sub> -phenyl |  |
| A-905            | cyclopropyl-<br>CH <sub>2</sub> - | 3-CI-4-CF <sub>3</sub> -phenyl |  |
| A-906            | cyclopropyl-<br>CH <sub>2</sub> - | 3-CI-5-CF <sub>3</sub> -phenyl |  |
| A-907            | cyclopropyl-<br>CH <sub>2</sub> - | 2-CF <sub>3</sub> -3-CI-phenyl |  |
| A-908            | cyclopropyl-<br>CH <sub>2</sub> - | 2-CF <sub>3</sub> -4-CI-phenyl |  |
| A-909            | cyclopropyl-<br>CH <sub>2</sub> - | 2-CF <sub>3</sub> -5-CI-phenyl |  |
| A-910            | cyclopropyl-<br>CH <sub>2</sub> - | 3-CF <sub>3</sub> -4-CI-phenyl |  |
| A-911            | cyclopropyl-<br>CH <sub>2</sub> - | 2-Cl-3-OMe-phenyl              |  |
| A-912            | cyclopropyl-<br>CH <sub>2</sub> - | 2-Cl-4-OMe-phenyl              |  |
| A-913            | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-5-OMe-phenyl              |  |
| A-914            | cyclopropyl-<br>CH <sub>2</sub> - | 2-CI-6-OMe-phenyl              |  |
| A-915            | cyclopropyl-<br>CH <sub>2</sub> - | 3-Cl-4-OMe-phenyl              |  |
| A-916            | cyclopropyl-<br>CH <sub>2</sub> - | 3-Cl-5-OMe-phenyl              |  |
| A-917            | cyclopropyl-<br>CH <sub>2</sub> - | 2-OMe-3-CI-phenyl              |  |
| A-918            | cyclopropyl-<br>CH <sub>2</sub> - | 2-OMe-4-CI-phenyl              |  |

| No             | R <sup>2</sup>                                   | R <sup>1</sup>               |
|----------------|--------------------------------------------------|------------------------------|
| A-919          | cyclopropyl-                                     | 2-OMe-5-Cl-phenyl            |
|                | CH <sub>2</sub> -                                |                              |
| A-920          | cyclopropyl-                                     | 3-OMe-4-CI-phenyl            |
|                | CH <sub>2</sub> -                                |                              |
| A-921          | cyclopropyl-                                     | CH <sub>2</sub> -cyclopropyl |
|                | CH <sub>2</sub> -                                |                              |
| A-922          | cyclopropyl-                                     | CH <sub>2</sub> -cyclopentyl |
|                | CH <sub>2</sub> -                                |                              |
| A-923          | cyclopropyl-                                     | CH <sub>2</sub> -cyclohexyl  |
|                | CH <sub>2</sub> -                                |                              |
| A-924          | cyclopropyl-                                     | benzyl                       |
|                | CH <sub>2</sub> -                                |                              |
| A-925          | phenyl                                           | cyclopropyl                  |
| A-926          | phenyl                                           | cylobutyl                    |
| A-927          | phenyl                                           | 1-methyl-cyclopropyl         |
| A-928          | phenyl                                           | cylopentyl                   |
| A-929          | phenyl                                           | cyclohexyl                   |
| A-930          | phenyl                                           | cycloheptyl                  |
| A-931          | phenyl                                           | cyclopent-1-enyl             |
| A-932          | phenyl                                           | cyclopent-2-enyl             |
| A-933          | phenyl                                           | cyclohex-1-enyl              |
| A-934          | phenyl                                           | cyclohex-2-enyl              |
| A-935          | phenyl                                           | cyclohex-3-enyl              |
| A-936          | benzyl                                           | cyclopropyl                  |
| A-937          | benzyl                                           | cylobutyl                    |
| A-938          | benzyl                                           | 1-methyl-cyclopropyl         |
| A-939          | benzyl                                           | cylopentyl                   |
| A-940          | benzyl                                           | cyclohexyl                   |
| A-941          | benzyl                                           | cycloheptyl                  |
| A-942          | benzyl                                           | cyclopent-1-enyl             |
| A-943          | benzyl                                           | cyclopent-2-enyl             |
| A-944          | benzyl                                           | cyclohex-1-enyl              |
| A-945          | benzyl                                           | cyclohex-2-enyl              |
| A-946          | benzyl                                           | cyclohex-3-enyl              |
| A-947          | R <sup>1</sup> and R <sup>2</sup> tog            | gether with L and the        |
|                | nitrogen to which R <sup>2</sup> is bound form a |                              |
| pyrrolidin-2-c |                                                  | ne ring                      |
| A-948          | $R^1$ and $R^2$ together with L and the          |                              |
|                | nitrogen to which R <sup>2</sup> is bound form a |                              |
|                | piperidin-2-or                                   | ne ring                      |

The compounds of the formula I can be prepared according to methods or in analogy to methods that are described in the prior art. The synthesis takes advantage of starting materials that are commercially available or may be prepared according to conventional procedures

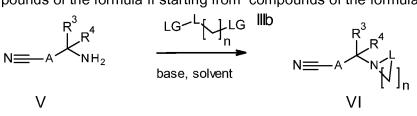
- 5 starting from readily available compounds. For example, compounds of the formula I can be prepared by reacting of oxadiazole amine II with compounds of type III (for example acetic chloride or anhydride, LG = chlorine or acetate) in an organic solvent and in the presence of a base. Alternatively compound I can be obtained by reacting of compound II with the corresponding acid III (LG = OH) using peptide coupling reaction conditions such as EDCI and
- 10 HOBt (for precedents see for example Bioorganic & Medicinal Chemistry Letters, 20(15), 4550-4554; 2010).




Compounds of the formula II can be prepared by reacting amidoximes of type IV with trifluoroacetic anhydride in an organic solvent, preferably an ethereal solvent at temperatures between 0 °C and 100 °C, preferably at room temperature, as previously described in

15

20


WO2013/008162.



A skilled person will recognize that compounds of type IV can be accessed by treating nitriles of type V with hydroxylamine (or its HCl salt) in an organic solvent and in the presence of a base (for precedents see for example WO2009/074950, WO2006/013104, EP1932843).

Compounds V are either commercially available or can be accessed through methods that are known to a person skilled in the art.

Compounds of the formula I, wherein R<sup>1</sup> and R<sup>2</sup> together with L and the nitrogen form a saturated 3- or 6-membered heterocycle, and wherein the heterocycle includes beside one nitrogen atom, L and one or more carbon atoms no further heteroatoms, can be synthesized from compounds of the formula VI by using the same procedure described above for the synthesis of compounds of the formula II starting from compounds of the formula V.

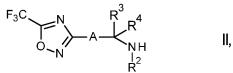


15



HN

VI


Vb

base. TBAB. solvent

lllc

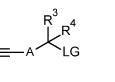
Compounds of formula VI can be prepared by two alternative methods starting from compounds of the formula V or Vb, which are reacted in an organic solvent in the presence of a base with compounds of the formula IIIb or IIIc, respectively, wherein n is 1, 2, 3 or 4, and wherein LG is

- 5 independently selected from the group of leaving groups as defined for compounds of the formula III above. Both, compounds IIIb and IIIc, are either commercially available or may be prepared according to conventional procedures starting from readily available compounds. For both reactions NaH is the preferred base and DMF the preferred solvent.
- 10 In one aspect the invention relates to a process for preparing compounds of the formula I, which comprises the process step of reacting an amine compound of the formula II



wherein the variables A, R<sup>2</sup>, R<sup>3</sup> and R<sup>4</sup> are as defined or preferably defined herein for compounds of the formula I, under basic conditions with a carboxylic acid derivative of the formula III,

> LG-L-R<sup>1</sup> III,


wherein L and R<sup>1</sup> are as defined or preferably defined herein for compounds of the formula I; 20 and wherein LG is a leaving group selected from the group consisting of chlorine, bromine, fluorine, azide and the group -O-L-R<sup>1</sup>, wherein the variables R<sup>1</sup> and L are as defined or preferably defined herein for compounds of the formula III.

Preferably the group LG in compounds of the formula III is chlorine or the group -O-L-R<sup>1</sup>, wherein the variables R<sup>1</sup> and L are as defined or preferably defined herein for compounds of the

25 formula III; more preferably, if LG is the group -O-L-R<sup>1</sup>, the two groups -L-R<sup>1</sup> in compounds of the formula III are identical. Preferably the group L in compounds of the formula III is -C(=O)-. Generally, the reaction is carried out at temperatures of from 0 °C to 140 °C, preferably from

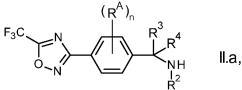
0 °C to 80 °C, in an inert organic solvent in presence of a base.

- Suitable organic solvents include, for example, ketones (e.g., acetone, ethyl methyl ketone, 30 nitrites (e.g., acetonitrile and propionitrile), ethers (e.g., dioxane and THF), DMF, hydrocarbons (e.g., toluene and o-, m- and p-xylene), and DMSO. Halogenated aliphatic hydrocarbons such as methylene chloride, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,2dichloropropane; aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, cyclohexane;
- 35 aromatic hydrocarbons such as toluene, o-, m- and p-xylene; halogenated hydrocarbons such as chlorobenzene, dichlorobenzene. Solvents like methylene chloride, 1,1-dichloroethane, 1,2dichloroethane, chlorobenzene, toluene, n-hexane and n-heptane are being especially



preferred. It is also possible to use mixtures of the solvents mentioned. These organic solvents can be used alone or as mixtures thereof.

Suitable bases are, in general, inorganic compounds such as alkali metal and alkaline earth metal oxides such as lithium oxide, sodium oxide, potassium oxide and calcium oxide; alkaline


- 5 metal hydroxides (e.g., sodium hydroxide, potassium hydroxide); alkali metal and alkaline earth metal phosphates such as lithium phosphate, sodium phosphate, potassium phosphate and calcium phosphate; alkali metal and alkaline earth metal hydrides such as lithium hydride, sodium hydride, potassium hydride and calcium hydride; alkali metal and alkaline earth metal carbonates such as lithium carbonate, potassium carbonate, calcium carbonate, caesium
- 10 carbonate and sodium hydrogen carbonate; tertiary amines such as trimethylamine, triethylamine, tributylamine, diisopropylethylamine and NMP, pyridine, substituted pyridines such as collidine, lutidine and 4 dimethylaminopyridine, and also bicyclic amines. Particular preference is given to potassium carbonate, calcium carbonate, sodium hydrogen carbonate, trimethylamine and NMP.
- 15 The bases are generally employed in equimolar amounts, in excess, or, if appropriate, as solvent. The amount of base is typically 1.1 to 5.0 molar equivalents relative to 1 mole of compounds II.

The starting materials are generally reacted with one another in equimolar amounts. In terms of yields, it may be advantageous to employ an excess of compound III, based on 1.1 to 2.5

- 20 equivalents, preferred 1.1 to 1.5 equivalents relative to 1 mole of compound II. If necessary, this reaction may be carried out in the presence of a phase-transfer catalyst or metal halide. The phase-transfer catalysts include, for example, quaternary ammonium salts [e.g. tetraalkylammonium halides (e. g. tetrabutylammonium chloride, tetrabutylammonium bromide, etc.), tetraalkylammonium hydrosulfates (e. g. tetrabutylammonium hydrosulfate, etc.),
- etc.], amines (e. g. tris(3,6-dioxaheptyl)amine, etc.), etc. The amount of the phase-transfer catalyst to be used is 0.01 to 1 mol, preferably 0.05 to 0.5 mol, per mol of the compound II.

Another embodiment of the invention relates to intermediate compounds of the formula II, wherein the variables A,  $R^2$ ,  $R^3$  and  $R^4$  are as defined or preferably defined herein for

 compounds of the formula I; preferably A is phenyl; and with the exception of [4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methanamine.
 Preferably the invention relates to intermediate compounds of the formula II.a



wherein n is 0, 1 or 2 and wherein the variables R<sup>A</sup>, R<sup>2</sup>, R<sup>3</sup> and R<sup>4</sup> are as defined or preferably
defined herein for compounds of the formula I, with the exception of [4-[5-(trifluoromethyl)-1,2,4oxadiazol-3-yl]phenyl]methanamine.

In a further embodiment the invention relates to intermediate compounds of the formula II.a, wherein n is 0;  $R^3$  and  $R^4$  independently of each other are hydrogen, halogen,  $C_1$ - $C_6$ -alkyl or  $C_1$ - $C_6$ -haloalkyl; or  $R^3$  and  $R^4$  together with the carbon atom to which they are bound form a

40 cyclopropyl ring. In particular R<sup>3</sup> and R<sup>4</sup> are hydrogen; and R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-

alkenyl,  $C_2$ - $C_6$ -alkynyl,  $C_3$ - $C_8$ -cycloalkyl or  $C_3$ - $C_8$ -cycloalkyl- $C_1$ - $C_4$ -alkyl; with the exception of [4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methanamine.

In a further embodiment the invention relates to intermediate compounds of the formula II.a, wherein n is 0;  $R^3$  and  $R^4$  independently of each other are hydrogen, halogen,  $C_1$ - $C_6$ -alkyl or  $C_1$ - $C_6$ -balaction of  $R^4$  independently the each other are hydrogen.

- 5 C<sub>6</sub>-haloalkyl; or R<sup>3</sup> and R<sup>4</sup> together with the carbon atom to which they are bound form a cyclopropyl ring; in particular R<sup>3</sup> and R<sup>4</sup> are hydrogen; and R<sup>2</sup> is C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl-C<sub>1</sub>-C<sub>4</sub>-alkyl.
  Especially preferred intermediates are compounds of the formula II.a, wherein n is 0; R<sup>3</sup> and R<sup>4</sup> are hydrogen; and R<sup>2</sup> is methyl, ethyl, *n*-propyl, *iso*-propyl, *n*-butyl, 1-
- 10 methylpropyl, 2-methylpropyl, *tert*-butyl, cyclopropyl, cyclopropyl-CH<sub>2</sub>-, allyl or propargyl.

The compounds of the formula I or compositions comprising said compounds according to the invention and the mixtures comprising said compounds and compositions, respectively, are suitable as fungicides. They are distinguished by an outstanding effectiveness against a broad

- 15 spectrum of phytopathogenic fungi, including soil-borne fungi, which derive especially from the following classes or are closely related to any of them: *Ascomycota (Ascomycetes)*, for example, but not limited to the genus Cocholiobolus, Colletotrichum, Fusarium, Microdochium, Penicillium, Phoma, Magnaporte, Zymoseptoria, and Pseudocercosporella; *Basdiomycota (Basidiomycetes)*, for example, but not limited to the genus Phakospora, Puccinia, Rhizoctonia,
- 20 Sphacelotheca, Tilletia, Typhula, and Ustilago; *Chytridiomycota (Chytridiomycetes)*, for example, but not limited to the genus Chytridiales, and Synchytrium; *Deuteromycetes* (syn. Fungi imperfecti), for example, but not limited to the genus *Ascochyta, Diplodia, Erysiphe, Fusarium, Phomopsis, and Pyrenophora; Peronosporomycetes* (syn. Oomycetes), for example but not limited to the genus Peronospora, Pythium, Phytophthora; *Plasmodiophoromycetes*, for
- example but not limited to the genus Plasmodiophora; *Zygomycetes*, for example, but not limited to the genus Rhizopus.
   Some of the compounds of the formula I and the compositions according to the invention are systemically effective and they can be used in crop protection as foliar fungicides, fungicides for seed dressing and soil fungicides. Moreover, they are suitable for controlling harmful fungi,
- which inter alia occur in wood or roots of plants.
  The compounds I and the compositions according to the invention are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g. apples, pears, plums, peaches, almonds, cherries,
- 35 strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as lentils, peas, alfalfa or soybeans; oil plants, such as rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, cucumber or melons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruits or mandarins; vegetables, such as spinach, lettuce, asparagus,
- 40 cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rape, sugar cane or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; sweet leaf (also called Stevia); natural rubber plants or ornamental and forestry plants, such as flowers, shrubs, broad-leaved trees or evergreens, e. g. conifers;

15

and on the plant propagation material, such as seeds, and the crop material of these plants. Preferably, compounds I and compositions thereof, respectively are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines;

- 5 ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes. The term "plant propagation material" is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and
- 10 young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.

Preferably, treatment of plant propagation materials with compounds I and compositions thereof, respectively, is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soybeans.

The term "cultivated plants" is to be understood as including plants which have been modified by mutagenesis or genetic engineering in order to provide a new trait to a plant or to modify an already present trait.

The compounds I and compositions thereof, respectively, are particularly suitable for controlling

- 20 the following plant diseases: Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. candida) and sunflowers (e. g. A. tragopogonis); Alternaria spp. (Alternaria leaf spot) on vegetables, rape (A. brassicola or brassicae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e. g. A. solani or A. alternata), tomatoes (e. g. A. solani or A. alternata) and wheat; Aphanomyces spp. on sugar
- 25 beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A. tritici (anthracnose) on wheat and A. hordei on barley; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. maydis) or Northern leaf blight (B. zeicola) on corn, e. g. spot blotch (B. sorokiniana) on cereals and e. g. B. oryzae on rice and turfs; Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e. g. on wheat or barley); Botrytis cinerea
- 30 (teleomorph: *Botryotinia fuckeliana*: grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; *Bremia lactucae* (downy mildew) on lettuce; *Ceratocystis* (syn. *Ophiostoma*) spp. (rot or wilt) on broad-leaved trees and evergreens, e. g. *C. ulmi* (Dutch elm disease) on elms; *Cercospora* spp. (Cercospora leaf spots) on corn (e. g. Gray leaf spot: *C. zeae-maydis*), rice,
- 35 sugar beets (e. g. *C. beticola*), sugar cane, vegetables, coffee, soybeans (e. g. *C. sojina* or *C. kikuchii*) and rice; *Cladosporium* spp. on tomatoes (e. g. *C. fulvum*: leaf mold) and cereals, e. g. *C. herbarum* (black ear) on wheat; *Claviceps purpurea* (ergot) on cereals; *Cochliobolus* (anamorph: *Helminthosporium* of *Bipolaris*) spp. (leaf spots) on corn (*C. carbonum*), cereals (e. g. *C. sativus*, anamorph: *B. sorokiniana*) and rice (e. g. *C. miyabeanus*, anamorph: *H.*
- *oryzae*); *Colletotrichum* (teleomorph: *Glomerella*) spp. (anthracnose) on cotton (e. g. *C. gossypii*), corn (e. g. *C. graminicola:* Anthracnose stalk rot), soft fruits, potatoes (e. g. *C. coccodes*: black dot), beans (e. g. *C. lindemuthianum*) and soybeans (e. g. *C. truncatum* or *C. gloeosporioides*); *Corticium* spp., e. g. *C. sasakii* (sheath blight) on rice; *Corynespora cassiicola* (leaf spots) on soybeans and ornamentals; *Cycloconium* spp., e. g. *C. oleaginum* on olive trees;

*Cylindrocarpon* spp. (e. g. fruit tree canker or young vine decline, teleomorph: *Nectria* or *Neonectria* spp.) on fruit trees, vines (e. g. *C. liriodendri*, teleomorph: *Neonectria liriodendri*. Black Foot Disease) and ornamentals; *Dematophora* (teleomorph: *Rosellinia*) *necatrix* (root and stem rot) on soybeans; *Diaporthe* spp., e. g. *D. phaseolorum* (damping off) on soybeans;

- 5 Drechslera (syn. Helminthosporium, teleomorph: Pyrenophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formitiporia (syn. Phellinus) punctata, F. mediterranea, Phaeomoniella chlamydospora (earlier Phaeoacremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits (E.
- 10 *pyri*), soft fruits (*E. veneta*: anthracnose) and vines (*E. ampelina*: anthracnose); *Entyloma oryzae* (leaf smut) on rice; *Epicoccum* spp. (black mold) on wheat; *Erysiphe* spp. (powdery mildew) on sugar beets (*E. betae*), vegetables (e. g. *E. pisi*), such as cucurbits (e. g. *E. cichoracearum*), cabbages, rape (e. g. *E. cruciferarum*); *Eutypa lata* (Eutypa canker or dieback, anamorph: *Cytosporina lata*, syn. *Libertella blepharis*) on fruit trees, vines and ornamental
- 15 woods; *Exserohilum* (syn. *Helminthosporium*) spp. on corn (e. g. *E. turcicum*); *Fusarium* (teleomorph: *Gibberella*) spp. (wilt, root or stem rot) on various plants, such as *F. graminearum* or *F. culmorum* (root rot, scab or head blight) on cereals (e. g. wheat or barley), *F. oxysporum* on tomatoes, *F. solani* (f. sp. *glycines* now syn. *F. virguliforme* ) and *F. tucumaniae* and *F. brasiliense* each causing sudden death syndrome on soybeans, and *F. verticillioides* on corn;
- 20 Gaeumannomyces graminis (take-all) on cereals (e. g. wheat or barley) and corn; Gibberella spp. on cereals (e. g. G. zeae) and rice (e. g. G. fujikuroi: Bakanae disease); Glomerella cingulata on vines, pome fruits and other plants and G. gossypii on cotton; Grainstaining complex on rice; Guignardia bidwellii (black rot) on vines; Gymnosporangium spp. on rosaceous plants and junipers, e. g. G. sabinae (rust) on pears; Helminthosporium spp. (syn. Drechslera,
- 25 teleomorph: Cochliobolus) on corn, cereals and rice; Hemileia spp., e. g. H. vastatrix (coffee leaf rust) on coffee; Isariopsis clavispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e. g. M. laxa, M. fructicola and M. fructigena
- 30 (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; *Mycosphaerella* spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. *M. graminicola* (anamorph: *Septoria tritici*, Septoria blotch) on wheat or *M. fijiensis* (black Sigatoka disease) on bananas; *Peronospora* spp. (downy mildew) on cabbage (e. g. *P. brassicae*), rape (e. g. *P. parasitica*), onions (e. g. *P. destructor*), tobacco (*P. tabacina*) and soybeans (e. g. *P. manshurica*);
- 35 Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans; Phialophora spp. e. g. on vines (e. g. P. tracheiphila and P. tetraspora) and soybeans (e. g. P. gregata: stem rot); Phoma lingam (root and stem rot) on rape and cabbage and P. betae (root rot, leaf spot and damping-off) on sugar beets; Phomopsis spp. on sunflowers, vines (e. g. P. viticola: can and leaf spot) and soybeans (e. g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolorum);
- 40 Physoderma maydis (brown spots) on corn; Phytophthora spp. (wilt, root, leaf, fruit and stem root) on various plants, such as paprika and cucurbits (e. g. P. capsici), soybeans (e. g. P. megasperma, syn. P. sojae), potatoes and tomatoes (e. g. P. infestans: late blight) and broad-leaved trees (e. g. P. ramorum: sudden oak death); Plasmodiophora brassicae (club root) on cabbage, rape, radish and other plants; Plasmopara spp., e. g. P. viticola (grapevine downy

mildew) on vines and *P. halstedii* on sunflowers; *Podosphaera* spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits, e. g. *P. leucotricha* on apples; *Polymyxa* spp., e. g. on cereals, such as barley and wheat (*P. graminis*) and sugar beets (*P. betae*) and thereby transmitted viral diseases; *Pseudocercosporella herpotrichoides* (eyespot, teleomorph: *Tapesia*)

- 5 *yallundae*) on cereals, e. g. wheat or barley; *Pseudoperonospora* (downy mildew) on various plants, e. g. *P. cubensis* on cucurbits or *P. humili* on hop; *Pseudopezicula tracheiphila* (red fire disease or ,rotbrenner', anamorph: *Phialophora*) on vines; *Puccinia* spp. (rusts) on various plants, e. g. *P. triticina* (brown or leaf rust), *P. striiformis* (stripe or yellow rust), *P. hordei* (dwarf rust), *P. graminis* (stem or black rust) or *P. recondita* (brown or leaf rust) on cereals, such as
- e. g. wheat, barley or rye, *P. kuehnii* (orange rust) on sugar cane and *P. asparagi* on asparagus;
   *Pyrenophora* (anamorph: *Drechslera*) *tritici-repentis* (tan spot) on wheat or *P. teres* (net blotch) on barley; *Pyricularia* spp., e. g. *P. oryzae* (teleomorph: *Magnaporthe grisea*, rice blast) on rice and *P. grisea* on turf and cereals; *Pythium* spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. *P. ultimum*)
- 15 or *P. aphanidermatum*); *Ramularia* spp., e. g. *R. collo-cygni* (Ramularia leaf spots, Physiological leaf spots) on barley and *R. beticola* on sugar beets; *Rhizoctonia* spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e. g. *R. solani* (root and stem rot) on soybeans, *R. solani* (sheath blight) on rice or *R. cerealis* (Rhizoctonia spring blight) on wheat or barley; *Rhizopus stolonifer* (black mold, soft rot) on strawberries, carrots,
- 20 cabbage, vines and tomatoes; *Rhynchosporium secalis* (scald) on barley, rye and triticale; *Sarocladium oryzae* and *S. attenuatum* (sheath rot) on rice; *Sclerotinia* spp. (stem rot or white mold) on vegetables and field crops, such as rape, sunflowers (e. g. *S. sclerotiorum*) and soybeans (e. g. *S. rolfsii* or *S. sclerotiorum*); *Septoria* spp. on various plants, e. g. *S. glycines* (brown spot) on soybeans, *S. tritici* (Septoria blotch) on wheat and *S.* (syn. *Stagonospora*)
- 25 nodorum (Stagonospora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, anamorph: Oidium tuckeri) on vines; Setospaeria spp. (leaf blight) on corn (e. g. S. turcicum, syn. Helminthosporium turcicum) and turf; Sphacelotheca spp. (smut) on corn, (e. g. S. reiliana: head smut), sorghum und sugar cane; Sphaerotheca fuliginea (powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases;
- 30 Stagonospora spp. on cereals, e. g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeosphaeria] nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Taphrina spp., e. g. T. deformans (leaf curl disease) on peaches and T. pruni (plum pocket) on plums; Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. T. basicola (syn. Chalara elegans); Tilletia spp.
- 35 (common bunt or stinking smut) on cereals, such as e. g. *T. tritici* (syn. *T. caries*, wheat bunt) and *T. controversa* (dwarf bunt) on wheat; *Typhula incarnata* (grey snow mold) on barley or wheat; *Urocystis* spp., e. g. *U. occulta* (stem smut) on rye; *Uromyces* spp. (rust) on vegetables, such as beans (e. g. *U. appendiculatus*, syn. *U. phaseoli*) and sugar beets (e. g. *U. betae*); *Ustilago* spp. (loose smut) on cereals (e. g. *U. nuda* and *U. avaenae*), corn (e. g. *U. maydis*:
- 40 corn smut) and sugar cane; *Venturia* spp. (scab) on apples (e. g. *V. inaequalis*) and pears; and *Verticillium* spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. *V. dahliae* on strawberries, rape, potatoes and tomatoes. In a preferred embodiment the compounds I and compositions thereof, respectively, are particularly suitable for controlling the following plant diseases: *Puccinia* spp. (rusts) on various

#### PCT/EP2017/057669

plants, for example, but not limited to *P. triticina* (brown or leaf rust), *P. striiformis* (stripe or yellow rust), *P. hordei* (dwarf rust), *P. graminis* (stem or black rust) or *P. recondita* (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye and *Phakopsoraceae* spp. on various plants, in particular *Phakopsora pachyrhizi* and *P. meibomiae* (soybean rust) on soybeans.

- 5 The compounds I and compositions thereof, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials. The term "protection of materials" is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, cooling lubricants, fiber or fabrics, against the infestation and
- 10 destruction by harmful microorganisms, such as fungi and bacteria. As to the protection of wood and other materials, the particular attention is paid to the following harmful fungi: Ascomycetes such as *Ophiostoma* spp., *Ceratocystis* spp., *Aureobasidium pullulans*, *Sclerophoma* spp., *Chaetomium* spp., *Humicola* spp., *Petriella* spp., *Trichurus* spp.; Basidiomycetes such as *Coniophora* spp., *Coriolus* spp., *Gloeophyllum* spp., *Lentinus* spp., *Pleurotus* spp., *Poria* spp.,
- 15 Serpula spp. and Tyromyces spp., Deuteromycetes such as Aspergillus spp., Cladosporium spp., Penicillium spp., Trichoderma spp., Alternaria spp., Paecilomyces spp. and Zygomycetes such as Mucor spp., and in addition in the protection of stored products and harvest the following yeast fungi are worthy of note: Candida spp. and Saccharomyces cerevisae. The method of treatment according to the invention can also be used in the field of protecting
- 20 stored products or harvest against attack of fungi and microorganisms. According to the present invention, the term "stored products" is understood to denote natural substances of plant or animal origin and their processed forms, which have been taken from the natural life cycle and for which long-term protection is desired. Stored products of crop plant origin, such as plants or parts thereof, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the
- 25 freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted, which process is also known as post-harvest treatment. Also falling under the definition of stored products is timber, whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood. Stored products of animal origin are hides, leather, furs,
- 30 hairs and the like. The combinations according the present invention can prevent disadvantageous effects such as decay, discoloration or mold. Preferably "stored products" is understood to denote natural substances of plant origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms.
- 35 The compounds of formula I can be present in different crystal modifications whose biological activity may differ. They are likewise subject matter of the present invention. The compounds I are employed as such or in form of compositions by treating the fungi or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from fungal attack with a fungicidally effective amount of the active substances. The
- application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the fungi.
   Plant propagation materials may be treated with compounds I as such or a composition comprising at least one compound I prophylactically either at or before planting or transplanting. The invention also relates to agrochemical compositions comprising an auxiliary and at least

one compound I according to the invention.

An agrochemical composition comprises a fungicidally effective amount of a compound I. The term "effective amount" denotes an amount of the composition or of the compounds I, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of materials and

5 which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound I used.

The compounds I, their N-oxides and salts can be converted into customary types of

- 10 agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e. g. SC, OD, FS), emulsifiable concentrates (e. g. EC), emulsions (e. g. EW, EO, ES, ME), capsules (e. g. CS, ZC), pastes, pastilles, wettable powders or dusts (e. g. WP, SP, WS, DP, DS), pressings (e. g. BR, TB, DT), granules (e. g. WG, SG, GR, FG, GG, MG),
- 15 insecticidal articles (e. g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e. g. GF). These and further compositions types are defined in the "Catalogue of pesticide formulation types and international coding system", Technical Monograph No. 2, 6<sup>th</sup> Ed. May 2008, CropLife International.

The compositions are prepared in a known manner, such as described by Mollet and

20 Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.

Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids,

25 adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.

Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e. g. kerosene, diesel oil; oils of vegetable or animal

- 30 origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e. g. ethanol, propanol, butanol, benzyl alcohol, cyclohexanol; glycols; DMSO; ketones, e. g. cyclohexanone; esters, e. g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e. g. N-methyl pyrrolidone, fatty acid dimethyl amides; and mixtures thereof.
- 35 Suitable solid carriers or fillers are mineral earths, e. g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e. g. cellulose, starch; fertilizers, e. g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e. g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
- 40 Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol.1: Emulsifiers &

Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).

Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylaryl

- 5 sulfonates, diphenyl sulfonates, alpha-olefin sulfonates, lignin sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkyl naphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of
- 10 ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.

Suitable nonionic surfactants are alkoxylates, N-substituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of

- 15 alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of N-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides.
- 20 Examples of sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides. Examples of polymeric surfactants are home- or copolymers of vinyl pyrrolidone, vinyl alcohols, or vinyl acetate. Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium

compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable

25 amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinyl amines or

30 polyethylene amines. Suitable adjuvants are compounds, which have a negligible or even no pesticidal activity themselves, and which improve the biological performance of the compound I on the target. Examples are surfactants, mineral or vegetable oils, and other auxiliaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006,

- 35 chapter 5.
   Suitable thickeners are polysaccharides (e. g. xanthan gum, carboxymethyl cellulose), inorganic clays (organically modified or unmodified), polycarboxylates, and silicates.
   Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones.
- 40 Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin. Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids. Suitable colorants (e. g. in red, blue, or green) are pigments of low water solubility and watersoluble dyes. Examples are inorganic colorants (e. g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e. g. alizarin-, azo- and phthalocyanine colorants).

Suitable tackifiers or binders are polyvinyl pyrrolidones, polyvinyl acetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.

Examples for composition types and their preparation are:

5 i) Water-soluble concentrates (SL, LS)

10-60 wt% of a compound I and 5-15 wt% wetting agent (e. g. alcohol alkoxylates) are dissolved in water and/or in a water-soluble solvent (e. g. alcohols) ad 100 wt%. The active substance dissolves upon dilution with water.

- ii) Dispersible concentrates (DC)
- 5-25 wt% of a compound I and 1-10 wt% dispersant (e. g. polyvinyl pyrrolidone) are dissolved in organic solvent (e. g. cyclohexanone) ad 100 wt%. Dilution with water gives a dispersion.
   iii) Emulsifiable concentrates (EC)

15-70 wt% of a compound I and 5-10 wt% emulsifiers (e. g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in water-insoluble organic solvent (e. g. aromatic

15 hydrocarbon) ad 100 wt%. Dilution with water gives an emulsion.

iv) Emulsions (EW, EO, ES)

5-40 wt% of a compound I and 1-10 wt% emulsifiers (e. g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in 20-40 wt% water-insoluble organic solvent (e. g. aromatic hydrocarbon). This mixture is introduced into water ad 100 wt% by means of an

- 20 emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion.
  - v) Suspensions (SC, OD, FS)

In an agitated ball mill, 20-60 wt% of a compound I are comminuted with addition of 2-10 wt% dispersants and wetting agents (e. g. sodium lignosulfonate and alcohol ethoxylate), 0.1-2 wt%

- 25 thickener (e. g. xanthan gum) and water ad 100 wt% to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. For FS type composition up to 40 wt% binder (e. g. polyvinyl alcohol) is added.
  - vi) Water-dispersible granules and water-soluble granules (WG, SG)

50-80 wt% of a compound I are ground finely with addition of dispersants and wetting agents (e.
30 g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt% and prepared as water-dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower,

fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.

vii) Water-dispersible powders and water-soluble powders (WP, SP, WS)

50-80 wt% of a compound I are ground in a rotor-stator mill with addition of 1-5 wt% dispersants (e. g. sodium lignosulfonate), 1-3 wt% wetting agents (e. g. alcohol ethoxylate) and solid carrier

(e. g. silica gel) ad 100 wt%. Dilution with water gives a stable dispersion or solution of the active substance.

viii) Gel (GW, GF)

In an agitated ball mill, 5-25 wt% of a compound I are comminuted with addition of 3-10 wt%

- 40 dispersants (e. g. sodium lignosulfonate), 1-5 wt% thickener (e. g. carboxymethyl cellulose) and water ad 100 wt% to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance.
  - ix) Microemulsion (ME)

5-20 wt% of a compound I are added to 5-30 wt% organic solvent blend (e.g. fatty acid

dimethyl amide and cyclohexanone), 10-25 wt% surfactant blend (e. g. alcohol ethoxylate and arylphenol ethoxylate), and water ad 100 %. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.

- x) Microcapsules (CS)
- 5 An oil phase comprising 5-50 wt% of a compound I, 0-40 wt% water insoluble organic solvent (e. g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e. g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e. g. polyvinyl alcohol). Radical polymerization results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 wt% of a compound I according to
- 10 the invention, 0-40 wt% water insoluble organic solvent (e. g. aromatic hydrocarbon), and an isocyanate monomer (e. g. diphenylmethene-4,4'-diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e. g. polyvinyl alcohol). The addition of a polyamine (e. g. hexamethylenediamine) results in the formation of polyurea microcapsules. The monomers amount to 1-10 wt%. The wt% relate to the total CS composition.
- 15 xi) Dustable powders (DP, DS)

1-10 wt% of a compound I are ground finely and mixed intimately with solid carrier (e. g. finely divided kaolin) ad 100 wt%.

xii) Granules (GR, FG)

20

0.5-30 wt% of a compound I is ground finely and associated with solid carrier (e. g. silicate) ad 100 wt%. Granulation is achieved by extrusion, spray-drying or fluidized bed.

xiii) Ultra-low volume liquids (UL)

1-50 wt% of a compound I are dissolved in organic solvent (e. g. aromatic hydrocarbon) ad 100 wt%.

The compositions types i) to xiii) may optionally comprise further auxiliaries, such as 0.1-1 wt%
bactericides, 5-15 wt% anti-freezing agents, 0.1-1 wt% anti-foaming agents, and 0.1-1 wt% colorants.

The agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, more preferably between 1 and 70%, and in particular between 10 and 60%, by

- weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
   For the purposes of treatment of plant propagation materials, particularly seeds, solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders
- 35 (SS), emulsions (ES), emulsifiable concentrates (EC), and gels (GF) are usually employed. The compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations. Application can be carried out before or during sowing. Methods for applying compound I and compositions thereof, respectively, onto plant propagation material, especially seeds, include
- dressing, coating, pelleting, dusting, and soaking as well as in-furrow application methods.
   Preferably, compound I or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.

When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, and in particular from 0.1 to 0.75 kg per ha. In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching

- seed, amounts of active substance of from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seeds) are generally required.
   When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily
- applied topolitic on the function of applied and on the decide on the dec
- the active substances or the compositions comprising them as premix or, if appropriate not until
  immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1:100 to 100:1, preferably 1:10 to 10:1.
  A pesticide is generally a chemical or biological agent (such as pestidal active ingredient,
- compound, composition, virus, bacterium, antimicrobial or disinfectant) that through its effect deters, incapacitates, kills or otherwise discourages pests. Target pests can include insects,
  plant pathogens, weeds, mollusks, birds, mammals, fish, nematodes (roundworms), and
- microbes that destroy property, cause nuisance, spread disease or are vectors for disease. The term "pesticide" includes also plant growth regulators that alter the expected growth, flowering, or reproduction rate of plants; defoliants that cause leaves or other foliage to drop from a plant, usually to facilitate harvest; desiccants that promote drying of living tissues, such as unwanted
- 25 plant tops; plant activators that activate plant physiology for defense of against certain pests; safeners that reduce unwanted herbicidal action of pesticides on crop plants; and plant growth promoters that affect plant physiology e.g. to increase plant growth, biomass, yield or any other quality parameter of the harvestable goods of a crop plant.

The user applies the composition according to the invention usually from a predosage device, a

- 30 knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
- 35 According to one embodiment, individual components of the composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank or any other kind of vessel used for applications (e. g. seed treater drums, seed pelleting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate.
- 40 Consequently, one embodiment of the invention is a kit for preparing a usable pesticidal composition, the kit comprising a) a composition comprising component 1) as defined herein and at least one auxiliary; and b) a composition comprising component 2) as defined herein and at least one auxiliary; and optionally c) a composition comprising at least one auxiliary and optionally c) a composition comprising at least one auxiliary and optionally c) as defined herein.

### PCT/EP2017/057669

Mixing the compounds I or the compositions comprising them in the use form as fungicides with other fungicides results in many cases in an expansion of the fungicidal spectrum of activity being obtained or in a prevention of fungicide resistance development. Furthermore, in many cases, synergistic effects are obtained.

5 The following list of pesticides II (e. g. pesticidally-active substances and biopesticides), in conjunction with which the compounds I can be used, is intended to illustrate the possible combinations but does not limit them:

A) Respiration inhibitors: Inhibitors of complex III at  $Q_0$  site: azoxystrobin (A.1.1), coumethoxystrobin (A.1.2), coumoxystrobin (A.1.3), dimoxystrobin (A.1.4), enestroburin (A.1.5),

- 10 fenaminstrobin (A.1.6), fenoxystrobin/flufenoxystrobin (A.1.7), fluoxastrobin (A.1.8), kresoximmethyl (A.1.9), mandestrobin (A.1.10), metominostrobin (A.1.11), orysastrobin (A.1.12), picoxystrobin (A.1.13), pyraclostrobin (A.1.14), pyrametostrobin (A.1.15), pyraoxystrobin (A.1.16), trifloxystrobin (A.1.17), 2-(2-(3-(2,6-dichlorophenyl)-1-methyl-allylideneaminooxymethyl)phenyl)-2-methoxyimino-N-methyl-acetamide (A.1.18), pyribencarb (A.1.19),
- 15 triclopyricarb/chlorodincarb (A.1.20), famoxadone (A.1.21), fenamidone (A.1.21), methyl-*N*-[2-[(1,4-dimethyl-5-phenyl-pyrazol-3-yl)oxylmethyl]phenyl]-N-methoxy-carbamate (A.1.22), 1-[3chloro-2-[[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (A.1.23), 1-[3-bromo-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5one (A.1.24), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetra-
- 20 zol-5-one (A.1.25), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyltetrazol-5-one (A.1.26), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4methyl-tetrazol-5-one (A.1.27), 1-[2-[[4-(4-chlorophenyl)thiazol-2-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (A.1.28), 1-[3-chloro-2-[[4-(p-tolyl)thiazol-2-yl]oxymethyl]phenyl]-4methyl-tetrazol-5-one (A.1.29), 1-[3-cyclopropyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]-
- 25 methyl]phenyl]-4-methyl-tetrazol-5-one (A.1.30), 1-[3-(difluoromethoxy)-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (A.1.31), 1-methyl-4-[3methyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]tetrazol-5-one (A.1.32), 1methyl-4-[3-methyl-2-[[1-[3-(trifluoromethyl)phenyl]-ethylideneamino]oxymethyl]phenyl]tetrazol-5-one (A.1.33), (*Z*,2*E*)-5-[1-(2,4-dichlorophenyl)pyrazol-3-yl]-oxy-2-methoxyimino-*N*,3-dimethyl-
- pent-3-enamide (A.1.34), (*Z*,2*E*)-5-[1-(4-chlorophenyl)pyrazol-3-yl]oxy-2-methoxyimino-*N*,3-dimethyl-pent-3-enamide (A.1.35), pyriminostrobin (A.1.36), bifujunzhi (A.1.37), 2-(ortho-((2,5-dimethylphenyl-oxymethylen)phenyl)-3-methoxy-acrylic acid methylester (A.1.38).
   Inhibitors of complex III at Q<sub>i</sub> site: cyazofamid (A.2.1), amisulbrom (A.2.2),
   [(6S,7R,8R)-8-benzyl-3-[(3-hydroxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo-
- 1,5-dioxonan-7-yl] 2-methylpropanoate (A.2.3), fenpicoxamid (A.2.4), [(6S,7R,8R)-8-benzyl-3-[[4-methoxy-3-(propanoyloxymethoxy)pyridine-2-carbonyl]amino]-6-methyl-4,9-dioxo-1,5dioxonan-7-yl] 2-methylpropanoate (A.2.5).
  Inhibitors of complex II: benodanil (A.3.1), benzovindiflupyr (A.3.2), bixafen (A.3.3), boscalid (A.3.4), carboxin (A.3.5), fenfuram (A.3.6), fluopyram (A.3.7), flutolanil (A.3.8), fluxapyroxad
- 40 (A.3.9), furametpyr (A.3.10), isofetamid (A.3.11), isopyrazam (A.3.12), mepronil (A.3.13), oxycarboxin (A.3.14), penflufen (A.3.15), penthiopyrad (A.3.16), 3-(difluoromethyl)-N-methoxy-1-methyl-N-[1-methyl-2-(2,4,6-trichlorophenyl)ethyl]pyrazole-4-carboxamide (A.3.17), N-[2-(3,4-difluorophenyl)phenyl]-3-(trifluoromethyl)pyrazine-2-carboxamide (A.3.18), sedaxane (A.3.19), tecloftalam (A.3.20), thifluzamide (A.3.21), 3-(difluoromethyl)-1-methyl-N-(1,1,3-trimethylindan-

4-yl)pyrazole-4-carboxamide (A.3.22), 3-(trifluoromethyl)-1-methyl-N-(1,1,3-trimethylindan-4yl)pyrazole-4-carboxamide (A.3.23), 1,3-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4carboxamide (A.3.24), 3-(trifluoromethyl)-1,5-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4carboxamide (A.3.25), 1,3,5-trimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide

- 5 (A.3.26), 3-(difluoromethyl)-1,5-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.27), 3-(difluoromethyl)-N-(7-fluoro-1,1,3-trimethyl-indan-4-yl)-1-methyl-pyrazole-4carboxamide (A.3.28), methyl (E)-2-[2-[(5-cyano-2-methyl-phenoxy)methyl]phenyl]-3-methoxyprop-2-enoate (A.3.30), N-[(5-chloro-2-isopropyl-phenyl)methyl]-N-cyclopropyl-3-(difluoromethyl)-5 fluoro-1-methyl-pyrazole-4-carboxamide (A.3.31), 2-(difluoromethyl)-N-(1,1,3-
- 10 trimethyl-indan-4-yl)pyridine-3-carboxamide (A.3.32), 2-(difluoromethyl)-N-[(3R)-1,1,3trimethylindan-4-yl]pyridine-3-carboxamide (A.3.33), 2-(difluoromethyl)-N-(3-ethyl-1,1-dimethylindan-4-yl)¬pyridine-3-carboxamide (A.3.34), 2-(difluoromethyl)-N-[(3R)-3-ethyl-1,1-dimethylindan-4-yl]¬pyridine-3-carboxamide (A.3.35), 2-(difluoromethyl)-N-(1,1-dimethyl-3-propyl-indan-4-yl)¬py¬ridine-3-carboxamide (A.3.36), 2-(difluoromethyl)-N-[(3R)-1,1-dimethyl-3-propyl-indan-
- 15 4-yl]¬pyridine-3-carboxamide (A.3.37), 2-(difluoromethyl)-N-(3-isobutyl-1,1-dimethyl-indan-4yl)¬pyridine-3-carboxamide (A.3.38), 2-(difluoromethyl)-N-[(3R)-3-isobutyl-1,1-dimethyl-indan-4 yl]pyridine-3-carboxamide (A.3.39).

Other respiration inhibitors: diflumetorim (A.4.1); nitrophenyl derivates: binapacryl (A.4.2), dinobuton (A.4.3), dinocap (A.4.4), fluazinam (A.4.5), meptyldinocap (A.4.6), ferimzone (A.4.7);

- organometal compounds: fentin salts, e. g. fentin-acetate (A.4.8), fentin chloride (A.4.9) or fentin 20 hydroxide (A.4.10); ametoctradin (A.4.11); silthiofam (A.4.12).
  - Sterol biosynthesis inhibitors (SBI fungicides) B)
  - C14 demethylase inhibitors: triazoles: azaconazole (B.1.1), bitertanol (B.1.2), bromuconazole (B.1.3), cyproconazole (B.1.4), difenoconazole (B.1.5), diniconazole (B.1.6), diniconazole-M
- (B.1.7), epoxiconazole (B.1.8), fenbuconazole (B.1.9), fluguinconazole (B.1.10), flusilazole 25 (B.1.11), flutriafol (B.1.12), hexaconazole (B.1.13), imibenconazole (B.1.14), ipconazole (B.1.15), metconazole (B.1.17), myclobutanil (B.1.18), oxpoconazole (B.1.19), paclobutrazole (B.1.20), penconazole (B.1.21), propiconazole (B.1.22), prothioconazole (B.1.23), simeconazole (B.1.24), tebuconazole (B.1.25), tetraconazole (B.1.26), triadimefon (B.1.27), triadimenol
  - (B.1.28), triticonazole (B.1.29), uniconazole (B.1.30), 1-[rel-(2S;3R)-3-(2-chlorophenyl)-2-(2,4-
- 30 difluorophenyl)-oxiranylmethyl]-5-thiocyanato-1H-[1,2,4]triazole (B.1.31), 2-[rel-(2S;3R)-3-(2chlorophenyl)-2-(2,4-difluorophenyl)-oxiranylmethyl]-2H-[1,2,4]triazole-3-thiol (B.1.32), 2-[2chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol (B.1.33), 1-[4-(4chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-cyclopropyl-2-(1.2,4-triazol-1-yl)ethanol (B.1.34), 2-
- 35 [4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol (B.1.35), 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)butan-2-ol (B.1.36), ipfentrifluconazole (B.1.37), mefentrifluconazole (B.1.38), 2-[2-chloro-4-(4chlorophenoxy)phenyl]-3-methyl-1-(1,2,4-triazol-1-yl)butan-2-ol (B.1.39), 2-[4-(4chlorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)pentan-2-ol (B.1.40), 2-[4-(4-
- 40 fluorophenoxy)-2-(trifluoromethyl)phenyl]-1-(1,2,4-triazol-1-yl)propan-2-ol (B.1.41), 2-[2-chloro-4-(4-chlorophenoxy)phenyl]-1-(1,2,4-triazol-1-yl)pent-3-yn-2-ol (B.1.42), 2-(chloromethyl)-2methyl-5-(p-tolylmethyl)-1-(1,2,4-triazol-1-ylmethyl)cyclopentanol (B.1.43); imidazoles: imazalil (B.1.44), pefurazoate (B.1.45), prochloraz (B.1.46), triflumizol (B.1.47); pyrimidines, pyridines and piperazines: fenarimol (B.1.49), pyrifenox (B.1.50), triforine (B.1.51), [3-(4-chloro-2-fluoro-

phenyl)-5-(2,4-difluorophenyl)isoxazol-4-yl]-(3-pyridyl)methanol (B.1.52). Delta14-reductase inhibitors: aldimorph (B.2.1), dodemorph (B.2.2), dodemorph-acetate (B.2.3), fenpropimorph (B.2.4), tridemorph (B.2.5), fenpropidin (B.2.6), piperalin (B.2.7), spiroxamine (B.2.8).

5 Inhibitors of 3-keto reductase: fenhexamid (B.3.1).

Other Sterol biosynthesis inhibitors: chlorphenomizole (B.4.1).

C) Nucleic acid synthesis inhibitors

Phenylamides or acyl amino acid fungicides: benalaxyl (C.1.1), benalaxyl-M (C.1.2), kiralaxyl (C.1.3), metalaxyl (C.1.4), metalaxyl-M (C.1.5), ofurace (C.1.6), oxadixyl (C.1.7).

Other nucleic acid synthesis inhibitors: hymexazole (C.2.1), octhilinone (C.2.2), oxolinic acid (C.2.3), bupirimate (C.2.4), 5-fluorocytosine (C.2.5), 5-fluoro-2-(p-tolylmethoxy)pyrimidin-4-amine (C.2.6), 5-fluoro-2-(4-fluorophenylmethoxy)pyrimidin-4-amine (C.2.7), 5-fluoro-2-(4-chlorophenylmethoxy)pyrimidin-4 amine (C.2.8).

D) Inhibitors of cell division and cytoskeleton

- fluoroethyl)butanamide (D.1.10), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-N-(2-fluoroethyl)-2methoxy-acetamide (D.1.11), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-N-propyl-butanamide (D.1.12), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-2-methoxy-N-propyl-acetamide (D.1.13), 2-[(3ethynyl-8-methyl-6-quinolyl)oxy]-2-methylsulfanyl-N-propyl-acetamide (D.1.14), 2-[(3-ethynyl-8methyl-6-quinolyl)oxy]-N-(2-fluoroethyl)-2-methylsulfanyl-acetamide (D.1.15), 4-(2-bromo-4-
- fluoro-phenyl)-N-(2-chloro-6-fluoro-phenyl)-2,5-dimethyl-pyrazol-3-amine (D.1.16).
   Other cell division inhibitors: diethofencarb (D.2.1), ethaboxam (D.2.2), pencycuron (D.2.3),
   fluopicolide (D.2.4), zoxamide (D.2.5), metrafenone (D.2.6), pyriofenone (D.2.7).
   E) Inhibitors of amino acid and protein synthesis

Methionine synthesis inhibitors: cyprodinil (E.1.1), mepanipyrim (E.1.2), pyrimethanil (E.1.3).

30 Protein synthesis inhibitors: blasticidin-S (E.2.1), kasugamycin (E.2.2), kasugamycin hydrochloride-hydrate (E.2.3), mildiomycin (E.2.4), streptomycin (E.2.5), oxytetracyclin (E.2.6).

F) Signal transduction inhibitors

MAP / histidine kinase inhibitors: fluoroimid (F.1.1), iprodione (F.1.2), procymidone (F.1.3), vinclozolin (F.1.4), fludioxonil (F.1.5).

35 G protein inhibitors: quinoxyfen (F.2.1).

40

G) Lipid and membrane synthesis inhibitors Phospholipid biosynthesis inhibitors: ediferences (C 1 1), iprobe

Phospholipid biosynthesis inhibitors: edifenphos (G.1.1), iprobenfos (G.1.2), pyrazophos (G.1.3), isoprothiolane (G.1.4).

Lipid peroxidation: dicloran (G.2.1), quintozene (G.2.2), tecnazene (G.2.3), tolclofos-methyl (G.2.4), biphenyl (G.2.5), chloroneb (G.2.6), etridiazole (G.2.7).

Phospholipid biosynthesis and cell wall deposition: dimethomorph (G.3.1), flumorph (G.3.2), mandipropamid (G.3.3), pyrimorph (G.3.4), benthiavalicarb (G.3.5), iprovalicarb (G.3.6), valifenalate (G.3.7).

Compounds affecting cell membrane permeability and fatty acides: propamocarb (G.4.1).

Inhibitors of oxysterol binding protein: oxathiapiprolin (G.5.1), 2-{3-[2-(1-{[3,5-bis(difluoromethyl-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}phenyl methanesulfonate (G.5.2), 2-{3-[2-(1-{[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl) 1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate (G.5.3), 4-[1-

- 5 [2-[3-(difluoromethyl)-5-methyl-pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2carboxamide (G.5.4), 4-[1-[2-[3,5-bis(difluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1yl-pyridine-2-carboxamide (G.5.5), 4-[1-[2-[3-(difluoromethyl)-5-(trifluoromethyl)pyrazol-1yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.6), 4-[1-[2-[5-cyclopropyl-3-(difluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.7), 4-
- 10 [1-[2-[5-methyl-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.8), 4-[1-[2-[5-(difluoromethyl)-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.9), 4-[1-[2-[3,5-bis(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.10), (4-[1-[2-[5-cyclopropyl-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.10), (4-[1-[2-[5-cyclopropyl-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide
- 15 (G.5.11).
  - H) Inhibitors with Multi Site Action

Inorganic active substances: Bordeaux mixture (H.1.1), copper (H.1.2), copper acetate (H.1.3), copper hydroxide (H.1.4), copper oxychloride (H.1.5), basic copper sulfate (H.1.6), sulfur (H.1.7).

- Thio- and dithiocarbamates: ferbam (H.2.1), mancozeb (H.2.2), maneb (H.2.3), metam (H.2.4), metiram (H.2.5), propineb (H.2.6), thiram (H.2.7), zineb (H.2.8), ziram (H.2.9).
  Organochlorine compounds: anilazine (H.3.1), chlorothalonil (H.3.2), captafol (H.3.3), captan (H.3.4), folpet (H.3.5), dichlofluanid (H.3.6), dichlorophen (H.3.7), hexachlorobenzene (H.3.8), pentachlorphenole (H.3.9) and its salts, phthalide (H.3.10), tolylfluanid (H.3.11).
- Guanidines and others: guanidine (H.4.1), dodine (H.4.2), dodine free base (H.4.3), guazatine (H.4.4), guazatine-acetate (H.4.5), iminoctadine (H.4.6), iminoctadine-triacetate (H.4.7), iminoctadine-tris(albesilate) (H.4.8), dithianon (H.4.9), 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetraone (H.4.10).
  - I) Cell wall synthesis inhibitors
- Inhibitors of glucan synthesis: validamycin (I.1.1), polyoxin B (I.1.2).
   Melanin synthesis inhibitors: pyroquilon (I.2.1), tricyclazole (I.2.2), carpropamid (I.2.3), dicyclomet (I.2.4), fenoxanil (I.2.5).
  - J) Plant defence inducers

Acibenzolar-S-methyl (J.1.1), probenazole (J.1.2), isotianil (J.1.3), tiadinil (J.1.4), prohexadione-

35 calcium (J.1.5); phosphonates: fosetyl (J.1.6), fosetyl-aluminum (J.1.7), phosphorous acid and its salts (J.1.8), potassium or sodium bicarbonate (J.1.9), 4-cyclopropyl-N-(2,4dimethoxyphenyl)thiadiazole-5-carboxamide (J.1.10), calcium phosphonate (J.1.11), potassium phosphonate (J.1.12).

K) Unknown mode of action

40 Bronopol (K.1.1), chinomethionat (K.1.2), cyflufenamid (K.1.3), cymoxanil (K.1.4), dazomet (K.1.5), debacarb (K.1.6), diclocymet (K.1.7), diclomezine (K.1.8), difenzoquat (K.1.9), difenzoquat-methylsulfate (K.1.10), diphenylamin (K.1.11), fenitropan (K.1.12), fenpyrazamine (K.1.13), flumetover (K.1.14), flusulfamide (K.1.15), flutianil (K.1.16), harpin (K.1.17), methasulfocarb (K.1.18), nitrapyrin (K.1.19), nitrothal-isopropyl (K.1.20), tolprocarb (K.1.21), oxin-

copper (K.1.22), proquinazid (K.1.23), tebufloquin (K.1.24), tecloftalam (K.1.25), triazoxide (K.1.26), N'-(4-(4-chloro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine (K.1.27), N'-(4-(4-fluoro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine (K.1.28), N'-[4-[[3-[(4-chlorophenyl)methyl]-1,2,4-thiadiazol-5-yl]oxy]-2,5-

- 5 dimethyl-phenyl]-N-ethyl-N-methyl-formamidine (K.1.29), N'-(5-bromo-6-indan-2-yloxy-2-methyl-3-pyridyl)-N-ethyl-N-methyl-formamidine (K.1.30), N'-[5-bromo-6-[1-(3,5-difluorophenyl)ethoxy]-2-methyl-3-pyridyl]-N-ethyl-N-methyl-formamidine (K.1.31), N'-[5-bromo-6-(4isopropylcyclohexoxy)-2-methyl-3-pyridyl]-N-ethyl-N-methyl-formamidine (K.1.32), N'-[5-bromo-2-methyl-6-(1-phenylethoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine (K.1.33), N'-(2-methyl-5-
- 10 trifluoromethyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine (K.1.34), N'-(5-difluoromethyl-2-methyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine (K.1.35), 2-(4-chloro-phenyl)-N-[4-(3,4-dimethoxy-phenyl)-isoxazol-5-yl]-2-prop-2-ynyloxyacetamide (K.1.36), 3-[5-(4-chloro-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine (pyrisoxazole) (K.1.37), 3-[5-(4-methylphenyl)-2,3-dimethyl-isoxazolidin-3 yl]-pyridine (K.1.38), 5-chloro-1-(4,6-
- 15 dimethoxy-pyrimidin-2-yl)-2-methyl-1H-benzoimidazole (K.1.39), ethyl (Z)-3-amino-2-cyano-3phenyl-prop-2-enoate (K.1.40), picarbutrazox (K.1.41), pentyl N-[6-[[(Z)-[(1-methyltetrazol-5-yl)phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate (K.1.42), but-3-ynyl N-[6-[[(Z)-[(1methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate (K.1.43), 2-[2-[(7,8-difluoro-2-methyl-3-quinolyl)oxy]-6-fluoro-phenyl]propan-2-ol (K.1.44), 2-[2-fluoro-6-[(8-
- fluoro-2-methyl-3-quinolyl)oxy]phen-yl]propan-2-ol (K.1.45), 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroisoquinolin-1-yl)quinoline (K.1.46), quinofumelin (K.1.47), 3-(4,4,5-trifluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)quinoline (K.1.48), 9-fluoro-2,2-dimethyl-5-(3-quinolyl)-3H-1,4-benzoxazepine (K.1.49), 2-(6-benzyl-2-pyridyl)quinazoline (K.1.50), 2-[6-(3-fluoro-4-methoxy-phenyl)-5-methyl-2-pyridyl]quinazoline (K.1.51), dichlobentiazox (K.1.52), N'-(2,5-

dimethyl-4-phenoxy-phenyl)-N-ethyl-N-methyl-formamidine (K.1.53).
 M) Growth regulators

 abscisic acid (M.1.1), amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, butralin, chlormequat, chlormequat chloride, choline chloride, cyclanilide, daminozide, dikegulac,

- dimethipin, 2,6-dimethylpuridine, ethephon, flumetralin, flurprimidol, fluthiacet, forchlorfenuron,
   gibberellic acid, inabenfide, indole-3-acetic acid, maleic hydrazide, mefluidide, mepiquat,
   mepiquat chloride, naphthaleneacetic acid, N-6-benzyladenine, paclobutrazol, prohexadione,
   prohexadione-calcium, prohydrojasmon, thidiazuron, triapenthenol, tributyl phosphorotrithioate,
   2,3,5-tri-iodobenzoic acid, trinexapac-ethyl and uniconazole;
   N) Herbicides from classes N.1 to N.15
- 35 N.1 Lipid biosynthesis inhibitors: alloxydim (N.1.1), alloxydim-sodium (N.1.2), butroxydim (N.1.3), clethodim (N.1.4), clodinafop (N.1.5), clodinafop-propargyl (N.1.6), cycloxydim (N.1.7), cyhalofop (N.1.8), cyhalofop-butyl (N.1.9), diclofop(N.1.10), diclofop-methyl (N.1.11), fenoxaprop (N.1.12), fenoxaprop-ethyl (N.1.13), fenoxaprop-P (N.1.14), fenoxaprop-P-ethyl (N.1.15), fluazifop (N.1.16), fluazifop-butyl (N.1.17), fluazifop-P (N.1.18), fluazifop-P-butyl
- (N.1.19), haloxyfop (N.1.20), haloxyfop-methyl (N.1.21), haloxyfop-P (N.1.22), haloxyfop-P-methyl (N.1.23), metamifop (N.1.24), pinoxaden (N.1.25), profoxydim (N.1.26), propaquizafop (N.1.27), quizalofop (N.1.28), quizalofop-ethyl (N.1.29), quizalofop-tefuryl (N.1.30), quizalofop-P (N.1.31), quizalofop-P-ethyl (N.1.32), quizalofop-P-tefuryl (N.1.33), sethoxydim (N.1.34), tepraloxydim (N.1.35), tralkoxydim (N.1.36), 4-(4'-chloro-4-cyclo¬propyl-2'-fluoro[1,1'-biphenyl]-

3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one ((N.1.37) CAS 1312337-72-6); 4-(2',4'-dichloro-4-cyclopropyl[1,1'-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one ((N.1.38) CAS 1312337-45-3); 4-(4'-chloro-4-ethyl-2'-fluoro[1,1'-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one ((N.1.39) CAS 1033757-93-5); 4-(2',4'-Dichloro-4-ethyl[1,1'-biphenyl]-3-yl)-2,2,6,6-tetramethyl-2H-pyran-3,5(4H,6H)-dione ((N.1.40) CAS 1312340-84-3); 5-(acetyloxy)-4-(4'-chloro-4-cyclopropyl-2'-fluoro[1,1'-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one ((N.1.41) CAS 1312337-48-6); 5-(acetyloxy)-4-(2',4'-dichloro-4-cyclopropyl-[1,1'-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one ((N.1.42); 5-(acetyloxy)-4-(4'-chloro-4-ethyl-2'-fluoro[1,1'-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one ((N.1.42); 5-(acetyloxy)-4-(4'-chloro-4-ethyl-2'-fluoro[1,1'-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one ((N.1.42); 5-(acetyloxy)-4-(4'-chloro-4-ethyl-2'-fluoro[1,1'-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one ((N.1.42); 5-(acetyloxy)-4-(4'-chloro-4-ethyl-2'-fluoro[1,1'-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one ((N.1.42); 5-(acetyloxy)-4-(4'-chloro-4-ethyl-2'-fluoro[1,1'-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one ((N.1.42); 5-(acetyloxy)-4-(4'-chloro-4-ethyl-2'-fluoro[1,1'-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one ((N.1.42); 5-(acetyloxy)-4-(2',4'-dichloro-4-ethyl-2'-fluoro[1,1'-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one ((N.1.43) CAS 1312340-82-1); 5-(acetyloxy)-4-(2',4'-dichloro-4-ethyl-2'-fluoro[1,1'-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one ((N.1.43) CAS 1312340-82-1); 5-(acetyloxy)-4-(2',4'-dichloro-4-ethyl-2H-pyran-3-one ((N.1.43) CAS 1312340-82-1); 5-(acetyloxy)-4-(2',4'-dichloro-4-ethyl-2H-pyran-3-one ((N.1.43) CAS 1312340-82-1); 5-(acetyloxy)-4-(2',4'-dichloro-4-ethyl-2H-pyran-3-one ((N.1.43) CAS 1312340-82-1); 5-(ace

- 10 tetramethyl-2H-pyran-3-one ((N.1.43) CAS 1312340-82-1); 5-(acetyloxy)-4-(2',4'-dichloro-4ethyl[1,1'-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one ((N.1.44) CAS 1033760-55-2); 4-(4'-chloro-4-cyclopropyl-2'-fluoro[1,1'-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester ((N.1.45) CAS 1312337-51-1); 4-(2´,4'-dichloro -4-cyclopropyl- [1,1'-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-
- 15 pyran-3-yl carbonic acid methyl ester (N.1.46); 4-(4'-chloro-4-ethyl-2'-fluoro[1,1'-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester ((N.1.47) CAS 1312340-83-2); 4-(2',4'-dichloro-4-ethyl¬[1,1'-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5oxo-2H-pyran-3-yl carbonic acid methyl ester ((N.1.48) CAS 1033760-58-5); benfuresate (N.1.49), butylate (N.1.50), cycloate (N.1.51), dalapon (N.1.52), dimepiperate (N.1.53), EPTC
- (N.1.54), esprocarb (N.1.55), ethofumesate (N.1.56), flupropanate (N.1.57), molinate (N.1.58), orbencarb (N.1.59), pebulate (N.1.60), prosulfocarb (N.1.61), TCA (N.1.62), thiobencarb (N.1.63), tiocarbazil (N.1.64), triallate (N.1.65) and vernolate (N.1.66);
   N.2 ALS inhibitors: amidosulfuron (N.2.1), azimsulfuron (N.2.2), bensulfuron (N.2.3), bensulfuron-methyl (N.2.4), chlorimuron (N.2.5), chlorimuron-ethyl (N.2.6), chlorsulfuron (N.2.7),
- cinosulfuron (N.2.8), cyclosulfamuron (N.2.9), ethametsulfuron (N.2.10), ethametsulfuronmethyl (N.2.11), ethoxysulfuron (N.2.12), flazasulfuron (N.2.13), flucetosulfuron (N.2.14), flupyrsulfuron (N.2.15), flupyrsulfuron-methyl-sodium (N.2.16), foramsulfuron (N.2.17), halosulfuron (N.2.18), halosulfuron-methyl (N.2.19), imazosulfuron (N.2.20), iodosulfuron (N.2.21), iodosulfuron-methyl-sodium (N.2.22), iofensulfuron (N.2.23), iofensulfuron-sodium
- (N.2.24), mesosulfuron (N.2.25), metazosulfuron (N.2.26), metsulfuron (N.2.27), metsulfuron-methyl (N.2.28), nicosulfuron (N.2.29), orthosulfamuron (N.2.30), oxasulfuron (N.2.31), primisulfuron (N.2.32), primisulfuron-methyl (N.2.33), propyrisulfuron (N.2.34), prosulfuron (N.2.35), pyrazosulfuron (N.2.36), pyrazosulfuron-ethyl (N.2.37), rimsulfuron (N.2.38), sulfometuron (N.2.39), sulfometuron-methyl (N.2.40), sulfosulfuron (N.2.41), thifensulfuron
- (N.2.42), thifensulfuron-methyl (N.2.43), triasulfuron (N.2.44), tribenuron (N.2.45), tribenuron-methyl (N.2.46), trifloxysulfuron (N.2.47), triflusulfuron (N.2.48), triflusulfuron-methyl (N.2.49), tritosulfuron (N.2.50), imazamethabenz (N.2.51), imazamethabenz-methyl (N.2.52), imazamox (N.2.53), imazapic (N.2.54), imazapyr (N.2.55), imazaquin (N.2.56), imazethapyr (N.2.57); cloransulam (N.2.58), cloransulam-methyl (N.2.59), diclosulam (N.2.60), flumetsulam (N.2.61),
- 40 florasulam (N.2.62), metosulam (N.2.63), penoxsulam (N.2.64), pyrimisulfan (N.2.65) and pyroxsulam (N.2.66); bispyribac (N.2.67), bispyribac-sodium (N.2.68), pyribenzoxim (N.2.69), pyriftalid (N.2.70), pyriminobac (N.2.71), pyriminobac-methyl (N.2.72), pyrithiobac (N.2.73),

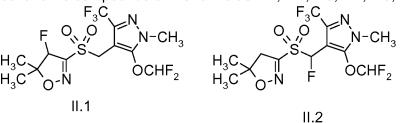
pyrithiobac-sodium (N.2.74), 4-[[[2-[(4,6-dimethoxy-2-pyrimidinyl)oxy]phenyl]methyl]amino]benzoic acid-1-methyl¬ethyl ester ((N.2.75) CAS 420138-41-6), 4-[[[2-[(4,6-dimethoxy-2pyrimidinyl)oxy]phenyl]¬methyl]amino]-benzoic acid propyl ester ((N.2.76) CAS 420138-40-5), N-(4-bromophenyl)-2-[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzenemethanamine ((N.2.77) CAS

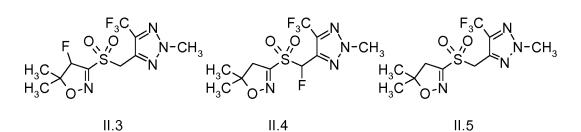
5 420138-01-8); flucarbazone (N.2.78), flucarbazone-sodium (N.2.79), propoxycarbazone (N.2.80), propoxycarbazone-sodium (N.2.81), thiencarbazone (N.2.82), thiencarbazone-methyl (N.2.83), triafamone (N.2.84);

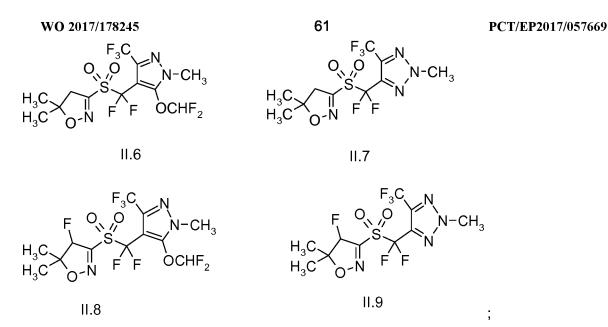
N.3 Photosynthesis inhibitors: amicarbazone (N.3.1); chlorotriazine (N.3.2); ametryn (N.3.3), atrazine (N.3.4), chloridazone (N.3.5), cyanazine (N.3.6), desmetryn (N.3.7), dimethametryn

- 10 (N.3.8),hexazinone (N.3.9), metribuzin (N.3.10), prometon (N.3.11), prometryn (N.3.12), propazine (N.3.13), simazine (N.3.14), simetryn (N.3.15), terbumeton (N.3.16), terbuthylazin (N.3.17), terbutryn (N.3.18), trietazin (N.3.19); chlorobromuron (N.3.20), chlorotoluron (N.3.21), chloroxuron (N.3.22), dimefuron (N.3.23), diuron (N.3.24), fluometuron (N.3.25), isoproturon (N.3.26), isouron (N.3.27), linuron (N.3.28), metamitron (N.3.29), methabenzthiazuron (N.3.30),
- 15 metobenzuron (N.3.31), metoxuron (N.3.32), monolinuron (N.3.33), neburon (N.3.34), siduron (N.3.35), tebuthiuron (N.3.36), thiadiazuron (N.3.37), desmedipham (N.3.38), karbutilat (N.3.39), phenmedipham (N.3.40), phenmedipham-ethyl (N.3.41), bromofenoxim (N.3.42), bromoxynil (N.3.43) and its salts and esters, ioxynil (N.3.44) and its salts and esters, bromacil (N.3.45), lenacil (N.3.46), terbacil (N.3.47), bentazon (N.3.48), bentazon-sodium (N.3.49), pyridate
- (N.3.50), pyridafol (N.3.51), pentanochlor (N.3.52), propanil (N.3.53); diquat (N.3.54), diquat-dibromide (N.3.55), paraquat (N.3.56), paraquat-dichloride (N.3.57), paraquat-dimetilsulfate (N.3.58);

N.4 protoporphyrinogen-IX oxidase inhibitors: acifluorfen (N.4.1), acifluorfen-sodium (N.4.2), azafenidin (N.4.3), bencarbazone (N.4.4), benzfendizone (N.4.5), bifenox (N.4.6), butafenacil


- (N.4.7), carfentrazone (N.4.8), carfentrazone-ethyl (N.4.9), chlormethoxyfen (N.4.10), cinidonethyl (N.4.11), fluazolate (N.4.12), flufenpyr (N.4.13), flufenpyr-ethyl (N.4.14), flumiclorac (N.4.15), flumiclorac-pentyl (N.4.16), flumioxazin (N.4.17), fluoroglycofen (N.4.18), fluoroglycofen-ethyl (N.4.19), fluthiacet (N.4.20), fluthiacet-methyl (N.4.21), fomesafen (N.4.22), halosafen (N.4.23), lactofen (N.4.24), oxadiargyl (N.4.25), oxadiazon (N.4.26), oxyfluorfen
- 30 (N.4.27), pentoxazone (N.4.28), profluazol (N.4.29), pyraclonil (N.4.30), pyraflufen (N.4.31), pyraflufen-ethyl (N.4.32), saflufenacil (N.4.33), sulfentrazone (N.4.34), thidiazimin (N.4.35), tiafenacil (N.4.36), trifludimoxazin (N.4.37), ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate ((N.4.38) CAS 353292-31-6), N-ethyl-3-(2,6-dichloro-4-trifluoro-methylphenoxy)-5-methyl-1H-
- 35 pyrazole-1-carboxamide ((N.4.39) CAS 452098-92-9), N tetrahydrofurfuryl-3-(2,6-dichloro-4trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide ((N.4.40) CAS 915396-43-9), Nethyl-3-(2-chloro-6-fluoro-4-trifluoromethyl¬phenoxy)-5-methyl-1H-pyrazole-1-carboxamide ((N.4.41) CAS 452099-05-7), N tetrahydro¬furfuryl-3-(2-chloro-6-fluoro-4trifluoro¬methylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide ((N.4.42) CAS 452100-03-7), 3-
- 40 [7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl]-1,5-dimethyl-6-thioxo-[1,3,5]triazinan-2,4-dione ((N.4.43) CAS 451484-50-7), 2-(2,2,7-trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1,3-dione ((N.4.44) CAS 1300118-96-0), 1-methyl-6-trifluoro¬methyl-3-(2,2,7-tri-fluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-1H-pyrimidine-2,4-dione ((N.4.45) CAS 1304113-05-0), methyl (E)-4-


[2-chloro-5-[4-chloro-5-(difluoromethoxy)-1H-methyl-pyrazol-3-yl]-4-fluoro-phenoxy]-3-methoxybut-2-enoate ((N.4.46) CAS 948893-00-3), 3-[7-chloro-5-fluoro-2-(trifluoromethyl)-1Hbenzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)-1H-pyrimidine-2,4-dione ((N.4.47) CAS 212754-02-4);


- N.5 Bleacher herbicides: beflubutamid (N.5.1), diflufenican (N.5.2), fluridone (N.5.3), flurochloridone (N.5.4), flurtamone (N.5.5), norflurazon (N.5.6), picolinafen (N.5.7), 4-(3-trifluoromethyl¬phenoxy)-2-(4-trifluoromethylphenyl)¬pyrimidine ((N.5.8) CAS 180608-33-7); benzobicyclon (N.5.9), benzofenap (N.5.10), bicyclopyrone (N.5.11), clomazone (N.5.12), fenquintrione (N.5.13), isoxaflutole (N.5.14), mesotrione (N.5.15), pyrasulfotole (N.5.16),
- 10 pyrazolynate (N.5.17), pyrazoxyfen (N.5.18), sulcotrione (N.5.19), tefuryltrione (N.5.20), tembotrione (N.5.21), tolpyralate (N.5.22), topramezone (N.5.23); aclonifen (N.5.24), amitrole (N.5.25), flumeturon (N.5.26);

N.6 EPSP synthase inhibitors: glyphosate (N.6.1), glyphosate-isopropylammonium (N.6.2), glyposate-potassium (N.6.3), glyphosate-trimesium (sulfosate) (N.6.4);

- N.7 Glutamine synthase inhibitors: bilanaphos (bialaphos) (N.7.1), bilanaphos-sodium (N.7.2), glufosinate (N.7.3), glufosinate-P (N.7.4), glufosinate-ammonium (N.7.5);
   N.8 DHP synthase inhibitors: asulam (N.8.1);
   N.9 Mitosis inhibitors: benfluralin (N.9.1), butralin (N.9.2), dinitramine (N.9.3), ethalfluralin (N.9.4), fluchloralin (N.9.5), oryzalin (N.9.6), pendimethalin (N.9.7), prodiamine (N.9.8), trifluralin
- (N.9.9); amiprophos (N.9.10), amiprophos-methyl (N.9.11), butamiphos (N.9.12); chlorthal (N.9.13), chlorthal-dimethyl (N.9.14), dithiopyr (N.9.15), thiazopyr (N.9.16), propyzamide (N.9.17), tebutam (N.9.18); carbetamide (N.9.19), chlorpropham (N.9.20), flamprop (N.9.21), flamprop-isopropyl (N.9.22), flamprop-methyl (N.9.23), flamprop-M-isopropyl (N.9.24), flamprop-M-methyl (N.9.25), propham (N.9.26);
- N.10 VLCFA inhibitors: acetochlor (N.10.1), alachlor (N.10.2), butachlor (N.10.3), dimethachlor (N.10.4), dimethenamid (N.10.5), dimethenamid-P (N.10.6), metazachlor (N.10.7), metolachlor (N.10.8), metolachlor-S (N.10.9), pethoxamid (N.10.10), pretilachlor (N.10.11), propachlor (N.10.12), propisochlor (N.10.13), thenylchlor (N.10.14), flufenacet (N.10.15), mefenacet (N.10.16), diphenamid (N.10.17), naproanilide (N.10.18), napropamide (N.10.19), napropamide-
- M (N.10.20), fentrazamide (N.10.21), anilofos (N.10.22), cafenstrole (N.10.23), fenoxasulfone (N.10.24), ipfencarbazone (N.10.25), piperophos (N.10.26), pyroxasulfone (N.10.27), isoxazoline compounds of the formulae II.1, II.2, II.3, II.4, II.5, II.6, II.7, II.8 and II.9







N.11 Cellulose biosynthesis inhibitors: chlorthiamid (N.11.1), dichlobenil (N.11.2), flupoxam (N.11.3), indaziflam (N.11.4), isoxaben (N.11.5), triaziflam (N.11.6), 1-cyclohexyl-5-

- 5 (N.11.3), indaziflam (N.11.4), isoxaben (N.11.5), triaziflam (N.11.6), 1-cyclohexyl-5-pentafluorphenyloxy-14-[1,2,4,6]thiatriazin-3-ylamine ((N.11.7) CAS 175899-01-1);
   N.12 Decoupler herbicides: dinoseb (N.12.1), dinoterb (N.12.2), DNOC (N.12.3) and its salts;
   N.13 Auxinic herbicides: 2,4-D (N.13.1) and its salts and esters, clacyfos (N.13.2), 2,4-DB (N.13.3) and its salts and esters, aminocyclopyrachlor (N.13.4) and its salts and esters,
- 10 aminopyralid (N.13.5) and its salts such as aminopyralid-dimethylammonium (N.13.6), aminopyralid-tris(2-hydroxypropyl)ammonium (N.13.7) and its esters, benazolin (N.13.8), benazolin-ethyl (N.13.9), chloramben (N.13.10) and its salts and esters, clomeprop (N.13.11), clopyralid (N.13.12) and its salts and esters, dicamba (N.13.13) and its salts and esters, dichlorprop (N.13.14) and its salts and esters, dichlorprop-P (N.13.15) and its salts and esters,
- 15 fluroxypyr (N.13.16), fluroxypyr-butometyl (N.13.17), fluroxypyr-meptyl (N.13.18), halauxifen (N.13.) and its salts and esters (CAS 943832-60-8); MCPA (N.13.) and its salts and esters, MCPA-thioethyl (N.13.19), MCPB (N.13.20) and its salts and esters, mecoprop (N.13.21) and its salts and esters, mecoprop-P (N.13.22) and its salts and esters, picloram (N.13.23) and its salts and esters, quinclorac (N.13.24), quinmerac (N.13.25), TBA (2,3,6) (N.13.26) and its salts and
- esters, triclopyr (N.13.27) and its salts and esters, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-meth-oxyphenyl)-5-fluoropyridine-2-carboxylic acid (N.13.28), benzyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoropyridine-2-carboxylate ((N.13.29) CAS 1390661-72-9);
   N.14 Auxin transport inhibitors: diflufenzopyr (N.14.1), diflufenzopyr-sodium (N.14.2), naptalam (N.14.3) and naptalam-sodium (N.14.4);
- N.15 Other herbicides: bromobutide (N.15.1), chlorflurenol (N.15.2), chlorflurenol-methyl (N.15.3), cinmethylin (N.15.4), cumyluron (N.15.5), cyclopyrimorate ((N.15.6) CAS 499223-49-3) and its salts and esters, dalapon (N.15.7), dazomet (N.15.8), difenzoquat (N.15.9), difenzoquat-metilsulfate (N.15.10), dimethipin (N.15.11), DSMA (N.15.12), dymron (N.15.13), endothal (N.15.14) and its salts, etobenzanid (N.15.15), flurenol (N.15.16), flurenol-butyl (N.15.17),
- 30 flurprimidol (N.15.18), fosamine (N.15.19), fosamine-ammonium (N.15.20), indanofan (N.15.21), maleic hydrazide (N.15.22), mefluidide (N.15.23), metam (N.15.24), methiozolin ((N.15.25) CAS 403640-27-7), methyl azide (N.15.26), methyl bromide (N.15.27), methyl-dymron (N.15.28), methyl iodide (N.15.29), MSMA (N.15.30), oleic acid (N.15.31), oxaziclomefone (N.15.32), pelargonic acid (N.15.33), pyributicarb (N.15.34), quinoclamine (N.15.35), tridiphane (N.15.36);

O) Insecticides from classes O.1 to O.29

- O.1 Acetylcholine esterase (AChE) inhibitors: aldicarb (O.1.1), alanycarb (O.1.2), bendiocarb (O.1.3), benfuracarb (O.1.4), butocarboxim (O.1.5), butoxycarboxim (O.1.6), carbaryl (O.1.7), carbofuran (O.1.8), carbosulfan (O.1.9), ethiofencarb (O.1.10), fenobucarb (O.1.11),
- 5 formetanate (0.1.12), furathiocarb (0.1.13), isoprocarb (0.1.14), methiocarb (0.1.15), methomyl (0.1.16), metolcarb (0.1.17), oxamyl (0.1.18), pirimicarb (0.1.19), propoxur (0.1.20), thiodicarb (0.1.21), thiofanox (0.1.22), trimethacarb (0.1.23), XMC (0.1.24), xylylcarb (0.1.25) and triazamate (0.1.26); acephate (0.1.27), azamethiphos (0.1.28), azinphos-ethyl (0.1.29), azinphosmethyl (0.1.30), cadusafos (0.1.31), chlorethoxyfos (0.1.32), chlorfenvinphos
- (O.1.33), chlormephos (O.1.34), chlorpyrifos (O.1.35), chlorpyrifos-methyl (O.1.36), coumaphos (O.1.37), cyanophos (O.1.38), demeton-S-methyl (O.1.39), diazinon (O.1.40), dichlorvos/ DDVP (O.1.41), dicrotophos (O.1.42), dimethoate (O.1.43), dimethylvinphos (O.1.44), disulfoton (O.1.45), EPN (O.1.46), ethion (O.1.47), ethoprophos (O.1.48), famphur (O.1.49), fenamiphos (O.1.50), fenitrothion (O.1.51), fenthion (O.1.52), fosthiazate (O.1.53), heptenophos (O.1.54),
- imicyafos (0.1.55), isofenphos (0.1.56), isopropyl O-(methoxyaminothio-phosphoryl) salicylate (0.1.57), isoxathion (0.1.58), malathion (0.1.59), mecarbam (0.1.60), methamidophos (0.1.61), methidathion (0.1.62), mevinphos (0.1.63), monocrotophos (0.1.64), naled (0.1.65), omethoate (0.1.66), oxydemeton-methyl (0.1.67), parathion (0.1.68), parathion-methyl (0.1.69), phenthoate (0.1.70), phorate (0.1.71), phosalone (0.1.72), phosmet (0.1.73),
- 20 phosphamidon (O.1.74), phoxim (O.1.75), pirimiphos- methyl (O.1.76), profenofos (O.1.77), propetamphos (O.1.78), prothiofos (O.1.79), pyraclofos (O.1.80), pyridaphenthion (O.1.81), quinalphos (O.1.82), sulfotep (O.1.83), tebupirimfos (O.1.84), temephos (O.1.85), terbufos (O.1.86), tetrachlorvinphos (O.1.87), thiometon (O.1.88), triazophos (O.1.89), trichlorfon (O.1.90), vamidothion (O.1.91);
- O.2 GABA-gated chloride channel antagonists: endosulfan (O.2.1), chlordane (O.2.2); ethiprole (O.2.3), fipronil (O.2.4), flufiprole (O.2.5), pyrafluprole (O.2.6), pyriprole (O.2.7);
  O.3 Sodium channel modulators: acrinathrin (O.3.1), allethrin (O.3.2), d-cis-trans allethrin (O.3.3), d-trans allethrin (O.3.4), bifenthrin (O.3.5), bioallethrin (O.3.6), bioallethrin S-cylclopentenyl (O.3.7), bioresmethrin (O.3.8), cycloprothrin (O.3.9), cyfluthrin (O.3.10), beta-
- cyfluthrin (O.3.11), cyhalothrin (O.3.12), lambda-cyhalothrin (O.3.13), gamma-cyhalothrin (O.3.14), cypermethrin (O.3.15), alpha-cypermethrin (O.3.16), beta-cypermethrin (O.3.17), theta-cypermethrin (O.3.18), zeta-cypermethrin (O.3.19), cyphenothrin (O.3.20), deltamethrin (O.3.21), empenthrin (O.3.22), esfenvalerate (O.3.23), etofenprox (O.3.24), fenpropathrin (O.3.25), fenvalerate (O.3.26), flucythrinate (O.3.27), flumethrin (O.3.28), tau-fluvalinate
- 35 (O.3.29), halfenprox (O.3.30), heptafluthrin (O.3.31), imiprothrin (O.3.32), meperfluthrin (O.3.33), metofluthrin (O.3.34), momfluorothrin (O.3.35), permethrin (O.3.36), phenothrin (O.3.37), prallethrin (O.3.38), profluthrin (O.3.39), pyrethrin (pyrethrum) (O.3.40), resmethrin (O.3.41), silafluofen (O.3.42), tefluthrin (O.3.43), tetramethylfluthrin (O.3.44), tetramethrin (O.3.45), tralomethrin (O.3.46) and transfluthrin (O.3.47); DDT (O.3.48), methoxychlor (O.3.49);
- O.4 Nicotinic acetylcholine receptor agonists (nAChR): acetamiprid (O.4.1), clothianidin (O.4.2), cycloxaprid (O.4.3), dinotefuran (O.4.4), imidacloprid (O.4.5), nitenpyram (O.4.6), thiacloprid (O.4.7), thiamethoxam (O.4.8); (2E)-1-[(6-chloropyridin-3-yl)methyl]-N'-nitro-2-pentylidene-hydrazinecarboximidamide (O.4.9); 1-[(6-chloropyridin-3-yl)methyl]-7-methyl-8-nitro-5-propoxy-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine (O.4.10); nicotine (O.4.11);

5

10

15

20

25

30

35

O.5 Nicotinic acetylcholine receptor allosteric activators: spinosad (O.5.1), spinetoram (O.5.2); O.6 Chloride channel activators: abamectin (O.6.1), emamectin benzoate (O.6.2), ivermectin (O.6.3), lepimectin (O.6.4), milbemectin (O.6.5); 0.7 Juvenile hormone mimics: hydroprene (0.7.1), kinoprene (0.7.2), methoprene (0.7.3); fenoxycarb (0.7.4), pyriproxyfen (0.7.5); O.8 miscellaneous non-specific (multi-site) inhibitors: methyl bromide (O.8.1) and other alkyl halides; chloropicrin (0.8.2), sulfuryl fluoride (0.8.3), borax (0.8.4), tartar emetic (0.8.5); 0.9 Selective homopteran feeding blockers: pymetrozine (0.9.1), flonicamid (0.9.2); O.10 Mite growth inhibitors: clofentezine (O.10.1), hexythiazox (O.10.2), diflovidazin (O.10.3); etoxazole (0.10.4); O.11 Microbial disruptors of insect midgut membranes: the Bt crop proteins: Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Ab1; O.12 Inhibitors of mitochondrial ATP synthase: diafenthiuron (O.12.1); azocyclotin (O.12.2), cyhexatin (0.12.3), fenbutatin oxide (0.12.4), propargite (0.12.5), tetradifon (0.12.6); O.13 Uncouplers of oxidative phosphorylation via disruption of the proton gradient: chlorfenapyr (0.13.1), DNOC (0.13.2), sulfluramid (0.13.3); O.14 Nicotinic acetylcholine receptor (nAChR) channel blockers: bensultap (O.14.1), cartap hydrochloride (0.14.2), thiocyclam (0.14.3), thiosultap sodium (0.14.4); O.15 Inhibitors of the chitin biosynthesis type 0: bistrifluron (O.15.1), chlorfluazuron (O.15.2), diflubenzuron (O.15.3), flucycloxuron (O.15.4), flufenoxuron (O.15.5), hexaflumuron (O.15.6), lufenuron (O.15.7), novaluron (O.15.8), noviflumuron (O.15.9), teflubenzuron (O.15.10), triflumuron (O.15.11); O.16 Inhibitors of the chitin biosynthesis type 1: buprofezin (O.16.1); O.17 Moulting disruptors: cyromazine (O.17.1); O.18 Ecdyson receptor agonists: methoxyfenozide (O.18.1), tebufenozide (O.18.2), halofenozide (O.18.3), fufenozide (O.18.4), chromafenozide (O.18.5); O.19 Octopamin receptor agonists: amitraz (O.19.1); O.20 Mitochondrial complex III electron transport inhibitors: hydramethylnon (O.20.1), acequinocyl (0.20.2), fluacrypyrim (0.20.3); O.21 Mitochondrial complex I electron transport inhibitors: fenazaquin (O.21.1), fenpyroximate (O.21.2), pyrimidifen (O.21.3), pyridaben (O.21.4), tebufenpyrad (O.21.5), tolfenpyrad (O.21.6); rotenone (0.21.7); O.22 Voltage-dependent sodium channel blockers: indoxacarb (O.22.1), metaflumizone (O.22.2), 2-[2-(4-cyanophenyl)-1-[3-(trifluoromethyl)phenyl]ethylidene]-N-[4-(difluoromethoxy)phenyl]-hydrazinecarboxamide (O.22.3), N-(3-chloro-2-methylphenyl)-2-[(4chlorophenyl)-[4-[methyl(methylsulfonyl)amino]phenyl]methylene]-hydrazinecarboxamide (0.22.4);

0.23 Inhibitors of the of acetyl CoA carboxylase: spirodiclofen (0.23.1), spiromesifen (0.23.2), spirotetramat (0.23.3);

40 O.24 Mitochondrial complex IV electron transport inhibitors: aluminium phosphide (O.24.1), calcium phosphide (0.24.2), phosphine (0.24.3), zinc phosphide (0.24.4), cyanide (0.24.5); O.25 Mitochondrial complex II electron transport inhibitors: cyenopyrafen (O.25.1), cyflumetofen (0.25.2);

O.26 Ryanodine receptor-modulators: flubendiamide (O.26.1), chlorantraniliprole (O.26.2),

cyantraniliprole (O.26.3), cyclaniliprole (O.26.4), tetraniliprole (O.26.5); (R)-3-chloro-N1-{2methyl-4-[1,2,2,2 -tetrafluoro-1-(trifluoromethyl)ethyl]phenyl}-N2-(1-methyl-2methylsulfonylethyl)phthalamide (O.26.6), (S)-3-chloro-N1-{2-methyl-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl}-N2-(1-methyl-2-methylsulfonylethyl)phthalamide (O.26.7), methyl-

- 5 2-[3,5-dibromo-2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]carbonyl}amino)benzoyl]-1,2-dimethylhydrazinecarboxylate (O.26.8); N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide (O.26.9); N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide (O.26.10); N-[4-chloro-2-[(di-2-propyl-lambda-4-
- 10 sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3carboxamide (O.26.11); N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide (O.26.12); N-[4,6-dibromo-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide (O.26.13); N-[2-(5-amino-1,3,4-thiadiazol-2-yl)-4-chloro-6-
- 15 methylphenyl]-3-bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxamide (O.26.14); 3-chloro-1-(3-chloro-2-pyridinyl)-N-[2,4-dichloro-6-[[(1-cyano-1-methylethyl)amino]carbonyl]phenyl]-1Hpyrazole-5-carboxamide (O.26.15); 3-bromo-N-[2,4-dichloro-6-(methylcarbamoyl)phenyl]-1-(3,5dichloro-2-pyridyl)-1H-pyrazole-5-carboxamide (O.26.16); N-[4-chloro-2-[[(1,1dimethylethyl)amino]carbonyl]-6-methylphenyl]-1-(3-chloro-2-pyridinyl)-3-(fluoromethoxy)-1H-
- pyrazole-5-carboxamide (O.26.17); cyhalodiamide (O.26.18);
  O.27. insecticidal active compounds of unknown or uncertain mode of action: afidopyropen (O.27.1), afoxolaner (O.27.2), azadirachtin (O.27.3), amidoflumet (O.27.4), benzoximate (O.27.5), bifenazate (O.27.6), broflanilide (O.27.7), bromopropylate (O.27.8), chinomethionat (O.27.9), cryolite (O.27.10), dicloromezotiaz (O.27.11), dicofol (O.27.12), flufenerim (O.27.13),
- flometoquin (0.27.14), fluensulfone (0.27.15), fluhexafon (0.27.16), fluopyram (0.27.17), flupyradifurone (0.27.18), fluralaner (0.27.19), metoxadiazone (0.27.20), piperonyl butoxide (0.27.21), pyflubumide (0.27.22), pyridalyl (0.27.23), pyrifluquinazon (0.27.24), sulfoxaflor (0.27.25), tioxazafen (0.27.26), triflumezopyrim (0.27.27), 11-(4-chloro-2,6-dimethylphenyl)-12-hydroxy-1,4-dioxa-9-azadispiro[4.2.4.2]-tetradec-11-en-10-one (0.27.28), 3-(4'-fluoro-2,4-
- 30 dimethylbiphenyl-3-yl)-4-hydroxy-8-oxa-1-azaspiro[4.5]dec-3-en-2-one (O.27.28), 1-[2-fluoro-4-methyl-5-[(2,2,2-trifluoroethyl)sulfinyl]phenyl]-3-(trifluoromethyl)-1H-1,2,4-triazole-5-amine (O.27.29), (E/Z)-N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide (O.27.31); (E/Z)-N-[1-[(6-chloro-5-fluoro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide (O.27.32); (E/Z)-2,2,2-trifluoro-N-[1-[(6-fluoro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide (O.27.32); (E/Z)-2,2,2-trifluoro-N-[1-[(6-fluoro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide (O.27.32); (E/Z)-2,2,2-trifluoro-N-[1-[(6-fluoro-3-pyridyl)methyl]-2-pyridyli-
- 35 dene]acetamide (O.27.33); (E/Z)-N-[1-[(6-bromo-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoroacetamide (O.27.34); (E/Z)-N-[1-[1-(6-chloro-3-pyridyl)ethyl]-2-pyridylidene]-2,2,2-trifluoroacetamide (O.27.35); (E/Z)-N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2-difluoroacetamide (O.27.36); (E/Z)-2-chloro-N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2difluoro-acetamide (O.27.37); (E/Z)-N-[1-[(2-chloropyrimidin-5-yl)methyl]-2-pyridylidene]-2,2,2-
- 40 trifluoro-acetamide (O.27.38); (E/Z)-N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,3,3,3pentafluoro-propanamide (O.27.39); N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2trifluoro-thioacetamide (O.27.40); N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-N'-isopropyl-acetamidine (O.27.41); fluazaindolizine (O.27.42); 4-[5-(3,5-dichlorophenyl)-5-

(trifluoromethyl)-4H-isoxazol-3-yl]-2-methyl-N-(1-oxothietan-3-yl)benzamide (O.27.43); fluxametamide (O.27.44); 5-[3-[2,6-dichloro-4-(3,3-dichloroallyloxy)phenoxy]propoxy]-1H-pyrazole (O.27.45); 3-(benzoylmethylamino)-N-[2-bromo-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]-6-(trifluoromethyl)phenyl]-2-fluoro-benzamide (O.27.46); 3-

- (benzoylmethylamino)-2-fluoro-N-[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]-benzamide (O.27.47); N-[3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]phenyl]-N-methyl-benzamide (O.27.48); N-[3-[[[2-bromo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]-2-fluorophenyl]-4-fluoro-N-methyl-benzamide (O.27.49);
- 4-fluoro-N-[2-fluoro-3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]phenyl]-N-methyl-benzamide (O.27.50); 3-fluoro-N-[2-fluoro-3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6(trifluoromethyl)phenyl]amino]carbonyl]phenyl]-N-methyl-benzamide (O.27.51); 2-chloro-N-[3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]phenyl]-3-pyridinecarboxamide
- 15 (O.27.52); 4-cyano-N-[2-cyano-5-[[2,6-dibromo-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]phenyl]-2-methyl-benzamide (O.27.53); 4-cyano-3-[(4-cyano-2methyl-benzoyl)amino]-N-[2,6-dichloro-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]-2-fluoro-benzamide (O.27.54); N-[5-[[2-chloro-6-cyano-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide
- (O.27.55); N-[5-[[2-bromo-6-chloro-4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide (O.27.56); N-[5-[[2-bromo-6-chloro-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide (O.27.57); 4-cyano-N-[2-cyano-5-[[2,6-dichloro-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]-
- 25 carbamoyl]phenyl]-2-methyl-benzamide (O.27.58); 4-cyano-N-[2-cyano-5-[[2,6-dichloro-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl]carbamoyl]phenyl]-2-methyl-benzamide (O.27.59); N-[5-[[2-bromo-6-chloro-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide (O.27.60); 2-(1,3-dioxan-2-yl)-6-[2-(3-pyridinyl)-5-thiazolyl]-pyridine; 2-[6-[2-(5-fluoro-3-
- 30 pyridinyl)-5-thiazolyl]-2-pyridinyl]-pyrimidine (O.27.61); 2-[6-[2-(3-pyridinyl)-5-thiazolyl]-2pyridinyl]-pyrimidine (O.27.62); N-methylsulfonyl-6-[2-(3-pyridyl)thiazol-5-yl]pyridine-2-carboxamide (O.27.63); N-methylsulfonyl-6-[2-(3-pyridyl)thiazol-5-yl]pyridine-2-carboxamide (O.27.64); N-ethyl-N-[4-methyl-2-(3-pyridyl)thiazol-5-yl]-3-methylthio-propanamide (O.27.65); Nmethyl-N-[4-methyl-2-(3-pyridyl)thiazol-5-yl]-3-methylthio-propanamide (O.27.66); N,2-dimethyl-
- 35 N-[4-methyl-2-(3-pyridyl)thiazol-5-yl]-3-methylthio-propanamide (O.27.67); N-ethyl-2-methyl-N-[4-methyl-2-(3-pyridyl)thiazol-5-yl]-3-methylthio-propanamide (O.27.68); N-[4-chloro-2-(3pyridyl)thiazol-5-yl]-N-ethyl-2-methyl-3-methylthio-propanamide (O.2769.); N-[4-chloro-2-(3pyridyl)thiazol-5-yl]-N,2-dimethyl-3-methylthio-propanamide (O.27.70); N-[4-chloro-2-(3pyridyl)thiazol-5-yl]-N-methyl-3-methylthio-propanamide (O.27.71); N-[4-chloro-2-(3-
- pyridyl)thiazol-5-yl]-N-ethyl-3-methylthio-propanamide (O.27.72); 1-[(6-chloro-3-pyridinyl)methyl]-1,2,3,5,6,7-hexahydro-5-methoxy-7-methyl-8-nitro-imidazo[1,2-a]pyridine (O.27.73); 1-[(6-chloropyridin-3-yl)methyl]-7-methyl-8-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridin-5-ol (O.27.74); 1-isopropyl-N,5-dimethyl-N-pyridazin-4-yl-pyrazole-4-carboxamide (O.27.75); 1-(1,2-dimethylpropyl)-N-ethyl-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide

(O.27.76); N,5-dimethyl-N-pyridazin-4-yl-1-(2,2,2-trifluoro-1-methyl-ethyl)pyrazole-4carboxamide (O.27.77); 1-[1-(1-cyanocyclopropyl)ethyl]-N-ethyl-5-methyl-N-pyridazin-4-ylpyrazole-4-carboxamide (O.27.78); N-ethyl-1-(2-fluoro-1-methyl-propyl)-5-methyl-N-pyridazin-4yl-pyrazole-4-carboxamide (O.27.79); 1-(1,2-dimethylpropyl)-N,5-dimethyl-N-pyridazin-4-yl-

- 5 pyrazole-4-carboxamide (O.27.80); 1-[1-(1-cyanocyclopropyl)ethyl]-N,5-dimethyl-N-pyridazin-4yl-pyrazole-4-carboxamide (O.27.81); N-methyl-1-(2-fluoro-1-methyl-propyl]-5-methyl-Npyridazin-4-yl-pyrazole-4-carboxamide (O.27.82); 1-(4,4-difluorocyclohexyl)-N-ethyl-5-methyl-Npyridazin-4-yl-pyrazole-4-carboxamide (O.27.83); 1-(4,4-difluorocyclohexyl)-N,5-dimethyl-Npyridazin-4-yl-pyrazole-4-carboxamide (O.27.84), N-(1-methylethyl)-2-(3-pyridinyl)-2H-indazole-
- 4-carboxamide (O.27.85); N-cyclopropyl-2-(3-pyridinyl)-2H-indazole-4-carboxamide (O.27.86);
   N-cyclohexyl-2-(3-pyridinyl)-2H-indazole-4-carboxamide (O.27.87); 2-(3-pyridinyl)-N-(2,2,2-trifluoroethyl)-2H-indazole-4-carboxamide (O.27.88); 2-(3-pyridinyl)-N-[(tetrahydro-2-furanyl)methyl]-2H-indazole-5-carboxamide (O.27.89); methyl 2-[[2-(3-pyridinyl)-2H-indazol-5-yl]carbonyl]hydrazinecarboxylate (O.27.90); N-[(2,2-difluorocyclopropyl)methyl]-2-(3-pyridinyl)-
- 15 2H-indazole-5-carboxamide (0.27.91); N-(2,2-difluoropropyl)-2-(3-pyridinyl)-2H-indazole-5-carboxamide (0.27.92); 2-(3-pyridinyl)-N-(2-pyrimidinylmethyl)-2H-indazole-5-carboxamide (0.27.93); N-[(5-methyl-2-pyrazinyl)methyl]-2-(3-pyridinyl)-2H-indazole-5-carboxamide (0.27.94), N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-N-ethyl-3-(3,3,3-trifluoropropylsulfanyl)-propanamide (0.27.95); N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-N-ethyl-3-(3,3,3-
- 20 trifluoropropylsulfinyl)propanamide (O.27.96); N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-3-[(2,2-di-fluorocyclopropyl)methylsulfanyl]-N-ethyl-propanamide (O.27.97); N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-3-[(2,2-difluorocyclopropyl)methylsulfinyl]-N-ethyl-propanamide (O.27.98); sarolaner (O.27.99), lotilaner (O.27.100).
- 25 The active substances referred to as component 2, their preparation and their activity e. g. against harmful fungi is known (cf.: http://www.alanwood.net/pesticides/); these substances are commercially available. The compounds described by IUPAC nomenclature, their preparation and their pesticidal activity are also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968; EP-A 141 317; EP-A 152 031; EP-A 226 917; EP-A 243 970; EP-A 256 503; EP-A 428 941;
- 30 EP-A 532 022; EP-A 1 028 125; EP-A 1 035 122; EP-A 1 201 648; EP-A 1 122 244, JP 2002316902; DE 19650197; DE 10021412; DE 102005009458; US 3,296,272; US 3,325,503; WO 98/46608; WO 99/14187; WO 99/24413; WO 99/27783; WO 00/29404; WO 00/46148; WO 00/65913; WO 01/54501; WO 01/56358; WO 02/22583; WO 02/40431; WO 03/10149; WO 03/11853; WO 03/14103; WO 03/16286; WO 03/53145; WO 03/61388;
- 35 WO 03/66609; WO 03/74491; WO 04/49804; WO 04/83193; WO 05/120234; WO 05/123689;
  WO 05/123690; WO 05/63721; WO 05/87772; WO 05/87773; WO 06/15866; WO 06/87325;
  WO 06/87343; WO 07/82098; WO 07/90624, WO 10/139271, WO 11/028657, WO 12/168188,
  WO 07/006670, WO 11/77514; WO 13/047749, WO 10/069882, WO 13/047441, WO 03/16303,
  WO 09/90181, WO 13/007767, WO 13/010862, WO 13/127704, WO 13/024009, WO 13/24010,
- 40 WO 13/047441, WO 13/162072, WO 13/092224, WO 11/135833, CN 1907024, CN 1456054, CN 103387541, CN 1309897, WO 12/84812, CN 1907024, WO 09094442, WO 14/60177, WO 13/116251, WO 08/013622, WO 15/65922, WO 94/01546, EP 2865265, WO 07/129454, WO 12/165511, WO 11/081174, WO 13/47441).

The present invention furthermore relates to agrochemical compositions comprising a mixture of at least one compound I (component 1) and at least one further active substance useful for plant protection, e. g. selected from the groups A) to O) (component 2), in particular one further fungicide, e. g. one or more fungicide from the groups A) to K), as described above, and if

- 5 desired one suitable solvent or solid carrier. Those mixtures are of particular interest, since many of them at the same application rate show higher efficiencies against harmful fungi. Furthermore, combating harmful fungi with a mixture of compounds I and at least one fungicide from groups A) to K), as described above, is more efficient than combating those fungi with individual compounds I or individual fungicides from groups A) to K).
- 10 By applying compounds I together with at least one active substance from groups A) to O) a synergistic effect can be obtained, i.e. more then simple addition of the individual effects is obtained (synergistic mixtures).

This can be obtained by applying the compounds I and at least one further active substance simultaneously, either jointly (e. g. as tank-mix) or seperately, or in succession, wherein the time

15 interval between the individual applications is selected to ensure that the active substance applied first still occurs at the site of action in a sufficient amount at the time of application of the further active substance(s). The order of application is not essential for working of the present invention.

When applying compound I and a pesticide II sequentially the time between both applications

may vary e. g. between 2 hours to 7 days. Also a broader range is possible ranging from 0.25 hour to 30 days, preferably from 0.5 hour to 14 days, particularly from 1 hour to 7 days or from 1.5 hours to 5 days, even more preferred from 2 hours to 1 day.
In the binary mixtures and compositions according to the invention the weight ratio of the

component 1) and the component 2) generally depends from the properties of the active

components used, usually it is in the range of from 1:10,000 to 10,000:1, often it is in the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1, even more preferably in the range of from 1:4 to 4:1 and in particular in the range of from 1:2 to 2:1.

According to further embodiments of the binary mixtures and compositions, the weight ratio of the component 1) and the component 2) usually is in the range of from 1000:1 to 1:1, often in the range of from 100: 1 to 1:1, regularly in the range of from 50:1 to 1:1, preferably in the range of from 20:1 to 1:1, more preferably in the range of from 10:1 to 1:1, even more preferably in the range of from 4:1 to 1:1 and in particular in the range of from 2:1 to 1:1. According to a further embodiments of the binary mixtures and compositions, the weight ratio of

- 35 the component 1) and the component 2) usually is in the range of from 1:1 to 1:1000, often in the range of from 1:1 to 1:100, regularly in the range of from 1:1 to 1:50, preferably in the range of from 1:1 to 1:20, more preferably in the range of from 1:1 to 1:10, even more preferably in the range of from 1:1 to 1:4 and in particular in the range of from 1:1 to 1:2.
- In the ternary mixtures, i.e. compositions according to the invention comprising the component
  1) and component 2) and a compound III (component 3), the weight ratio of component 1) and component 2) depends from the properties of the active substances used, usually it is in the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1 and in particular in the range of from 1:4 to 4:1, and the weight ratio of component 1) and component 3) usually it is in

5

the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1 and in particular in the range of from 1:4 to 4:1.

Any further active components are, if desired, added in a ratio of from 20:1 to 1:20 to the component 1).

These ratios are also suitable for inventive mixtures applied by seed treatment.

Preference is also given to mixtures comprising as component 2) at least one active substance selected from inhibitors of complex III at  $Q_0$  site in group A), more preferably selected from

- compounds (A.1.1), (A.1.4), (A.1.8), (A.1.9), (A.1.10), (A.1.12), (A.1.13), (A.1.14), (A.1.17),
  (A.1.21), (A.1.24), (A.1.25), (A.1.26), (A.1.27), (A.1.30), (A.1.31), (A.1.32), (A.1.34) and
  (A.1.35); particularly selected from (A.1.1), (A.1.4), (A.1.8), (A.1.9), (A.1.13), (A.1.14), (A.1.17),
  (A.1.24), (A.1.25), (A.1.26), (A.1.27), (A.1.30), (A.1.31), (A.1.32), (A.1.34) and (A.1.35).
  Preference is also given to mixtures comprising as component 2) at least one active substance
- selected from inhibitors of complex III at Q<sub>i</sub> site in group A), more preferably selected from compounds (A.2.1), (A.2.3) and (A.2.4); particularly selected from (A.2.3) and (A.2.4).
   Preference is also given to mixtures comprising as component 2) at least one active substance selected from inhibitors of complex II in group A), more preferably selected from compounds (A.3.2), (A.3.3), (A.3.4), (A.3.7), (A.3.9), (A.3.11), (A.3.12), (A.3.15), (A.3.16), (A.3.17), (A.3.18),
- 20 (A.3.19), (A.3.20), (A.3.21), (A.3.22), (A.3.23), (A.3.24), (A.3.25), (A.3.27), (A.3.28), (A.3.29),
  (A.3.31), (A.3.32), (A.3.33), (A.3.34), (A.3.35), (A.3.36), (A.3.37), (A.3.38) and (A.3.39);
  particularly selected from (A.3.2), (A.3.3), (A.3.4), (A.3.7), (A.3.9), (A.3.12), (A.3.15), (A.3.17),
  (A.3.19), (A.3.22), (A.3.23), (A.3.24), (A.3.25), (A.3.27), (A.3.29), (A.3.31), (A.3.32), (A.3.33),
  (A.3.34), (A.3.35), (A.3.36), (A.3.37), (A.3.38) and (A.3.39).
- Preference is also given to mixtures comprising as component 2) at least one active substance selected from other respiration nhibitors in group A), more preferably selected from compounds (A.4.5) and (A.4.11); in particular (A.4.11).
   Preference is also given to mixtures comprising as component 2) at least one active substance
- selected from C14 demethylase inhibitors in group B), more preferably selected from
  compounds (B.1.4), (B.1.5), (B.1.8), (B.1.10), (B.1.11), (B.1.12), (B.1.13), (B.1.17), (B.1.18),
  (B.1.21), (B.1.22), (B.1.23), (B.1.25), (B.1.26), (B.1.29), (B.1.34), (B.1.37), (B.1.38), (B.1.43)
  and (B.1.46); particularly selected from (B.1.5), (B.1.8), (B.1.10), (B.1.17), (B.1.22), (B.1.23),
  (B.1.25), (B.1.33), (B.1.34), (B.1.37), (B.138), (B.1.43) and (B.1.46).
  Preference is also given to mixtures comprising as component 2) at least one active substance

selected from Delta14-reductase inhibitors in group B), more preferably selected from compounds (B.2.4), (B.2.5), (B.2.6) and (B.2.8); in particular (B.2.4).
 Preference is also given to mixtures comprising as component 2) at least one active substance selected from phenylamides and acyl amino acid fungicides in group C), more preferably selected from compounds (C.1.1), (C.1.2), (C.1.4) and (C.1.5); particularly selected from (C.1.1)

40 and (C.1.4).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from other nucleic acid synthesis inhibitors in group C), more preferably selected from compounds (C.2.6),(C.2.7) and (C.2.8).

Preference is also given to mixtures comprising as component 2) at least one active substance

selected from group D), more preferably selected from compounds (D.1.1), (D.1.2), (D.1.5), (D.2.4) and (D.2.6); particularly selected from (D.1.2), (D.1.5) and (D.2.6). Preference is also given to mixtures comprising as component 2) at least one active substance

selected from group E), more preferably selected from compounds (E.1.1), (E.1.3), (E.2.2) and (E.2.3); in particular (E.1.3).

Preference is also given to mixtures comprising as component 2) at least one active substance selected from group F), more preferably selected from compounds (F.1.2), (F.1.4) and (F.1.5). Preference is also given to mixtures comprising as component 2) at least one active substance selected from group G), more preferably selected from compounds (G.3.1), (G.3.3), (G.3.6),

(G.5.1), (G.5.2), (G.5.3), (G.5.4), (G.5.5), G.5.6), G.5.7), (G.5.8), (G.5.9), (G.5.10) and (G.5.11); particularly selected from (G.3.1), (G.5.1), (G.5.2) and (G.5.3).
 Preference is also given to mixtures comprising as component 2) at least one active substance selected from group H), more preferably selected from compounds (H.2.2), (H.2.3), (H.2.5), (H.2.7), (H.2.8), (H.3.2), (H.3.4), (H.3.5), (H.4.9) and (H.4.10); particularly selected from (H.2.2),

- (H.2.5), (H.3.2), (H.4.9) and (H.4.10).
   Preference is also given to mixtures comprising as component 2) at least one active substance selected from group I), more preferably selected from compounds (I.2.2) and (I.2.5).
   Preference is also given to mixtures comprising as component 2) at least one active substance selected from group J), more preferably selected from compounds (J.1.2), (J.1.5), (J.1.8),
- (J.1.11) and (J.1.12); in particular (J.1.5).
  Preference is also given to mixtures comprising as component 2) at least one active substance selected from group K), more preferably selected from compounds (K.1.41), (K.1.42), (K.1.44), (K.1.45), (K.1.47) and (K.1.49); particularly selected from (K.1.41), (K.1.44), (K.1.45), (K.1.47) and (K.1.49).

25

5

Accordingly, the present invention furthermore relates to mixtures comprising one compound of the formula I (component 1, a group represented by the expression "(I)") and one pesticide II (component 2), wherein pesticide II is an active ingredients selected from the groups A) to O) defined above.

- 30 Further embodiments B-1 to B-729 listed in Table B below relate to mixtures comprising as active components one of the in the present specification individualized compounds of the formula I, which is selected from the group of compounds I.A.A-1 to I.A.A-948, I.B.A-1 to I.B.A-948, I.C.A-1 to I.C.A-948, I.D.A-1 to I.D.A-948, I.E.A-1 to I.E.A-948, I.F.A-1 to I.F.A-948, I.G.A-1 to I.G.A-948, I.H.A-1 to I.H.A-948, I.J.A-1 to I.J.A-948, I.K.A-1 to I.K.A-948, I.L.A-1 to I.L.A-948,
- 35 I.M.A-1 to I.M.A-948, I.N.A-1 to I.N.A-948, I.O.A-1 to I.O.A-948, I.P.A-1 to I.P.A-948, I.Q.A-1 to I.Q.A-948, I.R.A-1 to I.R.A-948, I.S.A-1 to I.S.A-948, I.T.A-1 to I.T.A-948, I.U.A-1 to I.U.A-948 and I.V.A-1 to I.V.A-948 as defined in tables 1 to 21 (component 1, a group represented by the expression "(I)") and one pesticide II selected from the groups A) to O) as defined herein (component 2, for example, (A.1.1) or azoxystrobin, in embodiment B-1).
- 40 Further embodiments B-1 to B-729 listed in Table B below relate to the mixtures comprising as active components one of the in the present specification individualized compounds of the formula I, which is selected from the group of compounds Ex-1 to Ex-33 of formula I as defined in Table I below (component 1, a group represented by the expression "(I)") and one pesticide II selected from the groups A) to O) as defined herein (component 2, for example, (A.1.1) or

azoxystrobin, in embodiment B-1).

Preferably, the compositions described in Table B comprise the active components in synergistically effective amounts.

Table B:

- 5 B-1: (I)+(A.1.1), B-2: (I)+(A.1.2), B-3: (I)+(A.1.3), B-4: (I)+(A.1.4), B-5: (I)+(A.1.5), B-6: (I)+(A.1.6), B-7: (I)+(A.1.7), B-8: (I)+(A.1.8), B-9: (I)+(A.1.9), B-10: (I)+(A.1.10), B-11: (I)+(A.1.11), B-12: (I)+(A.1.12), B-13: (I)+(A.1.13), B-14: (I)+(A.1.14), B-15: (I)+(A.1.15), B-16: (I)+(A.1.16), B-17: (I)+(A.1.17), B-18: (I)+(A.1.18), B-19: (I)+(A.1.19), B-20: (I)+(A.1.20), B-21: (I)+(A.1.21), B-22: (I)+(A.1.22), B-23: (I)+(A.1.23), B-24: (I)+(A.1.24), B-25: (I)+(A.1.25), B-26: (I)+(A.1.26), B-27: (I)+(A.1.27), B-28: (I)+(A.1.30), B-29: (I)+(A.1.31), B-30: (I)+(A.1.32), B-31:
- (I)+(A.1.20), B-27. (I)+(A.1.27), B-28. (I)+(A.1.30), B-29. (I)+(A.1.31), B-30. (I)+(A.1.32), B-31. (I)+(A.2.1), B-32. (I)+(A.2.2), B-33. (I)+(A.2.3), B-34. (I)+(A.2.4), B-35. (I)+(A.2.6), B-36. (I)+(A.2.7), B-37. (I)+(A.2.8), B-38. (I)+(A.3.1), B-39. (I)+(A.3.2), B-40. (I)+(A.3.3), B-41. (I)+(A.3.4), B-42. (I)+(A.3.5), B-43. (I)+(A.3.6), B-44. (I)+(A.3.7), B-45. (I)+(A.3.8), B-46. (I)+(A.3.9), B-47. (I)+(A.3.10), B-48. (I)+(A.3.11), B-49. (I)+(A.3.12), B-50. (I)+(A.3.13), B-51. (I)+(A.3.13), B-51. (I)+(A.3.14), B-49. (I)+(A.3.14), B-49. (I)+(A.3.14), B-50. (
- 15 (I)+(A.3.14), B-52: (I)+(A.3.15), B-53: (I)+(A.3.16), B-54: (I)+(A.3.17), B-55: (I)+(A.3.18), B-56: (I)+(A.3.19), B-57: (I)+(A.3.20), B-58: (I)+(A.3.21), B-59: (I)+(A.3.22), B-60: (I)+(A.3.23), B-61: (I)+(A.3.24), B-62: (I)+(A.3.25), B-63: (I)+(A.3.26), B-64: (I)+(A.3.27), B-65: (I)+(A.3.28), B-66: (I)+(A.3.29), B-67: (I)+(A.3.30), B-68: (I)+(A.3.31), B-69: (I)+(A.3.32), B-70: (I)+(A.3.33), B-71: (I)+(A.3.34), B-72: (I)+(A.3.35), B-73: (I)+(A.3.36), B-74: (I)+(A.3.37), B-75: (I)+(A.3.38), B-76: (I)+(A.3.38), B-76: (I)+(A.3.38), B-76: (I)+(A.3.38), B-76: (I)+(A.3.37), B-75: (I)+(A.3.38), B-76: (I
- (I)+(A.3.39), B-77: (I)+(A.4.1), B-78: (I)+(A.4.2), B-79: (I)+(A.4.3), B-80: (I)+(A.4.4), B-81:
  (I)+(A.4.5), B-82: (I)+(A.4.6), B-83: (I)+(A.4.7), B-84: (I)+(A.4.8), B-85: (I)+(A.4.9), B-86:
  (I)+(A.4.10), B-87: (I)+(A.4.11), B-88: (I)+(A.4.12), B-89: (I)+(B.1.1), B-90: (I)+(B.1.2), B-91:
  (I)+(B.1.3), B-92: (I)+(B.1.4), B-93: (I)+(B.1.5), B-94: (I)+(B.1.6), B-95: (I)+(B.1.7), B-96:
  (I)+(B.1.8), B-97: (I)+(B.1.9), B-98: (I)+(B.1.10), B-99: (I)+(B.1.11), B-100: (I)+(B.1.12), B-101:
- (I)+(B.1.13), B-102: (I)+(B.1.14), B-103: (I)+(B.1.15), B-104: (I)+(B.1.16), B-105: (I)+(B.1.17), B-106: (I)+(B.1.18), B-107: (I)+(B.1.19), B-108: (I)+(B.1.20), B-109: (I)+(B.1.21), B-110: (I)+(B.1.22), B-111: (I)+(B.1.23), B-112: (I)+(B.1.24), B-113: (I)+(B.1.25), B-114: (I)+(B.1.26), B-115: (I)+(B.1.27), B-116: (I)+(B.1.28), B-117: (I)+(B.1.29), B-118: (I)+(B.1.30), B-119: (I)+(B.1.34), B-120: (I)+(B.1.37), B-121: (I)+(B.1.38), B-122: (I)+(B.1.43), B-123: (I)+(B.1.44), B-123:
- 124: (I)+(B.1.45), B-125: (I)+(B.1.46), B-126: (I)+(B.1.47), B-127: (I)+(B.1.48), B-128:
  (I)+(B.1.49), B-129: (I)+(B.1.50), B-130: (I)+(B.1.51), B-131: (I)+(B.2.1), B-132: (I)+(B.2.2), B-133: (I)+(B.2.3), B-134: (I)+(B.2.4), B-135: (I)+(B.2.5), B-136: (I)+(B.2.6), B-137: (I)+(B.2.7), B-138: (I)+(B.2.8), B-139: (I)+(B.3.1), B-140: (I)+(C.1.1), B-141: (I)+(C.1.2), B-142: (I)+(C.1.3), B-143: (I)+(C.1.4), B-144: (I)+(C.1.5), B-145: (I)+(C.1.6), B-146: (I)+(C.1.7), B-147: (I)+(C.2.1), B-143: (I)+(C.1.4), B-144: (I)+(C.1.5), B-145: (I)+(C.1.6), B-146: (I)+(C.1.7), B-147: (I)+(C.2.1), B-143: (I)+(C.1.7), B-144: (I)+(C.2.1), B-145: (I)+(C.1.6), B-146: (I)+(C.1.7), B-147: (I)+(C.2.1), B-143: (I)+(C.2.1), B-144: (I)+(C.2.1), B-145: (I)+(C.2.1), B-146: (I)+(C.1.7), B-147: (I)+(C.2.1), B-143: (I)+(C.2.1), B-144: (I)+(C.2.1), B-145: (I)+(C.2.1), B-146: (I)+(C.1.7), B-147: (I)+(C.2.1), B-143: (I)+(C.2.1), B-144: (I)+(C.2.1), B-145: (I)+(C.2.1), B-146: (I)+(C.1.7), B-147: (I)+(C.2.1), B-143: (I)+(C.2.1), B-145: (I)+(C.2.1), B-1
- 40 173: (I)+(E.2.4), B-174: (I)+(E.2.5), B-175: (I)+(E.2.6), B-176: (I)+(E.2.7), B-177: (I)+(E.2.8), B-178: (I)+(F.1.1), B-179: (I)+(F.1.2), B-180: (I)+(F.1.3), B-181: (I)+(F.1.4), B-182: (I)+(F.1.5), B-183: (I)+(F.1.6), B-184: (I)+(F.2.1), B-185: (I)+(G.1.1), B-186: (I)+(G.1.2), B-187: (I)+(G.1.3), B-188: (I)+(G.1.4), B-189: (I)+(G.2.1), B-190: (I)+(G.2.2), B-191: (I)+(G.2.3), B-192: (I)+(G.2.4), B-193: (I)+(G.2.5), B-194: (I)+(G.2.6), B-195: (I)+(G.2.7), B-196: (I)+(G.3.1), B-197: (I)+(G.3.2), B-193: (I)+(G.2.5), B-194: (I)+(G.2.6), B-195: (I)+(G.2.7), B-196: (I)+(G.3.1), B-197: (I)+(G.3.2), B-193: (I)+(G.2.5), B-194: (I)+(G.2.6), B-195: (I)+(G.2.7), B-196: (I)+(G.3.1), B-197: (I)+(G.3.2), B-193: (I)+(G.3.2), B-193: (I)+(G.3.2), B-193: (I)+(G.3.2), B-194: (I)+(G.3.2), B-195: (I)+(G.3.2), B-196: (I)+(G.3.1), B-197: (I)+(G.3.2), B-193: (I)+(G.3.2), B-194: (I)+(G.3.2), B-195: (I)+(G.3.2), B-196: (I)+(G.3.1), B-197: (I)+(G.3.2), B-193: (I)+(G.3.2), B-193: (I)+(G.3.2), B-194: (I)+(G.3.2), B-195: (I)+(G.3.2), B-196: (I)+(G.3.1), B-197: (I)+(G.3.2), B-193: (I)+(G.3.

- 243: (I)+(H.4.10), B-244: (I)+(I.1.1), B-245: (I)+(I.1.2), B-246: (I)+(I.2.1), B-247: (I)+(I.2.2), B-248: (I)+(I.2.3), B-249: (I)+(I.2.4), B-250: (I)+(I.2.5), B-251: (I)+(J.1.1), B-252: (I)+(J.1.2), B-253: (I)+(J.1.3), B-254: (I)+(J.1.4), B-255: (I)+(J.1.5), B-256: (I)+(J.1.6), B-257: (I)+(J.1.7), B-258: (I)+(J.1.8), B-259: (I)+(J.1.9), B-260: (I)+(J.1.10), B-261: (I)+(J.1.11), B-262: (I)+(J.1.12), B-263: (I)+(K.1.1), B-264: (I)+(K.1.2), B-265: (I)+(K.1.3), B-266: (I)+(K.1.4), B-267: (I)+(K.1.5), B-268:
- (I)+(K.1.6), B-269: (I)+(K.1.7), B-270: (I)+(K.1.8), B-271: (I)+(K.1.9), B-272: (I)+(K.1.10), B-273: (I)+(K.1.11), B-274: (I)+(K.1.12), B-275: (I)+(K.1.13), B-276: (I)+(K.1.14), B-277: (I)+(K.1.15), B-278: (I)+(K.1.16), B-279: (I)+(K.1.17), B-280: (I)+(K.1.18), B-281: (I)+(K.1.19), B-282: (I)+(K.1.20), B-283: (I)+(K.1.21), B-284: (I)+(K.1.22), B-285: (I)+(K.1.23), B-286: (I)+(K.1.24), B-287: (I)+(K.1.25), B-288: (I)+(K.1.26), B-289: (I)+(K.1.27), B-290: (I)+(K.1.28), B-291:
- (I)+(K.1.29), B-292: (I)+(K.1.30), B-293: (I)+(K.1.31), B-294: (I)+(K.1.32), B-295: (I)+(K.1.33), B-296: (I)+(K.1.34), B-297: (I)+(K.1.35), B-298: (I)+(K.1.36), B-299: (I)+(K.1.37), B-300: (I)+(K.1.38), B-301: (I)+(K.1.39), B-302: (I)+(K.1.40), B-303: (I)+(K.1.41), B-304: (I)+(K.1.42), B-305: (I)+(K.1.43), B-306: (I)+(K.1.44), B-307: (I)+(K.1.45), B-308: (I)+(K.1.47), B-309: (I)+(M.1.1), B-310: (I)+(M.1.2), B-311: (I)+(M.1.3), B-312: (I)+(M.1.4), B-313: (I)+(M.1.5), B-314:
- (I)+(M.1.6), B-315: (I)+(M.1.7), B-316: (I)+(M.1.8), B-317: (I)+(M.1.9), B-318: (I)+(M.1.10), B-319: (I)+(M.1.11), B-320: (I)+(M.1.12), B-321: (I)+(M.1.13), B-322: (I)+(M.1.14), B-323: (I)+(M.1.15), B-324: (I)+(M.1.16), B-325: (I)+(M.1.17), B-326: (I)+(M.1.18), B-327: (I)+(M.1.19), B-328: (I)+(M.1.20), B-329: (I)+(M.1.21), B-330: (I)+(M.1.22), B-331: (I)+(M.1.23), B-332: (I)+(M.1.24), B-333: (I)+(M.1.25), B-334: (I)+(M.1.26), B-335: (I)+(M.1.27), B-336: (I)+(M.1.28),
- B-337: (I)+(M.1.29), B-338: (I)+(M.1.30), B-339: (I)+(M.1.31), B-340: (I)+(M.1.32), B-341:
  (I)+(M.1.33), B-342: (I)+(M.1.34), B-343: (I)+(M.1.35), B-344: (I)+(M.1.36), B-345: (I)+(M.1.37),
  B-346: (I)+(M.1.38), B-347: (I)+(M.1.39), B-348: (I)+(M.1.40), B-349: (I)+(M.1.41), B-350:
  (I)+(M.1.42), B-351: (I)+(M.1.43), B-352: (I)+(M.1.44), B-353: (I)+(M.1.45), B-354: (I)+(M.1.46),
  B-355: (I)+(M.1.47), B-356: (I)+(M.1.48), B-357: (I)+(M.1.49), B-358: (I)+(M.1.50), B-359:
- 35 (l)+(N.1.1), B-360: (l)+(N.1.2), B-361: (l)+(N.1.3), B-362: (l)+(N.1.4), B-363: (l)+(N.1.5), B-364:
  (l)+(N.2.1), B-365: (l)+(N.2.2), B-366: (l)+(N.2.3), B-367: (l)+(N.3.1), B-368: (l)+(N.3.2), B-369:
  (l)+(N.3.3), B-370: (l)+(N.3.4), B-371: (l)+(N.4.1), B-372: (l)+(N.5.1), B-373: (l)+(N.6.1), B-374:
  (l)+(N.6.2), B-375: (l)+(N.6.3), B-376: (l)+(N.6.4), B-377: (l)+(N.6.5), B-378: (l)+(N.7.1), B-379:
  (l)+(N.7.2), B-380: (l)+(N.7.3), B-381: (l)+(N.8.1), B-382: (l)+(N.9.1), B-383: (l)+(N.10.1), B-384:
- 40 (I)+(N.10.2), B-385: (I)+(N.10.3), B-386: (I)+(N.10.4), B-387: (I)+(N.10.5), B-388: (I)+(N.11.1), B-389: (I)+(N.12.1), B-390: (I)+(N.12.2), B-391: (I)+(N.12.3), B-392: (I)+(N.12.4), B-393: (I)+(N.13.1), B-394: (I)+(N.13.2), B-395: (I)+(N.13.3), B-396: (I)+(N.13.4), B-397: (I)+(N.13.5), B-398: (I)+(N.13.6), B-399: (I)+(N.13.7), B-400: (I)+(N.13.8), B-401: (I)+(N.13.9), B-402: (I)+(N.14.1), B-403: (I)+(N.14.2), B-404: (I)+(N.14.3), B-405: (I)+(N.15.1), B-406: (I)+(N.16.1), B-40

407: (I)+(N.16.2), B-408: (I)+(N.17.1), B-409: (I)+(N.17.2), B-410: (I)+(N.17.3), B-411: (I)+(N.17.4), B-412: (I)+(N.17.5), B-413: (I)+(N.17.6), B-414: (I)+(N.17.7), B-415: (I)+(N.17.8), B-416: (I)+(N.17.9), B-417: (I)+(N.17.10), B-418: (I)+(N.17.11), B-419: (I)+(N.17.12), B-420: (I)+(O.1.1), B-421: (I)+(O.1.2), B-422: (I)+(O.1.3), B-423: (I)+(O.1.4), B-424: (I)+(O.1.5), B-425:

- 5 (I)+(O.1.6), B-426: (I)+(O.1.7), B-427: (I)+(O.1.8), B-428: (I)+(O.1.9), B-429: (I)+(O.1.10), B-430: (I)+(O.1.11), B-431: (I)+(O.1.12), B-432: (I)+(O.1.13), B-433: (I)+(O.1.14), B-434: (I)+(O.1.15), B-435: (I)+(O.1.16), B-436: (I)+(O.1.17), B-437: (I)+(O.1.18), B-438: (I)+(O.1.19), B-439: (I)+(O.1.20), B-440: (I)+(O.1.21), B-441: (I)+(O.1.22), B-442: (I)+(O.1.23), B-443: (I)+(O.1.24), B-444: (I)+(O.1.25), B-445: (I)+(O.1.26), B-446: (I)+(O.1.27), B-447: (I)+(O.1.28), B-448:
- (I)+(O.1.29), B-449: (I)+(O.1.30), B-450: (I)+(O.1.31), B-451: (I)+(O.1.32), B-452: (I)+(O.1.33),
  B-453: (I)+(O.1.34), B-454: (I)+(O.1.35), B-455: (I)+(O.1.36), B-456: (I)+(O.1.37), B-457:
  (I)+(O.1.38), B-458: (I)+(O.2.1), B-459: (I)+(O.2.2), B-460: (I)+(O.2.3), B-461: (I)+(O.2.4), B-462:
  (I)+(O.2.5), B-463: (I)+(O.2.6), B-464: (I)+(O.2.7), B-465: (I)+(O.2.8), B-466: (I)+(O.2.9), B-467:
  (I)+(O.2.10), B-468: (I)+(O.2.11), B-469: (I)+(O.2.12), B-470: (I)+(O.2.13), B-471: (I)+(O.2.14),
- B-472: (I)+(O.2.15), B-473: (I)+(O.2.16), B-474: (I)+(O.3.1), B-475: (I)+(O.3.2), B-476:
  (I)+(O.3.3), B-477: (I)+(O.3.4), B-478: (I)+(O.3.5), B-479: (I)+(O.3.6), B-480: (I)+(O.3.7), B-481:
  (I)+(O.3.8), B-482: (I)+(O.3.9), B-483: (I)+(O.3.10), B-484: (I)+(O.3.11), B-485: (I)+(O.3.12), B-486: (I)+(O.3.13), B-487: (I)+(O.3.14), B-488: (I)+(O.3.15), B-489: (I)+(O.3.16), B-490:
  (I)+(O.3.17), B-491: (I)+(O.3.18), B-492: (I)+(O.3.19), B-493: (I)+(O.3.20), B-494: (I)+(O.3.21),
- B-495: (I)+(O.3.22), B-496: (I)+(O.3.23), B-497: (I)+(O.3.24), B-498: (I)+(O.3.25), B-499:
  (I)+(O.3.26), B-500: (I)+(O.3.27), B-501: (I)+(O.4.1), B-502: (I)+(O.4.2), B-503: (I)+(O.4.3), B-504: (I)+(O.4.4), B-505: (I)+(O.4.5), B-506: (I)+(O.4.6), B-507: (I)+(O.4.7), B-508: (I)+(O.4.8), B-509: (I)+(O.4.9), B-510: (I)+(O.4.10), B-511: (I)+(O.4.11), B-512: (I)+(O.4.12), B-513: (I)+(O.4.13), B-514: (I)+(O.4.14), B-515: (I)+(O.4.15), B-516: (I)+(O.4.16), B-517: (I)+(O.4.17),
- 542: (I)+(O.7.2), B-543: (I)+(O.7.3), B-544: (I)+(O.7.4), B-545: (I)+(O.7.5), B-546: (I)+(O.7.6), B-547: (I)+(O.8.1), B-548: (I)+(O.8.2), B-549: (I)+(O.8.3), B-550: (I)+(O.8.4), B-551: (I)+(O.8.5), B-552: (I)+(O.9.1), B-553: (I)+(O.9.2), B-554: (I)+(O.9.3), B-555: (I)+(O.10.1), B-556: (I)+(O.11.1), B-557: (I)+(O.11.2), B-558: (I)+(O.11.3), B-559: (I)+(O.11.4), B-560: (I)+(O.12.1), B-561: (I)+(O.13.1), B-562: (I)+(O.14.1), B-563: (I)+(O.14.2), B-564: (I)+(O.15.1), B-565: (I)+(O.15.2),
- B-566: (I)+(O.15.3), B-567: (I)+(O.15.4), B-568: (I)+(O.15.5), B-569: (I)+(O.15.6), B-570:
  (I)+(O.15.7), B-571: (I)+(O.15.8), B-572: (I)+(O.15.9), B-573: (I)+(O.15.10), B-574: (I)+(O.15.11), B-575: (I)+(O.16.1), B-576: (I)+(O.16.2), B-577: (I)+(O.16.3), B-578: (I)+(O.16.4), B-579:
  (I)+(O.16.5), B-580: (I)+(O.16.6), B-581: (I)+(O.17.1), B-582: (I)+(O.18.1), B-583: (I)+(O.18.2), B-584: (I)+(O.18.3), B-585: (I)+(O.18.4), B-586: (I)+(O.18.5), B-587: (I)+(O.19.1), B-588:
- 40 (I)+(O.20.1), B-589: (I)+(O.20.2), B-590: (I)+(O.20.3), B-591: (I)+(O.21.1), B-592: (I)+(O.21.2), B-593: (I)+(O.21.3), B-594: (I)+(O.21.4), B-595: (I)+(O.21.5), B-596: (I)+(O.21.6), B-597: (I)+(O.21.7), B-598: (I)+(O.22.1), B-599: (I)+(O.22.2), B-600: (I)+(O.22.3), B-601: (I)+(O.22.4), B-602: (I)+(O.23.1), B-603: (I)+(O.23.2), B-604: (I)+(O.23.3), B-605: (I)+(O.24.1), B-606: (I)+(O.24.2), B-607: (I)+(O.24.3), B-608: (I)+(O.24.4), B-609: (I)+(O.24.5), B-610: (I)+(O.25.1),

B-611: (I)+(O.25.2), B-612: (I)+(O.26.1), B-613: (I)+(O.26.2), B-614: (I)+(O.26.3), B-615: (I)+(O.26.4), B-616: (I)+(O.26.5), B-617: (I)+(O.26.6), B-618: (I)+(O.26.7), B-619: (I)+(O.26.8), B-620: (I)+(O.26.9), B-621: (I)+(O.26.10), B-622: (I)+(O.26.11), B-623: (I)+(O.26.12), B-624: (I)+(O.26.13), B-625: (I)+(O.26.14), B-626: (I)+(O.26.15), B-627: (I)+(O.26.16), B-628: (I)+(I)+(I)+(I)+(I)+(I)+

- 5 (I)+(O.26.17), B-629: (I)+(O.26.18), B-630: (I)+(O.27.1), B-631: (I)+(O.27.2), B-632: (I)+(O.27.3), B-633: (I)+(O.27.4), B-634: (I)+(O.27.5), B-635: (I)+(O.27.6), B-636: (I)+(O.27.7), B-637: (I)+(O.27.8), B-638: (I)+(O.27.9), B-639: (I)+(O.27.10), B-640: (I)+(O.27.11), B-641: (I)+(O.27.12), B-642: (I)+(O.27.13), B-643: (I)+(O.27.14), B-644: (I)+(O.27.15), B-645: (I)+(O.27.16), B-646: (I)+(O.27.17), B-647: (I)+(O.27.18), B-648: (I)+(O.27.19), B-649:
- (1) (0.27.20), B-650: (1)+(0.27.21), B-651: (1)+(0.27.22), B-652: (1)+(0.27.23), B-653: (1)+(0.27.24), B-654: (1)+(0.27.25), B-655: (1)+(0.27.26), B-656: (1)+(0.27.27), B-657: (1)+(0.27.28), B-658: (1)+(0.27.29), B-659: (1)+(0.27.30), B-660: (1)+(0.27.31), B-661: (1)+(0.27.32), B-662: (1)+(0.27.33), B-663: (1)+(0.27.34), B-664: (1)+(0.27.35), B-665: (1)+(0.27.36), B-666: (1)+(0.27.37), B-667: (1)+(0.27.38), B-668: (1)+(0.27.39), B-669: (1)+(0.27.39), B-669: (1)+(0.27.38), B-668: (1)+(0.27.38), B-668: (1)+(0.27.38), B-688: (1)+
- (I)+(O.27.40), B-670: (I)+(O.27.41), B-671: (I)+(O.27.42), B-672: (I)+(O.27.43), B-673:
  (I)+(O.27.44), B-674: (I)+(O.27.45), B-675: (I)+(O.27.46), B-676: (I)+(O.27.47), B-677:
  (I)+(O.27.48), B-678: (I)+(O.27.49), B-679: (I)+(O.27.50), B-680: (I)+(O.27.51), B-681:
  (I)+(O.27.52), B-682: (I)+(O.27.53), B-683: (I)+(O.27.54), B-684: (I)+(O.27.55), B-685:
  (I)+(O.27.56), B-686: (I)+(O.27.57), B-687: (I)+(O.27.58), B-688: (I)+(O.27.59), B-689:
- (I)+(O.27.60), B-690: (I)+(O.27.61), B-691: (I)+(O.27.62), B-692: (I)+(O.27.63), B-693:
  (I)+(O.27.64), B-694: (I)+(O.27.65), B-695: (I)+(O.27.66), B-696: (I)+(O.27.67), B-697:
  (I)+(O.27.68), B-698: (I)+(O.27.69), B-699: (I)+(O.27.70), B-700: (I)+(O.27.71), B-701:
  (I)+(O.27.72), B-702: (I)+(O.27.73), B-703: (I)+(O.27.74), B-704: (I)+(O.27.75), B-705:
  (I)+(O.27.76), B-706: (I)+(O.27.77), B-707: (I)+(O.27.78), B-708: (I)+(O.27.79), B-709:
- 25 (I)+(O.27.80), B-710: (I)+(O.27.81), B-711: (I)+(O.27.82), B-712: (I)+(O.27.83), B-713: (I)+(O.27.84), B-714: (I)+(O.27.85), B-715: (I)+(O.27.86), B-716: (I)+(O.27.87), B-717: (I)+(O.27.88), B-718: (I)+(O.27.89), B-719: (I)+(O.27.90), B-720: (I)+(O.27.91), B-721: (I)+(O.27.92), B-722: (I)+(O.27.93), B-723: (I)+(O.27.94), B-724: (I)+(O.27.95), B-725: (I)+(O.27.96), B-726: (I)+(O.27.97), B-727: (I)+(O.27.98), B-728: (I)+(O.27.99), B-729:
- 30 (l)+(O.27.100).

The mixtures of active substances can be prepared as compositions comprising besides the active ingredients at least one inert ingredient (auxiliary) by usual means, e. g. by the means given for the compositions of compounds I.

35 Concerning usual ingredients of such compositions reference is made to the explanations given for the compositions containing compounds I. The mixtures of active substances according to the present invention are suitable as fungicides, as are the compounds of formula I. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, especially from the classes of the

- 40 Ascomycetes, Basidiomycetes, Deuteromycetes and Peronosporomycetes (syn. Oomycetes). In addition, it is referred to the explanations regarding the fungicidal activity of the compounds and the compositions containing compounds I, respectively.
  - I. Synthesis examples

The compounds of the formula I can be prepared according to the methods outlined below.

- I.1) Preparation of N'-hydroxy-4-[(isopropylamino)methyl]benzamidine
- 5 To a solution of 4-[(isopropylamino)methyl]benzonitrile (4.5 g, 1 eq.) and trimethylamine (6.48 g, 2 eq.) in ethanol (12 mL) hydroxylamine hydrochloride (2.96 g, 2 eq.) was added. The mixture was heated overnight at 80 °C. After cooling to room temperature, the solvent was removed under reduced pressure. The title compound was used directly without further purification.
- 10 I.2) Preparation of N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]-propan-2amine

A solution of N'-hydroxy-4-[(isopropylamino)methyl]benzamidine obtained from I.1) (4.41 g, 1 eq.) in dichloromethane (200 mL) was treated with trifluoroacetic anhydride (8.94 g, 2 eq.). The resulting mixture was stirred overnight at ambient temperature, before it was diluted with water

- and washed with dichloromethane. The combined organic layer was washed with an aqueous solution of sodium hydrogencarbonate, dried with magnesium sulfate and freed from solvent. The residue was purified by column chromatography (cyclohexane : ethyl acetate) to afford the desired product as a colorless oil (1.57 g, 26%). LC/MS (\*HPLC method described below): Retention time 0.860 min (m/z 286). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ [ppm] = 8.18 (*CH*, 2H), 7.45
- 20 (*CH*, 2H), 3.85 (*CH*<sub>2</sub>, 2H), 2.90 (*NH*), 1.39 (*CH*, 1H), 1.15 (2 x *CH*<sub>3</sub>, 6H).

I.3) Preparation of N-isopropyl-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]cyclobutanecarboxamide (Ex-10)

To a solution of the N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]-propan-2-

- 25 amine (300 mg, 1.0 eq.) as obtained from I.2) in dichloromethane (10 mL) was added trimethylamine (212 mg, 2 eq.) and a solution of cyclobutanecarbonyl chloride (125 mg, 1 eq.) in dichloromethane (10 mL). The mixture was stirred at room temperature until HPLC indicated complete conversion of starting material. HCl solution was added and the aqueous layer was extracted with dichloromethane. The organic layer was dried with magenesium sulfate and the
- 30 solvent was removed under reduced pressure. The crude product was purified by column chromatography (cyclohexane : ethyl acetate) to afford the desired product as a colorless oil (280 mg, 72.5%). LC/MS (\*HPLC method described below): Retention time (Rt) 1.308 min (m/z 368).
- I.4) Preparation of N-isopropyl-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3yl]phenyl]methyl]cyclobutanecarbothioamide (Ex-27)
   To a solution of N-isopropyl-N-[[4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methyl]cyclobutanecarboxamide (compound Ex-10, 200 mg, 1.0 eq.) in 3.5 mL toluene was added diphosphorus pentasulfide (133 mg, 1.1 eq.). The mixture was heated over 4 hours. Water was
- 40 added and the aqueous layer was extracted with ethyl acetate. The organic layer was dried with magenesium sulfate and the solvent was removed under reduced pressure. The crude product

74

## WO 2017/178245

was purified by column chromatography (cyclohexane, ethyl acetate) to afford the desired product as a colorless oil (154 mg, 70%). LC/MS: Retention time ( $R_t$ ) 1.479 min (m/z 384).

The compounds listed in Table I were prepared in an analogous manner.

5

Table I: Compounds Ex-1 to Ex-33 of formula I, wherein A corresponds to subformula (A.4), wherein the group (A.4) is unsubstituted, and wherein the meaning of  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$  and L are as defined in each line.

| Ex. no | R <sup>1</sup>      | R <sup>2</sup>     | R³/R⁴             | L       | HPLC R <sub>t</sub><br>(min)* | Melting<br>point<br>(°C) |
|--------|---------------------|--------------------|-------------------|---------|-------------------------------|--------------------------|
| Ex-1   | cyclobutyl          | CH <sub>3</sub>    | H/H               | -C(=O)- | 1.20                          | 89                       |
| Ex-2   | cyclohexyl          | CH <sub>3</sub>    | H/H               | -C(=O)- | 1.29                          | -                        |
| Ex-3   | cyclopropyl         | CH <sub>3</sub>    | H/H               | -C(=O)- | 1.14                          | 72                       |
| Ex-4   | phenyl              | CH <sub>3</sub>    | H/H               | -C(=O)- | 1.22                          | 85                       |
| Ex-5   | cyclopropyl         | allyl              | H/H               | -C(=O)- | 1.24                          | -                        |
| Ex-6   | cyclobutyl          | allyl              | H/H               | -C(=O)- | 1.30                          | -                        |
| Ex-7   | cyclohexyl          | allyl              | H/H               | -C(=O)- | 1.39                          | -                        |
| Ex-8   | phenyl              | allyl              | H/H               | -C(=O)- | 1.30                          | -                        |
| Ex-9   | cyclopropyl         | <i>iso</i> -propyl | H/H               | -C(=O)- | 1.24                          | -                        |
| Ex-10  | cyclobutyl          | <i>iso</i> -propyl | H/H               | -C(=O)- | 1.31                          | -                        |
| Ex-11  | cyclohexyl          | <i>i</i> so-propyl | H/H               | -C(=O)- | 1.38                          | -                        |
| Ex-12  | 1-methylcyclopropyl | CH <sub>3</sub>    | H/H               | -C(=O)- | 1.15                          | -                        |
| Ex-13  | cyclopropyl         | CH₃                | H/CH <sub>3</sub> | -C(=O)- | 1.24                          | -                        |
| Ex-14  | phenyl              | CH <sub>3</sub>    | H/CH <sub>3</sub> | -C(=O)- | 1.28                          | -                        |
| Ex-15  | cyclohexyl          | CH <sub>3</sub>    | H/CH <sub>3</sub> | -C(=O)- | 1.37                          | -                        |
| Ex-16  | 2,4-difluorophenyl  | CH <sub>3</sub>    | H/CH <sub>3</sub> | -C(=O)- | 1,30                          | -                        |
| Ex-17  | 2-MeO-phenyl        | CH <sub>3</sub>    | H/CH <sub>3</sub> | -C(=O)- | 1.28                          | -                        |
| Ex-18  | cyclobutyl          | CH <sub>3</sub>    | H/CH <sub>3</sub> | -C(=O)- | 1.28                          | -                        |
| Ex-19  | cyclopropyl         | н                  | H/H               | -C(=O)- | 1.10                          | 174                      |
| Ex-20  | 1-methylcyclopropyl | CH <sub>3</sub>    | H/CH <sub>3</sub> | -C(=O)- | 1.25                          | -                        |
| Ex-21  | cyclopentyl         | CH <sub>3</sub>    | H/CH <sub>3</sub> | -C(=O)- | 1.34                          | -                        |
| Ex-22  | 2-fluorophenyl      | CH <sub>3</sub>    | H/CH <sub>3</sub> | -C(=O)- | 1.29                          | -                        |
| Ex-23  | 4-fluorophenyl      | CH <sub>3</sub>    | H/CH <sub>3</sub> | -C(=O)- | 1.29                          | -                        |
| Ex-24  | 2,6-difluorophenyl  | CH <sub>3</sub>    | H/CH <sub>3</sub> | -C(=O)- | 1.31                          | -                        |
| Ex-25  | cyclopropyl         | CH <sub>3</sub>    | H/CH <sub>3</sub> | -C(=S)- | 1.39                          | -                        |
| Ex-26  | 1-methylcyclopropyl | CH <sub>3</sub>    | H/CH <sub>3</sub> | -C(=S)- | 1.41                          | -                        |
| Ex-27  | cyclobutyl          | <i>i</i> so-propyl | H/H               | -C(=S)- | 1.48                          | -                        |
| Ex-28  | phenyl              | CH3                | H/H               | -C(=S)- | 1.38                          | -                        |
| Ex-29  | cyclobutyl          | CH₃                | H/H               | -C(=S)- | 1.36                          | 87                       |
| Ex-30  | cyclohexyl          | CH <sub>3</sub>    | H/H               | -C(=S)- | 1.44                          | 115                      |
| Ex-31  | cyclopropyl         | CH <sub>3</sub>    | H/H               | -C(=S)- | 1.30                          | -                        |
| Ex-32  | cyclopropyl         | <i>iso</i> -propyl | H/H               | -C(=S)- | 1.42                          | -                        |

| WO 2017/178245 |                                                                                                                                                                                                          | 77 |       | PCT/EP2017/057669 |                               |                          |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|-------------------|-------------------------------|--------------------------|
| Ex. no         | R <sup>1</sup>                                                                                                                                                                                           | R² | R³/R⁴ | L                 | HPLC R <sub>t</sub><br>(min)* | Melting<br>point<br>(°C) |
| Ex-33          | $F_3^C \longrightarrow 0$<br>$O \longrightarrow N$<br>$N \longrightarrow 0$<br>$N \longrightarrow 0$<br>$N \longrightarrow 0$<br>$N \longrightarrow 0$<br>$N \longrightarrow 0$<br>$N \longrightarrow 0$ |    |       | 1.12              | 75                            |                          |

\* HPLC: High Performance Liquid Chromatography; HPLC-column Kinetex XB C18 1,7 $\mu$  (50 x 2,1 mm); eluent: acetonitrile / water+0.1% trifluoroacetic acid (gradient from 5:95 to 100 : 0 in 1.5 min at 60°C, flow gradient from 0.8 to 1.0 ml/min in 1.5 min). MS: Quadrupol Electrospray Ionisation, 80 V (positive mode). R<sub>t</sub>: retention time in minutes.

- II. Biological examples for fungicidal activity
- 10 The fungicidal action of the compounds of formula I was demonstrated by the following experiments:
  - A. Glass house trials

5

15 The spray solutions were prepared in several steps: The stock solution were prepared: a mixture of acetone and/or dimethylsulfoxide and the wetting agent/emulsifier Wettol, which is based on ethoxylated alkylphenoles, in a relation (volume) solvent-emulsifier of 99 to 1 was added to 25 mg of the compound to give a total of 5 ml. Water was then added to total volume of 100 ml. This stock solution was diluted with the described solvent-emulsifier-water mixture to the given concentration.

II.1) Curative control of soy bean rust on soy beans caused by *Phakopsora pachyrhizi*Leaves of pot-grown soy bean seedlings were inoculated with spores of *Phakopsora pachyrhizi*.To ensure the success of the artificial inoculation, the plants were transferred to a humid

- 25 chamber with a relative humidity of about 95 % and 20 to 24 °C for 24 hours. The next day the plants were cultivated for 3 days in a greenhouse chamber at 23 to 27 °C and a relative humidity between 60 and 80 %. Then the plants were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture as described below. The plants were allowed to air-dry. Then the trial plants were cultivated for 14 days in a greenhouse
- 30 chamber at 23 to 27 °C and a relative humidity between 60 and 80 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area.
  In this test, the plants which had been treated with 63 ppm of the active compounds Ex-7, Ex-8, Ex-11 and Ex-18 showed a diseased leaf area of at most 15 %, whereas the untreated plants

In this test, the plants which had been treated with 16 ppm of the active compounds Ex-1, Ex-2, Ex-3, Ex-5, Ex-9, Ex-10, Ex-12, Ex-19, Ex-20, Ex-29, Ex-30 and Ex-31 showed a diseased leaf area of at most 13 %, whereas the untreated plants showed 90 % diseased leaf area.

## 5

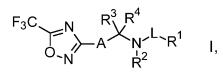
II.2) Protective control of soy bean rust on soy beans caused by *Phakopsora pachyrhizi* Leaves of pot-grown soy bean seedlings were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture as described below. The plants were allowed to air-dry. The trial plants were cultivated for 2 day in a greenhouse chamber at 23

- 10 to 27 °C and a relative humidity between 60 and 80 %. Then the plants were inoculated with spores of *Phakopsora pachyrhizi*. To ensure the success the artificial inoculation, the plants were transferred to a humid chamber with a relative humidity of about 95 % and 20 to 24 °C for 24 h. The trial plants were cultivated for fourteen days in a greenhouse chamber at 23 to 27 °C and a relative humidity between 60 and 80 %. The extent of fungal attack on the leaves was
- 15 visually assessed as % diseased leaf area. In this test, the plants which had been treated with 63 ppm of the active compounds Ex-7, Ex-8, Ex-11, Ex-14, Ex-15, Ex-16, Ex-18, Ex-21, Ex-22, Ex-23, Ex-24, Ex-26 and Ex-27 showed a diseased leaf area of at most 6 %, whereas the untreated plants showed 90 % diseased leaf area. In this test, the plants which had been treated with 16 ppm of the active compounds Ex-1, Ex-2, E
- Ex-3, Ex-4, Ex-5, Ex-6, Ex-9, Ex-10, Ex-12, Ex-13, Ex-19, Ex-20, Ex-25, Ex-28, Ex-29, Ex-30, Ex-31 and Ex-32 showed a diseased leaf area of at most 1 %, whereas the untreated plants showed 90 % diseased leaf area.

II.3) Curative control of brown rust on wheat caused by Puccinia recondita

- 25 The first two developed leaves of pot-grown wheat seedling were dusted with spores of *Puccinia recondita.* To ensure the success the artificial inoculation, the plants were transferred to a humid chamber without light and a relative humidity of 95 to 99 % and 20 to 24 °C for 24 hours. The next day the plants were cultivated for 3 days in a greenhouse chamber at 20 to 24 °C and a relative humidity between 65 and 70 %. Then the plants were sprayed to run-off with
- 30 an aqueous suspension, containing the concentration of active ingredient or their mixture as described below. The plants were allowed to air-dry. Then the trial plants were cultivated for 8 days in a greenhouse chamber at 20 to 24 °C and a relative humidity between 65 and 70 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area. In this test, the plants which had been treated with 63 ppm of the active compounds Ex-1, Ex-2,
- 35 Ex-3, Ex-4, Ex-5, Ex-6, Ex-9, Ex-10, Ex-12, Ex-13, Ex-19, Ex-20, Ex-25, Ex-28, Ex-29 and Ex-32 showed a diseased leaf area of at most 4 %, whereas the untreated plants showed 90 % diseased leaf area.
  - II.4) Preventative control of brown rust on wheat caused by Puccinia recondita

The first two developed leaves of pot-grown wheat seedling were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture as described below. Seven days later the plants were inoculated with spores of *Puccinia recondita*. To ensure the success the artificial inoculation, the plants were transferred to a humid chamber


5 without light and a relative humidity of 95 to 99 % and 20 to 24 °C for 24 hours. Then the trial plants were cultivated for 6 days in a greenhouse chamber at 20 to 24 °C and a relative humidity between 65 and 70 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area.

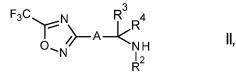
In this test, the plants which had been treated with 63 ppm of the active compounds Ex-1, Ex-4,

10 Ex-5, Ex-6, Ex-9, Ex-10, Ex-12, Ex-19, Ex-28 and Ex-29 showed a diseased leaf area of at most 12 %, whereas the untreated plants showed 90 % diseased leaf area.

5

1. Compounds of the formula I, or the N-oxides, or the agriculturally acceptable salts thereof




wherein:

А is phenyl or a 5- or 6-membered aromatic heterocycle, wherein the ring member atoms of the aromatic heterocycles include besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein the 10 phenyl ring or the aromatic heterocycles are unsubstituted or substituted with 1, 2, 3 or 4 identical or different groups RA; wherein RA is halogen, cyano, NO<sub>2</sub>, OH, SH, NH<sub>2</sub>, diC<sub>1</sub>-C<sub>6</sub>-alkylamino, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>1</sub>-C<sub>6</sub>-alkylthio, C<sub>1</sub>-C<sub>6</sub>-alkylsulfinyl, C<sub>1</sub>-C<sub>6</sub>-alkylsulfonyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl,  $C_2$ - $C_6$ -alkynyl,  $C_3$ - $C_8$ -cycloalkyl or  $C_3$ - $C_8$ -cycloalkoxy; and wherein any of the aliphatic and cyclic moieties are unsubstituted or substituted with 1, 2, 3 or 4 15 identical or different groups Ra; wherein Ra is halogen, cyano, NO<sub>2</sub>, OH, SH, NH<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C1-C6-alkoxy, C1-C6-haloalkoxy, C1-C6-alkylthio, C1-C6-haloalkylthio or  $C_3$ - $C_8$ -cycloalkyl or  $C_1$ - $C_4$ -alkoxy- $C_1$ - $C_4$ -alkyl; is -(C=O)-, -(C=S)- or -S(=O)<sub>p</sub>-; 20 L is 0, 1 or 2; р  $R^1$ is C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, phenyl- $C_1$ - $C_4$ -alkyl, heteroaryl- $C_1$ - $C_4$ -alkyl, phenyl, naphthyl or a 3- to 10-membered saturated, partially unsaturated or aromatic mono- or bicyclic heterocycle, wherein 25 the ring member atoms of said mono- or bicyclic heterocycle include besides carbon atoms further 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms and wherein 1 or 2 carbon ring member atoms of the heterocycle may be replaced by 1 or 2 groups independently selected from -C(=O)- and -C(=S)-; and wherein the heteroaryl group in heteroaryl-C<sub>1</sub>-C<sub>4</sub>-alkyl is a 5- or 6-membered 30 aromatic heterocycle, wherein the ring member atoms of the heterocyclic ring include besides carbon atoms 1, 2, 3 or 4 heteroatoms selected from N, O and S as ring member atoms; and wherein any of the above-mentioned aliphatic or cyclic groups are unsubstituted or substituted with 1, 2, 3 or up to the maximum possible number of identical or different groups R<sup>1a</sup>; wherein 35 R<sup>1a</sup> is halogen, oxo, cyano, NO<sub>2</sub>, OH, SH, NH<sub>2</sub>, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C1-C6-alkoxy, C1-C6-haloalkoxy, C1-C6-alkylthio, C1-C6-haloalkylthio, C3-C8cycloalkyl, NHSO<sub>2</sub>-C<sub>1</sub>-C<sub>4</sub>-alkyl, (C=O)-C<sub>1</sub>-C<sub>4</sub>-alkyl, C(=O)-C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>6</sub>alkylsulfonyl, hydroxyC1-C4-alkyl, C(=O)-NH2, C(=O)-NH(C1-C4-alkyl), C1-C4alkylthio-C<sub>1</sub>-C<sub>4</sub>-alkyl, aminoC<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkylamino-C<sub>1</sub>-C<sub>4</sub>-alkyl, diC<sub>1</sub>-C<sub>4</sub>-40 alkylamino- $C_1$ - $C_4$ -alkyl, aminocarbonyl- $C_1$ - $C_4$ -alkyl or  $C_1$ - $C_4$ -alkoxy- $C_1$ - $C_4$ -alkyl.

|    | W  | /O 2017/178245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81                                                                                                                                                                                                                                       | PCT/EP2017/057669                                                                                                                                                                                                                     |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |    | <ul> <li>R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-al cycloalkyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkenyl, C<sub>3</sub> phenyl, C(=O)-C<sub>1</sub>-C<sub>6</sub>-alkyl or C(=C or cyclic groups are unsubstituted</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C <sub>8</sub> -cycloalkyl-C <sub>1</sub> -C <sub>6</sub> -alkyl,<br>D)-C <sub>1</sub> -C <sub>6</sub> -alkoxy; and wher<br>I or substituted with 1, 2, 3                                                                               | phenyl-C <sub>1</sub> -C <sub>4</sub> -alkyl,<br>ein any of the aliphatic                                                                                                                                                             |
| 5  |    | possible number of identical or di<br>R <sup>3</sup> , R <sup>4</sup> independently of each other<br>hydrogen, halogen, cyano, C <sub>1</sub> -C <sub>4</sub> .<br>C <sub>1</sub> -C <sub>4</sub> -haloalkyl;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | are selected from the gro-<br>alkyl, C <sub>1</sub> -C <sub>4</sub> -alkenyl, C <sub>1</sub> -C <sub>4</sub>                                                                                                                             | -alkynyl and                                                                                                                                                                                                                          |
| 10 |    | or R <sup>3</sup> and R <sup>4</sup> together with the carbon a<br>membered carbocycle or a satura<br>wherein the heterocycle includes<br>independently selected from N-R <sup>1</sup><br>atoms; wherein<br>R <sup>N</sup> is H, C <sub>1</sub> -C <sub>6</sub> -alkyl, SO <sub>2</sub> CH <sub>3</sub> , S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ted 3- to 6-membered hete<br>beside carbon atoms 1, 2<br>∿, S, -S(=O)-, -S(=O)₂- and                                                                                                                                                     | erocycle,<br>or 3 heteroatoms                                                                                                                                                                                                         |
| 15 |    | and wherein one or two $CH_2$ grou<br>replaced by one or two groups ind<br>and -C(=S)-; and wherein the car<br>or substituted with 1, 2, 3, 4 or up<br>different groups $R^{3a}$ ; wherein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ps of the carbocycle or he<br>dependently selected from<br>bocycle, the heterocycle a                                                                                                                                                    | the group of -C(=O)-<br>nd aryl is unsubstituted                                                                                                                                                                                      |
| 20 |    | $R^{3a}$ is halogen, cyano, NO <sub>2</sub> , OH<br>$C_1$ -C <sub>6</sub> -alkoxy, C <sub>1</sub> -C <sub>6</sub> -haloalk<br>cycloalkyl, NHSO <sub>2</sub> -C <sub>1</sub> -C <sub>4</sub> -all<br>C <sub>1</sub> -C <sub>6</sub> -alkylsulfonyl;<br>with the exception of 5-ethyl-2,4-dimeth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oxy, C <sub>1</sub> -C <sub>6</sub> -alkylthio, C <sub>1</sub> -C <sub>6</sub><br>‹yl, (C=O)-C <sub>1</sub> -C <sub>4</sub> -alkyl, C(=                                                                                                  | -haloalkylthio, C₃-Cଃ-<br>-O)-C₁-C₄-alkoxy or                                                                                                                                                                                         |
| 25 |    | yl]phenyl]methyl]pyrazole-3-carboxamic<br>oxadiazol-3-yl]phenyl]methyl]pyrazole-3<br>(trifluoromethyl)-1,2,4-oxadiazol-3-yl]ph<br>ethyl-2-methyl-N-[[4-[5-(trifluoromethyl)<br>carboxamide and 4-chloro-5-ethyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-methyl-2-met | 8-carboxamide, 4-chloro-2,<br>enyl]methyl]pyrazole-3-ca<br>-1,2,4-oxadiazol-3-yl]phen                                                                                                                                                    | 5-dimethyl-N-[[4-[5-<br>rboxamide, 4-bromo-5-<br>yl]methyl]pyrazole-3-                                                                                                                                                                |
| 30 |    | yl]phenyl]methyl]pyrazole-3-carboxamic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |
|    | 2. | Compounds according to claim 1, where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ein A is phenyl.                                                                                                                                                                                                                         |                                                                                                                                                                                                                                       |
| 35 |    | Compounds according to claim 1 or 2, windentical or different groups R <sup>A</sup> ; and whe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |
| 40 |    | Compounds according to any one of cla<br>$C_1$ - $C_6$ -alkenyl, $C_3$ - $C_8$ -cycloalkyl, $C_3$ - $C_8$ -cy<br>$C_3$ - $C_8$ -cycloalkenyl, $C_2$ - $C_6$ -alkenyl, $C_2$ - $C_6$<br>phenyl or heteroaryl; and wherein the heterocycle, wherein the ring includes b<br>selected from N, O and S as ring memb<br>groups in R <sup>1</sup> or R <sup>2</sup> are independently un<br>the maximum possible number of identio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ycloalkyl-C <sub>1</sub> -C <sub>4</sub> -alkyl; and F<br>-alkynyl, phenyl-C <sub>1</sub> -C <sub>4</sub> -alk<br>eteroaryl group is a 5- or 6<br>esides carbon atoms 1, 2,<br>er atoms; and wherein any<br>substituted or substituted y | R <sup>1</sup> is C <sub>3</sub> -C <sub>8</sub> -cycloalkyl,<br>yl, heteroaryl-C <sub>1</sub> -C <sub>4</sub> -alkyl,<br>-membered aromatic<br>3 or 4 heteroatoms<br>$\gamma$ of the aliphatic or cyclic<br>with 1, 2, 3, 4 or up to |

82

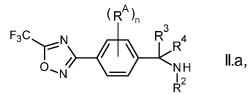
- 6. Compounds according to any one of claims 1 to 5, wherein L is -(C=O)-.
- 10 7. A process for preparing compounds of the formula I as defined in claim 1, which comprises the process step of reacting an amine compound of the formula II



wherein the variables A,  $R^2$ ,  $R^3$  and  $R^4$  are as defined for compounds of the formula I in claim 1, under basic conditions with a compound of the formula III

15

20


5

wherein L and R<sup>1</sup> are as defined for compounds of the formula I in claim 1; and wherein LG is a leaving group selected from the group consisting of chlorine, bromine, fluorine, azide and the group -O-L-R<sup>1</sup>, wherein the variables R<sup>1</sup> and L are as defined for compounds of the formula I in claim 1.

8. Intermediate compounds of the formula II as defined in claim 7, wherein A is phenyl, with the exception of [4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methanamine.

25

9. Intermediate compounds of the formula II.a



wherein n is 0, 1 or 2 and wherein the variables R<sup>A</sup>, R<sup>2</sup>, R<sup>3</sup> and R<sup>4</sup> are as defined in claim 1, with the exception of [4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methanamine.

30

35

10. Intermediate compounds according to claim 8 or 9, wherein

is 0;

n

R<sup>3</sup> and R<sup>4</sup> independently of each other are hydrogen, halogen, C<sub>1</sub>-C<sub>6</sub>-alkyl or C<sub>1</sub>-C<sub>6</sub>-haloalkyl; or

R<sup>3</sup> and R<sup>4</sup> together with the carbon atom to which they are bound form a cyclopropyl ring;

R<sup>2</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl or C<sub>3</sub>-C<sub>8</sub>-cycloalkyl-C<sub>1</sub>-C<sub>4</sub>-alkyl; with the exception of [4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methanamine.

PCT/EP2017/057669

- 11. An agrochemical composition, which comprises an auxiliary and at least one compound of the formula I, or an N-oxide, or an agriculturally acceptable salt thereof, as defined in any one of claims 1 to 6.
- 5

15

20

- 12. An agrochemical composition according to claim 11 comprising at least one further pesticidally active substance selected from the group consisting of herbicides, safeners, fungicides, insecticides, and plant growth regulators.
- 10 13. An agrochemical composition according to claim 11 or 12, further comprising seed, wherein the amount of the compound of the formula I, or an N-oxide, or an agriculturally acceptable salt thereof, is from 0.1 g to 10 kg per 100 kg of seed.
  - 14. The use of compounds according to any one of claims 1 to 6 for combating phytopathogenic harmful fungi.
    - 15. A method for combating phytopathogenic harmful fungi, which process comprises treating the fungi or the plants, the soil or seeds to be protected against fungal attack, with an effective amount of at least one compound of formula I, or an N-oxide, or an agriculturally acceptable salt thereof, as defined in any one of claims 1 to 6.