UK Patent Application .,GB .,2514882

(13)A

(43)Date of A Publication 10.12.2014

(21) Application No: 14044101
(22) Date of Filing: 13.03.2014
(30) Priority Data:

(31) 13844881 (32) 16.03.2013 (33) US

(71) Applicant(s):
Intel Corporation
(Incorporated in USA - Delaware)
2200 Mission College Boulevard, Santa Clara,
California 95052-8119, United States of America

(72) Inventor(s):
William C Rash
Bret L Toll
Scott D Hahn
Glenn Hinton

(74) Agent and/or Address for Service:
HGF Limited
Document Handling - HGF (Sheffield), Belgrave Hall,
Belgrave Street, Leeds, LS2 8DD, United Kingdom

(51) INT CL:
GOG6F 9/30 (2006.01)

(56) Documents Cited:
WO 2002/029507 A2
US 6820190 B1

WO 1998/059292 A1
US 6745322 B1

(58) Field of Search:

INT CL GO6F
Other: WPI, EPODOC, TXTE, INSPEC, XPIPCOM

(54) Title of the Invention: Instruction emulation processors, methods, and systems
Abstract Title: A processor on which control signals decoded from an instruction are processed differently

in emulation mode to when not in emulation mode

(57) A processor of an aspect includes decode logic (105) to receive a first instruction and to determine that the first
instruction is to be emulated. The processor also includes emulation mode aware post-decode instruction
processor logic (107) coupled with the decode logic. The emulation mode aware post-decode instruction processor
logic is to process one or more control signals decoded from an instruction. The instruction is one of a set of one or
more instructions used to emulate the first instruction. The one or more control signals are to be processed
differently by the emulation mode aware post-decode instruction processor logic when in an emulation mode than
when not in the emulation mode. Exceptions may be handled differently or different resources (processor, memory,
security logic, random number generator logic, encryption logic) may be accessed. Other apparatus are also
disclosed as well as methods and systems. The processor might not use microcode.

COMPUTER SYSTEM FIG. 1
100— :
NON-EMULATED
INSTRUCTIONS PRO$S§SOR
103 DECODE DECODED POST-DECODE 101
Y Logic INSTRUCTIONS PR(']NCSET;UOCQXLO&[C
106
102 Y 107 ARCHITECTURAL
REGISTERS
EMULATED
INSTRUCTIONS LOGE%& DETECT M%%ULATION
104 TED E AWARE
INSTRUCTIONS INSTRUCTION 108
PROCESSOR LOGIC
K 1 120
——102 1<
ISA
INSTRUCTIONS

EMULATION
MODE
116

:E\109

EMULATION
MODE e~
118

STORAGE
LOCATIONS

121 et |

ON-DIE
EMULATION LOGIC
1z

MEMORY
110

ONE OR MORE

INSTRUCTIONS TO
EMULATE EACH

EMULATED

INSTRUCTION

114

OFF-DIE
EMULATION LOGIC
113

SOFTWARE
1

PROTECTED
MEMORY
112

Ci1s J

EMULATION LOGIC

vV ¢88v1G¢ 89

JID0TNOILYT

N3

AMONTW D907 NOILYINWT 21907 NOILYINW3
03193L04d 310-440 310-NO
FIT 2T SNOILYOO01
T NOILONMLSNI 3OVOLS
EINalTE T
JHYMLA0S HOY3 3LVININT
0L SNOILONHLSNI Ja0W
_ JHOW ¥O INO NOILYININ3
o7 7
AHOW3IW
914
601~ 300N
NOILY NS SNOILONMLSNI
VS|
— 20—
02t 5T
. 21907 H0SSII0Yd C
801 NOILONYLSN mﬁﬂ%wz_ hY
JYYMY JAON
< 5 NOILYTNINS < N 1231300121901 wzow_%w%ﬂw NI
SY31S193Y _ < C
WANLOILIHONY 20 901 50T
0I907 40833004
NOLLONYLSN] SNOILONYLSNI mm__%%ug §
- - 0300230 £04
107 300930-150d SNOILONYLSNI
¥0SSIO0Nd Q3ALYINNI-NON
. !
£ 9OId WALSAS ¥3LNdWOD

11717

AMETHOD IN
A PROCESSOR
230

L

FIG. 2

RECEIVE FIRST INSTRUCTION

~~231

v

DETERMINE TO EMULATE FIRST INSTRUCTION

~-232

\ 4

RECEIVE SET OF ONE OR MORE INSTRUCTIONS
TO BE USED TO EMULATE FIRST INSTRUCTION

~-233

A

PROCESS ONE OR MORE CONTROL SIGNALS
DERIVED FROM INSTRUCTION OF SET DIFFERENTLY
WHEN IN EMULATION MODE THAN WHEN NOT
IN EMULATION MODE

~234

2117

€ 9Ol

(43
3JQOW NOILYTINNT
NI LON NIHM NYHL
300N NOILYINWA NI
INFH344i0 SNOILONYLSNI
40 13S 3TAONYH OL 1907
VMY JAON NOILY NN

sie

208
J190T HOSS3004d

NOILONYLSNI
3d0330-LS0d

hcma\\

21001

N

C

90¢
SNOILOMYLSNI
(d300%3a

Q1907 NOLLY NI
vie
NOILONYLSNI
JHLILYINNT OL VS
gie JNVS 40 SNOILONYLSNI
JAOW NOILY NG (¥37dWIs “93) 40 138
)
9l€
3d0W
NOILYTNAI
61€
NOILONYLSNI
X31dN03
103130 01 21907
goe
J1901
30003

\

403
(NOILONYLSNI X3 1dW0D “9°3)
d3Lvinnw3 3a oL
NOILONYLSNI

3/17

4117

vy "OId)
SIN3A3 o
GIF DI90TNOILYINNA
éﬂ%ﬁ N (Sh3LSI9Y
Q NOLLYQINAIWWOO NOILYTNING
GFF 3000 ¥OYY3
44 _
NOILIGNOD — Py
TWNOILdIOX3]|ﬂ|¢ PPP SNLVLS HOUY3 ,
VL Zbh g3LvYINNa ONI3g
9% 300W NOLLYTNINS _ ma@%%.\wﬁmw
"HQQy LSNI A3LYINING NI NOILIONOD 8y
TYNOILdINXT > 300N NOLLYINIS SNOILONYLSNI 40 138
, IFF MOV1S 1d0d3
ATLOTYHION]
577 Il
Ocr
zwm_umﬂ/\%o 01901 —
TNOLEEDA | <7 | | ollezoxd B o z-c0r
300N NOILYININT 1901 (300N NOILYINIWA NI)
mmmy NOILONYLSNI
T N3N 40
NOILVINWI-NON —
NI ATLOZNIG 0% 90% T JONYLSNI ONOO3S
NOLLIANGS 21907 4088300 SNOILONYLSNI 3907 C
TYNOILd30X3 NOILONALSNI (300930 300030 L-€0%
A DL 300931804 (300W NOILYINWI NI LON)
LOp NOILONYLSNI
21901 NIAID 40

JONVISNI 1SHIS

£G JID0TNOILYINNG

S Ol
| =
| 963 | IS
| SL1IN00S HO/ANY |
b (5)3400¥3HI0 | am@%@ﬁm_mﬁwm
[NINOILYWYOANI | I SV YSIAYS 40
| yo/aNy (8)308n0s3Y |
_ _ JQOW NOILYINW3 SNOILONYLSNI 40 138
O U |
300N
NOILYININ NI
$S300Y MOTIV
26 075
L 21901
095 JOYLNOD SSTDIY
JHVMY 300 615 Usepe
NOILLYINW3 -
zom%ﬂwmz_ 01907 (J00W NOILYINWE NI)
NOILONYISNI
@mww_o:%_wmm \ Tﬂf NIAID 40
PN 708 90G T IDNVLSNI ONOD3S
21907 ¥OSSI0Nd SNOILONYLSNI 90T
NOILONYLSNI 0300930 100030 f
= 300930-10d b-€0S
3q0W (300N NOILY TN NI LON)
NOLLYININI-NON Ni NOILONYLSNI
S$S300V INIATHd N3AID 40
JONVISNI 1SHH
*_ L0S A

J1901

5/17

METHOD PERFORMED

BY PROCESSOR
660

=

— 663

DECODE FIRST
INSTRUCTION
TO ONE OR
MORE CONTROL
SIGNALS

RECEIVE FIRST INSTRUCTION HAVING GIVEN
OPCODE
662
FIRST
MEANSING DETERMINE
WHETHER GIVEN OPCODE HAS

FIRST MEANING OR SECOND
MEANING

SECOND
MEANING

INDUCE EMULATION OF FIRST INSTRUCTION
IN RESPONSE TO DETERMINING THAT GIVEN
OPCODE HAS SECOND MEANING

FIG. 6

6/17

— 664

. glz
VA E 91907 Pz
NOLLYINW3 ONINVIN ANOD3S
— ONIAYH 300040 NIAID
727 SNOILY)OT HLIM NOLLONYLSN
FOVHOLS 3LvINAE oL
(SINOILONYLSNI
517 q0om | | oW ¥H03IN0 40138
NOLLYTNINT
9L.
Jq0N e S -
NOILY NI |
o ___ . — 507 I'[[__ 300040 N3AI9 404 ONINVIW
—_— g | | |E2Z 3 1LY
| 077 < e | ANOD3S 35N OL NOILYIIQN
_ o9 :%%W&o% m NOLv I3 ~ ¢l
0140883 §
| NOILONMLSNI FHvAY | - 77 C H 3w FYMIA08 ANOD3S
| JAOWNOILYINNT | 771 €0/ |
e y N NOILYDIONI 3000dON3ND 11 300040 NIAI9 404 ONINVIN
707 wzo_w%%az_ 21907 v_o%_mo oL o m_w_bo w_%ﬁ%w%zm_ | [IZZZ 15414350 OL NOILYOION|
21907 ONISSIO0Nd 30093d 01
NOILONYLSNI {30033a HO3HO h __ =117
300030-1S0d . 160, || =monw FHYMLAOS 19414
c0; 300940 N3AID |
8300030 HLIM NOILONYLSNI |
577 300940 JOIONVISNILSYIA || | 777 3LVLS MOSSID0Md
N3AI9 404 ONINYIW _ Bzw_m mmw%wmmw M_,m
ANOD3S MO 18¥14 38N OL T
¥3HLIHM 40 NOILYDIONI _ ONINVIIN Qv0T 9L 374l
ot e, | 0ZZ 43QYOTWVH90Nd
NOLLYD0139VH0LS ! 317 ANONIW

7117

METHOD PERFORMED
BY OPERATING SYSTEM
880

-\

DETERMINE THAT FIRST INSTRUCTION HAVING GIVEN
OPCODE IS TO HAVE SECOND MEANING INSTEAD OF
FIRST MEANING WHEN EXECUTED BY PROCESSOR FROM
SOFTWARE PROGRAM

— 881

h

STORE INDICATION THAT FIRST INSTRUCTION HAVING
GIVEN OPCODE IS TO HAVE SECOND MEANING IN STATE
OF PROCESSOR

FIG. 8

8/17

LIBRARY, 93 R

| FiesT €T~ oF LIBRARY SECoND SET™ oF LiBRAgy
Fam CTLON /S RRIMTINE S Funict7ond) SUBRTINE

THAT W€ FIRST MEANIN THUAT WE SEConD MEWN,

°F LIvEA OPCoDE OF GluEN OPCODE.
L agd | [T Siy-2.

71

| ProGRAM LoadDER mopwe 970

85

1 SELECTIpN MeDu (£ To SELEcy SET oF
LIBAALY FunCTlows oK SuBBOUTINE THAT HAE
APROPRIATE MEANING 6f GIVEN OPCodE

—d

7 /]

\L” il SEcont>
SET
| @i x¢-2-

N : A\ ‘!
Ej ' SE Conp SHETHALE

rﬁxzw SefTWA \ (frevpace USING.

MeputE USING . |
| FiesT™ MEANWL, SEconD MEANMN,

oF CLef . 6PLDE oF GIvEn PPCDE
\\ ou-1 ! \ QUL |

s

9717

o — —

_
| Vol

| LINNOO

- — —

A

9£01 vL01

1INA LINQ IHOVO Y1va | 040} LINN
3HOVD ¢/0L

¢l UNNFTLY.LYd

AHONIN

090} (S)431SN1D NOILNO3X3

7901 7901

(S)LINN
5300y {SILINN

IONIN NOILNO3X3
A

A

|
|
L v __

04501 (S)LINN S3714 ¥3LSIDTY T¥OISAHd

| mm@@tz:mﬂ:omxow |

_—— i e e e B L I e

LINN INSWNZHIL3Y

M llllll | -0 e
r-———- =t — — —— = =
_ ¢S0L 1INN _|l|ll_> 0501 LINN

¥501 801 '9/4

—

INIONT NOILNOFXT

0¥0l 1INN 30003a

A
| Smezomﬁzo:%maz_ |

0c0}
LINN ON3 LNOYA

/ 0601 3400

9€0} LINN 871 NOILONYLSNI
PL_E0L LINN IHOVI NOLLONYLSNI

Z€01 LINN
NOILOIJ3dd HONY>E

¢c0l
ONITANYH
NOI1d30X3

04101 v10L
JLHM 910} S EEPRSOIUEN
AdOW3N § 39VLS 31No3X3 favad

MOvE LM d318193y

Zi01 otor 1 owoos | 9004 ozmwwmo 2001
TINA3HOS [ONINYNTY 00TTv|0003a HOL34
| HLONTT

YOI "Ol4

|||||||| 0001 INM3dId ~——

10/ 17

Y90lLl
JHOVO viva 11

gzcLl A\ 443
1H3IANOD 1H3IANOD
OIH3NNN OIH3INNN

A
14337
SY31SI93Y
dOL33A
A
V. ¥ /
ocLl vell
INZZIMS 3101743
Yyvey /
8zl

NV JOLO3IA 2AIM-91

A

9cli
SHALSIOFA MSVYIN ILIEM

gll o4

(41124
HHOMLIN ONIY
4
A

7oLl
dHOVYD
¢13HL 40 13S9NS 1v20]

A

o0L}
JHOVI L1

12923 [433*
SY3LSIOAY SH3LSIOIY

JOLD3A dv1vOsS
A J
4 « « A4
oLl 8011
LINN 1INN
dOLD3A dVIvVOS
A 1
y
00LL
3AA023A NOILONYLSNI
Vil 9ld

11717

- ST o o o o s T oo T
| vIZLSluNn | 2IZL NIy
MITIONINGD T~ == == ————————
L onan 1 902k (SUNn FHoVO auvHs |
9zt SN |1 e F oo
¥ITIOMINOD || 2 Y23 oz T V0z)
sng L SUNN | | e mw| | (S)NN
01z LINN | 3Hovo | 3HOVO
INJOY WALSAS | Nzozh 3409 | Y202} 300

8021 21907
3S0duNd
W03dS

B N — |

/oomr ¥0SS3004d

Zl "9ld

12717

1300 S — ﬁ 1315
gy 1310
= I—_—I—- PROCESSOR |— — -
| — /1395|
B —— | _— 1340
[CcoNTROLLER
o l— | —MELD 1 evory
| PROCESSOR | [vt I
L T —
1360 —_ — L/___'
o - OH1350 |
I
o
FIG. 13

13717

vLva ¥ 'Old
gl —1— (€Y
aNY 3002 $30IA3Q | 3snow
I9VHOLS VIVa &y =" wmoo cevl /QEYO8A3N
T 0z}
Sipl bep) iy 8Lyl
¥0SS300Yd o/l 01any S39IA3a O/l 390148 Snd
oy, - — — ..I_
9L —1 I | zeyL —1 | eepl
i
96y, —1 dd 06¥} LISIHO JES [gey, H0SS3O0UAOD|
ov), — _ —
Shl)
0871 d-d dd d-d d-d 0l%l
98vl L%ﬁ A \ /| P@E
8.bl
0shl
28t} oyl —7
I Ml
eVl e}
AHONIN AHOWAW
¥0SSIN0Hd0D
/40SS3004d ¥0SSIO0Nd

/ 00l

14717

2943
AHONIN

Gl "ol

G151

O/ AOV9F1

13SdIHO

oyl —1 il

H0SS300Hd

]

— ggp, — A.Nl

oSyl

d08S330¥d

eyl
AHONEN

-

[—— —

yiG1 |

s3oinaaon

//r oomw.

15717

ovolL
LINN AY1dSId

¢€91 LINNYING

0€91
LINN WVHS

1zl (S)LINN

YITIOHLINOD
AHOW3W

EINEREI

91zt (S)LINN

0791 (S)H0SS3D0Yd0D

HITIONINGD [09 (STINN LOSNNOoWaINT]|
sng 1 _
——===—=—=———=— —
_
_ _
I 90z} {S)LINN IHOVD IFHVHS
| Nvoz |) YOz
| | SUNY | | ema | |(S)LNN
d
01ZL LINN I 3H0V0 1 3HOYD
INTOV WILSAS w_mcw 3400 | V202 3909

0191 40SS3304d NOILYIITddY

/ 0091

diHO ¥ NO W3LSAS

91 "OI4

16 /17

2021 FOVNONYTT13AITHOH

8041 ¥3TIdNCD
135 NOILONYLSNI
AANLYNYILTY

v0L1 d3TIdINOD 98X

902} 3003 AYVNIG 98X

2121 ¥31MIANOD
NOILONMLISNI y
L1 °0l4 0L} 3000 AYYNIE
138 NOILLONMLSNI
JUYMLIOS IALLYNSALTY
. THYMAYH o
o 7141 340D L3S NOILLONYLSNI
3H0D 13S NOILONMLSNI
98X IND LSV 98X NY LNOHLIM MOSSIO0Nd
L1V H1IM ¥0S53004d

171717

INSTRUCTION EMULATION PROCESSORS, METHODS, AND SYSTEMS
BACKGROUND

Technical Field

[0001] Embodiments described herein generally relate to processors. In particular,

embodiments described herein generally relate to instruction emulation in processors.

Background Information

[0002] Processors typically have instruction set architectures (ISA). The ISA generally
represents the part of the architecture of the processor that is related to programming.
The ISA commonly includes the native instructions, architectural registers, data types,
addressing modes, and the like, of the processors. One part of the ISA is the instruction
set. The instruction set generally includes macroinstructions or ISA level instructions
that are provided to the processor for execution. Execution logic and other pipeline logic
is included to process the instructions of the instruction set. Often, the amount of such
execution and other pipeline logic may be considerable. =~ Commonly, the more
instructions in the instruction set, and the more complex and/or specialized the
instructions in the instruction set, the greater the amount of such logic is. Such hardware
may tend to increase the manufacturing cost, the size, and/or the power consumption of

the processors.
BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The invention may best be understood by referring to the following description
and accompanying drawings that are used to illustrate embodiments of the invention. In

the drawings:
[0004] Figure 1 is a block diagram of an embodiment of a computer system.

[0005] Figure 2 is a block flow diagram of an embodiment of a method of emulating an

instruction in a processor.

[0006] Figure 3 is a block diagram illustrating an embodiment of logic to emulate an

instruction with a set of one or more instructions.

[0007] Figure 4 is a block diagram illustrating an embodiment of logic to allow a
processor to handle exceptional conditions differently when in an emulation mode as

compared to when not in the emulation mode.

[0008] Figure 5 is a block diagram illustrating an embodiment of logic to allow a
processor to access resource(s) and/or information differently when in an emulation mode

than when not in the emulation mode.

[0009] Figure 6 is a block flow diagram of an embodiment of a method performed by

and/or in a processor.

[0010] Figure 7 is a block diagram illustrating an embodiment of logic to allow a given

opcode to have different meanings.

[0011] Figure 8 is a block flow diagram of an embodiment of a method that may be

performed by an operating system module.

[0012] Figure 9 is a block diagram of an embodiment of a program loader module
including a selection module that is operable to select a set of one or more functions,
subroutines, or other portions of a software library that have a meaning of a given opcode

that 1s appropriate for software that will use them.

[0013] Figure 10A is a block diagram illustrating both an exemplary in-order pipeline
and an exemplary register renaming, out-of-order issue/execution pipeline according to

embodiments of the invention.

[0014] Figure 10B is a block diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renaming, out-of-order
issue/execution architecture core to be included in a processor according to embodiments

of the invention.

[0015] Figure 11A is a block diagram of a single processor core, along with its
connection to the on-die interconnect network and with its local subset of the Level 2

(L2) cache, according to embodiments of the invention.

[0016] Figure 11B is an expanded view of part of the processor core in Figure 11A

according to embodiments of the invention.

[0017] Figure 12 is a block diagram of a processor that may have more than one core,
may have an integrated memory controller, and may have integrated graphics according

to embodiments of the invention.

[0018] Figure 13 shown is a block diagram of a system in accordance with one

embodiment of the present invention.

[0019] Figure 14 shown is a block diagram of a first more specific exemplary system in

accordance with an embodiment of the present invention.

[0020] Figure 15 shown is a block diagram of a second more specific exemplary system

in accordance with an embodiment of the present invention.

[0021] Figure 16 shown is a block diagram of a SoC in accordance with an embodiment

of the present invention.

[0022] Figure 17 is a block diagram contrasting the use of a software instruction
converter to convert binary instructions in a source instruction set to binary instructions

in a target instruction set according to embodiments of the invention.
DETAILED DESCRIPTION OF EMBODIMENTS

[0023] Disclosed herein are instruction emulation processors, methods, and systems. In
the following description, numerous specific details are set forth (e.g., specific emulation
mode aware logic, approaches for handling exceptional conditions, types of privileged
resources and information, logic implementations, microarchitectural details, sequences
of operations, logic partitioning/integration details, hardware/software partitioning
details, processor configurations, types and interrelationships of system components, and
the like). However, it is understood that embodiments of the invention may be practiced
without these specific details. In other instances, well-known circuits, structures and
techniques have not been shown in detail in order not to obscure the understanding of this

description.

[0024] Figure 1 is a block diagram of an embodiment of a computer system 100. In
various embodiments, the computer system may represent a desktop computer, laptop

computer, notebook computer, tablet computer, netbook, smartphone, personal digital

assistant, cellular phone, server, network device (e.g., router or switch), Mobile Internet
device (MID), media player, smart television, set-top box, video game controller, or other

type of electronic device.

[0025] The computer system includes an embodiment of a processor 101. In some
embodiments, the processor may be a general-purpose processor. For example, the
processor may be a general-purpose processor of the type commonly used as a central
processing unit (CPU). In other embodiments, the processor may be a special-purpose
processor. Examples of suitable special-purpose processors include, but are not limited
to, co-processors, graphics processors, communications processors, network processors,
cryptographic processors, embedded processors, and digital signal processors (DSPs), to
name just a few examples. The processor may be any of various complex instruction set
computing (CISC) processors, various reduced instruction set computing (RISC)
processors, various very long instruction word (VLIW) processors, various hybrids

thereof, or other types of processors entirely.

[0026] The computer system also includes an embodiment of a memory 110 that is
coupled with the processor 101 by a coupling mechanism 109. Any conventional
coupling mechanism known in the arts for coupling a processor and a memory is suitable.
Examples of such mechanisms include, but are not limited to, interconnects, busses, hubs,
memory controllers, chipsets, chipset components, and the like, and combinations
thereof. The memory may include one or more memory devices of either the same or
different types. One commonly used type of memory that is suitable for embodiments is
dynamic random access memory (DRAM), although other types of memory (e.g., flash

memory) may alternatively be used.

[0027] The memory 110 may have software 111 stored therein. The software may
include, for example, one or more operating systems (OS) and one or more applications.
During operation, a portion of the software may be loaded onto the processor and run on
the processor. As shown, the processor may receive ISA instructions 102 of an
instruction set of the processor. For example, an instruction fetch unit may fetch the ISA
instructions. The ISA instructions may represent macroinstructions, assembly language

instructions, machine-level instructions, or other instructions provided to the processor to

be decoded and executed. As shown, in some embodiments, the ISA instructions may
include both non-emulated instructions 103 and one or more types of emulated

instructions 104.

[0028] The processor includes decode logic 105. The decode logic may also be referred
to as a decode unit or decoder. The decode logic may receive the ISA instructions 102.
In the case of the non-emulated instructions 103, the decode logic may decode the
relatively higher-level instructions and output one or more relatively lower-level
microinstructions, micro-operations, micro-code entry points, or other relatively lower-
level instructions or control signals derived from the ISA instructions. In the illustration,
these are shown as decoded instructions 106. The decoded instructions output from the
decoder may reflect, represent, and/or be derived from the higher-level ISA instructions
input to the decoder and may implement the ISA instructions through one or more lower-
level (e.g., circuit-level or hardware-level) operations. The decoder may be implemented
using various different mechanisms including, but not limited to, microcode read only
memories (ROMs), look-up tables, hardware implementations, programmable logic

arrays (PLAs), and other mechanisms used to implement decoders known in the art.

[0029] A post-decode instruction processor logic 107 is coupled with the decode logic.
The post-decode instruction processor logic may represent a post-decode portion of the
instruction processing pipeline of the processor. The post-decode instruction processor
logic may receive and process the decoded instructions 106. Commonly, the post-decode
instruction processor logic may include register read and/or memory read logic, execution
logic, register and/or memory write back logic, and exception handler logic, although the
logic may vary from one architecture to another, and the scope of the invention is not
limited to such logic. In some embodiments, for example in the case of an out-of-order
processor pipeline, the post-decode instruction processor logic may optionally include
other logic, such as, for example, allocation logic, renaming logic, scheduling logic, retire

or commit logic, or the like.

[0030] The processor also includes one or more sets of architecturally-visible or
architectural registers 108. The architecturally-visible registers represent registers that

are visible to the software and/or a programmer and/or the registers that are specified by

the ISA instructions 102 to identify operands. These architectural registers are contrasted
to other non-architectural or non-architecturally wvisible registers in a given
microarchitecture (e.g., temporary registers used by instructions, reorder buffers,
retirement registers, etc.). The architectural registers generally represent on-die processor
storage locations that are operable to store data. These architectural registers are often
referred to herein simply as registers. By way of example, the architectural registers may
include a set of general-purpose registers, a set of packed data registers, a set of floating
point registers, a set of integer registers, or some combination thereof. The architectural
registers may be implemented in different ways in different microarchitectures using
well-known techniques and are not limited to any particular type of circuit. Examples of
suitable types of architectural registers include, but are not limited to, dedicated physical
registers, dynamically allocated physical registers using register renaming, and

combinations thereof.

[0031] The post-decode instruction processor logic 107 is coupled with the registers 108.
The post-decode instruction processor logic may receive data from, and write or store
data to, the registers. For example, the register read logic may read data from registers
indicated as source operands of instructions and/or the write back logic may write or store
results to registers indicated as destination operands of the instructions. The post-decode
instruction processor logic is also coupled with the memory 110 and may receive data
from, and store data to, the memory. For example, the memory read logic may read data
from memory locations indicted by instructions and/or the memory write back logic may

write data to memory locations indicated by instructions.

[0032] Referring again to Figure 1, the emulated instructions 104 may also be provided
to the decode logic 105. In contrast to the non-emulated instructions 103, the emulated
instructions 104 may not be fully decoded by the decode logic and provided as
corresponding decoded instructions 106 to the post-decode instruction processor logic
107. Rather, in some embodiments, emulation logic 115 may be provided to emulate the
emulated instruction(s) 104. In the arts, various different terms are given to such

emulation, such as, for example, instruction translation, binary translation, code

morphing, instruction interpretation, and the like. The term emulation is used broadly

herein to encompass these various different terms used in the industry.

[0033] As shown, in some embodiments, the emulation logic 115 may be split between
partly on-die emulation logic 117 and partly off-die emulation logic 113, although this is
not required. In other embodiments, all of the emulation logic 115 may optionally be on-
die or a majority may optionally be off-die, although typically there will be at least some
on-die emulation logic (e.g., an emulation mode 118, some emulation mode aware
instruction processor logic 120 in the pipeline, etc.). The on-die emulation logic is fixed,
resident, or persistent on-die with the processor. Commonly, the on-die emulation logic
is present on-die with the processor even when the processor is powered off, prior to
booting, and/or at the time of completion of manufacture. Examples of suitable on-die
emulation logic includes, but is not limited to, hardware (e.g., integrated circuitry,
transistors, etc.), firmware (e.g., on-die ROM, EPROM, flash memory, or other persistent
or non-volatile memory and non-volatile instructions stored therein), or a combination

thereof.

[0034] The off-die emulation logic 113 may be included in the memory 110. The off-die
emulation logic may be coupled with, or otherwise in communication with, the on-die
emulation logic. In some embodiments, the off-die emulation logic may be included in a
protected region or portion 112 of the memory. In some embodiments, the protected
portion may be reserved for use by on-die hardware and/or firmware logic of the
processor alone but not for the software 111 executing on the processor. For example, in
some embodiments, the on-die emulation logic 117, the emulation mode aware
instruction processor logic 120, and/or potentially other on-die processor logic, may be
able to access and use the off-die emulation logic 113, but the software 111 (e.g., an
operating system or application) running on the processor may not be able to access or
use the off-die emulation logic 113. In some embodiments, the off-die emulation logic
may be protected from access and modification by and/or be invisible to applications, the
operating system, a virtual machine manager if there is one, and/or I/O devices. This

may help to promote security.

[0035] The decode logic includes logic 119 to detect or recognize the emulated
instruction 104. For example, the decoder may detect the emulated instruction based on
an opcode. In some embodiments, upon detecting the emulated instruction, the decoder
may provide an emulation mode signal 116 (e.g., an emulation trap signal) to emulation
logic 115. As shown, the emulation logic may have an emulation mode 118. By way of
example, the emulation mode may include one or more bits or controls in a control or
configuration register of the processor to indicate whether or not the processor (e.g., the
logic 105, 107, etc.) is in the emulation mode. In some embodiments, the emulation
mode 118 may be entered when upon receipt of the emulation mode signal 116 from the

decoder indicating that an emulated instruction 104 is to be emulated.

[0036] In some embodiments, the decode logic 105 may also provide other information
associated with the instruction being emulated to the emulation logic 115. Examples of
such information includes potentially, but is not limited to, operand identifiers (e.g.,
source or destination register addresses or memory locations), memory addressing modes,
immediates, constants to speed execution, and/or other information from and/or associate
with the emulated instruction 104. By way of example, any information from the
emulated instruction and/or associated with the emulated instruction that is useful to the
emulation system to allow the emulation system to emulate the emulated instruction 104

may potentially be provided.

[0037] In some embodiments, the emulation logic 115 may include a different set of one
or more instructions 114 to emulate each different type of emulated instruction 104. For
example, a first set of one or more instructions 114 may be provided to emulate a first
instruction 104 having a first opcode, and a second, different set of one or more
instructions 114 may be provided to emulate a second, different instruction 104 having a
second, different opcode. In some embodiments, each set may include at least three
instructions. In the illustrated embodiment, the set of one or more instructions 114 are
included in the off-die emulation logic 113, although this is not required. In other
embodiments, the instructions 114 may be provided on-die (e.g., in a persistent or non-

volatile memory of the on-die emulation logic 117). In still other embodiments, part of

the instructions 114 may be provided on-die (e.g., in the on-die emulation logic) and part

may be provided off-die (e.g., in the oft-die emulation logic).

[0038] In some embodiments, each of the instructions of the set of one or more
instructions 114 used to emulate the emulated instruction 104 may be fetched or
otherwise retrieved from the emulation logic 115 and provided to the decode logic 105.
In some embodiments, each of the instructions of the set of one or more instructions 114
used to emulate the emulated instruction 104 may be of a same instruction set as the
emulated instruction 104. The decode logic 105 may be operable to decode each of the
set of one or more instructions 114 into corresponding decoded instructions 106. The

decoded instructions may be provided to the post-decode instruction processor logic 107.

[0039] The post-decode instruction processor logic includes an embodiment of emulation
mode aware instruction processor logic 120. As shown, the emulation mode aware
instruction processor logic may be coupled with, or otherwise aware of, the emulation
mode 118. In some embodiments, the emulation mode aware instruction processor logic
may be operable to process at least some of the decoded versions of the instructions 114
differently in at least some ways when the processor is in the emulation mode than when
the processor is not in the emulation mode. There are various different ways in which the
processing may be different. In some embodiments, fault or error handling may be
performed differently when in the emulation mode as compared to when not in the
emulation mode. In other embodiments, access to certain types of resources and/or
information, such as, for example, secure, privileged, or otherwise access controlled
resources and/or information, may be handled differently when in the emulation mode
than when not in the emulation mode. For example, access to the resources and/or
information may be allowed when in the emulation mode but not allowed when not in the

emulation mode.

[0040] When in the emulation mode, the post-decode instruction processor logic may
access storage locations 121. In the illustrated embodiment, the storage locations 121 are
part of the on-die emulation logic 117. Alternatively, the storage locations may be
included in the off-die emulation logic, or partly in the on-die emulation logic and partly

in the off-die emulation logic. The storage locations may be used to store temporary

variables, intermediate results, and/or execution state associated with the execution of the
set of instructions 114. This may help to avoid needing to save the execution state of the
original program having the emulated instruction 104 and/or may help to prevent such
execution state (e.g., the contents of the architectural registers 108) from being corrupted
by the processing of the set of instructions 114. In some embodiments, the storage
locations 121 may emulate architectural registers, although this is not required. In some
embodiments, the contents of the storage locations 121 may be independent of, isolated
from, and/or protected from access by applications, operating systems, virtual machine
managers, /O devices, interrupts, and the like. Upon completion of the set of
instructions 114, the architectural state of the processor may be updated (e.g., a result
may be stored from the storage locations 121 to the registers 108). This may be done
with low latency access. Commonly, this may be used to approximate, imitate, resemble,
or otherwise emulate the change in architectural state that would have occurred and/or the
behavior of the processor that would have happened if the emulated instruction 104 had

actually been executed directly.

[0041] To avoid obscuring the description, a relatively simple processor 101 has been
shown and described. In other embodiments, the processor may optionally include other
well-known components. There are literally numerous different combinations and
configurations of components in processors, and embodiments are not limited to any
particular combination or configuration. The processor may represent an integrated
circuit or set of one or more semiconductor dies or chips (e.g., a single die or chip, or a
package incorporating two or more die or chips). In some embodiments, the processor

may represent a system-on-chip (SoC) and/or a chip multi-processor (CMP).

[0042] Some processors use relatively complex operations. For example, instead of only
a single memory access, some instructions perform multiple memory accesses. An
example is a vector gather instruction to gather a vector of data elements from memory.
As another example, instead of comparing a single pair of data elements, or pairs of
corresponding data elements in two packed data, certain instructions may perform many
data element comparisons. Examples are vector conflict instructions and string

processing instructions. One approach is to fully implement such complex operations in

10

hardware. However, often the amount of hardware needed may tend to be considerable,
which may tend to increase manufacturing cost, die size, and power consumption.
Another approach is to implement such complex operations at least partly in microcode.
The use of microcode may help reduce the amount of hardware need to implement such
complex operations and/or may help to allow certain existing hardware to be reused.
However, some processors do not use microcode (e.g., do not use microcode to

implement any instructions of an instruction set).

[0043] In some embodiments, a relatively more complex instruction and may be
emulated with the set of one or more relatively simpler instructions. The terms more
complex and simpler are relative terms, not absolute terms, which are relative to each
other. Advantageously, this may potentially help to reduce the amount of hardware
needed to implement the more complex instruction and/or may help to allow reuse of
existing hardware that is used by the one or more instructions used to emulate the more
complex instruction. In some embodiments, the emulation of the more complex
instruction with the one or more instructions simpler may be used to provide a
microcode-like implementation of the more complex instruction even though the
processor, in some embodiments, may not be configured to use microcode and/or may

not be configured to use microcode to implement the more complex instruction.

[0044] Figure 2 is a block flow diagram of an embodiment of a method 230 of emulating
an instruction in a processor. In some embodiments, the operations and/or method of
Figure 2 may be performed by and/or within the processor of Figure 1. The
components, features, and specific optional details described herein for the processor of
Figure 1 also optionally apply to the operations and/or method of Figure 2.
Alternatively, the operations and/or method of Figure 2 may be performed by and/or
within a similar or entirely different processor. Moreover, the processor of Figure 1 may

perform operations and/or methods similar to or different than those of Figure 2.

[0045] The method includes receiving a first instruction, at block 231. In some
embodiments, the first instruction may be received at a decoder. The method includes
determining to emulate the first instruction, at block 232. In some embodiments, the

decoder may determine to emulate the first instruction by determining that an opcode of

11

the first instruction is among a set of one or more opcodes for instructions to be emulated.
The method includes receiving a set of one or more instructions to be used to emulate the
first instruction, at block 233. In some embodiments, the set of instruction(s) may be
received at the decoder from on-die emulation logic, or off-die emulation logic, or a
combination thereof. In some embodiments, each of the instruction(s) of the set may be
of a same instruction set as the first instruction. The method includes processing one or
more control signals derived from an instruction of the set differently when in an

emulation mode than when not in the emulation mode, at block 234.

[0046] This may be done in different ways in different embodiments. In some
embodiments, exceptional conditions encountered during processing of an instruction of
the set may be handled differently. In some embodiments, the processing of an
instruction of the set may allow access to information and/or resources that would not
otherwise be available to the same instruction (i.e., an instruction having the same

opcode) when not done within an emulation mode.

[0047] Figure 3 is a block diagram illustrating an embodiment of logic 301 to emulate an
instruction (e.g., a complex instruction) 304 with a set of one or more instructions (e.g.,
simpler instructions) 314. In some embodiments, the logic of Figure 3 may be included
in the processor and/or the computer system of Figure 1. Alternatively, the logic of
Figure 3 may be included in a similar or different processor or computer system.
Moreover, the processor and/or the computer system of Figure 1 may include similar or

different logic than that of Figure 3.

[0048] An instruction (e.g., a complex instruction) 304 that is to be emulated may be
provided to decode logic 305. The decode logic may include logic 319 to detect the
instruction 304, for example, to detect that an opcode of the instruction 304 is among a
set of opcodes of instructions that are to be emulated. As shown, in some embodiments,
the processor may not have microcode 330. The decode logic may provide an emulation
mode signal 316 to emulation logic 315. In various embodiments, the emulation logic
315 may include on-die logic, off-die logic, or both on-die and off-die logic. The
emulation logic may enter an emulation mode 318 in response to the emulation mode

signal.

12

[0049] The emulation logic also includes a set of one or more simpler (e.g., simpler)
instructions 314 that may be used to emulate the (e.g., more complex) instruction 304. In
some embodiments, the one or more instructions 314 may be of a same instruction set as
the instruction 304. In some embodiments, the one or more instructions 314 may be
identical to other instructions decoded and executed when not in the emulation mode. To
emulate the (e.g., complex) instruction 304, each of the one or more (e.g., simpler)
instructions 314 may be provided to the decode logic. The decode logic may decode each

of the instructions 314 as one or more decoded instructions 306.

[0050] A post-decode instruction processor logic 307 may receive the decoded
instructions 306 corresponding to the instructions 314. The post-decode instruction
processor logic may include an embodiment of emulation mode aware logic 320. As
shown, in some embodiments, the emulation mode aware logic may be coupled with, or
otherwise aware of, the emulation mode 318. In some embodiments, the emulation mode
aware logic may be operable to process the decoded instructions 306 corresponding to the
instructions 314 differently when the processor is in the emulation mode 318, than when
the processor is not in the emulation mode. In some embodiments, fault or error handling
may be performed differently when in the emulation mode as compared to when not in
the emulation mode. For example, the logic 320 may use optional aspects discussed
below for Figure 4. In other embodiments, access to certain resources and/or
information may be selectively provided when in the emulation mode, but not when the
processor is not in the emulation mode. For example, the logic 320 may use optional

aspects discussed below for Figure 5.

[0051] Advantageously, in some embodiments, a more complex instruction may be
implemented by a set of simpler instructions/operations. Advantageously, this may
potentially help to reduce the amount of hardware needed to implement the more
complex instruction and/or may help to allow reuse of existing hardware that is used by
the one or more instructions used to emulate the more complex instruction. In some
embodiments, the emulation of the more complex instruction with the one or more
instructions simpler may be used to provide a microcode-like implementation of the more

complex instruction even though the processor, in some embodiments, may not be

13

configured to use microcode and/or may not be configured to use microcode to
implement the more complex instruction. In some embodiments, the simpler
instructions/operations may even be of the same instruction set as the more complex

instruction.

[0052] Such emulation of more complex instructions with simpler instructions is just one
example of a possible reason to emulate an instruction. In other embodiments, the
emulated instruction may be one that is relatively less frequently used (e.g., infrequently
used) and may be emulated with one or more instructions that are relatively more
frequently used. Advantageously, this may potentially help to reduce the amount of
hardware needed to implement the infrequently used instruction and/or may help to allow
reuse of existing hardware that is used by the one or more instructions used to emulate
the infrequently used instruction. In still other embodiments, the emulated instruction
may be an older and/or outdated instruction and/or may be one that is in the process of
being deprecated, and may be emulated with the one or more other instructions.
Advantageously, the emulation may help to allow the instruction that is being deprecated
to still be executed and thereby provide backward compatibility to software, while at the
same time potentially helping to reduce the amount of hardware needed to implement the
deprecated instruction and/or helping to allow reuse of existing hardware that is used by
the one or more instructions used to emulate the deprecated instruction. Still other uses
of the emulation disclosed herein will be apparent to those skilled in the art and having

the benefit of the present disclosure.

[0053] Figure 4 is a block diagram illustrating an embodiment of logic 401 to allow a
processor to handle exceptional conditions differently when in an emulation mode as
compared to when not in the emulation mode. In some embodiments, the logic of Figure
4 may be included in the processor and/or the computer system of Figure 1 and/or the
logic of Figure 3. Alternatively, the logic of Figure 4 may be included in a similar or
different processor or computer system. Moreover, the processor and/or the computer
system of Figure 1 and/or the logic of Figure 3 may include similar or different logic

than that of Figure 4.

14

[0054] A first instance 403-1 of a given instruction (e.g., an instruction having a given
opcode) is provided to decode logic 405 when the processor is not in an emulation mode
418. A second instance 403-2 of the same given instruction (e.g., another instruction
having the same given opcode) is provided to the decode logic when the processor is
operating in the emulation mode 418. The second instance 403-2 of the given instruction
may be provided from a set of one or more instructions 414 used to emulate an emulated
instruction, in response to a decoder receiving the emulated instruction. The set of
instructions may be included in emulation logic 415 that may be on-die, off-die, or partly
on-die and partly oftf-die. The emulation logic 515 may have any of the optional
characteristics mentioned elsewhere herein for the emulation logic. The decode logic
may provide (e.g., an identical set) of one or more decoded instructions for each of the

first 403-1 and second instances 403-2 of the given instruction.

[0055] Post-decode instruction processing logic 407 may receive the decoded
instruction(s) 406. The post-decode instruction processing logic includes emulation
mode aware exceptional condition handler logic 420. The emulation mode aware
exceptional condition handler logic is operable to handle/process exceptional conditions
in an emulation mode aware way. As used herein, the term “exceptional condition”
refers broadly to various different types of exceptional conditions that may occur while
processing instructions. Examples of such exceptional conditions include, but are not
limited to, exceptions, interrupts, faults, traps, and the like. The terms exception,
interrupt, fault, and trap are often used in different ways in the arts. The term
“exception” is perhaps more commonly used to refer to an automatically generated
control transfer to a handler routine in response to privilege violations, privilege
exceptions, page faults, memory protection faults, division by zero, attempted execution

of an illegal opcode, and other such exceptional conditions.

[0056] In some embodiments, if a privilege violation, page fault, memory protection
fault, division by zero, attempted execution of an illegal opcode, or other exceptional
condition occurs when the first instance 403-1 of the given instruction is being processed,
when the processor is not operating in the emulation mode 418, then the processor may

perform substantially conventional handling of the exceptional condition. For example,

15

in some embodiments, the exceptional condition may be taken directly 440 in which
control is transferred to an exceptional condition handler routine 441. Commonly, the
exceptional condition handler routine may be part of an operating system, a virtual
machine monitor, or other privileged software. Examples of such handler routes include,

but are not limited to page fault handlers, error handlers, interrupt handlers, and the like.

[0057] In contrast, in some embodiments, if a privilege violation, page fault, memory
protection fault, division by zero, attempted execution of an illegal opcode, or other
exceptional condition occurs when the second instance 403-2 of the given instruction is
being processed, when the processor is operating in the emulation mode 418, then the
processor may perform substantially non-conventional handling of the exceptional
condition. For example, in some embodiments, the exceptional condition may not be
taken directly. In some embodiments, the logic 420 may include a mechanism to
suppress an otherwise automatic control transfer to an exceptional condition handler
routine that would otherwise result from the exceptional condition. Control may not be
transferred directly from the emulation program to the exceptional condition handler
routine 441. Rather, in some embodiments, the emulation mode aware exceptional
condition handler logic 420 may temporarily suppress control transfer to the exceptional
condition handler 441 and indirectly report 442 the exceptional condition. In some
embodiments, the emulation mode aware exceptional condition handler logic 420 may
indirectly report the exceptional condition through one or more emulation communication
register(s) 443. The one or more communication registers may be used to communicate
information between the emulation logic and the program having the original instruction

being emulated.

[0058] In some embodiments, in response to the exceptional condition occurring when in
the emulation mode 418, the emulation mode aware exceptional condition handler logic
420 may store an indication of the exceptional condition in an exceptional condition or
error status flag(s), field, or register 444. For example, a single bit or flag may have a
first value (e.g., be set to binary one) to indicate that an exceptional condition has
occurred, or may have a second value (e.g., be cleared to binary zero) to indicate that no

exceptional condition occurred. In some embodiments, in response to the exceptional

16

condition occurring when in the emulation mode 418, the emulation mode aware
exceptional condition handler logic 420 may store an error code for the exceptional
condition in an error code field or register 445. The error code may provide additional
information about the error, such as, for example, a type of the error and optionally
additional details to help communicate the nature of the exceptional condition.
Alternatively, instead of using the communication registers, the information may be
otherwise signaled or provided (e.g., stored in memory, reported through an electrical

signal, etc.).

[0059] In some embodiments, the emulation mode aware exceptional condition handler
logic 420 may also provide an indication of the address (e.g., the instruction pointer) of
the instruction being emulated (i.e., the one that caused the second instance 403-2 to be
sent to the decode logic 405). For example, in some embodiments, the address 446 of the
instruction being emulated may be stored on the top of a stack 447. Storing the address
of a given instruction that is being emulated on the stack, instead of one of the
instructions that are being used to emulate that given instruction, may cause the return
from the exception handler to return to the emulated instruction, instead of to one of the
instructions that are being used to emulate that emulated instruction. If instead, the return
from the exception handler were to one of the instructions that are being used to emulate
that instruction, this may potentially cause a problem. For example, software (e.g., an
application, operating system, etc.) may not know of the instructions that are being used
to emulate that given instruction and may not recognize the associated address. The
operating system may perceive that control flow is being transferred to an unknown,

illegal, risky, or not allowed location, and may potentially attempt to prevent the transfer.

[0060] In some embodiments, the set of instructions 414 may monitor the error status 444
and/or the error code 445. For example, in some embodiments, the instructions 414 may
read the error status 444 and the error code 445 from the emulation communication
registers 443 to learn of the exceptional condition and about the exceptional condition.
When the error status 444 indicates an exceptional condition, in some embodiments, the
set of instructions 414 may take the exceptional condition 449. For example, one or more

of the instructions 414 may be executed to check the error status and transfer control to

17

the exceptional condition handler if an error is indicated. In some embodiments, this may
include the set of instructions 414 transferring control to the exceptional condition
handler 441. In some embodiments, information about the exceptional condition (e.g.,
the error code 445) may be provided to the exceptional condition handler 441. In some
embodiments, the emulated instruction address 446 may also be provided to the
exceptional condition handler 441 and/or may be at least preserved on the top of the
stack. The emulated instruction address 446 may be used by the exceptional condition
handler 441 upon return from handling the exceptional condition. Advantageously, by
storing the address of the instruction being emulated on the stack, the operating system or
other error handler routine may think it is the instruction that is emulated that caused the

CITor.

[0061] In some embodiments, the emulation logic may include logic to test and report
whether memory access in the instruction will work correctly, or the type of exceptional
condition that may result. For example, a special instruction may be included to test a
memory address with emulated access rights to see if the memory address is valid (e.g., if
the page is present) and whether the program has sufficient access rights to read and/or
modify that memory location. If any tests fail, the emulation logic may pass control to
the proper interrupt handler with a return address as if the instruction being emulated had
directly passed control to the exception handler. As another example, a state machine
may perform a conditional memory transaction which indicates whether the memory
operation would be valid. This may be used to determine when a memory operation may
be performed assuming no exception will result. This may also be used to determine how
many bytes of an instruction stream or a string of instruction information may be safely
read without exceptions. For example, this may be used to test and determine whether or
not an instruction length may be read or if part of the instruction length would cause a
page fault. The emulation logic may include logic to deal with instructions that span

multiple pages and/or when a page is not in memory.

[0062] In some embodiments, the emulation logic may include logic to provide an
intermediate execution interrupt status such that execution of the emulation may stop and

later resume at the intermediate point. This may be advantageous especially when

18

emulating instructions that involve long durations or execution times. In some
embodiments, the set of instructions used to emulate certain types of instructions (e.g.,
move string instructions, gather instructions, and others with long operations) may update
the execution state of the software having the instruction being emulated to reflect a
current level of progress. For example, the operation may be interrupted at an
intermediate point and the set of instructions used for emulation may set a flag or status
bit in the saved machine state by the exceptional condition handler (e.g., in a processor
status register) such that on return the emulation code may be able to test the flag or
status bit to determine it is resuming execution from an intermediate state. The flag or
status bit may indicate interrupted execution. This way, when returning from an
exceptional condition handler, after an exceptional condition has been handled, the
program may resume execution at an intermediate level of progress where it left off. In
some cases, an instruction (e.g., a move string instruction) may modify registers to reflect
an intermediate state of the operation so that after an interrupt execution may be resumed

from the intermediate state.

[0063] Figure 5 is a block diagram illustrating an embodiment of logic 501 to allow a
processor to access resource(s) and/or information differently when in an emulation mode
than when not in the emulation mode. In some embodiments, the logic of Figure 5 may
be included in the processor and/or the computer system of Figure 1 and/or the logic of
Figure 3. Alternatively, the logic of Figure S may be included in a similar or different
processor or computer system. Moreover, the processor and/or the computer system of
Figure 1 and/or the logic of Figure 3 may include similar or different logic than that of

Figure 5.

[0064] A first instance 503-1 of a given instruction (e.g., an instruction having a given
opcode) is provided to decode logic 505 when the processor is not in an emulation mode
518. A second instance 503-2 of the same given instruction (e.g., another instruction
having the same given opcode) is provided to the decode logic when the processor is
operating in the emulation mode 518. The second instance 503-2 of the given instruction
may be provided from a set of one or more instructions 514 used to emulate an emulated

instruction, in response to a decoder receiving the emulated instruction. The set of

19

instructions may be included in emulation logic 515 that may be on-die, off-die, or partly
on-die and partly off-die. The emulation logic 515 may have any of the optional

characteristics mentioned elsewhere herein for the emulation logic.

[0065] Post-decode instruction processor logic 507 may receive the decoded
instruction(s) 506 corresponding to the second instance 503-2. The post-decode
instruction processor logic includes emulation mode aware access control logic 520. The
emulation mode aware access control logic is operable to control access to one or more
resources and/or information 550 in a way that is emulation mode aware. In some
embodiments, when the processor is not operating in the emulation mode, the post-
decode instruction processor logic 507 may process the first instance 503-1 of the given
instruction with substantially conventional access to the resource(s) and/or information
550. As shown, in some embodiments, access to the resource(s) and/or information 550
may be prevented 551 when processing the first instance 503-1 of the given instruction
when not in the emulation mode. Preventing access to the resource(s) and/or information
when not in emulation mode may be appropriate for any of various possible reasons, such
as, for example, to protect the security of information and/or resource(s), because the
given instruction generally does not need to access those resource(s) and/or information
and you want to provide the resource(s) and/or information only on an as needed basis, or

for other reasons.

[0066] In contrast, in some embodiments, when the second instance 503-2 of the given
instruction is being processed, when operating in the emulation mode 518, the post-
decode instruction processor logic may use substantially non-conventional access to the
resource(s) and/or information 550 (e.g., in a way that is different than when in non-
emulation mode). For example, as shown in the illustrated embodiment, access to the
resource(s) and/or information 550 may be allowed 552 when processing the second
instance 503-2 of the given instruction when in the emulation mode 518. By way of
example, the emulation mode 518 may allow the logic 507 and/or the logic 520 to have a
special hardware state that allows selective access the information and/or resource(s) for

that given instruction when in emulation mode. For example, one or more access

20

privilege bits may be provided and configured when in the emulation mode to allow a

state machine to selectively access the information.

[0067] Various different types of information and/or resource(s) 550 are contemplated.
Examples of suitable resource(s) and/or information include, but is not limited to,
security related resource(s) and/or information (e.g., security logic), encryption and/or
decryption related resource(s) and/or information (e.g., encryption logic and/or
decryption logic), a random number generator resource(s) and/or information (e.g.,
random number generator logic), resource(s) and/or information reserved for privilege or
ring levels corresponding to an operating system and/or virtual machine monitor, and the

like.

[0068] Another example of suitable resource(s) and/or information include, but is not
limited to, resource(s) and/or information in a different physical processor or logical
processor (e.g., a core, hardware thread, thread context, etc.) than the physical processor
or logical processor having the post-decode instruction processor logic 507. The
different physical or logical processors may be in either the same or different sockets. By
way of example, when in an emulation mode, an emulation mode aware control logic 520
may be able to access information and/or resource(s) of another core in another socket
(e.g., query a status of the core) that would not be available to the post-decode instruction

processor logic 507 when not in the emulation mode.

[0069] Advantageously, the emulation mode aware access control logic 520 may help to
allow at least some of the instructions 514 to selectively have access to certain
resource(s) and/or information when in the emulation mode that would not ordinarily be
available to the same instructions of the instruction set when not in the emulation mode.
Security may still be maintained, since the emulation logic may be on-die and/or in a

protected portion of memory.

[0070] In some embodiments, some execution levels, for example security execution
states, may be prohibited from using such emulation to access these resource(s) and/or
information. For example, not all execution states may be allowed to use emulated
opcodes. Special security execution states may not be certifiably secure if such interrupts

or lower level execution is allowed. Instead, if such execution levels or security

21

execution states need similar access, they may instead implement it by using hardware

primitives available to emulation software.

[0071] In some embodiments, instruction emulation may be used to help provide
different meanings for a given opcode of an instruction. Macroinstructions, machine
language instructions, and other instructions of an instruction set, often include an
operation code or opcode. The opcode generally represents a portion of the instruction
that is used to specify the particular instruction and/or the operation to be performed in
response to the instruction. For example, an opcode of a packed multiply instruction may
be different than an opcode of a packed add instruction. Generally, the opcode includes
several bits in one or more fields that are logically if not physically grouped together.
Often, it is desirable to try to keep the opcodes relatively short, or as short as possible
while allowing the desired number of instructions/operations. Relatively long opcodes
tend to increase the size and/or complexity of the decoder and also generally tend to
make the instructions longer. For a fixed number of bits in an opcode, generally only a
fixed number of different instructions/operations may be identified. There are various
tricks known in the art to try to get the most out of the opcode, for example, by using
escape codes, and the like. Nevertheless, the number of instructions that can be uniquely
identified with an opcode is generally more limited than often desirable. Generally, new
instructions cannot continually be added to the opcode space of the processor without

ultimately at some point running out of available opcodes.

[0072] Workloads change over time. Similarly, desired instructions and desired
instruction functionalities change over time. New instruction functionalities are
commonly added to processors on an ongoing basis. Similarly, some
instructions/operations become relatively less useful and/or less frequently used and/or
less important over time. In some cases, when instructions/operations have sufficiently
limited usefulness or importance, they may be deprecated. Deprecation is a term
commonly used in the arts to refer to a status applied to a component, feature,
characteristic, or practice to indicate that it should generally be avoided often because it
is in the process of being abandoned or superseded and/or may not be available or

supported in the future.

22

[0073] Commonly, such instructions/operations may be deprecated instead of being
immediately removed in order to help provide temporary backward compatibility (e.g., to
allow existing or legacy code to continue to run). This may allow time for the code to be
brought into compliance with the superseding instructions/operations and/or may allow
time for the existing or legacy code to get phased out. Often, deprecating
instructions/operations from an instruction set takes a long time, for example on the order
of many years if not decades, to allow time to sufficiently eliminate old programs.
Conventionally, the value of the opcode of the deprecated instruction/operation generally
could not be recaptured and reused for a different instruction/operation until such a long
period of time passed. Otherwise, if legacy software was run, instructions having the
opcode value may cause the processor to perform the superseding operation, rather than

the intended deprecated operation, which could cause an erroneous result.

[0074] In some embodiments, instruction emulation may be used to help provide
different meanings for a given opcode of an instruction. In some embodiments, the given
opcode of the instruction may be interpreted with different meanings. In some
embodiments, multiple opcode definitions may be supported for the given opcode. For
example, the given opcode may be interpreted with a meaning that a software program
having the instruction intends. By way of example, in some embodiments, an older or
legacy software program may indicate that instructions with the given opcode are to have
an older, legacy, or deprecated meaning, and a newer software program may indicate that
instructions with the given opcode are to have a newer meaning. In some embodiments,
the older or deprecated meaning may be emulated, whereas the newer meaning may be
decoded into control signals and executed on the processors pipeline directly.
Advantageously, in some embodiments, this may help to allow earlier recapture and reuse
of opcodes being deprecated while still providing backward compatibility that allows
older programs to still run with a deprecated opcode while allowing the deprecated
opcode to also be used for newer programs with a different meaning to help improve

performance.

[0075] Figure 6 is a block flow diagram of an embodiment of a method 660 performed

by and/or in a processor. In some embodiments, the operations and/or method of Figure

23

6 may be performed by and/or within the processor of Figure 1 and/or the logic of
Figure 3 or Figure 7. The components, features, and specific optional details described
herein for the processor and logic also optionally apply to the operations and/or method
of Figure 6. Alternatively, the operations and/or method of Figure 6 may be performed
by and/or within a similar or entirely different processor or logic. Moreover, the
processor of Figure 1 and/or the logic of Figure 3 or Figure 7 may perform similar or

different operations and/or methods than those of Figure 6.

[0076] The method includes receiving a first instruction having a given opcode, at block
661. In some embodiments, the first instruction may be received at a decoder. A
determination may be made, at block 662, whether the given opcode has a first meaning
or a second meaning. In some embodiments, the first meaning may be a first opcode
definition and the second meaning may be a second, different opcode definition. As will
be explained further below, in some embodiments, this may involve the decoder reading
or checking an indication, for example in a flag, status register, or other on-die storage
location, of whether the given opcode has the first meaning or the second meaning. As
will be explained further below, in some embodiments, software (e.g., a program loader
module of an operating system module), may store the indication in the flag, status
register, or other on-die storage location, when loading software to be run by the
processor. By way of example, the software may include metadata (e.g., an object
module format) to indicate whether the software expects or specifies the given opcode to

have the first meaning or the second meaning.

[0077] Referring again to Figure 6, if the determination at block 662 is that the given
opcode has the first meaning, then the method may advance to block 663. At block 663,
the first instruction may be decoded into one or more microinstructions, micro-
operations, or other lower level instructions or control signals. In some embodiments, the
decoder may output these instruction(s) or control signal(s) to post-decode instruction
processor logic (e.g., execution units, etc.). The post-decode instruction processor logic
may process these instructions, typically much faster than if emulation were instead used.

In some embodiments, the first meaning may be used for non-deprecated opcode

24

meanings, relatively newer opcode meanings, relatively more frequently used opcode

meanings, opcode meanings that more strongly affect performance, or the like.

[0078] Conversely, if the determination at block 662 is that the given opcode has the
second meaning, then the method may advance to block 664. At block 664, emulation of
the first instruction may be induced. For example, the decoder may provide an emulation
trap or otherwise signal an emulation mode to emulation logic. Subsequently, a set of
one or more instructions of the emulation logic that are to be used to emulate the first
instruction with the opcode having the second meaning may be provided to the decoder
and processed in the emulation mode. This may be done substantially as described
elsewhere herein. In some embodiments, the second meaning may be used for
deprecated opcode meanings, opcode meanings in the process of being deprecated or
about to be deprecated, relatively older opcode meanings, relatively less frequently used

opcode meanings, opcode meanings that less strongly affect performance, or the like.

[0079] Figure 7 is a block diagram illustrating an embodiment of logic 701 to allow a
given opcode to have different meanings. In some embodiments, the logic of Figure 7
may be included in the processor and/or the computer system of Figure 1 and/or the logic
of Figure 3. Alternatively, the logic of Figure 7 may be included in a similar or different
processor or computer system. Moreover, the processor and/or the computer system of
Figure 1 and/or the logic of Figure 3 may include similar or different logic than that of

Figure 7.

[0080] A memory 710 includes a first software module 711-1, a second software module
711-2, and an operating system module 797 having a program loader module 770. In
some embodiments, the first software module includes an indication 772 to use a first
meaning for a given opcode, and the second software module includes an indication 773
to use a second different meaning for the given opcode. By way of example, the first and
second software modules may each include an object module format, other metadata, or
one or more data structures that include these indications 772, 773. The program loader
module may be operable to load the first software module and the second software
module for execution on a processor. As shown, in some embodiments, the program

loader module may include a module 771 to load a meaning of the given opcode that is

25

indicated by the particular software module onto the processor as processor state. In
some embodiments, the module 771 may be operable to load the indication 772 when
loading the first software module, or load the indication 773 when loading the second
software module, to an on-die storage location 774 as an indication 775 of whether to use
the first or second meaning for the given opcode. The on-die storage location is coupled

with, or otherwise accessible to, a decoder 705.

[0081] In some embodiments, for example in the case of an old software module, the
software module may not have an explicit indication to use a given meaning for the given
opcode. For example, the software may be have written prior to the existence of the
newer meaning. In some embodiments, the module 771 and/or the program loader 770
may be operable to infer whether the software module needs to use the first or second
meaning of the given opcode. For example, this may be inferred from a feature list
embedded in the program, the format of the program, the age of the program or the year
the program was created, or other such information in the metadata and/or in the software
module. For instance, if the second software module 711-2 is old software that was
created prior to the introduction/definition of the first meaning of the given opcode, then
the program loader module and/or the operating system module may be operable to infer
that the second software module needs to use the second meaning not the first meaning
for the given opcode. The module 771 may be operable to switch or swap out the

indication 775 in the storage area when switching or swapping software.

[0082] To further illustrate, consider a first instance 703-1 of an instruction with the
given opcode being provided to a decoder 705 from the first software module 711-1. The
first software module includes the indication 772 to use the first meaning for the given
opcode that the module 771 may preserve in the storage location 774. The decoder
includes check logic 776 coupled with the storage location 774 to check the indication
775 of whether to use the first or second meaning for the given opcode. The check logic
may access or read the storage location and determine that the first meaning is to be used
for the given opcode when processing the first instance of the instruction from the first
software module. In some embodiments, the storage location 774 may include multiple

different storage locations to store multiple indications each corresponding to a different

26

opcode. In response, decode logic 777 of the decoder may decode the instruction
assuming the first meaning of the given opcode. One or more decoded instructions 706
or one or more other control signals may be provided from the decoder to post-decode

instruction processing logic 707, which may process them.

[0083] A second instance 703-2 of an instruction with the same given opcode may be
provided to the decoder 705 from the second software module 711-2. The second
software module includes the indication 773 to use the second meaning for the given
opcode that the module 771 may preserve in the storage location 774. The check logic
776 may check the indication 775 and determine that the second meaning is to be used
for the given opcode when processing the second instance of the instruction from the
second software module. In response, emulation inducement logic 778 may induce
emulation of the second instance of the instruction 703-2. For example the emulation
inducement logic may perform an emulation trap or otherwise signal an emulation mode
718. A set of one or more instructions 714 used to emulate the second instance of the
instruction having the given opcode with the second meaning may be provided to the
decoder from emulation logic 715. The emulation logic may be on-die, off-die, or partly
on-die and partly oftf-die. The emulation logic 715 may have any of the optional

characteristics described elsewhere herein for emulation logic.

[0084] In some embodiments, the instruction(s) 714 may be of the same instruction set as
the instruction having the given opcode. In some embodiments, the decoder may decode
each of these instructions and provide them as decoded instructions 706 or other control
signals to the post-decode instruction processing logic. In some embodiments, the post-
decode instruction processing logic may include emulation mode aware instruction
processor logic 720, which may be similar to or the same as that described elsewhere
herein (e.g., that of any of Figures 1 or 3-5). As shown, in some embodiments, the
emulation mode aware instruction processing logic may be coupled with, or otherwise
aware of, the emulation mode 718. Moreover, the emulation mode aware instruction
processing logic may be coupled with, and may read and write data in, storage locations

721 of the emulation logic.

27

[0085] In some embodiments, logic 796 may be included to update a processor feature
identification register 795 based on the indication 775 in the storage location 774. An
example of a suitable processor feature identification register is one used for CPU
[Dentification (CPUID). The logic 796 may be coupled with the storage location 774 and
with the processor feature identification register 795. The processor feature identification
register may be readable by a processor feature identification instruction (e.g., a CPUID
instruction) of an instruction set of the processor. Software may read the indication of the
meaning of the opcode from the processor feature identification register by executing the

processor feature identification instruction.

[0086] In some embodiments, privilege level and/or ring level logic 794 may be coupled
with the decoder 705 and may force or otherwise cause the decoder to use a given
meaning of the opcode based on a privilege level and/or ring level. For example, this
may be useful in embodiments where the first meaning is a newer meaning and the
second meaning is a deprecated meaning. Operating systems typically operate at a
particular privilege level and/or ring level that is different than that of user applications.
Moreover, operating systems typically use the newer meaning of the given opcode not the
older meaning of the given opcode, since they are generally updated frequently. In such
cases, the privilege level and/or ring level logic 794 may cause the decoder to use the
newer meaning of the given opcode when in a privilege or ring level corresponding to

that of the operating system.

[0087] For simplicity of description, two different meanings of the opcode are typically
described herein. However, it is to be appreciated that other embodiments may use three
or more different meanings for a given opcode. By way of example, the storage location
774 may include two or more bits to indicate which of multiple such different meanings
should be used for a given opcode. Likewise, the processor feature identification register

may reflect multiple such meanings for the given opcode.

[0088] Figure 8 is a block flow diagram of an embodiment of a method 880 that may be
performed by an operating system module. In some embodiments, the method may be

performed by a program loader module.

28

[0089] The method includes determining that a first instruction having a given opcode is
to have a second meaning instead of a first meaning when executed by a processor from a
software program, at block 881. This may be done in different ways in different
embodiments. In some embodiments, the software program may explicitly specify an
indication to use a given meaning for the given opcode. For example, the operating
system module may examine metadata of the software program. For example, there may
be a flag in an object module format that indicates which meaning to use. In other
embodiments, for example in the case of legacy software, the software program may not
explicitly specify the indication of which meaning to use. In some embodiments, the
operating system module may include logic to infer which meaning to use. This may be
done in various different ways. In some embodiments, this may include examining a
feature list of the software program. In some cases, the feature list may specify which
revision of instruction is expected. In some embodiments, this may include examining a
creation date of the software program. A creating date older than a certain date, for
example an instruction date of a newer superceding meaning, may be inferred as an
indication that the software program uses the older or deprecated meaning. In some
embodiments, this may include examining a format of the software program. For
example, certain revisions program formats before certain level may be used to infer an
older or deprecated meaning. In some embodiments, this may include examining an
explicit list (e.g., an exception list) of software programs known to use certain meanings.
By way of example, the list may be updated based on historical information (e.g., if an
error results from one meaning, the other meaning may be added to the list). This is just

one example. Other ways of inferring the meaning are also contemplated.

[0090] The method also includes storing an indication that the first instruction having the
given opcode is to have the second meaning instead of a first meaning in state of the
processor, at block 882. For example, the operating system module may modify a bit in a

storage location coupled with a decoder, as described elsewhere herein.

[0091] Figure 9 is a block diagram of an embodiment of a program loader module 970
including a selection module 985 that is operable to select a set of one or more functions,

subroutines, or other portions of a software library 983 that have a meaning of a given

29

opcode that is appropriate for software that will use them. The software library generally
represents a collection of software that various software modules may use and may
include pre-existing software in the form of subroutines, functions, classes, procedures,
scripts, configuration data, and the like. Software modules may use these various
portions of the library to include various functionalities. As an example, a software
module may incorporate a mathematics software library or portion thereof having various

mathematical functions or subroutines.

[0092] As shown, in some embodiments, the library may include a first set of library
functions, subroutines, or other portions that use a first meaning of a given opcode. The
library may also include a second set of library functions, subroutines, or other portions
that use a second different meaning of the given opcode. Optionally, if there are more
than two meanings of the opcode, there may likewise be different portions of the library
for each of the three or more different meanings. In some cases, the portions using the
different meanings may be different pieces of code. In other cases, the portions may be
different portions of the same code, and branches or other conditional movements may be
used to move to either that portion which uses the first meaning or the second meaning as

appropriate.

[0093] Referring again to the illustration, the program loader module 970 may load
portions of the library for both a first software module 911-1 that uses a first meaning of
the given opcode, and a second software module 911-2 that uses a second meaning of the
given opcode. The program loader module includes a selection module 985 that is
operable to select a set of one or more functions, subroutines, or other portions of the
software library that have a meaning of the given opcode that is appropriate for the
software that will use them. For example, the selection module may select portions of the
library having the same meaning of the given opcode as the software that will use them.
For example, as shown in the illustration, the selection module may select the first set
984-1 for the first software module 911-1 since it uses the first meaning of the given
opcode. Likewise, the selection module may select the second set 984-2 for the second
software module 911-2 since it uses the second meaning of the given opcode. In one

particular embodiment, where the first software 911-1 is old software and the first

30

meaning of the given opcode is a deprecated meaning, the selection module may be
operable to select the first set of library portions 984 which also use that same the
deprecated meaning for the given opcode. Accordingly, the selection module may select
portions of a library that use a meaning of a given opcode that is consistent with or the

same as the software that will use that portion of the library.

Exemplary Core Architectures, Processors, and Computer Architectures

[0094] Processor cores may be implemented in different ways, for different purposes,
and in different processors. For instance, implementations of such cores may include: 1)
a general purpose in-order core intended for general-purpose computing; 2) a high
performance general purpose out-of-order core intended for general-purpose computing;
3) a special purpose core intended primarily for graphics and/or scientific (throughput)
computing. Implementations of different processors may include: 1) a CPU including
one or more general purpose in-order cores intended for general-purpose computing
and/or one or more general purpose out-of-order cores intended for general-purpose
computing; and 2) a coprocessor including one or more special purpose cores intended
primarily for graphics and/or scientific (throughput). Such different processors lead to
different computer system architectures, which may include: 1) the coprocessor on a
separate chip from the CPU; 2) the coprocessor on a separate die in the same package as
a CPU; 3) the coprocessor on the same die as a CPU (in which case, such a coprocessor is
sometimes referred to as special purpose logic, such as integrated graphics and/or
scientific (throughput) logic, or as special purpose cores); and 4) a system on a chip that
may include on the same die the described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described coprocessor, and additional
functionality. Exemplary core architectures are described next, followed by descriptions

of exemplary processors and computer architectures.
Exemplary Core Architectures
In-order and out-of-order core block diagram

[0095] Figure 10A is a block diagram illustrating both an exemplary in-order pipeline
and an exemplary register renaming, out-of-order issue/execution pipeline according to

embodiments of the invention. Figure 10B is a block diagram illustrating both an

31

exemplary embodiment of an in-order architecture core and an exemplary register
renaming, out-of-order issue/execution architecture core to be included in a processor
according to embodiments of the invention. The solid lined boxes in Figures 10A-B
illustrate the in-order pipeline and in-order core, while the optional addition of the dashed
lined boxes illustrates the register renaming, out-of-order issue/execution pipeline and
core. Given that the in-order aspect is a subset of the out-of-order aspect, the out-of-
order aspect will be described.

[0096] In Figure 10A, a processor pipeline 1000 includes a fetch stage 1002, a length
decode stage 1004, a decode stage 1006, an allocation stage 1008, a renaming stage 1010,
a scheduling (also known as a dispatch or issue) stage 1012, a register read/memory read
stage 1014, an execute stage 1016, a write back/memory write stage 1018, an exception
handling stage 1022, and a commit stage 1024.

[0097] Figure 10B shows processor core 1090 including a front end unit 1030 coupled
to an execution engine unit 1050, and both are coupled to a memory unit 1070. The core
1090 may be a reduced instruction set computing (RISC) core, a complex instruction set
computing (CISC) core, a very long instruction word (VLIW) core, or a hybrid or
alternative core type. As yet another option, the core 1090 may be a special-purpose
core, such as, for example, a network or communication core, compression engine,
coprocessor core, general purpose computing graphics processing unit (GPGPU) core,
graphics core, or the like.

[0098] The front end unit 1030 includes a branch prediction unit 1032 coupled to an
instruction cache unit 1034, which is coupled to an instruction translation lookaside
buffer (TLB) 1036, which is coupled to an instruction fetch unit 1038, which is coupled
to a decode unit 1040. The decode unit 1040 (or decoder) may decode instructions, and
generate as an output one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals, which are decoded from, or
which otherwise reflect, or are derived from, the original instructions. The decode unit
1040 may be implemented using various different mechanisms. Examples of suitable
mechanisms include, but are not limited to, look-up tables, hardware implementations,
programmable logic arrays (PLAs), microcode read only memories (ROMs), etc. In one

embodiment, the core 1090 includes a microcode ROM or other medium that stores

32

microcode for certain macroinstructions (e.g., in decode unit 1040 or otherwise within the
front end unit 1030). The decode unit 1040 is coupled to a rename/allocator unit 1052 in
the execution engine unit 1050.

[0099] The execution engine unit 1050 includes the rename/allocator unit 1052
coupled to a retirement unit 1054 and a set of one or more scheduler unit(s) 1056. The
scheduler unit(s) 1056 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The scheduler unit(s) 1056 is
coupled to the physical register file(s) unit(s) 1058. Each of the physical register file(s)
units 1058 represents one or more physical register files, different ones of which store
one or more different data types, such as scalar integer, scalar floating point, packed
integer, packed floating point, vector integer, vector floating point,, status (e.g., an
instruction pointer that is the address of the next instruction to be executed), etc. In one
embodiment, the physical register file(s) unit 1058 comprises a vector registers unit, a
write mask registers unit, and a scalar registers unit. These register units may provide
architectural vector registers, vector mask registers, and general purpose registers. The
physical register file(s) unit(s) 1058 is overlapped by the retirement unit 1054 to illustrate
various ways in which register renaming and out-of-order execution may be implemented
(e.g., using a reorder buffer(s) and a retirement register file(s); using a future file(s), a
history buffer(s), and a retirement register file(s); using a register maps and a pool of
registers; etc.). The retirement unit 1054 and the physical register file(s) unit(s) 1058 are
coupled to the execution cluster(s) 1060. The execution cluster(s) 1060 includes a set of
one or more execution units 1062 and a set of one or more memory access units 1064.
The execution units 1062 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g., scalar floating point,
packed integer, packed floating point, vector integer, vector floating point). While some
embodiments may include a number of execution units dedicated to specific functions or
sets of functions, other embodiments may include only one execution unit or multiple
execution units that all perform all functions. The scheduler unit(s) 1056, physical
register file(s) unit(s) 1058, and execution cluster(s) 1060 are shown as being possibly
plural because certain embodiments create separate pipelines for certain types of

data/operations (e.g., a scalar integer pipeline, a scalar floating point/packed

33

integer/packed floating point/vector integer/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler unit, physical register file(s)
unit, and/or execution cluster — and in the case of a separate memory access pipeline,
certain embodiments are implemented in which only the execution cluster of this pipeline
has the memory access unit(s) 1064). It should also be understood that where separate
pipelines are used, one or more of these pipelines may be out-of-order issue/execution
and the rest in-order.

[00100] The set of memory access units 1064 is coupled to the memory unit 1070,
which includes a data TLB unit 1072 coupled to a data cache unit 1074 coupled to a level
2 (L2) cache unit 1076. In one exemplary embodiment, the memory access units 1064
may include a load unit, a store address unit, and a store data unit, each of which is
coupled to the data TLB unit 1072 in the memory unit 1070. The instruction cache unit
1034 is further coupled to a level 2 (L2) cache unit 1076 in the memory unit 1070. The
L2 cache unit 1076 is coupled to one or more other levels of cache and eventually to a
main memory.

[00101] By way of example, the exemplary register renaming, out-of-order
issue/execution core architecture may implement the pipeline 1000 as follows: 1) the
instruction fetch 1038 performs the fetch and length decoding stages 1002 and 1004; 2)
the decode unit 1040 performs the decode stage 1006; 3) the rename/allocator unit 1052
performs the allocation stage 1008 and renaming stage 1010; 4) the scheduler unit(s)
1056 performs the schedule stage 1012; 5) the physical register file(s) unit(s) 1058 and
the memory unit 1070 perform the register read/memory read stage 1014; the execution
cluster 1060 perform the execute stage 1016; 6) the memory unit 1070 and the physical
register file(s) unit(s) 1058 perform the write back/memory write stage 1018; 7) various
units may be involved in the exception handling stage 1022; and 8) the retirement unit
1054 and the physical register file(s) unit(s) 1058 perform the commit stage 1024.
[00102] The core 1090 may support one or more instructions sets (e.g., the x86
instruction set (with some extensions that have been added with newer versions); the
MIPS instruction set of MIPS Technologies of Sunnyvale, CA; the ARM instruction set
(with optional additional extensions such as NEON) of ARM Holdings of Sunnyvale,

CA), including the instruction(s) described herein. In one embodiment, the core 1090

34

includes logic to support a packed data instruction set extension (e.g., AVX1, AVX2),
thereby allowing the operations used by many multimedia applications to be performed
using packed data.

[00103] It should be understood that the core may support multithreading (executing
two or more parallel sets of operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multithreading (where a single
physical core provides a logical core for each of the threads that physical core is
simultaneously multithreading), or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as in the Intel®
Hyperthreading technology).

[00104] While register renaming is described in the context of out-of-order execution,
it should be understood that register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor also includes separate instruction and
data cache units 1034/1074 and a shared L2 cache unit 1076, alternative embodiments
may have a single internal cache for both instructions and data, such as, for example, a
Level 1 (L1) internal cache, or multiple levels of internal cache. In some embodiments,
the system may include a combination of an internal cache and an external cache that is
external to the core and/or the processor. Alternatively, all of the cache may be external

to the core and/or the processor.
Specific Exemplary In-Order Core Architecture

[00105] Figures 11A-B illustrate a block diagram of a more specific exemplary in-
order core architecture, which core would be one of several logic blocks (including other
cores of the same type and/or different types) in a chip. The logic blocks communicate
through a high-bandwidth interconnect network (e.g., a ring network) with some fixed
function logic, memory I/O interfaces, and other necessary I/O logic, depending on the

application.

[00106] Figure 11A is a block diagram of a single processor core, along with its
connection to the on-die interconnect network 1102 and with its local subset of the Level
2 (L2) cache 1104, according to embodiments of the invention. In one embodiment, an
instruction decoder 1100 supports the x86 instruction set with a packed data instruction

set extension. An L1 cache 1106 allows low-latency accesses to cache memory into the

35

scalar and vector units. While in one embodiment (to simplify the design), a scalar unit
1108 and a vector unit 1110 use separate register sets (respectively, scalar registers 1112
and vector registers 1114) and data transferred between them is written to memory and
then read back in from a level 1 (L1) cache 1106, alternative embodiments of the
invention may use a different approach (e.g., use a single register set or include a
communication path that allow data to be transferred between the two register files

without being written and read back).

[00107] The local subset of the L2 cache 1104 is part of a global L2 cache that is
divided into separate local subsets, one per processor core. Each processor core has a
direct access path to its own local subset of the L2 cache 1104. Data read by a processor
core is stored in its L2 cache subset 1104 and can be accessed quickly, in parallel with
other processor cores accessing their own local L2 cache subsets. Data written by a
processor core is stored in its own L2 cache subset 1104 and is flushed from other
subsets, if necessary. The ring network ensures coherency for shared data. The ring
network is bi-directional to allow agents such as processor cores, L2 caches and other
logic blocks to communicate with each other within the chip. Each ring data-path is

1012-bits wide per direction.

[00108] Figure 11B is an expanded view of part of the processor core in Figure 11A
according to embodiments of the invention. Figure 11B includes an L1 data cache
1106A part of the L1 cache 1104, as well as more detail regarding the vector unit 1110
and the vector registers 1114. Specifically, the vector unit 1110 is a 16-wide vector
processing unit (VPU) (see the 16-wide ALU 1128), which executes one or more of
integer, single-precision float, and double-precision float instructions. The VPU supports
swizzling the register inputs with swizzle unit 1120, numeric conversion with numeric
convert units 1122A-B, and replication with replication unit 1124 on the memory input.

Write mask registers 1126 allow predicating resulting vector writes.

Processor with integrated memory controller and graphics

[00109] Figure 12 is a block diagram of a processor 1200 that may have more than one
core, may have an integrated memory controller, and may have integrated graphics
according to embodiments of the invention. The solid lined boxes in Figure 12 illustrate

a processor 1200 with a single core 1202A, a system agent 1210, a set of one or more bus

36

controller units 1216, while the optional addition of the dashed lined boxes illustrates an
alternative processor 1200 with multiple cores 1202A-N, a set of one or more integrated
memory controller unit(s) 1214 in the system agent unit 1210, and special purpose logic
1208.

[00110] Thus, different implementations of the processor 1200 may include: 1) a CPU
with the special purpose logic 1208 being integrated graphics and/or scientific
(throughput) logic (which may include one or more cores), and the cores 1202A-N being
one or more general purpose cores (e.g., general purpose in-order cores, general purpose
out-of-order cores, a combination of the two); 2) a coprocessor with the cores 1202A-N
being a large number of special purpose cores intended primarily for graphics and/or
scientific (throughput); and 3) a coprocessor with the cores 1202A-N being a large
number of general purpose in-order cores. Thus, the processor 1200 may be a general -
purpose processor, coprocessor or special-purpose processor, such as, for example, a
network or communication processor, compression engine, graphics processor, GPGPU
(general purpose graphics processing unit), a high-throughput many integrated core
(MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The
processor may be implemented on one or more chips. The processor 1200 may be a part
of and/or may be implemented on one or more substrates using any of a number of
process technologies, such as, for example, BICMOS, CMOS, or NMOS.

[00111] The memory hierarchy includes one or more levels of cache within the cores, a
set or one or more shared cache units 1206, and external memory (not shown) coupled to
the set of integrated memory controller units 1214. The set of shared cache units 1206
may include one or more mid-level caches, such as level 2 (L2), level 3 (L3), level 4
(L4), or other levels of cache, a last level cache (LLC), and/or combinations thereof.
While in one embodiment a ring based interconnect unit 1212 interconnects the
integrated graphics logic 1208, the set of shared cache units 1206, and the system agent
unit 1210/integrated memory controller unit(s) 1214, alternative embodiments may use
any number of well-known techniques for interconnecting such units. In one
embodiment, coherency is maintained between one or more cache units 1206 and cores

1202-A-N.

37

[00112] In some embodiments, one or more of the cores 1202A-N are capable of multi-
threading. The system agent 1210 includes those components coordinating and
operating cores 1202A-N. The system agent unit 1210 may include for example a power
control unit (PCU) and a display unit. The PCU may be or include logic and components
needed for regulating the power state of the cores 1202A-N and the integrated graphics
logic 1208. The display unit is for driving one or more externally connected displays.
[00113] The cores 1202A-N may be homogenous or heterogeneous in terms of
architecture instruction set; that is, two or more of the cores 1202A-N may be capable of
execution the same instruction set, while others may be capable of executing only a
subset of that instruction set or a different instruction set.

Exemplary Computer Architectures

[00114] Figures 13-16 are block diagrams of exemplary computer architectures. Other
system designs and configurations known in the arts for laptops, desktops, handheld PCs,
personal digital assistants, engineering workstations, servers, network devices, network
hubs, switches, embedded processors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell phones, portable media players,
hand held devices, and various other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of incorporating a processor and/or
other execution logic as disclosed herein are generally suitable.

[00115] Referring now to Figure 13, shown is a block diagram of a system 1300 in
accordance with one embodiment of the present invention. The system 1300 may include
one or more processors 1310, 1315, which are coupled to a controller hub 1320. In one
embodiment the controller hub 1320 includes a graphics memory controller hub (GMCH)
1390 and an Input/Output Hub (IOH) 1350 (which may be on separate chips); the GMCH
1390 includes memory and graphics controllers to which are coupled memory 1340 and a
coprocessor 1345; the IOH 1350 is couples input/output (I/0) devices 1360 to the GMCH
1390. Alternatively, one or both of the memory and graphics controllers are integrated
within the processor (as described herein), the memory 1340 and the coprocessor 1345
are coupled directly to the processor 1310, and the controller hub 1320 in a single chip
with the IOH 1350.

38

[00116] The optional nature of additional processors 1315 is denoted in Figure 13 with
broken lines. Each processor 1310, 1315 may include one or more of the processing
cores described herein and may be some version of the processor 1200.

[00117] The memory 1340 may be, for example, dynamic random access memory
(DRAM), phase change memory (PCM), or a combination of the two. For at least one
embodiment, the controller hub 1320 communicates with the processor(s) 1310, 1315 via
a multi-drop bus, such as a frontside bus (FSB), point-to-point interface such as
QuickPath Interconnect (QPI), or similar connection 1395.

[00118] In one embodiment, the coprocessor 1345 is a special-purpose processor, such
as, for example, a high-throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU, embedded processor, or the
like. In one embodiment, controller hub 1320 may include an integrated graphics
accelerator.

[00119] There can be a variety of differences between the physical resources 1310,
1315 in terms of a spectrum of metrics of merit including architectural,
microarchitectural, thermal, power consumption characteristics, and the like.

[00120] In one embodiment, the processor 1310 executes instructions that control data
processing operations of a general type. Embedded within the instructions may be
coprocessor instructions. The processor 1310 recognizes these coprocessor instructions
as being of a type that should be executed by the attached coprocessor 1345.
Accordingly, the processor 1310 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus or other interconnect, to
coprocessor 1345. Coprocessor(s) 1345 accept and execute the received coprocessor
instructions.

[00121] Referring now to Figure 14, shown is a block diagram of a first more specific
exemplary system 1400 in accordance with an embodiment of the present invention. As
shown in Figure 14, multiprocessor system 1400 is a point-to-point interconnect system,
and includes a first processor 1470 and a second processor 1480 coupled via a point-to-
point interconnect 1450. Each of processors 1470 and 1480 may be some version of the
processor 1200. In one embodiment of the invention, processors 1470 and 1480 are

respectively processors 1310 and 1315, while coprocessor 1438 is coprocessor 1345, In

39

another embodiment, processors 1470 and 1480 are respectively processor 1310
coprocessor 1345.

[00122] Processors 1470 and 1480 are shown including integrated memory controller
(IMC) units 1472 and 1482, respectively. Processor 1470 also includes as part of its bus
controller units point-to-point (P-P) interfaces 1476 and 1478; similarly, second
processor 1480 includes P-P interfaces 1486 and 1488. Processors 1470, 1480 may
exchange information via a point-to-point (P-P) interface 1450 using P-P interface
circuits 1478, 1488. As shown in Figure 14, IMCs 1472 and 1482 couple the processors
to respective memories, namely a memory 1432 and a memory 1434, which may be
portions of main memory locally attached to the respective processors.

[00123] Processors 1470, 1480 may each exchange information with a chipset 1490 via
individual P-P interfaces 1452, 1454 using point to point interface circuits 1476, 1494,
1486, 1498. Chipset 1490 may optionally exchange information with the coprocessor
1438 via a high-performance interface 1439. In one embodiment, the coprocessor 1438
is a special-purpose processor, such as, for example, a high-throughput MIC processor, a
network or communication processor, compression engine, graphics processor, GPGPU,
embedded processor, or the like.

[00124] A shared cache (not shown) may be included in either processor or outside of
both processors, yet connected with the processors via P-P interconnect, such that either
or both processors’ local cache information may be stored in the shared cache if a
processor is placed into a low power mode.

[00125] Chipset 1490 may be coupled to a first bus 1416 via an interface 1496. In one
embodiment, first bus 1416 may be a Peripheral Component Interconnect (PCI) bus, or a
bus such as a PCI Express bus or another third generation I/O interconnect bus, although
the scope of the present invention is not so limited.

[00126] As shown in Figure 14, various I/O devices 1414 may be coupled to first bus
1416, along with a bus bridge 1418 which couples first bus 1416 to a second bus 1420.
In one embodiment, one or more additional processor(s) 1415, such as coprocessors,
high-throughput MIC processors, GPGPU’s, accelerators (such as, e.g., graphics
accelerators or digital signal processing (DSP) units), field programmable gate arrays, or

any other processor, are coupled to first bus 1416. In one embodiment, second bus 1420

40

may be a low pin count (LPC) bus. Various devices may be coupled to a second bus
1420 including, for example, a keyboard and/or mouse 1422, communication devices
1427 and a storage unit 1428 such as a disk drive or other mass storage device which may
include instructions/code and data 1430, in one embodiment. Further, an audio I/O 1424
may be coupled to the second bus 1420. Note that other architectures are possible. For
example, instead of the point-to-point architecture of Figure 14, a system may implement
a multi-drop bus or other such architecture.

[00127] Referring now to Figure 15, shown is a block diagram of a second more
specific exemplary system 1500 in accordance with an embodiment of the present
invention. Like elements in Figures 14 and 15 bear like reference numerals, and certain
aspects of Figure 14 have been omitted from Figure 15 in order to avoid obscuring other
aspects of Figure 15.

[00128] Figure 15 illustrates that the processors 1470, 1480 may include integrated
memory and I/O control logic (“CL”) 1472 and 1482, respectively. Thus, the CL 1472,
1482 include integrated memory controller units and include I/O control logic. Figure 15
illustrates that not only are the memories 1432, 1434 coupled to the CL 1472, 1482, but
also that I/O devices 1514 are also coupled to the control logic 1472, 1482. Legacy I/O
devices 1515 are coupled to the chipset 1490.

[00129] Referring now to Figure 16, shown is a block diagram of a SoC 1600 in
accordance with an embodiment of the present invention. Similar elements in Figure 12
bear like reference numerals. Also, dashed lined boxes are optional features on more
advanced SoCs. In Figure 16, an interconnect unit(s) 1602 is coupled to: an application
processor 1610 which includes a set of one or more cores 202A-N and shared cache
unit(s) 1206; a system agent unit 1210; a bus controller unit(s) 1216; an integrated
memory controller unit(s) 1214; a set or one or more coprocessors 1620 which may
include integrated graphics logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit 1630; a direct memory access
(DMA) unit 1632; and a display unit 1640 for coupling to one or more external displays.
In one embodiment, the coprocessor(s) 1620 include a special-purpose processor, such as,
for example, a network or communication processor, compression engine, GPGPU, a

high-throughput MIC processor, embedded processor, or the like.

41

[00130] Embodiments of the mechanisms disclosed herein may be implemented in
hardware, software, firmware, or a combination of such implementation approaches.
Embodiments of the invention may be implemented as computer programs or program
code executing on programmable systems comprising at least one processor, a storage
system (including volatile and non-volatile memory and/or storage elements), at least one
input device, and at least one output device.

[00131] Program code, such as code 1430 illustrated in Figure 14, may be applied to
input instructions to perform the functions described herein and generate output
information. The output information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing system includes any system
that has a processor, such as, for example; a digital signal processor (DSP), a
microcontroller, an application specific integrated circuit (ASIC), or a microprocessor.
[00132] The program code may be implemented in a high level procedural or object
oriented programming language to communicate with a processing system. The program
code may also be implemented in assembly or machine language, if desired. In fact, the
mechanisms described herein are not limited in scope to any particular programming
language. In any case, the language may be a compiled or interpreted language.

[00133] One or more aspects of at least one embodiment may be implemented by
representative instructions stored on a machine-readable medium which represents
various logic within the processor, which when read by a machine causes the machine to
fabricate logic to perform the techniques described herein. Such representations, known
as “IP cores” may be stored on a tangible, machine readable medium and supplied to
various customers or manufacturing facilities to load into the fabrication machines that
actually make the logic or processor.

[00134] Such machine-readable storage media may include, without limitation, non-
transitory, tangible arrangements of articles manufactured or formed by a machine or
device, including storage media such as hard disks, any other type of disk including
floppy disks, optical disks, compact disk read-only memories (CD-ROMs), compact disk
rewritable’s (CD-RWs), and magneto-optical disks, semiconductor devices such as read-
only memories (ROMs), random access memories (RAMs) such as dynamic random

access memories (DRAMs), static random access memories (SRAMs), erasable

42

programmable read-only memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMs), phase change memory (PCM),
magnetic or optical cards, or any other type of media suitable for storing electronic
instructions.

[00135] Accordingly, embodiments of the invention also include non-transitory,
tangible machine-readable media containing instructions or containing design data, such
as Hardware Description Language (HDL), which defines structures, circuits,
apparatuses, processors and/or system features described herein. Such embodiments may
also be referred to as program products.

Emulation (including binary translation, code morphing, etc.)

[00136] In some cases, an instruction converter may be used to convert an instruction
from a source instruction set to a target instruction set. For example, the instruction
converter may translate (e.g., using static binary translation, dynamic binary translation
including dynamic compilation), morph, emulate, or otherwise convert an instruction to
one or more other instructions to be processed by the core. The instruction converter may
be implemented in software, hardware, firmware, or a combination thereof. The
instruction converter may be on processor, off processor, or part on and part off
processor.

[00137] Figure 17 is a block diagram contrasting the use of a software instruction
converter to convert binary instructions in a source instruction set to binary instructions
in a target instruction set according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruction converter, although
alternatively the instruction converter may be implemented in software, firmware,
hardware, or various combinations thereof. Figure 17 shows a program in a high level
language 1702 may be compiled using an x86 compiler 1704 to generate x86 binary code
1706 that may be natively executed by a processor with at least one x86 instruction set
core 1716. The processor with at least one x86 instruction set core 1716 represents any
processor that can perform substantially the same functions as an Intel processor with at
least one x86 instruction set core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86 instruction set core or (2) object

code versions of applications or other software targeted to run on an Intel processor with

43

at least one x86 instruction set core, in order to achieve substantially the same result as an
Intel processor with at least one x86 instruction set core. The x86 compiler 1704
represents a compiler that is operable to generate x86 binary code 1706 (e.g., object code)
that can, with or without additional linkage processing, be executed on the processor with
at least one x86 instruction set core 1716. Similarly, Figure 17 shows the program in the
high level language 1702 may be compiled using an alternative instruction set compiler
1708 to generate alternative instruction set binary code 1710 that may be natively
executed by a processor without at least one x86 instruction set core 1714 (e.g., a
processor with cores that execute the MIPS instruction set of MIPS Technologies of
Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of
Sunnyvale, CA). The instruction converter 1712 is used to convert the x86 binary code
1706 into code that may be natively executed by the processor without an x86 instruction
set core 1714. This converted code is not likely to be the same as the alternative
instruction set binary code 1710 because an instruction converter capable of this is
difficult to make; however, the converted code will accomplish the general operation and
be made up of instructions from the alternative instruction set. Thus, the instruction
converter 1712 represents software, firmware, hardware, or a combination thereof that,
through emulation, simulation or any other process, allows a processor or other electronic
device that does not have an x86 instruction set processor or core to execute the x86
binary code 1706.

[00138] In other embodiments, the library itself may include logic to select a set of
library portions appropriate for a software module. For example, the library may read a
processor feature status register to determine what meaning the software module has for
the given opcode and then may select and provide that portion.

[00139] Components, features, and details described for any of Figures 1, 4, and 5
may also optionally be used in any of Figures 2 and 3. Moreover, components, features,
and details described herein for any of the apparatus may also optionally be used in any
of the methods described herein, which in embodiments may be performed by and/or

with such the apparatus.

44

EXAMPLE EMBODIMENTS

[00140] The following examples pertain to further embodiments. Specifics in the

examples may be used anywhere in one or more embodiments.

[00141] Example 1 is a processor that includes decode logic to receive a first
instruction and to determine that the first instruction is to be emulated. The processor
also includes emulation mode aware post-decode instruction processor logic coupled with
the decode logic. The emulation mode aware post-decode instruction processor logic is
to process one or more control signals decoded from an instruction, of a set of one or
more instructions used to emulate the first instruction, differently when in an emulation

mode than when not in the emulation mode.

[00142] Example 2 includes the processor of any preceding example and
optionally wherein the first instruction is more complex than each instruction of the set in

that the first instruction involves more operations being performed.

[00143] Example 3 includes the processor of any preceding example and
optionally wherein the processor does not use microcode to implement any instructions of

an instruction set.

[00144] Example 4 includes the processor of any preceding example and
optionally wherein each instruction of the set of one or more instructions is of a same

instruction set as the first instruction.

[00145] Example 5 includes the processor of any preceding example and
optionally wherein the emulation mode aware post-decode instruction processor logic
comprises emulation mode aware exceptional condition handler logic to report an
exceptional condition that is to occur while processing the one or more control signals to

emulation logic.

[00146] Example 6 includes the processor of any preceding example and
optionally wherein the emulation mode aware exceptional condition handler logic is to

store an address of the first instruction in a stack.

[00147] Example 7 includes the processor of any preceding example and

optionally wherein the emulation mode aware exceptional condition handler logic is to

45

store an indication of the exceptional condition, and an error code for the exceptional

condition, in one or more registers coupled with the emulation logic.

[00148] Example 8 includes the processor of any preceding example and
optionally wherein the emulation mode aware exceptional condition handler logic is to
avoid directly transferring control to an exceptional condition handler in response to the
exceptional condition, and wherein one or more instructions of the emulation logic is to

transfer control to the exceptional condition handler.

[00149] Example 9 includes the processor of any preceding example and
optionally wherein the emulation mode aware post-decode instruction processor logic
comprises emulation mode aware access control logic to control access to at least one of
a resource and information by the one or more control signals differently when in the

emulation mode than when not in the emulation mode.

[00150] Example 10 includes the processor of any preceding example and
optionally wherein the emulation mode aware access control logic is to allow access to
said at least one of the resource and the information when in the emulation mode and
prevent access to said at least one of the resource and the information when not in the

emulation mode.

[00151] Example 11 includes the processor of any preceding example and
optionally wherein the at least one of the resource and the information comprises at least
one of security logic, secure information, encryption logic, decryption logic, random
number generator logic, logic reserved for accesses by an operating system, a portion of
memory reserved for accesses by an operating system, and information reserved for

access by an operating system.

[00152] Example 12 includes the processor of any preceding example and
optionally wherein the at least one of the resource and the information comprises at least
one of a resource and information in one of another logical processor and another

physical processor.

[00153] Example 13 includes the processor of any preceding example and

optionally wherein the set of one or more instructions includes at least three instructions.

46

[00154] Example 14 is a method in a processor that includes receiving a first
instruction, and determining to emulate the first instruction. The method also includes
receiving a set of one or more instructions to be used to emulate the first instruction. The
method also includes processing one or more control signals derived from an instruction

of the set differently when in an emulation mode than when not in the emulation mode.

[00155] Example 15 includes the method of any preceding example and optionally
wherein receiving the first instruction comprises receiving the first instruction that is

more complex than each instruction of the set of one or more instructions.

[00156] Example 16 includes the method of any preceding example and optionally
wherein receiving the set of the one or more instructions comprises receiving one or more

instructions that are each of a same instruction set as the first instruction.

[00157] Example 17 includes the method of any preceding example and optionally
wherein processing comprises reporting an exceptional condition that occurs while
processing the one or more control signals to emulation logic. Also optionally executing
one or more instructions of the emulation logic to transfer control to an exceptional

condition handler.

[00158] Example 18 includes the method of any preceding example and optionally
wherein reporting comprises storing an indication of the exceptional condition in one or

more registers. Also optionally storing an address of the first instruction in a stack.

[00159] Example 19 includes the method of any preceding example and optionally
wherein processing comprises controlling access to at least one of a resource and
information by the one or more control signals differently when in the emulation mode

than when not in the emulation mode.

[00160] Example 20 includes the method of any preceding example and optionally
wherein controlling access differently comprises allowing access to said at least one of
the resource and the information when in the emulation mode. Also optionally
preventing access to said at least one of the resource and the information when not in the

emulation mode.

[00161] Example 21 is a system to process instructions that includes an

interconnect and a processor coupled with the interconnect. The processor includes

47

decode logic to receive a first instruction and to determine that the first instruction is to
be emulated. The processor also includes emulation mode aware post-decode instruction
processor logic coupled with the decode logic. The emulation mode aware post-decode
instruction processor logic is to process one or more control signals decoded from an
instruction, of a set of one or more instructions used to emulate the first instruction,
differently when in an emulation mode than when not in the emulation mode. The
system also includes a dynamic random access memory (DRAM) coupled with the

interconnect.

[00162] Example 22 includes the system of Example 21 and optionally wherein the
emulation mode aware post-decode instruction processor logic comprises emulation
mode aware exceptional condition handler logic to report an exceptional condition that is

to occur while processing the one or more control signals to emulation logic.

[00163] Example 1 is a processor that includes a decoder to receive a first
instruction having a given opcode. The decoder includes check logic to check whether
the given opcode has a first meaning or a second meaning. The decoder also includes
decode logic to decode the first instruction, and output one or more corresponding control
signals, when the given opcode has the first meaning. The decoder also includes
emulation inducement logic to induce emulation of the first instruction when the given

opcode has the second meaning.

[00164] Example 2 includes the processor of any preceding example and

optionally wherein the second meaning is older than the first meaning.

[00165] Example 3 includes the processor of any preceding example and
optionally wherein the second meaning comprises an opcode definition that is in a
process of becoming deprecated.

[00166] Example 4 includes the processor of any preceding example and
optionally further comprising a storage location coupled with the decoder to store an
indication of whether the given opcode has the first meaning or the second meaning, and

wherein the check logic is to check the storage location to determine the indication.

48

[00167] Example 5 includes the processor of any preceding example and
optionally wherein the storage location is accessible to a program loader module to allow

the program loader module to store the indication in the storage location.

[00168] Example 6 includes the processor of any preceding example and
optionally further comprising logic coupled with the storage location to store the
indication from the storage location to a processor feature register, wherein the processor
feature register is readable by a processor feature identification instruction of an

instruction set of the first instruction.

[00169] Example 7 includes the processor of any preceding example and
optionally further comprising a plurality of storage locations coupled with the decoder to
store a plurality of indications, each of the indications to correspond to a different opcode
of a plurality of opcodes, each of the indications to indicate whether each respective

opcode has a first meaning or a second meaning.

[00170] Example 8 includes the processor of any preceding example and
optionally wherein the logic to induce the emulation comprises logic to set an emulation

mode.

[00171] Example 9 includes the processor of any preceding example and
optionally further comprising emulation logic coupled with the decoder, the emulation
logic, in response to the emulation inducement logic inducing the emulation, to provide a
set of one or more instructions to the decoder to emulate the first instruction when the
given opcode has the second meaning,

[00172] Example 10 includes the processor of any preceding example and

optionally wherein each instruction of the set is of a same instruction set as the first

instruction.

[00173] Example 11 includes the processor of any preceding example and
optionally wherein the processor does not use microcode to implement any instructions of

an instruction set.

[00174] Example 12 includes the processor of any preceding example and

optionally further comprising logic to force the decoder to use a newer meaning instead

49

of a deprecated meaning for the given opcode when one of a privilege level logic and a

ring level logic indicates an operating system mode.

[00175] Example 13 is a method in a processor that includes receiving a first
instruction having a given opcode and determining that the given opcode has a second
meaning instead of a first meaning. The method also includes determining to emulate the

first instruction in response to determining that the given opcode has the second meaning.

[00176] Example 14 includes the method of any preceding example and optionally
wherein determining comprises determining that the given opcode has a second meaning
that 1s older than the first meaning, and wherein the second meaning is in a process of

being deprecated.

[00177] Example 15 includes the method of any preceding example and optionally
wherein determining comprises reading an indication that the given opcode has the

second meaning from a storage location.

[00178] Example 16 includes the method of any preceding example and optionally
further comprising storing the indication that the given opcode has the second meaning in
a processor feature register that is readable by a processor feature identification

instruction of an instruction set of the processor.

[00179] Example 17 includes the method of any preceding example and optionally
further comprising emulating the first instruction including decoding a set of one or more
instructions that are used to emulate the first instruction when the given opcode has the

second meaning.

[00180] Example 18 includes the method of any preceding example and optionally
wherein decoding the set of instructions comprises decoding one or more instructions that

are of a same instruction set as the first instruction.

[00181] Example 19 includes the method of any preceding example and optionally
performed in the processor that does not use microcode to implement any instructions of

an instruction set.

[00182] Example 20 is an article of manufacture that includes a non-transitory
machine-readable storage medium that stores instructions that, if executed by a machine,

will cause the machine to perform operations. The operations include determining that a

50

first instruction having a given opcode is to have a second meaning instead of a first
meaning when executed by a processor from a software module by examining metadata
of the software module. The operations also include storing an indication that the first
instruction having the given opcode is to have the second meaning in a state of the

processor.

[00183] Example 21 includes the article of manufacture of any preceding example
and optionally wherein the machine-readable storage medium further stores instructions
that if executed by the machine will cause the machine to performing operations
including selecting a portion of a software library that uses the second meaning of the
given opcode instead of another portion of the software library that uses the first meaning
of the given opcode, and providing the selected portion of the software library to the

software module, wherein the second meaning is a deprecated meaning.

[00184] Example 22 includes the article of manufacture of any preceding example
and optionally wherein the machine-readable storage medium further stores instructions
that if executed by the machine will cause the machine to performing operations
including determining that the given opcode has the second meaning based on an age of

the software module.

[00185] Example 23 includes the article of manufacture of any preceding example
and optionally wherein the machine-readable storage medium further stores instructions
that if executed by the machine will cause the machine to performing operations
including examining a flag in an object module format and storing the indication in a flag

in a register of the processor.

[00186] Example 24 is a system to process instructions that includes an
interconnect and a processor coupled with the interconnect. The processor is to receive a
first instruction having a given opcode. The processor includes check logic to check
whether the given opcode has a first meaning or a second meaning. The processor
includes decode logic to decode the first instruction, and output one or more
corresponding control signals, when the given opcode has the first meaning. The
processor includes emulation inducement logic to induce emulation of the first instruction
when the given opcode has the second meaning. The system also includes a dynamic

random access memory (DRAM) coupled with the interconnect.

51

[00187] Example 25 includes the subject matter of Example 24 and optionally
further comprising emulation logic to provide a set of one or more instructions of a same
instruction set as the first instruction to the decoder to emulate the first instruction when

the given opcode has the second meaning.

[00188] Example 26 includes apparatus to perform the method of any of Examples
13-19.
[00189] Example 27 includes apparatus comprising means for performing the

method of any of Examples 13-19.

[00190] Example 28 includes apparatus to perform a method substantially as

described herein.

[00191] Example 29 includes apparatus comprising means for performing a

method as described herein.

[00192] In the description and claims, the terms “coupled” and “connected,” along
with their derivatives, may have been used. It should be understood that these terms are
not intended as synonyms for each other. Rather, in particular embodiments,
“connected” may be used to indicate that two or more elements are in direct physical or
electrical contact with each other. “Coupled” may mean that two or more elements are in
direct physical or electrical contact. However, “coupled” may also mean that two or
more elements are not in direct contact with each other, but yet still co-operate or interact
with each other. For example, a first component and a second component may be
coupled with one another through an intervening component. In the figures, bidirectional

arrows are used to show bidirectional connections and couplings.

[00193] In the description and claims, the term “logic” may have been used. As
used herein, logic may include hardware, firmware, software, or a combination thereof.
Examples of logic include integrated circuitry, application specific integrated circuits,
analog circuits, digital circuits, programmed logic devices, memory devices including
instructions, etc. In some embodiments, the hardware logic may include transistors

and/or gates potentially along with other circuitry components.

2

[00194] The term “and/or” may have been used. As used herein, the term “and/or’

means one or the other or both (e.g., A and/or B means A or B or both A and B).

52

[00195] In the description above, for purposes of explanation, numerous specific
details have been set forth in order to provide a thorough understanding of embodiments
of the invention. It will be apparent however, to one skilled in the art, that one or more
other embodiments may be practiced without some of these specific details. The
particular embodiments described are not provided to limit the invention but to illustrate
it through example embodiments. The scope of the invention is not to be determined by
the specific examples but only by the claims. In other instances, well-known circuits,
structures, devices, and operations have been shown in block diagram form or without

detail in order to avoid obscuring the understanding of the description.

[00196] Where considered appropriate, reference numerals, or terminal portions of
reference numerals, have been repeated among the figures to indicate corresponding or
analogous elements, which may optionally have similar or the same characteristics,
unless specified or clearly apparent otherwise. Where multiple components have been
described, they may generally be incorporated into a single component. In other cases,
where a single component has been described, it may generally be partitioned into

multiple components.

[00197] Various operations and methods have been described. Some of the
methods have been described in a relatively basic form in the flow diagrams, but
operations may optionally be added to and/or removed from the methods. In addition,
while the flow diagrams show a particular order of the operations according to example
embodiments, that particular order is exemplary. Alternate embodiments may optionally
perform the operations in different order, combine certain operations, overlap certain

operations, etc.

[00198] Some embodiments include an article of manufacture (e.g., a computer
program product) that includes a machine-readable medium. The medium may include a
mechanism that provides, for example stores, information in a form that is readable by
the machine. The machine-readable medium may provide, or have stored thereon, one or
more instructions, that if and/or when executed by a machine are operable to cause the
machine to perform and/or result in the machine performing one or operations, methods,
or techniques disclosed herein. Examples of suitable machines include, but are not

limited to, processors, instruction processing apparatus, digital logic circuits, integrated

53

circuits, and the like. Still other examples of suitable machines include computing
devices and other electronic devices that incorporate such processors, instruction
processing apparatus, digital logic circuits, or integrated circuits. Examples of such
computing devices and electronic devices include, but are not limited to, desktop
computers, laptop computers, notebook computers, tablet computers, netbooks,
smartphones, cellular phones, servers, network devices (e.g., routers and switches.),
Mobile Internet devices (MIDs), media players, smart televisions, nettops, set-top boxes,

and video game controllers.

[00199] In some embodiments, the machine-readable medium may include a
tangible and/or non-transitory machine-readable storage medium. For example, the
tangible and/or non-transitory machine-readable storage medium may include a floppy
diskette, an optical storage medium, an optical disk, an optical data storage device, a CD-
ROM, a magnetic disk, a magneto-optical disk, a read only memory (ROM), a
programmable ROM (PROM), an erasable-and-programmable ROM (EPROM), an
electrically-erasable-and-programmable ROM (EEPROM), a random access memory
(RAM), a static-RAM (SRAM), a dynamic-RAM (DRAM), a Flash memory, a phase-
change memory, a phase-change data storage material, a non-volatile memory, a non-
volatile data storage device, a non-transitory memory, a non-transitory data storage
device, or the like. The non-transitory machine-readable storage medium does not

consist of a transitory propagated signal.

[00200] It should also be appreciated that reference throughout this specification to

LI]
2

"one embodiment", "an embodiment", or “one or more embodiments”, for example,
means that a particular feature may be included in the practice of the invention.
Similarly, it should be appreciated that in the description various features are sometimes
grouped together in a single embodiment, Figure, or description thereof for the purpose
of streamlining the disclosure and aiding in the understanding of various inventive
aspects. This method of disclosure, however, is not to be interpreted as reflecting an
intention that the invention requires more features than are expressly recited in each

claim. Rather, as the following claims reflect, inventive aspects may lie in less than all

features of a single disclosed embodiment. Thus, the claims following the Detailed

54

Description are hereby expressly incorporated into this Detailed Description, with each

claim standing on its own as a separate embodiment of the invention.

55

CLAIMS
What is claimed is:
1. A processor comprising;

decode logic to receive a first instruction and to determine that the first instruction is to

be emulated; and

emulation mode aware post-decode instruction processor logic coupled with the decode
logic, the emulation mode aware post-decode instruction processor logic to process one
or more control signals decoded from an instruction, of a set of one or more instructions
used to emulate the first instruction, differently when in an emulation mode than when

not in the emulation mode.

2. The processor of claim 1, wherein the first instruction is more complex than each
instruction of the set in that the first instruction involves more operations being

performed.

3. The processor of claim 2, wherein the processor does not use microcode to

implement any instructions of an instruction set.

4. The processor of claim 1, wherein each instruction of the set of one or more

instructions is of a same instruction set as the first instruction.

5. The processor of claim 1, wherein the emulation mode aware post-decode
instruction processor logic comprises emulation mode aware exceptional condition
handler logic to report an exceptional condition that is to occur while processing the one

or more control signals to emulation logic.

6. The processor of claim 5, wherein the emulation mode aware exceptional

condition handler logic is to store an address of the first instruction in a stack.

7. The processor of claim 5, wherein the emulation mode aware exceptional
condition handler logic is to store an indication of the exceptional condition, and an error
code for the exceptional condition, in one or more registers coupled with the emulation

logic.

56

8. The processor of claim 5, wherein the emulation mode aware exceptional
condition handler logic is to avoid directly transferring control to an exceptional
condition handler in response to the exceptional condition, and wherein one or more
instructions of the emulation logic is to transfer control to the exceptional condition

handler.

0. The processor of claim 1, wherein the emulation mode aware post-decode
instruction processor logic comprises emulation mode aware access control logic to
control access to at least one of a resource and information by the one or more control

signals differently when in the emulation mode than when not in the emulation mode.

10. The processor of claim 9, wherein the emulation mode aware access control logic
is to allow access to said at least one of the resource and the information when in the
emulation mode and prevent access to said at least one of the resource and the

information when not in the emulation mode.

11. The processor of claim 10, wherein the at least one of the resource and the
information comprises at least one of security logic, secure information, encryption logic,
decryption logic, random number generator logic, logic reserved for accesses by an
operating system, a portion of memory reserved for accesses by an operating system, and

information reserved for access by an operating system.

12. The processor of claim 10, wherein the at least one of the resource and the
information comprises at least one of a resource and information in one of another logical

processor and another physical processor.

13. The processor claim 1, wherein the set of one or more instructions includes at

least three instructions.

14. A method in a processor comprising:
receiving a first instruction;

determining to emulate the first instruction;

receiving a set of one or more instructions to be used to emulate the first instruction; and

57

processing one or more control signals derived from an instruction of the set differently

when in an emulation mode than when not in the emulation mode.

15. The method of claim 14, wherein receiving the first instruction comprises
receiving the first instruction that is more complex than each instruction of the set of one

or more instructions.

16. The method of claim 14, wherein receiving the set of the one or more instructions
comprises receiving one or more instructions that are each of a same instruction set as the

first instruction.
17. The method of claim 14, wherein processing comprises:

reporting an exceptional condition that occurs while processing the one or more control

signals to emulation logic; and

executing one or more instructions of the emulation logic to transfer control to an

exceptional condition handler.

18. The method of claim 17, wherein reporting comprises:

storing an indication of the exceptional condition in one or more registers; and
storing an address of the first instruction in a stack.

19. The method of claim 14, wherein processing comprises controlling access to at
least one of a resource and information by the one or more control signals differently

when in the emulation mode than when not in the emulation mode.
20. The method of claim 19, wherein controlling access differently comprises:

allowing access to said at least one of the resource and the information when in the

emulation mode; and

preventing access to said at least one of the resource and the information when not in the

emulation mode.
21. A system to process instructions comprising:

an interconnect;

58

a processor coupled with the interconnect, the processor including:

decode logic to receive a first instruction and to determine that the first instruction is to

be emulated; and

emulation mode aware post-decode instruction processor logic coupled with the decode
logic, the emulation mode aware post-decode instruction processor logic to process one
or more control signals decoded from an instruction, of a set of one or more instructions
used to emulate the first instruction, differently when in an emulation mode than when

not in the emulation mode; and
a dynamic random access memory (DRAM) coupled with the interconnect.

22. The system of claim 21, wherein the emulation mode aware post-decode
instruction processor logic comprises emulation mode aware exceptional condition
handler logic to report an exceptional condition that is to occur while processing the one

or more control signals to emulation logic.

59

2.5 60
Intellectual

Property

Office

Application No: GB1404410.1 Examiner: Dr Russell Maurice
Claims searched: 1-22 Date of search: 30 September 2014

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims

X 1,2,4,5,| US 6820190 B1

14-16 & | (HEWLETT PACKARD DEVELOPMENT CO) see e.g. the abstract,
21 column 3, lines 1-2, column 4, lines 23-44, column 5, lines 15-25 & 445-

54 &, column 6, lines 4-65

A - WO 02/29507 A2
(ADVANCED RISC MACH LTD) see e.g. the abstract

A - US 6745322 B1
(HEWLETT-PACKARD DEVELOPMENT COMPANY) see e.g. the
abstract

A - WO 98/59292 Al

(TRANSMETA CORP) see e.g. the abstract

Categories:
X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent tamily E Patent document published on or after, but with priority date

earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKC™ :

Worldwide search of patent documents classified in the following areas of the IPC
[GOGF |
The following online and other databases have been used in the preparation of this search report

[WPL, EPODOC, TXTE, INSPEC, XPIPCOM |

International Classification:
Subclass Subgroup Valid From

GO6F 0009/30 01/01/2006

Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk

	Front Page
	Drawings
	Description
	Claims
	Search Report

