(11) Application No. AU 2002351412 B2

(12) STANDARD PATENT (19) AUSTRALIAN PATENT OFFICE

(54)	Title		
	Modulators	of	LXR

(51)	International Patent Classifi C07D 213/64 (2006.01) A61K 31/437 (2006.01) A61K 31/4375 (2006.01) A61K 31/4412 (2006.01) A61K 31/443 (2006.01) A61K 31/4436 (2006.01) A61K 31/4436 (2006.01) A61K 31/4439 (2006.01) A61K 31/496 (2006.01) A61K 31/497 (2006.01) A61P 1/16 (2006.01) A61P 3/06 (2006.01) A61P 3/06 (2006.01) A61P 3/10 (2006.01) A61P 25/16 (2006.01) A61P 25/28 (2006.01) A61P 25/28 (2006.01) A61P 29/00 (2006.01)	ication	(s) A61P 35/00 (2006.) A61P 43/00 (2006.) C07D 213/80 (2006.) C07D 213/84 (2006.) C07D 213/85 (2006.) C07D 213/89 (2006.) C07D 401/04 (2006.) C07D 401/06 (2006.) C07D 405/04 (2006.) C07D 405/10 (2006.) C07D 405/12 (2006.) C07D 413/06 (2006.) C07D 413/06 (2006.) C07D 417/04 (2006.) C07D 417/04 (2006.)	01) 5.01)		
(21)	Application No: 2002351	412	(22)	Date of	Filing:	2002.12.20
(87)	WIPO No: WO03/05988	4				
(30)	Priority Data					
(31)	Number 60/342,707	(32)	Date 2001.12.21	(33)	Country US	
(43) (43) (44)	Publication Date: Publication Journal Date: Accepted Journal Date:	2003	8.07.30 8.09.04 9.05.20			
(71)	Applicant(s) X-Ceptor Therapeutics, Inc.					
(72)	Inventor(s) Johnson, Alan T.;Mohan, Raju;Lu, Shao-Po;Bayne, Christopher D.;Griffith, Ronald C.					
(74)	Agent / Attorney Spruson & Ferguson, Level 35 St Martins Tower 31 Market Street, Sydney, NSW, 2000					
(56)	6) Related Art Dawood, N. T. A. et al (2001) Boll. Chim. Farmac. 140:149-154 Elgemeie, G. E. H, & Hussain, B. A. W. (1993) J. Chem. Res. 3:87 EP0542059 EP0500297 Elgemeie, G. E. H., et al. (1994) Org. Prep. Proc. Int. 26:465-468					

(19) World Intellectual Property Organization International Bureau

PCT

(43) International Publication Date 24 July 2003 (24.07.2003)

- (51) International Patent Classification⁷: C07D 213/64, A61K 31/4412, 31/4418
- (21) International Application Number: PCT/US02/41306
- (22) International Filing Date: 20 December 2002 (20.12.2002)

(25) Filing Language: English

- (26) Publication Language: English
- (30) Priority Data: 60/342,707 21 December 2001 (21.12.2001) US
- (63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application: US 60/342,707 (CIP)
 - Filed on 21 December 2001 (21.12.2001)
- (71) Applicant (for all designated States except US): X-CEP-TOR THERAPEUTICS, INC. [US/US]; 4757 Nexus Centre Drive, Suite 200, San Diego, CA 92121 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BAYNE, Christopher, D. [US/US]; 3149 Clairemont Drive, Apt. 4, San Diego, CA 92117 (US). JOHNSON, Alan, T. [US/US]; 17058 Iron Mountain Drive, Poway, CA 92064 (US). LU, Shao-Po [CN/US]; 11693 Ramsdell Court, San Diego, CA 92131 (US). MOHAN, Raju [US/US]; 3125 Caminito Ricardo, Encinitas, CA 92024 (US). GRIFFITH, Ronald, C. [US/US]; 2508 Russett Glen, Escondido, CA 92029 (US).
- (74) Agents: SEIDMAN, Stephanie, L. et al.; Heller Ehrman White & McAuliffe LLP, 4350 La Jolla Village Drive, 7th Floor, San Diego, CA 92122-1246 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(10) International Publication Number

WO 03/059884 A1

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

VO 03/059884 A1

(54) Title: MODULATORS OF LXR

(57) Abstract: Coumpounds, compositions and methods for modulating the activity of nuclear receptors are provided. In particular, heterocyclic compounds are provided for modulating the activity of nuclear receptors, including liver X receptor (LXR) and orphan nuclear receptors. In certain embodiments, the compounds are N-substituted pyridones.

PCT/US02/41306

MODULATORS OF LXR

RELATED APPLICATIONS

Benefit of priority is claimed herein to U.S. provisional patent
application No. 60/342,707, filed December 21, 2001, to Bayne *et al.*, entitled "MODULATORS OF LXR". For U.S. national stage purposes and where appropriate, the disclosure of the above-referenced application is incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

Compounds, compositions and methods for modulating the activity of liver X receptors (LXRs) are provided. In particular, pyridone derivatives are provided for modulating the activity of LXRs.

5 BACKGROUND OF THE INVENTION

Nuclear Receptors

Nuclear receptors are a superfamily of regulatory proteins that are structurally and functionally related and are receptors for, *e.g.*, steroids, retinoids, vitamin D and thyroid hormones (see, *e.g.*, Evans (1988)

10 *Science 240*:889-895). These proteins bind to cis-acting elements in the promoters of their target genes and modulate gene expression in response to ligands for the receptors.

Nuclear receptors can be classified based on their DNA binding properties (see, *e.g.*, Evans, *supra* and Glass (1994) *Endocr. Rev.*

- 15 15:391-407). For example, one class of nuclear receptors includes the glucocorticoid, estrogen, androgen, progestin and mineralocorticoid receptors which bind as homodimers to hormone response elements (HREs) organized as inverted repeats (see, *e.g.*, Glass, *supra*). A second class of receptors, including those activated by retinoic acid, thyroid
- 20 hormone, vitamin D₃, fatty acids/peroxisome proliferators (*i.e.*, peroxisome proliferator activated receptors or PPARs) and ecdysone, bind to HREs as heterodimers with a common partner, the retinoid X receptors

-2-

(*i.e.*, RXRs, also known as the 9-*cis* retinoic acid receptors; see, *e.g.*, Levin *et al.* (1992) *Nature 355*:359-361 and Heyman *et al.* (1992) *Cell 68*:397-406).

RXRs are unique among the nuclear receptors in that they bind
5 DNA as a homodimer and are required as a heterodimeric partner for a number of additional nuclear receptors to bind DNA (see, *e.g.*, Mangelsdorf *et al.* (1995) *Cell 83*:841-850). The latter receptors, termed the class II nuclear receptor subfamily, include many which are established or implicated as important regulators of gene expression.

- 10 There are three RXR genes (see, *e.g.*, Mangelsdorf *et al.* (1992) *Genes Dev.* 6:329-344), coding for RXRα, -β, and -γ, all of which are able to heterodimerize with any of the class II receptors, although there appear to be preferences for distinct RXR subtypes by partner receptors *in vivo* (see, *e.g.*, Chiba *et al.* (1997) *Mol. Cell. Biol.* 17:3013-3020). In the
- 15 adult liver, RXRα is the most abundant of the three RXRs (see, e.g., Mangelsdorf et al. (1992) Genes Dev. 6:329-344), suggesting that it might have a prominent role in hepatic functions that involve regulation by class II nuclear receptors. See also, Wan et al. (2000) Mol. Cell. Biol. 20:4436-4444.

20

Orphan Nuclear Receptors

Included in the nuclear receptor superfamily of regulatory proteins are nuclear receptors for whom the ligand is known and those which lack known ligands. Nuclear receptors falling in the latter category are referred to as orphan nuclear receptors. The search for activators for

25 orphan receptors has led to the discovery of previously unknown signaling pathways (see, *e.g.*, Levin *et al.*, (1992), *supra* and Heyman *et al.*, (1992), *supra*). For example, it has been reported that bile acids, which are involved in physiological processes such as cholesterol catabolism, are ligands for farnesoid X receptor (FXR).

-3-

Since it is known that products of intermediary metabolism act as transcriptional regulators in bacteria and yeast, such molecules may serve similar functions in higher organisms (see, *e.g.*, Tomkins (1975) *Science 189*:760-763 and O'Malley (1989) *Endocrinology 125*:1119-

5 1120). For example, one biosynthetic pathway in higher eukaryotes is the mevalonate pathway, which leads to the synthesis of cholesterol, bile acids, porphyrin, dolichol, ubiquinone, carotenoids, retinoids, vitamin D, steroid hormones and farnesylated proteins.

LXRa and LXRB

- 10 LXR α is found predominantly in the liver, with lower levels found in kidney, intestine, spleen and adrenal tissue (see, *e.g.*, Willy, *et al.* (1995) *Gene Dev. 9(9)*:1033-1045). LXR β is ubiquitous in mammals and was found in nearly all tissues examined. LXRs are activated by certain naturally occurring, oxidized derivatives of cholesterol (see, *e.g.*,
- 15 Lehmann, et al. (1997) J. Biol. Chem. 272(6):3137-3140). LXRa is activated by oxycholesterol and promotes cholesterol metabolism (Peet et al. (1998) Cell 93:693-704). Thus, LXRs appear to play a role in, e.g., cholesterol metabolism (see, e.g., Janowski, et al. (1996) Nature 383:728-731).

20

Nuclear Receptors and Disease

Nuclear receptor activity has been implicated in a variety of diseases and disorders, including, but not limited to, hypercholesterolemia (see, *e.g.*, International Patent Application Publication No. WO 00/57915), osteoporosis and vitamin deficiency (see,

e.g., U.S. Patent No. 6,316,5103), hyperlipoproteinemia (see, e.g.,
 International Patent Application Publication No. WO 01/60818),
 hypertriglyceridemia, lipodystrophy, hyperglycemia and diabetes mellitus
 (see, e.g., International Patent Application Publication No. WO
 01/82917), atherosclerosis and gallstones (see, e.g., International Patent

-4-

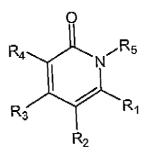
Application Publication No. WO 00/37077), disorders of the skin and mucous membranes (see, *e.g.*, U.S. Patent Nos. 6,184,215 and 6,187,814, and International Patent Application Publication No. WO 98/32444), acne (see, *e.g.*, International Patent Application Publication

- 5 No. WO 00/49992), and cancer, Parkinson's disease and Alzheimer's disease (see, *e.g.*, International Patent Application Publication No. WO 00/17334). Activity of nuclear receptors, including LXRs, FXR and PPAR, and orphan nuclear receptors, has been implicated in physiological processes including, but not limited to, bile acid biosynthesis, cholesterol
- metabolism or catabolism, and modulation of cholesterol 7*a*-hydroxylase gene (CYP7A1) transcription (see, *e.g.*, Chiang *et al.* (2000) *J. Biol. Chem.* 275:10918-10924), HDL metabolism (see, *e.g.*, Urizar *et al.* (2000) *J. Biol. Chem.* 275:39313-39317 and International Patent Application Publication No. WO 01/03705), and increased cholesterol
- 15 efflux and increased expression of ATP binding cassette transporter protein (ABC1) (see, *e.g.*, International Patent Application Publication No. WO 00/78972).

Thus, there is a need for compounds, compositions and methods of modulating the activity of nuclear receptors, including LXRs, FXR,
20 PPAR and orphan nuclear receptors. Such compounds are useful in the treatment, prevention, or amelioration of one or more symptoms of diseases or disorders in which nuclear receptor activity is implicated.

SUMMARY OF THE INVENTION

Compounds for use in compositions and methods for modulating 25 the activity of nuclear receptors are provided. In particular, compounds for use in compositions and methods for modulating liver X receptors (LXR α and LXR β), FXR, PPAR and/or orphan nuclear receptors are provided. In certain embodiments, the compounds are N-substituted pyridone compounds. In one embodiment, the compounds provided 5


10

15

20

herein are agonists of LXR. In another embodiment, the compounds provided herein are antagonists of LXR. Agonists that exhibit low efficacy are, in certain embodiments, antagonists.

A first aspect of the invention provides for a compound having formula I:

or a pharmaceutically acceptable derivative thereof, wherein

 \mathbf{R}^1 is selected from substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaralkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkenyl, substituted or unsubstituted cycloalkynyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted cycloalkylalkyl and substituted or unsubstituted heterocyclylalkyl;

 R^2 is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted

alkenyl, substituted or unsubstituted alkynyl;

 R^3 and R^4 are selected from (i) or (ii) as follows:

 R^3 is substituted or unsubstituted alkyl, substituted or unsubstituted (i) unsubstituted substituted or substituted or unsubstituted alkynyl, alkylaminocarbonyl or $C(J)OR^{30}$; and R^4 is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, halide, cyanide, cyanate, thiocyanate, selenocyanate, trifluoromethoxy, azide, $C(J)R^{30}$, $C(J)NR^{31}R^{32}$, $CH_2NR^{31}R^{32}$, CH_2OR^{31} , $CR^{30}=CR^{31}R^{32}$, NO_2 , $NR^{31}R^{32}$;

 \mathbb{R}^3 and \mathbb{R}^4 , together with the atoms to which they are attached, form a substituted or unsubstituted heterocyclic ring, with the proviso that the heterocyclic ring (ii)

has one oxo substituent; 25

5

10

5a

 \mathbb{R}^5 is substituted or unsubstituted analyle or substituted or unsubstituted heteroaralkyl, wherein \mathbb{R}^5 is optionally substituted with one or more groups selected from alkyl, haloalkyl, halohydroxyalkyl, alkoxy, alkoxyalkoxyalkyl, alkoxyalkyl, aryl, halo, aralkyl, heteroaryl, aryloxy, haloalkoxy, alkylthio, alkoxycarbonyl, arylcarbonyl, aikylcarbonyl, heterocyclylalkyl, heterocyclyl, hydroxyalkyl, alkylalkelenedioxy and dialkylalkelenedioxy;

 R^{30} is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroaralkyl;

 R^{31} and R^{32} are each independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocyclylalkyl, substituted 15 or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaralkyl, or $C(J)R^{35}$; or R^{31} and R^{32} together with the atoms to which they are attached, form substituted or unsubstituted cycloalkyl ring, a substituted or unsubstituted heterocyclic ring or a substituted or unsubstituted 20

heteroaryl ring;

J is O, S or NR⁴⁰;

 R^{35} is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted alkoxy, substituted or unsubstituted substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted arylalkylamino, or substituted or unsubstituted

 R^{40} is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted diarylamino;

aryl, or substituted or unsubstituted heteroaryl;

30

28. APR. 2010 12:45

5

5b

where the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, alkylene, alkenylene, alkynylene, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, heteroaralkyl, heteroaralkenyl, and heteroaralkynyl moieties of \mathbb{R}^1 , \mathbb{R}^2 , and \mathbb{R}^3 , are unsubstituted or substituted with one or more substituents, in one embodiment one to three or four substituents, each independently selected from Q^1 , where Q^1 is halo, cyanide, cyanate, thiocyanate, selenocyanate, trifluoromethoxy, azide, hydroxy, oxo, thia, nitrile, nitro formyl, mercapto, hydroxyalkylaryl, hydroxyaryl, hydroxyalkylaryloxy, hydroxyalkyl, hydroxycarbonyl, hydroxycarbonylalkyl, alkyl, haloalkyl, polyhaloalkyl, aminoalkyl, diaminoalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing 1 to 2 triple aryl, diaryl, bonds, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, alkylaralkyl, 10 aralkynyl, aralkenyl, aralkyl, heteroaryl, alkylaryl, heteroarylalkyl, trialkylsilyl, dialkylarylsilyl, alkyldiarylsilyl, triarylsilyl, alkylidene, hydroxyaryl, arylalkylidene, alkylcarbonyl, alkylarylcarbonyl, arylcarbonyl, heterocyclylcarbonyl, aikoxycarbonylaryloxy, alkoxycarbonylalkyl, alkoxycarbonyl, heteroarylcarbonyl, aryloxycarbonyl, aryloxycarbonylalkyl, heterocyclylcarbonylalkylaryl, aralkoxycarbonyl, alkylaminocarbonyl, 15 aminocarbonyl, arylcarbonylalkyl, aralkoxycarbonylalkyl, dialkylaminocarbonyl, arylaminocarbonyl, diarylaminocarbonyl, arylalkylaminocarbonyl, alkoxy, aryloxy, haloalkoxy, alkoxyaryloxy, alkylaryloxy, diaryloxy, alkylaryloxyalkyl, aryloxyalkoxy, alkynyloxy, alkenyloxy, perfluoroalkoxy, alkyldiaryloxy, alkoxyalkyl, heterocyclyloxy, alkylarylcycloalkyloxy, aralkoxyaryloxy, cycloalkyloxy, 20alkylcycloalkoxy, alkylheteroaryloxy, alkoxyalkoxyalkyl, alkylheteroaryloxy, heteroaryloxy, haloaryloxy, aralkoxy, heterocyclyloxy, alkylcarbonyloxy, alkylcarbonylaryloxy, alkoxycarbonylheterocyclyloxy, aryloxycarbonyloxy, alkoxycarbonyloxy, aralkylcarbonyloxy, arylcarbonyloxy, alkoxyaryloxy, aralkoxycarbonyloxy, ureido, alkylureido, arylureido, amino, aminoalkyl, diarylaminoalkyl, 25 arylaminoalkyl, dialkylaminoalkyl, alkylaminoalkyl, alkylarylaminoalkyl, alkylamino, dialkylamino, haloalkylamino, haloalkylarylamino, alkylcarbonylamino, aralkylamino, alkylarylamino, diarylamino, arylamino, alkoxycarbonylamino, haloalkylcarbonylamino, aralkylcarbonylamino, arylcarbonylaminoalkyl, arylcarbonylamino, aralkoxycarbonylamino, aryloxycarbonylamino, 30 aryloxyarylcarbonylamino, aryloxycarbonylaminoalkyl,

alkylenedioxyalkyl, dialkylalkylenedioxyalkyl, alkylsulfonylamino, arylsulfonylamino, azido, dialkylphosphonyl, alkylarylphosphonyl, diarylphosphonyl, alkylthio, arylthio, perfluoroalkylthio, hydroxycarbonylalkylthio, thiocyano, isothiocyano, alkylsulfinyl,

5

10

20

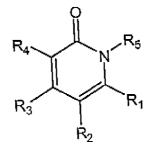
25

5c

alkylaminosulfonyl, aminosulfonyl, arylsulfonyl, arylsulfinyl, dialkylaminosulfonyl, arylaminosulfonyl, diarylaminosulfonyl or alkylarylaminosulfonyl; or two Q^1 groups, which substitute atoms in a 1,2 or 1,3 arrangement, together form thioalkylenoxy (i.e., -O-(CH₂)_z-O-), (i.e., alkylenedioxy alkylenedithioxy(i.e., -S-(CH_2)_z-S-) where z is 1 or 2; and

each Q^1 is independently unsubstituted or substituted with one or more substituents, in one embodiment one to three or four substituents, each independently selected from Q^2 , where Q^2 is halo, cyanide, cyanate, thiocyanate, selenocyanate, trifluoromethoxy, azide, hydroxy, oxo, thia, nitrile, nitro, formyl, mercapto, amino, hydroxyalkyl, hydroxyaryl, hydroxycarbonyl, alkyl, haloalkyl, polyhaloalkyl, aminoalkyl, diaminoalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing 1 to 2 triple bonds, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, alkoxycarbonyl, aryloxycarbonyl, aralkoxycarbonyl, arylcarbonylalkyl, a minocarbonyl, alkoxy, aryloxy, aralkoxy, alkylenedioxy, amino, aminoalkyl, dialkylamino, arylamino, diarylamino, alkylamino, dialkylamino, haloalkylamino, arylamino, diarylamino, alkylarylamino, aralkylamino, alkoxycarbonylamino, arylcarbonylamino, alkylthio or 15

A second aspect of the invention provides for a pharmaceutical composition arylthio. comprising a compound according to the first aspect of the invention or a pharmaceutically acceptable derivative thereof in a pharmaceutically acceptable carrier.


A third aspect of the invention provides for the use of a compound according to the first aspect of the invention or a pharmaceutically acceptable derivative thereof, for the manufacture of a medicament for treatment of a disease or disorder selected from hypertriglyceridemia, hyperlipoproteinemia, hypercholesterolemia, hyperglycemia, diabetes mellitus, dyslipidemia, atherosclerosis, gallstone disease, acne vulgaris, acneiform skin conditions, diabetes, Parkinson's disease, cancer, Alzheimer's disease, inflammation, immunological disorders, lipid disorders, obesity, conditions characterized by a perturbed epidermal barrier function, conditions of disturbed differentiation or excess proliferation of the epidermis or mucous membrane, and

cardiovascular disorders. 30

A fourth aspect of the invention provides for the use of a compound according to the first aspect of the invention or a pharmaceutically acceptable derivative thereof for reducing cholesterol levels in a subject in need thereof.

A fifth aspect of the invention provides for a method of treating a disease or disorder selected from hypercholesterolemia, hyperlipoproteinemia, hypertriglyceridemia, lipodystrophy, hyperglycemia, diabetes mellitus, dyslipidemia, atherosclerosis, gallstone disease, acne vulgaris, acneiform skin conditions, diabetes, Parkinson's disease, cancer, Alzheimer's disease, inflammation, immunological disorders, lipid disorders, obesity, conditions characterized by a perturbed epidermal barrier function, conditions of disturbed differentiation or excess proliferation of the epidermis or mucous membrane, and cardiovascular disorders, comprising administering to a subject in need thereof an effective amount of a compound of the first aspect o the invention or a pharmaceutically acceptable derivative thereof, or a composition according to the second aspect of the

invention. Disclosed herein the compounds for use in the compositions and methods provided herein have formula I:

where, R¹ is selected from substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaralkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted excloalkenyl, substituted or unsubstituted cycloalkynyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted excloalkylalkyl and substituted or unsubstituted heterocyclylalkyl;

substituted of unsubstituted restricted or unsubstituted alkyl, substituted or unsubstituted R^2 is hydrogen, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl; alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl;

10

5

20

5

 R^3 and R^4 are selected from (i), (ii), (iii) or (iv) as follows:

(i) R^3 is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkenyl, substituted or unsubstituted cycloalkynyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted alkylaryl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, C(J)OR³⁰ or

C(J)NR³¹R³²; and R⁴ is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, halide, pseudohalide, C(J)R³⁰, C(J)OR³⁰, C(J)NR³¹R³², CH₂NR³¹R³², CH₂OR³¹, CR³⁰ = CR³¹R³², NO₂ or NR³¹R³²;

5

(ii) R^3 and R^4 , together with the atoms to which they are attached, form a substituted or unsubstituted heterocyclic ring;

(iii) R^3 and R^4 , together with the atoms to which they are attached, form a substituted or unsubstituted heterocyclic ring with the proviso that the nitrogen atom in the heterocyclic ring is not substituted with a

10 phenyl ring; or

(iv) R³ and R⁴, together with the atoms to which they are attached, form a substituted or unsubstituted heterocyclic ring with the proviso that the heterocyclic ring does not have more than one oxo substitutent;

R⁵ is substituted or unsubstituted alkyl, substituted or

- 15 unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted aralkenyl, substituted or unsubstituted aralkynyl, substituted or unsubstituted heteroaralkyl, substituted or
- **20** unsubstituted heteroaralkenyl, substituted or unsubstituted heteroaralkynyl, $-N = CR^6R^7$ or $-NR^9R^{10}$;

R⁶ and R⁷ are each independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted

25 or unsubstituted heterocyclyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroaralkyl; or together form substituted or unsubstituted alkylene, substituted or unsubstituted alkenylene, substituted or unsubstituted alkynylene, or $-(CH_2)_x X(CH_2)_y$ where x and y are each independently 1, 2 or 3, and X is O, S or NR⁸;

R⁸ is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted alkylcarbonyl, substituted or unsubstituted arylcarbonyl, or substituted or unsubstituted heteroarylcarbonyl;

R⁹ and R¹⁰ are each independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or

10 unsubstituted heteroaryl, substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroaralkyl;

R³⁰ is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl,

15 substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroaralkyl;

R³¹ and R³² are each independently hydrogen, substituted or
 unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted heterocyclyl, substituted heterocyclylalkyl, substituted

25 or unsubstituted aralkyl, substituted or unsubstituted heteroaralkyl, C(J)R³⁵; or R³¹ and R³², together with the atoms to which they are attached, form substituted or unsubstituted cycloalkyl ring, a substituted or unsubstituted heterocyclic ring or a substituted or unsubstituted heteroaryl ring;

t

-8-

J is O, S or NR⁴⁰;

R³⁵ is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl,

5 substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted alkoxy, substituted or unsubstituted aralkoxy, substituted or unsubstituted or unsu

10 R⁴⁰ is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

where the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, alkylene, alkenylene, alkynylene, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, heteroaralkyl, heteroaralkenyl and heteroaralkynyl moieties of R¹, R², R³,

- 15 R⁵, R⁶, R⁷, R⁸, R⁹ and R¹⁰ are unsubstituted or substituted with one or more substituents, in one embodiment, one to three or four substituents, each independently selected from Q¹, where Q¹ is halo, pseudohalo, hydroxy, oxo, thia, nitrile, nitro, formyl, mercapto, amino, hydroxyalkyl, hydroxyalkylaryloxy, hydroxyaryl, hydroxyalkylaryl, hydroxycarbonyl,
- 20 hydroxycarbonylalkyl, alkyl, haloalkyl, polyhaloalkyl, aminoalkyl, diaminoalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing 1 to 2 triple bonds, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, diaryl, hydroxyaryl, alkylaryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, alkylaralkyl, heteroarylalkyl, trialkylsilyl,
- 25 dialkylarylsilyl, alkyldiarylsilyl, triarylsilyl, alkylidene, arylalkylidene, alkylcarbonyl, alkylarylcarbonyl, arylcarbonyl, heterocyclylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, alkoxycarbonylaryloxy, aryloxycarbonyl, aryloxycarbonylalkyl, heterocyclylcarbonylalkylaryl, aralkoxycarbonyl, aralkoxycarbonylalkyl,

WO 03/059884

-9-

arylcarbonylalkyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylaminocarbonyl, diarylaminocarbonyl, arylalkylaminocarbonyl, alkoxy, aryloxy, haloalkoxy, alkoxyaryloxy, alkylaryloxy, diaryloxy, alkylaryloxyalkyl, alkyldiaryloxy, perfluoroalkoxy,

- 5 alkenyloxy, alkynyloxy, aryloxyalkaoxy, aralkoxyaryloxy, alkylarylcycloalkyloxy, heterocycloxy, alkoxyalkyl, alkoxyalkoxyalkyl, alkylheteroaryloxy, alkylcycloalkoxy, cycloalkyloxy, heterocyclyloxy, aralkoxy, haloaryloxy, heteroaryloxy, alkylheteroaryloxy, alkoxycarbonylheterocycloxy, alkylcarbonylaryloxy, alkylcarbonyloxy,
- 10 arylcarbonyloxy, aralkylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, alkoxyaryloxy, aralkoxycarbonyloxy, ureido, alkylureido, arylureido, amino, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, arylaminoalkyl, diarylaminoalkyl, alkylarylaminoalkyl, alkylamino, dialkylamino, haloalkylamino, haloalkylarylamino, arylamino, diarylamino, alkyl-
- 15 arylamino, aralkylamino, alkylcarbonylamino, aralkylcarbonylamino, haloalkylcarbonylamino, alkoxycarbonylamino, aralkoxycarbonylamino, arylcarbonylamino, arylcarbonylaminoalkyl, aryloxycarbonylaminoalkyl, aryloxyarylcarbonylamino, aryloxycarbonylamino, alkylenedioxyalkyl, dialkylalkylenedioxyalkyl, alkylsulfonylamino, arylsulfonylamino, azido,
- 20 dialkylphosphonyl, alkylarylphosphonyl, diarylphosphonyl, alkylthio, arylthio, perfluoroalkylthio, hydroxycarbonylalkylthio, thiocyano, isothiocyano, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, arylsulfonyl, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, arylaminosulfonyl, diarylaminosulfonyl or alkylarylaminosulfonyl; or two
- Q¹ groups, which substitute atoms in a 1,2 or 1,3 arrangement, together form alkylenedioxy (*i.e.*, -O-(CH₂)_z-O-), thioalkylenoxy (*i.e.*, -S-(CH₂)_z-O-)or alkylenedithioxy (*i.e.*, -S-(CH₂)_z-S-) where z is 1 or 2; and each Q¹ is independently unsubstituted or substituted with one or more substituents, in one embodiment, one to three or four substituents,

-10-

each independently selected from Q², where Q² is halo, pseudohalo, hydroxy, oxo, thia, nitrile, nitro, formyl, mercapto, amino, hydroxyalkyl, hydroxyaryl, hydroxycarbonyl, alkyl, haloalkyl, polyhaloalkyl, aminoalkyl, diaminoalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing

- 5 1 to 2 triple bonds, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, alkoxycarbonyl, aryloxycarbonyl, aralkoxycarbonyl, arylcarbonylalkyl, aminocarbonyl, alkoxy, aryloxy, aralkoxy, alkylenedioxy, amino, aminoalkyl, dialkylamino, arylamino, diarylamino, alkyl-anino, dialkylamino, haloalkylamino, arylamino, diarylamino, alkyl-
- **10** arylamino, aralkylamino, alkoxycarbonylamino, arylcarbonylamino, alkylthio or arylthio.

In another embodiment, the compounds for use in the compositions and methods provided herein have formula 1:

where R¹ is substituted or unsubstituted aryl, substituted or

- 25 unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaralkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted or unsubstituted heterocyclyl, substituted or unsubstituted cycloalkylalkyl, or substituted or unsubstituted heterocyclylalkyl; R² is hydrogen, substituted or unsubstituted alkyl, or substituted or
- **30** unsubstituted aryl; R³ is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted or unsubstituted or unsubstituted

-11-

heteroaryl; R⁴ is halide, pseudohalide, C(J)R³⁰, C(J)OR³⁰, C(J)NR³¹R³², CH₂NR³¹R³², CH₂OR³¹, CR³⁰ = CR³¹R³², NO₂ or NR³¹R³²; and R⁵ is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl,

- 5 substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted aralkenyl, substituted or unsubstituted aralkynyl, substituted or unsubstituted heteroaralkyl, substituted or unsubstituted heteroaralkenyl, substituted heteroaralkenyl, substitut
- 10 where R⁶ and R⁷ are each independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted
- 15 aralkyl, or substituted or unsubstituted heteroaralkyl; or together form substituted or unsubstituted alkylene, substituted or unsubstituted alkenylene, substituted or unsubstituted alkynylene, or -(CH₂)_xX(CH₂)_ywhere x and y are each independently 1, 2 or 3, and X is 0, S or NR⁸;

R⁸ is substituted or unsubstituted alkyl, substituted or

20 unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted alkylcarbonyl, substituted or unsubstituted arylcarbonyl, or substituted or unsubstituted heteroarylcarbonyl;

R⁹ and R¹⁰ are each independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, or substituted or unsubstituted or unsubstituted heteroaralkyl;

R³⁰ is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or

-12-

unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, or

5 substituted or unsubstituted heteroaralkyl;

R³¹ and R³² are each independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted

10 cycloalkylalkyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaralkyl, or C(J)R³⁵;

J is O, S or NR^{40} ;

15

5 R³⁵ is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted alkoxy, substituted or unsubstituted

20 aralkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted arylalkylamino, or substituted or unsubstituted diarylamino;

R⁴⁰ is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

25 where the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, alkylene, alkenylene, alkynylene, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, heteroaralkyl, heteroaralkenyl and heteroaralkynyl moieties of R¹, R², R³, R⁵, R⁶, R⁷, R⁸, R⁹ and R¹⁰ are unsubstituted or substituted with one or more substituents, in one embodiment, one to three or four substituents,

-13-

each independently selected from Q¹, where Q¹ is halo, pseudohalo, hydroxy, oxo, thia, nitrile, nitro, formyl, mercapto, hydroxycarbonyl, hydroxycarbonylalkyl, alkyl, haloalkyl, polyhaloalkyl, aminoalkyl, diaminoalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing

- 5 1 to 2 triple bonds, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, heteroarylalkyl, trialkylsilyl, dialkylarylsilyl, alkyldiarylsilyl, triarylsilyl, alkylidene, arylalkylidene, alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl, aryloxycarbonyl, aryloxycarbonyl-
- 10 alkyl, aralkoxycarbonyl, aralkoxycarbonylalkyl, arylcarbonylalkyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, arylaminocarbonyl, diarylaminocarbonyl, arylalkylaminocarbonyl, alkoxy, aryloxy, perfluoroalkoxy, alkenyloxy, alkynyloxy, aralkoxy, alkylcarbonyloxy, arylcarbonyloxy, aralkylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbon-
- 15 yloxy, aralkoxycarbonyloxy, ureido, alkylureido, arylureido, amino, aminoalkyl, alkylaminoalkyl, dialkylaminoalkyl, arylaminoalkyl, diarylaminoalkyl, alkylarylaminoalkyl, alkylamino, dialkylamino, haloalkylamino, arylamino, diarylamino, alkylarylamino, alkylcarbonylamino, alkoxycarbonylamino, aralkoxycarbonylamino, arylcarbonylamino,
- 20 arylcarbonylaminoalkyl, aryloxycarbonylaminoalkyl, aryloxyarylcarbonylamino, aryloxycarbonylamino, alkylsulfonylamino, arylsulfonylamino, azido, dialkylphosphonyl, alkylarylphosphonyl, diarylphosphonyl, alkylthio, arylthio, perfluoroalkylthio, hydroxycarbonylalkylthio, thiocyano, isothiocyano, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, arylsul-
- 25 fonyl, aminosulfonyl, alkylaminosulfonyl, dialkylaminosulfonyl, arylaminosulfonyl, diarylaminosulfonyl or alkylarylaminosulfonyl; or two Q¹ groups, which substitute atoms in a 1,2 or 1,3 arrangement, together form alkylenedioxy (*i.e.*, -O-(CH₂)_z-O-), thioalkylenoxy (*i.e.*, -S-(CH₂)_z-O-)or alkylenedithioxy (*i.e.*, -S-(CH₂)_z-S-) where z is 1 or 2; and

-14-

the aryl and heteroaryl groups of Q^1 are unsubstituted or substituted with one or more substituents, in one embodiment, one to three or four substituents, each independently selected from Q^2 , where Q^2 is alkyl, halo, pseudohalo, alkoxy, aryloxy or alkylenedioxy.

5

In certain embodiments, R² is hydrogen, or is substituted or unsubstituted alkyl. In other embodiments, R² is hydrogen.

In another embodiment, R³ is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, or substituted or unsubstituted alkynyl. In another embodiment, R³ is substituted or unsubstituted alkyl.

10 In another embodiment, R³ is haloalkyl. In other embodiments, R³ is lower haloalkyl. In another embodiment, R³ is lower perfluoroalkyl. In another embodiment, R³ is trifluoromethyl or pentafluoroethyl. In another embodiment, R³ is trifluoromethyl.

In other embodiments, R^4 is pseudohalide. In another embodiment, **15** R^4 is cyano.

In another embodiment, R^6 and R^7 are selected with the proviso that (i) they are not both methyl; and (ii) they do not together form pentylene (*i.e.*, -(CH₂)₅-).

The groups R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, Q¹ and Q² are
selected such that the resulting compound has nuclear receptor modulation activity, such as in at least one assay described herein, including LXR or orphan nuclear receptor modulation activity, such as LXR antagonist or agonist activity. In certain embodiments, the compounds provided herein have an IC₅₀ and/or EC₅₀ of less than about

25 100 μ M in a LXR α or LXR β binding or co-transfection assay. The LXR α or LXR β IC₅₀ and/or EC₅₀ values for the compounds provided herein are, in certain embodiments, less than about 50 μ M, 25 μ M, 10 μ M, 1 μ M, 100 nM, 10 nM or 1 nM in binding or co-transfection assays. In certain of these embodiments, the compounds provided herein are LXR agonists.

WO 03/059884

PCT/US02/41306

-15-

In other of these embodiments, the compounds provided herein are LXR antagonists. In other embodiments, the compounds provided herein exhibit a % efficacy relative to standard (N-(3-((4-fluorophenyl)-(naphthalene-2-sulfonyl)amino)propyl)-2,2-dimethylpropionamide) of

greater than about 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140% or more in a co-transfection assay.

Also of interest are any pharmaceutically-acceptable derivatives, including salts, esters, enol ethers, enol esters, solvates, hydrates and prodrugs of the compounds described herein. Pharmaceutically-accept-

- 10 able salts, include, but are not limited to, amine salts, such as but not limited to N,N'-dibenzylethylenediamine, chloroprocaine, choline, ammonia, diethanolamine and other hydroxyalkylamines, ethylenediamine, N-methylglucamine, procaine, N-benzylphenethylamine, 1-para-chlorobenzyl-2-pyrrolidin-1'-ylmethylbenzimidazole, diethylamine
- 15 and other alkylamines, piperazine and tris(hydroxymethyl)aminomethane; alkali metal salts, such as but not limited to lithium, potassium and sodium; alkali earth metal salts, such as but not limited to barium, calcium and magnesium; transition metal salts, such as but not limited to zinc, aluminum, and other metal salts, such as but not limited to sodium
- 20 hydrogen phosphate and disodium phosphate; and also including, but not limited to, salts of mineral acids, such as but not limited to hydrochlorides and sulfates; and salts of organic acids, such as but not limited to acetates, lactates, malates, tartrates, citrates, ascorbates, succinates, butyrates, valerates and fumarates.
- 25 Pharmaceutical compositions formulated for administration by an appropriate route and means containing effective concentrations of one or more of the compounds provided herein, or pharmaceutically acceptable derivatives thereof, that deliver amounts effective for the treatment, prevention, or amelioration of one or more symptoms of

WO 03/059884

PCT/US02/41306

-16-

diseases or disorders that are modulated or otherwise affected by nuclear receptor activity, including LXR and/or orphan nuclear receptor activity, or in which nuclear receptor activity, including LXR and/or orphan nuclear receptor activity, is implicated, are also provided. The effective amounts
and concentrations are effective for ameliorating any of the symptoms of

any of the diseases or disorders.

Methods for treatment, prevention, or amelioration of one or more symptoms of diseases or disorders mediated by or in which nuclear receptor activity, including LXR and/or orphan nuclear receptor activity,

- 10 is implicated, are provided. Such methods include methods of treatment, prevention and amelioration of one or more symptoms of hypercholesterolemia, hyperlipoproteinemia, hypertriglyceridemia, lipodystrophy, hyperglycemia, diabetes mellitus, dyslipidemia, atherosclerosis, gallstone disease, acne vulgaris, acneiform skin
- 15 conditions, diabetes, Parkinson's disease, cancer, Alzheimer's disease, inflammation, immunological disorders, lipid disorders, obesity, conditions characterized by a perturbed epidermal barrier function, conditions of disturbed differentiation or excess proliferation of the epidermis or mucous membrane, or cardiovascular disorders, using one or more of the
- **20** compounds provided herein, or pharmaceutically acceptable derivatives thereof.

Methods of modulating the activity of nuclear receptors, including LXR and/or orphan nuclear receptors, using the compounds and compositions provided herein are also provided. The compounds and

25 compositions provided herein are active in assays, such as the assays provided herein, that measure the activity of nuclear receptors, including LXR and/or orphan nuclear receptors. These methods include inhibiting and up-regulating the activity of nuclear receptors, including LXR and/or orphan nuclear receptors.

-17-

Methods of reducing cholesterol levels in a subject in need thereof by administration of one or more compounds or compositions provided herein are also provided.

Methods of modulating cholesterol metabolism using thecompounds and compositions provided herein are provided.

Methods of treating, preventing, or ameliorating one or more symptoms of diseases or disorders which are affected by cholesterol, triglyceride, or bile acid levels by administration of one or more of the compounds and compositions provided herein are also provided.

10 Methods of raising the plasma level of high density lipoprotein (HDL) by adminstration of one or more compounds and compositions provided herein are also provided.

In practicing the methods, effective amounts of the compounds or compositions containing therapeutically effective concentrations of the

15 compounds, which are formulated for systemic delivery, including parenteral, oral, or intravenous delivery, or for local or topical application, for the treatment of nuclear receptor, including LXR and/or orphan nuclear receptor, mediated diseases or disorders, or diseases or disorders in which nuclear receptor activity, including LXR and/or orphan nuclear

20 receptor activity, is implicated, including, but not limited to, hypercholesterolemia, hyperlipoproteinemia, hypertriglyceridemia, lipodystrophy, hyperglycemia, diabetes mellitus, dyslipidemia, atherosclerosis, gallstone disease, acne vulgaris, acneiform skin conditions, diabetes, Parkinson's disease, cancer, Alzheimer's disease,

25 inflammation, immunological disorders, lipid disorders, obesity, conditions characterized by a perturbed epidermal barrier function, conditions of disturbed differentiation or excess proliferation of the epidermis or mucous membrane, or cardiovascular disorders, are administered to an individual exhibiting the symptoms of these diseases or disorders. The

-18-

amounts are effective to ameliorate or eliminate one or more symptoms of the diseases or disorders.

Articles of manufacture containing packaging material, a compound or composition, or pharmaceutically acceptable derivative

- 5 thereof, provided herein, which is effective for modulating the activity of nuclear receptors, including LXR and/or orphan nuclear receptors, or for treatment, prevention or amelioration of one or more symptoms of nuclear receptor, including LXR and/or orphan nuclear receptor, mediated diseases or disorders, or diseases or disorders in which nuclear receptor
- 10 activity, including LXR and/or orphan nuclear receptor activity, is implicated, within the packaging material, and a label that indicates that the compound or composition, or pharmaceutically acceptable derivative thereof, is used for modulating the activity of nuclear receptors, including LXR and/or orphan nuclear receptors, or for treatment, prevention or
- 15 amelioration of one or more symptoms of nuclear receptor, including LXR and/or orphan nuclear receptor, mediated diseases or disorders, or diseases or disorders in which nuclear receptor activity, including LXR and/or orphan nuclear receptor activity, is implicated, are provided. BRIEF DESCRIPTION OF DRAWINGS
- **20** Figure 1 provides in vitro data for the compounds whose synthesis is described in the Examples. Data is provided for LXR α and LXR β receptors. Average EC₅₀ ("EC50_AVG") for LXR agonism is provided as follows: I = 0.0001-0.01 μ M, II = 0.01-0.1 μ M, III = 0.1-1.0 μ M, IV = 1.0-10.0 μ M and NC = Not Calculated. Average percent efficacy
- 25 ("EFF_AVG") for LXR agonism relative to control (N-(3-((4-fluoro-phen-yl)-(naphthalene-2-sulfonyl)-amino)propyl)-2,2-dimethylpropionamide) is provided as follows: A = 0-50%, B = 50-100%, C = 100-150%, D > 150% and NC = Not Calculated. Average Ki is provided as follows: A1 = 0.0001-0.1 μ M, B1 = 0.1-1 μ M, C1 = 1-2 μ M, D1 = >2 μ M.

-19-

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

A. Definitions

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of

- **5** ordinary skill in the art to which this invention belongs. All patents, applications, published applications and other publications are incorporated by reference in their entirety. In the event that there are a plurality of definitions for a term herein, those in this section prevail unless stated otherwise.
- 10 As used herein, a nuclear receptor is a member of a superfamily of regulatory proteins that are receptors for, *e.g.*, steroids, retinoids, vitamin D and thyroid hormones. These proteins bind to cis-acting elements in the promoters of their target genes and modulate gene expression in repsonse to a ligand therefor. Nuclear receptors may be classified based
- 15 on their DNA binding properties. For example, the glucocorticoid, estrogen, androgen, progestin and mineralocorticoid receptors bind as homodimers to hormone response elements (HREs) organized as inverted repeats. Another example are receptors, including those activated by retinoic acid, thyroid hormone, vitamin D₃, fatty acids/peroxisome
- **20** proliferators and ecdysone, that bind to HREs as heterodimers with a common partner, the retinoid X receptor (RXR). Among the latter receptors is LXR.

As used herein, an orphan nuclear receptor is a nuclear receptor for which the natural ligand is unknown.

25 As used herein, liver X receptor or LXR refers to a nuclear receptor implicated in cholesterol biosynthesis. As used herein, the term LXR refers to both LXR α and LXR β , two forms of the protein found in mammals. Liver X receptor- α or LXR α refers to the receptor described in U.S. Patent Nos. 5,571,696, 5,696,233 and 5,710,004, and Willy *et al.* Ļ

PCT/US02/41306

-20-

(1995) Gene Dev. 9(9):1033-1045. Liver X receptor-β or LXRβ refers to the receptor described in Peet et al. (1998) Curr. Opin. Genet. Dev. 8(5):571-575; Song et al. (1995) Ann. N.Y. Acad. Sci. 761:38-49;
Alberti et al. (2000) Gene 243(1-2):93-103; and references cited therein;

5 and in U.S. Patent Nos. 5,571,696, 5,696,233 and 5,710,004.

Diabetes mellitus, commonly called diabetes, refers to a disease process derived from multiple causative factors and characterized by elevated levels of plasma glucose, referred to as hyperglycemia. See, e.g., LeRoith, D. et al., (eds.), DIABETES MELLITUS (Lippincott-Raven

10 Publishers, Philadelphia, Pa. U.S.A. 1996). According to the American Diabetes Association, diabetes mellitus is estimated to affect approximately 6% of the world population. Uncontrolled hyperglycemia is associated with increased and premature mortality due to an increased risk for macrovascular and macrovascular diseases, including

15 nephropathy, neuropathy, retinopathy, hypertension, cerebrovascular disease and coronary heart disease. Therefore, control of glucose homeostasis is a critically important approach for the treatment of diabetes.

There are two major forms of diabetes: type 1 diabetes (formerly
20 referred to as insulin-dependent diabetes or IDEM); and type 2 diabetes (formerly referred to as noninsulin dependent diabetes or NIDDM).

Type 2 diabetes is a disease characterized by insulin resistance accompanied by relative, rather than absolute, insulin deficiency. Type 2 diabetes can range from predominant insulin resistance with relative

25 insulin deficiency to predominant insulin deficiency with some insulin resistance. Insulin resistance is the diminished ability of insulin to exert its biological action across a broad range of concentrations. In insulin resistant individuals, the body secretes abnormally high amounts of insulin to compensate for this defect. When inadequate amounts of WO 03/059884

PCT/US02/41306

-21-

insulin are present to compensate for insulin resistance and adequate control of glucose, a state of impaired glucose tolerance develops. In a significant number of individuals, insulin secretion declines further and the plasma glucose level rises, resulting in the clinical state of diabetes.

- **5** Type 2 diabetes can be due to a profound resistance to insulin stimulating regulatory effects on glucose and lipid metabolism in the main insulin-sensitive tissues: muscle, liver and adipose tissue. This resistance to insulin responsiveness results in insufficient insulin activation of glucose uptake, oxidation and storage in muscle and inadequate insulin
- repression of lipolysis in adipose tissue and of glucose production and 10 secretion in liver. In Type 2 diabetes, free fatty acid levels are often elevated in obese and some non-obese patients and lipid oxidation is increased.

Premature development of atherosclerosis and increased rate of cardiovascular and peripheral vascular diseases are characteristic features 15 of patients with diabetes. Hyperlipidemia is an important precipitating factor for these diseases. Hyperlipidemia is a condition generally characterized by an abnormal increase in serum lipids in the bloodstream and is an important risk factor in developing atherosclerosis and heart

- disease. For a review of disorders of lipid metabolism, see, e.g., Wilson, 20 J. et al., (ed.), Disorders of Lipid Metabolism, Chapter 23, Textbook of Endocrinology, 9th Edition, (W. B. Sanders Company, Philadelphia, Pa. U.S.A. 1998). Hyperlipidemia is usually classified as primary or secondary hyperlipidemia. Primary hyperlipidemia is generally caused by
- genetic defects, while secondary hyperlipidemia is generally caused by 25 other factors, such as various disease states, drugs, and dietary factors. Alternatively, hyperlipidemia can result from both a combination of primary and secondary causes of hyperlipidemia. Elevated cholesterol levels are associated with a number of disease states, including coronary

-22-

artery disease, angina pectoris, carotid artery disease, strokes, cerebral arteriosclerosis, and xanthoma.

Dyslipidemia, or abnormal levels of lipoproteins in blood plasma, is a frequent occurrence among diabetics, and has been shown to be one

- 5 of the main contributors to the increased incidence of coronary events and deaths among diabetic subjects (see, e.g., Joslin, E. Ann. Chim. Med. (1927) 5: 1061-1079). Epidemiological studies since then have confirmed the association and have shown a several-fold increase in coronary deaths among diabetic subjects when compared with
- 10 nondiabetic subjects (see, e.g., Garcia, M. J. et al., Diabetes (1974) 23: 105-11 (1974); and Laakso, M. and Lehto, S., Diabetes Reviews (1997) 5(4): 294-315). Several lipoprotein abnormalities have been described among diabetic subjects (Howard B., et al., Arteriosclerosis (1978) 30: 153-162).
- 15 The term "insulin resistance" can be defined generally as a disorder of glucose metabolism. More specifically, insulin resistance can be defined as the diminished ability of insulin to exert its biological action across a broad range of concentrations producing less than the expected biologic effect. (see, e.g., Reaven, G. M., J. Basic & Clin. Phys. &
- 20 Pharm. (1998) 9: 387-406 and Flier, J. Ann Rev. Med. (1983) 34:145-60). Insulin resistant persons have a diminished ability to properly metabolize glucose and respond poorly, if at all, to insulin therapy. Manifestations of insulin resistance include insufficient insulin activation of glucose uptake, oxidation and storage in muscle and inadequate
- 25 insulin repression of lipolysis in adipose tissue and of glucose production and secretion in liver. Insulin resistance can cause or contribute to polycystic ovarian syndrome, Impaired Glucose Tolerance (IGT), gestational diabetes, hypertension, obesity, atherosclerosis and a variety of other disorders. Eventually, the insulin resistant individuals can

WO 03/059884

PCT/US02/41306

-23-

progress to a point where a diabetic state is reached. The association of insulin resistance with glucose intolerance, an increase in plasma triglyceride and a decrease in high-density lipoprotein cholesterol concentrations, high blood pressure, hyperuricemia, smaller denser low-

density lipoprotein particles, and higher circulating levels of plasminogen activator inhibitor-1), has been referred to as "Syndrome X" (see, e.g., Reaven, G. M., Physiol. Rev. (1995) 75: 473-486).

The term "diabetes mellitus" or "diabetes" means a disease or condition that is generally characterized by metabolic defects in

- 10 production and utilization of glucose which result in the failure to maintain appropriate blood sugar levels in the body. The result of these defects is elevated blood glucose, referred to as "hyperglycemia." Type 2 diabetes often occurs in the face of normal, or even elevated, levels of insulin and can result from the inability of tissues to respond
- 15 appropriately to insulin. Most type 2 diabetic patients are insulin resistant and have a relative deficiency of insulin, in that insulin secretion can not compensate for the resistance of peripheral tissues to respond to insulin. In addition, many type 2 diabetics are obese. Other types of disorders of glucose homeostasis include Impaired Glucose Tolerance,
- 20 which is a metabolic stage intermediate between normal glucose homeostasis and diabetes, and Gestational Diabetes Mellitus, which is glucose intolerance in pregnancy in women with no previous history of type 1 or type 2 diabetes.

The term "complication" of diabetes includes, but is not limited to, 25 microvascular complications and macrovascular complications. Microvascular complications are those complications which generally result in small blood vessel damage. These complications include, e.g., retinopathy (the impairment or loss of vision due to blood vessel damage in the eyes); neuropathy (nerve damage and foot problems due to blood

-24-

vessel damage to the nervous system); and nephropathy (kidney disease due to blood vessel damage in the kidneys). macrovascular complications are those complications which generally result from large blood vessel damage. These complications include, e.g., cardiovascular

- 5 disease and peripheral vascular disease. Cardiovascular disease refers to diseases of blood vessels of the heart. See. e.g., Kaplan, R. M., et al.,
 "Cardiovascular diseases" in HEALTH AND HUMAN BEHAVIOR, pp. 206-242 (McGraw-Hill, New York 1993). Cardiovascular disease is generally one of several forms, including, e.g., hypertension (also referred to as
- 10 high blood pressure), coronary heart disease, stroke, and rheumatic heart disease. Peripheral vascular disease refers to diseases of any of the blood vessels outside of the heart. It is often a narrowing of the blood vessels that carry blood to leg and arm muscles.

The term "hyperlipidemia" refers to the presence of an abnormally elevated level of lipids in the blood. Hyperlipidemia can appear in at least three forms: (1) hypercholesterolemia, i.e., an elevated cholesterol level; (2) hypertriglyceridemia, i.e., an elevated triglyceride level; and (3) combined hyperlipidemia, i.e., a combination of hypercholesterolemia and hypertriglyceridemia.

20 The term "dyslipidemia" refers to abnormal levels of lipoproteins in blood plasma including both depressed and/or elevated levels of lipoproteins (e.g., elevated levels of LDL, VLDL and depressed levels of HDL).

Exemplary Primary Hyperlipidemia include, but are not limited to,
25 the following: (1) Familial Hyperchylomicronemia, a rare genetic disorder which causes a deficiency in an enzyme, LP lipase, that breaks down fat molecules. The LP lipase deficiency can cause the accumulation of large quantities of fat or lipoproteins in the blood;

-25-

(2) Familial Hypercholesterolemia, a relatively common genetic disorder caused where the underlying defect is a series of mutations in the LDL receptor gene that result in malfunctioning LDL receptors and/or absence of the LDL receptors. This brings about ineffective clearance of LDL by the LDL receptors resulting in elevated LDL and total cholesterol

levels in the plasma;

(3) Familial Combined Hyperlipidemia, also known as multiple lipoprotein-type hyperlipidemia; an inherited disorder where patients and their affected first-degree relatives can at various times manifest high

10 cholesterol and high triglycerides. Levels of HDL cholesterol are often moderately decreased;

(4) Familial Defective Apolipoprotein B-100 is a relatively common autosomal dominant genetic abnormality. The defect is caused by a single nucleotide mutation that produces a substitution of glutamine for

15 arginine which can cause reduced affinity of LDL particles for the LDL receptor. Consequently, this can cause high plasma LDL and total cholesterol levels;

(5) Familial Dysbetaliproteinemia, also referred to as Type III
Hyperlipoproteinemia, is an uncommon inherited disorder resulting in
20 moderate to severe elevations of serum TG and cholesterol levels with abnormal apolipoprotein E function. HDL levels are usually normal; and

(6) Familial Hypertriglyceridemia, is a common inherited disorder in which the concentration of plasma VLDL is elevated. This can cause mild to moderately elevated triglyceride levels (and usually not

25 cholesterol levels) and can often be associated with low plasma HDL levels.

Risk factors in exemplary Secondary Hyperlipidemia include, but are not limited to, the following: (1) disease risk factors, such as a history of type 1 diabetes, type 2 diabetes, Cushing's syndrome, WO 03/059884

-26-

hypothyroidism and certain types of renal failure; (2) drug risk factors, which include, birth control pills; hormones, such as estrogen, and corticosteroids; certain diuretics; and various β -blockers; (3) dietary risk factors include dietary fat intake per total calories greater than 40%;

5 saturated fat intake per total calories greater than 10%; cholesterol intake greater than 300 mg per day; habitual and excessive alcohol use; and obesity; and (4) non-genetic dyslipidemias.

The terms "obese" and "obesity" refers to, according to the World Health Organization, a Body Mass Index (BMI) greater than 27.8 kg/m²

10 for men and 27.3 kg/m² for women (BMI equals weight (kg)/height (m²). Obesity is linked to a variety of medical conditions including diabetes and hyperlipidemia. Obesity is also a known risk factor for the development of type 2 diabetes (See, e.g., Barrett-Conner, E., Epidemol. Rev. (1989) 11: 172-181; and Knowler, et al., Am. J Clin. Nutr. (1991) 53:1543-

15 1551).

As used herein, pharmaceutically acceptable derivatives of a compound include salts, esters, enol ethers, enol esters, acetals, ketals, hemiacetals, hemiketals, acids, bases, solvates, hydrates or prodrugs thereof. Such derivatives may be readily prepared by those of skill in this

20 art using known methods for such derivatization. The compounds produced may be administered to animals or humans without substantial toxic effects and either are pharmaceutically active or are prodrugs. Pharmaceutically acceptable salts include, but are not limited to, amine salts, such as but not limited to N,N'-dibenzylethylenediamine,

25 chloroprocaine, choline, ammonia, diethanolamine and other hydroxyalkylamines, ethylenediamine, N-methylglucamine, procaine, Nbenzylphenethylamine, 1-para-chlorobenzyl-2-pyrrolidin-1'-ylmethylbenzimidazole, diethylamine and other alkylamines, piperazine and tris(hydroxymethyl)aminomethane; alkali metal salts, such as but not

-27-

limited to lithium, potassium and sodium; alkali earth metal salts, such as but not limited to barium, calcium and magnesium; transition metal salts, such as but not limited to zinc; and other metal salts, such as but not limited to sodium hydrogen phosphate and disodium phosphate; and also

- 5 including, but not limited to, salts of mineral acids, such as but not limited to hydrochlorides and sulfates; and salts of organic acids, such as but not limited to acetates, lactates, malates, tartrates, citrates, ascorbates, succinates, butyrates, valerates and fumarates. Pharmaceutically acceptable esters include, but are not limited to, alkyl,
- 10 alkenyl, alkynyl, aryl, heteroaryl, aralkyl, heteroaralkyl, cycloalkyl and heterocyclyl esters of acidic groups, including, but not limited to, carboxylic acids, phosphoric acids, phosphinic acids, sulfonic acids, sulfinic acids and boronic acids. Pharmaceutically acceptable enol ethers include, but are not limited to, derivatives of formula C = C(OR) where R
- 15 is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, heteroaralkyl, cycloalkyl or heterocyclyl. Pharmaceutically acceptable enol esters include, but are not limited to, derivatives of formula C = C(OC(O)R) where R is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, heteroaralkyl, cycloalkyl or heterocyclyl. Pharmaceutically acceptable
- 20 solvates and hydrates are complexes of a compound with one or more solvent or water molecules, or 1 to about 100, or 1 to about 10, or one to about 2, 3 or 4, solvent or water molecules.

As used herein, treatment means any manner in which one or more of the symptoms of a disease or disorder are ameliorated or

25 otherwise beneficially altered. Treatment also encompasses any pharmaceutical use of the compositions herein, such as use for treating a nuclear receptor, including LXR and/or orphan nuclear receptor, mediated diseases or disorders, or diseases or disorders in which nuclear receptor

15

-28-

activity, including LXR and/or orphan nuclear receptor activity, is implicated.

As used herein, amelioration of the symptoms of a particular disorder by administration of a particular compound or pharmaceutical

5 composition refers to any lessening, whether permanent or temporary, lasting or transient that can be attributed to or associated with administration of the composition.

The term "modulate" refers to the treating, prevention, suppression, enhancement or induction of a function or condition. For

10 example, the compounds claimed herein, can modulate hyperlipidemia by lowering cholesterol in a human, thereby suppressing hyperlipidemia.

As used herein, the IC_{50} refers to an amount, concentration or dosage of a particular test compound that achieves a 50% inhibition of a maximal response, such as modulation of LXR activity, in an assay that measures such response.

As used herein, EC_{50} refers to a dosage, concentration or amount of a particular test compound that elicits a dose-dependent response at 50% of maximal expression of a particular response that is induced, provoked or potentiated by the particular test compound.

20 The term "cholesterol" refers to a steroid alcohol that is an essential component of cell membranes and myelin sheaths and, as used herein, incorporates its common usage. Cholesterol also serves as a precursor for steroid hormones and bile acids.

The term "triglyceride(s)" ("TGs"), as used herein, incorporates its common usage. TGs consist of three fatty acid molecules esterified to a glycerol molecule and serve to store fatty acids which are used by muscle cells for energy production or are taken up and stored in adipose tissue.

-29-

As used herein, a prodrug is a compound that, upon *in vivo* administration, is metabolized by one more steps or processes or otherwise converted to the biologically, pharmaceutically or therapeutically active form of the compound. To produce a prodrug, the

- 5 pharmaceutically active compound is modified such that the active compound will be regenerated by metabolic processes. The prodrug may be designed to alter the metabolic stability or the transport characteristics of a drug, to mask side effects or toxicity, to improve the flavor of a drug or to alter other characteristics or properties of a drug.
- 10 By virtue of knowledge of pharmacodynamic processes and drug metabolism *in vivo*, those of skill in this art, once a pharmaceutically active compound is known, can design prodrugs of the compound (see, *e.g.*, Nogrady (1985) *Medicinal Chemistry A Biochemical Approach*, Oxford University Press, New York, pages 388-392).
- 15 It is to be understood that the compounds provided herein may contain chiral centers. Such chiral centers may be of either the (R) or (S) configuration, or may be a mixture thereof. Thus, the compounds provided herein may be enantiomerically pure, or be stereoisomeric or diastereomeric mixtures. The compounds provided herein include all
- 20 possible isomers, as well as, their racemic and optically pure forms. Optically active (+) and (-), (r)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, such as reverse phase HPLC. When the compounds described herein contain olefinic double bonds or other
- 25 centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included. In the case of amino acid residues, such residues may be of either the L- or D-form. The configuration for naturally occurring amino acid residues is

-30-

generally L. When not specified the residue is the L form. As used herein, the term "amino acid" refers to α -amino acids which are racemic, or of either the D- or L-configuration. The designation "d" preceding an amino acid designation (*e.g.*, dAla, dSer, dVal, etc.) refers to the D-

- **5** isomer of the amino acid. The designation "dl" preceding an amino acid designation (*e.g.*, dlPip) refers to a mixture of the L- and D-isomers of the amino acid. It is to be understood that the chiral centers of the compounds provided herein may undergo epimerization *in vivo*. As such, one of skill in the art will recognize that administration of a compound in
- **10** its (R) form is equivalent, for compounds that undergo epimerization *in vivo*, to administration of the compound in its (S) form.

As used herein, substantially pure means sufficiently homogeneous to appear free of readily detectable impurities as determined by standard methods of analysis, such as thin layer chromatography (TLC), gel

- 15 electrophoresis, high performance liquid chromatography (HPLC) and mass spectrometry (MS), used by those of skill in the art to assess such purity, or sufficiently pure such that further purification would not detectably alter the physical and chemical properties, such as enzymatic and biological activities, of the substance. Methods for purification of
- 20 the compounds to produce substantially chemically pure compounds are known to those of skill in the art. A substantially chemically pure compound may, however, be a mixture of stereoisomers. In such instances, further purification might increase the specific activity of the compound.

25

As used herein, the nomenclature alkyl, alkoxy, carbonyl, *etc.* is used as is generally understood by those of skill in this art.

As used herein, alkyl, alkenyl and alkynyl carbon chains, if not specified, contain from 1 to 20 carbons, or 1 to 16 carbons, and are straight or branched. Alkenyl carbon chains of from 2 to 20 carbons, in

PCT/US02/41306

-31-

certain embodiments, contain 1 to 8 double bonds, and the alkenyl carbon chains of 2 to 16 carbons, in certain embodiments, contain 1 to 5 double bonds. Alkynyl carbon chains of from 2 to 20 carbons, in certain embodiments, contain 1 to 8 triple bonds, and the alkynyl carbon chains

- 5 of 2 to 16 carbons, in certain embodiments, contain 1 to 5 triple bonds. Exemplary alkyl, alkenyl and alkynyl groups herein include, but are not limited to, methyl, ethyl, propyl, isopropyl, isobutyl, n-butyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-penytyl and isohexyl. As used herein, lower alkyl, lower alkenyl, and lower alkynyl refer to carbon
- 10 chains having less than about 6 carbons. As used herein, "alk(en)(yn)yl" refers to an alkyl group containing at least one double bond and at least one triple bond.

As used herein, "cycloalkyl" refers to a saturated mono- or multicyclic ring system, in certain embodiments of 3 to 10 carbon atoms, in

- 15 other embodiments of 3 to 6 carbon atoms; cycloalkenyl and cycloalkynyl refer to mono- or multicyclic ring systems that respectively include at least one double bond and at least one triple bond. Cycloalkenyl and cycloalkynyl groups may, in certain embodiments, contain 3 to 10 carbon atoms, with cycloalkenyl groups, in further
- 20 embodiments, containing 4 to 7 carbon atoms and cycloalkynyl groups, in further embodiments, containing 8 to 10 carbon atoms. The ring systems of the cycloalkyl, cycloalkenyl and cycloalkynyl groups may be composed of one ring or two or more rings which may be joined together in a fused, bridged or spiro-connected fashion. "Cycloalk(en)(yn)yl"
- **25** refers to a cycloalkyl group containing at least one double bond and at least one triple bond.

As used herein, "substituted alkyl," "substituted alkenyl," "substituted alkynyl," "substituted cycloalkyl," "substituted cycloalkenyl," and "substitued cycloalkynyl" refer to alkyl, alkenyl, alkynyl, WO 03/059884

-32-

cycloalkyl, cycloalkenyl and cycloalkynyl groups, respectively, that are substituted with one or more substituents, in certain embodiments one to three substituents.

As used herein, "aryl" refers to aromatic monocyclic or multicyclic
groups containing from 6 to 19 carbon atoms. Aryl groups include, but are not limited to groups such as fluorenyl, substituted fluorenyl, phenyl, substituted phenyl, naphthyl and substituted naphthyl.

As used herein, "heteroaryl" refers to a monocyclic or multicyclic aromatic ring system, in certain embodiments, of about 5 to about 15

- 10 members where one or more, in one embodiment 1 to 3, of the atoms in the ring system is a heteroatom, that is, an element other than carbon, including but not limited to, nitrogen, oxygen or sulfur. The heteroaryl group may be optionally fused to a benzene ring. Heteroaryl groups include, but are not limited to, furyl, imidazolyl, pyrrolidinyl, pyrimidinyl,
- **15** tetrazolyl, thienyl, pyridyl, pyrrolyl, N-methylpyrrolyl, quinolinyl and isoquinolinyl.

As used herein, a "heteroarylium" group is a heteroaryl group that is positively charged on one or more of the heteroatoms.

As used herein, "heterocyclyl" refers to a monocyclic or
20 multicyclic non-aromatic ring system, in one embodiment of 3 to 10 members, in another embodiment of 4 to 7 members, in a further embodiment of 5 to 6 members, where one or more, in certain embodiments, 1 to 3, of the atoms in the ring system is a heteroatom, that is, an element other than carbon, including but not limited to,

25 nitrogen, oxygen or sulfur.

As used herein, "substituted aryl," "substituted heteroaryl" and "substituted heterocyclyl" refer to aryl, heteroaryl and heterocyclyl groups, respectively, that are substituted with one or more substituents, in certain embodiments one to three substituents.

-33-

As used herein, "aralkyl" refers to an alkyl group in which one of the hydrogen atoms of the alkyl is replaced by an aryl group.

As used herein, "heteroaralkyl" refers to an alkyl group in which one of the hydrogen atoms of the alkyl is replaced by a heteroaryl group.

5

As used herein, "halo", "halogen" or "halide" refers to F, Cl, Br or I.

As used herein, pseudohalides or pseudohalo groups are groups that behave substantially similar to halides. Such compounds can be used in the same manner and treated in the same manner as halides.

10 Pseudohalides include, but are not limited to, cyanide, cyanate, thiocyanate, selenocyanate, trifluoromethoxy, and azide.

As used herein, "haloalkyl" refers to an alkyl group in which one or more of the hydrogen atoms are replaced by halogen. Such groups include, but are not limited to, chloromethyl, trifluoromethyl and

15 1-chloro-2-fluoroethyl.

As used herein, "haloalkoxy" refers to RO- in which R is a haloalkyl group.

As used herein, "sulfinyl" or "thionyl" refers to -S(O)-. As used herein, "sulfonyl" or "sulfuryl" refers to -S(O)₂-. As used herein, "sulfo"
20 refers to -S(O)₂O-.

As used herein, "carboxy" refers to a divalent radical, -C(O)O-. As used herein, "aminocarbonyl" refers to -C(O)NH₂.

As used herein, "alkylaminocarbonyl" refers to -C(O)NHR in which R is alkyl, including lower alkyl. As used herein, "dialkylaminocarbonyl"

25 refers to -C(O)NR'R in which R' and R are independently alkyl, including lower alkyl; "carboxamide" refers to groups of formula -NR'COR in which R' and R are independently alkyl, including lower alkyl.

As used herein, "diarylaminocarbonyl" refers to -C(O)NRR' in which R and R' are independently selected from aryl, including lower aryl, such as phenyl.

As used herein, "arylalkylaminocarbonyl" refers to -C(O)NRR' in
which one of R and R' is aryl, including lower aryl, such as phenyl, and the other of R and R' is alkyl, including lower alkyl.

As used herein, "arylaminocarbonyl" refers to -C(O)NHR in which R is aryl, including lower aryl, such as phenyl.

As used herein, "hydroxycarbonyl" refers to -COOH.

As used herein, "alkoxycarbonyl" refers to -C(O)OR in which R is alkyl, including lower alkyl.

As used herein, "aryloxycarbonyl" refers to -C(O)OR in which R is aryl, including lower aryl, such as phenyl.

As used herein, "alkoxy" and "alkylthio" refer to RO- and RS-, in **15** which R is alkyl, including lower alkyl.

As used herein, "aryloxy" and "arylthio" refer to RO- and RS-, in which R is aryl, including lower aryl, such as phenyl.

As used herein, "alkylene" refers to a straight, branched or cyclic, in certain embodiments straight or branched, divalent aliphatic

- 20 hydrocarbon group, in one embodiment having from 1 to about 20 carbon atoms, in another embodiment having from 1 to 12 carbons. In a further embodiment alkylene includes lower alkylene. There may be optionally inserted along the alkylene group one or more oxygen, sulphur or substituted or unsubstituted nitrogen atoms, where the nitrogen
- 25 substituent is alkyl. Alkylene groups include, but are not limited to, methylene (-CH₂-), ethylene (-CH₂CH₂-), propylene (-(CH₂)₃-), methylenedioxy (-O-CH₂-O-) and ethylenedioxy (-O-(CH₂)₂-O-). The term "lower alkylene" refers to alkylene groups having 1 to 6 carbons. In

10

-35-

certain embodiments, alkylene groups are lower alkylene, including alkylene of 1 to 3 carbon atoms.

As used herein, "azaalkylene" refers to -(CRR)_n-NR-(CRR)_m-, where n and m are each independently an integer from 0 to 4. As used herein, **5** "oxaalkylene" refers to -(CRR)_n-O-(CRR)_m-, where n and m are each independently an integer from 0 to 4. As used herein, "thiaalkylene" refers to -(CRR)_n-S-(CRR)_m-, where n and m are each independently an integer from 0 to 4.

As used herein, "alkenylene" refers to a straight, branched or 10 cyclic, in one embodiment straight or branched, divalent aliphatic hydrocarbon group, in certain embodiments having from 2 to about 20 carbon atoms and at least one double bond, in other embodiments 1 to 12 carbons. In further embodiments, alkenylene groups include lower alkenylene. There may be optionally inserted along the alkenylene group

- one or more oxygen, sulphur or substituted or unsubstituted nitrogen atoms, where the nitrogen substituent is alkyl. Alkenylene groups include, but are not limited to, -CH=CH-CH=CH- and -CH=CH-CH₂-. The term "lower alkenylene" refers to alkenylene groups having 2 to 6 carbons. In certain embodiments, alkenylene groups are lower
- alkenylene, including alkenylene of 3 to 4 carbon atoms. As used herein,
 "1,3-diaza-1,3-butadienylene" refers to -N=CH-N=CH-. As used herein,
 "1,2-diaza-1,3-butadienylene" refers to -N=N-CH=CH-. As used herein,
 "2,3-diaza-1,3-butadienylene" refers to -CH=N-N=CH-.

As used herein, "azaalkenylene" refers to -NR-(CR=CR)_n-, where n 25 is 1 or 2; and also refers to -CR=CR-NR-CR=CR-. As used herein, "oxaalkenylene" refers to -O-(CR=CR)_n-, where n is 1 or 2; and also refers to -CR=CR-O-CR=CR-. As used herein, "thiaalkenylene" refers to -S-(CR=CR)_n-, where n is 1 or 2; and also refers to -CR=CR-S-CR=CR-.

-36-

As used herein, "alkynylene" refers to a straight, branched or cyclic, in certain embodiments straight or branched, divalent aliphatic hydrocarbon group, in one embodiment having from 2 to about 20 carbon atoms and at least one triple bond, in another embodiment 1 to

- 5 12 carbons. In a further embodiment, alkynylene includes lower alkynylene. There may be optionally inserted along the alkynylene group one or more oxygen, sulphur or substituted or unsubstituted nitrogen atoms, where the nitrogen substituent is alkyl. Alkynylene groups include, but are not limited to, -C≡C-C≡C-, -C≡C- and -C≡C-CH₂-.
- 10 The term "lower alkynylene" refers to alkynylene groups having 2 to 6 carbons. In certain embodiments, alkynylene groups are lower alkynylene, including alkynylene of 3 to 4 carbon atoms.

As used herein, "alk(en)(yn)ylene" refers to a straight, branched or cyclic, in certain embodiments straight or branched, divalent aliphatic

- 15 hydrocarbon group, in one embodiment having from 2 to about 20 carbon atoms and at least one triple bond, and at least one double bond; in another embodiment 1 to 12 carbons. In further embodiments, alk(en)(yn)ylene includes lower alk(en)(yn)ylene. There may be optionally inserted along the alkynylene group one or more oxygen, sulphur or
- 20 substituted or unsubstituted nitrogen atoms, where the nitrogen substituent is alkyl. Alk(en)(yn)ylene groups include, but are not limited to, -C=C-(CH₂)_n-C≡C-, where n is 1 or 2. The term "lower alk(en)(yn)ylene" refers to alk(en)(yn)ylene groups having up to 6 carbons. In certain embodiments, alk(en)(yn)ylene groups have about 4
- 25 carbon atoms.

As used herein, "cycloalkylene" refers to a divalent saturated mono- or multicyclic ring system, in certain embodiments of 3 to 10 carbon atoms, in other embodiments 3 to 6 carbon atoms; cycloalkenylene and cycloalkynylene refer to divalent mono- or multicyclic ring

-37-

systems that respectively include at least one double bond and at least one triple bond. Cycloalkenylene and cycloalkynylene groups may, in certain embodiments, contain 3 to 10 carbon atoms, with cycloalkenylene groups in certain embodiments containing 4 to 7 carbon

- 5 atoms and cycloalkynylene groups in certain embodiments containing 8 to 10 carbon atoms. The ring systems of the cycloalkylene, cycloalkenylene and cycloalkynylene groups may be composed of one ring or two or more rings which may be joined together in a fused, bridged or spiro-connected fashion. "Cycloalk(en)(yn)ylene" refers to a
- 10 cycloalkylene group containing at least one double bond and at least one triple bond.

As used herein, "substituted alkylene," "substituted alkenylene," "substituted alkynylene," "substituted cycloalkylene," "substituted cycloalkenylene," and "substitued cycloalkynylene" refer to alkylene, alkenyl-

15 ene, alkynylene, cycloalkylene, cycloalkenylene and cycloalkynylene groups, respectively, that are substituted with one or more substituents, in certain embodiments one to three substituents.

As used herein, "arylene" refers to a monocyclic or polycyclic, in certain embodiments monocyclic, divalent aromatic group, in one

- 20 embodiment having from 5 to about 20 carbon atoms and at least one aromatic ring, in another embodiment 5 to 12 carbons. In further embodiments, arylene includes lower arylene. Arylene groups include, but are not limited to, 1,2-, 1,3- and 1,4-phenylene. The term "lower arylene" refers to arylene groups having 5 or 6 carbons.
- 25 As used herein, "heteroarylene" refers to a divalent monocyclic or multicyclic aromatic ring system, in one embodiment of about 5 to about 15 members where one or more, in certain embodiments 1 to 3, of the atoms in the ring system is a heteroatom, that is, an element other than carbon, including but not limited to, nitrogen, oxygen or sulfur.

10

-38-

As used herein, "heterocyclylene" refers to a divalent monocyclic or multicyclic non-aromatic ring system, in certain embodiments of 3 to 10 members, in one embodiment 4 to 7 members, in another embodiment 5 to 6 members, where one or more, including 1 to 3, of the **5** atoms in the ring system is a heteroatom, that is, an element other than carbon, including but not limited to, nitrogen, oxygen or sulfur.

As used herein, "substituted arylene," "substituted heteroarylene" and "substituted heterocyclylene" refer to arylene, heteroarylene and heterocyclylene groups, respectively, that are substituted with one or more substituents, in certain embodiments one to three substituents.

As used herein, "alkylidene" refers to a divalent group, such as = CR'R", which is attached to one atom of another group, forming a double bond. Alkylidene groups include, but are not limited to, methylidene (= CH_2) and ethylidene (= $CHCH_3$). As used herein,

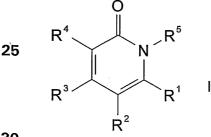
15 "arylalkylidene" refers to an alkylidene group in which either R' or R" is an aryl group. "Cycloalkylidene" groups are those where R' and R" are linked to form a carbocyclic ring. "Heterocyclylidene" groups are those where at least one of R' and R" contain a heteroatom in the chain, and R' and R" are linked to form a heterocyclic ring.

As used herein, "amido" refers to the divalent group -C(O)NH-.
 "Thioamido" refers to the divalent group -C(S)NH-. "Oxyamido" refers to the divalent group -OC(O)NH-.
 "Thiaamido" refers to the divalent group -SC(O)NH-.
 "Ureido" refers to the divalent group -HNC(O)NH-.

25 the divalent group -HNC(S)NH-.

As used herein, "semicarbazide" refers to -NHC(O)NHNH-. "Carbazate" refers to the divalent group -OC(O)NHNH-. "Isothiocarbazate" refers to the divalent group -SC(O)NHNH-. "Thiocarbazate" refers to the divalent group -OC(S)NHNH-.

-39-


"Sulfonylhydrazide" refers to the group $-SO_2NHNH$ -. "Hydrazide" refers to the divalent group -C(O)NHNH-. "Azo" refers to the divalent group -N=N-. "Hydrazinyl" refers to the divalent group -NH-NH-.

- Where the number of any given substituent is not specified (*e.g.*,
 5 "haloalkyl"), there may be one or more substituents present. For example, "haloalkyl" may include one or more of the same or different halogens. As another example, "C₁₋₃alkoxyphenyl" may include one or more of the same or different alkoxy groups containing one, two or three carbons.
- 10 As used herein, the abbreviations for any protective groups, amino acids and other compounds, are, unless indicated otherwise, in accord with their common usage, recognized abbreviations, or the IUPAC-IUB Commission on Biochemical Nomenclature (see, (1972) *Biochem. 11*:942-944).

15 B. Heterocyclic Modulators of Nuclear Receptors

Compounds for use in compositions and methods for modulating the activity of nuclear receptors are provided. In particular, compounds for use in compositions and methods for modulating liver X receptors (LXR α and LXR β), either selectively or in combination, and/or orphan nuclear receptors are provided.

In one embodiment, the compounds have formula I:

30

20

where, R^2 is substituted or unsubstituted alkyl or hydrogen, where the substituents are selected from one or more Q^1 ; and R^1 , R^3 , R^4 and R^5 are

15

-40-

selected above. In another embodiment, R^2 is lower alkyl or hydrogen. In another embodiment, R^2 is hydrogen.

In another embodiment, R¹ is selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or

5 unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaralkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted cycloalkenyl and substituted or unsubstituted heterocyclyl, where the substituents are selected from one or more Q¹.

10 In another embodiment, R¹ is substituted or unsubstituted aryl, where the substituents are selected from one or more Q¹.

In another embodiment, R¹ is substituted or unsubstituted heteroaryl, where the substituents are selected from one or more Q¹.

In another embodiment, R¹ is substituted or unsubstituted

heterocyclyl, where the substituents are selected from one or more Q¹.
In other embodiments, R¹ is substituted or unsubstituted methyl, substituted or unsubstituted cyclohexyl, substituted or unsubstituted cyclopentenyl, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted phenyl, substituted or unsubstituted benzyl, substituted or unsubstituted naphthyl, substituted

- 20 or unsubstituted furyl, substituted or unsubstituted thienyl, substituted or unsubstituted pyrrolyl, substituted or unsubstituted pyrazolyl, substituted or unsubstituted thiazolyl, substituted or unsubstituted piperidinyl, substituted or unsubstituted pyridinyl, substituted or unsubstituted pyrazinyl, substituted or unsubstituted indanyl, substituted or
- 25 unsubstituted benzofuryl, substituted or unsubstituted thianaphthyl or substituted or unsubstituted indolyl, where the substituents are selected from one or more Q¹.

In other embodiments, R¹ is substituted or unsubstituted phenyl, substituted or unsubstituted furyl,

15

-41-

substituted or unsubstituted thienyl, or substituted or unsubstituted pyrrolyl, where the substituents are selected from one or more Q^1 .

In another embodiment, R¹ is substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, or substituted or unsubstituted

thienyl, where the substituents are selected from one or more Q¹.
 In other embodiments, R¹ is substituted or unsubstituted furyl, substituted or unsubstituted thienyl, substituted or unsubstituted pyrrolyl, substituted or unsubstituted pyrazolyl, substituted or unsubstituted thiazolyl, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted pyrazolyl, substituted or unsubstituted or unsubstituted

10 unsubstituted pyridinyl, substituted or unsubstituted pyrazinyl, substituted or unsubstituted benzofuryl, substituted or unsubstituted thianaphthyl or substituted or unsubstituted indolyl, where the substituents are selected from one or more Q¹.

> In another embodiment, R^1 is substituted or unsubstituted phenyl. In another embodiment, R^1 is substituted or unsubstituted thienyl.

In certain embodiments, R^1 is unsubstituted or substituted with one or more Q^1 , in one embodiment, one to three or five substituents, in another embodiment, one or two substituents, each independently selected from Q^1 , where Q^1 is halo, pseudohalo, nitro, hydroxy, amino,

20 hydroxyalkyl, hydroxyalkylaryloxy, hydroxyaryl, hydroxyalkylaryl, hydroxycarbonyl, haloalkyl, alkyl, heterocyclyl, heterocyclylalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, alkylaralkyl, alkylarylcarbonyl, heterocyclylcarbonyl, alkoxycarbonyl, alkoxycarbonylaryloxy, aryloxycarbonyl, heterocyclylcarbonylalkylaryl, aralkoxycarbonyl, alkoxy,

25 aryloxy, heteroaryloxy, aralkoxy, alkylaryloxy, alkylaryloxyalkyl, alkyldiaryloxy, aryloxyalkoxy, aralkoxyaryloxy, alkylarylcycloalkyloxy, alkylheteroaryloxy, cycloalkyloxy, heterocyclylalkoxy, heterocyclyloxy, haloaryloxy, alkylcarbonylaryloxy, arylamino, alkylarylamino, aralkylamino, alkylcarbonylamino, alkylaminocarbonyl,

-42-

haloalkylcarbonylamino and arylthio; and each Q^1 is unsubstituted or further substituted with Q^2 , which is hydrogen, alkyl, aryl, alkoxy, hydroxycarbonyl, alkoxycarbonyl, pseudohalide, halo, aryloxy, aralkoxy, haloalkyl, alkylthio, alkylamino, dialkylamino or hydroxy.

- 5 In another embodiment, R¹ is substituted with Q¹, which is selected from alkoxycarbonylaryloxy, aryloxy, alkylaryloxy, alkylaryloxyalkyl, alkyldiaryloxy, aryloxyalkoxy, aralkoxyaryloxy, alkylarylcycloalkyloxy, alkylheteroaryloxy, cycloalkyloxy, heterocyclylalkoxy, heterocyclyloxy, heteroaryloxy, heteroaryloxy, haloaryloxy,
- 10 alkoxycarbonylheterocycloxy, alkylcarbonylaryloxy, dialkylaminoaryloxy, alkoxyaryloxy, cyanoaryloxy, aryloxyaryloxy, dialkylaryloxy, haloalkylaryloxy, alkylthioaryloxy, alkylarylamino, hydroxyaryloxy, arylamino, alkylamino, aralkylamino and arylthio.

In another embodiment, R^1 is substituted with Q^1 , which is

15 selected from alkyl, alkoxy, halo, pseudohalo, haloalkyl, nitro, hydroxy, alkoxy, aralkoxy, heterocyclylalkoxy, alkylcarbonylamino and alkylamino-carbonylamino.

In another embodiment, R^1 is substituted with Q^1 , which is selected from methyl, ethyl, trifluoromethyl, nitro, hydroxy, n-butyloxy,

- 20 3-(2-piperidinyl)ethoxy, methylcarbonylamino, ethylaminocarbonylamino, chloro, bromo, benzylamino, methylphenoxymethyl, trifluoromethylcarbonylamino, methoxycarbonyl, phenoxy, cyano, nbutoxy, benzoxy, 1-piperidinyl, methoxy, hydroxycarbonyl, tertbutoxycarbonylpiperazinylcarbonyl, hydroxymethyl, 1-piperidinylcarbonyl,
- 25 phenyl, methylphenyl, dimethylamino, methylcarbonylamino, methoxyphenoxy, methylphenoxy, piperidinylmethyl, biphenoxy, benzoxycarbonyl, piperazinylcarbonyl, benzyl, phenylthio, chlorophenoxy, methylbenzyl, hydroxymethylphenoxy, ethoxycarbonylphenoxy, tertbutylmethylphenoxy, tertbutylbiphenoxy, ethylphenoxy,

-43-

isopropylphenoxy, tertbutylphenoxy, N,N-dimethylphenoxy, N,Nphenylmethylamino, 3-methylphenyl-1-amino, trifluoromethylphenoxy, ethylphenoxy, methylcarbonylphenoxy, tetrahydropyranyloxy, tetrahydronaphthoxy, hydroxycarbonylphenoxy, 1,3-hexafluoro-2-

- 5 hydroxypropylphenylamino, benzoxyphenoxy, cyclohexyloxy, alkylindanyloxy, methoxycarbonylphenoxy, isopropylphenoxy, tertbutylphenoxy, N,N-dimethylaminophenoxy, methoxyphenoxy, methoxycarbonylphenoxy, cyanophenoxy, fluorophenoxy, benzoxyphenoxy, trifluoromethylphenoxy, bromophenoxy, 3,5-
- 10 ditrifluoromethylphenoxy, methylthiophenoxy, indolyl, tertbutoxycarbonyl-piperidinyloxy, hydroxyphenoxy, pyrimidinoxy and pyrazinoxy.

In another embodiment, R^1 is substituted with Q^1 , which is selected from methyl, methoxy, chloro, ethyl, trifluoromethyl, nitro,

15 hydroxy, n-butoxy, 3-(2-piperidinyl)ethoxy, methylcarbonylamino or ethylaminocarbonylamino.

In another embodiment, R¹ has formula IA:

25

20

where, n is an integer from 0 to

4, in one embodiment, from 0 to 2, in another embodiment, 0 or 1; q and r are each independently selected from 0 to 5, in one embodiment 0 to 3,

30 in another embodiment 0 or 1; X is 0, S or NR', where R' is alkyl, aryl or hydrogen; Y is substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkyl,

-44-

where the substituents, when present are selected from one or more Q^1 as above. In another embodiment, Q^1 is selected from halo, hydroxy, alkyl, alkoxy, alkoxycarbonyl, haloalkyl, alkylcarbonyl, hydroxycarbonyl, hydroxyhaloalkyl, aryl, aralkoxy and heteroaryl. In another embodiment,

- **5** X is O. In another embodiment X is S. In another embodiment, X is NR'. In another embodiment, R' is lower alkyl or hydrogen. In another embodiment, R' is hydrogen. In another embodiment, Y is substituted or unsubstituted aryl. In another embodiment, Y is substituted or unsubstituted heteroaryl. In another embodiment, Y is substituted or
- 10 unsubstituted phenyl.

In another embodiment, R¹ is methyl, cyclohexyl, 1-cyclopentenyl, 5-indanyl, phenyl, 1-naphthyl, 2-naphthyl, 3-methylphenyl, 2chlorophenyl, 4-chlorophenyl, 3-ethylphenyl, 3-trifluoromethylphenyl, 3nitrophenyl, 3-hydroxyphenyl, 3-n-butoxyphenyl, 3-benzyloxyphenyl, 3-

- 15 (2-piperidinyl)ethoxyphenyl, 3-methylcarbonylaminophenyl, 3ethylaminocarbonylaminophenyl, 2-methylphenyl, 2-methoxyphenyl, 4methylphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3-chlorophenyl, 4chlorophenyl, 3-benzylaminophenyl, 3-(3-methyl)phenoxymethylphenyl, benzyl, 3-trifluoromethylcarbonylaminophenyl, 3,5-dimethylphenyl, 2-
- 20 chloro-3-methylphenyl, phenylethyl, 4-butoxyphenyl, 4methoxycarbonylphenyl, 4-phenoxyphenyl, 4-cyanophenyl, 4benzoxyphenyl, 4-(1-piperidinyl)phenyl, 4-hydroxycarbonylphenyl, 4-(4tert-butoxycarbonylpiperazin-1-ylcarbonyl)phenyl, 4hydroxymethylphenyl, 4-(1-piperidinylcarbonyl)phenyl, 4-
- 25 dimethylaminophenyl, 4-methylcarbonylaminophenyl, 4-nitrophenyl, 6-(1,2,3,4-tetrahydro)naphthyl, 4-(4-methoxyphenoxy)phenyl, 4-(2methylphenoxy)phenyl, 4-(3-methylphenoxy)phenyl, 4-(4methylphenoxy)phenyl, 4-(3-methoxyphenoxy)phenyl, 4-(1piperidinylmethyl)phenyl, 4-(4-biphenoxy)phenyl, 3-(1-benzoxycarbonyl)-

7

7

piperidinyl, 4-(1-piperazinylcarbonyl)phenyl, 5-(2-methyl-2,3dihydro)benzofuryl, 4-benzylphenyl, 4-phenylthiophenyl, 4-(4chlorophenoxy)-2-chlorophenyl, 4-(3-biphenoxy)phenyl, 4-(1benzoxycarbonyl)-piperidinyl, 4-piperidinyl, 4-(1-(3-methylbenzyl))-

- 5 piperidinyl, 4-(3-methyl-4-hydroxyphen-1-oxy)phenyl, 4-(2-methyl-4hydroxyphenoxy)phenyl, 4-(4-ethoxycarbonylphenoxy)phenyl, 4-(2methyl-4-tertbutylphenoxy)phenyl, 4-(2-phenyl-4tertbutylphenoxy)phenyl, 4-(3-ethylphenoxy)phenyl, 4-(3isopropylphenoxy)phenyl, 4-(3-tertbutylphenoxy)phenyl, 4-(3,5-
- dimethylphenoxy)phenyl, 4-phenoxy-2-methylphenyl, 4-(2-methylphenoxy)-2-methylphenyl, 4-(2-methylphenoxy)-3-methylphenyl, 4 N-methyl-N-phenylaminophenyl, 4-(3-trifluoromethylphenoxy)phenyl, 4 (4-ethylphenoxy)phenyl, 4-(4-isopropylphenoxy)phenyl, 4-(4-tertbutylphenoxy)phenyl, 4-(3-methylcarbonylphenoxy)phenyl, 4-(3,4-
- 15 dimethylphenoxy)phenyl, 4-(2-tetrahydropyranyloxy)phenyl, 4-(2tetrahydropyranyloxy)-3-methylphenyl, 4-hydroxyphenyl, 3-methyl-4hydroxyphenyl, 4-(4-methylphenoxy)-3-methylphenyl, 4-(2ethylphenoxy)phenyl, 4-(2-isopropylphenoxy)phenyl, 4-(5,6,7,8tetrahydronaphthyloxy)phenyl, 4-(3-hydroxycarbonylphenoxy)phenyl, 2-
- 20 methyl-4-hydroxyphenyl, 4-phenoxy-2-hydroxyphenyl, 3-phenoxyphenyl, 4-(4-(1,3-hexafluoro-2-hydroxypropyl)phenylamino)phenyl, 4-(2,3,4trimethylphenoxy)phenyl, 4-(4-benzyloxyphenoxy)phenyl, 4-(3-(methyl-3indanyloxy)phenyl, 4-(2-methyl-5-benzothiazoloxy)phenyl, 4cyclohexyloxyphenyl, 4-(3-methoxycarbonylphenoxy)phenyl, 4-(3-
- 25 isopropylphenoxy)-3-methylphenyl, 4-tert-butyl-phenoxy-3-methylphenyl, 4-N,N-dimethylaminophenoxy-3-methylphenyl, 4-methoxy-phenoxy-3methylphenyl, 3-methoxy-phenoxy-3-methylphenyl, 4-(3methoxycarbonyl-phenoxy)-3-methylphenyl, 4-(3-cyanophenoxy)-3methylphenyl, 4-(4-fluorophenoxy)-3-methylphenyl, 4-(4-benzoxy-

.

-46-

phenoxy)-3-methylphenyl, 4-(3-benzoxy-phenoxy)-3-methylphenyl, 4-(2,5-dimethylphenoxy)-3-methylphenyl, 4-(2-chlorophenoxy)-3methylphenyl, 4-(3-chlorophenoxy)-3-methylphenyl, 4-(2trifluoromethylphenoxy)-3-methylphenyl, 4-(3-trifluoromethylphenoxy)-2-

- 5 methylphenyl, 4-(3-bromophenoxy)-phenyl, 4-(4-bromophenoxy)-phenyl, 4-(3-benzyloxy-phenoxy)-phenyl, 4-(3-cyanophenoxy)-phenyl, 4-(4cyanophenoxy)phenyl, 4-(2,4-dimethylphenoxy)-phenyl, 4-(3,5trifluoromethylphenoxy)phenyl, 4-(4-methylthio-phenoxy)-phenyl, 4-(4-N,N-dimethylamino-phenoxy)-phenyl, 5-indolyloxyphenyl, 4-(1-tert-
- 10 butoxycarbonyl-piperidin-4-oxy)-phenyl, 4-(4-hydroxyphenoxy)-phenyl, 4-(2-pyrimidinoxy)-phenyl, 4-(2-pyrazinoxy)-phenyl, 2-thienyl, 2-(5chloro)thienyl, 2-(5-bromo)thienyl, 2-(5-phenyl)thienyl, 3-thianaphthyl, 3methyl-2-thianaphthyl, 2-(5-(3-methylphenyl))-thienyl, 3-pyridinyl, 2pyrazinyl, 4-(1-phenyl-5-methyl)pyrazolyl, 2-(1-methyl)pyrrolyl, 3-(1-
- 15 methyl)indolyl, 3-(1-benzyloxycarbonyl)-piperidinyl, 4-(1benzyloxyarbonyl)-piperidinyl, 4-piperidinyl, 4-(1-(3-methylbenzyl)piperidinyl, 2-furyl, 2-(5-methyl)-furyl, 3-(2,5-dimethyl)-furyl, benzofuryl, 3-(2,4-dimethyl)-furyl, 2-thiazolyl or 5-(2,4-dimethyl)thiazolyl.

 In another embodiment, R¹ is phenyl, 1-naphthyl, 2-naphthyl, 3 methylphenyl, 3-methoxyphenyl, 2-chlorophenyl, 3-ethylphenyl, 3trifluoromethylphenyl, 3-nitrophenyl, 3-hydroxyphenyl, 3-n-butoxyphenyl, 3-benzyloxyphenyl, 3-(2-piperidinyl)ethoxyphenyl, 3-methylcarbonylaminophenyl, 3-ethylaminocarbonylaminophenyl, 2-methylphenyl, 2methoxyphenyl, 4-methylphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3-

25 chlorophenyl or 4-chlorophenyl.

In another embodiment, R¹ is 3-(3-methyl)phenoxymethylphenyl, 4phenoxyphenyl, 4-benzoxyphenyl, 4-(4-methoxyphenoxy)phenyl, 4-(2methylphenoxy)phenyl, 4-(3-methylphenoxy)phenyl, 4-(4methylphenoxy)phenyl, 4-(3-methoxyphenoxy)phenyl, 4-(4biphenoxy)phenyl, 4-(4-chlorophenoxy)-2-chlorophenyl, 4-(3biphenoxy)phenyl, 4-(3-methyl-4-hydroxyphenoxy)phenyl, 4-(2-methyl-4hydroxyphenoxy)phenyl, 4-(4-ethoxycarbonylphenoxy)phenyl, 4-(2methyl-4-tertbutylphenoxy)phenyl, 4-(2-phenyl-4-

- 5 tertbutylphenoxy)phenyl, 4-(3-ethylphenoxy)phenyl, 4-(3isopropylphenoxy)phenyl, 4-(3-tertbutylphenoxy)phenyl, 4-(3,5dimethylphenoxy)phenyl, 4-phenoxy-2-methylphenyl, 4-(2methylphenoxy)-2-methylphenyl, 4-(2-methylphenoxy)-3-methylphenyl, 4-(3-trifluoromethylphenoxy)phenyl, 4-(4-ethylphenoxy)phenyl, 4-(4-
- 10 isopropylphenoxy)phenyl, 4-(4-tertbutylphenoxy)phenyl, 4-(3methylcarbonylphenoxy)phenyl, 4-(3,4-dimethylphenoxy)phenyl, 4-(4methylphenoxy)-3-methylphenyl, 4-(2-ethylphenoxy)phenyl, 4-(2isopropylphenoxy)phenyl, 4-(5,6,7,8-tetrahydronaphthyloxy)phenyl, 4-(3hydroxycarbonylphenoxy)phenyl, 2-methyl-4-hydroxyphenyl, 4-phenoxy-
- 15 2-hydroxyphenyl, 3-phenoxyphenyl, 4-(2,3,4-trimethylphenoxy)phenyl, 4-(4-benzyloxyphenoxy)phenyl, 4-(3-methoxycarbonylphenoxy)phenyl, 4-(3-isopropylphenoxy)-3-methylphenyl, 4-tert-butyl-phenoxy-3methylphenyl, 4-N,N-dimethylaminophenoxy-3-methylphenyl, 4-methoxyphenoxy-3-methylphenyl, 3-methoxy-phenoxy-3-methylphenyl, 4-(3-
- 20 methoxycarbonyl-phenoxy)-3-methylphenyl, 4-(3-cyanophenoxy)-3methylphenyl, 4-(4-fluorophenoxy)-3-methylphenyl, 4-(4-benzoxyphenoxy)-3-methylphenyl, 4-(3-benzoxy-phenoxy)-3-methylphenyl, 4-(2,5-dimethylphenoxy)-3-methylphenyl, 4-(2-chlorophenoxy)-3methylphenyl, 4-(3-chlorophenoxy)-3-methylphenyl, 4-(2-
- 25 trifluoromethylphenoxy)-3-methylphenyl, 4-(3-trifluoromethylphenoxy)-2methylphenyl, 4-(3-bromophenoxy)-phenyl, 4-(4-bromophenoxy)-phenyl, 4-(3-benzyloxy-phenoxy)-phenyl, 4-(3-cyanophenoxy)-phenyl, 4-(4cyanophenoxy)phenyl, 4-(2,4-dimethylphenoxy)-phenyl, 4-(3,5-

trifluoromethylphenoxy)phenyl, 4-(4-methylthio-phenoxy)-phenyl or 4-(4-N,N-dimethylamino-phenoxy)-phenyl.

In another embodiment, R¹ is 4-N-methyl-N-phenylaminophenyl, 4-(4-(1,3-hexafluoro-2-hydroxypropyl)phenyl-1-amino)phenyl or 4-

5 phenylthiophenyl.

In another embodiment, R^1 is 2-thienyl, 2-(5-chloro)thienyl, 2-(5bromo)thienyl, 2-(5-phenyl)thienyl, 3-thianaphthyl, 3-methyl-2thianaphthyl or 2-(5-(3-methylphenyl))-thienyl. In another embodiment, R^1 is thienyl. In another embodiment, R^1 is 2-thienyl.

10 In another embodiment, R¹ is 3-pyridinyl, 2-pyrazinyl, 4-(1-phenyl-5-methyl)pyrazolyl, 2-(1-methyl)pyrrolyl, 3-(1-methyl)indolyl, 3-(1benzyloxycarbonyl)-piperidinyl, 4-(1-benzyloxycarbonyl)-piperidinyl, 4piperidinyl or 4-(1-(3-methylbenzyl)-piperidinyl.

In another embodiment, R¹ is 2-furyl, 2-(5-methyl)-furyl, 3-(2,5-

15 dimethyl)-furyl, benzofuryl or 3-(2,4-dimethyl)-furyl.

In another embodiment, R^1 is 2-thiazolyl or 5-(2,4-dimethyl)thiazolyl.

In another embodiment, R³ is substituted or unsubstituted alkyl, substituted or unsubstituted alkylaryl, substituted or unsubstituted aryl,

- 20 substituted or unsubstituted alkoxycarbonyl or substituted or unsubstituted alkylaminocarbonyl, where the substituents are selected from one or more Q¹. In another embodiment, R³ is substituted or unsubstituted alkyl or substituted or unsubstituted aryl. In another embodiment, R³ is substituted or unsubstituted alkoxycarbonyl. In
- 25 another embodiment, R³ is substituted or unsubstituted alkyl. In another embodiment, R³ is haloalkyl. In certain embodiments, R³ is substituted with Q¹, which is halo, pseudohalo, alkyl, alkoxy, alkoxycarbonyl or aryloxycarbonyl. In another embodiments, R³ is substituted with Q¹,

-49-

which is halo. In further embodiments, R^3 is substituted with Q^1 , which is fluoro, chloro, phenyl, methyl, methoxy or methylamino.

In further embodiments, R^3 is substituted or unsubstituted methyl, or substituted or unsubstituted phenyl. In another embodiments, R^3 is

5 methyl, trifluoromethyl, pentafluoroethyl, heptafluoropropyl, chlorodifluoromethyl, 1-(1-methoxy-1-fluoro)ethyl, methoxycarbonyl, ethoxycarbonyl, methylaminocarbonyl, dimethoxymethyl, methoxycarbonylmethyl or phenyl. In another embodiment, R³ is trifluoromethyl, methyl, methoxycarbonylmethyl or phenyl.

10 In another embodiment, R^4 is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkynyl, pseudohalide, hydroxycarbonyl, $CH_2NR^{31}R^{32}$ or NO_2 ; where the substituents are each independently selected from one or more Q^1 . In another embodiment, R^4 is pseudohalide. In another embodiment, R^4 is substituted or

15 unsubstituted methyl, substituted or unsubstituted acetyl. In another embodiment, R⁴ is substituted or unsubstituted acetyl, where the substitutent is trialkylsilyl. In further embodiments, R⁴ is substituted with Q¹, which is trialkylsilyl, alkylcarbonylamino, arylcarbonylamino, aralkylcarbonylamino, alkoxycarbonylamino, dialkylamino, alkylamino or

20 amino.

In another embodiment, R⁴ is alkylcarbonylaminoalkyl, alkoxycarbonylaminoalkyl, aralkoxycarbonylaminoalkyl or aryloxycarbonylaminoalkyl. In another embodiment, R⁴ is hydrogen, cyano, nitro, hydroxycarbonyl, trimethylsilylacetyl, acetyl,

25 methylcarbonylaminomethyl, ethylcarbonylaminomethyl, npropylcarbonylaminomethyl, isopropylcarbonylaminomethyl, noctylcarbonylaminomethyl, phenylcarbonylaminomethyl, benzylcarbonylaminomethyl, phenylethylcarbonylaminomethyl,

PCT/US02/41306

-50-

ethoxycabonylaminomethyl dimethylaminomethyl or aminomethyl. In another embodiment, R⁴ is cyano.

In certain embodiments, R³ and R⁴, together with the atoms to which they are attached, form substituted or unsubstituted heterocyclic 5 ring. In certain embodiments, R³ and R⁴, together with the atoms to

- which they are attached, form substituted or unsubstituted heterocyclic ring, with the proviso that the nitrogen atom in the heterocyclic ring is not substituted with a phenyl group. In certain embodiments, R³ and R⁴, together with the atoms to which they are attached, form substituted or
- 10 unsubstituted heterocyclic ring, with the proviso that the heterocyclic ring does not have more than one oxo substitutent. In another embodiment, R³ and R⁴ together with the atoms to which they are attached form 2-oxotetrahydropyridine or 2-oxo-3-pyrroline.

In another embodiment, R⁵ is substituted or unsubstituted alkyl,

- **15** substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroaralkyl, $-N = CR^6R^7$ or $-NR^9R^{10}$. In another embodiment, R^5 is substituted or unsubstituted aryl, substituted or
- 20 unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaralkyl, $-N = CR^6R^7$ or $-NR^9R^{10}$. In another embodiment, R^5 is substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, $-N = CR^6R^7$ or $-NR^9R^{10}$. In further embodiments, R^5 is substituted aralkyl, or $-N = CR^6R^7$. In another
- **25** embodiment, R⁵ is substituted or unsubstituted aralkyl. In another embodiment, R⁵ is substituted or unsubstituted heterocyclylalkyl. In another embodiment, R⁵ is substituted or unsubstituted heteroaralkyl. In another embodiment, R⁵ is $-N = CR^6R^7$. In another embodiment, R⁵ is substituted or unsubstituted heterocyclyl.

-51-

In another embodiment, R⁵ is substituted or unsubstituted methyl, substituted or unsubstituted ethyl, substituted or unsubstituted propyl, substituted or unsubstituted phenyl, substituted or unsubstituted piperidinyl, substituted or unsubstituted benzyl, substituted or

5 unsubstituted 2-phenethyl, substituted or unsubstituted 1-phenethyl, substituted or unsubstituted 3-phenylpropyl, substituted or unsubstituted 1,2,3,4-tetrahydro-1-naphthyl, substituted or unsubstituted 3pyridylmethyl, substituted or unsubstituted 4-pyridylmethyl, substituted or unsubstituted 2-pyrazinyl, substituted or unsubstituted thiazolylmethyl,

10 substituted or unsubstituted oxazolylmethyl.

In another embodiment, R^5 is substituted or unsubstituted phenyl, substituted or unsubstituted benzyl, substituted or unsubstituted 2phenethyl, substituted or unsubstituted 1-phenethyl, substituted or unsubstituted 3-phenylpropyl, substituted or unsubstituted 1,2,3,4-

15 tetrahydro-1-naphthyl, substituted or unsubstituted 3-pyridylmethyl, substituted or unsubstituted 4-pyridylmethyl, $-N = CR^6R^7$ or $-NR^9R^{10}$.

In another embodiment, R⁵ is substituted or unsubstituted piperidinyl, substituted or unsubstituted 3-pyridylmethyl, substituted or unsubstituted 4-pyridylmethyl, substituted or unsubstituted 2-pyrazinyl,

20 substituted or unsubstituted thiazolylmethyl, or substituted or unsubstituted oxazolylmethyl.

In another embodiment, R⁵ is substituted or unsubstituted benzyl. In certain embodiments, R⁵ is unsubstituted or substituted with one or more, in one embodiment, one, two or three Q¹ groups, where Q¹

25 is alkyl, haloalkyl, halohydroxyalkyl, alkoxy, alkoxyalkoxyalkyl, alkoxyalkyl, aryl, halo, alkoxycarbonyl, alkylthio, aryloxy, haloalkoxy, aralkyl, heteroaryl, hydroxy, hydroxyalkyl, heterocyclyl, heterocyclylalkyl, alkylcarbonyl, arylcarbonyl, alkylalkelenedioxy or dialkylalkelenedioxy. In other embodiments, R⁵ is unsubstituted or substituted with one or more

-52-

Q¹ groups, where Q¹ is alkyl, haloalkyl, alkoxy, aryl, halo, alkoxycarbonyl, alkylthio, aryloxy, haloalkoxy, aralkyl, heteroaryl, hydroxy, alkylcarbonyl or arylcarbonyl.

In other embodiments, R⁵ is unsubstituted or substituted with one
or more, in one embodiment one, two or three, Q¹ groups, where Q¹ is methyl, isopropyl, trifluoromethyl, methoxy, fluoro, bromo, methoxycarbonyl, chloro, methylthio, phenoxy, trifluoromethoxy, 3-pyridyl, 4-pyridyl, 2-pyridyl, ethyl, n-propyl, cyclohexyl, n-propyloxymethyl, n-pentyloxymethyl, n-octyloxymethyl, ethoxymethyl, n-

10 butoxymethyl, n-hexyloxymethyl, n-octyloxymethyl, tert-butyl, ethoxycarbonyl, methylcarbonyl, hydroxy, phenyl, benzyl, n-butyl, ethoxy, phenylcarbonyl, 2-(2-methyl)-methylenedioxy, 1-piperidinyl, 5-(2,2-dimethyl)-methylenedioxy, methoxymethoxymethyl, hydroxymethyl, hydroxyethyl, methoxymethyl, 1-piperidinylmethyl or 1,3-trifluoro-2-

15 hydroxypropyl.

In another embodiment, Q¹ is methyl, trifluoromethyl, methoxy, fluoro, bromo, methoxycarbonyl, chloro, methylthio, phenoxy, trifluoromethoxy, 3-pyridyl, 4-pyridyl, 2-pyridyl, ethyl, tert-butyl, ethoxycarbonyl, methylcarbonyl, hydroxy, phenyl, benzyl, n-butyl, ethoxy

20 or phenylcarbonyl.

In another embodiment, R⁵ is 2,4-dimethylbenzyl, 4isopropylbenzyl, 4-tert-butylbenzyl, 2,4,5-trifluorobenzyl, 1naphthylmethyl, 4-(2-(2-methyl)-1,3-dioxymethylene)benzyl, 4methylbenzyl, 4-ethylbenzyl, 1-piperidinyl, 4-methylcarbonylbenzyl, 5-

25 (2,2-dimethyl)-1,3-dioxymethelenemethyl, 1,2-dihydroxypropanyl, benzyl, 4-(2-methyl)-thiazolylmethyl, 4-(2-phenyl)thiazolylmethyl, 3methoxymethoxymethylbenzyl, 3-hydroxymethylbenzyl, 4hydroxymethylbenzyl, 4-hydroxyethylbenzyl, 4-methoxymethylbenzyl, 4-(1-piperidinylmethyl)benzyl, 3-biphenyl, 4-biphenyl, 4-(1,3-trifluoro-2-

-53-

hydroxypropyl)phenyl, 4-(2-ethyl)thiazolylmethyl, 4-(2isopropyl)thiazolylmethyl, 4-(2-propyl)thiazolylmethyl, 4-(2benzyl)thiazolylmethyl, 4-(2-methyl)oxazolylmethyl, 4-(2ethyl)oxazolylmethyl, 4-(2-propyl)oxazolylmethyl, 4-(2-

- 5 phenyl)oxazolylmethyl, 4-(2-benzyl)oxazolylmethyl, 4-(2cyclohexyl)oxazolylmethyl, 4-n-propyloxymethylbenzyl, 2-(5methyl)pyrazinylmethyl, 4-n-pentyloxymethylbenzyl, 4-noctyloxymethylbenzyl, 3-ethoxymethylbenzyl, 3-n-butoxymethylbenzyl, 3-n-hexyloxymethylbenzyl, 3-n-octyloxymethylbenzyl, 2-methylbenzyl, 4-
- 10 methylbenzyl, 3-methylbenzyl, phenylethyl, 4-(2,5dimethyl)thiazolylmethyl, 4-(2-isopropyl-5-methyl)thiazolylmethyl, 4-(2ethyl-5-methyl)thiazolylmethyl, 4-(2-methyl-5-ethyl)thiazolylmethyl, 4-(2,5-diethyl)thiazolylmethyl, phenyl, 2-phenylethyl, 3-phenylpropyl, benzyl, 3-methylbenzyl, 2-trifluoromethylbenzyl, 3-trifluoromethylbenzyl,
- 15 4-trifluoromethylbenzyl, 2-methoxybenzyl, 3-methoxybenzyl, 4methoxybenzyl, 4-phenylbenzyl, 1-phenylethyl, 1,2,3,4-tetrahydro-1naphthyl, 2-fluorobenzyl, 4-fluorobenzyl, 2,4-difluorobenzyl, 4bromobenzyl, 4-methoxycarbonylbenzyl, 2-chlorobenzyl, 4-chorobenzyl, 4-methylthiobenzyl, 4-phenoxybenzyl, 4-trifluoromethoxybenzyl, 3-
- 20 pyridylmethyl or 4-pyridylmethyl.

In another embodiment, R⁵ is 4-(2-(2-methyl)-1,3dioxymethylene)benzyl, 1-piperidinyl, 5-(2,2-dimethyl)-1,3dioxymethelenemethyl, 4-(2-methyl)-thiazolylmethyl, 4-(2phenyl)thiazolylmethyl, 4-(1-piperidinylmethyl)benzyl, 4-(2-

25 ethyl)thiazolylmethyl, 4-(2-isopropyl)thiazolylmethyl, 4-(2-propyl)thiazolylmethyl, 4-(2-benzyl)thiazolylmethyl, 4-(2-methyl)oxazolylmethyl, 4-(2-ethyl)oxazolylmethyl, 4-(2-propyl)oxazolylmethyl, 4-(2-phenyl)oxazolylmethyl, 4-(2-benzyl)oxazolylmethyl, 4-(2-cyclohexyl)oxazolylmethyl, 2-(5-

PCT/US02/41306

-54-

methyl)pyrazinylmethyl, 4-(2,5-dimethyl)thiazolylmethyl, 4-(2-isopropyl-5methyl)thiazolylmethyl, 4-(2-ethyl-5-methyl)thiazolylmethyl, 4-(2-methyl-5-ethyl)thiazolylmethyl, 4-(2,5-diethyl)thiazolylmethyl, 3-pyridylmethyl or 4-pyridylmethyl.

5 In another embodiment, R⁵ is phenyl, 2-phenylethyl, 3-phenylpropyl, benzyl, 2-methylbenzyl, 3-methylbenzyl, 4-methylbenzyl, 2trifluoromethylbenzyl, 3-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 2methoxybenzyl, 3-methoxybenzyl, 4-methoxybenzyl, 4-phenylbenzyl, 1phenylethyl, 2,4-dimethylbenzyl, 2-fluorobenzyl, 4-fluorobenzyl, 2,4-

10 difluorobenzyl, 4-bromobenzyl, 4-methoxycarbonylbenzyl, 2-chlorobenzyl, 4-chorobenzyl, 4-methylthiobenzyl, 4-phenoxybenzyl, 4-trifluoromethoxybenzyl, 3-pyridylmethyl, or 4-pyridylmethyl.

In another embodiment, R^5 is $-N = CR^6R^7$ where R^6 and R^7 are each independently hydrogen, substituted or unsubstituted alkyl, or

- 15 substituted or unsubstituted aryl; or together form substituted or unsubstituted alkylene, substituted or unsubstituted alkenylene, or -(CH₂)_xX(CH₂)_y- where x and y are each 2, and X is O or NR⁸; where R⁸ is substituted or unsubstituted alkyl, substituted or unsubstituted alkylcarbonyl, or substituted or unsubstituted arylcarbonyl.
- 20 In other embodiments, R⁶ and R⁷ are each independently hydrogen, substituted or unsubstituted methyl, substituted or unsubstituted ethyl, substituted or unsubstituted n-propyl, substituted or unsubstituted ipropyl, substituted or unsubstituted i-butyl, substituted or unsubstituted tert-butyl, substituted or unsubstituted phenyl, substituted or
- 25 unsubstituted s-butyl, substituted or unsubstituted 3-pentyl, or substituted or unsubstituted naphthyl; where the substituents are selected from one or more Q¹. In another embodiment, R⁶ and R⁷ are unsubstituted or substituted with one or more, in one embodiment one or two, Q¹ groups, where Q¹ is hydroxy, halo, alkyl or alkoxy. In another

-55-

embodiment, R^6 and R^7 are unsubstituted or substituted with one or more, in one embodiment one or two, Q^1 groups, where Q^1 is hydroxy, chloro, bromo, methyl or methoxy.

In other embodiments, R⁶ and R⁷ are each independently hydrogen,
5 methyl, phenyl, ethyl, isopropyl, n-propyl, s-butyl, 3-pentyl, isobutyl, t-butyl, 2-naphthyl, 2-hydroxyphenyl, 2-hydroxy-5-chlorophenyl, 4-bromophenyl, 2-hydroxy-4-bromophenyl, 2-methylphenyl or 4-methoxyphenyl. In other embodiments, R⁶ and R⁷ are each independently hydrogen, methyl, ethyl, isopropyl, n-propyl, s-butyl, 3-pentyl, isobutyl or
10 t-butyl.

In another embodiment, R^6 and R^7 together form substituted or unsubstituted alkylene, substituted or unsubstituted alkenylene, or -(CH₂)_xX(CH₂)_y- where x and y are each 2, and X is O or NR⁸, where the substituents are selected from one or more Q¹. In other embodiments, R⁶

15 and R⁷ together form substituted or unsubstituted butylene, substituted or unsubstituted pentylene, substituted or unsubstituted hexylene, or substituted or unsubstituted pentenylene, where the substituents are selected from one or more Q¹. In other embodiments, R⁶ and R⁷ are unsubstituted or substituted with one or more, in one embodiment one or

two, substituents selected from Q¹, which is alkyl, alkoxycarbonyl, aryl, aralkyl, halo, alkoxy and alkylthio. In other embodiments, R⁶ and R⁷ are unsubstituted or substituted with one or more, in one embodiment one or two, substituents selected from Q¹, which is methyl, ethyl, tert-butyl, ethoxycarbonyl, ethyl, phenyl, benzyl, n-butyl, chloro, methoxy, ethoxy, methylthio and methoxycarbonyl.

In another embodiment, R^6 and R^7 together form $-(CH_2)_xX(CH_2)_y^$ where x and y are each 2, and X is O or NR⁸, where R^8 is substituted or unsubstituted alkyl, substituted or unsubstituted alkylcarbonyl, or substituted or unsubstituted arylcarbonyl, and the substituents are

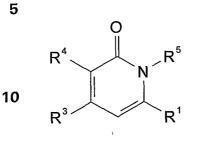
-56-

selected from one or more Q¹. In other embodiments, R⁸ is alkyl, alkylcarbonyl or arylcarbonyl. In another embodiment, R⁸ is methyl, methylcarbonyl or phenylcarbonyl.

In other embodiments, R⁶ and R⁷ together form pentylene, 2,2,4,4tetramethylpentylene, 3,3-dimethyl-1-pentenylene, 2-methyl-1-pentenylene, 3-methylpentylene, 3-ethylpentylene, 3-tert-butylpentylene, 1-methylpentylene, 2-methylpentylene, hexylene, butylene, 1-methylbutylene, 2-methylpentylene, 1,3-ethylpentylene, 3-ethoxycarbonylpentylene, 1-ethylpentylene, 1-phenylpentylene, 1-

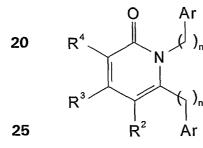
10 benzylpentylene, 1-n-butylpentylene, 1,1-dimethylpentylene, 1chloropentylene, 1-methoxypentylene, 1-ethoxypentylene, 1methylthiopentylene or 1-methoxycarbonylpentylene.

In another embodiment, R^5 is $-NR^9R^{10}$, where R^9 and R^{10} are each independently hydrogen, or substituted or unsubstituted aryl. In another


15 embodiment, R⁹ and R¹⁰ are each independently hydrogen, or substituted or unsubstituted phenyl. In another embodiment, R⁹ and R¹⁰ are each independently hydrogen or phenyl.

In another embodiment, the compounds for use in the compositions and methods provided herein have formula I, where R¹ is

- 20 substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroaralkyl; R² is hydrogen, or substituted or unsubstituted alkyl; R³ is haloalkyl; R⁴ is cyano; and R⁵ is substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, substituted or unsubstituted
- **25** heterocyclyl, or $-N = CR^6R^7$; where R^6 and R^7 are each independently hydrogen or substituted or unsubstituted alkyl;

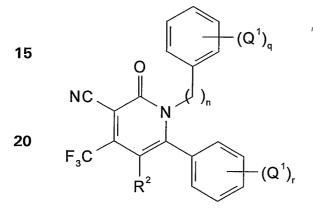

where the alkyl, heterocyclyl, aryl, heteroaryl, aralkyl and heteroaralkyl moieties of R¹, R², R³, R⁵, R⁶ and R⁷ are unsubstituted or substituted with one or more substituents, in one embodiment one to three or four substituents, each independently selected from Q^1 , as defined above.

In another embodiment, the compounds for use in the compositions and methods have formula II:

15 where R^1 , R^3 , R^4 and R^5 are selected as above.

In another embodiment, the compounds for use in the compositions and methods have formula III:

where R^2 , R^3 and R^4 are selected as above; each Ar is independently substituted or unsubstituted aryl, substituted or unsubstituted cycloalkyl;

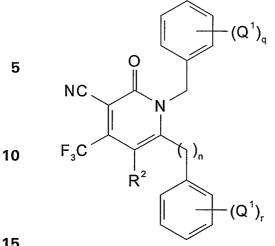

- substituted or unsubstituted heteroaryl, or substituted or unsubstituted heterocyclyl, where there are 0 to 5 substituents, in one embodiment 0, 1, 2 or 3 substituents, each independently selected from Q¹; and each n is independently an integer from 0 to 6, in one embodiment 0 to 3, in another embodiment 0 or 1.
- 35 In another embodiment, the compounds are of formula III where R² is hydrogen. In another embodiment, the compounds have formula III where R³ is haloalkyl. In another embodiment, the compounds have

-58-

formula III where R³ is perfluoroalkyl. In another embodiment, the compounds have formula III where R³ is trifluoromethyl or pentafluoroethyl. In another embodiment, the compounds have formula III where R³ is trifluoromethyl. In another embodiment, the compounds

5 have formula III where R⁴ is cyano. In another embodiment, the compounds have formula III where Ar is substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heterocyclyl. In another embodiment, the compounds have formula III where Ar is N-pyrrolidinyl.

10 In another embodiment, the compounds for use in the compositions and methods provided herein have formula IV:

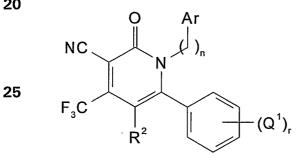

25

where R², Q¹ and n are selected as above; and q and r are each independently an integer from 0 to 5, or from 0 to 3, or 0 or 1. In another embodiment, the compounds for use in the compositions and methods provided herein have formula V:

35 -

}

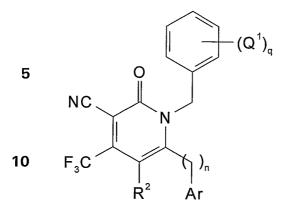
30



15

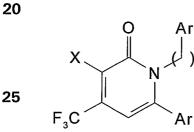
where R^2 , Q^1 , q, r and n are selected as above.

In another embodiment, the compounds for use in the compositions and methods provided herein have formula VI:


20

30

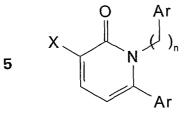
where Ar, R^2 , Q^1 , r and n are selected as above. In another embodiment, the compounds have formula VI where Ar is substituted or unsubstituted heteroaryl.


In another embodiment, the compounds for use in the 35 compositions and methods provided herein have formula VII:

15

where Ar, R^2 , Q^1 , q and n are selected as above.

In another embodiment, the compounds for use in the compositions and methods provided herein have formula VIII:


30 where each Ar is independently selected as above; n is selected as above; and X is cyano, nitro or NR³¹R³², where R³¹ and R³² are selected as above.

In another embodiment, the compounds for use in the compositions and methods provided herein have formula IX:

40

35

-61-

10 where each Ar is independently selected as above; n is selected as above; and X is bromo, CHO, COOR³⁰ or CONR³¹R³², where R³⁰, R³¹ and R³² are selected as above.

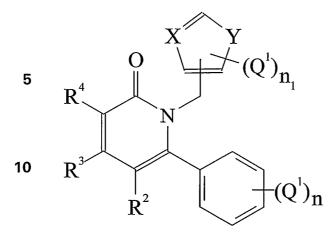
In another embodiment, the compounds for use in the compositions and methods provided herein have formula X:

(Q¹)

15

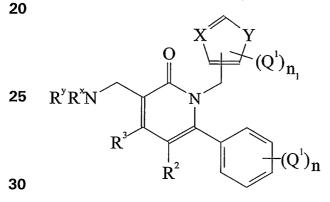
NC N F₃C

25


20

where Q^1 , r, R^6 and R^7 are selected as above.

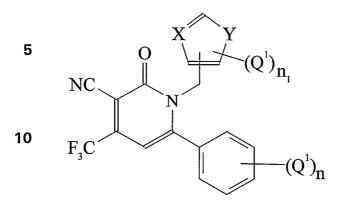
In another embodiment, the compounds for use in the compositions and methods provided herein have formula XI: **30**


35

40

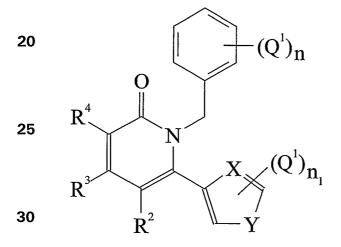
15 wherein n is an integer from 0 to 5; n_1 is an integer from 0 to 2; Y is selected from 0, S and NR', where R' is hydrogen, alkyl or aryl; X is N; O^1 , R^2 , R^3 and R^4 are selected as above.

In another embodiment, the compounds for use in the compositions and methods provided herein have formula XII:



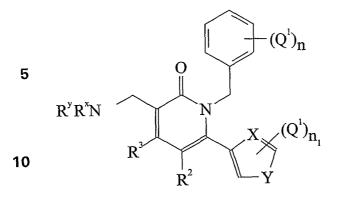
wherein n is an integer from 0 to 5; n_1 is an integer from 0 to 2; Y is selected from 0, S and NR', where R' is hydrogen, alkyl or aryl; X is N; R^x and R^y are each independently selected from hydrogen, alkyl,

35 alkylcarbonyl, aryl, arylcarbonyl, aralkylcarbonyl, alkoxycarbonyl, aryloxycarbonyl and aralkoxycarbonyl; Ω¹, R², R³ and R⁴ are selected as above.

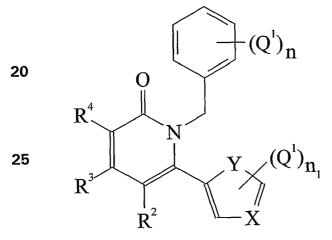

-63-

In another embodiment, the compounds for use in the compositions and methods provided herein have formula XIII:

15 wherein the variables are as defined above.


In another embodiment, the compounds for use in the compositions and methods provided herein have formula XIV:

wherein the variables are defined above.


In another embodiment, the compounds for use in thecompositions and methods provided herein have formula XV:

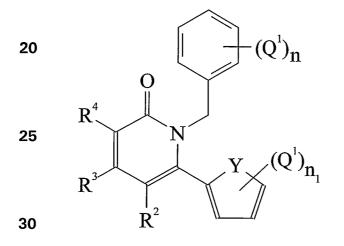
-64-

wherein the variables are as defined above.

In another embodiment, the compounds for use in the 15 compositions and methods provided herein have formula XVI:

30

wherein the variables are as defined above.


In another embodiment, the compounds for use in the compositions and methods provided herein have formula XVI1:

35

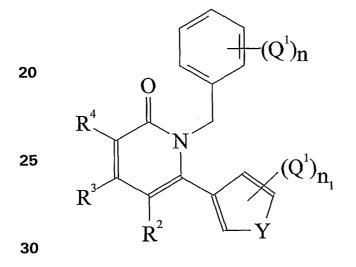
5 $R^{y}R^{x}N$ N $R^{y}R^{x}N$ X Y $(Q^{1})n$ R^{3} X X $(Q^{1})n$ R^{2} X $(Q^{1})n$ R^{2} X $(Q^{1})n$ R^{2} $(Q^{1})n$ R^{2} $(Q^{2})n$ $(Q^{2})n$

wherein the variables are as defined above.

In another embodiment, the compounds for use in the compositions and methods provided herein have formula XVII:

wherein the variables are as defined above.

In another embodiment, the compounds for use in the


35 compositions and methods provided herein have formula XVIII:

15

-66-

wherein the variables are as defined above.

In another embodiment, the compounds for use in the **15** compositions and methods provided herein have formula XIX:

wherein the variables are as defined above.

In another embodiment, the compounds for use in the compositions and methods provided herein have formula XX:

5 $R^{y}R^{x}N$ 10 R^{2} R^{2} Q^{1})n R^{2} Q^{1})n R^{2} Q^{1})n

15 wherein the variables are as defined above.

In another embodiment, the compounds for use in the compositions and methods provided herein are selected from Figure 1. In another embodiment, the compounds for use in the compositions and methods provided herein are selected from:

20 1-Cyclohexylideneamino-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-lsopropylideneamino-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

2-Oxo-6-phenyl-1-(3,3,5,5-tetramethyl-cyclohexylideneamino)-4-

25 trifluoromethyl-1,2-dihydropyridine-3-carbonitrile; 1-(4,4-Dimethyl-cyclohex-2-enylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydropyridine-3-carbonitrile (isomer 1); 1-(4,4-Dimethyl-cyclohex-2-enylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydropyridine-3-carbonitrile (isomer 2);

 30 1-(3-Methyl-cyclohex-2-enylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;
 2-Oxo-6-phenyl-1-(1-phenyl-ethylideneamino)-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(Benzylidene-amino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile; 1-(1-Ethyl-propylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-

dihydropyridine-3-carbonitrile;

5 1-(4-Methyl-cyclohexylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(4-Ethyl-cyclohexylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(4-tert-Butyl-cyclohexylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-

10 1,2-dihydropyridine-3-carbonitrile;

1-(2-Methyl-cyclohexylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-Cycloheptylideneamino-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

15 1-Cyclopentylideneamino-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(2-Methyl-cyclopentylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(3-Methyl-cyclopentylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-

20 dihydropyridine-3-carbonitrile;

1-(Bicyclo[2.2.1]hept-2-ylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-

1,2-dihydropyridine-3-carbonitrile;

1-(Adamantan-2-ylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

25 1-(1-Methyl-piperidin-4-ylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;
4-(3-Cyano-2-oxo-6-phenyl-4-trifluoromethyl-2H-pyridin-1-ylimino)cyclohexanecarboxylic acid ethyl ester;

- 2-Oxo-6-phenyl-1-(tetrahydro-pyran-4-ylideneamino)-4-trifluoromethyl-
- 1,2-dihydropyridine-3-carbonitrile;

1-Amino-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3carbonitrile;

5 1-Amino-2-oxo-4,6-diphenyl-1,2-dihydropyridine-3-carbonitrile;
 1-sec-Butylideneamino-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(1,2-Dimethyl-propylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

10 1-(1-Methyl-butylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-Butylideneamino-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-Isobutylideneamino-2-oxo-6-phenyl-4-trifluoromethyl-1,2-

15 dihydropyridine-3-carbonitrile;

1-(2-Methyl-butylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(2-Ethyl-butylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

20 1-(3-Methyl-butylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(2,2-Dimethyl-propylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(1-Acetyl-piperidin-4-ylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-

25 1,2-dihydropyridine-3-carbonitrile;

1-[(Naphthalen-2-ylmethylene)-amino]-2-oxo-6-phenyl-4-trifluoromethyl-

1,2-dihydropyridine-3-carbonitrile;

1-[(2-Hydroxy-benzylidene)-amino]-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile; 1-[(2-Hydroxy-5-chloro-benzylidene)-amino]-2-oxo-6-phenyl-4-

trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-[(4-Bromo-benzylidene)-amino]-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

 5 1-[(2-Hydroxy-4-bromo-benzylidene)-amino]-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;
 1-[(2-Methyl-benzylidene)-amino]-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-[(4-Methoxy-benzylidene)-amino]-2-oxo-6-phenyl-4-trifluoromethyl-1,2-

dihydropyridine-3-carbonitrile;
 1-Cyclohexylideneamino-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;
 1-Cyclohexylideneamino-2-oxo-4,6-diphenyl-1,2-dihydropyridine-3-

carbonitrile;

15 1-(2-Methyl-cyclohexylideneamino)-2-oxo-4,6-diphenyl-1,2dihydropyridine-3-carbonitrile;

1-(1,2-Dimethyl-propylideneamino)-2-oxo-4,6-diphenyl-1,2dihydropyridine-3-carbonitrile;

1-Cyclohexylideneamino-2-oxo-6-o-tolyl-4-trifluoromethyl-1,2-

20 dihydropyridine-3-carbonitrile;

1-(2-Methyl-cyclohexylideneamino)-2-oxo-6-*o*-tolyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(1,2-Dimethyl-propylideneamino)-2-oxo-6-*o*-tolyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

25 1-Cyclohexylideneamino-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-Cyclohexylideneamino-6-(2-methoxy-phenyl)-2-oxo-4-trifluoromethyl-

1,2-dihydropyridine-3-carbonitrile;

1-(2-Methyl-cyclohexylideneamino)-6-(2-methoxy-phenyl)-2-oxo-4trifluoromethyl-1,2-dihydropyridine-3-carbonitrile; 1-(1,2-Dimethyl-propylideneamino)--6-(2-methoxy-phenyl)-2-oxo-4-

trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

5 1-(2-Methyl-cyclohexylideneamino)-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(1,2-Dimethyl-propylideneamino)-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-Cyclohexylideneamino-2-oxo-6-p-tolyl-4-trifluoromethyl-1,2-

10 dihydropyridine-3-carbonitrile;

1-(2-Methyl-cyclohexylideneamino)-2-oxo-6-*p*-tolyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(1,2-Dimethyl-propylideneamino)-2-oxo-6-*p*-tolyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

15 1-Cyclohexylideneamino-6-(3-methoxy-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(2-Methyl-cyclohexylideneamino)-6-(3-methoxy-phenyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(1,2-Dimethyl-propylideneamino)-6-(3-methoxy-phenyl)-2-oxo-4-

20 trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(2-Ethyl-cyclohexylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

2-Oxo-6-phenyl-1-(2-phenyl-cyclohexylideneamino)-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

25 1-(2-Benzyl-cyclohexylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(2,2-Dimethyl-cyclohexylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-

1,2-dihydropyridine-3-carbonitrile;

1-(2-Chloro-cyclohexylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(2-Methoxy-cyclohexylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-

- 1,2-dihydropyridine-3-carbonitrile;
- **5** 1-(2-Ethoxy-cyclohexylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydropyridine-3-carbonitrile;

1-(2-Methlythio-cyclohexylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

2-(3-Cyano-2-oxo-6-phenyl-4-trifluoromethyl-2H-pyridin-1-ylimino)-

10 cyclohexanecarboxylic acid methyl ester;

(3R)-1-(3-Methyl-cyclohexylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-

1,2-dihydropyridine-3-carbonitrile;

2-Oxo-6-phenyl-1-phenylamino-4-trifluoromethyl-1,2-dihydropyridine-3carbonitrile;

15 2-Oxo-1-phenylamino-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-Cyclohexylideneamino-6-(4-methoxy-phenyl)-2-oxo-4-trifluoromethyl-

1,2-dihydropyridine-3-carbonitrile;

- 1-(2-Methyl-cyclohexylideneamino)-6-(4-methoxy-phenyl)-2-oxo-4-
- 20 trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(1,2-Dimethyl-propylideneamino)-6-(4-methoxy-phenyl)-2-oxo-4-

trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

6-(2-Chloro-phenyl)-1-cyclohexylideneamino-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

 6-(2-Chloro-phenyl)-1-(1,2-dimethyl-propylideneamino)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;
 6-(3-Chloro-phenyl)-1-cyclohexylideneamino-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

-73-

6-(3-Chloro-phenyl)-1-(2-methyl-cyclohexylideneamino)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile; 6-(3-Chloro-phenyl)-1-(1,2-dimethyl-propylideneamino)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

 5 6-(4-Chloro-phenyl)-1-cyclohexylideneamino-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;
 6-(4-Chloro-phenyl)-1-(2-methyl-cyclohexylideneamino)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

6-(4-Chloro-phenyl)-1-(1,2-dimethyl-propylideneamino)-2-oxo-4-

- trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;
 6-(2-Chloro-phenyl)-1-(2-methyl-cyclohexylideneamino)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;
 6-(3-Methoxy-phenyl)-1-(2-methyl-cyclohexylideneamino)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;
- **15** 1-Cyclohexylideneamino-6-(3-hydroxy-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(1,2-Dimethyl-propylideneamino)-6-(3-hydroxy-phenyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

2-Oxo-6-phenyl-4-trifluoromethyl-3',4',5',6'-tetrahydro-2H,2'H-

20 [1,1']bipyridinyl-3-carbonitrile;

2-Oxo-6-phenyl-1-pyrrolidin-1-yl-4-trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile;

1-(3-Cyano-2-oxo-6-phenyl-4-trifluoromethyl-2H-pyridin-1-yl)-3-phenylurea;

25 2-Oxo-6-m-tolyl-4-trifluoromethyl-3',4',5',6'-tetrahydro-2H,2'H-

[1,1']bipyridinyl-3-carbonitrile;

2-Oxo-1-pyrrolidin-1-yl-6-m-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile; 1-Amino-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile;

1-Cyclohexylideneamino-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

5 1-Cyclopentylideneamino-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

2-Oxo-1-(1-phenyl-ethylideneamino)-6-thiophen-2-yl-4-trifluoromethyl-

1,2-dihydro-pyridine-3-carbonitrile;

1-(1-Benzoyl-piperidin-4-ylideneamino)-2-oxo-6-thiophen-2-yl-4-

trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;
 1-(Benzylidene-amino)-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(4-Methyl-cyclohexylideneamino)-2-oxo-6-thiophen-2-yl-4-

trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

15 1-(4-Ethyl-cyclohexylideneamino)-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(4-tert-Butyl-cyclohexylideneamino)-2-oxo-6-thiophen-2-yl-4-

trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(2-Methyl-cyclopentylideneamino)-2-oxo-6-thiophen-2-yl-4-

20 trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(3-Methyl-cyclopentylideneamino)-2-oxo-6-thiophen-2-yl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile; 1-(2-Methyl-cyclohexylideneamino)-2-oxo-6-thiophen-2-yl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

25 1-Benzyl-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile;

1-Benzyl-6-naphthalen-2-yl-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile; 1-(2-Methyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-

pyridine-3-carbonitrile;

1-(3-Methyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

5 1-(4-Methyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

2-Oxo-1-phenethyl-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile;

1-Benzyl-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-

10 carbonitrile;

1-(2-Methyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(3-Methyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

15 1-(4-Methyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

2-Oxo-1-phenethyl-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile;

1-Benzyl-4-methyl-2-oxo-6-phenyl-1,2-dihydro-pyridine-3-carbonitrile;

20 1-(2-Methyl-benzyl)-4-methyl-2-oxo-6-phenyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(3-Methyl-benzyl)-4-methyl-2-oxo-6-phenyl-1,2-dihydro-pyridine-3carbonitrile;

1-(4-Methyl-benzyl)-4-methyl-2-oxo-6-phenyl-1,2-dihydro-pyridine-3-

25 carbonitrile;

4-Methyl-2-oxo-1-phenethyl-6-phenyl-1,2-dihydro-pyridine-3-carbonitrile; 2-Oxo-6-phenyl-1-(3-phenyl-propyl)-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile; 2-Oxo-6-phenyl-4-trifluoromethyl-1-(2-trifluoromethyl-benzyl)-1,2-dihydropyridine-3-carbonitrile;

2-Oxo-6-phenyl-4-trifluoromethyl-1-(3-trifluoromethyl-benzyl)-1,2-dihydropyridine-3-carbonitrile;

5 2-Oxo-6-phenyl-4-trifluoromethyl-1-(4-trifluoromethyl-benzyl)-1,2-dihydro-pyridine-3-carbonitrile;

1-(2-Methoxy-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(3-Methoxy-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-

10 pyridine-3-carbonitrile;

1-(4-Methoxy-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-Biphenyl-4-ylmethyl-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

15 2-Oxo-6-*m*-tolyl-4-trifluoromethyl-1-(2-trifluoromethyl-benzyl)-1,2dihydro-pyridine-3-carbonitrile;

2-Oxo-1-(3-phenyl-propyl)-6-m-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

2-Oxo-6-m-tolyl-4-trifluoromethyl-1-(3-trifluoromethyl-benzyl)-1,2-

20 dihydro-pyridine-3-carbonitrile;

2-Oxo-6-*m*-tolyl-4-trifluoromethyl-1-(4-trifluoromethyl-benzyl)-1,2dihydro-pyridine-3-carbonitrile;

1-(2-Methoxy-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

25 1-(3-Methoxy-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(4-Methoxy-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile; 1-Biphenyl-4-ylmethyl-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-Benzyl-6-(3-methoxy-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

5 1-Benzyl-6-(2-chloro-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-Benzyl-6-(3-ethyl-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-Benzyl-6-(3-trifluoromethyl-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-

10 pyridine-3-carbonitrile;

1-Benzyl-6-(3-nitro-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-Benzyl-6-(3-hydroxy-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

15 2-Oxo-1,6-diphenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile; (1R)-2-Oxo-6-phenyl-1-(1-phenyl-ethyl)-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

(1S)-2-Oxo-6-phenyl-1-(1-phenyl-ethyl)-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

20 2-Oxo-6-phenyl-1-(1,2,3,4-tetrahydro-naphthalen-1-yl)-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-Benzyl-6-(3-butoxy-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-Benzyl-6-(3-benzyloxy-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-

25 pyridine-3-carbonitrile;

1-Benzyl-2-oxo-6-[3-(2-piperidin-1-yl-ethoxy)-phenyl]-4-trifluoromethyl-

1,2-dihydro-pyridine-3-carbonitrile;

N-[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)phenyl]-acetamide; 1-[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)phenyl]-3-ethyl-urea;

1-(2,4-Dimethyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

5 1-(2-Fluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(4-Fluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(2,4-Difluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-

10 pyridine-3-carbonitrile;

1-(4-Bromo-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

4-(3-Cyano-2-oxo-6-phenyl-4-trifluoromethyl-2H-pyridin-1-ylmethyl)benzoic acid methyl ester;

15 1-(2-Chloro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(4-Chloro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(4-Methylthio-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-

20 pyridine-3-carbonitrile;

2-Oxo-1-(4-phenoxy-benzyl)-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(2,4-Dimethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

25 1-(2-Fluoro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(4-Fluoro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile; 1-(2,4-Difluoro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(4-Bromo-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

5 4-(3-Cyano-2-oxo-6-*m*-tolyl-4-trifluoromethyl-2H-pyridin-1-ylmethyl)benzoic acid methyl ester;

1-(2-Chloro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(4-Chloro-benzyl)-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2-dihydro-

10 pyridine-3-carbonitrile;

1-(4-Methylthio-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

2-Oxo-1-(4-phenoxy-benzyl)-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

15 (1-Benzyl-3-cyano-2-oxo-6-phenyl-1,2-dihydro-pyridin-4-yl)-acetic acid methyl ester;

2-Oxo-6-phenyl-1-(4-trifluoromethoxy-benzyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

2-Oxo-6-phenyl-1-pyridin-3-ylmethyl-4-trifluoromethyl-1,2-dihydro-

20 pyridine-3-carbonitrile;

2-Oxo-6-phenyl-1-pyridin-4-ylmethyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(4-Nitro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

25 2-Oxo-6-*m*-tolyl-1-(4-trifluoromethoxy-benzyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

2-Oxo-1-pyridin-3-ylmethyl-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

t

-80-

2-Oxo-1-pyridin-4-ylmethyl-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(4-Nitro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

5 1-(4-Morpholin-4-yl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)-phenyl]-urea;

1-Benzyl-2-oxo-6-(3-phenethyloxy-phenyl)-4-trifluoromethyl-1,2-dihydro-

10 pyridine-3-carbonitrile;

1-Benzyl-2-oxo-6-[3-(2,2,2-trifluoro-ethoxy)-phenyl]-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

1-Benzyl-6-[3-(3-methyl-butoxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

15 [3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)phenoxy]-acetic acid methyl ester;

4-[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)phenoxy]-butyric acid methyl ester;

1-Benzyl-6-[3-(3-hydroxy-propoxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2-

20 dihydro-pyridine-3-carbonitrile;

1-Benzyl-5-methyl-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-Benzyl-2-oxo-4,6-diphenyl-1,2-dihydro-pyridine-3-carbonitrile;

4-(3-Cyano-2-oxo-6-phenyl-4-trifluoromethyl-2H-pyridin-1-ylmethyl)-

25 benzoic acid;

Ethyl-carbamic acid 3-(1-benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6dihydro-pyridin-2-yl)-phenyl ester;

Butyl-carbamic acid 3-(1-benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6dihydro-pyridin-2-yl)-phenyl ester; 1-Benzyl-6-[3-(2-methyl-benzyloxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

1-Benzyl-6-[3-(3-methyl-benzyloxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

5 1-Benzyl-6-[3-(4-methyl-benzyloxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;
4-[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)-

phenoxymethyl]-benzoic acid methyl ester;

3-[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)-

10 phenoxymethyl]-benzoic acid methyl ester;

[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)phenoxy]-acetic acid;

4-[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)phenoxy]-butyric acid;

15 N-[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)phenyl]-butyramide;

Cyclohexanecarboxylic acid [3-(1-benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)-phenyl]-amide;

N-[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)-

20 phenyl]-benzamide;

[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)phenyl]-carbamic acid methyl ester;

[3-(1-BenzyI-5-cyano-6-oxo-4-trifluoromethyI-1,6-dihydro-pyridin-2-yI)phenyI]-carbamic acid ethyl ester;

25 [3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl) phenyl]-carbamic acid phenyl ester;
 6-(3-Amino-phenyl)-1-benzyl-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine 3-carbonitrile;

-82-

1-Cyclohexylmethyl-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

2-Oxo-6-phenyl-1-thiophen-2-ylmethyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

5 1-(5-Methyl-furan-2-ylmethyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

2-Oxo-6-phenyl-1-(2,3,5-trifluoro-benzyl)-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(4-Chloro-2-methyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-

10 dihydro-pyridine-3-carbonitrile;

1-(3,4-Dichloro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(3-Fluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

15 1-(4-Methyl-benzyl)-6-*m*-tolyl-1H-pyridin-2-one;

1-(4-Methyl-benzyl)-6-phenyl-1H-pyridin-2-one;

1-Benzyl-6-m-tolyl-1H-pyridin-2-one;

1-Benzyl-6-phenyl-1H-pyridin-2-one;

2-Oxo-6-phenyl-1-(2,3,4-trifluoro-benzyl)-4-trifluoromethyl-1,2-dihydro-

20 pyridine-3-carbonitrile;

1-Cyclohexylmethyl-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

2-Oxo-1-thiophen-2-ylmethyl-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

25 2-Oxo-6-*m*-tolyl-1-(2,3,5-trifluoro-benzyl)-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(4-Chloro-2-methyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

-83-

1-(3,4-Dichloro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(3-Fluoro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

5 1-(3,4-Difluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(2,5-Difluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(2,4-Dichloro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-

10 pyridine-3-carbonitrile;

1-(2,3-Dimethyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(2,5-Dimethyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

15 1-(3,4-Dimethyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(2,3-Difluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(2-Bromo-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-

20 3-carbonitrile;

1-(3-Bromo-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(3,4-Difluoro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

25 1-(2,5-Difluoro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(2,4-Dichloro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

-84-

1-(2,3-Dimethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(2,5-Dimethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

5 1-(3,4-Dimethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

1-(2,3-Difluorol-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(2-Bromo-benzyl)-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2-dihydro-

10 pyridine-3-carbonitrile;

1-(3-Bromo-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

N-[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)phenyl]-methanesulfonamide;

15 6-(3-Ethyl-phenyl)-1-(4-methyl-benzyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

1-(4-Methyl-benzyl)-2-oxo-6-p-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile;

6-(2-Chloro-phenyl)-1-(4-methyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-

20 dihydro-pyridine-3-carbonitrile;

6-(3-Chloro-phenyl)-1-(4-methyl-benzyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

6-(4-Chloro-phenyl)-1-(4-methyl-benzyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

25 3-[5-Cyano-1-benzyl-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl]benzoic acid;

3-[5-Cyano-1-benzyl-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl]benzoic acid tert-butyl ester;

-85-

1-Benzyl-6-(3-bromomethyl-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

2-Oxo-6-phenyl-1-(2,2,2-trifluoro-ethyl)-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

5 1-Benzyl-3-bromo-6-phenyl-1H-pyridin-2-one;

1-Biphenyl-4-ylmethyl-6-phenyl-1H-pyridin-2-one;

1-Benzyl-2-oxo-6-phenyl-1,2-dihydro-pyridine-3-carbonitrile;

3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)-N,N-diethyl-benzamide;

 10 1-Benzyl-2-oxo-6-(3-phenoxymethyl-phenyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;
 1-Benzyl-6-(3-diethylaminomethyl-phenyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

1-Benzyl-2-oxo-4-pentafluoroethyl-6-phenyl-1,2-dihydro-pyridine-3-

15 carbonitrile;

1-(4-Methyl-benzyl)-2-oxo-4-pentafluoroethyl-6-phenyl-1,2-dihydropyridine-3-carbonitrile;

1-(2,4-Dimethyl-benzyl)-2-oxo-4-pentafluoroethyl-6-phenyl-1,2-dihydropyridine-3-carbonitrile;

1-(2,4-Dimethyl-benzyl)-6-(3,5-dimethyl-phenyl)-2-oxo-4-trifluoromethyl 1,2-dihydro-pyridine-3-carbonitrile;
 1-(2,4-Dimethyl-benzyl)-2-oxo-6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-

naphthalen-2-yl)-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile; 1-(2,4-Dimethyl-benzyl)-6-(3-ethyl-phenyl)-2-oxo-4-trifluoromethyl-1,2-

25 dihydro-pyridine-3-carbonitrile;

1-(2,4-Dimethyl-benzyl)-2-oxo-6-p-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile;

1-(2,4-Dimethyl-benzyl)-6-(3-methoxy-phenyl)-2-oxo-4-trifluoromethyl-

1,2-dihydro-pyridine-3-carbonitrile;

-86-

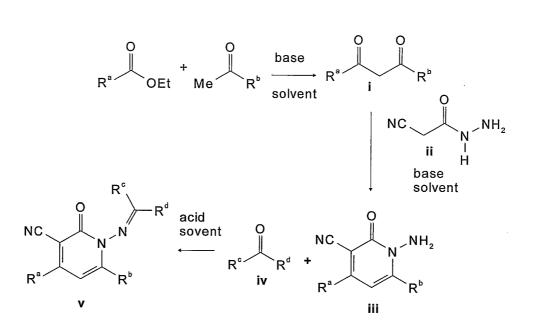
- 1-(2,4-Dimethyl-benzyl)-6-(4-methoxy-phenyl)-2-oxo-4-trifluoromethyl-
- 1,2-dihydro-pyridine-3-carbonitrile;

1-(2,4-Dimethyl-benzyl)-6-(2-chloro-phenyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

5 1-(2,4-Dimethyl-benzyl)-6-(3-chloro-phenyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile;

1-(2,4-Dimethyl-benzyl)-6-(4-chloro-phenyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile; and

1-Benzyl-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2-dihydro-pyridine-3-**10** carbonitrile.

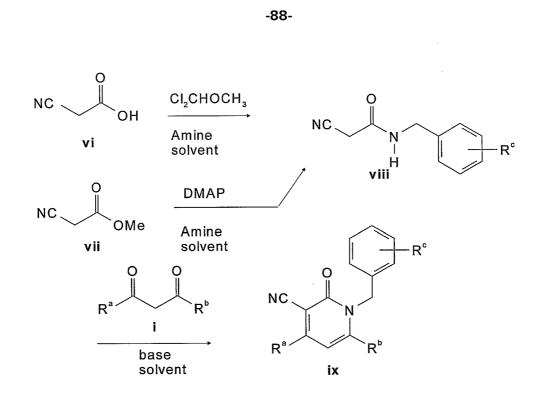

C. Preparation of the compounds

The compounds provided herein can be prepared using readily available starting materials or known intermediates. Schemes 1, 2 and 3 (*infra*) provide a summary of the synthetic routes utilized in producing the

15 compounds provided herein.

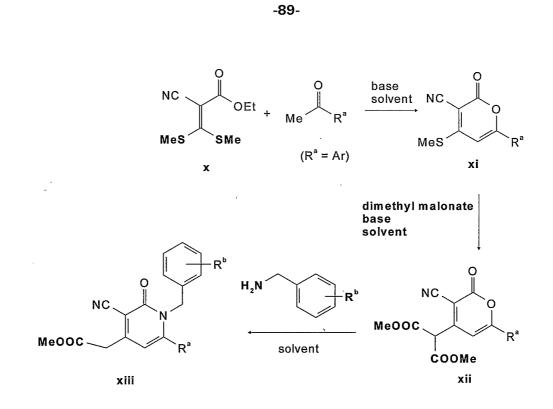
Scheme 1, below, details the synthetic strategy utilized for the construction of N-amino-2-pyridone derivatives **v**. Such hydrazones can be readily obtained via the condensation of N-aminopyridones **iii** with aldehydes ($R^c = H$) and ketones (as **iv**) in the presence of acids in

- various solvents. The N-amino-2-pyridone itself is produced by a cyclocondensation reaction between 1,3-diketones i and cyanoacetohydrazide ii in the presence of various bases (see, *e.g.*, Elgemeie *et al.* (1994) *Org. Prep. Proc. Int.* 26:465-468). The requisite 1,3-dicarbonyl compounds i can be obtained from the corresponding
- 25 esters and methyl ketones using strong bases.



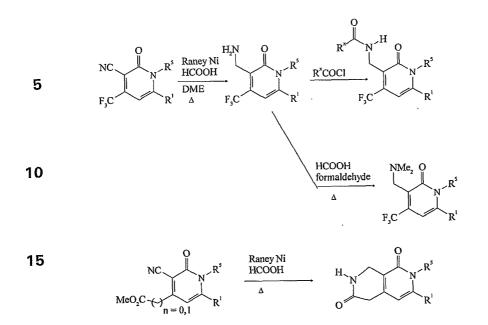
Scheme 2, below, details the synthetic strategy utilized in constructing the N-benzyl-2-pyridone **ix** compounds. These compounds are formed from an analogous cyclocondensation reaction to that used to form the N-aminopyridones. Reaction of cyanoacetamides **viii** with 1,2-

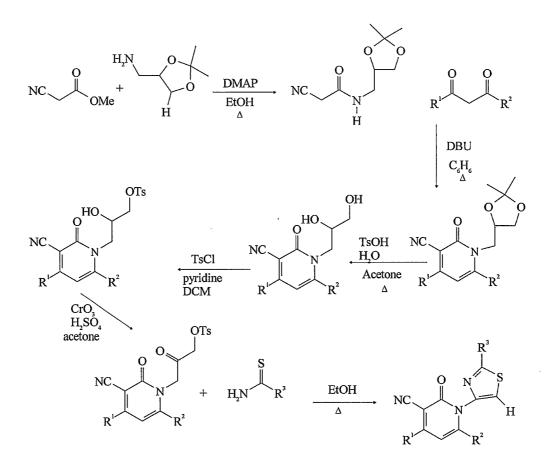
- 5 diketones i using various bases produces N-benzyl-2-pyridones. The requisite cyanoacetamides viii are formed from either cyanoacetic acid vi or methyl cyanoactate vii. Cyanoacetic acid is first activated to its acid chloride using the reagent a,a-dichloromethyl methyl ether. The resultant acid chloride is reacted *in situ* with various amines to affect acylation.
- **10** Direct conversion of methyl cyanoacetate **vii** to the corresponding cyanoacetamides **viii** is carried out with amines and in the presence of the acylation catalyst 4-(dimethylamino)pyridine (DMAP).


15

-87-

Scheme 3, below, details the synthetic strategy utilized to construct N-benzyl-2-pyridones containing a methoxycarbonylmethyl moiety at the C4-position of the pyridone ring. Compound **xiii** is obtained

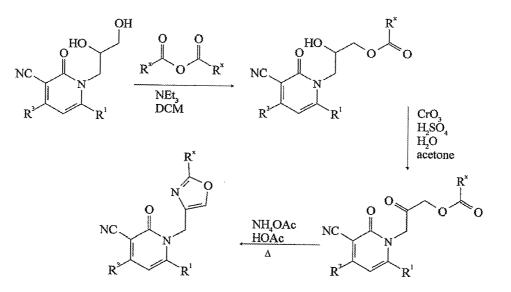

- 5 directly from the diester compound xii by reaction with benzylamines (for the conversion of pyrones to N-benzyl 2-pyridones, see, e.g., Katrizky et al. (1980) J. Chem. Soc., Perkin Trans. I:2851-2855). Both pyridone formation and the ester cleavage (via decarboxylation) occur in this single step. The malonate substituted pyrone xii derives from the 4-
- 10 methylsulfide variant xi via base-induced substitution with dimethylmalonate (see, e.g., Tominaga et al. (1984) Chem. Pharm. Bull. 32:3384-3395). Compound xi is readily obtained via the cyclocondensation reaction between the commercially available dithiane x and methyl ketones.


Other methods for the preparation of the compounds provided herein are shown in the Schemes below. Scheme 4:

5

10

Scheme 5:


٨.,

5

PCT/US02/41306

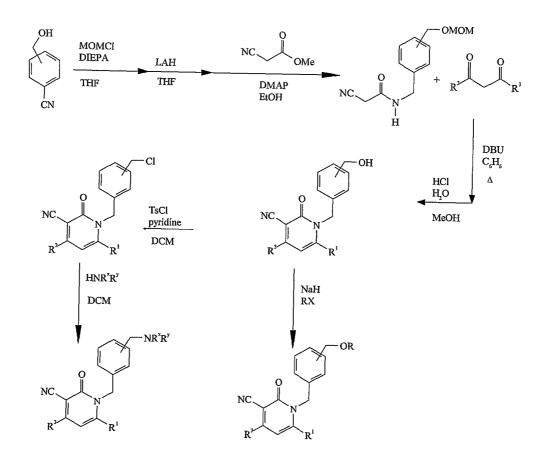
٦

Scheme 6:

5

10

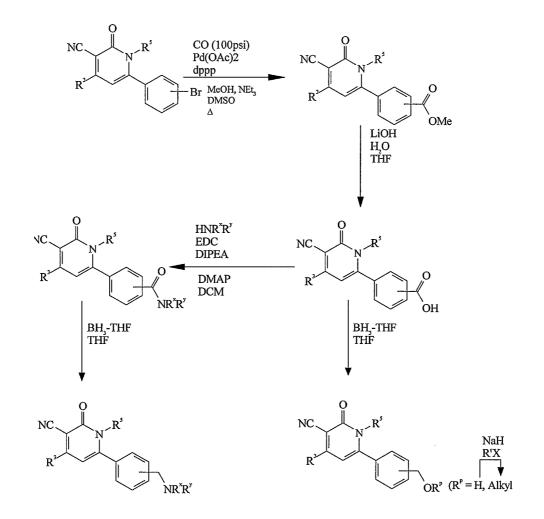
;


15

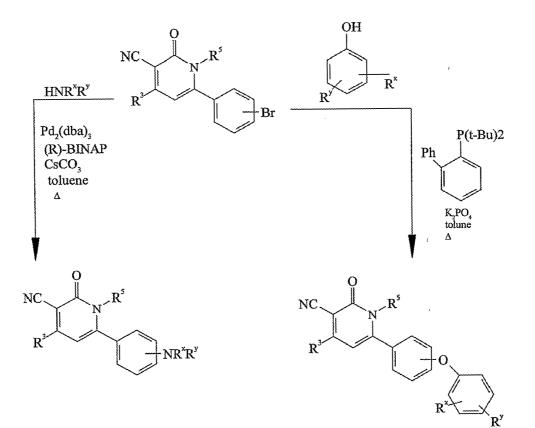
-93-

DIPEA R* **R**^{*} R mCPBA MOMCl OH DCM DCM OMOM омом $\langle \rangle$ 0 NH₄OH MeOH 0 **OMOM** 0 NC ОМе N R N I H DMAP ÓН EtOH DBU C₆H₆ **OMOM** OMOM р Ю O C C TsO `R^{*} R NC TsCl NC pyridine \mathbf{R}^1 R^{3.} R¹ R³ TPAP NMO HCL/ether MeOH 4A M.S. DCM CrO, H₂SÔ₄ HCL/Et₂O MeOH R H_2N TsCl R pyridine Cl 0 О 0 R* R^{*} NC NC R R³ R³ R R 0 R* NC R H₂N EtOH R R³

Scheme 7:

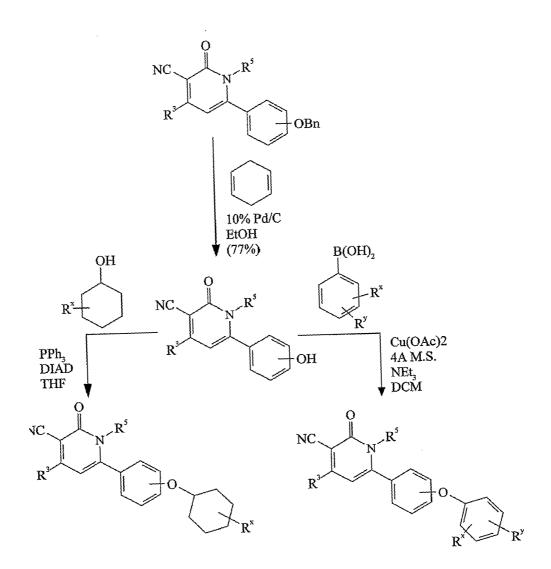

Scheme 8:

5

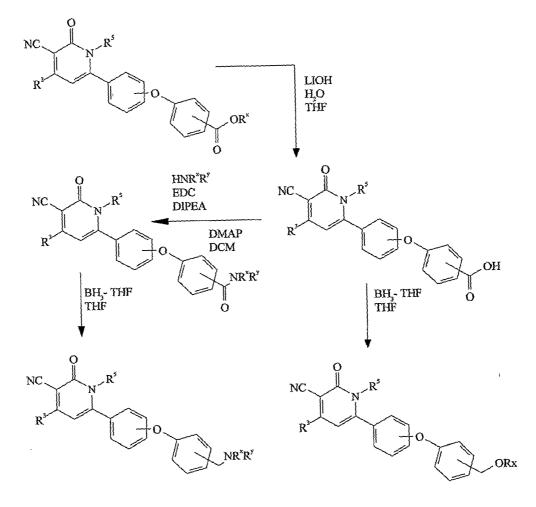


Scheme 9:

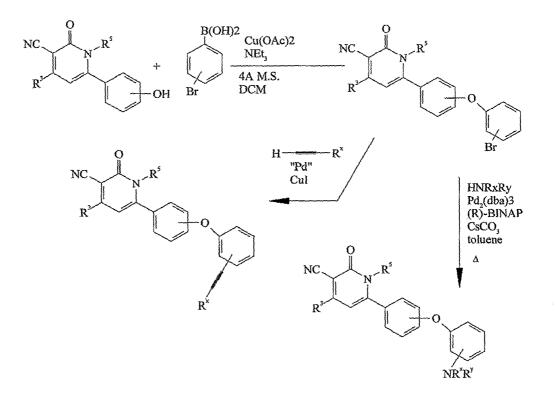
.


Scheme 10:

5


10

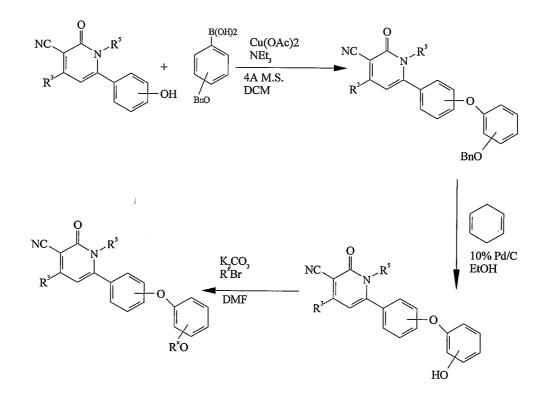
Scheme 11:

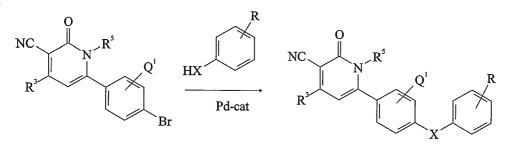

-98-

Scheme 12:

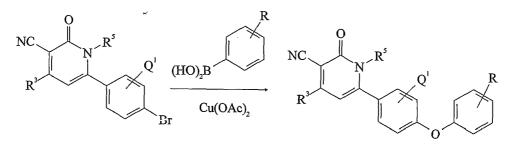
ł

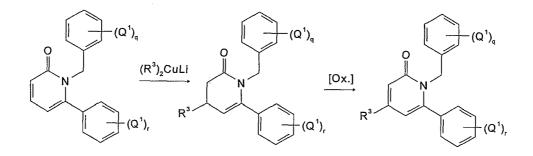
Scheme 13:

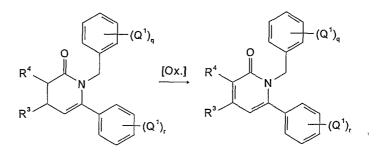



10

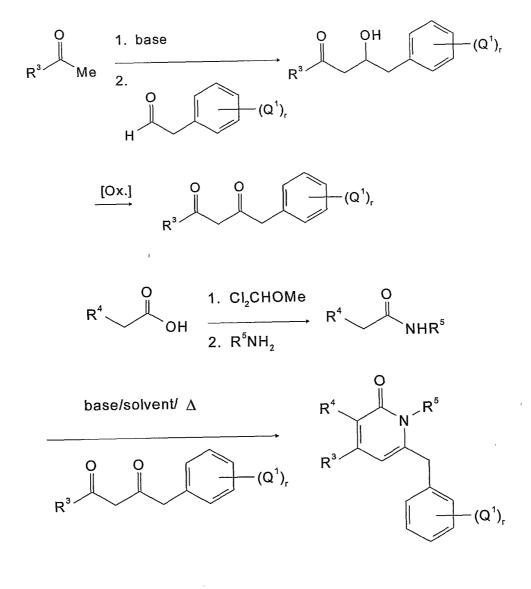
Scheme 14:

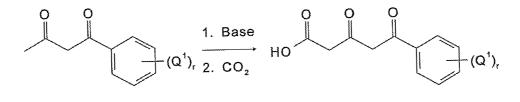


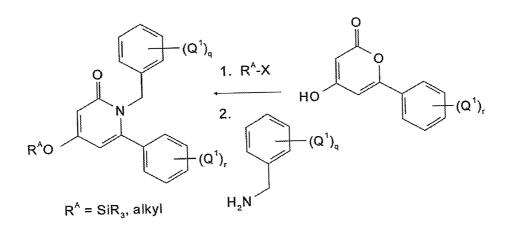

Scheme 15 (see, *e.g.*, Attila *et al.* (1999) *J. Am. Chem. Soc. 121*:4369-4378):


-101-

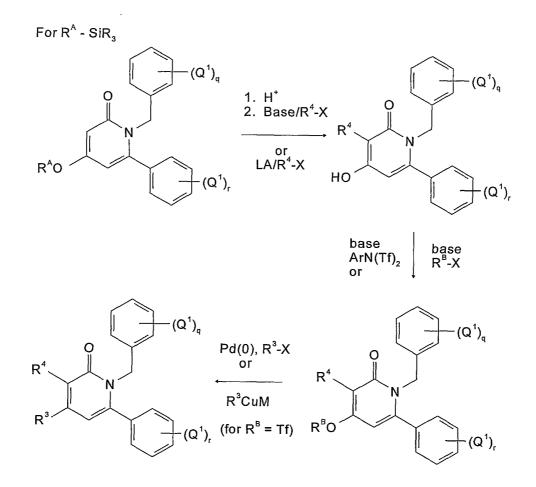
Scheme 16 (see, *e.g.*, Evans *et al.* (1998) *Tetrahedron Lett. 39*:2937-2940):




Base/R⁴-X



10


5

10

15

20

-104-

Starting materials in the synthesis examples provided herein are either available from commercial sources or via literature procedures. All commercially available compounds were used without further purification unless otherwise indicated. $CDCl_3$ (99.8% D, Cambridge Isotope

- 5 Laboratories) was used in all experiments as indicated. ¹H NMR spectra were recorded on a Bruker Avance 400 MHz NMR spectrometer. Significant peaks are tabulated and typically include: number of protons, multiplicity (s, singlet; d, double; t, triplet; q, quartet; m, multiplet; br s, broad singlet) and coupling constant(s) in Hertz. Chemical shifts are
- 10 reported as parts per million (δ) relative to tetramethylsilane. Mass spectra were recorded on a Perkin-Elmer SCIEX HPLC/MS instrument

-105-

using reverse-phase conditions (acetonitrile/water, 0.05% trifluoroacetic acid) and electrospray (ES) ionization. Abbreviations used in the examples below have their accepted meanings in the chemical literature. For example, CH_2CI_2 (dichloromethane), C_6H_6 (benzene), TFA

5 (trifluoroacetic acid), EtOAc (Ethyl Acetate), Et₂O (diethyl ether), DMAP (4-dimethylaminopyridine), DMF (N,N-dimethylformamide) and THF (tetrahydrofuran). Flash chromatography was performed using Merck Silica Gel 60 (230-400 mesh).

D. Formulation of pharmaceutical compositions

- 10 The pharmaceutical compositions provided herein contain therapeutically effective amounts of one or more of the nuclear receptor activity modulators provided herein that are useful in the prevention, treatment, or amelioration of one or more of the symptoms of diseases or disorders associated with nuclear receptor activity, including LXR and/or
- 15 orphan nuclear receptor activity. Such diseases or disorders include, but are not limited to, hypercholesterolemia, hyperlipoproteinemia, hypertriglyceridemia, lipodystrophy, hyperglycemia, diabetes mellitus, dyslipidemia, atherosclerosis, gallstone disease, acne vulgaris, acneiform skin conditions, diabetes, Parkinson's disease, cancer, Alzheimer's
- 20 disease, inflammation, immunological disorders, lipid disorders, obesity, conditions characterized by a perturbed epidermal barrier function, conditions of disturbed differentiation or excess proliferation of the epidermis or mucous membrane, and cardiovascular disorders.

The compositions contain one or more compounds provided **25** herein. The compounds are preferably formulated into suitable pharmaceutical preparations such as solutions, suspensions, tablets, dispersible tablets, pills, capsules, powders, sustained release formulations or elixirs, for oral administration or in sterile solutions or suspensions for parenteral administration, as well as transdermal patch

-106-

preparation and dry powder inhalers. Typically the compounds described above are formulated into pharmaceutical compositions using techniques and procedures well known in the art (see, *e.g.*, Ansel *Introduction to Pharmaceutical Dosage Forms, Fourth Edition* **1985**, 126).

- 5 In the compositions, effective concentrations of one or more compounds or pharmaceutically acceptable derivatives is (are) mixed with a suitable pharmaceutical carrier or vehicle. The compounds may be derivatized as the corresponding salts, esters, enol ethers or esters, acids, bases, solvates, hydrates or prodrugs prior to formulation, as
- 10 described above. The concentrations of the compounds in the compositions are effective for delivery of an amount, upon administration, that treats, prevents, or ameliorates one or more of the symptoms of diseases or disorders associated with nuclear receptor activity or in which nuclear receptor activity is implicated. Such diseases
- 15 or disorders include, but are not limited to, hypercholesterolemia, hyperlipopriteinemia, hypertriglyceridemia, lipodystrophy, hyperglycemia, diabetes mellitus, dyslipidemia, atherosclerosis, gallstone disease, acne vulgaris, acneiform skin conditions, diabetes, Parkinson's disease, cancer, Alzheimer's disease, inflammation, immunological disorders, lipid
- 20 disorders, obesity, conditions characterized by a perturbed epidermal barrier function, conditions of disturbed differentiation or excess proliferation of the epidermis or mucous membrane, and cardiovascular disorders.

Typically, the compositions are formulated for single dosage
administration. To formulate a composition, the weight fraction of compound is dissolved, suspended, dispersed or otherwise mixed in a selected vehicle at an effective concentration such that the treated condition is relieved or ameliorated. Pharmaceutical carriers or vehicles suitable for administration of the compounds provided herein include any

-107-

such carriers known to those skilled in the art to be suitable for the particular mode of administration.

In addition, the compounds may be formulated as the sole pharmaceutically active ingredient in the composition or may be

- **5** combined with other active ingredients. Liposomal suspensions, including tissue-targeted liposomes, such as tumor-targeted liposomes, may also be suitable as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art. For example, liposome formulations may be prepared as described in U.S.
- 10 Patent No. 4,522,811. Briefly, liposomes such as multilamellar vesicles (MLV's) may be formed by drying down egg phosphatidyl choline and brain phosphatidyl serine (7:3 molar ratio) on the inside of a flask. A solution of a compound provided herein in phosphate buffered saline lacking divalent cations (PBS) is added and the flask shaken until the lipid
- **15** film is dispersed. The resulting vesicles are washed to remove unencapsulted compound, pelleted by centrifugation, and then resuspended in PBS.

The active compound is included in the pharmaceutically acceptable carrier in an amount sufficient to exert a therapeutically useful
effect in the absence of undesirable side effects on the patient treated. The therapeutically effective concentration may be determined empirically by testing the compounds in *in vitro* and *in vivo* systems described herein and in International Patent Application Publication Nos. 99/27365 and 00/25134 (see, *e.g.*, EXAMPLES 13 and 14) and then extrapolated
therefrom for dosages for humans.

The concentration of active compound in the pharmaceutical composition will depend on absorption, inactivation and excretion rates of the active compound, the physicochemical characteristics of the compound, the dosage schedule, and amount administered as well as WO 03/059884

PCT/US02/41306

-108-

other factors known to those of skill in the art. For example, the amount that is delivered is sufficient to ameliorate one or more of the symptoms of diseases or disorders associated with nuclear receptor activity or in which nuclear receptor activity is implicated, as described herein.

5 Typically a therapeutically effective dosage should produce a serum concentration of active ingredient of from about 0.1 ng/ml to about 50-100 μ g/ml. The pharmaceutical compositions typically should provide a dosage of from about 0.001 mg to about 2000 mg of compound per kilogram of body weight per day. Pharmaceutical dosage

10 unit forms are prepared to provide from about 1 mg to about 1000 mg and preferably from about 10 to about 500 mg of the essential active ingredient or a combination of essential ingredients per dosage unit form.

The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at intervals of

- 15 time. It is understood that the precise dosage and duration of treatment is a function of the disease being treated and may be determined empirically using known testing protocols or by extrapolation from *in vivo* or *in vitro* test data. It is to be noted that concentrations and dosage values may also vary with the severity of the condition to be alleviated.
- 20 It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not

25 intended to limit the scope or practice of the claimed compositions.

Pharmaceutically acceptable derivatives include acids, bases, enol ethers and esters, salts, esters, hydrates, solvates and prodrug forms. The derivative is selected such that its pharmacokinetic properties are superior to the corresponding neutral compound.

-109-

Thus, effective concentrations or amounts of one or more of the compounds described herein or pharmaceutically acceptable derivatives thereof are mixed with a suitable pharmaceutical carrier or vehicle for systemic, topical or local administration to form pharmaceutical

- 5 compositions. Compounds are included in an amount effective for ameliorating one or more symptoms of, or for treating or preventing diseases or disorders associated with nuclear receptor activity or in which nuclear receptor activity is implicated, as described herein. The concentration of active compound in the composition will depend on
- **10** absorption, inactivation, excretion rates of the active compound, the dosage schedule, amount administered, particular formulation as well as other factors known to those of skill in the art.

The compositions are intended to be administered by a suitable route, including orally, parenterally, rectally, topically and locally. For

15 oral administration, capsules and tablets are presently preferred. The compositions are in liquid, semi-liquid or solid form and are formulated in a manner suitable for each route of administration. Preferred modes of administration include parenteral and oral modes of administration. Oral administration is presently most preferred.

20 Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include any of the following components: a sterile diluent, such as water for injection, saline solution, fixed oil, polyethylene glycol, glycerine, propylene glycol or other synthetic solvent; antimicrobial agents, such as benzyl alcohol and

25 methyl parabens; antioxidants, such as ascorbic acid and sodium bisulfite; chelating agents, such as ethylenediaminetetraacetic acid (EDTA); buffers, such as acetates, citrates and phosphates; and agents for the adjustment of tonicity such as sodium chloride or dextrose. Parenteral preparations can be enclosed in ampules, disposable syringes

-110-

or single or multiple dose vials made of glass, plastic or other suitable material.

In instances in which the compounds exhibit insufficient solubility, methods for solubilizing compounds may be used. Such methods are known to those of skill in this art, and include, but are not limited to, using cosolvents, such as dimethylsulfoxide (DMSO), using surfactants, such as TWEEN[®], or dissolution in aqueous sodium bicarbonate. Derivatives of the compounds, such as prodrugs of the compounds may also be used in formulating effective pharmaceutical compositions.

Upon mixing or addition of the compound(s), the resulting mixture may be a solution, suspension, emulsion or the like. The form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected carrier or vehicle. The effective concentration is sufficient
 for ameliorating the symptoms of the disease, disorder or condition treated and may be empirically determined.

The pharmaceutical compositions are provided for administration to humans and animals in unit dosage forms, such as tablets, capsules, pills, powders, granules, sterile parenteral solutions or suspensions, and

- 20 oral solutions or suspensions, and oil-water emulsions containing suitable quantities of the compounds or pharmaceutically acceptable derivatives thereof. The pharmaceutically therapeutically active compounds and derivatives thereof are typically formulated and administered in unit-dosage forms or multiple-dosage forms. Unit-dose forms as used
- 25 herein refers to physically discrete units suitable for human and animal subjects and packaged individually as is known in the art. Each unit-dose contains a predetermined quantity of the therapeutically active compound sufficient to produce the desired therapeutic effect, in association with the required pharmaceutical carrier, vehicle or diluent. Examples of

WO 03/059884

PCT/US02/41306

-111-

unit-dose forms include ampoules and syringes and individually packaged tablets or capsules. Unit-dose forms may be administered in fractions or multiples thereof. A multiple-dose form is a plurality of identical unit-dosage forms packaged in a single container to be administered in

5 segregated unit-dose form. Examples of multiple-dose forms include vials, bottles of tablets or capsules or bottles of pints or gallons. Hence, multiple dose form is a multiple of unit-doses which are not segregated in packaging.

The composition can contain along with the active ingredient: a

- 10 diluent such as lactose, sucrose, dicalcium phosphate, or carboxymethylcellulose; a lubricant, such as magnesium stearate, calcium stearate and talc; and a binder such as starch, natural gums, such as gum acaciagelatin, glucose, molasses, polvinylpyrrolidine, celluloses and derivatives thereof, povidone, crospovidones and other such binders known to those
- 15 of skill in the art. Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, or otherwise mixing an active compound as defined above and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline, aqueous dextrose, glycerol, glycols, ethanol, and the like, to thereby
- 20 form a solution or suspension. If desired, the pharmaceutical composition to be administered may also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, or solubilizing agents, pH buffering agents and the like, for example, acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine
- 25 sodium acetate, triethanolamine oleate, and other such agents. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., 15th Edition, 1975. The composition or formulation to be administered will, in any event,

-112-

contain a quantity of the active compound in an amount sufficient to alleviate the symptoms of the treated subject.

Dosage forms or compositions containing active ingredient in the range of 0.005% to 100% with the balance made up from non-toxic

- 5 carrier may be prepared. For oral administration, a pharmaceutically acceptable non-toxic composition is formed by the incorporation of any of the normally employed excipients, such as, for example pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, talcum, cellulose derivatives, sodium crosscarmellose, glucose, sucrose,
- 10 magnesium carbonate or sodium saccharin. Such compositions include solutions, suspensions, tablets, capsules, powders and sustained release formulations, such as, but not limited to, implants and microencapsulated delivery systems, and biodegradable, biocompatible polymers, such as collagen, ethylene vinyl acetate, polyanhydrides, polyglycolic acid,
- 15 polyorthoesters, polylactic acid and others. Methods for preparation of these compositions are known to those skilled in the art. The contemplated compositions may contain 0.001%-100% active ingredient, preferably 0.1-85%, typically 75-95%.

The active compounds or pharmaceutically acceptable derivatives
20 may be prepared with carriers that protect the compound against rapid elimination from the body, such as time release formulations or coatings.

The compositions may include other active compounds to obtain desired combinations of properties. The compounds provided herein, or pharmaceutically acceptable derivatives thereof as described herein, may

25 also be advantageously administered for therapeutic or prophylactic purposes together with another pharmacological agent known in the general art to be of value in treating one or more of the diseases or medical conditions referred to hereinabove, such as diseases or disorders associated with nuclear receptor activity or in which nuclear receptor

-113-

activity is implicated. It is to be understood that such combination therapy constitutes a further aspect of the compositions and methods of treatment provided herein.

1. Compositions for oral administration

- 5 Oral pharmaceutical dosage forms are either solid, gel or liquid. The solid dosage forms are tablets, capsules, granules, and bulk powders. Types of oral tablets include compressed, chewable lozenges and tablets which may be enteric-coated, sugar-coated or film-coated. Capsules may be hard or soft gelatin capsules, while granules and
- **10** powders may be provided in non-effervescent or effervescent form with the combination of other ingredients known to those skilled in the art.

In certain embodiments, the formulations are solid dosage forms, preferably capsules or tablets. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a

15 similar nature: a binder; a diluent; a disintegrating agent; a lubricant; a glidant; a sweetening agent; and a flavoring agent.

Examples of binders include microcrystalline cellulose, gum tragacanth, glucose solution, acacia mucilage, gelatin solution, sucrose and starch paste. Lubricants include talc, starch, magnesium or calcium

- stearate, lycopodium and stearic acid. Diluents include, for example,
 lactose, sucrose, starch, kaolin, salt, mannitol and dicalcium phosphate.
 Glidants include, but are not limited to, colloidal silicon dioxide.
 Disintegrating agents include crosscarmellose sodium, sodium starch
 glycolate, alginic acid, corn starch, potato starch, bentonite,
- 25 methylcellulose, agar and carboxymethylcellulose. Coloring agents include, for example, any of the approved certified water soluble FD and C dyes, mixtures thereof; and water insoluble FD and C dyes suspended on alumina hydrate. Sweetening agents include sucrose, lactose, mannitol and artificial sweetening agents such as saccharin, and any

WO 03/059884

PCT/US02/41306

-114-

number of spray dried flavors. Flavoring agents include natural flavors extracted from plants such as fruits and synthetic blends of compounds which produce a pleasant sensation, such as, but not limited to peppermint and methyl salicylate. Wetting agents include propylene

5 glycol monostearate, sorbitan monooleate, diethylene glycol monolaurate and polyoxyethylene laural ether. Emetic-coatings include fatty acids, fats, waxes, shellac, ammoniated shellac and cellulose acetate phthalates. Film coatings include hydroxyethylcellulose, sodium carboxymethylcellulose, polyethylene glycol 4000 and cellulose acetate

10 phthalate.

If oral administration is desired, the compound could be provided in a composition that protects it from the acidic environment of the stomach. For example, the composition can be formulated in an enteric coating that maintains its integrity in the stomach and releases the active
15 compound in the intestine. The composition may also be formulated in combination with an antacid or other such ingredient.

When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials which

20 modify the physical form of the dosage unit, for example, coatings of sugar and other enteric agents. The compounds can also be administered as a component of an elixir, suspension, syrup, wafer, sprinkle, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain

25 preservatives, dyes and colorings and flavors.

The active materials can also be mixed with other active materials which do not impair the desired action, or with materials that supplement the desired action, such as antacids, H2 blockers, and diuretics. The active ingredient is a compound or pharmaceutically acceptable derivative

-115-

thereof as described herein. Higher concentrations, up to about 98% by weight of the active ingredient may be included.

Pharmaceutically acceptable carriers included in tablets are binders, lubricants, diluents, disintegrating agents, coloring agents,

5 flavoring

agents, and wetting agents. Enteric-coated tablets, because of the enteric-coating, resist the action of stomach acid and dissolve or disintegrate in the neutral or alkaline intestines. Sugar-coated tablets are compressed tablets to which different layers of pharmaceutically

- 10 acceptable substances are applied. Film-coated tablets are compressed tablets which have been coated with a polymer or other suitable coating. Multiple compressed tablets are compressed tablets made by more than one compression cycle utilizing the pharmaceutically acceptable substances previously mentioned. Coloring agents may also
- 15 be used in the above dosage forms. Flavoring and sweetening agents are used in compressed tablets, sugar-coated, multiple compressed and chewable tablets. Flavoring and sweetening agents are especially useful in the formation of chewable tablets and lozenges.

Liquid oral dosage forms include aqueous solutions, emulsions,

- 20 suspensions, solutions and/or suspensions reconstituted from non-effervescent granules and effervescent preparations reconstituted from effervescent granules. Aqueous solutions include, for example, elixirs and syrups. Emulsions are either oil-in-water or water-in-oil. Elixirs are clear, sweetened, hydroalcoholic preparations.
- 25 Pharmaceutically acceptable carriers used in elixirs include solvents. Syrups are concentrated aqueous solutions of a sugar, for example, sucrose, and may contain a preservative. An emulsion is a two-phase system in which one liquid is dispersed in the form of small globules throughout another liquid. Pharmaceutically acceptable carriers used in

-116-

emulsions are non-aqueous liquids, emulsifying agents and preservatives. Suspensions use pharmaceutically acceptable suspending agents and preservatives. Pharmaceutically acceptable substances used in non-effervescent granules, to be reconstituted into a liquid oral dosage

- 5 form, include diluents, sweeteners and wetting agents. Pharmaceutically acceptable substances used in effervescent granules, to be reconstituted into a liquid oral dosage form, include organic acids and a source of carbon dioxide. Coloring and flavoring agents are used in all of the above dosage forms.
- 10 Solvents include glycerin, sorbitol, ethyl alcohol and syrup. Examples of preservatives include glycerin, methyl and propylparaben, benzoic add, sodium benzoate and alcohol. Examples of non-aqueous liquids utilized in emulsions include mineral oil and cottonseed oil. Examples of emulsifying agents include gelatin, acacia, tragacanth,
- 15 bentonite, and surfactants such as polyoxyethylene sorbitan monooleate. Suspending agents include sodium carboxymethylcellulose, pectin, tragacanth, Veegum and acacia. Diluents include lactose and sucrose. Sweetening agents include sucrose, syrups, glycerin and artificial sweetening agents such as saccharin. Wetting agents include propylene
- 20 glycol monostearate, sorbitan monooleate, diethylene glycol monolaurate and polyoxyethylene lauryl ether. Organic adds include citric and tartaric acid. Sources of carbon dioxide include sodium bicarbonate and sodium carbonate. Coloring agents include any of the approved certified water soluble FD and C dyes, and mixtures thereof. Flavoring agents include
- **25** natural flavors extracted from plants such fruits, and synthetic blends of compounds which produce a pleasant taste sensation.

For a solid dosage form, the solution or suspension, in for example propylene carbonate, vegetable oils or triglycerides, is preferably encapsulated in a gelatin capsule. Such solutions, and the preparation)

PCT/US02/41306

-117-

and encapsulation thereof, are disclosed in U.S. Patent Nos 4,328,245;
4,409,239; and 4,410,545. For a liquid dosage form, the solution, *e.g.*, for example, in a polyethylene glycol, may be diluted with a sufficient quantity of a pharmaceutically acceptable liquid carrier, *e.g.*, water, to be easily measured for administration.

Alternatively, liquid or semi-solid oral formulations may be prepared by dissolving or dispersing the active compound or salt in vegetable oils, glycols, triglycerides, propylene glycol esters (*e.g.*, propylene carbonate) and other such carriers, and encapsulating these

- 10 solutions or suspensions in hard or soft gelatin capsule shells. Other useful formulations include those set forth in U.S. Patent Nos. Re 28,819 and 4,358,603. Briefly, such formulations include, but are not limited to, those containing a compound provided herein, a dialkylated mono- or poly-alkylene glycol, including, but not limited to, 1,2-dimethoxymethane,
- 15 diglyme, triglyme, tetraglyme, polyethylene glycol-350-dimethyl ether, polyethylene glycol-550-dimethyl ether, polyethylene glycol-750-dimethyl ether wherein 350, 550 and 750 refer to the approximate average molecular weight of the polyethylene glycol, and one or more anitoxidants, such as butylated hydroxytoluene (BHT), butylated
- 20 hydroxyanisole (BHA), propyl gallate, vitamin E, hydroquinone, hydroxycoumarins, ethanolamine, lecithin, cephalin, ascorbic acid, malic acid, sorbitol, phosphoric acid, thiodipropionic acid and its esters, and dithiocarbamates.

Other formulations include, but are not limited to, aqueous alcoholic solutions including a pharmaceutically acceptable acetal. Alcohols used in these formulations are any pharmaceutically acceptable water-miscible solvents having one or more hydroxyl groups, including, but not limited to, propylene glycol and ethanol. Acetals include, but are

-118-

not limited to, di(lower alkyl) acetals of lower alkyl aldehydes such as acetaldehyde diethyl acetal.

In all embodiments, tablets and capsules formulations may be coated as known by those of skill in the art in order to modify or sustain
5 dissolution of the active ingredient. Thus, for example, they may be coated with a conventional enterically digestible coating, such as phenylsalicylate, waxes and cellulose acetate phthalate.

2. Injectables, solutions and emulsions

Parenteral administration, generally characterized by injection,

- 10 either subcutaneously, intramuscularly or intravenously is also contemplated herein. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions. Suitable excipients are, for example, water, saline, dextrose, glycerol or ethanol.
- 15 In addition, if desired, the pharmaceutical compositions to be administered may also contain minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents, stabilizers, solubility enhancers, and other such agents, such as for example, sodium acetate, sorbitan monolaurate, triethanolamine oleate
- and cyclodextrins. Implantation of a slow-release or sustained-release system, such that a constant level of dosage is maintained (see, *e.g.*, U.S. Patent No. 3,710,795) is also contemplated herein. Briefly, a compound provided herein is dispersed in a solid inner matrix, *e.g.*, polymethylmethacrylate, polybutylmethacrylate, plasticized or
- 25 unplasticized polyvinylchloride, plasticized nylon, plasticized polyethyleneterephthalate, natural rubber, polyisoprene, polyisobutylene, polybutadiene, polyethylene, ethylene-vinylacetate copolymers, silicone rubbers, polydimethylsiloxanes, silicone carbonate copolymers, hydrophilic polymers such as hydrogels of esters of acrylic and

-119-

methacrylic acid, collagen, cross-linked polyvinylalcohol and cross-linked partially hydrolyzed polyvinyl acetate, that is surrounded by an outer polymeric membrane, *e.g.*, polyethylene, polyporpoylene, ethylene/propylene copolymers, ethylene/ethyl acrylate copolymers,

- 5 ethylene/vinylacetate copolymers, silicone rubbers, polydimethyl siloxanes, neoprene rubber, chlorinated polyethylene, polyvinylchloride, vinylchloride copolymers with vinyl acetate, vinylidene chloride, ethylene and propylene, ionomer polyethylene terephthalate, butyl rubber epichlorohydrin rubbers, ethylene/vinyl alcohol copolymer, ethylene/vinyl
- 10 acetate/vinyl alcohol terpolymer, and ethylene/vinyloxyethanol copolymer, that is insoluble in body fluids. The compound diffuses throught the outer polymeric membrane in a release rate controlling step. The percentage of active compound contained in such parenteral compositions is highly dependent on the specific nature thereof, as well

15 as the activity of the compound and the needs of the subject.

Parenteral administration of the compositions includes intravenous, subcutaneous and intramuscular administrations. Preparations for parenteral administration include sterile solutions ready for injection, sterile dry soluble products, such as lyophilized powders, ready to be

20 combined with a solvent just prior to use, including hypodermic tablets, sterile suspensions ready for injection, sterile dry insoluble products ready to be combined with a vehicle just prior to use and sterile emulsions. The solutions may be either aqueous or nonaqueous.

If administered intravenously, suitable carriers include physiological
 saline or phosphate buffered saline (PBS), and solutions containing thickening and solubilizing agents, such as glucose, polyethylene glycol, and polypropylene glycol and mixtures thereof.

-120-

Pharmaceutically acceptable carriers used in parenteral preparations include aqueous vehicles, nonaqueous vehicles, antimicrobial agents,

isotonic agents, buffers, antioxidants, local anesthetics, suspending and
dispersing agents, emulsifying agents, sequestering or chelating agents and other pharmaceutically acceptable substances.

Examples of aqueous vehicles include Sodium Chloride Injection, Ringers Injection, Isotonic Dextrose Injection, Sterile Water Injection, Dextrose and Lactated Ringers Injection. Nonaqueous parenteral vehicles

- 10 include fixed oils of vegetable origin, cottonseed oil, corn oil, sesame oil and peanut oil. Antimicrobial agents in bacteriostatic or fungistatic concentrations must be added to parenteral preparations packaged in multiple-dose containers which include phenols or cresols, mercurials, benzyl alcohol, chlorobutanol, methyl and propyl p-hydroxybenzoic acid
- 15 esters, thimerosal, benzalkonium chloride and benzethonium chloride. Isotonic agents include sodium chloride and dextrose. Buffers include phosphate and citrate. Antioxidants include sodium bisulfate. Local anesthetics include procaine hydrochloride. Suspending and dispersing agents include sodium carboxymethylcelluose, hydroxypropyl
- 20 methylcellulose and polyvinylpyrrolidone. Emulsifying agents include
 Polysorbate 80 (TWEEN® 80). A sequestering or chelating agent of metal ions include EDTA. Pharmaceutical carriers also include ethyl alcohol, polyethylene glycol and propylene glycol for water miscible vehicles and sodium hydroxide, hydrochloric acid, citric acid or lactic acid for pH
 26 adjustment

25 adjustment.

The concentration of the pharmaceutically active compound is adjusted so that an injection provides an effective amount to produce the desired pharmacological effect. The exact dose depends on the age, weight and condition of the patient or animal as is known in the art.

-121-

The unit-dose parenteral preparations are packaged in an ampoule, a vial or a syringe with a needle. All preparations for parenteral administration must be sterile, as is known and practiced in the art.

Illustratively, intravenous or intraarterial infusion of a sterile

- **5** aqueous solution containing an active compound is an effective mode of administration. Another embodiment is a sterile aqueous or oily solution or suspension containing an active material injected as necessary to produce the desired pharmacological effect.
- Injectables are designed for local and systemic administration.
 Typically a therapeutically effective dosage is formulated to contain a concentration of at least about 0.1% w/w up to about 90% w/w or more, preferably more than 1% w/w of the active compound to the treated tissue(s). The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at
- 15 intervals of time. It is understood that the precise dosage and duration of treatment is a function of the tissue being treated and may be determined empirically using known testing protocols or by extrapolation from *in vivo* or *in vitro* test data. It is to be noted that concentrations and dosage values may also vary with the age of the individual treated. It
- 20 is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the formulations, and that the concentration ranges set forth herein are exemplary only and are not

25 intended to limit the scope or practice of the claimed formulations.

The compound may be suspended in micronized or other suitable form or may be derivatized to produce a more soluble active product or to produce a prodrug. The form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the

1

-122-

solubility of the compound in the selected carrier or vehicle. The effective concentration is sufficient for ameliorating the symptoms of the condition and may be empirically determined.

3. Lyophilized powders

5 Of interest herein are also lyophilized powders, which can be reconstituted for administration as solutions, emulsions and other mixtures. They may also be reconsitituted and formulated as solids or gels.

The sterile, lyophilized powder is prepared by dissolving a
compound provided herein, or a pharmaceutically acceptable derivative thereof, in a suitable solvent. The solvent may contain an excipient which improves the stability or other pharmacological component of the powder or reconstituted solution, prepared from the powder. Excipients that may be used include, but are not limited to, dextrose, sorbital,

- **15** fructose, corn syrup, xylitol, glycerin, glucose, sucrose or other suitable agent. The solvent may also contain a buffer, such as citrate, sodium or potassium phosphate or other such buffer known to those of skill in the art at, typically, about neutral pH. Subsequent sterile filtration of the solution followed by lyophilization under standard conditions known to
- 20 those of skill in the art provides the desired formulation. Generally, the resulting solution will be apportioned into vials for lyophilization. Each vial will contain a single dosage (10-1000 mg, preferably 100-500 mg) or multiple dosages of the compound. The lyophilized powder can be stored under appropriate conditions, such as at about 4 °C to room
- 25 temperature.

Reconstitution of this lyophilized powder with water for injection provides a formulation for use in parenteral administration. For reconstitution, about 1-50 mg, preferably 5-35 mg, more preferably about 9-30 mg of lyophilized powder, is added per mL of sterile water or

-123-

other suitable carrier. The precise amount depends upon the selected compound. Such amount can be empirically determined.

4. Topical administration

Topical mixtures are prepared as described for the local and
systemic administration. The resulting mixture may be a solution, suspension, emulsions or the like and are formulated as creams, gels, ointments, emulsions, solutions, elixirs, lotions, suspensions, tinctures, pastes, foams, aerosols, irrigations, sprays, suppositories, bandages, dermal patches or any other formulations suitable for topical

10 administration.

The compounds or pharmaceutically acceptable derivatives thereof may be formulated as aerosols for topical application, such as by inhalation (see, *e.g.*, U.S. Patent Nos. 4,044,126, 4,414,209, and 4,364,923, which describe aerosols for delivery of a steroid useful for

15 treatment of inflammatory diseases, particularly asthma). These formulations for administration to the respiratory tract can be in the form of an aerosol or solution for a nebulizer, or as a microfine powder for insufflation, alone or in combination with an inert carrier such as lactose. In such a case, the particles of the formulation will typically have

20 diameters of less than 50 microns, preferably less than 10 microns.

The compounds may be formulated for local or topical application, such as for topical application to the skin and mucous membranes, such as in the eye, in the form of gels, creams, and lotions and for application to the eye or for intracisternal or intraspinal application. Topical

25 administration is contemplated for transdermal delivery and also for administration to the eyes or mucosa, or for inhalation therapies. Nasal solutions of the active compound alone or in combination with other pharmaceutically acceptable excipients can also be administered. 5

-124-

These solutions, particularly those intended for ophthalmic use, may be formulated as 0.01% - 10% isotonic solutions, pH about 5-7, with appropriate salts.

5. Compositions for other routes of administration

Other routes of administration, such as topical application, transdermal patches, and rectal administration are also contemplated herein.

For example, pharmaceutical dosage forms for rectal administration are rectal suppositories, capsules and tablets for systemic effect. Rectal

- 10 suppositories are used herein mean solid bodies for insertion into the rectum which melt or soften at body temperature releasing one or more pharmacologically or therapeutically active ingredients. Pharmaceutically acceptable substances utilized in rectal suppositories are bases or vehicles and agents to raise the melting point. Examples of bases
- 15 include cocoa butter (theobroma oil), glycerin-gelatin, carbowax (polyoxyethylene glycol) and appropriate mixtures of mono-, di- and triglycerides of fatty acids. Combinations of the various bases may be used. Agents to raise the melting point of suppositories include spermaceti and wax. Rectal suppositories may be prepared either by the
- **20** compressed method or by molding. The typical weight of a rectal suppository is about 2 to 3 gm.

Tablets and capsules for rectal administration are manufactured using the same pharmaceutically acceptable substance and by the same methods as for formulations for oral administration.

25

6. Articles of manufacture

The compounds or pharmaceutically acceptable derivatives may be _ packaged as articles of manufacture containing

i) packaging material,

-125-

ii) a compound or pharmaceutically acceptable derivative thereof provided herein, which is effective for modulating the activity of nuclear receptors, including LXR and/or orphan nuclear receptors, or for treatment, prevention or amelioration of one or more symptoms of

5 nuclear receptor, including LXR and/or orphan nuclear receptor, mediated diseases or disorders, or diseases or disorders in which nuclear receptor activity, including LXR and/or orphan nuclear receptor activity is implicated, within the packaging material, and

iii) a label that indicates that the compound or composition, or
 pharmaceutically acceptable derivative thereof, is used for modulating the activity of nuclear receptors, including LXR and/or orphan nuclear receptors, or for treatment, prevention or amelioration of one or more symptoms of nuclear receptor, including LXR and/or orphan nuclear receptor, mediated diseases or disorders, or diseases or disorders in

15 which nuclear receptor activity, including LXR and/or orphan nuclear receptor activity is implicated.

The articles of manufacture provided herein contain packaging materials. Packaging materials for use in packaging pharmaceutical products are well known to those of skill in the art. See, *e.g.*, U.S.

20 Patent Nos. 5,323,907, 5,052,558 and 5,033,252. Examples of pharmaceutical packaging materials include, but are not limited to, blister packs, bottles, tubes, inhalers, pumps, bags, vials, containers, syringes, bottles, and any packaging material suitable for a selected formulation and intended mode of administration and treatment. A wide array of

25 formulations of the compounds and compositions provided herein are contemplated as are a variety of treatments for any disease or disorder in which nuclear receptor activity, including LXR and/or orphan nuclear receptor activity, is implicated as a mediator or contributor to the symptoms or cause. WO 03/059884

-126-

E. Evaluation of the Utility of the Compounds

Standard physiological, pharmacological and biochemical procedures are available for testing the compounds to identify those that possess biological activities that modulate the activity or nuclear

5 receptors, including the LXRs (LXRα and LXR β). Such assays include, for example, biochemical assays such as binding assays, fluorescence polarization assays, FRET based coactivator recruitment assays (see generally Glickman *et al.*, J. Biomolecular Screening, 7 No. 1 3-10 (2002), as well as cell based assays including the co-transfection assay,

the use of LBD-Gal 4 chimeras and protein-protein interaction assays,
 (see, Lehmann. *et al., J. Biol Chem.*, 272(6) 3137-3140 (1997).

High throughput screening systems are commercially available *(see, e.g.,* Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments Inc., Fullerton, CA; Precision

- 15 Systems, Inc., Natick, MA) that enable these assays to be run in a high throughput mode. These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high
- throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and
 the like.

Assays that do not require washing or liquid separation steps are preferred for such high throughput screening systems and include biochemical assays such as fluorescence polarization assays (see for example, Owicki, J., Biomol Screen 2000 Oct; 5(5):297) scintillation -127-

proximity assays (SPA) (see for example, Carpenter *et al.*, Methods Mol Biol 2002; 190:31-49) and fluorescence resonance energy transfer (FRET) or time resolved FRET based coactivator recruitment assays (Mukherjee *et al.*, J Steroid Biochem Mol Biol 2002 Jul;81(3):217-25;

- 5 (Zhou *et al.*, Mol Endocrinol. 1998 Oct; 12(10):1594-604). Generally such assays can be preformed using either the full length receptor, or isolated ligand binding domain (LBD). In the case of LXR α the LBD comprises amino acids 188-447, for LXR β the LDB comprises amino acids 198-461, and for FXR, the LBD comprises amino acids 244 to 472
- 10 of the full length sequence.

15

If a fluorescently labeled ligand is available, fluorescence polarization assays provide a way of detecting binding of compounds to the nuclear receptor of interest by measuring changes in fluorescence polarization that occur as a result of the displacement of a trace amount of the label ligand by the compound. Additionally this approach can also

be used to monitor the ligand dependent association of a fluorescently labeled coactivator peptide to the nuclear receptor of interest to detect ligand binding to the nuclear receptor of interest.

The ability of a compound to bind to a receptor, or heterodimer **20** complex with RXR, can also be measured in a homogeneous assay format by assessing the degree to which the compound can compete off a radiolabelled ligand with known affinity for the receptor using a scintillation proximity assay (SPA). In this approach, the radioactivity emitted by a radiolabelled compound (for example, [³H] 24,25

25 Epoxycholesterol) generates an optical signal when it is brought into close proximity to a scintillant such as a Ysi-copper containing bead, to which the nuclear receptor is bound. If the radiolabelled compound is displaced from the nuclear receptor the amount of light emitted from the nuclear receptor bound scintillant decreases, and this can be readily -128-

detected using standard microplate liquid scintillation plate readers such as, for example, a Wallac MicroBeta reader.

The heterodimerization of LXR with RXR α can also be measured by fluorescence resonance energy transfer (FRET), or time resolved FRET, to

- 5 monitor the ability of the compounds provided herein to bind to LXR or other nuclear receptors. Both approaches rely upon the fact that energy transfer from a donor molecule to an acceptor molecule only occurs when donor and acceptor are in close proximity. Typically the purified LBD of the nuclear receptor of interest is labeled with biotin then mixed
- 10 with stoichiometric amounts of europium labeled streptavidin (Wallac Inc.), and the purified LBD of RXRα is labeled with a suitable fluorophore such as CY5[™]. Equimolar amounts of each modified LBD are mixed together and allowed to equilibrate for at least 1 hour prior to addition to either variable or constant concentrations of the sample for which the
- **15** affinity is to be determined. After equilibration, the time-resolved fluorescent signal is quantitated using a fluorescent plate reader. The affinity of the compound can then be estimated from a plot of fluorescence versus concentration of compound added.

This approach can also be exploited to measure the ligand

- 20 dependent interaction of a co-activator peptide with a nuclear receptor in order to characterize the agonist or antagonist activity of the compounds disclosed herein. Typically the assay in this case involves the use a recombinant Glutathione-S-transferase (GST)-nuclear receptor ligand binding domain (LBD) fusion protein and a synthetic biotinylated peptide
- 25 sequence derived from the receptor interacting domain of a co-activator peptide such as the steroid receptor coactivator 1 (SRC-1). Typically GST-LBD is labeled with a europium chelate (donor) via a europium-tagged anti-GST antibody, and the coactivator peptide is labeled with allophycocyanin via a streptavidin-biotin linkage.

WO 03/059884

PCT/US02/41306

-129-

In the presence of an agonist for the nuclear receptor, the peptide is recruited to the GST-LBD bringing europium and allophycocyanin into close proximity to enable energy transfer from the europium chelate to the allophycocyanin. Upon excitation of the complex with light at 340

- 5 nm excitation energy absorbed by the europium chelate is transmitted to the allophycocyanin moiety resulting in emission at 665 nm. If the europium chelate is not brought into close proximity to the allophycocyanin moiety there is little or no energy transfer and excitation of the europium chelate results in emission at 615 nm. Thus the intensity
- 10 of light emitted at 665 nm gives an indication of the strength of the protein-protein interaction. The activity of a nuclear receptor antagonist can be measured by determining the ability of a compound to competitively inhibit (*i.e.*, IC₅₀) the activity of an agonist for the nuclear receptor.
- 15 In addition a variety of cell based assay methodologies may be successfully used in screening assays to identify and profile the specificity of compounds claimed herein. These approaches include the co-transfection assay, translocation assays, complementation assays and the use of gene activation technologies to over express endogenous
- 20 nuclear receptors.

Three basic variants of the co-transfection assay strategy exist, co-transfection assays using full-length nuclear receptor, co transfection assays using chimeric nuclear receptors comprising the ligand binding domain of the nuclear receptor of interest fused to a heterologous DNA

25 binding domain, and assays based around the use of the mammalian two hybrid assay system.

The basic co-transfection assay is based on the co-transfection into the cell of an expression plasmid to express the nuclear receptor of interest in the cell with a reporter plasmid comprising a reporter gene -130-

whose expression is under the control of DNA sequence that is capable of interacting with that nuclear receptor. (See for example US Patents Nos. 5,071,773; 5,298,429 and 6,416,957). Treatment of the transfected cells with an agonist for the nuclear receptor increases the

5 transcriptional activity of that receptor which is reflected by an increase in expression of the reporter gene, which may be measured by a variety of standard procedures.

For those receptors that function as heterodimers with RXR, such as the LXRs, the co-transfection assay typically includes the use of

10 expression plasmids for both the nuclear receptor of interest and RXR. Typical co-transfection assays require access to the full length nuclear receptor and suitable response elements that provide sufficient screening sensitivity and specificity to the nuclear receptor of interest.

Genes encoding the following full-length previously described

- **15** proteins, which are suitable for use in the co-transfection studies and profiling the compounds described herein, include human LXR α (SEQ ID 1), human LXR β (SEQ ID 3), rat FXR (SEQ ID 5), human FXR (SEQ ID 7), human RXR α (SEQ ID 9), human RXR β (SEQ ID 17), human RXR γ (SEQ ID 15), human PPAR α (SEQ ID 11) and human PPAR δ (SEQ ID 13). All
- **20** accession numbers in this application refer to GenBank accession numbers.

Reporter plasmids may be constructed using standard molecular biological techniques by placing cDNA encoding for the reporter gene downstream from a suitable minimal promoter. For example luciferase

25 reporter plasmids may be constructed by placing cDNA encoding firefly luciferase immediately down stream from the herpes virus thymidine kinase promoter (located at nucleotides residues-105 to +51 of the thymidine kinase nucleotide sequence) which is linked in turn to the various response elements.

-131-

Numerous methods of co-transfecting the expression and reporter plasmids are known to those of skill in the art and may be used for the co-transfection assay to introduce the plasmids into a suitable cell type. Typically such a cell will not endogenously express nuclear receptors that interact with the response elements used in the reporter plasmid.

Numerous reporter gene systems are known in the art and include, for example, alkaline phosphatase Berger, J., *et al.* (1988) Gene **66** 1-10; Kain, S.R. (1997) Methods. Mol. Biol. <u>63</u> 49-60), β -galactosidase (See, U.S. Patent No. 5,070,012, issued Dec, 3, 1991 to Nolan *et al.*, and

 Bronstein, I., et al., (1989) J. Chemilum. Biolum. 4 99-111), chloramphenicol acetyltransferase (See Gorman et al., Mol Cell Biol. (1982) 2 1044-51), β-glucuronidase, peroxidase, β-lactamase (U.S. Patent Nos. 5,741,657 and 5,955,604), catalytic antibodies, luciferases (U.S. Patents 5,221,623; 5,683,888; 5,674,713; 5,650,289;

15 5,843,746) and naturally fluorescent proteins (Tsien, R.Y. (1998) Annu. Rev. Biochem. **67** 509-44).

The use of chimeras comprising the ligand binding domain (LBD) of the nuclear receptor of interest fused to a heterologous DNA binding domain (DBD) expands the versatility of cell based assays by directing

20 activation of the nuclear receptor in question to defined DNA binding elements recognized by defined DNA binding domain (see WO95/18380). This assay expands the utility of cell based co-transfection assays in cases where the biological response or screening window using the native DNA binding domain is not satisfactory.

25 In general the methodology is similar to that used with the basic co-transfection assay, except that a chimeric construct is used in place of the full length nuclear receptor. As with the full length nuclear receptor, treatment of the transfected cells with an agonist for the nuclear receptor LBD increases the transcriptional activity of the

RECTIFIED SHEET (RULE 91)

5

PCT/US02/41306

-132-

heterologous DNA binding domain which is reflected by an increase in expression of the reporter gene as described above. Typically for such chimeric constructs, the DNA binding domains from defined nuclear receptors, or from yeast or bacterially derived transcriptional regulators such as members of the GAL 4 and Lex A/Umud super families are used.

A third cell based assay of utility for screening compounds claimed herein is a mammalian two-hybrid assay that measures the ability of the nuclear hormone receptor to interact with a cofactor in the presence of a ligand. (See for example, US Patent Nos. US 5,667,973, 5,283,173 and

10 5,468,614). The basic approach is to create three plasmid constructs that enable the interaction of the nuclear receptor with the interacting protein to be coupled to a transcriptional readout within a living cell. The first construct is an expression plasmid for expressing a fusion protein comprising the interacting protein, or a portion of that protein containing

15 the interacting domain, fused to a GAL4 DNA binding domain. The second expression plasmid comprises DNA encoding the nuclear receptor of interest fused to a strong transcription activation domain such as VP16, and the third construct comprises the reporter plasmid comprising a reporter gene with a minimal promoter and GAL4 upstream activating

20 sequences.

Once all three plasmids are introduced into a cell, the GAL4 DNA binding domain encoded in the first construct allows for specific binding of the fusion protein to GAL4 sites upstream of a minimal promoter. However because the GAL4 DNA binding domain typically has no strong

25 transcriptional activation properties in isolation, expression of the reporter gene occurs only at a low level. In the presence of a ligand, the nuclear receptor-VP16 fusion protein can bind to the GAL4-interacting protein fusion protein bringing the strong transcriptional activator VP16 in close proximity to the GAL4 binding sites and minimal promoter region of the

-133-

reporter gene. This interaction significantly enhances the transcription of the reporter gene, which can be measured for various reporter genes as described above. Transcription of the reporter gene is thus driven by the interaction of the interacting protein and nuclear receptor of interest in a

5 ligand dependent fashion.

Any compound which is a candidate for activation of LXR α or LXR β may be tested by these methods. Generally, compounds are tested at several different concentrations to optimize the chances that activation of the receptor will be detected and recognized if present. Typically

10 assays are performed in triplicate and vary within experimental error by less than 15%. Each experiment is typically repeated three or more times with similar results.

Activity of the reporter gene can be conveniently normalized to the internal control and the data plotted as fold activation relative to

15 untreated cells. A positive control compound (agonist) may be included along with DMSO as high and low controls for normalization of the assay data. Similarly, antagonist activity can be measured by determining the ability of a compound to competitively inhibit the activity of an agonist.

Additionally the compounds and compositions can be evaluated for

- 20 their ability to increase or decrease the expression of genes known to be modulated by LXR α or β and other nuclear receptors in vivo, using Northern-blot, RT PCR or oligonucleotide microarray analysis to analyze RNA levels. Western-blot analysis can be used to measure expression of proteins encoded by LXR target genes. Genes that are known to be
- 25 regulated by the LXRs include the ATP binding cassette transporters ABCA1, ABCG1, ABCG5, ABCG8, the sterol response element binding protein 1c (SREBP1c) gene, stearoyl CoA desaturase 1 (SCD-1) and the apolipoprotein apoE gene (ApoE).

-134-

Established animal models exist for a number of diseases of direct relevance to the claimed compounds and these can be used to further profile and characterize the claimed compounds. These model systems include diabetic dislipidemia using Zucker (fa/fa) rats or (db/db) mice,

- 5 spontaneous hyperlipidemia using apolipoprotein E deficient mice (ApoE^{-/-}), diet-induced hyperlipidemia, using low density lipoprotein receptor deficient mice (LDR^{-/-}) and atherosclerosis using both the Apo E(^{-/-}) and LDL(^{-/-}) mice fed a western diet. (21% fat, 0.05% cholesterol). Additionally LXR or FXR animal models (e.g., knockout mice) can be used
- to further evaluate the present compounds and compositions *in vivo* (*see*, for example, Peet, *et al., Cell*, 93:693-704 (1998), Sinal, *et al., Cell*, 102: 731-744 (2000)).
 - F. Methods of Use of the compounds and compositions Methods and compounds for selectively regulating LXR a or LXR β
- 15 are also provided. In one embodiment, such compounds exhibit at least a 10 fold difference in IC₅₀, or EC₅₀ for LXR α compared to LXR β .

F. Methods of use of the compounds and compositions

Methods of use of the compounds and compositions provided herein are also provided. The methods involve both *in vitro* and *in vivo*

- 20 uses of the compounds and compositions for altering nuclear receptor activity, including LXR and/or orphan nuclear receptor activity, and for treatment, prevention, or amelioration of one or more symptoms of diseases or disorder that are modulated by nuclear receptor activity, including LXR and/or orphan nuclear receptor activity, or in which nuclear
- **25** receptor activity, including LXR and/or orphan nuclear receptor activity, is implicated.

Methods of reducing cholesterol levels and of modulating cholesterol metabolism are provided. As described above, LXR is

-135-

implicated in modulated cholesteral metabolism and catabolism. See, e.g., International Patent Application Publication No. 00/40965.

Method of altering nuclear receptor activity, including liver X receptor (LXR) and/or orphan nuclear receptor activity, by contacting the receptor with one or more compounds or compositions provided herein,

are provided.

Methods of treatment, prevention, or amelioration of one or more symptoms of a disease or disorder which is affected by cholesterol, triglyceride, or bile acid levels are provided.

10 Methods of treatment, prevention, or amelioration of one or more symptoms of hypercholesterolemia (see, e.g., International Patent Application Publication No. WO 00/57915); hyperlipoproteinemia (see, *e.g.*, International Patent Application Publication No. WO 01/60818); hypertriglyceridemia, lipodystrophy, hyperglycemia or diabetes mellitus

15 (see, e.g., International Patent Application Publication No. WO 01/82917); dyslipidemia, obesity, atherosclerosis, lipid disorders, cardiovascular disorders, or gallstone disease (see, e.g., International Patent Applciation Publication No. WO 00/37077); acne vulgaris or acneiform skin conditions (see, e.g., International Patent Application

20 Publication No. WO 00/49992); atherosclerosis, diabetes, Parkinson's disease, inflammation, immunological disorders, obesity, cancer or Alzheimer's disease (see, e.g., International Patent Application Publication No. WO 00/17334); conditions characterized by a perturbed epidermal barrier function or conditions of disturbed differentiation or

25 excess proliferation of the epidermis or mucous membrane (see, e.g., U.S. Patent Nos. 6,184,215 and 6,187,814, and International Patent Application Publication No. Wo 98/32444) are provided.

Methods of increasing cholesterol efflux from mammalian cells using the compounds and compositions provided herein are provided

5

10

(see, *e.g.*, International Patent Application Publication No. WO 00/78972).

Methods of increasing the expression of ATP-Binding Cassette (ABC1) in mammalian cells using the compounds and compositions

5 provided herein are provided (see, *e.g.*, International Patent Application Publication No. WO 00/78972).

Methods of treating, preventing, or ameliorating one or more symptoms of hypocholesterolemia using the compounds and compositions provided herein are also provided.

Methods of post-myocardial infarction therapy using the compounds and compositions provided herein are also provided (see,

e.g., International Patent Application Publication No. WO 01/03705).

Methods and compounds for selectively regulating LXR α or LXR β are also provided. In one embodiment, such compounds exhibit at least **15** a 10 fold difference in IC₅₀, or EC₅₀ for LXR α compared to LXR β .

G. Combination Therapy

Also contemplated herein is combination therapy using a compound provided herein, or a pharmaceutically acceptable derivative thereof, in combination with one or more of the following:

20 antihyperlipidemic agents, plasma HDL-raising agents, antihypercholesterolemic agents, cholesterol biosynthesis inhibitors (such as HMG CoA reductase inhibitors, such as lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin and rivastatin), acyl-coenzyme A:cholesterol acyltransferase (ACAT) inhibitors, probucol, raloxifene,

25 nicotinic acid, niacinamide, cholesterol absorption inhibitors, bile acid sequestrants (such as anion exchange resins, or quaternary amines (*e.g.*, cholestyramine or colestipol)), low density lipoprotein receptor inducers, clofibrate, fenofibrate, benzofibrate, cipofibrate, gemfibrizol, vitamin B_{6} , vitamin B_{12} , anti-oxidant vitamins, β -blockers, anti-diabetes agents,

RECTIFIED SHEET (RULE 91)

WO 03/059884

PCT/US02/41306

-137-

angiotensin II antagonists, angiotensin converting enzyme inhibitors, platelet aggregation inhibitors, fibrinogen receptor antagonists, aspirin or fibric acid derivatives. The compound provided herein, or pharmaceutically acceptable derivative thereof, is administered

5 simultaneously with, prior to, or after administration of one or more of the above agents. Pharmaceutical compositions containing a compound provided herein and one or more of the above agents are also provided.

Combination therapy includes administration of a single pharmaceutical dosage formulation which contains a LXR selective

- 10 compound and one or more additional active agents, as well as administration of the LXR selective compound and each active agent in its own separate pharmaceutical dosage formulation. For example, a LXR agonist or antagonist claimed herein and an HMG-CoA reductase inhibitor can be administered to the patient together in a single oral
- 15 dosage composition such as a tablet or capsule, or each agent administered in separate oral dosage formulations. Where separate dosage formulations are used, the compounds described herein and one or more additional active agents can be administered at essentially the same time, *i.e.*, concurrently, or at separately staggered times, *i.e.*,
- 20 sequentially; combination therapy is understood to include all these regimens.

The compound is, in one embodiment, administered with a cholesterol biosynthesis inhibitor, particularly an HMG-CoA reductase inhibitor. The term HMG-CoA reductase inhibitor is intended to include

25 all pharmaceutically acceptable salts, esters, free acids and lactone forms of compounds which have HMG-CoA reductase inhibitory activity and, therefore, the use of such salts, esters, free acids and lactone forms is included within the scope the compounds claimed herein. Compounds which have inhibitory activity for HMG-CoA reductase can be readily

PCT/US02/41306

-138-

identified using assays well-known¹ in the art. For instance, suitable assays are described or disclosed in U.S. Patent No. 4,231,938 and WO 84/02131. Examples of suitable HMG-CoA reductase inhibitors include, but are not limited to, lovastatin (MEVACOR[®]; *see*, U.S. Patent No.

- 5 4,231,938); simvastatin (ZOCOR[®]; see, U.S. Patent No. 4,444,784);
 pravastatin sodium (PRAVACHOL[®]; see, U.S. Patent No. 4,346,227);
 fluvastatin sodium (LESCOL[®]; see, U.S. Patent No. 5,354,772);
 atorvastatin calcium (LIPITOR[®]; see, U.S. Patent No. 5,273,995) and
 rivastatin (also known as cerivastatin; see, U.S. Patent No. 5,177,080).
- 10 The structural formulas of these and additional HMG-CoA reductase inhibitors that can be used in the methods claimed herein are described at page 87 of M. Yalpani, "Cholesterol Lowering Drugs," *Chemistry & Industry*, pp. 85-89 (5 February 1996). In one embodiments, the HMG-CoA reductase inhibitor is selected from lovastatin and simvastatin.
- 15 Dosage information for HMG-CoA reductase inhibitors is well known in the art, since several HMG-CoA reductase inhibitors are marketed in the U.S. In particular, the daily dosage amounts of the HMG-CoA reductase inhibitor may be the same or similar to those amounts which are employed for anti-hypercholesterolemic treatment and
- 20 which are described in the *Physicians' Desk Reference* (PDR). For example, see the 50th Ed. of the PDR, 1996 (Medical Economics Co); in particular, see at page 216 the heading "Hypolipidemics," sub-heading "HMG-CoA Reductase Inhibitors," and the reference pages cited therein. In one embodiment, the oral dosage amount of HMG-CoA reductase
- 25 inhibitor is from about 1 to 200 mg/day and, in another embodiment, from about 5 to 160 mg/day. However, dosage amounts will vary depending on the potency of the specific HMG-CoA reductase inhibitor used as well as other factors as noted above. An HMG-CoA reductase

15

-139-

inhibitor which has sufficiently greater potency may be given in submilligram daily dosages.

As examples, the daily dosage amount for simvastatin may be selected from 5 mg, 10 mg, 20 mg, 40 mg, 80 mg and 160 mg; for

- 5 lovastatin, 10 mg, 20 mg, 40 mg and 80 mg; for fluvastatin sodium, 20 mg, 40 mg and 80 mg; and for pravastatin sodium, 10 mg, 20 mg, and 40 mg. The daily dosage amount for atorvastatin calcium may be in the range of, in one embodiment, from 1 mg to 160 mg and, in another embodiment, from 5 mg to 80 mg. Oral administration may be in a
- 10 single or divided doses of two, three, or four times daily, although a single daily dose of the HMG-CoA reductase inhibitor is preferred.

The compounds claimed herein can be utilized in methods for decreasing hyperglycemia and insulin resistance or for methods of treating type II diabetes. The compounds can be identified, formulated, and administered as described above.

The methods claimed herein can be used effectively in combination with one or more additional active diabetes agents depending on the desired target therapy (see, e.g., Turner, N. et al. Prog. Drug Res. (1998) 51: 33-94; Haffner, S. Diabetes Care (1998) 21: 160-178; and

- 20 DeFronzo, R. et al. (eds.), Diabetes Reviews (1997) Vol. 5 No. 4). A number of studies have investigated the benefits of combination therapies with oral agents (see, e.g., Mahler, R., J. Clin. Endocrinol. Metab. (1999) 84: 1165-71; United Kingdom Prospective Diabetes Study Group: UKPDS 28, Diabetes Care (1998) 21: 87-92; Bardin, C. W.,(ed.),
- 25 CURRENT THERAPY IN ENDOCRINOLOGY AND METABOLISM, 6th Edition (Mosby--Year Book, Inc., St. Louis, Mo. 1997); Chiasson, J. et al., Ann. Intern. Med. (1994) 121: 928-935; Coniff, R. et al., Clin. Ther. (1997) 19: 16-26; Coniff, R. et al., Am. J. Med. (1995) 98: 443-451; and Iwamoto, Y. et al, Diabet. Med. (1996) 13 365-370; Kwiterovich, P.

-140-

Am. J. Cardiol (1998) 82(12A): 3U-17U). These studies indicate that diabetes and hyperlipidemia modulation can be further improved by the addition of a second agent to the therapeutic regimen.

An example of combination therapy that modulates (prevents the onset of the symptoms or complications associated) atherosclerosis, is administered with one or more of the following active agents: an antihyperlipidemic agent; a plasma HDL-raising agent; an antihypercholesterolemic agent, such as a cholesterol biosynthesis inhibitor, e.g., an hydroxymethylglutaryl (HMG) CoA reductase inhibitor

- 10 (also referred to as statins, such as lovastatin, simvastatin, pravastatin, fluvastatin, and atorvastatin), an HMG-CoA synthase inhibitor, a squalene epoxidase inhibitor, or a squalene synthetase inhibitor (also known as squalene synthase inhibitor); an acyl-coenzyme A cholesterol acyltransferase (ACAT) inhibitor, such as melinamide; probucol; nicotinic
- 15 acid and the salts thereof and niacinamide; a cholesterol absorption inhibitor, such as β -sitosterol; a bile acid sequestrant anion exchange resin, such as cholestyramine, colestipol or dialkylaminoalkyl derivatives of a cross-linked dextran; an LDL (low density lipoprotein) receptor inducer; fibrates, such as clofibrate, bezafibrate, fenofibrate, and
- 20 gemfibrizol; vitamin B₆ (also known as pyridoxine) and the pharmaceutically acceptable salts thereof, such as the HCl salt; vitamin B₁₂ (also known as cyanocobalamin); vitamin B₃ (also known as nicotinic acid and niacinamide, supra); anti-oxidant vitamins, such as vitamin C and E and beta carotene; a beta-blocker; an angiotensin II antagonist; an
- 25 angiotensin converting enzyme inhibitor; and a platelet aggregation inhibitor, such as fibrinogen receptor antagonists (i.e., glycoprotein llb/llla fibrinogen receptor antagonists) and aspirin.

Still another example of combination therapy can be seen in modulating diabetes (or treating diabetes and its related symptoms,

complications, and disorders) with, for example, sulfonylureas (such as chlorpropamide, tolbutamide, acetohexamide, tolazamide, glyburide, gliclazide, glynase, glimepiride, and glipizide), biguanides (such as metformin), thiazolidinediones (such as ciglitazone, pioglitazone,

5 troglitazone, and rosiglitazone); and related insulin sensitizers, such as selective and non-selective activators of PPARα, PPARβ and PPARγ; dehydroepiandrosterone (also referred to as DHEA or its conjugated sulphate ester, DHEA-SO₄); antiglucocorticoids; TNFαinhibitors; α-glucosidase inhibitors (such as acarbose, miglitol, and voglibose),

10 pramlintide (a synthetic analog of the human hormone amylin), other insulin secretagogues (such as repaglinide, gliquidone, and nateglinide), insulin, as well as the active agents discussed above for treating atherosclerosis.

Further provided herein are methods for treating obesity, as well as 15 treating the complications of obesity, by administering a compound claimed herein. The antagonists can be identified, formulated, and administered similarly to the information described above. A LXR selective antagonist includes a partial agonist/antagonist or antagonist that exhibits about a two to about a ten-fold preference for LXR α or β

20 compared to another nuclear receptor such as, for example FXR with respect to potency (IC_{50} , the concentration of compound that achieves 50% of the maximum reduction in the transcription activity achieved by the compound of interest observed in the presence of a sub-maximal concentration of LXR agonist) and/or efficacy (the maximum percent

25 inhibition of transcription observed with the compound in question).

Another example of combination therapy can be seen in treating obesity or obesity-related disorders, wherein the methods can be effectively used in combination with, for example, phenylpropanolamine, phentermine, diethylpropion, mazindol; fenfluramine, dexfenfluramine,

RECTIFIED SHEET (RULE 91)

.

-142-

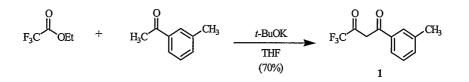
phentiramine, β_3 adrenoceptor agonist agents; sibutramine, gastrointestinal lipase inhibitors (such as orlistat), and leptins. Other agents used in treating obesity or obesity-related disorders include neuropeptide Y, enterostatin, cholecytokinin, bombesin, amylin,

5 histamine H_3 receptors, dopamine D_2 receptors, melanocyte stimulating hormone, corticotrophin releasing factor, galanin and gamma amino butyric acid (GABA).

WO 03/059884

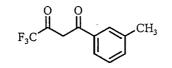
PCT/US02/41306

The following examples are offered by way of illustration and not by way of limitation.


Starting materials in the synthesis examples below are either available from commercial sources or via literature procedures. All commercially

- 5 available compounds were used without further purification unless otherwise indicated. CDCl₃ (99.8% D, Cambridge Isotope Laboratories) was used in all experiments as indicated. ¹H NMR spectra were recorded on a Bruker Avance 400 MHz NMR spectrometer. Significant peaks are tabulated and typically include: number of protons, multiplicity (s, singlet; d, double; t, triplet;
- 10 q, quartet; m, multiplet; br s, broad singlet) and coupling constant(s) in Hertz. Chemical shifts are reported as parts per million (δ) relative to tetramethylsilane. Electron Ionization (EI) mass spectra were recorded on a Perkin-Elmer SCIEX HPLC/MS instrument using reverse-phase conditions (acetonitrile/water, 0.05% trifluoroacetic acid). Abbreviations used in the
- examples below have their accepted meanings in the chemical literature. For example, CH₂Cl₂ (dichloromethane), C₆H₆ (benzene), TFA (trifloroacetic acid), EtOAc (Ethyl Acetate), Et₂O (diethyl ether), DMAP (4-dimethylaminopyridine), DMF (N,N-dimethylformamide) and THF (tetrahydrofuran). Flash chromatography was performed using Merck Silica Gel 60 (230-400 mesh)
- **20** according to Still *et. al.*¹

25


EXAMPLE 1

This example illustrates the preparation of compound 1.

Potassium *tert*-butoxide (3.3 g, 28 mmoles, 95% powder) was slowly added to a solution of 3-methylacetophenone (3.2 mL, 23.5 mmoles) in anhydrous THF at 0 °C under nitrogen. The vigorously stirred mixture was allowed to warm to ambient temperature and was stirred at this temperature for 15 min. After this period the mix was chilled to 0 °C and to it was added ethyl trifluoroacetate (3.4 mL, 28.6 mmoles). The stirring mixture was next allowed the warm to ambient temp and was stirred for 12 hours. After this

- 5 period the reaction was evaporated *in vacuo* (-THF) and the resulting residue was combined with 30 mL of water. 10% sulfuric acid was carefully added to the stirring mixture to adjust the to pH 6-7 (as indicated using EM Science colorpHast indicator strips, pH 0-14). The mixture was then extracted with Et₂O (3 x 15mL). The combined ether layer was next washed with water (2 x
- 10 15 mL) and brine (15 mL). After drying the ether layer over anhydrous Na₂SO₄ the solution was evaporated *in vacuo* to yield the crude product as a yellow liquid. The product was purified via vacuum fractional distillation to yield 3.7 g (70% yield) of product as a clear liquid. B.P. 64 °C @ 0.05 mmHg

4,4,4-Trifluoro-1-*m*-tolyl-butane-1,3-dione

15

¹H-NMR (CDCl₃): δ 15.16 (bs, 1H), 7.76 (s, 1H), 7.74 (d, J=7.2Hz, 1H), 7.45-7.38 (m, 2H), 6.56 (s, 1H), 2.44 (s, 3H).

The following compounds were prepared in a manner similar to that described above.

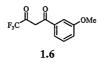
20

¹H-NMR (CDCl₃): *δ* 15.0 (br, 1H), 7.60 (m, 1 H), 7.47 (m, 1 H), 7.33 (m, 2 H), 6.36 (s, 1 H), 2.57 (s, 3 H).

RECTIFIED SHEET (RULE 91)

-145-

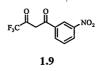
¹H-NMR (CDCl₃): δ 15.1 (br, 1 H), 7.83 (d, J = 8.2 Hz, 2 H), 7.29 (d, J = 8.2 Hz, 2 H), 6.52 (s, 1 H), 2.43 (s, 3 H).


¹H-NMR (CDCl₃): δ 14.8 (br, 1 H), 7.71 (d, J = 8.6 Hz, 2 H), 7.33 (d, J = **5** 8.6 Hz, 2 H), 6.30 (s, 1 H).

¹H-NMR (CDCl₃): δ 14.7 (br, 1 H), 7.90 (m, 1 H), 7.80 (d, J = 8.0 Hz, 1 H), 7.57 (d, J = 8.0 Hz, 1 H), 7.44 (m, 1 H), 6.52 (s, 1 H).

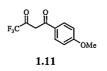
10


¹H-NMR (CDCl₃): *δ* 14.4 (br, 1 H), 7.68 (m, 1H), 7.48 (m, 1 H), 7.47 (m, 1 H), 7.39 (m, 1 H), 6.56 (s, 1 H).

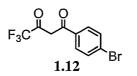

¹H-NMR (CDCl₃): δ 15.09 (br, 1 H), 7.51 (m, 1 H), 7.46 (m, 1 H), 7.41 **15** (m, 1 H), 7.16 (m, 1 H), 6.56 (s, 1 H), 3.88 (s, 3 H).

¹H-NMR (CDCl₃): δ 15.18 (br, 1 H), 7.77 (m, 1 H), 7.75 (m, 1 H), 7.46 (m, 1 H), 7.43 (m, 1 H), 6.57 (s, 1 H), 2.73 (q, J = 7.7 Hz, 2 H), 1.28 (t, J = 7.7 Hz, 3 H).

5 ¹H-NMR (CDCl₃): δ 14.89 (br, 1 H), 8.19 (s, 1 H), 8.13 (d, J = 8.1, 1 H), 7.88 (d, J = 8.3 Hz, 1 H), 7.67 (m, 1 H), 6.60 (s, 1 H).



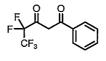
¹H-NMR (CDCl₃): δ 14.75 (br, 1H), 8.78 (m, 1H), 8.48 (m, 1H), 8.29 (m, 1H), 7.76 (t, J = 8 Hz, 1 H), 6.66 (s, 1H).



¹H-NMR (CDCl₃): δ 15.25 (br, 1H), 8.0 (m, 1 H), 7.56 (m, 1 H), 7.10 (m, 1 H), 7.02 (m, 1 H), 3.98 (s, 3 H).

15

¹H-NMR (CDCl₃): δ 15.4 (br, 1H), 7.92 (d, J = 8.8 Hz, 2 H), 6.97 (d, J = 8.8 Hz, 2 H), 6.48 (s, 1 H), 3.89 (s, 3 H).


1-(4-Bromo-phenyl)-4,4,4-trifluorobutane-1,3-dione

³¹H-NMR (CDCl₃): δ 15.0 (s, 1H), 7.82 (d, J=8.6Hz, 2H), 7.66 (d, J=8.6Hz, 2H), 6.54 (s, 1H).

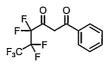
2-Ethyl-4,4,4-trifluoro-1-phenylbutane-1,3-dione

¹H-NMR (CDCl₃): δ 8.05 (bd, J'=8.1Hz, 2H), 7.55 (tt, J'=7.6Hz, J'=1.3Hz, 1H), 7.45 (bt, J=7.3hz, 2H), 4.38 (q, J=7.1Hz, 2H), 1.4 (t, J=7.1Hz, 3H).

1.14

4,4,5,5,5-Pentafluoro-1-phenylpentane-1,3-dione

10 ¹H-NMR (CDCl₃): δ 15.32 (bs, 1H), 7.99-7.94 (m, 2H), 7.64 (m, 1H), 7.55-7.48 (m, 2H), 6.64 (s, 1H).


1.15

4,4,5,5,5-Pentafluoro-1-*m*-tolylpentane-1,3-dione

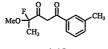
5

,

¹H-NMR (CDCl₃): δ 15.35 (bs, 1H), 7.79-7.73 (m, 2H), 7.47-7.36 (m, 2H), 6.63 (s, 1H), 2.44 (s, 3H).

1.16

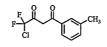
4,4,5,5,6,6,6-Heptafluoro-1-phenyl-hexane-1,3dione

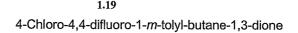

¹H-NMR (CDCl₃): δ 15.33 (bs, 1H), 7.99-7.94 (m, 2H), 7.67-7.61 (m,

1H), 7.55-7.50 (m, 2H), 6.62 (s, 1H),

4,4,5,5,6,6,6-Heptafluoro-1-m-tolyl-hexane-1,3-dione

¹H-NMR (CDCl₃): δ 15.33 (bs, 1H), 7.79-7.73 (m, 2H), 7.47-7.36 (m, 2H), 6.61 (s, 1H), 2.45 (s, 3H).



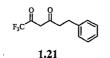


4-Fluoro-4-methoxy-1-m-tolyl-pentane-1,3-dione

10

¹H-NMR (CDCl₃): δ 15.65 (s, 1H), 7.79-7.74 (m, 2H), 7.45-7.36 (m, 2H), 6.68 (d, J=2.0Hz, 1H), 3.61 (s, 3H), 2.44 (s, 3H).

¹H-NMR (CDCl₃): δ 14.95 (s, 1H), 7.76-7.71 (m, 2H), 7.45-7.36 (m, 2H), 6.52 (s, 1H), 2.44 (s, 3H).


.

-149-

MeO CH₃

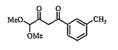
2,4-Dioxo-4-m-tolyl-butyric acid methyl ester

¹H-NMR (CDCl₃): δ 15.3 (s, 1H), 7.83-7.78 (m, 2H), 7.45-7.36 (m, 2H), 7.08 (s, 1H)3.95 (s, 3H), 2.44 (s, 3H).

1,1,1-Trifluoro-6-phenylhexane-2,4-dione

5

¹H-NMR (CDCl₃): δ 14.3 (s, 1H), 7.34-7.15 (m, 5H), 5.89 (s, 1H), 2.98 (t, 8.1Hz, 2H), 2.76 (t, J=7.6Hz, 2H).


1.22 4,4,5,5,5-Pentafluoro-1-thiazol-2-ylpentane-1,3-dione

¹H-NMR (CDCl₃): δ 14.3 (bs, 1H), 8.09 (d, J=3.0Hz, 1H), 7.80 (d, J=3.0Hz, 1H), 7.04 (bs, 1H).

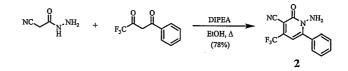
4,4,5,5,5-Pentafluoro-1-pyrazin-2-yl-pentane-1,3-dione

¹H-NMR (CDCl₃): δ 14.5 (bs, 1H), 9.34 (d, J=1.3Hz, 1H), 8.81 (d, J=2.3Hz, 1H), 8.71 (dd, J'=2.3Hz, J"=1.3Hz, 1H), 7.32 (s, 1H).

1.24

4,4-Dimethoxy-1-*m*-tolylbutane-1,3-dione

¹H-NMR (CDCl₃): δ 15.8 (s, 1H), 7.75 (s, 2H), 7.36 (m, 3H), 6.56 (s, 1H), 4.83 (s, 1H), 3.45 (s, 3H).



1-Cyclohexyl-4,4,4-trifluoro-butane-1,3-dione

¹H-NMR (CDCl₃): δ 5.92 (s, 1H), 2.33 (tt, J'=3.3Hz, J"=11.4Hz, 1H), 1.94-1.63 (m, 5H), 1.47-1.16 (m, 5H).

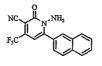
EXAMPLE 2

This example illustrates the preparation of compound 2.

10

5

4,4,4-Trifluoro-1-phenyl-1,3-butanedione (2.0 g, 9.25 mmoles) and cyanoacetohydrazide (0.92 g, 9.28 mmoles) were combined within a round-bottom flask.


The mixture was dissolved into 30 mL of ethanol and the flask was equipped with a reflux condensor. To the stirring solution was added

15 diisopropylethylamine (0.81 mL, 4.7 mmoles) and the mixture was stirred at 80 °C for 3 hours. After this period the mixture was evaporated and the resulting crude mixture was purified directly by flash silica chromatography using 30% EtOAc/Hexane to yield product 2.01 g (78% yield) as a yellow solid.

1-Amino-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): *δ* 7.63-7.54 (m, 5H), 6.53 (s, 1H), 5.68 (s, 2H). MS (ES+): 280.0 (M+H).

The following compounds were prepared in a manner similar to that described above.

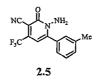
1-Amino-6-naphthalen-2-yl-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

2.1

¹H-NMR (CDCl₃): δ 8.03 (s, 1H), 7.93 (d, J=8.6Hz, 1H), 7.89-7.85 (m, 2H), 7.62-7.52 (m, 3H), 6.56 (s, 1H), 5.67 (s, 2H).

1-Amino-2-oxo-4,6-diphenyl-1,2-dihydro-pyridine-3-carbonitrile

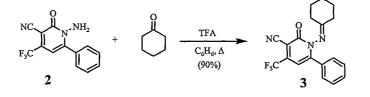
10 ¹H-NMR (CDCl₃): δ 7.65 – 7.58 (m, 4 H), 7.56 – 7.46 (m, 6 H), 6.38 (s, 1H), 5.40 (s, 2 H). MS (ES+):288.0 (M+H)



1-Amino-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile ¹H-NMR (CDCl₃): δ 7.95 (m, 1 H), 7.79 (m, 1 H), 7.26 (m, 1 H), 6.91 (s, 1 H), 5.47 (s, 2H). MS (ES+):286.0 (M+H)

¹H-NMR (CDCl₃): δ 7.57 (m, 1H), 7.56 (m, 1H), 7.49 (m, 1H), 7.39 (m, 1 H), 6.50 (s, 1H), 5.54 (s, 2H).

¹H-NMR (CDCl₃): δ 7.46 – 7.37 (m, 4H), 6.52 (s, 1H), 5.81 (s, 2H), 2.45 (s, 3H).

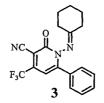

¹H-NMR (CDCl₃): δ 7.64 (d, J = 9.0 Hz, 2H), 7.05 (d, J = 9.0 Hz, 2H), 6.51 (s, 1H), 5.78 (s, 2H), 3.90 (s, 3H).

10

١

EXAMPLE 3

This example illustrates the preparation of compound $\mathbf{3}$.


N-Aminopyridone 2 (70 mg, 0.25 mmoles) was dissolved into 3.0 mL of benzene^{*} within a screw capped vial. To this solution was added
15 cyclohexanone 0.4 mL, 3.9 mmoles) and 2□L of trifluoroacetic acid. The sealed reaction was then shaken at 85 °C for 2 hours. After this period the reaction mixture was evaporated *in vacuo* and the resulting residue was

combined with DCM. The DCM solution was washed with sat'd NaHCO₃ (2 x 10 mL), dried over anhydrous Na₂SO₄, and was evaporated to yield the crude product. The crude product was purified using flash silica chromatography (30% EtOAc/Hexane) to yield 82 mg (90% yield) of product as a yellow

5 residue.

ŧ

(* - DCM may be used as an alternative with heating at 50 °C)

¹H-NMR (CDCl₃): *δ* 7.53-7.45 (m, 3H), 7.41-7.39 (m, 2H), 6.50 (s, 1H), 2.47-2.44 (m, 1H), 2.39-2.34 (m, 1H), 2.20-2.14 (m, 1H), 2.07-2.02 (m, 1H), 1.88-1.85 (m, 2H), 1.60-1.55 (m, 2H), 1.44-1.42 (m, 1H), 1.35-1.31 (m, 1H). MS (ES+): 360.0 (M+H)

The following compounds were prepared in a manner similar to that described above.

15

10

¹H-NMR (CDCl₃): *δ* 7.52-7.47 (m, 3H), 7.40-7.37 (m, 2H), 6.50 (s, 1H), 2.12 (s, 3H), 1.85 (s, 3H). MS (ES+): 320.0 (M+H).

¹H-NMR (CDCl₃): *δ* 7.68 (dd, J'=8.4Hz, J"=1.2Hz, 2H), 7.49-7.43 (m, 6H), 7.38 (t, J= 8Hz, 2H), 6.58 (s, 1H), 2.27 (s, 3H). MS (ES+): 382.0 (M+H).

1-(Benzylidene-amino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

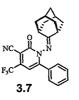
¹H-NMR (CDCl₃): δ 8.97 (s, 1H), 7.66 (dd, J'=7.6Hz, J"=0.8Hz, 2H), 7.54-7.41 (m, 8H), 6.57 (s, 1H). MS (ES+): 368.0 (M+H).

1-(1-Ethyl-propylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): *δ* 7.52-7.41 (m, 5H), 6.49 (s, 1H), 2.52-2.44 (m, 1H), 2.38-2.31 (m, 1H), 2.18-2.10 (m, 1H), 2.01-1.92 (m, 1H), 1.02-0.97 (m, 6H). MS (ES+): 348.0 (M+H).

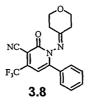
1-Cycloheptylideneamino-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): *δ* 7.54-7.44 (m, 5H), 6.49 (s, 1H), 2.62-2.54 (m, 2h), 2.45-2.39 (m, 1H), 2.08-2.00 (m, 1H), 1.75-1.45 (m, 6H), 1.12-1.06 (m, 2H). MS (ES+): 374.0 (M+H).

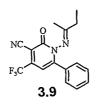

5

-155-

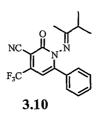
1-Cyclopentylideneamino-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


¹H-NMR (CDCl₃): *δ* 7.54-7.45 (m, 3H), 7.40 (dd, J'=8Hz, J"=1.2Hz, 2H), 2.85-2.0 (m, 8H). MS (ES+): 346.0 (M+H).

1-(Adamantan-2-ylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

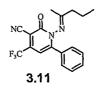

5

¹H-NMR (CDCl₃): *δ* 7.53-7.45 (m, 5H), 6.49 (s, 1H), 2.82 (bs, 1H), 2.37 (bs, 1H), 2.21 (d, J=12.5Hz, 1H), 2.14 (d, J=12.8Hz, 1H), 2.03-1.99 (m, 2H), 1.90-1.76 (m, 6H), 1.25 (d, J=12.8Hz, 1H), 1.08 (d, J=12.5Hz, 1H). MS (ES+): 412.2 (M+H).

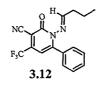


10

¹H-NMR (CDCl₃): *δ* 7.56-7.47 (m, 3H), 7.40-7.37 (m, 2H), 6.52 (s, 1H), 3.95-3.89 (m, 2H), 3.69-3.65 (m, 1H), 3.58-3.54 (m, 1H), 2.68-2.63 (m, 1H), 2.47-2.35 (m, 2H), 2.16-2.12 (m, 1H). MS (ES+): 261.8 (M+H).



¹H-NMR (CDCl₃): *δ* 7.51-7.44 (m, 3H), 7.42-7.38 (2H), 6.50 (s, 1H), 2.55-2.45 (m, 1H), 2.40-2.25 (m, 1H), 1.81 (s, 3H), 1.01 (t, J=7.6Hz, 3H). MS (ES+): 334.2 (M+H).



5

¹H-NMR (CDCl₃): *δ* 7.51-7.43 (m, 3H), 7.39-7.37 (m, 2H), 6.50 (s, 1H), 2.63 (m, J=6.9Hz, 1H), 1.78 (s, 3H), 1.04 (d, J=6.9Hz, 3H), 1.00 (d, J=6.9Hz, 3H).

¹H-NMR (CDCl₃): *δ* 7.52-7.44 (m, 3H), 7.40-7.37 (m, 2H), 6.50 (s, 1H), 2.40-2.30 (m, 2H), 1.81 (s, 3H), 1.53-1.45 (m, 2H), 0.80 (t, J=7.4hz, 3H).

¹H-NMR (CDCl₃): δ 8.16 (t, J=5.4Hz, 1H), 7.53-7.45 (m, 3H), 7.42-7.38 (m, 2H), 6.48 (s, 1H), 2.47-2.42 (m, 2H), 1.61-1.52 (m, 2H), 0.89 (t, J=7.4Hz, 3H). MS (ES+): 334.2 (M+H).

10

¹H-NMR (CDCl₃): *δ* 8.07 (d, J=5.2Hz, 1H), 7.51-7.45 (m, 3H), 7.41-7.38 (m, 2H), 6.49 (s, 1H), 2.78-2.65 (m, 1H), 1.09 (d, J=6.8Hz, 6H).

1-(2-Methyl-butylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

5

¹H-NMR (CDCl₃): *δ* 8.01 (d, J=6.2Hz, 1H), 7.53-7.44 (m, 3H), 7.42-7.39 (m, 2H), 6.48 (s, 1H), 2.53-2.44 (m, J=6.8Hz, 1H), 1.53-1.40 (m, 2H), 1.06 (d, J=6.8Hz, 3H), 0.86 (t, J=7.5Hz, 3H).

3.15

1-(2-Ethyl-butylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

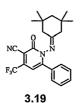
¹H-NMR (CDCl₃): *δ* 7.92 (d, J=7.4Hz, 1H), 7.52-7.40 (m, 5H), 6.47 (s, 1H), 2.29-2.23 (m, 1H), 1.57-1.44 (m, 4H), 0.81 (t, J=7.4, 6H). MS (ES+): 362.0 (M+H).

1-(3-Methyl-butylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): *δ* 8.15 (t, J=5.9Hz, 1H), 7.53-7.44 (m, 3H), 7.42-7.39 (m, 2H), 6.48 (s, 1H), 2.34 (t, J=5.9Hz, 2H), 1.96 (m, J=6.7Hz, 1H), 0.91 (d, J=6.7Hz, 6H).

10

1-(2,2-Dimethyl-propylideneamino)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


¹H-NMR (CDCl₃): δ 8.03 (s, 1H), 7.51-7.44 (m, 3H), 7.40-7.38 (m, 2H), 6.49 (s, 1H), 1.08 (s, 9H). MS (ES+): 348.0 (M+H).

1-[(Naphthalen-2-ylmethylene)-amino]-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

5

¹H-NMR (CDCl₃): δ 9.12 (s, 1H), 8.09 (s, 1H), 7.91-7.74 (m, 4H), 7.62-7.44 (m, 7H), 6.59 (s, 1H). MS (ES+): 418.0 (M+H).

2-Oxo-6-phenyl-1-(3,3,5,5-tetramethyl-cyclohexylideneamino)-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 416.0 (M+H)

ł

3.20

1-(4-Methyl-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 374.0 (M+H)

-159-

3.21

1-(4-Ethyl-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 388.0 (M+H)

3.22

1-(4-*tert*-Butyl-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 416.2 (M+H)

3.23

1-(2-Methyl-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 374.0 (M+H)

3.25

1-(3-Methyl-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 374.0 (M+H)

-160-

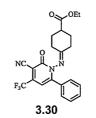
1-(2-Methyl-cyclopentylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 360.0 (M+H)

3.27

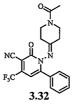
1-(3-Methyl-cyclopentylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 360.0 (M+H)


1-(Bicyclo[2.2.1]hept-2-ylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 372.0 (M+H)

3.29


1-(1-Methyl-piperidin-4-ylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 375.0 (M+H)

4-(3-Cyano-2-oxo-6-phenyl-4-trifluoromethyl-2*H*-pyridin-1-ylimino)cyclohexanecarboxylic acid ethyl ester

MS(ES+): 432.2 (M+H)

1-(1-Acetyl-piperidin-4-ylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 403.0 (M+H)

3.33

1-[(5-Chloro-2-hydroxy-benzylidene)-amino]-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 418.0 (M+H)

1-[(4-Bromo-benzylidene)-amino]-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbon

MS(ES+): 446.0 (M+H)

-162-

1-[(2-Methyl-benzylidene)-amino]-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 382.2 (M+H)

1-[(4-Methoxy-benzylidene)-amino]-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 398.0 (M+H)

3.37

1-[(2-Hydroxy-benzylidene)-amino]-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

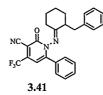
MS(ES+): 384.0 (M+H)

1-[(4-Bromo-2-hydroxy-benzylidene)-amino]-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 462.0 (M+H)

ł

-163-


1-(2-Ethyl-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 388.0 (M+H)

3.40

2-Oxo-6-phenyl-1-(2-phenyl-cyclohexylideneamino)-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 436.2 (M+H)

1-(2-Benzyl-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 450.2 (M+H)

3.42

1-(2,2-Dimethyl-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 388.0 (M+H)

-164-

1-(2-Chloro-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 393.8 (M+H)

1-(2-Methoxy-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 390.2 (M+H)

3.45

1-(2-Ethoxy-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

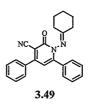
MS(ES+): 404.0 (M+H)

3.46

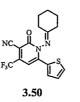
1-(2-Methylsulfanyl-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 406.2 (M+H)

3.47


2-(3-Cyano-2-oxo-6-phenyl-4-trifluoromethyl-2*H*-pyridin-1-ylimino)cyclohexanecarboxylic acid methyl ester

MS(ES+): 418.0 (M+H)



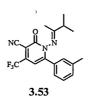
1-(3-Methyl-cyclohexylideneamino)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 374.0 (M+H)

¹H-NMR (CDCl₃): δ 7.60 (m, 2H), 7.44 (m, 4 H), 7.36 (m, 4H), 6.30 (s, 1H), 2.40 (m, 1H), 2.30 (m, 1H), 2.16 (m, 1H), 2.10 (m, 1H), 1.80 (m, 2H), 1.63 (m, 1H), 1.53 (m, 1H), 1.32 (m, 1H).

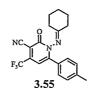
1-Cyclohexylideneamino-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile MS (ES+):366.2 (M+H)

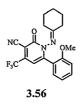
¹H-NMR (CDCl₃): δ 7.77 (m, 2H), 7.74 (m, 1H), 7.21 (m, 1H), 6.89 (s, 1H), 2.72 (m, 2H), 2.23 (m, 1H), 2.10 (m, 1H), 2.03 (m, 1H), 1.87 (m, 2H), 1.68 (m, 2H), 1.44 (m, 1H).

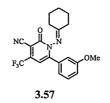


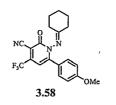
15

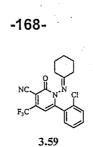
¹H-NMR (CDCl₃): δ 8.89 (s, 1H), 7.88 (m, 1H), 7.86 (m, 1H), 7.74 (m, 1H), 7.66 (m, 1H), 7.56 (m, 1H), 7.46 (m, 2H), 7.12 (m, 1H), 6.89 (s, 1H).

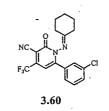

¹H-NMR (CDCl₃): δ 7.35 (m, 1H), 7.32 (m, 1H), 7.20 (m, 1H), 7.19 (m,
5 1H), 6.49 (s, 1H), 2.48 (m, 1H), 2.41 (s, 3H), 2.38 (m, 1H), 2.20 (m, 1H), 2.07 (m, 1H), 1.88 (m, 2H), 1.61 (m, 2H), 1.46 (m, 1H), 1.37 (m, 1H).

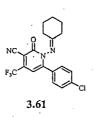

¹H-NMR (CDCl₃): δ 7.33 (m, 1H), 7.31 (m, 1H), 7.19 (m, 1H), 7.17 (m, 10 1H), 6.49 (s, 1H), 2.64 (m, J = 6.8 Hz, 1H), 2.40 (s, 3H), 1.79 (s, 3H), 1.06 (d, J = 6.8 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H).


¹H-NMR (CDCl₃): δ 7.39 (m, 1H), 7.29 (m, 1H), 7.23 (m, 1H), 6.96 (m, 1H), 6.43 (s, 1H), 2.37 (m, 1H), 2.29 (s, 3H), 2.19 (m, 1H), 2.15 (m, 1H), 2.10 (m, 1H), 1.96 (m, 1H), 1.80 (m, 2H), 1.53 (m, 1H), 1.36 (m, 1H), 1.24 (m, 1H).

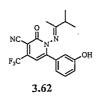

¹H-NMR (CDCl₃): *δ* 7.33 – 7.24 (m, 4H), 6.48 (s, 1H), 2.49 (m, 1H), 2.42 (s, 3H), 2.38 (m, 1H), 2.19 (m, 1H), 2.04 (m, 1H), 1.87 (m, 2H), 1.59 (m, 2H), 1.49 (m, 1H), 1.36 (m, 1H).


¹H-NMR (CDCl₃): δ 7.47 (m, 1H), 7.16 (m, 1H), 7.05 (m, 1H), 6.95 (m, 1H), 6.45 (s, 1H), 3.79 (s, 3H), 2.40 (m, 1H), 2.22 (m, 2H), 2.06 (m, 1H), 1.91 (m, 1H), 1.81 (m, 1H), 1.58 (m, 2H), 1.46 (m, 2H).


¹H-NMR (CDCl₃): δ 7.37 (m, 1H), 7.03(m, 1H), 6.95 (m, 1H), 6.93 (m,
10 1H), 6.50 (s, 1H), 3.84 (s, 3H), 2.49 (m, 1H), 2.38 (m, 1H), 2.18 (m, 1H), 2.05 (m, 1H), 1.86 (m, 2H), 1.60 (m, 2H), 1.49 (m, 1H), 1.37 (m, 1H).


¹H-NMR (CDCl₃): δ 7.39 (d, J = 9.0 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 6.48 (s, 1H), 3.87 (s, 3H), 2.52 (m, 1H), 2.41 (m, 1H), 2.18 (m, 1H), 2.02 (m, 1H), 1.87 (m, 2H), 1.60 (m, 2H), 1.52 (m, 1H), 1.34 (m, 1H).

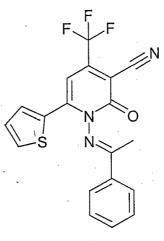
¹H-NMR (CDCl₃): *δ* 7.57 – 7.30 (m, 4H), 6.46 (s, 1H), 2.37 (m, 1H), 2.23 (m, 2H), 2.05 (m, 1H), 1.91 (m, 1H), 1.83 (m, 1H), 1.60 (m, 2H), 1.54 (m, 1H), 1.44 (m, 1H).


¹H-NMR (CDCl₃): *δ* 7.50 (m, 1H), 7.43 (m, 1H), 7.37 (m, 1H), 7.31 (m, 1H), 6.49 (s, 1H), 2.48 (m, 1H), 2.40 (m, 1H), 2.22 (m, 1H), 2.11 (m, 1H), 1.92 (m, 2H), 1.63 (m, 2H), 1.51 (m, 1H), 1.42 (m, 1H).

10

5

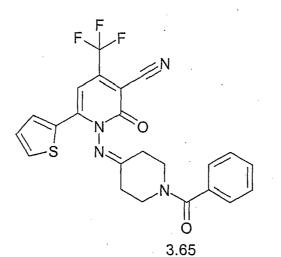
¹H-NMR (CDCl₃): *δ* 7.46 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 6.47 (s, 1H), 2.49 (m, 1H), 2.38 (m, 1H), 2.19 (m, 1H), 2.02 (m, 1H), 1.88 (m, 2H), 1.61 (m, 2H), 1.51 (m, 1H), 1.37 (m, 1H).



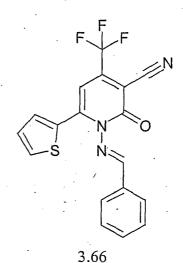
¹H-NMR (CDCl₃): δ 7.31 (m, 1H), 6.98 (m, 1H), 6.95 (m, 1H), 2.08 (m, 1H), 6.53 (s, 1H), 2.62 (m, J = 7.0 Hz, 1H), 1.76 (s, 3H), 1.03 (d, J = 7.0 Hz, 3H), 0.99 (d, J = 7.0 Hz, 3H).

3.63

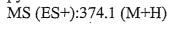
1-Cyclopentylideneamino-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile MS (ES+):352.2 (M+H)

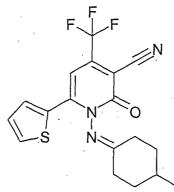


10


5

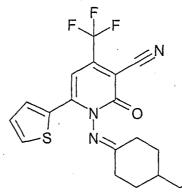
3.64


2-Oxo-1-(1-phenyl-ethylideneamino)-6-thiophen-2-yl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile MS (ES+):388.0 (M+H) 5

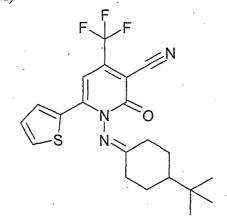


1-(1-Benzoyl-piperidin-4-ylideneamino)-2-oxo-6-thiophen-2-yl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile MS (ES+):471.3 (M+H)

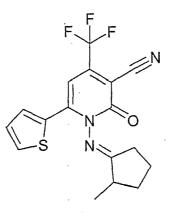
1-(Benzylidene-amino)-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile



5.


10

1-(4-Methyl-cyclohexylideneamino)-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile MS (ES+):380.1 (M+H)


3.68

1-(4-Ethyl-cyclohexylideneamino)-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile MS (ES+):394.0 (M+H)

3.69

1-(4-tert-Butyl-cyclohexylideneamino)-2-oxo-6-thiophen-2-yl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile MS (ES+):422.0 (M+H)

1-(2-Methyl-cyclopentylideneamino)-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

5 MS (ES+):366.1 (M+H)

3.71

1-(3-Methyl-cyclopentylideneamino)-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile
10 MS (ES+):366.2 (M+H)



1-(2-Methyl-cyclohexylideneamino)-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS (ES+):380.3 (M+H)

15

SUBSTITUTE SHEET (RULE 26)



3.73

1-(2-Methyl-cyclohexylideneamino)-2-oxo-6-o-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile MS (ES+):388.2 (M+H)

This example illustrates the preparation of compound 4.

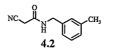
Cyanoacetic acid (8.0 g, 94.1 mmoles) and □□-dichloromethyl methyl ether were measured out into a 30 mL round-bottom flask equipped with a magnetic stirbar. The flask was sealed with a septum, and the vessel
15 was continuously flushed with dry N₂ gas. The temperature was carefully raised to 40 °C at which temperature the mixture began to liquify and bubble. Nitrogen flushing was maintained throughout this period with adequate venting to atmosphere to permit the release of gases formed during the reaction. The temperature was maintained at 40 °C for 45 minutes while
20 adequate stirring was maintained by vigilant monitoring. After this period the

nitrogen line was submerged into the stirring reaction mixture to facilitate the purging of gases (HCI) from the solution. The nitrogen purge was carried out

SUBSTITUTE SHEET (RULE 26)

10

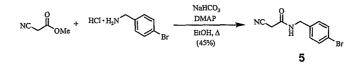
- dissolved into 100 mL of anhydrous DCM. To the stirring acid chloride solution at 0 °C was slowly added benzylamine (21 mL, 192.2 mmoles) and the resulting mixture was stirred at ambient temperature for 30 min. After this period the reaction mixture was washed with 1N HCI (2 x 20 mL), sat'd
- 5 NaHCO₃ (2 x 20 mL) and brine. The DCM solution was dried over anhydrous Na₂SO₄ and was evaporated *in vacuo* to yield the crude product as a yellowish solid. The crude material was purified by recrystallization in DCM/Hexane to yield 8.5 g (52% yield) of product as yellow, needlelike crystals. (Alternatively, the product can be purified using flash silica
- 10 chromatography in 60% EtOAc/Hexane).



¹H-NMR (CDCl₃): *δ* 7.39-7.28 (m, 5H), 6.39 (bs, 1H), 4.48 (d, J=5.7Hz, 2H), 3.40 (s, 2H).

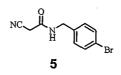
The following compounds were prepared in a manner similar to that described above.

¹H-NMR (CDCl₃): δ 7.25-7.19 (m, 4H), 6.15 (bs, 1H), 4.49 (d, J≈5.4Hz, 2H), 3.41 (s, 2H), 2.34 (s, 3H).


20

¹H-NMR (CDCl₃): *δ* 7.27-7.23 (m, 1H), 7.14-7.07 (m, 3H), 6.29 (bs, 1H), 4.45 (d, J=5.6Hz, 2H), 3.41 (s, 2H), 2.36 (s, 3H).

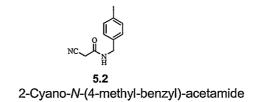
An alternative procedure utilizing commercially available methyl cyanoacetate illustrates the preparation of compound **4**.


-175-

EXAMPLE 5

Methyl cyanoacetate (0.8 mL, 9.1 mmoles) and 4-Bromobenzylammonium chloride (0.97 g, 4.4 mmoles) were mixed with 10 mL

- 5 of anhydrous ethanol within a round-bottom flask. To the stirring mixture at room temp was added sodium bicarbonate (0.55 g, 6.5 mmoles) and 4- (dimethylamino)pyridine (0.25 g, 2.0 mmoles). The mixture was then stirred at 80 °C for 5 hours. After this period the reaction was evaporated *in vacuo*, combined with DCM, and was washed with 1N HCl (2 x 15 mL), sat'd
- 10 NaHCO₃ (2 x 15 mL) and brine. The DCM solution was dried over anhydrous Na₂SO₄ and was evaporated *in vacuo* to yield the crude product residue. The crude residue was purified using flash silica chromatography (60% EtOAc/Hexane) to yield 0.49 g (45% yield) of product as a yellow solid.


¹H-NMR (CDCl₃): δ 7.49 (d, J=8.3Hz, 2H), 7.17 (d, J=8.3Hz, 2H), 6.38 (bs, 1H), 4.44 (d, J=5.8Hz, 2H), 3.42 (s, 2H).

The following compounds were prepared in a manner similar to that described above.

5.1

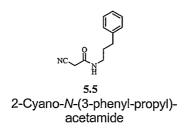

2-Cyano-N-pyridin-3-ylmethyl-acetamide

¹H-NMR (CDCl₃): *δ* 8.53-8.48 (m, 2H), 7.65 (dt, J'=7.8Hz, J"=1.8Hz, 1H), 7.29 (dd, J'=7.8hz, J"=4.8Hz, 1H), 7.25 (bs, 1H), 4.47 (d, J=5.8Hz, 2H), 3.43 (s, 2H).

5

¹H-NMR (CDCl₃): δ 7.18 (m, 4H), 6.27 (bs, 1H), 4.44 (d, J=5.6Hz, 2H), 3.40 (s, 2H), 2.35 (s, 3H).

2-Cyano-N-phenethyl-acetamide


¹H-NMR (CDCl₃): δ 7.34 (m, 2H), 7.29-7.16 (m, 3H), 6.06 (bs, 1H), 3.58 (m, 2H), 3.32 (s, 2H), 2.86 (t, J=7.1Hz, 2H).

10

5.4 Cyano-acetic acid *N*'-phenyl-hydrazide

¹H-NMR (CDCl₃): {rotamers} δ 7.93 (bs, 0.36H), 7.53-7.39 (m, 1.1H), 7.36-7.20 (m, 3.4H), 7.11-6.91 (m, 1.4H), 6.89-6.76 (m, 1.7H), 6.08 (m, 0.40H), 5.92 (m, 0.50H), 4.88 (m, 0.25H), 4.44 (m, 0.33H), 3.90 (s, 0.50H), 3.60 (s, 1H), 3.48 (s, 1H), 3.33 (s, 0.25H).

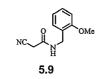
¹H-NMR (CDCl₃): δ 7.34-7.27 (m, 2H), 7.24-7.14 (m, 3H), 6.07 (bs, 1H), 3.34 (bq, J=5.1Hz, 2H), 3.30 (s, 2H), 2.68 (bt, J=7.5Hz, 2H), 1.90 (m, J=7.5Hz, 2H).

ι .

5.6 2-Cyano-*N*-(2-trifluoromethylbenzyl)-acetamide

5

¹H-NMR (CDCl₃): δ 7.69 (bd, J=7.8Hz, 1H), 7.59-7.53 (m, 2H), 7.48-7.41 (m, 1H), 6.40 (bs, 1H), 4.67 (d, J=6.1Hz, 2H), 3.40 (s, 2H).


¹H-NMR (CDCl₃): δ 7.62-7.47 (m, 4H), 6.49 (bs, 1H), 4.55 (d, J=5.8Hz, 2H), 3.44 (s, 2H).

2-Cyano-*N*-(4-trifluoromethylbenzyl)-acetamide

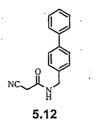
10

¹H-NMR (CDCl₃): δ 7.62 (d, J=8.1Hz, 2H), 7.42 (d, J=8.1Hz, 2H), 6.48 (bs, 1H), 4.55 (d, J=6.1Hz, 2H), 3.44 (s, 2H).

2-Cyano-*N*-(2-methoxybenzyl)-acetamide

-178-

¹H-NMR (CDCl₃): δ 7.35-7.23 (m, 2H), 6.97-6.89 (m, 2H), 6.80 (bs, 1H), 4.48 (d, J=5.8Hz, 2H), 3.89 (s, 3H), 3.34 (s, 2H).


2-Cyano-N-(3-methoxybenzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.30-7.25 (m, 1H), 6.89-6.81 (m, 3H), 6.36 (bs, 1H), 4.45 (d, J=5.8Hz, 2H), 3.81 (s, 3H), 3.40 (s, 2H).

2-Cyano-N-(4-methoxy-benzyl)-acetamide

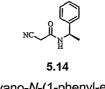
¹H-NMR (CDCl₃): δ 7.22 (d, J=8.6Hz, 2H), 6.89 (d, J=8.6Hz, 2H), 6.26 (bs, 1H), 4.42 (d, J=5.3Hz, 2H), 3.81 (s, 3H), 3.40 (s, 2H).

N-Biphenyl-4-ylmethyl-2cyano-acetamide

10

5

¹H-NMR (CDCl₃): δ 7.62-7.55 (m, 4H), 7.48-7.42 (m, 2H), 7.40-7.33 (m, 3H), 6.40 (bs, 1H), 4.53 (d, J=5.8Hz, 2H), 3.43 (s, 2H).



2-Cyano-N-phenylacetamide

SUBSTITUTE SHEET (RULE 26)

-179-

¹H-NMR (CDCl₃): δ 7.66 (bs, 1H), 7.53-7.48 (m, 2H), 7.41-7.35 (m, 2H), 7.23-7.18 (m, 1H), 3.57 (s, 2H).

2-Cyano-N-(1-phenyl-ethyl)acetamide

¹H-NMR (CDCl₃): δ 7.41-7.23 (m, 5H), 6.24 (bs, 1H), 5.12 (m, 1H), 3.37 (m, 2H), 1.55 (d, J=7.1Hz, 3H).

5.15 2-Cyano-*N*-(1-phenyl-ethyl)acetamide

¹H-NMR (CDCl₃): δ 7.41-7.23 (m, 5H), 6.24 (bs, 1H), 5.12 (m, 1H), 3.37

(m, 2H), 1.55 (d, J=7.1Hz, 3H).

2-Cyano-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-acetamide

¹H-NMR (CDCl₃): δ 7.28-7.09 (m, 4H), 6.26 (bs, 2H), 5.22-5.14 (m, 1H),

3.40 (s, 2H), 2.90-2.71 (m, 2H), 2.12-2.00 (m, 1H), 1.93-1.77 (m, 3H).

5

2-Cyano-N-(2,4-dimethylbenzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.14-7.08 (m, 1H), 7.05-6.98 (m, 2H), 6.13 (bs, 1H), 4.44 (d, J=5.3Hz, 2H), 3.38 (s, 2H), 2.32 (s, 3H), 2.30 (s, 3H).

5.18 2-Cyano-N-(2-fluoro-benzyl)-acetamide

5

¹H-NMR (CDCl₃): δ 7.40-7.27 (m, 2H), 7.16-7.05 (m, 2H), 6.45 (bs, 1H), 4.54 (d, J=5.8Hz, 2H), 3.39 (s, 2H).

2-Cyano-N-(4-fluoro-benzyl)acetamide

¹H-NMR (CDCl₃): δ 7.30-7.23 (m, 2H), 7.08-7.00 (m, 2H), 6.40 (bs, 1H), 4.45 (d, J=5.8Hz, 2H), 3.41 (s, 2H).

10

2-Cyano-N-(2,4-difluoro-benzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.38-7.29 (m, 1H), 6.90-6.80 (m, 2H), 6.51 (bs, 1H), 4.48 (d, J=6.1Hz, 2H), 3.39 (s, 2H).

J

4-[(2-Cyano-acetylamino)-methyl]benzoic acid methyl ester

¹H-NMR (CDCl₃): δ 8.03 (d, J=8.1Hz, 2H), 7.36 (d, J=8.1Hz, 2H), 6.46 (bs, 1H), 4.55 (d, J=5.8Hz, 2H), 3.92 (s, 3H), 3.45 (s, 2H).

N-(2-Chloro-benzyl)-2-cyano-acetamide

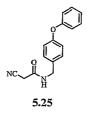
5

10

¹H-NMR (CDCl₃): δ 7.43-7.36 (m, 2H), 7.31-7.23 (m, 2H), 6.53 (bs, 1H), 4.58 (d, J=5.8Hz, 2H), 3.40 (s, 2H).

N-(4-Chloro-benzyl)-2-cyano-acetamide

¹H-NMR (CDCl₃): δ 7.36-7.30 (d, J=8.6Hz, 2H), 7.25-7.20 (d, J=8.6Hz, 2H), 6.43 (bs, 1H), 4.45 (d, J=5.81Hz, 2H), 3.42 (s, 2H).


5.24

1

2-Cyano-N-(4-methylsulfanylbenzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.26-7.18 (m, 4H), 6.34 (bs, 1H), 4.43 (d, J=5.6Hz, 2H), 3.40 (s, 2H), 2.48 (s, 3H).

-182-

2-Cyano-N-(4-phenoxy-benzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.38-7.32 (m, 2H), 7.28-7.23 (m, 3H), 7.16-7.09 (m, 1H), 7.04-6.96 (m, 4H), 6.35 (bs, 1H), 4.45 (d, J=5.6Hz, 2H), 3.42 (s, 2H).

5.26 2-Cyano-*N*-(4-trifluoromethoxybenzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.36-7.29 (m, 2H), 7.23-7.17 (m, 2H), 6.46 (bs, 1H),

4.48 (d, J=5.8Hz, 2H), 3.42 (s, 2H).

2-Cyano-N-pyridin-4-ylmethyl-acetamide

10

¹H-NMR (CDCl₃): δ 8.61-8.51 (m, 2H), 7.24-7.18 (m, 2H), 6.99 (bs, 1H), 4.49 (d, J=5.8Hz, 2H), 3.48 (s, 2H).

2-Cyano-N-(4-nitro-benzyl)acetamide

¹H-NMR (CDCl₃): δ 8.23 (d, J=8.6Hz, 2H), 7.47 (d, J=8.6Hz, 2H), 6.55 (bs, 1H), 4.60 (d, J=6.1Hz, 2H), 3.47 (s, 2H).

2-Cyano-N-piperidin-1-yl-acetamide

¹H-NMR (CDCl₃): δ 6.51 (bs, 1H), 3.54 (s, 2H), 3.16-3.04 (m, 2H), 2.43-2.29 (m, 2H)1.81-1.54 (m, 6H).

5.30

2-Cyano-N-pyrrolidin-1-ylacetamide

¹H-NMR (CDCl₃): δ 6.85 (bs, 1H), 3.59 (s, 2H), 3.46-3.03 (bm, 2H), 2.78-2.22 (bm, 2H), 1.96-1.78 (m, 4H).

5.31

2-Cyano-N-cyclohexylmethyl-acetamide

10

¹H-NMR (CDCl₃): δ 6.20 (bs, 1H), 3.38 (s, 2H), 3.15 (bt, J=6.3Hz, 2H), 1.79-1.68 (m, 5H), 1.58-1.44 (m, 1H), 1.36-1.09 (m, 3H), 1.02-0.86 (m, 2H).

5.32

2-Cyano-*N*-thiophen-2ylmethyl-acetamide

¹H-NMR (CDCl₃): δ 7.26 (dd, J'=5.1Hz, J"=1.3Hz, 1H), 7.03-6.99 (m, 1H), 6.99-6.95 (m, 1H), 6.57 (bs, 1H), 4.64 (d, J=5.6Hz, 2H), 3.39 (s, 2H).

2-Cyano-N-(5-methyl-furan-2-ylmethyl)-acetamide

¹H-NMR (CDCl₃): δ 6.52 (bs, 1H), 6.14 (d, J=3.0Hz, 1H), 5.93-5.88 (m, 1H), 4.40 (d, J=5.3Hz, 2H), 3.39 (s, 2H), 2.27 (s, 3H).

¹H-NMR (CDCl₃): δ 6.94-6.83 (m, 2H), 6.66 (bs, 1H), 4.53 (bd,

J=6.1Hz, 2H), 3.44 (s, 2H).

N-(4-Chloro-2-methyl-benzyl)-2cyano-acetamide

10

5

¹H-NMR (CDCl₃): δ 7.22-7.13 (m, 3H), 6.28 (bs, 1H), 4.43 (d, J=5.6Hz,

2H), 3.40 (s, 2H), 2.31 (s, 3H).

2-Cyano-*N*-(3,4-dichlorobenzyl)-acetamide ¹H-NMR (CDCl₃): δ 8.37 (bs, 1H), 7.14-7.09 (m, 2H), 6.87 (dd, J'=8.1Hz, J"=2.0Hz, 1H), 4.02 (d, J=5.8Hz, 2H), 3.20 (s, 2H).

2-Cyano-N-(2,3,4-trifluoro-benzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.14-7.06 (m, 1H), 7.01-6.90 (m, 1H), 6.54 (bs, 1H), 4.51 (d, J=5.8Hz, 2H), 3.41 (s, 2H).

5.38 2-Cyano-*N*-(3,4-difluorobenzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.19-7.08 (m, 2H), 7.06-6.98 (m, 1H), 6.46 (bs, 1H), 4.44 (d, J=5.8Hz, 2H), 3.43 (s, 2H).

10

¹H-NMR (CDCl₃): δ 7.09-6.94 (m, 3H), 6.58 (bs, 1H), 4.50 (d, J=6.1Hz, 2H), 3.42 (s, 2H).

2-Cyano-N-(2,4-dichloro-benzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.42 (d, J=2.0Hz, 1H), 7.35-7.23 (m, 2H), 6.58 (bs, 1H), 4.53 (d, J=6.1Hz, 2H), 3.40 (s, 2H).

2-Cyano-N-(2,3-dimethyl-benzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.18-7.06 (m, 3H), 6.18 (bs, 1H), 4.49 (d, J=5.3Hz, 2H), 3.37 (s, 2H), 2.30 (s, 3H), 2.22 (s, 3H).

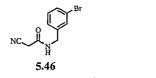
2-Cyano-N-(2,5-dimethyl-benzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.11-7.01 (m, 3H), 6.16 (bs, 1H), 4.44 (d, J=5.3Hz, 2H), 3.40 (d, 2H), 2.32 (s, 3H), 2.29 (s, 3H).

2-Cyano-N-(3,4-dimethyl-benzyl)-acetamide

10

¹H-NMR (CDCl₃): δ 7.12 (d, J=7.6Hz, 1H), 7.05 (bs, 1H), 7.01 (dd, J'=7.6Hz, J"=1.3Hz, 1H), 6.34 (bs, 1H), 4.40 (d, J=5.8Hz, 2H), 3.38 (d, 2H), 2.26 (s, 3H), 2.25 (s, 3H).


2-Cyano-N-(2,3-difluoro-benzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.19-7.0 (m, 3H), 6.46 (bs, 1H), 4.56 (dd, J'=6.1 Hz, J"=0.8Hz, 2H), 3.41 (s, 2H).

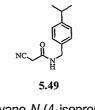
N-(2-Bromo-benzyl)-2-cyano-acetamide

¹H-NMR (CDCl₃): δ 7.48-7.41 (m, 2H), 7.25-7.19 (m, 2H), 6.45 (bs, 1H), 4.45 (d, J=5.8Hz, 2H), 3.43 (s, 2H).

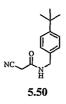
N-(3-Bromo-benzyl)-2-cyano-acetamide

¹H-NMR (CDCl₃): δ 7.58 (dd, J'=8.1Hz, J"=1.0Hz, 1H), 7.39 (dd, J'=7.8Hz, J"=1.5Hz, 1H), 7.31 (dt, J'=7.6Hz, J"=1.0Hz, 1H), 7.20 (dt, J'=7.6Hz, J"=1.5Hz, 1H), 6.59 (bs, 1H), 4.56 (d, J=5.8Hz, 2H), 3.39 (s, 2H).

2-Cyano-N-(2,2,2-trifluoro-ethyl)-acetamide


10

¹H-NMR (CDCl₃): δ 6.38 (bs, 1H), 3.98 (m, 2H), 3.48 (s, 2H).


2-Cyano-N-(4-ethyl-benzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.23-7.16 (m, 4H), 6.47 (bs, 1H), 4.42 (d, J=5.6Hz, 2H), 3.36 (s, 2H), 2.64 (q, J=7.6Hz, 2H), 1.23 (t, J=7.6Hz, 3H).

2-Cyano-*N*-(4-isopropylbenzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.23-7.16 (m, 4H), 6.65 (bs, 1H), 4.39 (d, J=5.6Hz, 2H), 3.33 (s, 2H), 2.90 (m, J=6.8Hz, 1H), 1.24 (d, J=6.8Hz, 6H).

N-(4-tert-Butyl-benzyl)-2-cyano-acetamide

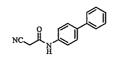
5

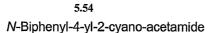
¹H-NMR (CDCl₃): δ 7.37 (d, J=8.3Hz, 2H), 7.21 (d, J=8.3hz, 2H), 6.59 (bs, 1H), 4.40 (d, J=5.6hz, 2H), 3.33 (s, 2H), 1.31 (s, 9H).

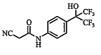
2-Cyano-*N*-[4-(2-methyl-[1,3]dioxolan-2yl)-benzyl]-acetamide

¹H-NMR (CDCl₃): δ 7.48 (d, J=8.1Hz, 2H), 7.27 (d, J=8.1Hz, 2H), 6.37 (bs, 1H), 4.47 (d, J=5.6Hz, 2H), 4.04 (m, 2H), 3.77 (m, 2H), 3.41 (s, 2H), 1.65 (s, 3H).

2-Cyano-N-naphthalen-1-ylmethyl-acetamide


-189-


¹H-NMR (CDCl₃): δ 7.98-7.83 (m, 3H), 7.61-7.50 (m, 2H), 7.48-7.41 (m, 2H), 6.27 (bs, 1H), 4.94 (d, J=5.3Hz, 2H), 3.39 (s, 2H).


N-Biphenyl-3-yl-2-cyano-acetamide

¹H-NMR (CDCl₃): δ 7.75-7.33 (m, 10H), 3.59 (s, 2H).

¹H-NMR (CDCl₃): δ 7.74-7.67 (bs, 1H), 7.63-7.55 (m, 6H), 7.44 (t, J=7.3Hz, 2H), 7.38-7.32 (m, 1H), 3.59 (s, 2H).

5.55

2-Cyano-N-[4-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethyl-ethyl)-phenyl]-acetamide

¹H-NMR (CDCl₃): δ 9.59 (bs, 1H), 7.68-7.55 (m, 4H), 3.75 (s,


10 2H).

2-Cyano-N-(5-methyl-pyrazin-2-ylmethyl)-acetamide

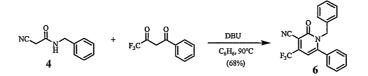
¹H-NMR (CDCl₃): δ 8.48 (s, 1H), 8.42 (s, 1H), 7.16 (bs, 1H), 4.61 (d, J=5.1Hz, 2H), 3.45 (s, 2H), 2.58 (s, 3H).

-190-

acetamide

¹H-NMR (CDCl₃): δ 7.36-7.29 (m, 1H), 7.10-6.97 (m, 3H), 6.54 (bs, 1H),

4.47 (d, J=5.8Hz, 2H), 3.43 (s, 2H).

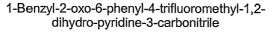


5

¹H-NMR (CDCl₃): 7.25-7.17 (m, 1H), 7.00-6.92 (m, 1H), 6.50 (bs, 1H), 4.47 (d, J=6.1Hz, 2H), 3.41 (s, 2H).

EXAMPLE 6

This example illustrates the preparation of compound 6.



10 Benzyl cyanoacetamide (0.2 g, 1.2 mmoles) was combined with 4,4,4trifluoro-1-phenyl-1,3-butanedione (0.24 g, 1.2 mmoles) and 1,8diazabicyclo[5.4.0]undec-7-ene (90 μL, 0.6 mmoles) in 2.5 mL of benzene. The mixture was stirred at 90 °C for 12 hours. After this period the reaction mixture was evaporated *in vacuo* and the residue was purified directly using

15 flask silica chromatography (20% EtOAc/Hexane) to yield 289 mg (68% yield) of product **6** as a white solid.

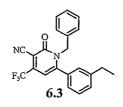
-191-

¹H-NMR (CDCl₃): *δ* 7.54 (t, J=7.6Hz, 1H), 7.45 (t, J=8Hz, 2H), 7.25-7.17 (m, 5H), 6.88 (dd, J'=6.9Hz, J"=1.5Hz, 2H), 6.39 (s, 1H), 5.26 (s, 2H). MS (ES+): 355.2 (M+H).

The following compounds were prepared in a manner similar to that described above.

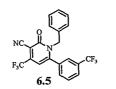
1-Benzyl-6-naphthalen-2-yl-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): *δ* 7.92 (d, J=8.3Hz, 2H), 7.77 (d, J=8.2Hz, 1H), 7.65-7.57 (m, 3H), 7.24-7.18 (m, 4H), 6.88 (d, J=8.2Hz, 2H), 6.49 (s, 1H), 5.29 (s, 2H).

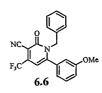


1-(2-Methyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

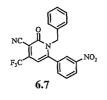
¹H-NMR (CDCl₃): δ 7.49 (t, J=7.4Hz, 1H), 7.36 (t, J=7.8Hz, 2H), 7.16-7.05 (m, 5H), 6.74-6.72 (m, 1H), 6.45 (s, 1H), 5.15 (s, 2H), 1.93 (s, 3H). **15** MS(ES+): 369.0 (M+H)


-192-

¹H-NMR (CDCl₃): *δ* 7.36 (m, 2H), 7.24 (m, 3H), 7.03 (m, 1H), 6.92 (m, 1H), 6.90 (m, 1H), 6.88 (m, 1H), 6.40 (s, 1H), 5.25 (s, 2H), 2.60 (q, J = 7.7 Hz, 2H), 1.15 (t, J = 7.7 Hz, 3H).


¹H-NMR (CDCl₃): δ 7.53 (m, 1H), 7.50 (m, 1H), 7.28 (m, 1H), 7.21 (m, 1H), 7.18 (m, 2H), 6.97 (m, 1H), 6.84 (m, 1H), 6.82 (m, 1H), 6.35 (s, 1H), 5.68 (d, J = 14.6 Hz, 2H), 4.68 (d, J = 14.6 Hz, 2H).

10


5

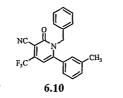
¹H-NMR (CDCl₃): δ 7.80 (m, 1H), 7.60 (m, 1H), 7.38 (m, 1H), 7.32 (s, 1H), 7.24 (m, 3H), 6.81 (m, 2H), 6.39 (s, 1H), 5.21 (s, 2H).

¹H-NMR (CDCl₃): *δ* 7.36 (m, 1H), 7.25 (m, 3H), 7.05 (m, 1H), 6.92 (m, 2H), 6.79 (m, 1H), 6.60 (m, 1H), 6.42 (s, 1H), 5.25 (s, 2H), 3.64 (s, 3H).

-193-

¹H-NMR (CDCl₃): δ 8.38 (m, 1H), 7.97 (m, 1H), 7.65 (m, 1H), 7.48 (m, 1H), 7.25 (m, 3H), 6.81 (m, 2H), 6.40 (s, 1H), 5.23 (s, 2H).

2-Oxo-1-phenethyl-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


5

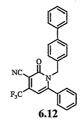
¹H-NMR (CDCl₃): δ 7.60-7.54 (m, 1H), 7.53-7.47 (m, 2H), 7.23-7.18 (m, 3H), 7.16-7.11 (m, 2H), 6.88-6.82 (m, 2H), 6.33 (s, 1H), 4.22-4.16 (m, 2H), 2.95-2.89 (m, 2H). MS(ES+): 368.7 (M+H)

2-Oxo-6-phenyl-1-phenylamino-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): *δ* 7.59-7.54 (m, 2H), 7.53 (bs, 1H), 7.5-7.44 (m, 1H), 7.43-7.38 (m, 2H), 7.21-7.15 (m, 2H), 7.01-6.96 (m, 1H), 6.60 (d, J=7.1Hz, 2H), 6.59 (s, 1H). MS(ES+): 356.0 (M+H)

1-Benzyl-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

I

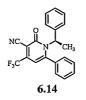

¹H-NMR (CDCl₃): *δ* 7.34 (d, J=5.1Hz, 2H), 7.25-7.22 (m, 4H), 7.02-6.96 (m, 1H), 6.92-6.87 (m, 3H), 6.39 (s, 1H), 5.24 (bs, 2H), 2.32 (s, 3H). MS(ES+): 368.9 (M+H)

1-Benzyl-4-methyl-2-oxo-6-phenyl-1,2-dihydro-pyridine-3-carbonitrile

5

¹H-NMR (CDCl₃): *δ* 7.50-7.44 (m, 1H), 7.38 (t, J=8.1Hz, 2H), 7.24-7.17 (m, 3H), 7.11 (d, J=7.3Hz, 2H), 6.91-6.83 (m, 2H), 6.08 (s, 1H), 5.17 (bs, 2H), 2.47 (s, 3H).

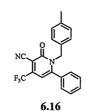
1-Biphenyl-4-ylmethyl-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


¹H-NMR (CDCl₃): *δ* 7.59-7.51 (m, 3H), 7.51-7.40 (m, 6H), 7.38-7.32 (m, 1H), 7.23 (d, J=6.8Hz, 2H), 6.97 (d, J=8.1Hz, 2H), 6.42 (s, 1H), 5.30 (s, 2H). MS (ES+): 453.0 (M+Na).

2-Oxo-1,6-diphenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): *δ* 7.35-7.27 (m, 4H), 7.26-7.20 (m, 2H), 7.13-7.03 (m, 4H), 6.56 (s, 1H). MS(ES+): 341.1 (M+H)

-195-

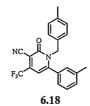


2-Oxo-6-phenyl-1-(1-phenyl-ethyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): *δ* 7.6-7.39 (m, 5H), 7.34-7.20 (m, 3H), 7.15 (d, J=6.8Hz, 2H), 6.37 (s, 1H), 5.60-5.49 (m, 1H), 1.95 (d, J=6.8Hz, 3H).

1-(3-Methyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 369.1 (M+H)


1-(4-Methyl-benzyl)-6-(1-methylene-but-2-enyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): δ 7.58-7.51 (m, 1H), 7.49-7.43 (m, 2H), 7.20 (d, J=7.3Hz, 2H), 7.03 (d, J=8.1Hz, 2H), 6.78 (d, J=7.8Hz, 2H), 6.38 (s, 1H), 5.22 (s, 2H), 2.29 (s, 3H), 1.54 (s, 3H).

1-(2-Methyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

```
MS(ES+): 383.0 (M+H)
```


1-(4-Methyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): δ 7.36-7.33 (m, 2H), 7.06-6.98 (m, 3H), 6.93 (bs, 1H), 6.79 (d, J=7.8Hz, 2H), 6.37 (s, 1H), 5.20 (bs, 2H), 2.34 (s, 3H), 2.30 (s, 3H).

6.19 2-Oxo-1-phenethyl-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

 $^{1}\text{H-NMR}$ (CDCl₃): δ 7.40-7.33 (m, 2H), 7.23-7.18 (m, 3H), 6.97-6.93 (m, 1H), 6.89-6.83 (m, 3H), 6.31 (s, 1H), 4.23-4.16 (m, 2H), 2.97-2.90 (m, 2H), 2.40 (s, 3H).

2-Oxo-1-phenylamino-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

 $^{1}\text{H-NMR}$ (CDCl₃): δ 7.91-7.84 (m, 1H), 7.47 (s, 1H), 7.38-7.32 (m, 2H), 7.18 (t, J=7.6Hz, 2H), 6.97 (t, J=7.3Hz, 1H), 6.62-6.56 (m, 3H), 2.35 (s, 3H)..

1-(3-Methyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 383.0 (M+H)

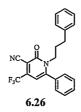
4-Methyl-1-(2-methyl-benzyl)-2-oxo-6-phenyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 315.0 (M+H)

4-Methyl-1-(3-methyl-benzyl)-2-oxo-6-phenyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 315.1 (M+H)

6.24


4-Methyl-1-(4-methyl-benzyl)-2-oxo-6-phenyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 315.0 (M+H)

4-Methyl-2-oxo-1-phenethyl-6-phenyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 315.2 (M+H)

2-Oxo-6-phenyl-1-(3-phenyl-propyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 383.3 (M+H)

6.27

2-Oxo-6-phenyl-4-trifluoromethyl-1-(2trifluoromethyl-benzyl)-1,2-dihydropyridine-3-carbonitrile

¹H-NMR (CDCl₃): δ 7.64-7.32 (m, 6H), 7.07 (d, J=6.8Hz, 2H), 6.93 (d, J=7.8Hz, 1H), 6.50 (s, 1H), 5.37 (s, 2H).

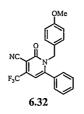
2-Oxo-6-phenyl-4-trifluoromethyl-1-(3trifluoromethyl-benzyl)-1,2-dihydropyridine-3-carbonitrile

MS(ES+): 422.8 (M+H)

-199-

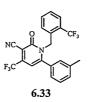
2-Oxo-6-phenyl-4-trifluoromethyl-1-(4-trifluoromethyl-benzyl)-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 422.8 (M+H)


1-(2-Methoxy-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 383.3 (M+H)

1-(3-Methoxy-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


MS(ES+): 384.9 (M+H)

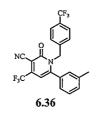
1-(4-Methoxy-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 385.3 (M+H)

-200-

2-Oxo-6-*m*-tolyl-4-trifluoromethyl-1-(2-trifluoromethyl-benzyl)-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 459.2 (M+Na)


2-Oxo-1-(3-phenyl-propyl)-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 397.0 (M+H)

2-Oxo-6-*m*-tolyl-4-trifluoromethyl-1-(3-trifluoromethyl-benzyl)-1,2-dihydro-pyridine-3-carbonitrile

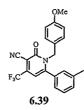
MS(ES+): 438.0 (M+H)

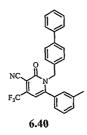
2-Oxo-6-*m*-tolyl-4-trifluoromethyl-1-(4-trifluoromethyl-benzyl)-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 437.0 (M+H)

-201-

1-(2-Methoxy-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


MS(ES+): 420.8 (M+Na)


1-(3-Methoxy-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 398.8 (M+H)

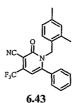
1-(4-Methoxy-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 421.0 (M+Na)

1-Biphenyl-4-ylmethyl-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 467.0 (M+Na)

-202-


2-Oxo-6-phenyl-1-(1-phenyl-ethyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

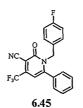
MS(ES+): 369.3 (M+H)

2-Oxo-6-phenyl-1-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 395.0 (M+H)

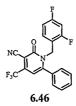
0.43

1-(2,4-Dimethyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

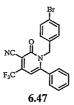

MS(ES+): 405.2 (M+Na)

6.44

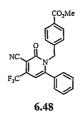
1-(2-Fluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 373.0 (M+H)

-203-


1-(4-Fluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

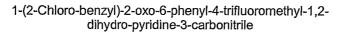
MS(ES+): 373.0 (M+H)


1-(2,4-Difluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

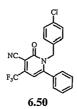
MS(ES+): 390.8 (M+H)

1-(4-Bromo-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

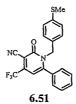
MS(ES+): 435.0 (M+H)



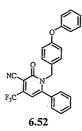
4-(3-Cyano-2-oxo-6-phenyl-4-trifluoromethyl-2*H*-pyridin-1ylmethyl)-benzoic acid methyl ester

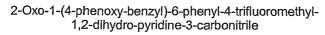

MS(ES+): 413.2 (M+H)

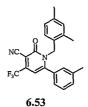
-204-



MS(ES+): 389.0 (M+H)

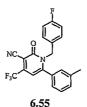

1-(4-Chloro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 389.0 (M+H)


1-(4-Methylsulfanyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

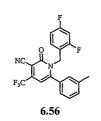
MS(ES+): 423.0 (M+Na)

¹H-NMR (CDCl₃): δ 7.59-7.53 (m, 1H), 7.48 (t, J=7.8Hz, 2H), 7.37-7.30 (m, 2H), 7.25-7.20 (m, 2H), 7.15-7.09 (m, 1H), 7.00-6.95 (m, 2H), 6.88-6.81 (m, 4H), 6.39 (s, 1H), 5.24 (s, 2H).

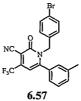

1-(2,4-Dimethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

MS(ES+): 397.0 (M+H)

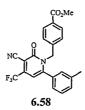
1-(2-Fluoro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 387.0 (M+H)

1-(4-Fluoro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 387.0 (M+H)

-206-

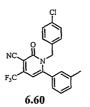

1-(2,4-Difluoro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

MS(ES+): 405.0 (M+H)

1-(4-Bromo-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

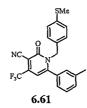
MS(ES+): 449.0 (M+H)

4-(3-Cyano-2-oxo-6-*m*-tolyl-4-trifluoromethyl-2*H*-pyridin-1ylmethyl)-benzoic acid methyl ester

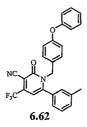

MS(ES+): 427.2 (M+H)

6.59

1-(2-Chloro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 403.0 (M+H)

-207-

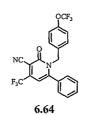

1-(4-Chloro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 402.8 (M+H)

1-(4-Methylsulfanyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 437.2 (M+Na)

2-Oxo-1-(4-phenoxy-benzyl)-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


¹H-NMR (CDCl₃): δ 7.40-7.30 (m, 4H), 7.14-7.09 (m, 1H), 7.05-6.94 (m, 4H), 6.90-6.83 (m, 4H), 6.39 (s, 1H), 5.22 (s, 2H), 2.36 (s, 3H).

1-Benzyl-6-phenyl-2-thioxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

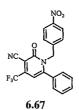
MS(ES+): 370.9 (M+H)

-208-

2-Oxo-6-phenyl-1-(4-trifluoromethoxy-benzyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 439.2 (M+H)

6.65

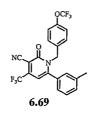

2-Oxo-6-phenyl-1-pyridin-3-ylmethyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 355.8 (M+H)

2-Oxo-6-phenyl-1-pyridin-4-ylmethyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 355.8 (M+H)

1-(4-Nitro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 400.0 (M+H)

-209-

1-Benzyl-2-thioxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

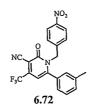
MS(ES+): 385.3 (M+H)

2-Oxo-6-*m*-tolyl-1-(4trifluoromethoxy-benzyl)-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 453.0 (M+H)

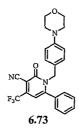
2-Oxo-1-pyridin-3-ylmethyl-6-*m*tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

5


MS(ES+): 369.8 (M+H)

6.71

2-Oxo-1-pyridin-4-ylmethyl-6-*m*tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 369.8 (M+H)

-210-

1-(4-Nitro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

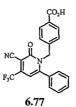
MS(ES+): 414.0 (M+H)

1-(4-Morpholin-4-yl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 440.2 (M+H)

1-Benzyl-5-methyl-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 369.0(M+H)


1-Benzyl-2-oxo-6-thiophen-2-yl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 383.0 (M+Na)

1-Benzyl-2-oxo-4,6-diphenyl-1,2-dihydropyridine-3-carbonitrile

MS(ES+): 385.2 (M+Na)

4-(3-Cyano-2-oxo-6-phenyl-4-trifluoromethyl-2*H*pyridin-1-ylmethyl)-benzoic acid

MS(ES+): 399.4 (M+H)

1

2-Oxo-6-phenyl-4-trifluoromethyl-3',4',5',6'-tetrahydro-2*H*,2'*H*-[1,1']bipyridinyl-3-carbonitrile

MS(ES+): 348.0 (M+H)

2-Oxo-6-phenyl-1-pyrrolidin-1-yl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 334.0 (M+H)

-212-

6.80

1-Cyclohexylmethyl-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 361.0 (M+H)

2-Oxo-6-phenyl-1-thiophen-2-ylmethyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 361.1 (M+H)

1-(5-Methyl-furan-2-ylmethyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

5

MS(ES+): 381.0 (M+Na)

2-Oxo-6-phenyl-1-(2,3,5-trifluoro-benzyl)-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 409.2 (M+H)

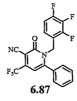
6.84

1-(4-Chloro-2-methyl-benzyl)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

ŧ

MS(ES+): 403.0 (M+H)

1-(3,4-Dichloro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


MS(ES+): 423.0 (M+H)

1-(3-Fluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 373.0 (M+H)

5

2-Oxo-6-phenyl-1-(2,3,4-trifluoro-benzyl)-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 409.2 (M+H)

6.88

2-Oxo-6-*m*-tolyl-4-trifluoromethyl-3',4',5',6'-tetrahydro-2*H*,2'*H*-[1,1']bipyridinyl-3-carbonitrile

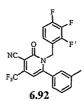
MS(ES+): 362.0 (M+H)

-214-

2-Oxo-1-pyrrolidin-1-yl-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

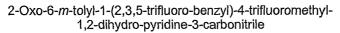
MS(ES+): 348.0 (M+H)

1-Cyclohexylmethyl-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

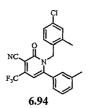

MS(ES+): 375.0 (M+H)

2-Oxo-1-thiophen-2-ylmethyl-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 375.0 (M+H)


2-Oxo-6-*m*-tolyl-1-(2,3,4-trifluoro-benzyl)-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

ł


MS(ES+): 423.0 (M+H)

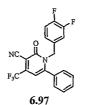
-215-

MS(ES+): 423.0 (M+H)

1-(4-Chloro-2-methyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 417.0 (M+H)

1-(3,4-Dichloro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

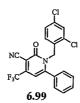

MS(ES+): 437.0 (M+H)

6.96

1-(3-Fluoro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 387.0 (M+H)

5



MS(ES+): 390.8 (M+H)

1-(2,5-Difluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 390.8 (M+H)

1-(2,4-Dichloro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 423.0 (M+H)

1-(2,3-Dimethyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 383.2 (M+H)

5

1-(2,5-Dimethyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 383.0 (M+H)

1-(3,4-Dimethyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 383.2 (M+H)

6.103

1-(2,3-Difluoro-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 391.0 (M+H)

6.104

1-(2-Bromo-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 433.0 (M+H)

-218-

1-(3-Bromo-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 435.0 (M+H)

6.106

1-(3,4-Difluoro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 405.0 (M+H)

1-(2,5-Difluoro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

5

MS(ES+): 405.0 (M+H)

6.108

1-(2,4-Dichloro-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 437.2 (M+H)

-219-

1-(2,3-Dimethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 397.0 (M+H)

6.110

1-(2,5-Dimethyl-benzyl)-2-oxo-6*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 397.0 (M+H)

6.111

1-(3,4-Dimethyl-benzyl)-2-oxo-6*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 397.0 (M+H)

6.112

1-(2,3-Difluoro-benzyl)-2-oxo-6*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

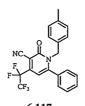
MS(ES+): 405.0 (M+H)

1-(2-Bromo-benzyl)-2-oxo-6-*m*tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 449.1(M+H)

1-(3-Bromo-benzyl)-2-oxo-6-*m*tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

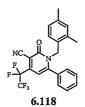
MS(ES+): 447.0 (M+H)


6.115

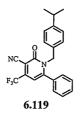
2-Oxo-6-*m*-tolyl-1-(2,2,2-trifluoroethyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 347.0 (M+H)

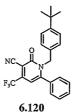
6.116 1-Benzyl-2-oxo-4-pentafluoroethyl-6-phenyl-1,2dihydro-pyridine-3-carbonitrile


¹H-NMR (CDCl₃): δ 7.58-7.52 (m, 1H), 7.45 (t, J=7.8Hz, 2H), 7.26-7.16 (m, 5H), 6.92-6.86 (m, 2H), 6.32 (s, 1H), 5.26 (s, 2H).

6.117


1-(4-Methyl-benzyl)-2-oxo-4-pentafluoroethyl-6-phenyl-1,2-dihydro-pyridine-3-carbonitrile

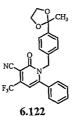
MS(ES+): 419.3 (M+H)


1-(2,4-Dimethyl-benzyl)-2-oxo-4-pentafluoroethyl-6-phenyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 433.3 (M+H)

1-(4-Isopropyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 397.1 (M+H)


1-(4-*tert*-Butyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 411.4 (M+H)

1-Naphthalen-1-ylmethyl-2-oxo-6phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): δ 7.86 (d, J=7.8Hz, 1H), 7.79 (d, J=8.3Hz, 1H), 7.58 (d, J=8.6Hz, 1H), 7.52-7.35 (m, 4H), 7.16-7.14 (m, 2H), 6.87 (d, J=7.3Hz, 1H), 6.49 (s, 1H),5.68 (s, 2H).

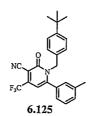
1-[4-(2-Methyl-[1,3]dioxolan-2-yl)-benzyl]-2oxo-6-phenyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

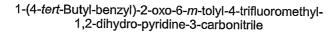
¹H-NMR (CDCl₃): δ 7.59-7.52 (m, 1H), 7.46 (t, J=8.1Hz, 2H), 7.34 (d, J=8.1Hz, 2H), 7.23 (d, J=7.1Hz, 2H), 6.88 (d, J=8.1Hz, 2H), 6.41 (s, 1H), 5.25 (s, 2H), 4.05-3.99 (m, 2H), 3.75-3.70 (m, 2H),1.60 (s, 3H).

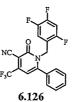
CH ₃
, 🗘
F ₃ C
6.123

1-(4-Ethyl-benzyl)-2-oxo-6-*m*tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

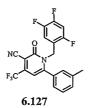
¹H-NMR (CDCl₃): δ 7.36-7.31 (m, 2H), 7.06 (d, J=8.1Hz, 2H), 7.04-6.99 (m, 1H), 6.91 (bs, 1H), 6.81 (d, J=8.1Hz, 2H), 6.37 (s, 1H),


5


5.21 (bs, 2H), 2.59 (q, J=7.6Hz, 2H), 2.33 (s, 3H), 1.19 (t, J=7.3Hz, 3H).


6.124 1-(4-lsopropyl-benzyl)-2-oxo-6*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

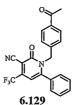
MS(ES+): 411.4 (M+H)


MS(ES+): 424.9 (M+H)

2-Oxo-6-phenyl-1-(2,4,5-trifluoro-benzyl)-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 409.2 (M+H)

-224-


2-Oxo-6-*m*-tolyl-1-(2,4,5-trifluoro-benzyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

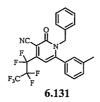
MS(ES+): 423.1 (M+H)

1-Naphthalen-1-ylmethyl-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 419.2 (M+H)

1-(4-Acetyl-benzyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 397.2 (M+H)


6.130

1-Benzyl-4-heptafluoropropyl-2-oxo-6-phenyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 455.2 (M+H)

5

-225-

1-Benzyl-4-heptafluoropropyl-2-oxo-6-*m*-tolyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 469.0 (M+H)

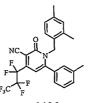
6.132

1-Benzyl-4-(chloro-difluoro-methyl)-2-oxo-6-*m*-tolyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 385.2 (M+H)

1-Benzyl-4-(1-fluoro-1-methoxy-ethyl)-2-oxo-6-*m*-tolyl-1,2-dihydro-pyridine-3-carbonitrile

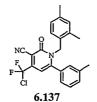
¹H-NMR (CDCl₃): δ 7.34-7.31 (m, 2H), 7.26-7.22 (m, 2H), 7.02-6.88 (m, 4H), 6.35 (s, 1H), 5.23 (s, 2H), 3.66 (s, 3H), 2.32 (s, 3H).



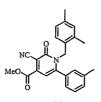
6.135

1-(2,4-Dimethyl-benzyl)-2-oxo-4-pentafluoroethyl-6-*m*-tolyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 447.3 (M+H)

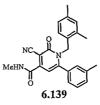

-226-

6.136

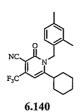

1-(2,4-Dimethyl-benzyl)-4-heptafluoropropyl-2-oxo-6-*m*-tolyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 497.2 (M+H)

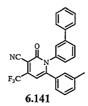
4-(Chloro-difluoro-methyl)-1-(2,4dimethyl-benzyl)-2-oxo-6-*m*-tolyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 413.1 (M+H)

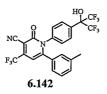
6.138


3-Cyano-1-(2,4-dimethyl-benzyl)-2oxo-6-*m*-tolyl-1,2-dihydro-pyridine-4-carboxylic acid methyl ester

MS(ES+): 387.1 (M+H)


3-Cyano-1-(2,4-dimethyl-benzyl)-2-oxo-6-*m*-tolyl-1,2dihydro-pyridine-4-carboxylic acid methylamide

MS(ES+): 386.1 (M+H)


6-Cyclohexyl-1-(2,4-dimethylbenzyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

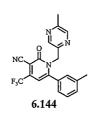
MS(ES+): 389.3 (M+H)

1-Biphenyl-3-yl-2-oxo-6-*m*tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3carbonitrile

MS(ES+): 431.0 (M+H)

2-Oxo-6-*m*-tolyl-1-[4-(2,2,2-trifluoro-1hydroxy-1-trifluoromethyl-ethyl)-phenyl]-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

MS(ES+): 521.2 (M+H)


1-(2,4-Dimethyl-benzyl)-2-oxo-6-phenethyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 411.4 (M+H)

1

5

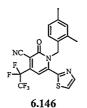
(

1-(5-Methyl-pyrazin-2-ylmethyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

MS(ES+): 385.1 (M+H)

6.145

1-(2-Methyl-benzyl)-2-oxo-4pentafluoroethyl-6-thiazol-2-yl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 426.0 (M+H)

6.145

1-(4-Methyl-benzyl)-2-oxo-4pentafluoroethyl-6-thiazol-2-yl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 426.1 (M+H)

1-(2,4-Dimethyl-benzyl)-2-oxo-4pentafluoroethyl-6-thiazol-2-yl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 440.2 (M+H)

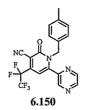
-229-

6.147

2-Oxo-4-pentafluoroethyl-1-phenethyl-6-thiazol-2-yl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 426.0 (M+H)

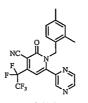
2-Oxo-4-pentafluoroethyl-6thiazol-2-yl-3',4',5',6'-tetrahydro-2H,2'H-[1,1']bipyridinyl-3carbonitrile


MS(ES+): 404.9 (M+H)

6.149

1-(2-Methyl-benzyl)-2-oxo-4-pentafluoroethyl-6-pyrazin-2-yl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 421.1 (M+H)



1-(4-Methyl-benzyl)-2-oxo-4-pentafluoroethyl-6-pyrazin-2-yl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 421.0 (M+H)

5

-230-

6.151

1-(2,4-Dimethyl-benzyl)-2-oxo-4-pentafluoroethyl-6-pyrazin-2yl-1,2-dihydro-pyridine-3-carbonitrile

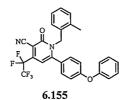
MS(ES+): 435.3 (M+H)

6.152

2-Oxo-4-pentafluoroethyl-1-phenethyl-6-pyrazin-2-yl-1,2-dihydro-pyridine-3-carbonitrile

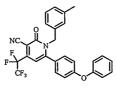
MS(ES+): 421.1 (M+H)

6.153


2-Oxo-4-pentafluoroethyl-6pyrazin-2-yl-3',4',5',6'-tetrahydro-2*H*,2'*H*-[1,1']bipyridinyl-3carbonitrile

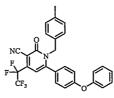
MS(ES+): 400.3 (M+H)

6.154


4-Dimethoxymethyl-1-(2,4dimethyl-benzyl)-2-oxo-6-*m*-tolyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 402.9 (M+H)

1-(2-Methyl-benzyl)-2-oxo-4pentafluoroethyl-6-(4-phenoxy-phenyl)-1,2-dihydro-pyridine-3-carbonitrile

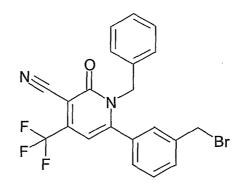

MS(ES+): 511.1 (M+H)

6.156

1-(3-Methyl-benzyl)-2-oxo-4pentafluoroethyl-6-(4-phenoxy-phenyl)-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 511.3 (M+H)

6.157


1-(4-Methyl-benzyl)-2-oxo-4pentafluoroethyl-6-(4-phenoxy-phenyl)-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 510.9 (M+H)

6.158

1-(2,4-Dimethyl-benzyl)-2-oxo-4pentafluoroethyl-6-(4-phenoxy-phenyl)-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 525.4 (M+H)

6.159

1-Benzyl-6-(3-bromomethyl-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile ¹H-NMR (CDCl₃): δ7.56 (m), 7.45 (m, 1 H), 7.25 (m, 3 H), 7.15 (m, 2 H), 6.88 (m, 2 H), 6.40 (s, 1 H), 5.24 (s, 2 H), 4.39 (s, 2 H).

EXAMPLE 7

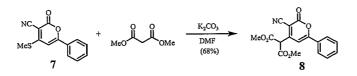
10

5

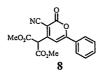
This example illustrates the preparation of compound 7.

 $NC + OEt + H_3C + H_3C + H_4C + H_4$

3,3-Bis(methylthio)-2-cyanoacrylic acid ethyl ester (2.0 g, 9.2 mmoles – TCl America) was combined with acetophenone (1.1 mL, 9.4 mmoles) in 100 mL of DMF within a round-bottom flask. To this stirring


- 15 mixture at room temp was then added potassium hydroxide (1.0 g, 17.8 mmoles), and the reaction was stirring at this temp for 12 hours. After this period the reaction was combined with 150 mL of ice-water and the mixture was stirred for 2 hours. The resulting heterogeneous mixture was vacuum filtered, and the yellow filter cake was washed with water and dried to yield
- 20 product 1.04 g (46% yield) as a yellow solid.

¹H-NMR (CDCl₃): *δ* 7.88 (dt, J'=7.0hz, J"=1.5Hz, 2H), 7.6-7.49 (m, 3H), 6.72 (s, 1H), 2.73 (s, 3H).


EXAMPLE 8

This example illustrates the preparation of compound 8.

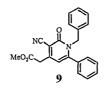
4-Methylsulfanyl-2-oxo-6-phenyl-2H-pyran-3-carbonitrile, **7** (0.11 g, 0.46 mmoles) was combined with dimethyl malonate (0.11 mL, 0.96 mmoles) and potassium carbonate (0.16 g, 1.2 mmoles) in 2.3 mL of

- anhydrous DMF. The reaction was stirred at room temp for 12 hours. After this period the mixture was combined with water and 1N HCl (to adjust pH <
 and was extracted with EtOAc (2 x 30 mL). The resulting organic layer was then washed with sat'd NaCl and was dried over anhydrous Na₂SO₄. The EtOAc layer was evaporated *in vacuo* to yield the crude product, which was
- **15** purified using flash silica chromatography to yield product 0.103 g (68% yield) as a yellow solid.

¹H-NMR (CDCl₃): *δ* 7.90 (dt, J'=7.1Hz, J"=1.8Hz, 2H), 7.60-7.49 (m, 3H), 7.14 (s, 1H), 5.06 (s, 1H), 3.86 (s, 6H).

20

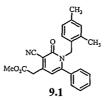
EXAMPLE 9


This example illustrates the preparation of compound 9.

-234-

2-(3-Cyano-2-oxo-6-phenyl-2H-pyran-4-yl)-malonic acid dimethyl ester, **8** (26 mg, 0.079 mmoles) was combined with benzylamine (10 μ L, 0.092 mmoles) and 1.0 mL of ethanol within a screw cap vial. The mixture

5 was heated to 80 °C and was stirred at this temp for 2 hours. After this period the mixture was evaporated *in vacuo* and was purified directly by flash silica chromatography (0-50% EtOAc/Hexane) to yield product 27 mg (95% yield) as a beige solid.

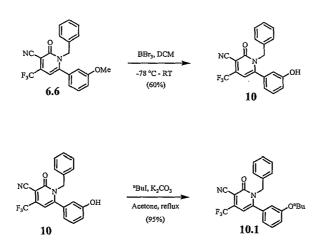


10

15

¹H-NMR (CDCl₃): *δ* 7.5-7.44 (m, 1H), 7.38 (t, J=8.1Hz, 2H), 7.22-7.17 (m, 3H), 7.15 (d, J=7.3Hz, 2H), 6.91-6.85 (m, 2H), 6.31 (s, 1H), 5.19 (s, 2H), 3.96 (s, 3H), 3.86 (s, 2H). MS (ES+): 358.8 (M+H).

The following compounds were prepared in a manner similar to that described above.



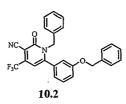
[3-Cyano-1-(2,4-dimethyl-benzyl)-2-oxo-6-phenyl-1,2-dihydropyridin-4-yl]-acetic acid methyl ester

¹H-NMR (CDCl₃): δ 7.28-7.20 (m, 2H), 6.96-6.90 (m, 2H), 6.89-6.82 (m, 2H), 6.67 (s, 1H), 6.62 (d, J=7.8Hz, 1H), 5.09 (s, 2H), 4.01 (s, 3H), 2.27 (s, 3H), 2.25 (s, 3H), 1.88 (s, 3H).

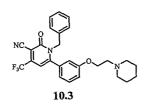
EXAMPLE 10

This example illustrates the preparation of compound **10.1**.

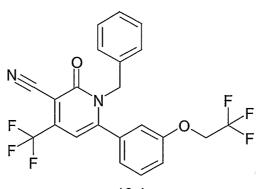
A solution of boron tribromide (4.5 mL, 47.9 mmol) in 10 mL anhydrous


- 5 THF was slowly added to a solution of 1-benzyl-3-cyano-6-(3-methoxyphenyl)-4-trifluoromethyl-1*H*-pyridin-2-one (6.6) (8.37 g, 21.8 mmol) in 62 mL of anhydrous THF at -78 °C under nitrogen. The mixture was vigorously stirred and allowed to warm to ambient temperature overnight. The mixture was then cooled to 0 °C with an ice/water bath and to it was added
- 10 100 mL of MeOH in portion. The mixture was stirred at room temperature for 1 h and concentrated *in vacuo*. The residue was dissolved in dichloromethane and neutralized to pH 7 by adding 1 N NaOH. The organic layer was washed with water, separated and dried with anhydrous MgSO₄. The dichloromethane was concentrated *in vacuo*. The resulting crude product was purified by
- 15 column chromatography (50% EtOAc/hexane), providing a bright yellow solid (10) (4.8 g, 60% yield). ¹H-NMR (DMSO-d6): δ 10.01 (s, 1H), 7.37 (m, 4H), 7.11 (m, 2H), 7.03 (m, 1H), 6.91 (m, 2H), 6.82 (s, 1H), 5.28 (s, 2H).

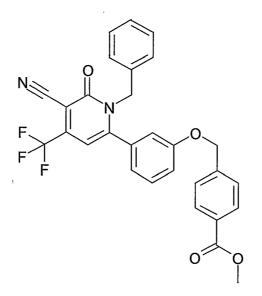
To a solution of 1-benzyl-3-cyano-6-(3-hydroxyphenyl)-4-trifluoromethyl-1*H*-pyridin-2-one (10) (98 mg, 0.27 mmol) in 4 mL of acetone was added 1iodobutane (59 mg, 0.32 mmol) and K₂CO₃ (41 mg, 0.32 mmol). The mixture was stirred and heated to reflux overnight. The salt was removed by filtration


-236-

and the solvent was concentrated *in vacuo*. The resulting crude product was purified by column chromatography (25% EtOAc/hexane), providing a yellow solid (10.1) (107 mg, 95% yield). ¹H-NMR (CDCl₃): δ 7.34 (m, 1H), 7.25 (m, 3H), 7.03 (m, 1H), 6.93 (m, 2H), 6.77 (m, 1H), 6.59 (m, 1H), 6.41(s, 1H), 5.25
5 (s, 2H), 3.73 (m, 2H), 1.71 (m, 2H), 1.45 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H).

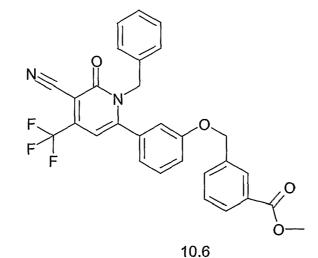

The following compounds were prepared in a manner similar to that described above.

¹H-NMR (CDCl₃): δ 7.44 - 7.33 (m, 6H), 7.26 (m, 3H), 7.12 (m, 1H),
6.90 (m, 2H), 6.79 (m, 1H), 6.68 (m, 1H), 6.40 (s, 1H), 5.21 (s, 2H), 4.68 (s, 2H).


¹H-NMR (CDCl₃): δ 7.34 (m, 1H), 7.24 (m, 3H), 7.06 (m, 1H), 6.92 (m, 2H), 6.77 (m, 1H), 6.64 (m, 1H), 6.40 (s, 1H), 5.25 (s, 2H), 3.91 (t, J = 6.1 Hz, 2H), 2.72 (t, J = 6.1 Hz, 2H), 2.48 (m, 4H), 1.61 (m, 4H), 1.45 (m, 2H).

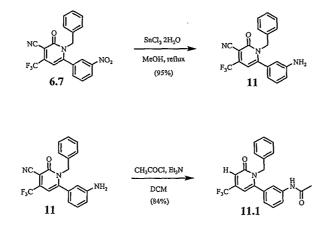
10.4

1-Benzyl-2-oxo-6-[3-(2,2,2-trifluoro-ethoxy)-phenyl]-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


5 NMR (CDCl₃): δ7.45 (m, 1 H), 7.25 (m, 4 H), 7.01 (m, 1 H), 6.88 (m, 3 H), 6.40 (s, 1 H), 5.33 (m, 2 H), 5.26 (s, 2 H).

4-[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)-phenoxymethyl]-benzoic acid methyl ester
 ¹H-NMR (CDCl₃): δ8.06 (m, 2 H), 7.42 (m, 2 H), 7.36 (m, 1 H), 7.26 (m, 4 H), 7.11 (m, 1 H), 6.92 (m, 2 H), 6.82 (m, 1 H), 6.66 (m, 1 H), 6.40 (s, 1 H), 5.21 (s, 2 H), 4.89 (s, 2 H), 3.93 (s, 3 H)..

XCT0265953



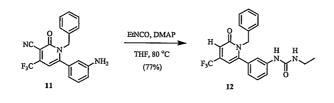
3-[3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)phenoxymethyl]-benzoic acid methyl ester ¹H-NMR (CDCl₃): δ8.03 (m, 2 H), 7.56 (m, 1 H), 7.48 (m, 1 H), 7.37 (m, 1 H), 7.26 (m, 2 H), 7.11 (m, 1 H), 6.91 (m, 2 H), 6.82 (m, 1 H),, 6.67 (m, 1 H), 6.40 (s, 1 H), 5.22 (s, 2 H), 4.87 (s, 2 H), 3.94 (s, 3 H).

10

EXAMPLE 11

This example illustrates the preparation of compound **11.1**.

To a solution of 1-benzyl-3-cyano-6-(3-nitrophenyl)-4-trifluoromethyl-1*H*-**15** pyridin-2-one (**6.7**) (200 mg, 0.50 mmol) in 5 mL of MeOH was added

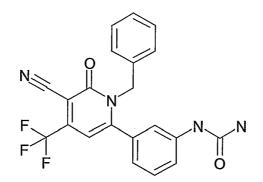

-239-

stannous (II) chloride dihydrate (565 mg, 2.5 mmol). The mixture was stirred and heated to reflux for 3 h. The mixture was then concentrated *in vacuo*. The residue was taken in a mixture of ethyl acetate and 5% aqueous NaHCO₃. The mixture was stirred for 1 h, and the organic layer was separated and the

- 5 aqueous layer was extracted with ethyl acetate twice. The combined organic layer was dried with anhydrous MgSO₄ and concentrated *in vacuo*. The crude product (11) was relatively pure by analysis of its ¹H NMR spectrum and was used for the next reaction without further purification.
- To a solution of 6-(3-aminophenyl)-1-benzyl-3-cyano-4-trifluoromethyl-1*H*pyridin-2-one (11) (74 mg, 0.20 mmol) in 2 mL of dichloromethane was added acetyl chloride (48 mg, 0.6 mmol) and triethylamine (81 mg, 0.64 mmol). The mixture was refluxed overnight. The salt was removed by filtration and the solvent was concentrated *in vacuo*. The resulting crude product was purified by column chromatography (60% EtOAc/hexane), providing 11.1 as a yellow
- oil (69 mg, 84% yield). ¹H-NMR (CDCl₃): δ 7.57 (m, 2H), 7.43 (s, 1H), 7.35 (m, 1H), 7.23 (m, 3H), 6.90 (m, 2H), 6.85 (m, 1H), 6.41 (s, 1H), 5.27 (s, 2H), 2.19 (s, 3H).

EXAMPLE 12

This example illustrates the preparation of compound **12**.

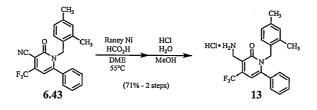


20

To a solution of 6-(3-aminophenyl)-1-benzyl-3-cyano-4-trifluoromethyl-1*H*-pyridin-2-one (**11**) (94 mg, 0.26 mmol) in 2 mL of anhydrous THF was added ethyl isocyanate (90 mg, 1.3 mmol) and DMAP (6 mg, 0.05 mmol). The mixture was refluxed overnight. The reaction mixture was cooled to room

25 temperature, concentrated *in vacuo*, and the residue purified by column chromatography (50% EtOAc/hexane) providing **12** as a yellow solid (77 mg,

77% yield). ¹H-NMR (CDCl₃): *δ* 7.44 (m, 2H), 7.25 (m, 1H), 7.21 (m, 4H), 6.89 (m, 3H), 6.69 (m, 1H), 6.43 (s, 1H), 5.27 (s, 2H), 3.28 (q, J = 7.3 Hz, 2H), 1.16 (t, J = 7.3 Hz, 3H).



5 [3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)-phenyl]urea

¹H-NMR (DMSO-d6): δ10.20 (s, 1 H), 9.04 (s, 1 H), 7.65 (m, 1 H), 7.58 (m, 1 H), 7.43 (m, 1 H), 7.29 (m, 3 H), 7.07 (m, 1 H), 7.02 (m, 2 H), 6.80 (s, 1 H), 5.23 (s, 2 H).

EXAMPLE 13

This example illustrates the preparation of compound 13.

15 Within a 100 mL flask was placed Raney[®]-type Alloy (Aluminumnickel catalyst, Aldrich, 2.0 g), a magnetic stir bar and 2N NaOH solution (20 mL). The flask was submerged into a water bath at ambient temperature and the mixture was vigorously stirred for 45 min (bubbling occurs). In a separate pear-shaped flask was placed 1-(2,4-Dimethyl-benzyl)-2-oxo-6-phenyl-4-

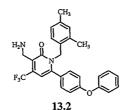
20 trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile **6.43** (100 mg, 0.26 mmoles) and this was dissolved within formic acid (5 mL) and ethylene glycol dimethyl ether (DME, 1.0 mL). After Ra-Ni activation was complete the hydroxide

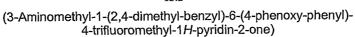
mixture (heterogeneous) was carefully decanted, washed with water, and sequentially decanted to remove the residual sodium hydroxide. Excess water was removed from the activated Ra-Ni using a pipette. The nitrile solution was carefully added to the stirring Ra-Ni at room temperature, and

5 mixture was heated to 55 °C for 3 hours. After this period the reaction mixture was filtered through Celite (with MeOH washings) and concentrated *in vacuo*. The residue was taken up in ethyl acetate and was washed with 50% v/v aqueous NH₄OH (3x20 mL) and brine. The resulting EtOAc solution was dried over anhydrous Na₂SO₄ and was concentrated *in vacuo* to yield crude
10 product as a yellow residue. The crude product was purified using flash silica chromatography (0-10% MeOH/DCM) to yield the free base as a yellow residue. The free base was combined with 2N HCI/MeOH and evaporated to yield the hydrochloride salt. The salt was dissolved in deionized water and freeze-dried to yield 79mg (71% yield) of product 13 as a yellowish powder.

(3-Aminomethyl-1-(2,4-dimethyl-benzyl)-6-phenyl-4trifluoromethyl-1*H*-pyridin-2-one hydrochloride)

¹H-NMR (CDCl₃): δ (d6-DMSO) 8.38 (bs, 3H), 7.47 (t, J=7.5Hz, 1H), 7.40 (t, J=7.6Hz, 2H), 7.26 (d, J=7.6Hz, 2H), 6.92-6.89 (m, 2H), 6.65 (d, J=7.6Hz, 1H), 6.54 (s, 1H), 5.05 (s, 2H), 4.02 (bs, 2H), 2.21 (s, 3H), 1.87 (s, 3H). MS(ES+): 386.9 (M+H)

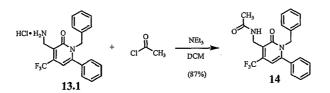

20


15

The following compound was prepared in a manner similar to that described above.

SUBSTITUTE SHEET (RULE 26)

-242-



¹H-NMR (CDCl₃): δ 7.20-7.14 (m, 1H), 7.11-6.99 (m, 5H), 6.94-6.87 (m, 5H), 6.58 (d, J=7.3Hz, 1H), 6.34 (s, 1H), 5.09 (s, 2H), 3.93 (s, 2H), 2.26 (s, 3H), 2.01 (s, 3H).

EXAMPLE 14

This example illustrates the preparation of compound 14.

10

3-Aminomethyl-1-(2,4-dimethyl-benzyl)-6-phenyl-4-trifluoromethyl-1Hpyridin-2-one hydrochloride **13.1** (15 mg, 0.039 mmoles) was combined with acetyl chloride (5 μ L, 0.070 mmoles) and triethylamine (12 μ L, 0.086 mmoles) in 5 mL of anhydrous DCM within a round-bottom flask. The mixture was stirred at room temperature for 10 hours and was evaporated *in vacuo* to yield

15 crude product as a yellow residue. The crude product was purified using flash silica chromatography (0-30% EtOAc /Hexane) to yield 15mg (87% yield) of 14 as a white solid.

-243-

N-(1-Benzyl-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridin-3-ylmethyl)-acetamide

¹H-NMR (CDCl₃): δ 7.50-7.43 (m, 1H), 7.38 (t, J=7.8Hz, 2H), 7.25-7.21 (m, 3H), 7.19-7.14 (m, 2H),6.92-6.85 (m, 2H), 6.83-6.75 (m, 1H), 6.36 (s, 1H), 5.21 (bs, 2H), 4.62 (d, J=6.1Hz, 2H), 1.97 (s, 3H). MS(ES+): 401.2 (M+H)

The following compounds were prepared in a manner similar to that described above.

14.1

(1-Benzyl-2-oxo-6-phenyl-4-trifluoromethyl-1,2-dihydro-pyridin-3-ylmethyl)-carbamic acid ethyl ester

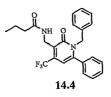
MS(ES+): 431.1 (M+H)

N-(1-Benzyl-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridin-3ylmethyl)-propionamide

.

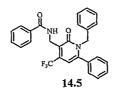
10

5


MS(ES+): 415.2 (M+H)

5

14.3


N-(1-Benzyl-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridin-3ylmethyl)-isobutyramide

MS(ES+): 429.3 (M+H)

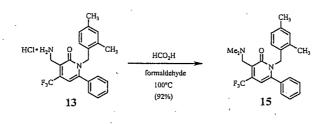
N-(1-Benzyl-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridin-3ylmethyl)-butyramide

MS(ES+): 429.2 (M+H)

N-(1-Benzyl-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridin-3ylmethyl)-benzamide

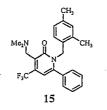
MS(ES+): 463.2 (M+H)

14.6


N-(1-Benzyl-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridin-3ylmethyl)-2-phenyl-acetamide

MS(ES+): 477.1 (M+H)

EXAMPLE 15

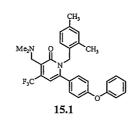

-245-

This example illustrates the preparation of compound 15.

3-Aminomethyl-1-(2,4-dimethyl-benzyl)-6-phenyl-4-

- trifluoromethyl-1H-pyridin-2-one hydrochloride 13 (39 mg, 0.092 mmoles) was
 combined with formic acid (96%, 1.0 mL) in 3.0 mL of aqueous formaldehyde (37 wt. % solution in water), and the mixture was stirred at 100 °C for 16 hours. After this period the mixture was poured into a saturated NaHCO₃ solution (20 mL) which was extracted with copious Et₂O. The combined ether layer was washed with brine, dried over anhydrous Na₂SO₄, and was
- 10 evaporated *in vacuo* to yield crude product as a yellowish residue. The crude product was purified using flash silica chromatography (0-10% MeOH/DCM w/0.1% diethylamine) to yield 35 mg (92% yield) of **15** as a yellowish residue.

(3-Dimethylaminomethyl-1-(2,4-dimethyl-benzyl)-6-phenyl-4trifluoromethyl-1*H*-pyridin-2-one)

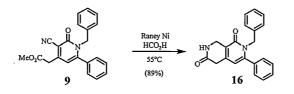

¹H-NMR (CDCl₃): δ 7.43-7.37 (m, 1H), 7.31 (t, J=7.8Hz, 2H), 7.17-7.11 (m, 2H), 6.89 (bd, J=7.8Hz, 1H), 6.85 (bs, 1H), 6.56 (d, J=7.8Hz, 1H), 6.32 (s, 1H), 5.07 (s, 2H), 3.63-3.59 (m, 2H), 2.36 (s, 6H), 2.25 (s, 3H), 1.92 (s, 3H). MS(ES+): 415.4 (M+H)

15

SUBSTITUTE SHEET (RULE 26)

5

-246-



3-Dimethylaminomethyl-1-(2,4-dimethylbenzyl)-6-(4-phenoxy-phenyl)-4trifluoromethyl-1*H*-pyridin-2-one

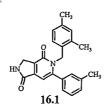
MS(ES+): 507.2 (M+H)

EXAMPLE 16

This example illustrates the preparation of compound 16.

Within a 100 mL flask was placed Raney[®]-type Alloy (Aluminumnickel catalyst, Aldrich, 4.0 g), a magnetic stir bar and 2N NaOH solution (50 mL). The flask was submerged into a water bath at ambient temperature and the mixture was vigorously stirred for 45 min (bubbling occurs). In a separate

- 10 pear-shaped flask was placed [3-Cyano-1-(2,4-dimethyl-benzyl)-2-oxo-6phenyl-1,2-dihydro-pyridin-4-yl]-acetic acid methyl ester 9 (183 mg, 0.46 mmoles) and this was dissolved within formic acid (8 mL). After Ra-Ni activation was complete the hydroxide mixture (heterogeneous) was carefully decanted, washed with water, and sequentially decanted to remove the
- 15 residual sodium hydroxide. Excess water was removed from the activated Ra-Ni using a pipette. The nitrile solution was carefully added to the stirring Ra-Ni at room temperature, and mixture was heated to 55 °C for 90 min. After this period the reaction mixture was filtered through Celite (with MeOH washings) and concentrated *in vacuo*. The residue was taken up in EA and
- 20 was washed with 50% v/v aqueous NH₄OH (3x20 mL) and brine. The

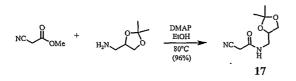

-247-

resulting EA solution was dried over anhydrous Na_2SO_4 and was concentrated *in vacuo* to yield 0.151 g (89% yield) of **16** as a yellow residue.

2-Benzyl-3-phenyl-7,8-dihydro-2*H*,5*H*-[2,7]naphthyridine-1,6-dione

¹H-NMR (CDCl₃): δ 7.48-7.41 (m, 1H), 7.40-7.33 (m, 2H), 7.20-7.09 (m, 5H), 6.95-6.89 (m, 2H), 5.95 (s, 1H), 5.84 (bs, 1H), 5.20 (bs, 2H), 3.55-3.47 (m, 2H), 2.81 (t, J=6.6Hz, 2H). MS(ES+): 331.2 (M+H)

The following compound was prepared in a manner similar to that described above.

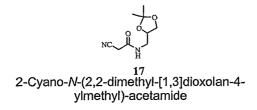

5-(2,4-Dimethyl-benzyl)-6-*m*-tolyl-3,5-dihydro-2*H*pyrrolo[3,4-c]pyridine-1,4-dione

10

MS(ES+): 359.2 (M+H)

EXAMPLE 17

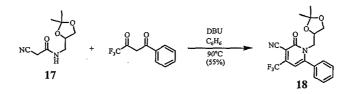
This example illustrates the preparation of compound 17.



Methyl cyanoacetate (6.7 mL, 75.9 mmoles) was combined with

15 2,2-dimethyl-1,3-dioxolane-4-methanamine (4.6 g, 50.5 mmoles), 4-(N,N-dimethylamino)pyridine (20 mg, 0.16 mmoles) and 20 mL of Ethanol within a

-248-

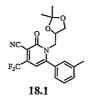

round-bottom flask. The mixture was then stirred at 80 °C for 16 hours. After this period reaction mixture was evaporated *in vacuo* and was purified using flash silica chromatography (0-60% EtOAc/hexane) to yield 7.33 g (96% yield) of **17** as a yellowish liquid.

¹H-NMR (CDCl₃): δ 6.43 (bs, 1H), 4.31-4.21 (m, 1H), 4.10-4.04 (m, 1H), 3.65 (dd, J'=8.3Hz, J"=5.8Hz, 1H), 3.59 (dq, J¹=13.9Hz, J²=5.6Hz, J³=3.5Hz, 1H), 3.41 (s, 2H), 3.39-3.33 (m, 1H), 1.47 (s, 3H), 1.36 (s, 3H).

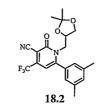
EXAMPLE 18

This example illustrates the preparation of compound 18.

2-Cyano-N-(2,2-dimethyl-[1,3]dioxolan-4-ylmethyl)-acetamide **17** (2.05 g, 10.3 mmoles), 4,4,4-Trifluoro-1-phenyl-butane-1,3-dione (2.2 g, 10.3


15 mmoles) and DBU (0.77 mL, 5.1 mmoles) were combined with 20 mL of benzene within a round-bottom flask. The mixture was stirred at 90 °C for 16 hours. After this period the reaction mix was purified directly using flash silica chromatography (0-40% EtOAc/Hexane) to yield 2.14g (55% yield) of 18 as a yellow residue.

5

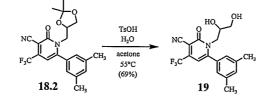

1-(2,2-Dimethyl-[1,3]dioxolan-4-ylmethyl)-2-oxo-6-phenyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): δ 7.60-7.49 (m, 3H), 7.48-7.37 (m, 2H), 6.42 (s, 1H), 4.59-4.52 (m, 1H), 4.33 (dd, J'=13.1Hz, J"=2.5Hz, 1H), 4.09 (dd, J'=8.8Hz, J"=6.8Hz, 1H), 4.02 (dd, J'=12.9Hz, J"=8.6Hz, 1H), 3.51 (dd, J'=8.6Hz, J"=6.1Hz, 1H), 1.24 (s, 3H), 1.10 (s, 3H). MS(ES+): 379.4 (M+H)

1-(2,2-Dimethyl-[1,3]dioxolan-4-ylmethyl)-2oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

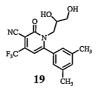
¹H-NMR (CDCl₃): δ 7.43-7.33 (m, 2H), 7.22 (bs, 2H), 6.41 (s, 1H), 4.59-4.51 (m, 1H), 4.34-4.30 (dd, J'=13.1Hz, J"=2.8Hz, 1H), 4.16-4.00 (m, 2H), 3.52 (dd, J'=8.8Hz, J"=5.8Hz, 1H), 2.43 (s, 6H), 1.11 (s, 3H).

1-(2,2-Dimethyl-[1,3]dioxolan-4-ylmethyl)-6-(3,5-dimethyl-phenyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile


¹H-NMR (CDCl₃): δ 7.16 (s, 1H), 6.99 (bs, 2H), 6.40 (s, 1H), 4.59-4.52 (m, 1H), 4.34 (dd, J'=12.9Hz, J"=2.5Hz, 1H), 4.13-4.00 (m,

10

2H), 3.53 (dd, J'=8.6Hz, J"=6.3Hz, 1H), 2.38 (s, 6H), 1.24 (s, 3H), 1.12 (s, 3H).


EXAMPLE 19

This example illustrates the preparation of compound 19.

1-(2,2-Dimethyl-[1,3]dioxolan-4-ylmethyl)-6-(3,5-dimethylphenyl)-2-oxo-4-trifluoro-methyl-1,2-dihydro-pyridine-3-carbonitrile **18.2** (0.72 g, 1.78 moles) was combined with p-toluenesulfonic acid monohydrate (0.34 g, 1.78 mmoles), water (2 mL) and 30 mL of actone within a round-bottom

10 flask equipped with a reflux condensor. The mixture was stirred at 55 °C for 3 hours. After this period the reaction mixture was evaporated *in vacuo* and was purified directly using flash silica chromatography (0-80% EtOAc/Hexane) to yield 0.45 g (69% yield) of **19** as a white solid.

1-(2,3-Dihydroxy-propyl)-6-(3,5-dimethyl-phenyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): δ 7.19 (s, 1H), 6.95 (s, 2H), 6.46 (s, 1H), 4.24-4.12 (m, 2H), 3.94-3.86 (m, 1H), 3.63-3.55 (m, 1H), 3.43-3.36 (m, 1H), 3.21 (d, J=6.1Hz, 1H), 2.39 (s, 6H).

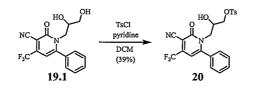
The following compounds were prepared in a manner similar to that described above.

5

1-(2,3-Dihydroxy-propyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 339.1 (M+H)

NC HO OH F₃C 19.2


1-(2,3-Dihydroxy-propyl)-2-oxo-6*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

5

¹H-NMR (CDCl₃): δ 7.47-7.33 (m, 2H), 7.21 (bs, 2H), 6.48 (s, 1H), 4.24-4.09 (m, 2H), 4.04-3.97 (m, 1H), 3.56 (dd, J'=11.6Hz, J"=4.0Hz, 1H), 3.37 (dd, J'=11.9Hz, J"=4.8Hz, 1H), 2.82 (bs, 1H), 2.43 (s, 3H).

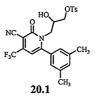
EXAMPLE 20

This example illustrates the preparation of compound 20

10

1-(2,3-Dihydroxy-propyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile**19.1**(0.33 g, 0.98 mmoles) was combined with*p*-toluenesulfonyl chloride (0.2 g, 1.05 mmoles), pyridine (0.1 mL, 1.24mmoles) and 3 mL of anhydrous DCM within a 7 mL reaction vial. The

15 mixture as then stirred at room temp for 24 hours. After this period the reaction mixture was evaporated *in vacuo* and was purified directly using flash silica chromatography (0-30% EtOAc/Hexane) to yield 186 mg (39% yield) of 20 was a yellow residue.


-252-

propyl ester

¹H-NMR (CDCl₃): δ 7.66 (d, J=8.3Hz, 2H), 7.62-7.52 (m, 3H), 7.44-7.38 (m, 2H), 7.33 (d, J=8.1Hz, 2H), 6.46 (s, 1H), 4.30-4.21 (m, 1H), 4.17-4.07 (m, 2H), 3.97-3.87 (m, 2H), 3.38 (d, J=5.8Hz, 1H), 2.45 (s, 3H).

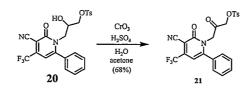
The following compounds were prepared in a manner similar to that described above.

Toluene-4-sulfonic acid 3-[3-cyano-6-(3,5-dimethyl-phenyl)-2-oxo-4trifluoromethyl-2*H*-pyridin-1-yl] -2-hydroxy-propyl ester

¹H-NMR (CDCl₃): δ 7.67 (d, J=8.3Hz, 2H), 7.33 (d, J=8.1Hz, 2H), 7.20 (s, 1H), 6.97 (bs, 2H), 6.45 (s, 1H), 4.23-4.05 (m, 4H), 3.96-3.87 (m, 2H), 3.38-3.34 (m, 1H), 2.45 (s, 3H), 2.40 (s, 6H).

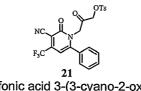
Toluene-4-sulfonic acid 3-(3-cyano-2-oxo-6-*m*-tolyl-4-trifluoromethyl-2*H*-pyridin-1yl)-2-hydroxy-propyl ester

¹H-NMR (CDCl₃): δ 7.66 d (J=8.3Hz, 2H), 7.48-7.36 (m, 3H), 7.33 (d, J=8.3Hz, 2H), 7.19 (bs, 2H), 6.45 (s, 1H), 4.25-4.05 (m, 3H), 3.96-3.86 (m, 2H), 3.45 (bs, 1H), 2.45 (s, 3H), 2.44 (s, 3H).


10

5

-253-

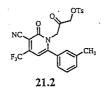

EXAMPLE 21

This example illustrates the preparation of compound 21.

Toluene-4-sulfonic acid 3-(3-cyano-2-oxo-6-phenyl-4-

- 5 trifluoromethyl-2H-pyridin-1-yl)-2-hydroxy-propyl ester 20 (46 mg, 0.093 mmoles) was dissolved into actone. To this solution at room temperature was added 2.67 M Jones Reagent (0.15 mL, 0.40 mmoles) and the resulting mixture was stirred at this temperature for 3 hours. After this period the reaction mixture was gravity filtered through paper, evaporated *in vacuo* and
- **10** was purified directly using flash silica chromatography (0-30% EtOAc/Hexane) to yield 31 mg (68% yield) of **21** as a yellow residue.

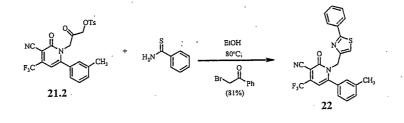
Toluene-4-sulfonic acid 3-(3-cyano-2-oxo-6-phenyl-4trifluoromethyl-2*H*-pyridin-1-yl)-2-oxopropyl ester


¹H-NMR (CDCl₃): δ 7.76 (d, J=8.3Hz, 2H), 7.63-7.52 (m, 3H), 7.40-7.32 (m, 4H), 6.50 (s, 1H), 4.84 (s, 2H), 4.59 (s, 2H), 2.47 (s, 3H).

15

The following compounds were prepared in a manner similar to that described above.

Toluene-4-sulfonic acid 3-[3-cyano-6-(3,5-dimethyl-phenyl)-2oxo-4-trifluoromethyl-2*H*-pyridin-1-yl]-2-oxo-propyl ester ¹H-NMR (CDCl₃): δ 7.76 (d, J=8.3Hz, 2H), 7.38 (d, J=8.3Hz, 2H), 7.21 (bs, 1H), 6.93 (s, 2H), 6.48 (s, 1H), 4.86 (s, 2H), 4.60 (s, 2H), 2.47 (s, 3H), 2.38 (s, 6H).

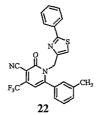


Toluene-4-sulfonic acid 3-(3-cyano-2-oxo-6-*m*-tolyl-4trifluoromethyl-2*H*-pyridin-1-yl)-2-oxopropyl ester

¹H-NMR (CDCl₃): δ 7.76 (d, J=8.3Hz, 2H), 7.45-7.35 (m, 4H), 7.17-7.10 (m, 2H), 6.49 (s, 1H), 4.85 (s, 2H), 4.59 (s, 2H), 2.47 (s, 3H), 2.43 (s, 3H).

EXAMPLE 22

This example illustrates the preparation of compound 22.

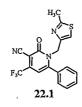

10

5

Toluene-4-sulfonic acid 3-(3-cyano-2-oxo-6-m-tolyl-4-trifluoromethyl-2Hpyridin-1-yl)-2-oxo-propyl ester **21.2** (11 mg, 0.022 mmoles) was combined with thiobenzamide (6 mg, 0.044 mmoles) and 1.0 mL of EtOH within a 7 mL reaction vial. This mixture was stirred at 80 °C for 16 hours. After this period

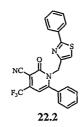
15 2-bromoacetophenone (7 mg, 0.035 mmoles) was added and the mixture was stirred at 80 °C for an additional 3 hours. After this period the reaction mixture was evaporated *in vacuo* and was purified using flash silica chromatography (0-20% EtOAc/Hexane) to yield 8mg (81% yield) of **22** as a yellowish residue.

-255-


2-Oxo-1-(2-phenyl-thiazol-4-ylmethyl)-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

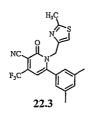
¹H-NMR (CDCl₃): δ 7.89-7.82 (m, 2H), 7.46-7.34 (m, 7H), 7.30 (s, 1H), 6.44 (s, 1H), 5.28 (s, 2H), 2.41 (s, 3H). MS(ES+): 452.1 (M+H)

The following compounds were prepared in a manner similar to

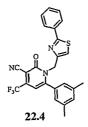

5

that described above.

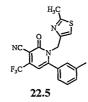
1-(2-Methyl-thiazol-4-ylmethyl)-2-oxo-6-phenyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 398.0 (M+Na)

2-Oxo-6-phenyl-1-(2-phenyl-thiazol-4-ylmethyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

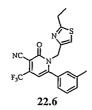

MS(ES+): 438.2 (M+H)

-256-


6-(3,5-Dimethyl-phenyl)-1-(2-methyl-thiazol-4ylmethyl)-2-oxo-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

MS(ES+): 404.1 (M+H)

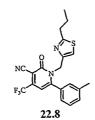
2-Oxo-1-(2-phenyl-thiazol-4ylmethyl)-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


MS(ES+): 466.2 (M+H)

1-(2-Methyl-thiazol-4-ylmethyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

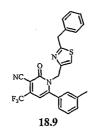
5

MS(ES+): 389.8 (M+H)


1-(2-Ethyl-thiazol-4-ylmethyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile MS(ES+): 404.0 (M+H)

22.7

1-(2-Isopropyl-thiazol-4-ylmethyl)-2oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

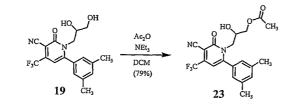

¹H-NMR (CDCl₃): δ 7.39-7.27 (m, 4H), 7.11 (s, 1H), 6.42 (s, 1H), 5.19 (s, 2H), 3.22 (m, J=6.8Hz, 1H), 2.39 (s, 3H), 1.36 (d, J=6.8Hz, 6H).

2-Oxo-1-(2-propy)-thiazol-4-ylmethyl)-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

5

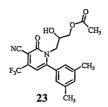
MS(ES+): 418.3 (M+H)

1-(2-Benzyl-thiazol-4-ylmethyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 466.2 (M+H)

EXAMPLE 23

10


This example illustrates the preparation of compound 23.

-258-

1-(2,3-Dihydroxy-propyl)-6-(3,5-dimethyl-phenyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile **19** (33 mg, 0.09 mmoles) was combined with acetic acid anhydride (9 μL, 0.095 mmoles), triethylamine

5 (IDDL, 0.11 mmoles) and 2.0 mL of DCM within a 7 mL reaction vial. This mixture was stirred at room temperature for 24 hours. After this period the reaction mixture was purified directly by flash silica chromatography (0-40% EtOAc/Hexane) to yield 29 mg (79% yield) of 23 as a white solid.

Acetic acid 3-[3-cyano-6-(3,5-dimethyl-phenyl)-2-oxo-4trifluoromethyl-2*H*-pyridin-1-yl]-2-hydroxypropyl ester

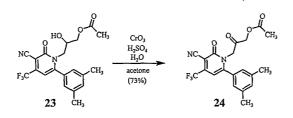
¹H-NMR (CDCl₃): δ 7.19 (bs, 1H), 6.98 (bs, 2H), 6.44 (s, 1H), 4.28-3.91 (m, 6H), 3.15 (bs, 1H), 2.39 (s, 6H), 1.94 (s, 3H).

The following compounds were prepared in a manner similar to that described above.

23.1

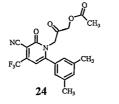
Acetic acid 3-(3-cyano-2-oxo-6-*m*tolyl-4-trifluoromethyl-2*H*-pyridin-1yl)-2-hydroxy-propyl ester

¹H-NMR (CDCl₃): δ 7.45-7.35 (m, 2H), 7.19 (bs, 2H), 6.45 (s, 1H), 4.27-3.91 (m, 6H), 3.05 (bs, 1H), 2.44 (s, 3H), 1.93 (s, 3H).


10

15

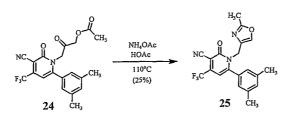
-259-


EXAMPLE 24

This example illustrates the preparation of compound 24.

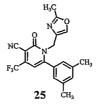
Acetic acid 3-[3-cyano-6-(3,5-dimethyl-phenyl)-2-oxo-4-

- 5 trifluoromethyl-2H-pyridin-1-yl]-2-hydroxy-propyl ester 23 (29 mg, 0.071 mmoles) was dissolved into 3 mL of acetone within a 7 ml reaction vial. To this solution was added 2.67M Jones Reagent (53 mL, 0.142 mmoles) and the mixture was stirred at room temperature for 2 hours. After this period the reaction mixture was gravity filtered through paper and the resulting filtrate
- **10** was evaporated *in vacuo*, and purified using flash silica chromatography (0-40% EtOAc/Hexane) to yield 21 mg (73% yield) of **24** as a white solid.


Acetic acid 3-[3-cyano-6-(3,5-dimethyl-phenyl)-2-oxo-4trifluoromethyl-2*H*-pyridin-1-yl]-2-oxopropyl ester

¹H-NMR (CDCl₃): δ 7.19 (s, 1H), 6.93 (s, 2H), 6.48 (s, 1H), 4.73 (s, 2H), 4.72 (s, 2H), 2.37 (s, 6H), 2.14 (s, 3H).

EXAMPLE 25


This example illustrates the preparation of compound 25.

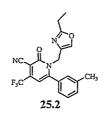
-260-

Acetic acid 3-[3-cyano-6-(3,5-dimethyl-phenyl)-2-oxo-4trifluoromethyl-2H-pyridin-1-yl]-2-oxo-propyl ester **24** (21 mg, 0.052 mmoles) was combined with ammonium acetate (50 mg, 0.64 mmoles) and 1.0 mL of

5 glacial acetic acid within a 7 mL reaction vial, and the mixture was stirred at 110 °C for 16 hours. After this period the reaction mixture was evaporated *in vacuo* and was purified using flash silica chromatography (0-40% EtOAc/Hexane) to yield 5mg (25% yield) of **25** as a white solid.

6-(3,5-Dimethyl-phenyl)-1-(2-methyl-oxazol-4-ylmethyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

10

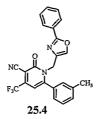

¹H-NMR (CDCl₃): δ 7.59 (s, 1H), 7.19 (bs, 1H), 7.15 (s, 2H), 6.41 (s, 1H), 4.98 (s, 2H), 2.41 (s, 3H), 2.38 (s, 6H).

The following compounds were prepared in a manner similar to that described above.

25.1

1-(2-Methyl-oxazol-4-ylmethyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

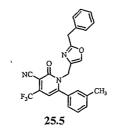
MS(ES+): 374.1 (M+H)


1-(2-Ethyl-oxazol-4-ylmethyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

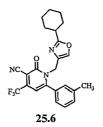
MS(ES+): 388.0 (M+H)

25.2

2-Oxo-1-(2-propyl-oxazol-4-ylmethyl)-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 402.1 (M+H)

2-Oxo-1-(2-phenyl-oxazol-4-ylmethyl)-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 436.3 (M+H)

-262-

1-(2-Benzyl-oxazol-4-ylmethyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): δ 7.64 (s, 1H), 7.37-7.24 (m, 9H), 6.4 (s, 1H), 4.98 (s, 2H), 4.06 (s, 2H), 2.36 (s, 3H). MS(ES+): 449.9 (M+H)

1-(2-Cyclohexyl-oxazol-4-ylmethyl)-2oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

5

MS(ES+): 442.0 (M+H)

EXAMPLE 26

This example illustrates the preparation of compound 26.

$$\overset{OH}{\longleftarrow} CH_{3} \xrightarrow[(85\%)]{DIPEA} \overset{OMOM}{\longleftarrow} CH_{3}$$

Pent-1-en-3-ol (5.0 mL, 48.7 mmoles), N,N-

10 diisopropylethylamine (10.2 mL, 58.6 mmoles) and MOMCI (4.4 mL, 57.9 mmoles) were dissolved in 10 mL of anhydrous DCM within a sealed-tube, and this mixture was stirred at 50 °C for 20 hours. After this period the reaction mixture was combined with Et₂O and the resulting precipitate was removed by gravity filtration. The filtrate was carefully evaporated (-Et₂O and

-263-

DCM) and the resulting amber liquid was fractionally distilled to yield 5.4g (85% yield) of **26** as a clear liquid. B.P. 126 °C @ 760mmHg

26 3-Methoxymethoxypent-1-ene

¹H-NMR (CDCl₃): δ 5.72-5.61 (m, 1H), 5.23-5.16 (m, 2H), 4.71 (d, J=6.8Hz, 1H), 4.55 (d, J=6.8Hz, 1H), 3.91 (q, J=7.1Hz, 1H), 3.38 (s, 3H), 1.70-1.48 (m, 2H), 0.93 (t, J=7.3Hz, 3H).

The following compounds were prepared in a manner similar to that described above.

26.1 3-Methoxymethoxy-but-1-ene

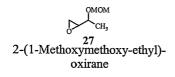
10

¹H-NMR (CDCl₃): δ 5.80-5.70 (m, 1H), 5.24-5.11 (m, 2H), 4.69 (d, J=6.8Hz, 1H), 4.58 (d, J=6.8Hz, 1H), 4.21-4.09 (m, 1H), 3.38 (s, 3H), 1.27 (d, J=6.3Hz, 3H).

EXAMPLE 27

This example illustrates the preparation of compound 27.

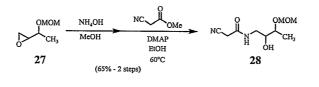
15


3-Methoxymethoxy-but-1-ene **26.1** (1.73 g, 14.9 mmoles) was dissolved into 100 mL of DCM and to this stirring mixture at 0 °C was added 3-chloroperoxybenzoic acid (77% max, 7.4 g, ~30 mmoles). This mixture was allowed to stir at room temperature for 20 hours. After this period the reaction

20 mixture was combined with DCM and was washed with saturated $Na_2S_2O_3$ (2x20 mL) and 15 mL of saturated $NaHCO_3$. After drying the resulting DCM

-264-

solution over anhydrous Na_2SO_4 the mixture was carefully evaporated *in vacuo* to yield crude product. The crude product was purified using flash silica chromatography (0-15% EtOAc/Hexane) to yield 1.34 g (68% yield) of **27** as yellowish liquid. Both ¹H-NMR and TLC analysis show **27** to be a 1:1

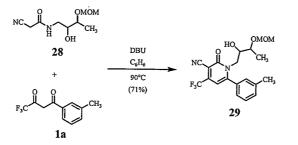

5 mixture of diastereomers.

¹H-NMR (CDCl₃): (diastereomers) δ 4.81 (d, J=6.6Hz, 1H), 4.72-4.67 (m, 2H), 4.64 (d, J=6.6Hz, 1H), 3.65-3.57 (m, 1H), 3.53-3.44 (m, 1H), 3.40 (s, 3H), 3.37 (s, 3H), 3.02-2.98 (m, 1H), 2.95-2.91 (m, 1H), 2.81-2.76 (m, 2H), 2.73-2.70 (m, 1H), 2.57-2.54 (m, 1H).

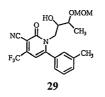
EXAMPLE 28

This example illustrates the preparation of compound 28.

- 2-(1-Methoxymethoxy-ethyl)-oxirane 27 (1.89 g, 14.3 mmoles)
 15 was combined with NH₄OH (28% NH₃ in water, 5 mL) and 1 mL of MeOH within a sealed-tube and this mixture was vigorously stirred at room temperature for 48 hours. After this period the reaction mixture was evaporate *in vacuo* (-NH₃ and H₂O) to yield crude product as an amber liquid. This product was combined with methyl cyanoactate (3.0 mL, 34.0 mmoles),
- 20 DMAP (10 mg) and 50 mL of anhydrous EtOH. This mixture was stirred at 60 °C for 48 hours. After this period the reaction mixture was evaporated *in vacuo* and was purified using flash silica chromatography (0-100% EtOAc/Hexane) to yield 2.02 g (65% yield) of **28** as an amber residue. Both ¹H-NMR and TLC analysis show **28** to be a 1:1 mixture of diastereomers.



¹H-NMR (CDCl₃): (diastereomers) δ 6.78 & 6.64 (bs, 1H – both peaks), 4.77-4.65 (m, 2H), 3.84-3.54 (m, 3H), 3.45-3.36 (m, 6H), 3.32-3.14 (m, 2H), 1.13 (d, J=6.3Hz, 3H).


5

EXAMPLE 29

This example illustrates the preparation of compound 29.

2-Cyano-N-(2-hydroxy-3-methoxymethoxy-butyl)-acetamide 28 (0.78 g, 3.6 mmoles) and 4,4,4-Trifluoro-1-m-tolyl-butane-1,3-dione 1a (0.83
10 g, 3.6 mmoles) were dissolved in 10 mL of C₆H₆ and this mixture was stirred at 90 °C for 16 hours. After this period the reaction mixture was purified directly using flash silica chromatography (0-40% EtOAc/Hexane) to yield 1.06 g (71% yield) of 29 as a yellow liquid. ¹H-NMR analysis shows 29 to be a 1:1 mixture of diastereomers.

1-(2-Hydroxy-3-methoxymethoxy-butyl)-2-oxo-6-*m*-tolyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

-266-

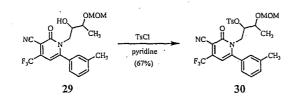
¹H-NMR (CDCl₃): (diastereomers) δ 7.44-7.32 (m, 4H), 7.21 (bs, 4H), 6.40 (bs, 2H), 4.58-4.45 (m, 4H), 4.28-4.09 (m, 4H), 3.90-3.82 (m, 1H), 3.81-3.73 (m, 1H), 3.71-3.63 (m, 1H), 3.57-3.49 (m, 1H), 3.22 (s, 3H), 3.10 (s, 3H), 2.43 (s, 6H), 1.14 (d, J=6.3Hz, 3H), 1.07 (d, J=6.6Hz, 3H).

The following compounds were prepared in a manner similar to that described above.

OMOM 29.1

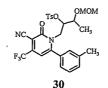
1-(2-Hydroxy-3-methoxymethoxybutyl)-2-oxo-6-(4-phenoxy-phenyl)-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

10.


5

¹H-NMR (CDCl₃): (diastereomers)δ 7.45-7.33 (m, 8H), 7.24-7.19 (m, 2H), 7.11-7.02 (m, 8H), 6.36 (s, 1H), 6.35 (s, 1H), 4.62-4.51 (m, 4H), 4.30-4.15 (m 4H), 3.96-3.82 (m, 2H), 3.75-3.66 (m 1H), 3.62-3.54 (m, 1H), 3.26 (s, 3H), 3.19 (s, 3H), 1.15 (d, J=6.3Hz, 3H), 1.11 (d, J=6.3Hz, 3H).

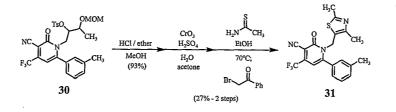
EXAMPLE 30


15

This example illustrates the preparation of compound 30.

1-(2-Hydroxy-3-methoxymethoxy-butyl)-2-oxo-6-m-tolyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile **29** (0.36 g, 0.87 mmoles) was combined with *p*-toluenesulfonyl chloride (0.33 g, 1.73 mmoles) in 2 mL of pyridine and this mixture was stirred at room temperature for 16 hours.

After this period the mixture was evaporated and purified using flash silica chromatography (0-20% EtOAc/Hexane) to yield 0.33 g (67% yield) of **30** as a yellow residue. ¹H-NMR analysis shows **30** to be a 1:1 mixture of diastereomers.

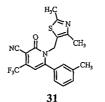


Toluene-4-sulfonic acid 1-(3-cyano-2-oxo-6-*m*-tolyl-4trifluoromethyl-2*H*-pyridin-1-ylmethyl)-2-methoxymethoxy-propyl ester

¹H-NMR (CDCl₃): (diastereomers) δ 7.68-7.61 (m, 4H), 7.46-7.28 (m, 4H), 6.33 (s, 1H), 6.33 (s, 1H), 5.06-5.00 (m, 1H), 4.88-4.82 (m, 1H), 4.52-4.45 (m, 2H), 4.38 (q, J=6.8Hz, 2H), 4.33-4.02 (m, 4H), 3.96-3.89 (m, 1H), 3.28 (s, 3H), 3.14 (s, 3H), 2.49 (s, 3H), 2.49 (s, 3H), 2.44 (s, 3H), 2.43 (s, 3H), 1.14 (d, J=6.8Hz, 3H), 0.85 (d, J=6.6Hz, 3H).

EXAMPLE 31

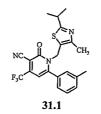
This example illustrates the preparation of compound 31.


Toluene-4-sulfonic acid 1-(3-cyano-2-oxo-6-m-tolyl-4-

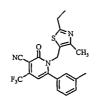
15 trifluoromethyl-2H-pyridin-1-ylmethyl)-2-methoxymethoxy-propyl ester 30 (0.28 g, 0.50 mmoles) was dissolved into 7 mL of anhydrous MeOH and to this solution was added HCI (2.0 M solution in diethyl ether, 1.0 mL) and this mixture was stirred at room temperature for 2 hours. After this period the reaction mixture was evaporated *in vacuo* and was purified using flash silica
20 chromatography (0-40% EtOAc/Hexane) to yield 0.24 g (93% yield) of 31 as a

5

-268-


yellow residue. ¹H-NMR analysis shows **31** to be a 1:1 mixture of diastereomers.

1-(2,4-Dimethyl-thiazol-5-ylmethyl)-2-oxo-6-*m*-tolyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


¹H-NMR (CDCl₃): δ 7.47-7.38 (m, 2H), 7.13-7.06 (m, 2H), 6.37 (s, 1H), 5.28 (s, 2H), 2.58 (s, 3H), 2.43 (s, 3H). MS(ES+): 403.8 (M+H)

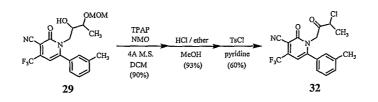
The following compounds were prepared in a manner similar to that described above.

1-(2-lsopropyl-4-methyl-thiazol-5-ylmethyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 432.3 (M+H)

31.2

1-(2-Ethyl-4-methyl-thiazol-5-ylmethyl)-2oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 418.2 (M+H)

-269-

EXAMPLE 32

This example illustrates the preparation of compound **32**.

1-(2-Hydroxy-3-methoxymethoxy-butyl)-2-oxo-6-m-tolyl-4-

- 5 trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile 29 (0.21 g, 0.52 mmoles) was combined with N-methylmorpholine N-oxide (NMO, 92 mg, 0.79 mmoles) and 4Å molecular sieves (powder, 170 mg) in 5 mL of anhydrous DCM within a 7 mL reaction vial. The mixture was stirred at room temperature for 10 min. After this period tetrapropylammonium perruthenate (TPAP, 10mg, 0.028
- 10 mmoles) was added and the mixture was stirred at room temperature for an additional 3 hours. After this period the reaction mixture was purified directly using flash silica chromatography (0-40% EtOAc/Hexane) to yield 0.191 g (90% yield) of 1-(3-Methoxymethoxy-2-oxo-butyl)-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile as a yellow residue.

¹H-NMR (CDCl₃): δ 7.42-7.35 (m, 2H), 7.14-7.07 (m, 2H), 6.45 (s, 1H), 5.04-4.91(m, 2H), 4.63-4.55 (m, 2H), 4.20 (q, J=6.8Hz, 1H), 3.22 (s, 3H), 2.40 (s, 3H), 1.31 (d, J=7.1Hz, 3H).

1-(3-Methoxymethoxy-2-oxo-butyl)-2-oxo-6-m-tolyl-4-trifluoromethyl1,2-dihydro-pyridine-3-carbonitrile (0.191 g, 0.47 mmoles) was dissolved into
25 mL of anhydrous MeOH and to this solution was added HCI (2.0 M solution in diethyl ether, 5.0 mL). The mixture was then stirred at room temperature for 2 hours. After this period the reaction mixture was evaporated *in vacuo* and was purified using flash silica chromatography (0-60% EtOAc/Hexane) to yield 0.16 g (93% yield) of 1-(3-Hydroxy-2-oxo-butyl)-2-oxo-6-m-tolyl-4-

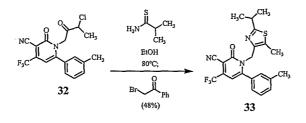
25 trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile as a yellow residue. ¹H-NMR (CDCl₃): δ 7.42-7.35 (m, 2H), 7.14-7.08 (m, 2H), 6.50 (m, 1H), 5.06 (d, J=17.2Hz, 1H), 4.92 (d, J=17.2Hz, 1H), 4.39-4.31 (m, 1H), 3.48 (bs, 1H), 2.40 (s, 3H), 1.28 (d, J=6.8Hz, 3H).

1-(3-Hydroxy-2-oxo-butyl)-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile (98 mg, 0.27 mmoles) was combined with *p*-

5 toluenesulfonyl chloride (0.1 g, 0.52 mmoles) in 2.0 mL of pyridine. The mixture was stirred at room temperature for 16 hours. After this period the reaction mixture was evaporated *in vacuo* and was purified using flash silica chromatography (0-20% EtOAc/Hexane) to yield 62 mg (60% yield) of **32** as a yellow residue.

32

1-(3-Chloro-2-oxo-butyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

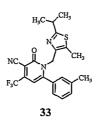

¹H-NMR (CDCl₃): δ 7.44-7.35 (m, 2H), 7.16-7.11 (m, 2H), 6.49 (s, 1H), 5.02-4.92 (m, 2H), 4.55 (q, J=6.8Hz, 1H), 2.42 (s, 3H), 1.65 (d, J=6.8Hz, 3H).

EXAMPLE 33

15

20

This example illustrates the preparation of compound 33.



1-(3-Chloro-2-oxo-butyl)-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile **32** (41 mg, 0.11 mmoles) was combined with thioisobutyramide (22 mg, 0.22 mmoles) in 1.0 mL of anhydrous EtOH within a 7 mL reaction vial. This mixture was stirred at 80 °C for 16 hours. After this

-271-

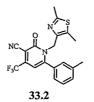
period 2-bromoacetophenone (33 mg, 0.17 mmoles) was added and the reaction was stirred at 80 °C for an additional 3 hours. After this period the reaction mixture was evaporated *in vacuo* and was purified using flash silica chromatography (0-40% EtOAc/Hexane) and normal-phase HPLC (YMC-

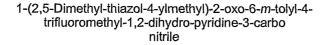
5 Pack SIL, 250x50 mm I.D., S-5□M: 4-20% EaOAc/Hexane over 30 minutes) to yield 22 mg (48% yield) of 33 as a yellow residue.

1-(2-Isopropyl-5-methyl-thiazol-4-ylmethyl)-2-oxo-6-mtolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

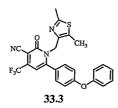
¹H-NMR (CDCl₃): δ 7.53-7.29 (4H), 6.40 (s, 1H), 5.03 (s, 2H), 3.13 (m, J=6.6Hz, 1H), 2.40 (s, 3H), 2.38 (s,3H), 1.32 (d, J=6.8Hz, 6H). MS(ES+): 432.1 (M+H)

The following compounds were prepared in a manner similar to

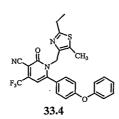

that described above.

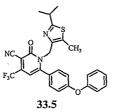

10

33.1


1-(2-Ethyl-5-methyl-thiazol-4-ylmethyl)-2oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

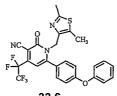
MS(ES+): 417.9 (M+H)




1-(2,5-Dimethyl-thiazol-4-ylmethyl)-2-oxo-6-(4phenoxy-phenyl)-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

MS(ES+): 482.1 (M+H)

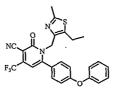
1-(2-Ethyl-5-methyl-thiazol-4-ylmethyl)-2-oxo-6-(4-phenoxy-phenyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 496.2 (M+H)

1-(2-lsopropyl-5-methyl-thiazol-4-ylmethyl)-2-oxo-6-(4-phenoxy-phenyl)-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

MS(ES+): 510.1 (M+H)

33.6

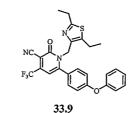

1-(2,5-Dimethyl-thiazol-4-ylmethyl)-2-oxo-4pentafluoroethyl-6-(4-phenoxy-phenyl)-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 532.0 (M+H)

33.7

1-(2-Ethyl-5-methyl-thiazol-4ylmethyl)-2-oxo-4-pentafluoroethyl-6-(4-phenoxy-phenyl)-1,2-dihydropyridine-3-carbonitrile

MS(ES+): 546.4 (M+H)

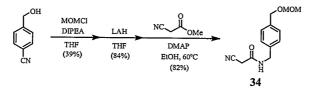


33.8

1-(5-Ethyl-2-methyl-thiazol-4-ylmethyl)-2-oxo-6-(4-phenoxy-phenyl) -4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 496.1 (M+H)

.



1-(2,5-Diethyl-thiazol-4-ylmethyl)-2-oxo-6-(4phenoxy-phenyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 510.1 (M+H)

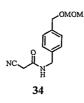
EXAMPLE 34

This example illustrates the preparation of compound 34.

5

4-Hydroxymethyl-benzonitrile (3.1 g, 23.3 mmoles) was combined with N,N-diisopropylethylamine (4.9 mL, 28 mmoles) in 100 mL of anhydrous THF. To this solution was added MOMCI (3.5 mL, 46.1 mmoles) and the mixture was stirred at room temperature for 16 hours. After this

- 10 period a solution of NH₄OH/H₂O (1:1, 20 mL) was added (-MOMCI) and the solution was stirred for 15 minutes. After this period the reaction mixture was evaporated *in vacuo* (-THF) and the resulting mixture was extracted with DCM (3x30 mL). The combined DCM layer was dried over anhydrous Na₂SO₄, evaporated *in vacuo*, and the resulting crude product was purified using flash
- **15** silica chromatography (0-20% EtOAc/Hexane) to yield 1.6 g (39% yield) of 4-Methoxymethoxymethylbenzonitrile as a colorless liquid.

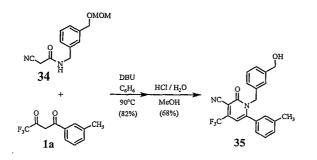

4-Methoxymethoxymethylbenzonitrile (3.7 g, 20.9 mmoles) was dissolved into 100 mL of anhydrous THF and was placed under dry N_2 atmosphere. To this solution at 0 °C was added lithium aluminum hydride

20 (LAH, 1.6 g, 42.2 mmoles, bubbling occurs) and this mixture (sealed under

-275-

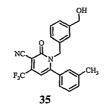
 N_2) was gentle stirred at 75 °C for 12 hours. After this period the mixture was cooled down and placed into an ice bath under a dry N_2 atmosphere. To the vigorously stirring mixture at 0 °C was slowly and carefully sequentially added water (2 mL), 15% NaOH (2 mL) and water (4 mL). The resulting

- 5 heterogenous mixture was vacuum filtered and the filtrate was evaporated *in vacuo* to yield 3.2 g (17.7 mmoles, 84% yield) of crude amine as a yellowish residue. The crude amine was combined with methyl cyanoacetate (3.1 mL, 35.1 mmoles) and DMAP (10 mg) in 50 mL of anhydrous EtOH. The mixture was then stirred at 60 °C for 16 hours. After this period the reaction mixture
- **10** was evaporated *in vacuo* and was purified using flash silica chromatography (0-60% EtOAc/Hexane) to 3.6 g (82% yield) of **34** as a white powder.



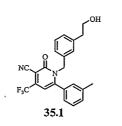
2-Cyano-N-(4-methoxymethoxymethylbenzyl)-acetamide

¹H-NMR (CDCl₃): δ 7.36 (d, J=8.1Hz, 2H), 7.28 (d, J=8.3Hz, 2H), 6.34 (bs, 1H), 4.71 (s, 2H), 4.59 (s, 2H), 4.48 (d, J=5.6Hz, 2H), 3.41 (s, 3H), 3.40 (s, 2H).


EXAMPLE 35

This example illustrates the preparation of compound 35.

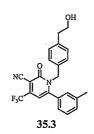
2-Cyano-N-(4-methoxymethoxymethyl-benzyl)-acetamide (0.84 g, 3.4 mmoles) was combined with **1a** (0.78g, 3.4 mmoles), DBU (0.25 mL, 1.7 mmoles) and 5 mL of C_6H_6 within a 7 mL reaction vial. The mixture was stirred at 90 °C for 16 hours. After this period the reaction mixture was


- purified directly using flash silica chromatography (0-20% EtOAc/Hexane) to yield 1.23 g (82% yield) of 35 as a yellow residue. ¹H-NMR (CDCl₃): δ 7.37-7.31 (m, 2H), 7.26-7.19 (m, 2H), 7.03-6.97 (m, 1H), 6.93 (bs, 1H), 6.89 (bs, 1H), 6.86-6.81 (m, 1H), 6.39 (s, 1H), 5.24 (bs, 2H), 4.67 (s, 2H), 4.50 (s, 2H), 3.39 (s, 3H), 2.33 (s, 3H). MS(ES+): 443.2 (M+H)
- 10 1-(3-Methoxymethoxymethyl-benzyl)-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile (0.65 g, 1.47 mmoles) was dissolved into 10 mL of MeOH and to this was added 12N HCI (100□L). This mixture was then stirred at room temperature for 3 hours. After this period the reaction mixture was evaporated *in vacuo* and was purified using flash silica chromatography
- 15 (0-40% EtOAc/Hexane) to yield 0.40 g (68% yield) of **31** as a yellow residue.

1-(3-Hydroxymethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): δ 7.36-7.32 (m, 2H), 7.26-7.19 (m, 2H), 7.02-6.97 (m, 1H), 6.92 (d, J=10Hz, 2H), 6.82 (d, J=6.8Hz, 1H), 6.39 (s, 1H), 5.24 (bs, 2H), 4.62 (s, 2H), 2.34 (s, 3H). MS(ES+): 398.8 (M+H)

The following compounds were prepared in a manner similar to that described above.

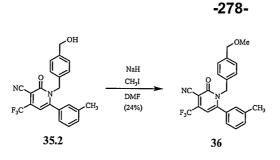

1-[3-(2-Hydroxy-ethyl)-benzyl]-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): δ 7.36-7.33 (m, 2H), 7.11 (d, J=8.1Hz, 2H), 7.04-7.00 (m, 1H), 6.95 (s, 1H), 6.87 (d, J=8.1Hz, 2H), 6.39 (s, 1H), 5.22 (bs, 2H), 3.82 (q, J=5.8Hz, 2H), 2.82 (t, J=6.8Hz, 2H), 2.34 (s, 3H).

> NC F_3C 35.2

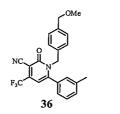
1-(4-Hydroxymethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 398.9 (M+H)


1-[4-(2-Hydroxy-ethyl)-benzyl]-2-oxo-6*m*-tolyl-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

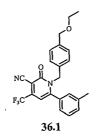
MS(ES+): 413.3 (M+H)

10

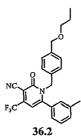

EXAMPLE 36

This example illustrates the preparation of compound 36.

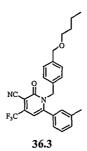
1-(4-Hydroxymethyl-benzyl)-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile **35.2** (41 mg, 0.10 mmoles) was dissolved into 1.0 mL of anhydrous N,N-dimethyl-formamide. To this solution was then


- 5 added sodium hydride (60% dispersion in mineral oil, 5 mg, 0.125 mmoles) and the mixture was stirred (bubbling occurs) for 5 min. After this period iodomethane (15 μL, 0.24 mmoles) was added and the mixture was stirred at room temperature for 16 hours. After this period the reaction mixture was combined with 20 mL of water and was extracted with EtOAc (4x15 mL). The
- 10 combined organic layer was washed with water (4x15 mL), 15 mL of brine, and was dried over Na₂SO₄. The EtOAc solution was evaporated *in vacuo* and purified using flash silica chromatography (0-20% EtOAc/Hexane) to yield 10 mg (24%) of **36** as a yellow residue.

1-(4-Methoxymethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

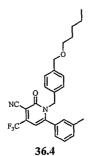

¹H-NMR (CDCl₃): δ 7.36-7.32 (m, 2H), 7.21 (d, J=7.8Hz, 2H), 7.02-6.96 (m, 1H), 6.93 (bs, 1H), 6.89 (d, J=7.6Hz, 2H), 6.38 (s, 1H), 5.23 (bs, 2H), 4.41 (s, 3H), 3.37 (s, 3H), 2.33 (s, 3H). MS(ES+): 413.3 (M+H)

The following compounds were prepared in a manner similar to that described above.

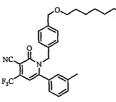

1-(4-Ethoxymethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 427.3 (M+H)

2-Oxo-1-(4-propoxymethyl-benzyl)-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


MS(ES+): 441.2 (M+H)

1-(4-Butoxymethyl-benzyl)-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


5

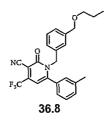
MS(ES+): 455.2 (M+H)

2-Oxo-1-(4-pentyloxymethyl-benzyl)-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 469.2 (M+H)

36.5

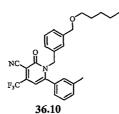
1-(4-Octyloxymethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


MS(ES+): 511.1 (M+H)δ

1-(3-Ethoxymethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

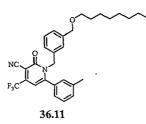
5

MS(ES+): 427.2 (M+H)


2-Oxo-1-(3-propoxymethyl-benzyl)-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 441.1 (M+H)

36.9

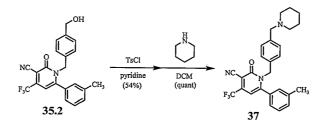

1-(3-Butoxymethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 455.2 (M+H)

1-(3-Hexyloxymethyl-benzyl)-6-(3-methyl-1-methylene-but-2-enyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

MS(ES+): 483.1 (M+H)

1-(3-Octyloxymethyl-benzyl)-2-oxo-6-*m*-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


t

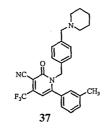
-282-

MS(ES+): 511.0 (M+H)

EXAMPLE 37

This example illustrates the preparation of compound 37.

5 1-(3-Hydroxymethyl-benzyl)-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile **35.2** (29 mg, 0.073 mmoles) was combined with *p*-toluenesulfonyl chloride (25 mg, 0.13 mmoles) in 1.0 mL of pyridine and this mixture was stirred at room temperature for 16 hours. After this period the reaction mixture was evaporated *in vacuo* and was purified using

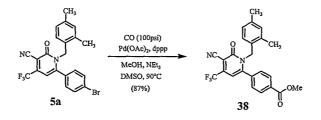

flash silica chromatography (0-20% EtOAc/Hexane) to yield 16mg (54% yield) of 37a as a yellow residue. ¹H-NMR (CDCl₃): δ 7.33 (d, J=5.3Hz, 2H), 7.20 (br d, J=7.6Hz, 2H), 7.03-6.99 (m, 1H), 6.91 (s, 1H), 6.85 (d, J=7.8Hz, 2H), 6.38 (br s, 1H), 5.22 (s, 2H), 3.45 (br s, 2H), 2.36 (br s, 4H), 2.32 (s, 3H), 1.57 (br s, 4H), 1.43 (br s, 2H).

15

1-(4-Chloromethyl-benzyl)-2-oxo-6-m-tolyl-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile **37a** (8 mg, 0.019 mmoles) was combined with 1.0 mL of DCM and piperidine (0.1 mL, 1.0 mmoles) within a 7 mL reaction vial. The mixture was stirred at room temperature for 2 hours. After this

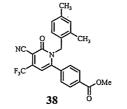
20 period the reaction mixture was purified directly using flash silica chromatography (0-10% MeOH/DCM) to yield 9 mg (quantitative yield) of 37 as a yellow residue. 5

-283-



2-Oxo-1-(4-piperidin-1-ylmethyl-benzyl)-6-*m*-tolyl-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

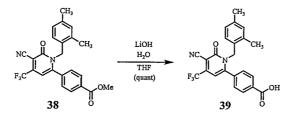
¹H-NMR (CDCl₃): δ 7.33 (d, J=5.1Hz, 2H), 7.20 (bd, J=7.3Hz, 2H), 7.03-6.98 (m, 1H), 6.91 (m, 1H), 6.85 (d, J=7.8Hz, 2H), 5.22 (bs, 2H), 3.45 (bs, 2H), 2.45-2.28 (m, 4H), 2.32 (s, 3H), 1.63-1.52 (m, 4H), 1.48-1.38 (m, 2H). MS(ES+): 466.2 (M+H)


EXAMPLE 38

This example illustrates the preparation of compound 38.

Within a Parr high-pressure apparatus were combined 6-(410 Bromo-phenyl)-1-(2,4-dimethyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile 5a (0.51 g, 1.11 mmoles), Pd(OAc)₂ (15 mg, 0.067 mmoles), and 1,3-bis(diphenylphosphino)propane (30 mg, 0.073 mmoles). This mixture was dissolved into 15 mL of anhydrous MeOH, 5 mL of anhydrous DMSO and NEt₃ (0.6 mL, 4.3 mmoles), and was pressured to 100

15 psi with CO. The pressured and stirring reaction mixture was then heated to 90 °C for 48 hours. After this period the reaction mixture was cooled to ambient tempurature, depressurized, and was combined with 100 mL of water. The aqueous mixture was extracted with EtOAc (4x25 mL) and the combined EtOAc layer was washed with water (4x25 mL) and brine. After drying over anhydrous Na₂SO₄ the crude product was purified using flash silica chromatography (0-30% EtOAc/Hexane) to yield 0.43 g (87% yield) of **38** as a yellow solid.

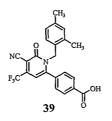


4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6-oxo-4trifluoromethyl-1,6-dihydro-pyridin-2-yl]benzoic acid methyl ester

¹H-NMR (CDCl₃): δ 8.03 (d, J=8.3Hz, 2H), 7.23 (d, J=8.3Hz, 2H), 6.95 (bd, J=7.8Hz, 1H), 6.89 (bs, 1H), 6.58 (d, J=7.8Hz, 1H), 6.42 (s, 1H), 5.09 (s, 2H), 3.95 (s, 3H), 2.28 (s, 3H), 1.88 (s, 3H).

EXAMPLE 39

This example illustrates the preparation of compound 39.

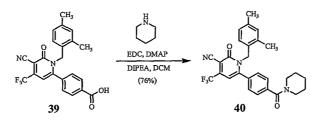


10

4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6-oxo-4-trifluoromethyl-1,6dihydro-pyridin-2-yl]-benzoic acid methyl ester **38** (0.105 g, 0.24 mmoles) was combined with LiOH (monohydrate, 22 mg, 0.52 mmoles) in 5 mL of THF and 1 mL of water. The mixture was stirred at room temperature for 90 minutes.

- 15 After this period the reaction mixture was concentrated *in vacuo* (-THF) and the resulting aqueous mixture was combined with 10 mL of 1N HCl and salt (enough to affect saturation after mixing). The acidic aqueous layer was extracted with Et₂O (3x20 mL) and the combined organic layer was washed with brine. The Et₂O layer was dried over anhydrous Na₂SO₄ and evaporated
- 20 in vacuo to yield 0.102 g (quantitative yield) as a yellowish solid.

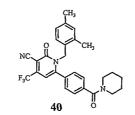
-285-



4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl]-benzoic acid

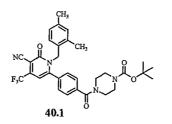
¹H-NMR (CDCl₃): δ 8.09 (d, J=8.1Hz, 2H), 7.29-7.25 (m, 2H), 6.95 (d, J=7.8Hz, 1H), 6.90 (s, 1H), 6.59 (d, J=7.8Hz, 1H), 6.43 (s, 1H), 5.10 (s, 2H), 2.29 (s, 3H), 1.89 (s, 3H). MS(ES+): 427.2 (M+H)

EXAMPLE 40

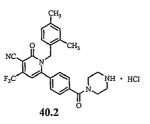

This example illustrates the preparation of compound 40.

4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6-oxo-4-trifluoromethyl-1,6dihvdro-pyridin-2-yl]-benzoic acid **39** (48 mg, 0.11 mmoles) was combined

- with 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC, 54 mg, 0.28 mmoles), 4-dimethylaminopyridine (DMAP, 2 mg, 0.016 mmoles) in 5 mL of anhydrous DCM. To this mixture was added diisopropylethylamine (DIPEA, 50 μL, 0.29 mmoles) and piperidine (28 μL, 0.28 mmoles). This mixture was then stirred at room temperature for 16 hours. After this period
- 15 the reaction mixture was purified directly using flash silica chromatography (0-60% EtOAc/Hexane) to yield 41 mg (76% yield) of 40 as a yellow residue.

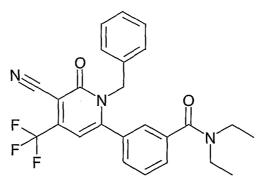

-286-

1-(2,4-Dimethyl-benzyl)-2-oxo-6-[4-(piperidine-1-carbonyl)phenyl]-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile


¹H-NMR (CDCl₃): δ 7.39 (d, J=8.1Hz, 2H), 7.19 (d, J=8.1Hz, 2H), 6.94 (bd, J=8.1Hz, 1H), 6.88 (bs, 1H), 6.59 (d, J=7.8Hz, 1H), 6.42 (s, 1H), 5.11 (s, 2H), 3.75-3.66 (m, 2H), 3.343.24 (m, 2H), 2.28 (s, 3H), 1.93 (s, 3H), 1.75-1.63 (m, 4H), 1.56-1.48 (m, 2H). MS(ES+): 494.3 (M+H)

The following compounds were prepared in a manner similar to that described above.

4-{4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2yl]-benzoyl}-piperazine-1-carboxylic acid *tert*-butyl ester


MS(ES+): 595.4 (M+H)

1-(2,4-Dimethyl-benzyl)-2-oxo-6-[4-(piperazine-1-carbonyl)-phenyl]-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile hydrochloride

MS(ES+): 495.2 (M+H)

40.3

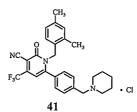
5 3-(1-Benzyl-5-cyano-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl)-N,Ndiethyl-benzamide

¹H-NMR (CDCl₃): δ7.54 (m, 1 H), 7.48 (m, 1 H), 7.23 (m, 5 H), 6.89 (m, 2 H), 6.4 (s, 1 H), 5.28 (s, 2 H), 3.52 (br, 2 H), 3.13 (br, 2 H), 1.20 (br, 3 H), 1.06 (br, 3 H).

10

EXAMPLE 41

This example illustrates the preparation of compound 41.



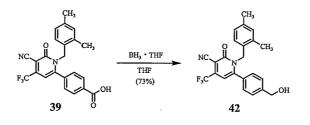
1-(2,4-Dimethyl-benzyl)-2-oxo-6-[4-(piperidine-1-carbonyl)-

phenyl]-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile 40 (20 mg, 0.041

- 15 mmoles) was dissolved into 2.0 mL of anhydrous THF within a 7 mL reaction vial. To this stirring mixture at room temperature was added diborane-THF (160 μL, 0.16 mmoles) and the mixture was stirred at room temperature for 16 hours. After this period the reaction was quenched by adding 3 mL of 25% NH₄Cl. This aqueous mixture was stirred for 30 min. After this period the
- 20 resulting mixture was extracted with Et₂O (3x10 mL) and the resulting organic layer was washed with brine and dried over Na₂SO₄. The ether layer was evaporated *in vacuo* and the resulting crude product was purified using flash

silica chromatography (0-5% MeOH/DCM w/0.1% NEt₃) to yield the free base. The free base was combined with 2N HCI/MeOH, evaporated, dissolved into deionized water and lyopholyzed to yield 12 mg (61% yield) of **41** as a white powder.

1-(2,4-Dimethyl-benzyl)-2-oxo-6-(4-piperidin-1ylmethyl-phenyl)-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile hydrochloride

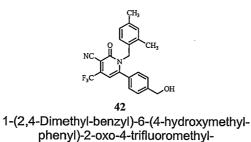

¹H-NMR (D₂O – free base): δ 7.31 (d, J=8.1Hz, 2H), 7.21 (d, J=8.1Hz, 2H), 6.86 (d, J=8.3Hz, 1H), 6.82 (s, 1H), 6.51 (d, J=7.3Hz, 1H), 5.09 (s, 2H), 4.14 (s, 2H), 3.27-3.17 (m, 2H), 2.84-2.70 (m, 2H), 2.10 (s, 3H), 1.87-1.24 (m, 6H), 2.10 (s, 3H), 1.75 (s, 3H). MS(ES+): 480.2 (M+H)

10

5

EXAMPLE 42

This example illustrates the preparation of compound 42.

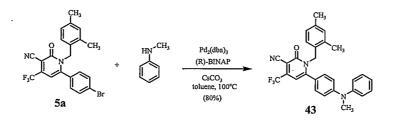


4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6-oxo-4-trifluoromethyl-1,6dihydro-pyridin-2-yl]-benzoic acid **39** (27 mg, 0.063 mmoles) was dissolved into 2.0 mL of anhydrous THF within a 7 mL reaction vial. To this stirring solution at 0 °C was added diborane-THF (0.11 mL, 0.11 mmoles). The reaction was then allowed to warm to room temperature and was stirred for 16 hours. After this period the reaction was quenched by adding 3 mL of 25%

-289-

NH₄Cl, and this mixture was stirred for 30 min. The resulting aqueous mixture was evaporated *in vacuo* (-THF) and extracted with Et_2O (3x10 mL). The combined ether layer was washed with saturated NaHCO₃, dried over Na₂SO₄ and was evaporated *in vacuo* to yield the crude residue. The crude residue

5 was purified using flash silica chromatography (0-60% EtOAc/Hexane) to yield
19 mg (73% yield) of 42 as a white solid.



1,2-dihydro-pyridine-3-carbonitrile ¹H-NMR (CDCl₃): δ 7.39 (d, J=8.1Hz, 2H), 7.17 (d, J=8.1Hz, 2H), 6.95 (bd, J=7.8Hz, 1H), 6.91 (bs, 1H), 6.60 (d, J=7.6Hz, 1H), 6.43 (s, 1H), 5.10 (s, 2H), 4.76 (bd, 2H), 2.28 (s, 3H), 1.94 (s, 3H).

MS(ES+): 413.1 (M+H)

EXAMPLE 43

This example illustrates the preparation of compound 43.

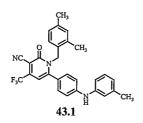
6-(4-Bromo-phenyl)-1-(2,4-dimethyl-benzyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile **5a** (38 mg, 0.082 mmoles) was combined with N-methylaniline (11 µL, 0.10 mmoles) and 0.5 mL of anhydrous toluene within a 7 mL reaction vial. In a separate vial was added tris(dibenzylideneacetone) dipalladium (8 mg, 0.009 mmoles), (R)-BINAP (8

10

-290-

mg, 0.013 mmoles), cesium carbonate (38 mg, 0.12 mmoles) and 0.3 mL of anhydrous toluene. This "catalytic" mixture was stirred at room temperature for 5 min under dry-nitrogen. To the stirring "catalytic" solution under nitrogen was then added the "bromide" solution, and the resulting mixture was sealed

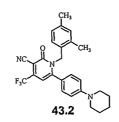
5 under dry-nitrogen and was stirred at 100 °C for 16 hours. After this period the reaction mixture was purified directly using flash silica chromatography (0-20% EtOAc/Hexane) to provide 32 mg (80% yield) of 43 as an orange-red residue.


1-(2,4-Dimethyl-benzyl)-6-[4-(methyl-phenyl-amino)phenyl]-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

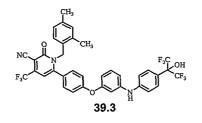
10

15

 $^{1}\text{H-NMR}$ (CDCl₃): δ 7.44-7.34 (m, 2H), 7.25-7.14 (m, 3H), 7.07-7.02 (m, 2H), 6.97-6.92 (m, 2H), 6.72 (d, J=9.1Hz, 2H), 6.63 (d, J=8.1Hz, 1H), 6.46 (s, 1H), 5.18 (s, 2H), 3.33 (s, 3H), 2.28 (s, 3H), 2.10 (s, 3H). MS(ES+): 488.4 (M+H)

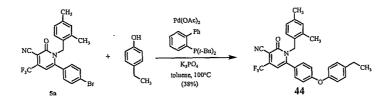

The following compounds were prepared in a manner similar to that described above.

1-(2,4-Dimethyl-benzyl)-2-oxo-6-(4-*m*-tolylaminophenyl)-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


MS(ES+): 488.4 (M+H)

-291-

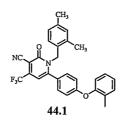
1-(2,4-Dimethyl-benzyl)-2-oxo-6-(4-piperidin-1-ylphenyl)-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


MS(ES+): 466.4 (M+H)

MS(ES+): 640.0 (M+H)

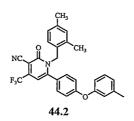
EXAMPLE 44

This example illustrates the preparation of compound 44.

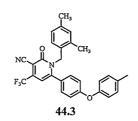

6-(4-Bromo-phenyl)-1-(2,4-dimethyl-benzyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile 5a (100 mg, 0.22 mmoles)
was combined with 4-ethylphenol (32 mg, 0.26 mmoles), palladium acetate (5 mg, 0.022 mmoles), 2-(di-*t*-butylphosphino)biphenyl (12 mg, 0.040 mmoles), potassium phosphate (100 mg, 0.47 mmoles) and 1.0 mL of anhydrous toluene within an oven-dried 7 mL reaction vial. The mixture was sealed and stirred at 100 °C for 16 hours. After this period the mixture was purified

15 directly using flash silica chromatography (0-20% EtOAc/Hexane) to yield 42 mg (38%) of **44** as a yellow residue.

CH 44 1-(2,4-Dimethyl-benzyl)-6-[4-(4-ethyl-phenoxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


¹H-NMR (CDCl₃): δ 7.21 (d, J=8.3Hz, 2H), 7.09 (d, J=8.3Hz, 2H), 6.98-6.89 (m, 6H), 6.60 (d, J=7.8Hz, 1H), 6.44 (s, 1H), 5.14 (s, 2H), 2.66 (q, J=7.6Hz, 2H), 2.27 (s, 3H), 2.01 (s, 3H), 1.25 (t, J=7.6Hz, 3H). MS(ES+): 503.2 (M+H)

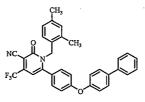
The following compounds were prepared in a manner similar to that described above.


1-(2,4-Dimethyl-benzyl)-2-oxo-6-(4-otolyloxy-phenyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 489.2 (M+H)

1-(2,4-Dimethyl-benzyl)-2-oxo-6-(4-*m*tolyloxy-phenyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 489.4 (M+H)

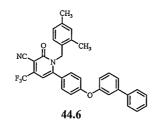

1-(2,4-Dimethyl-benzyl)-2-oxo-6-(4-*p*tolyloxy-phenyl)-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 489.4 (M+H)

44.4

1-(2,4-Dimethyl-benzyl)-6-[4-(3-methoxyphenoxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

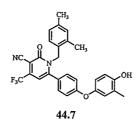
MS(ES+): 505.3 (M+H)



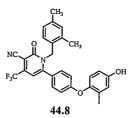
44.5

6-[4-(Biphenyl-4-yloxy)-phenyl]-1-(2,4dimethyl-benzyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): δ 7.64-7.54 (m, 4H), 7.48-7.42 (m, 2H), 7.40-7.33 (m, 1H), 7.16-7.08 (m, 4H), 7.02-6.87 (m, 4H), 6.61 (d, J=7.8Hz, 1H), 6.46 (s, 1H), 5.15 (s, 2H), 2.28 (s, 3H), 2.02 (s, 3H).

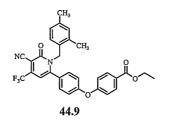

-294-

6-[4-(Biphenyl-3-yloxy)-phenyl]-1-(2,4dimethyl-benzyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


¹H-NMR (CDCl₃): δ 7.59-7.53 (m, 2H), 7.49-7.35 (m, 4H), 7.15-7.09 (m, 2H), 7.05-6.88 (m, 5H), 6.61 (d, J=8.1Hz, 1H), 6.45 (s, 1H), 5.14 (s, 2H), 2.26 (s, 3H), 2.00 (s, 3H).

ţ

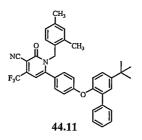
1-(2,4-Dimethyl-benzyl)-6-[4-(4-hydroxy-3methyl-phenoxy)-phenyl]-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile


MS(ES+): 505.1 (M+H)

1-(2,4-Dimethyl-benzyl)-6-[4-(4-hydroxy-2-methylphenoxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 505.4 (M+H)

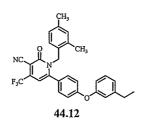
-295-


4-{4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2yl]-phenoxy}-benzoic acid ethyl ester

MS(ES+): 547.4 (M+H)

44.10

6-[4-(4-*tert*-Butyl-2-methyl-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile


MS(ES+): 545.2 (M+H)

6-[4-(5-*tert*-Butyl-biphenyl-2-yloxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

MS(ES+): 607.6 (M+H)

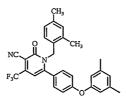
-296-

1-(2,4-Dimethyl-benzyl)-6-[4-(3-ethylphenoxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 503.0 (M+H)

44.13

1-(2,4-Dimethyl-benzyl)-6-[4-(3isopropyl-phenoxy)-phenyl]-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile


MS(ES+): 517.4 (M+H)

 F_{3} 44.14

6-[4-(3-*tert*-Butyl-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

5

MS(ES+): 531.3 (M+H)

44.15

1-(2,4-Dimethyl-benzyl)-6-[4-(3,5dimethyl-phenoxy)-phenyl]-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

MS(ES+): 503.3 (M+H)

44.16

3-{4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6-oxo-4trifluoromethyl-1,6-dihydro-pyridin-2-yl]-phenoxy}benzoic acid ethyl ester

MS(ES+): 547.3 (M+H)

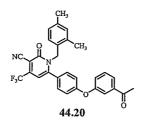
44.17

1-(2,4-Dimethyl-benzyl)-6-[4-(4ethyl-phenoxy)-phenyl]-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

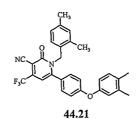
¹H-NMR (CDCl₃): δ 7.21 (d, J=8.6Hz, 2H), 7.09 (d, J=8.6Hz, 2H), 6.98-6.89 (m, 6H), 6.60 (d, J=7.8 Hz, 1H), 6.44 (s, 1H), 5.14 (s, 2H), 2.66 (q, J=7.6Hz, 2H), 2.27 (s, 3H), 2.01 (s, 3H), 1.25 (t, J=7.6Hz, 3H).

44.18

1-(2,4-Dimethyl-benzyl)-6-[4-(4isopropyl-phenoxy)-phenyl]-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile


MS(ES+): 517.4 (M+H)

F.(


6-[4-(4-*tert*-Butyl-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

MS(ES+): 531.4 (M+H)

6-[4-(3-Acetyl-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

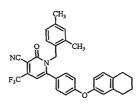
MS(ES+): 517.5 (M+H)

1-(2,4-Dimethyl-benzyl)-6-[4-(3,4dimethyl-phenoxy)-phenyl]-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

MS(ES+): 503.1 (M+H)

44.22

1-(2,4-Dimethyl-benzyl)-6-[4-(2-ethylphenoxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile


MS(ES+): 503.3 (M+H)

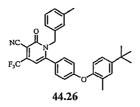
44.23

1-(2,4-Dimethyl-benzyl)-6-[4-(2-isopropylphenoxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 517.5 (M+H)

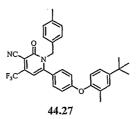
-300-

44.24


1-(2,4-Dimethyl-benzyl)-2-oxo-6-[4-(5,6,7,8tetrahydro-naphthalen-2-yloxy)-phenyl]-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

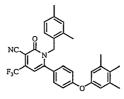
MS(ES+): 529.3 (M+H)

44.25


6-[4-(4-*tert*-Butyl-2-methyl-phenoxy)-phenyl]-1-(2methyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

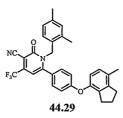
MS(ES+): 531.2 (M+H)

6-[4-(4-*tert*-Butyl-2-methyl-phenoxy)-phenyl]-1-(3methyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile


MS(ES+): 531.3 (M+H)

6-[4-(4-*tert*-Butyl-2-methyl-phenoxy)-phenyl]-1-(4methyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

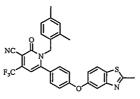
1


```
MS(ES+): 531.3 (M+H)
```


44.28

1-(2,4-Dimethyl-benzyl)-2-oxo-4-trifluoromethyl-6-[4-(3,4,5-trimethyl-phenoxy)-phenyl]-1,2-dihydropyridine-3-carbonitrile

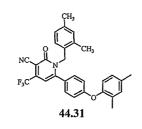
MS(ES+): 517.4 (M+H)



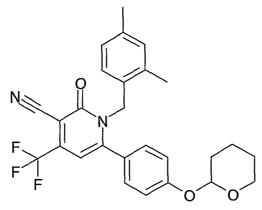
1-(2,4-Dimethyl-benzyl)-6-[4-(7-methyl-indan-4yloxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

5

ş


MS(ES+): 529.4 (M+H)

44.30


1-(2,4-Dimethyl-benzyl)-6-[4-(2-methyl-benzothiazol-5-yloxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

MS(ES+): 546.5 (M+H)

1-(2,4-Dimethyl-benzyl)-6-[4-(2,4dimethyl-phenoxy)-phenyl]-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

MS(ES+): 503.2 (M+H)

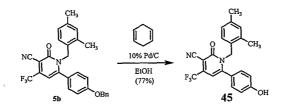
44.32

5 1-(2,4-Dimethyl-benzyl)-2-oxo-6-[4-(tetrahydro-pyran-2-yloxy)-phenyl]-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): δ 7.10 (m, 2 H), 7.02 (m, 2 H), 6.94 (m, 2 H), 6.61 (m, 1 H), 6.44 (s, 1 H), 5.45 (m, 1 H), 5.13 (s, 2 H), 3.83 (m, 1 H), 3.61 (m, 1 H), 2.28 (s, 3 H), 2.00 (s, 3 H), 1.87 (m, 2 H), 1.87 (m, 2 H), 1.68 (m, 4 H).

-303-

1-(2,4-Dimethyl-benzyl)-6-[3-methyl-4-(tetrahydro-pyran-2-yloxy)-phenyl]-2oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


¹H-NMR (CDCl₃): δ7.03 (m, 1 H), 6.95 (m, 2 H), 6.91 (m, 1 H), 6.86 (m, 1 H), **5** 6.63 (m, 1 H), 6.42 (s, 1 H), 5.46 (m, 1 H), 5.11 (m, 2 H), 3.79 (m, 1 H), 3.60 (m, 1 H), 2.27 (s, 3 H), 2.14 (s, 3 H), 2.01 (m, 1 H), 1.97 (s, 3 H), 1.89 (m, 2 H), 1.68 (m, 2 H), 1.60 (m, 1 H).

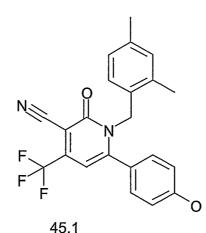
10

EXAMPLE 45

15

This example illustrates the preparation of compound 45.

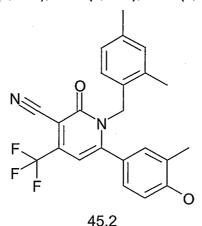
6-(4-Benzyloxy-phenyl)-1-(2,4-dimethyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile 5b (0.55 g, 1.13 mmoles) was combined with cyclohexadiene (1.6 mL, 16.9 mmoles), 10% Pd/C (0.6 g) and 10 mL of
20 anhydrous EtOH. This mixture was then stirred at room temperature for 24 hours. After this period the reaction mixture was vacuum filtered through Celite and the resulting filtrate was evaporated *in vacuo* to yield 0.35 g (77%) of 45 as a yellowish/orange solid.


2-oxo-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile ŀ

5

-304-

¹H-NMR (CDCl₃): δ 7.04 (d, J=8.6Hz, 2H), 6.95 (d, J=7.6Hz, 1H), 6.92 (s, 1H), 6.80 (d, J=7.6Hz, 2H), 6.60 (d, J=7.8Hz, 1H), 6.43 (s, 1H), 5.47 (bs, 1H), 5.12 (s, 2H), 2.28 (s, 3H), 1.98 (s, 3H).


Following compounds were prepared in manner similar to that described above.

1-(2,4-Dimethyl-benzyl)-6-(4-hydroxy-phenyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

10

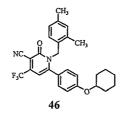
¹H-NMR (Acetone-d6): δ8.92 (s, 1 H), 7.14 (m, 2 H), 6.85 (m, 2 H), 6.76 (m, 2 H), 6.64 (m, 1 H), 6.50 (s, 1 H), 5.08 (s, 2 H), 2.11 (s, 3 H), 1.92 (s, 3 H).

15

1-(2,4-Dimethyl-benzyl)-6-(4-hydroxy-3-methyl-phenyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

¹H-NMR (CDCl₃): δ6.91 – 6.78 (m, 4 H), 6.66 (m, 1 H), 6.56 (m, 1 H), 6.35 (s, 1 H), 5.05 (s, 2 H), 2.22 (s, 3 H), 2.07 (s, 3 H), 1.90 (s, 3 H).

-305-


EXAMPLE 46

This example illustrates the preparation of compound 46.

1-(2,4-Dimethyl-benzyl)-6-(4-hydroxy-phenyl)-2-oxo-4-

- 5 trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile 45 (31 mg, 0.078 mmoles) was combined with triphenylphosphine (29 mg, 0.11 mmoles) in 1.0 mL of anhydrous THF. To this stirring mixture at room temperature was slowly added (over 1 hour using a syringe pump) a solution of cyclohexanol (12 μL, 0.11 mmoles) and diisopropyl azodicarboxylate (22 μL, 0.11 mmoles) in 1.0
- 10 mL of anhydrous THF. The mixture was then stirred at room temperature for 24 hours. After this period the reaction mixture was purified directly using flash silica chromatography (0-20% EtOAc/Hexane) to yield 18 mg (48%) of 46 as a yellow residue.

6-(4-Cyclohexyloxy-phenyl)-1-(2,4-dimethylbenzyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

15

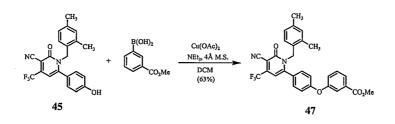
¹H-NMR (CDCl₃): δ 7.08 (d, J=8.6Hz, 2H), 6.97-6.91 (m, 2H), 6.85 (d, J=8.6Hz, 2H), 6.61 (d, J=7.8Hz, 1H), 6.44 (s, 1H), 5.14 (s, 2H), 4.32-4.23 (m, 1H), 2.29 (s, 3H), 2.00 (s, 3H), 1.99-1.22 (m, 10H). MS(ES+): 481.4 (M+H)

١

-306-

The following compounds were prepared in a manner similar to that described above.

 R_{3}


46.1

4-{4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl]-phenoxy}-pip eridine-1-carboxylic acid *tert*-butyl ester

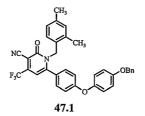
MS(ES+): 582.3 (M+H)

EXAMPLE 47

This example illustrates the preparation of compound 47.

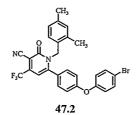
1-(2,4-Dimethyl-benzyl)-6-(4-hydroxy-phenyl)-2-oxo-4-

- trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile 45 (43 mg, 0.11 mmoles)
 was combined with (3-methoxycarbonylphenyl) boronic acid (62 mg, 0.34 mmoles), copper acetate (22 mg, 0.12 mmoles), 4Å molecular sieves (0.18 g) and 1.0 mL of anhydrous DCM within an oven-dried reaction vial. The mixture was stirred at room temperature for 15 min. After this period triethylamine (75 μL, 0.54 mmoles) was added and the mixture was stirred at room temperature
- 15 for 16 hours. After this period the reaction mixture was purified directly using flash silica chromatography (0-20% EtOAc/Hexane) to yield 38 mg (63%) of 47 as a yellow residue.


5

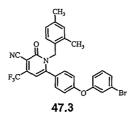
47

3-{4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6-oxo-4trifluoromethyl-1,6-dihydro-pyridin-2-yl]phenoxy}-benzoic acid methyl ester


¹H-NMR (CDCl₃): δ 7.90-7.85 (m, 1H), 7.71-7.68 (m, 1H), 7.47 (t, J=7.8Hz, 1H), 7.27-7.23 (m, 1H), 7.12 (d, J=8.8Hz, 2H), 6.98-6.91 (m, 4H), 6.61 (d, J=7.8Hz, 1H), 6.45 (s, 1H), 5.14 (s, 2H), 3.92 (s, 3H), 2.27 (s, 3H), 2.01 (s, 3H). MS(ES+): 533.2 (M+H)

The following compounds were prepared in a manner similar to that described above.

6-[4-(4-Benzyloxy-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2oxo-4-trifluoromethyl-1,2-dihydro-pyrid ine-3-carbonitrile


MS(ES+): 581.3 (M+H)

6-[4-(4-Bromo-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

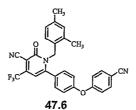
MS(ES+): 555.2 (M+H)

-308-

6-[4-(3-Bromo-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 555.3 (M+H)

47.4


6-[4-(3-Benzyloxy-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4trifluoromethyl-1,2-dihydropyridine-3-carbonitrile

MS(ES+): 581.5 (M+H)

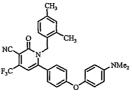
6-[4-(3-Cyano-phenoxy)-phenyl]-1-(2,4dimethyl-benzyl)-2-oxo-4-trifluoromethyl-1,2dihydro-pyridine-3-carbonitrile

MS(ES+): 500.4 (M+H)



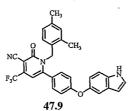
6-[4-(4-Cyano-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

5


5

MS(ES+): 500.4 (M+H)

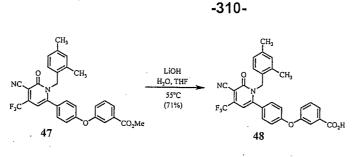
1-(2,4-Dimethyl-benzyl)-6-[4-(4-methylsulfanyl-phenoxy)phenyl]-2-oxo-4-trifluoromethyl-1,2-dihydropyridine-3-carbonitrile


MS(ES+): 521.1 (M+H)

47.8

6-[4-(4-Dimethylamino-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-p yridine-3-carbonitrile

MS(ES+): 518.4 (M+H)



1-(2,4-Dimethyl-benzyl)-6-[4-(1*H*-indol-5-yloxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridi ne-3-carbonitrile

MS(ES+): 514.4 (M+H)

EXAMPLE 48

This example illustrates the preparation of compound 48.

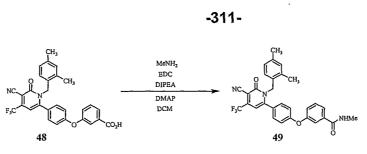
 $3-\{4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6-oxo-4-trifluoromethyl 1,6-dihydro-pyridin-2-yl]-phenoxy}-benzoic acid methyl ester$ **47**(0.55 g, 1.01mmoles) was combined with lithium hydroxide (monohydrate, 93 mg, 2.22mmoles) in 10 mL of THF/H₂O (4:1). This mixture was then heated at 55 °Cfor 12 hours. After this period the mixture was evaporated*in vacuo*(-THF)and was combined with 1N HCl (10 mL). The aqueous acidic mixture wascombined with enough NaCl to affect saturation and was extracted with Et₂O(4x20 mL). The combined ether layer was washed with brine ,dried overNa₂SO₄, and was evaporated*in vacuo*to yield crude product. The crudeproduct was purified using flash silica chromatography (0-60%

EtOAc/Hexane) to yield 0.37g (71%) of product as a yellow residue.

48

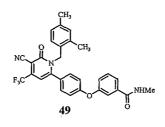
3-{4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6-oxo-4trifluoromethyl-1,6-dihydropyridin-2-yl]-phenoxy}-benzoic acid

¹H-NMR (CDCl₃): δ 7.95-7.91 (m, 1H), 7.74-7.71 (m, 1H), 7.51 (t, J=7.8Hz, 1H), 7.33-7.28 (m, 1H), 7.15-7.10 (m, 2H), 7.00-6.91 (m, 4H), 6.61 (d, J=8.1Hz, 1H), 6.46 (s, 1H), 5.14 (s, 2H), 2.27 (s, 3H), 2.00 (s, 3H). MS(ES+): 519.3 (M+H)


EXAMPLE 49

This example illustrates the preparation of compound 49.

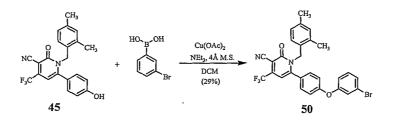
SUBSTITUTE SHEET (RULE 26)


15

. 5

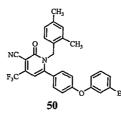
3-{4-[5-Cyano-1-(2,4-dimethyl-benzyl)-6-oxo-4-trifluoromethyl-1,6-dihydro-pyridin-2-yl]-phenoxy}-benzoic acid **48** (15 mg, 0.029 mmoles) was combined with 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide

- bydrochloride (EDC, 14 mg, 0.073 mmoles), 4-dimethylaminopyridine (DMAP, 2 mg, 0.016 mmoles) in 5 mL of anhydrous DCM. To this mixture was added diisopropylethylamine (DIPEA, 13 μL, 0.075 mmoles) and methylamine ([2.0 M] solution in THF, 36 μL, 0.72 mmoles). This mixture was then stirred at room temperature for 16 hours. After this period the reaction mixture was
- **10** purified directly using flash silica chromatography (0-60% EtOAc/Hexane) to yield 13 mg (84% yield) of **49** as a yellow solid.



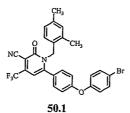
15

¹H-NMR (CDCl₃): δ7.52-7.41 (m, 3H), 7.19-7.10 (m, 3H), 6.98-6.91 (m, 4H), 6.61 (d, J=7.6Hz, 1H), 6.45 (s, 1H), 6.09 (bs, 1H), 5.14 (s, 2H), 3.01 (d, J=5.1Hz, 3H), 2.27 (s, 3H), 2.01 (s, 3H).


EXAMPLE 50

This example illustrates the preparation of compound 50.

1-(2,4-Dimethyl-benzyl)-6-(4-hydroxy-phenyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile **45** (104 mg, 0.26 mmoles) was combined with (3-bromophenyl) boronic acid (157mg, 0.78 mmoles), copper acetate (57 mg, 0.31 mmoles), 4Å molecular sieves (0.20g) and 1.0 mL of anhydrous

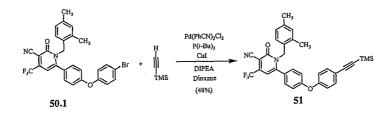

- 5 DCM within an oven-dried reaction vial. The mixture was stirred at room temperature for 15 min. After this period triethylamine (182 μL, 1.31 mmoles) was added and the mixture was stirred at room temperature for 16 hours. After this period the reaction mixture was purified directly using flash silica chromatography (0-20% EtOAc/Hexane) to yield 41mg (29%) of **50** as a
- 10 yellow residue.

6-[4-(3-Bromo-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

MS(ES+): 555.3 (M+H)

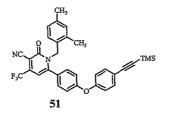
The following compounds were prepared in a manner similar to that described above.

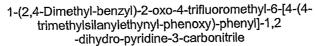
6-[4-(4-Bromo-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile


MS(ES+): 555.2 (M+H)

EXAMPLE 51

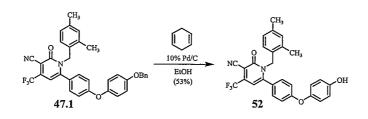
15


-313-


This example illustrates the preparation of compound 51.

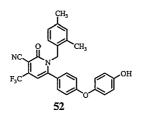
6-[4-(4-Bromo-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile **50.1** (108 mg, 0.195

- 5 mmoles) was combined with dichlorobis(benzonitrile)palladium (II) (11 mg, 0.029 mmoles), tri-*t*-butylphosphine (33 mg, 0.065 mmoles), copper iodide (4 mg, 0.021 mmoles), diisopropylethylamine (33 μL, 0.24 mmoles) and trimethylsilylacetylene (□□□□, 0.23 mmoles) in 2.0 mL of anhydrous and thoroughly degassed dioxane. This mixture was then stirred at 50 °C for 24
- 10 hours. After this period the reaction mixture was evaporated and purified directly for flash silica chromatography (0-20% EtOAc/Hexane) to yield 53 mg (48% yield) of 51 as a yellow residue.



¹H-NMR (CDCl₃): δ 7.52-7.46 (m, 2H), 7.14-7.09 (m, 2H), 6.97-6.89 (m, 6H), 6.60 (d, J=8.1Hz, 1H), 6.44 (s, 1H), 5.13 (s, 2H), 2.28 (s, 3H), 1.99 (s, 3H), 0.25 (s, 9H).

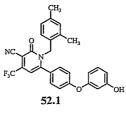
EXAMPLE 52


This example illustrates the preparation of compound 52.

-314-

6-[4-(4-Benzyloxy-phenoxy)-phenyl]-1-(2,4-dimethyl-benzyl)-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile **47.1** (29 mg, 0.05 mmoles) was combined with cyclohexadiene (0.1 mL, 1.05 mmoles), 10% Pd/C (50

5 mg) and 10 mL of anhydrous EtOH. This mixture was then stirred at room temperature for 24 hours. After this period the reaction mixture was vacuum filtered through Celite and the resulting filtrate was evaporated *in vacuo* to yield 13 mg (53%) of **52** as a yellow residue.

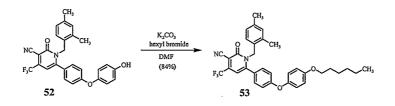


1-(2,4-Dimethyl-benzyl)-6-[4-(4-hydroxyphenoxy)-phenyl]-2-oxo-4-trifluoromethyl-1,2-dihydro-pyridine-3carbonitrile

10

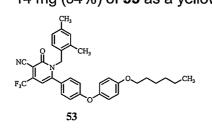
¹H-NMR (CDCl₃): δ 7.12-7.06 (m, 2H), 6.97-6.82 (m, 8H), 6.59 (d, J=7.8Hz, 1H), 6.44 (s, 1H), 5.13 (s, 2H), 4.84 (s, 1H), 2.28 (s, 3H), 2.01 (s, 3H). MS(ES+): 519.3 (M+H)

The following compounds were prepared in a manner similar to that described above.


1-(2,4-Dimethyl-benzyl)-6-[4-(3-hydroxy-phenoxy)-phenyl]-2-oxo -4-trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile

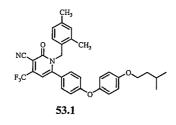
-315-

MS(ES+): 519.3 (M+H)


EXAMPLE 53

This example illustrates the preparation of compound 53.

5 1-(2,4-Dimethyl-benzyl)-6-[4-(4-hydroxy-phenoxy)-phenyl]-2-oxo-4trifluoromethyl-1,2-dihydro-pyridine-3-carbonitrile **52** (16 mg, 0.033 mmoles) was combined with potassium carbonate (23 mg, 0.166 mmoles) and hexyl bromide (20 μ L, 0.142 mmoles) in 2.0 mL of anhydrous DMF. This mixture was stirred at room temperature for 24 hours. After this period the reaction


10 mixture was combined with 50 mL of water and was extracted with EtOAc (4x15 mL). The combined EtOAc layer was washed with water (4x15 mL) and 15 mL of brine. The resulting EtOAc later was dried over anhydrous Na₂SO₄ and was evaporated *in vacuo* to yield the crude product. The crude product was purified using flash silica chromatography (0-20% EtOAc/Hexane) to yield
15 mg (84%) of **53** as a yellow residue.

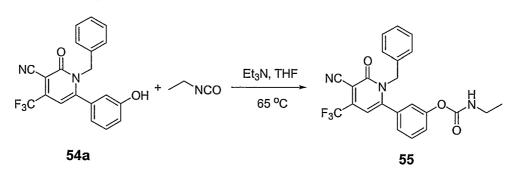
¹H-NMR (CDCl₃): δ 7.05 (d, J=8.8Hz, 2H), 6.97-6.81 (m, 8H), 6.57 (d, J=7.3Hz, 1H), 6.40 (s, 1H), 5.10 (s, 2H), 3.92 (t, J=6.6Hz, 2H), 2.24 (s, 3H), 1.98 (s, 3H), 1.81-1.71 (m, 2H), 1.49-1.39 (m, 2H), 1.35-1.28 (m, 4H), 0.91-0.84 (m, 3H). MS(ES+): 575.5 (M+H)

5

-316-

MS(ES+): 561.3 (M+H)

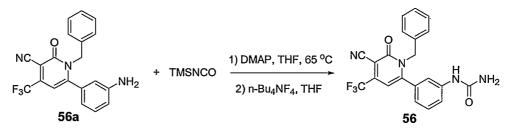
EXAMPLE 54


Sodium hydride (18 mg, 0.43 mmol) was added to a solution of **54a** (80 mg, 0.22 mmol) and methyl 2-iodoacetate (82 μ L, 0.86 mmol) in anhydrous DMF (2 mL). The reaction mixture was stirred under nitrogen atmosphere at 80 °C overnight. After the reaction mixture was cooled off, it was poured into

- 10 20 mL of water and extract with ethyl acetate (3 x 30 mL). The combined organic layer was washed with brine and water and concentrated *in vacuo*. The crude product was purified by column chromatography (40% ethyl acetate in hexane), providing product **54** (67 mg, 70% yield). ¹H-NMR (CDCl₃): δ7.37 (m, 1H), 7.26 (m, 4 H), 7.06 (m, 1 H), 6.91 (m, 1 H), 6.82 (m, 1
- **15** H), 6.62 (m, 1 H), 6.40 (s, 1 H), 5.24 (s, 2 H), 4.46 (s, 2 H), 3.80 (s, 2 H).

EXAMPLE 55

This example illustrates the preparation of compound 55.

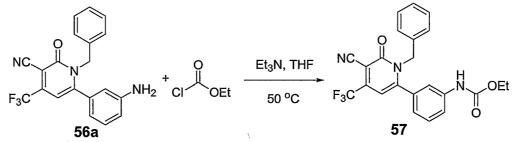

To a solution of **54a** (80 mg, 0.22 mmol) and triethylamine (60 μ L, 0.43 mmol) in anhydrous THF (2 mL) was added ethyl isocyanate (43 μ L, 0.54 mmol). The reaction mixture was stirred at 65 °C under nitrogen atmosphere for

overnight. The reaction mixture was then cooled off and concentrated *in vacuo*. The crude product was purified by column chromatography (40% ethyl acetate in hexane) to yield product 55 (91 mg, 95% yield). ¹H-NMR (CDCI₃): δ7.39 (m, 1 H), 7.29 (m, 1 H), 7.24-7.20 (m, 3 H), 7.04 (m, 1 H), 6.91 (m, 3 H), 6.41 (s, 1 H), 5.29 (s, 2 H), 5.05 (s, 1 H), 3.33 (m, 2 H), 1.24 (t, 7.1 Hz, 3H).

10

EXAMPLE 56

This example illustrates the preparation of compound 56.


To a solution of **56a** (117 mg, 0.32 mmol) in anhydrous THF (4 mL) was added trimethylsilyl isocyanate (0.24 mL, 1.6 mmol) and 4-

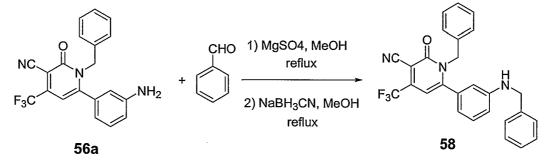
- 15 dimethylaminopyridine (4 mg, 0.03 mmol). The reaction mixture was stirred at 65 °C under nitrogen atmosphere overnight. The mixture was concentrated in vacuo. The resulting residue was dissolved in anhydrous THF (4 mL), and to it was added tetrabutylammonium floride (0.7 mL, 1.0 M) in THF. The reaction mixture was stirred at room temperature overnight. The crude product was
- 20 purified by column chromatography (60% ethyl acetate in hexane) to yield product 56 (95 mg, 72% over two steps). ¹H-NMR (DMSO-d6): δ10.20 (s, 1

H), 9.04 (s, 1 H), 7.65 (m, 1 H), 7.58 (m, 1 H), 7.43 (m, 1 H), 7.29 (m, 3 H), 7.07 (m, 1 H), 7.02 (m, 2 H), 6.80 (s, 1 H), 5.23 (s, 2 H).

EXAMPLE 57

This example illustrates the preparation of compound 57.

To a solution of **56a** (80 mg, 0.22 mmol) and triethyl amine (76 μ L, 0.54 mmol) in anhydrous methylene chloride (2 mL) was added ethyl chloroformate (41 μ L, 0.54 mmol). The reaction mixture was sealed in a vial and stirred at 50 °C overnight. The mixture was cooled off and concentrated *in vacuo*. The


product was purified by column chromatography (40% ethyl acetate in hexane) to yield 57 (40 mg, 42% yield). ¹H-NMR (CDCl₃): δ7.41 (m, 2 H), 7.34 (m, 1 H), 7.25-7.21 (m, 3 H), 6.91 (m, 2 H), 6.81 (m, 1 H), 6.64 (s, 1 H), 6.40 (s, 1 H), 5.27 (s, 2 H), 4.24 (q, 7.1 Hz, 2 H), 1.32 (t, 7.1 Hz, 3 H).

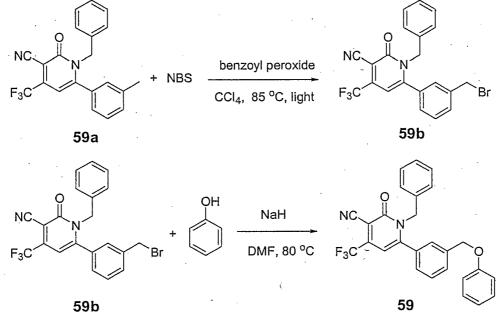
EXAMPLE 58

15

5

This example illustrates the preparation of compound **58**.

To a solution of **56a** (100 mg, 0.27 mmol) in methanol (15 mL) was added benzaldehyde (41 μ L, 0.41 mmol) and anhydrous magnesium sulfate (500 mg). The reaction mixture was heated to reflux overnight. Sodium


20 cyanoborohydride (85 mg, 1.36 mmol) was added to the mixture, which was

heated to reflux overnight. The reaction mixture was concentrated *in vacuo* and the crude mixture was partitioned between ethyl acetate and saturated sodium bicarbonate solution. The combined ethyl acetate was concentrated *in vacuo*. The crude product was purified by column chromatography (30% ethyl acetate in hexane) to yield compound **58** (24 mg, 19% yield).

¹H-NMR (CDCl₃): δ7.38-7.19 (br, 10 H), 6.93 (m, 2 H), 6.75 (m, 1 H), 6.50 (m, 1 H), 6.38 (s, 1 H), 6.27 (s, 1 H), 5.19 (s, 2 H), 4.17 (s, 2 H).

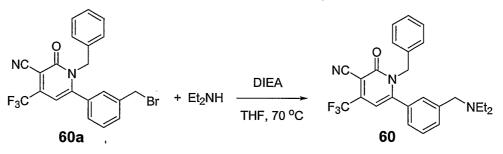
EXAMPLE 59

This example illustrates the preparation of compound 59.

10

15

A solution of **59a** (0.96 g, 2.61 mmol) in carbon tetrachloride (50 mL) was treated with N-bromosuccinimide (557 mg, 3.13 mmol) and catalytic amount of benzoyl peroxide. The reaction mixture was heated to reflux and irradiated with a 500 W floodlamp for 24 h. It was then cooled off and the white precipitate was filtered off. The solvent was evaporated to dryness, and the residue was purified by column chromatograpy (40% ethyl acetate in

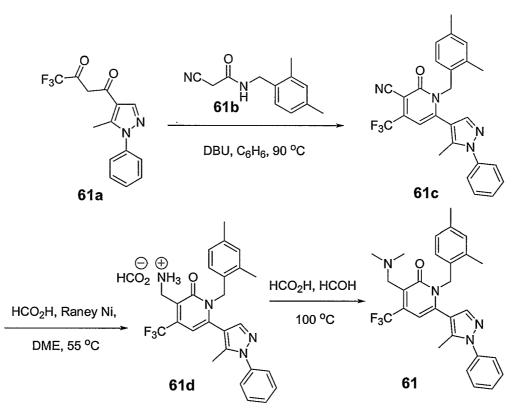

hexane) to yield **59b** (0.79 g, 65% yield). ¹H-NMR (CDCl₃): δ7.56 (m, 1 H), 7.43 (m, 1 H), 7.25 (m, 3 H), 7.13 (m, 2 H), 6.88 (m, 2 H), 6.39 (s, 1 H), 5.24 (s, 2 H), 4.38 (s, 2 H).

To a solution of **59b** (151 mg, 0.34 mmol) and phenol (127 mg, 1.35 mmol) in anhydrous DMF was added sodium hydride (54 mg, 60%, 1.35 mmol). The reaction mixture was stirred and heated to 80 $^{\circ}$ C for overnight. It was cooled off and poured into water and extracted with ether. The ether

5 layer was dried with anhydrous sodium sulfate and concentrated *in vacuo*. The crude product was purified by column chromatography (15-30% ethyl acetate in hexane) to yield product 59 (66 mg, 42% yield). ¹H-NMR (CDCl₃): δ7.60 (m, 1H), 7.46 (m, 1 H), 7.30 (m, 2 H), 7.24-7.20 (br, 4 H), 7.12 (m, 1 H), 7.00 (m, 1 H), 6.92 (m, 2 H), 6.86 (m, 2 H), 6.40 (s, 1 H), 5.22 (s, 1 H), 5.03
10 (s, 2 H).

EXAMPLE 60

This example illustrates the preparation of compound 60.


To a solution of 60a (152 mg, 0.34 mmol) and diisopropylethyl amine

- (89 μL, 0.51 mmol) in THF (2 mL) was added diethyl amine (53 μL, 0.51 mmol). The reaction mixture was heated to 70 °C for overnight. The solvent was evaporated in vacuo and the crude product was purified by column chromatography (50% ethyl acetate in hexane) to yield product **60** (82 mg, 55%). ¹H-NMR (CDCl₃): δ 7.51 (m, 1 H), 7.38 (m, 1 H), 7.24-7.17 (m, 4 H),
- **20** 7.07 (m, 1 H), 6.88 (m, 2 H), 6.41 (s, 1 H), 5.27 (s, 2 H), 3.52 (m, 2 H), 2.48 (m, 4 H), 1.01 (m, 6 H).

EXAMPLE 61

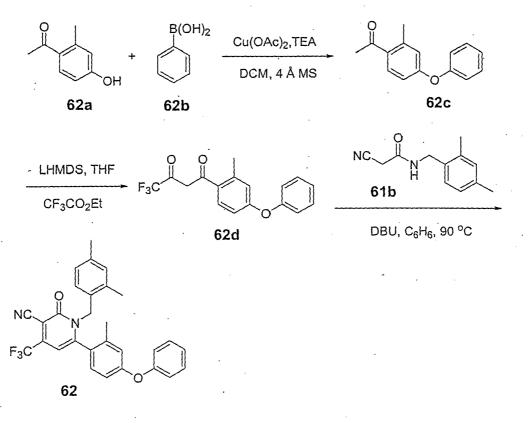
۱

This example illustrates the preparation of compound 61.

2,4-dimethylbenzyl cyanoacetamide 61a (103 mg, 0.59 mmol) and diketone 61b (175 mg, 0.59 mmol) were suspended in 2 mL of benzene. To the above reaction mixture was added DBU (45 μL, 0.3 mmol). The mixture was sealed in a vial and stirred at 90 °C for overnight. The reaction mixture was concentrated *in vacuo* and the resulting residue was purified by column chromatography (35% ethyl acetate in hexane) to yield 61b (50 mg, 18%). ¹H-NMR (CDCl₃): δ7.54-7.45 (m, 3 H), 7.34 (m, 3 H), 6.95 (m, 2 H), 6.61 (m, 1 H), 6.44 (s, 1 H), 5.28 (m, 2 H), 2.28 (s, 3 H), 2.08 (s, 3 H), 2.03 (s, 3 H).

10 1.0 g of aluminum-nickel catalyst was placed in 10 mL of 2 N aq NaOH and stirred in a flask cooled with ice water. The mixture was stirred for 45 min. The solution was decanted, while the solid Ni catalyst was kept washing with water 8 times until it became clear solution. The water was removed as much as possible, using a pipet. To a solution of 61b (48 mg, 0.10 mmol) in 5 mL of

15 DME was added 5 mL of formic acid. The reaction mixture was stirred at 55 °C for 4 h under a slow stream of nitrogen. The reaction mixture was filtered through a short pad of celite, and the celite was washed with MeOH. The


-322-

filtrate was concentrated *in vacuo*. The residue was purified by column chromatography (10% MeOH in DCM containing 0.1% triethyl amine) to provide product **61d** (26 mg, 50% yield).

- The resulting product **61d** (21 mg, 0.04 mmol) was dissolved in a **5** mixture of formic acid (2 mL, 96%) and formaldehyde (6 mL, 37% in water). The reaction mixture was heated at 100 °C for 16 h and then cooled off. The reaction mixture was neutralized by 10% aq NaOH with ice to weekly basic and then extracted with ether (3 x 20 mL). The combined ether was concentrated *in vacuo*. This crude product was purified by HPLC with 30%
- 10 CH₃CN in water to yield 61 (12 mg, 80% yield) as trifluoroacetic acid salt. ¹H-NMR (CDCl₃): δ7.50 (m, 2 H), 7.45 (m, 1 H), 7.36 (m, 3 H), 6.97 (s, 1 H), 6.91 (m, 1 H), 6.56 (m, 1 H), 6.49 (s, 1 H), 5.23 (s, 2 H), 4.34 (s, 2 H), 3.00 (s, 6 H), 2.27 (s, 3 H), 2.11 (s, 6 H). MS (ES+): 495.2 (M+H).

EXAMPLE 62

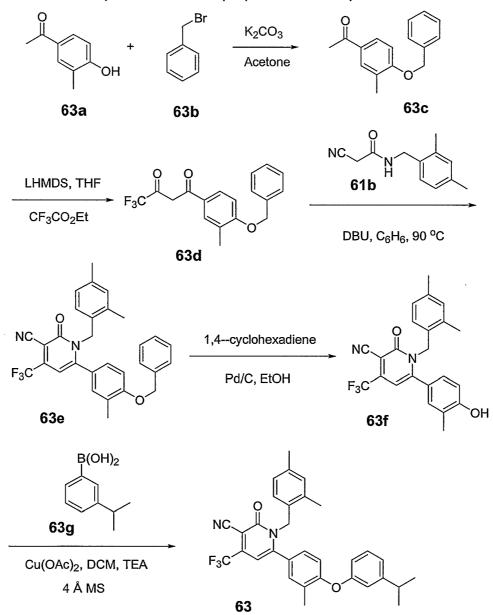
15 This example illustrates the preparation of compound **62**.

PCT/US02/41306

To a solution of 2-methyl-4-hydroxyacetophenone **62a** (0.5 g, 3.33 mmol) in anhydrous methylene chloride (30 mL) was added $Cu(OAc)_2$ (605 mg, 3.33 mmol), phenylboronic acid (812 mg, 6.66 mmol) and powdered 4 Å molecular sieves and triethylamine (2.32 mL, 16.65 ,mmol). The heterogenerous

- 5 reaction mixture was stirred at ambient temperature for overnight. The resulting slurry was filtered through celite and the diaryl ether was isolated from the organic filtrate by column chromatography (30% ethyl acetate in hexane) to yield 62c (590 mg, 78% yield). ¹H-NMR (CDCl₃): δ 7.73 (m, 1 H), 7.38 (m, 2 H), 7.19 (m, 1 H), 7.06 (m, 2 H), 6.82 (m, 2 H), 2.56 (s, 3 H), 2.53
- **10** (s, 3 H).

The diaryl ether **62c** (530 mg, 2.34 mmol) was dissolved in anhydrous THF (3 mL) and cooled to -78 °C under nitrogen atmosphere. A solution of lithium bis(trimethylsilyl)amide (2.4 mL, 1.0 M) in THF was added slowly. The reaction mixture was stirred at -20 °C under nitrogen atmosphere for 1 h. The


- 15 reaction mixture was then cooled to –78 °C, and to it was added ethyl trifluoroacetate (417 μL, 3.5 mmol). The vigorously stirred solution was allowed to warm to ambient temperature overnight. The reaction mixture was poured into a mixture of 10% aq HCl and ice and extracted with chloroform three times. The chloroform extract was washed with water. The organic
- **20** layer was separated and dried with anhydrous MgSO₄ and concentrated *in vacuo* to give crude product **62d** (1.05 g, 98% yield).

2,4-dimethylbenzyl cyanoacetamide **61b** (101 mg, 0.50 mmol) and diketone **62d** (161 mg, 0.50 mmol) were suspended in 2 mL of benzene. To the above reaction mixture was added DBU (40 μ L, 0.25 mmol). The mixture

- was sealed in a vial and stirred at 90 °C for overnight. The reaction mixture was concentrated in vacuo and the resulting residue was purified by column chromatography (35% ethyl acetate in hexane) to yield product 62 (127 mg, 52% yield).). ¹H-NMR (CDCl₃): δ 7.40 (m, 2 H), 7.20 (m,1 H), 7.03 (m, 2 H), 6.84 (m, 4 H), 6.73 (m, 1 H), 6.60 (m, 1 H). 6.37 (s, 1 H), 5.31 (m, 1 H), 4.89
 (m, 1 H), 2.73 (s, 3 H), 2.25 (s, 3 H, 1.92 (s, 3 H). MS (ES+): 489.2 (M+H).
 - EXAMPLE 63

-324-

This example illustrates the preparation of compound **63**.

WO 03/059884

PCT/US02/41306

-325-

To a solution of 3-methyl-4-hydroxyacetophenone **63a** (9.01 g, 60 mmol) and benzyl bromide **63b** (7.49 mL, 63 mmol) in acetone (120 mL) was added potassium carbonate (8.71 g, 63 mmol). The reaction mixture was stirred at

ambient temperature under nitrogen atmosphere for overnight. The white solid was filtered off and the solvent was concentrated *in vacuo* to yield product
63c (14.13 g, 98% yield). The product was used for the next reaction without further purification.

The aryl benzyl ether **63c** (14.13 g, 59.3 mmol) was dissolved in anhydrous **10** THF (150 mL) and cooled to –78 °C under nitrogen atmosphere. A solution of lithium bis(trimethylsilyl)amide (59.3 mL, 1.0 M) in THF was added slowly. The reaction mixture was stirred at –20 °C under nitrogen atmosphere for 2 h. The reaction mixture was then cooled to –78 °C, and to it was added ethyl trifluoroacetate (10.58 mL, 89 mmol). The vigorously stirred solution was

15 allowed to warm to ambient temperature overnight. The reaction mixture was poured into a mixture of 10% aq HCl and ice and extracted with chloroform three times. The chloroform extract was washed with water. The organic layer was separated and dried with anhydrous MgSO₄ and concentrated *in vacuo* to give crude product 63d (19.5 g, 98% yield). The product was used

20 for the next reaction without purification.

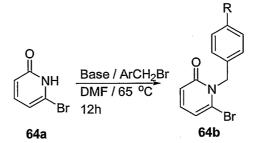
2,4-dimethylbenzyl cyanoacetamide **61b** (3.01 g, 14.88 mmol) and diketone **63d** (5.0 g, 14.87 mmol) were suspended in 50 mL of benzene. To the above reaction mixture was added DBU (1.11 mL, 7.43 mmol). The mixture was heated to reflux under nitrogen atmosphere for overnight. The reaction

25 mixture was concentrated *in vacuo* and the resulting residue was purified by column chromatography (20% ethyl acetate in hexane) to yield product 63e (3.90 g, 45% yield).

To a solution of **63e** (3.71 g, 7.38 mmol) in anhydrous ethanol (74 mL) was added 2.85 g of 10% Pd/C and 1,4-cyclohexadiene (6.98 mL, 73.8 mmol).

30 The mixture was stirred under nitrogen atmosphere for overnight. The solution

-326-


was filtered through a pad of celite and the solvent was concentrated in vacuo to yield product **63f** (2.96 g, 97%).

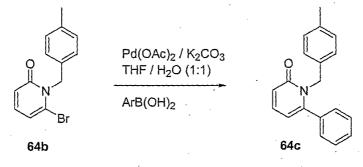
To a solution of **63f** (103 mg, 0.25 mmol) in anhydrous methylene chloride (3 mL) was added $Cu(OAc)_2$ (91 mg, 0.5 mmol), 3-

- 5 isopropylphenylboronic acid (82 mg, 0.5 mmol) and powdered 4 Å molecular sieves and triethylamine (174 μL, 1.25 mmol). The heterogenerous reaction mixture was stirred at ambient temperature for overnight. The resulting slurry was filtered through celite and the diaryl ether was isolated from the organic filtrate by column chromatography (20% ethyl acetate in hexane) to yield 63
- (63 mg, 47% yield).). ¹H-NMR (CDCl₃): δ7.27 (m, 1 H), 7.03 (m, 1 H), 6.98-6.85 (m, 5 H), 6.74 (m, 2 H), 6.64 (m, 1 H). 6.46 (s, 1 H), 5.15 (s, 2 H), 2.90 (hep, J = 7.0 Hz, 1 H), 2.27 (s, 3 H), 2.21 (s, 3 H), 1.99 (s, 3 H), 1.25 (d, J = 7.0 Hz, 6 H). MS (ES+): 531.3 (M+H).

EXAMPLE 64

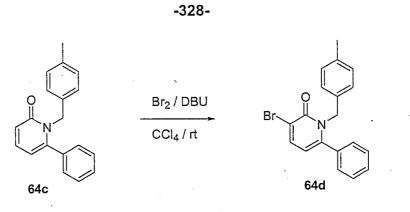
15 This example illustrates the preparation of compound **64**.

Method A (R = Me): To a solution of bromopyridone **64a** (2.12 g, 12.2 mmols) in 60 mL of DMF at room temperature was added LiH (145.0 mg, 18.3 mmols). After stirring for 1 hour at 65 °C, 4-methylbenzyl bromide (2.7 g, 14.6 mmols) was added and heating continued for 12 h. The solution was cooled

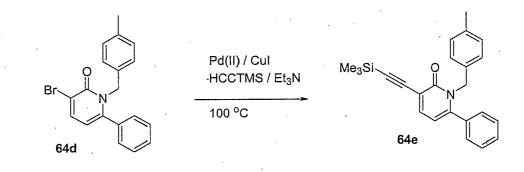

- to room temperature and concentrated under reduced pressure. Pyridone **64b** (R = Me) was isolated from the residue by column chromatography on silica gel (0 to 20% EtOAC / hexanes) as a colorless oil (1.6 g, 47%). ¹H NMR (CDCl₃) δ : 7.34 (t, J = 7.8 Hz, 1H), 7.28 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0
- Hz, 2H), 6.98 (d, J = 7.6 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 5.24 (s, 2H), 2.29 (s, 3H).

-327-

Method B (R = H): To a solution of bromopyridone (405.0 mg, 2.3) mmols) in 6.0 mL of DME:DMF (10:1, v/v) at 0 °C was added NaH (92.0 mg. 2.3 mmols, 60% dispersion in mineral oil). After 10 minutes LiBr (800.0 mg, 9.2 mmols) was added and the mixture warmed to room temperature over 15 5 minutes and then benzyl bromide (786.6 mg, 4.6 mmols) was added. The resulting solution was heated to 65 °C for 12h, cooled to room temperature, diluted with saturated aqueous sodium chloride solution, and extracted with EtOAc. The combined organic layers were dried over MgSO4 and


concentrated under reduced pressure. Pyridone (R = H) was isolated from the residue by column chromatography on silica gel (0 to 20% EtOAC /

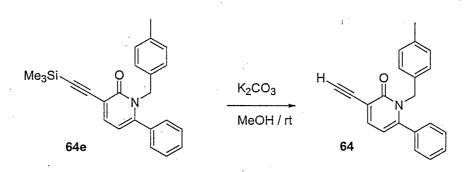
10 hexanes) as a colorless oil (533 mg, 88%). ¹H NMR (CDCl₃) δ : 7.40-4.24 (m, 6H), 7.00 (d, J = 7.2 Hz, 1H), 6.66 (d, J = 7.6 Hz, 1H), 5.28 (s, 2H).


15

A degassed solution of bromopyridone 64b (100 mg, 0.4 mmol) and phenylboronic acid (44 mg, 0.4 mmol) in 0.9 mL THF was added Pd(OAc)₂ (4 mg, 0.02 mmol). A degassed solution of Na₂CO₃ (95 mg, 0.9 mmol) in 0.9 mL H₂O was added and the resulting mixture heated to reflux for 12 h. The mixture was cooled to room temperature, diluted with H₂O, and extracted with EtOAc. The combined organic layers were dried over NaSO₄ before being 20 concentrated under reduced pressure. The product 64c (91 mg, 97%) was isolated as a colorless solid from the residual oil by column chromatography on silica (0 to 20% EtOAc / hexanes). ¹H NMR (CDCl₃) δ : 7.52 (dd, J = 8.6. 1.6 Hz, 1H), 7.39-7.26 (7H), 7.11 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 7.2 Hz, 1H), 6.64 (d, J = 8.1 Hz, 1H), 5.24 (s, 2H), 2.29 (s, 3H). 25

To a solution of pyridone 64c (70 mg, 0.3 mmol) in 0.54 mL CCl₄ at 0
°C in the dark (foil wrapped flask) was added Br₂ (62 mg, 0.4 mmol) and DBU
(61 mg, 0.4 mmol). The resulting solution was allowed to warm to slowly room temperature and stir for 12 h. The solution was diluted with CH₂Cl₂ (25 mL) and washed with 1N aqueous HCl, saturated aqueous NaHCO₃, and dried over Na₂SO₄ before being concentrated under reduced pressure. The product 64d (71 mg, 75%) was isolated from the residual oil as a colorless
solid by column chromatography on silica (0 to 5% EtOAc / hexanes). ¹H NMR (CDCl₃) δ: 7.92 (m, 2H), 7.78 (d, J = 8.0 Hz, 1H), 7.37 (m, 5H), 7.17 (d,

J = 8.0 Hz, 1H), 7.12 (d, J = 8.0 Hz, 2H), 5.48 (s, 2H), 2.28 (s, 3H).

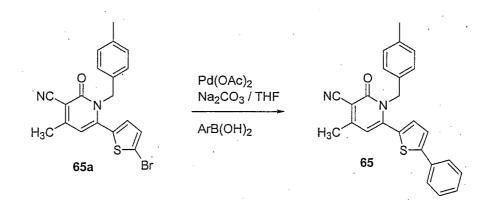

15

To a solution of bromide **64d** (12 mg, 0.03 mmol) in 0.3 mL Et₃N was added CuI (2 mg, 0.01 mmol), dichloro(bis-triphenylphosphine)palladium (II) (4 mg, 0.005 mmol), and 1,3-(bis-diphenylphosphino)propane (2 mg, 0.005). The system was purged with N₂, trimethylsilylacetylene (59 mg, 0.6 mmol)

20 added and the resulting mixture heated to 100 °C for 17 h. Upon cooling to room temperature the mixture was concentrated under reduced pressure and

-329-

product **64e** (8 mg, 73%) was isolated from the residual oil as a yellow oil by column chromatography on silica (0 to 5% EtOAc / hexanes). ¹H NMR (CDCl₃) δ: 8.09 (d, J = 7.2 Hz, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.70-7.37 (m, 5H), 7.39 (d, J = 7.6 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.62 (s, 2H), 2.42 (s, **5** 3H), 0.34 (s, 9H).



Alkyne 64e (2 mg, 0.005 mmol) was combined with K₂CO₃ (3 mg,

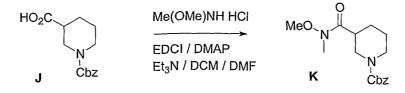
10 0.025 mmol) in 0.1 mL of MeOH and stirred overnight at room temperature. The mixture was concentrated under reduced pressure and product 64 (1 mg) was isolated from the residual oil as a yellow oil by column chromatography on silica (0 to 5% EtOAc / hexanes). ¹H NMR (CDCl₃) δ: 7.95 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.39 (m, 5H), 7.26 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 5.51 (s, 2H), 3.30 (s, 1H), 2.28 (s, 3H).

Example 65

This example illustrates the preparation of compound 65.

-330-

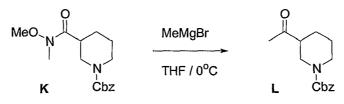
To a degassed solution of thienylbromide **65a** (50 mg, 0.11 mmol) and phenylboronic acid (13 mg, 0.11 mmol) in 0.6 mL THF was added Pd(OAc)₂ (1 mg, 0.006 mmol). A degassed solution of Na₂CO₃ (30 mg, 0.3 mmol) in 0.6 mL H₂O was added and the resulting mixture heated to reflux for 12 h. The

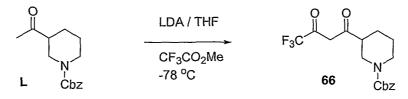

- 5 mixture was cooled to room temperature, diluted with H₂O and extracted with EtOAc. The combined organic layers were dried over NaSO₄ before being concentrated under reduced pressure. The product **65** (28 mg, 55%) was isolated as a colorless solid from the residual oil by column chromatography on silica (10 to 20% EtOAc / hexanes). ¹H NMR (CDCl₃) δ : 7.51 (d, J = 8.0
- Hz, 2H), 7.35 (m, 5H), 7.35 (d, J = 7.3 Hz, 1H), 7.01 (d, J = 3.8 Hz, 1H), 6.88 (d, J = 8.1 Hz, 2H), 6.56 (s, 1H), 5.38 (s, 2H), 2.25 (s, 3H).

Example 66

This example illustrates the preparation of compound 66.

To a solution of acid I (2.0 g, 15.5 mmols) in 8.0 mL of dioxane was added benzyl chloroformate (3.1 g, 18.6 mmols) at room temperature followed by the addition of 8 mL of saturated aqueous NaHCO₃. The resulting mixture was vigorously stirred for 4 hours, the dioxane removed under reduced

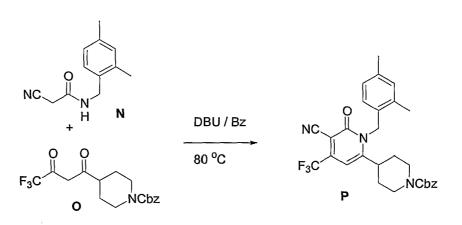

- 20 pressure, and the resulting solution diluted with H₂O. Extraction with CH₂Cl₂ was followed by drying the combined fractions over Na₂SO₄ and concentration under reduced pressure. The product J (3.3 g, 81%) was isolated as a colorless oil from the residual oil by column chromatography on silica (5-10% MeOH / CH₂Cl₂). ¹H NMR (CDCl₃) δ: 7.36 (m, 5H), 5.13 (m, 2H), 4.19 (bm,
- **25** 1H), 3.97 (m, 1H), 3.13 (bm, 1H), 2.94 (ddd, J = 3.0, 10.6, 13.6 Hz, 1H), 2.53 (bm, 1H), 2.09 (m, 1H), 1.72 (m, 2H), 1.51 (bm, 1H).


To a solution of acid **J** (3.3 g, 12.6 mmols) in 120 mL $CH_2Cl_2:DMF$ (4:1, v/v) was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) (4.8 g, 25.2 mmols) and 4-*N*,*N*-dimethylaminopyridine (77 mg, 0.6 mmol). After stirring for 30 minutes *N*,O-dimethylhydroxylamine

- 5 hydrochloride (1.2 g, 12.6 mmols) followed by triethylamine (1.3 g, 12.6 mmols). After stirring for 12 hours the solution was concentrated under reduced pressure and the residue dissolved in CH₂Cl₂ (200 mL). The solution was then washed with H₂O and 1N aqueous HCl before being dried over Na₂SO₄ and concentrated under reduced pressure. The product K (3.2 g,
- 81%) was isolated as a pale yellow oil from the residual oil by column chromatography on silica (5-10% MeOH / CH₂Cl₂). ¹H NMR (CDCl₃) δ: 7.35 (m, 5H), 5.13 (M, 2H), 4.20 (bm, 1H), 4.11 (m, 1H), 3.72 (s, 3H), 3.59, (s, 3H), 2.92 (m, 1H), 2.81 (m, 1H), 2.19 (m, 1H), 1.94 (m, 1H), 1.70 (m, 2H), 1.51 (m, 1H).

15

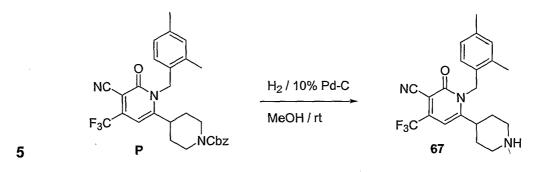
To a solution of amide K (600 mg, 2.0 mmols) in THF (20 mL) at 0 °C was added MeMgBr (1.2 mL, 2.2 mmols, 1.4 M in THF). After stirring for 1 hour, the reaction was quenched at 0 °C by the addition of 1N HCl in EtOH. The solution was diluted with CH₂Cl₂:Et₂O (100 ml, v/v) and washed with
20 saturated aqueous NaCl before being dried (Na₂SO₄) and concentrated under reduced pressure. The product L (257 mg, 50%) was isolated as a colorless oil from the residual oil by column chromatography on silica (10-50% EtOAc / hexanes). ¹H NMR (CDCl₃) δ: 7.37 (m, 5H), 5.15 (m, 2H), 4.22 (bm, 1H), 4.04 (bm, 1H), 3.02 (m, 1H), 2.88 (bm, 1H), 2.54 (bm, 1H), 2.19 (s, 3H), 2.04 (bm, 1H), 1.76 (m, 1H), 1.55 (m, 2H).


To a solution of ketone L (237 mg, 0.9 mmol) in 3.0 mL THF at -78 °C was added a solution of lithium diisopropylamide (0.45 mL, 0.9 mmol, 2.0M in THF). After stirring for 5 minutes ethyl trifluoromethylacetate (155 mg, 1.1 mmols) was added. Stirring for 2 hours at -78 °C was followed by warming to

- 5 room temperature and the addition of EtOAc (50 mL). The resulting solution was washed with 10% aqueous H_2SO_4 and H_2O before being dried with Na_2SO_4 and concentrated under reduced pressure. The product **66** (50 mg, 16%) was isolated from the residual oil by column chromatography on silica (10-50% EtOAc / hexanes). ¹H NMR (CDCl₃) δ : 7.34 (m, 5H), 5.96 (s, 1H),
- **10** 5.14 (m, 2H), 4.18 (bm, 1H), 4.07 (m, 1H), 3.01 (m, 1H), 2.89 (m, 1H), 2.68 (m, 1H), 2.52 (bm, 1H), 2.28 (m, 1H), 1.73 (m, 2H).

Example 67

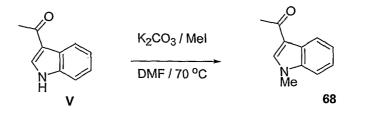
This example illustrates the preparation of compound 67.


15

A solution of amide **N** (81 mg, 0.4 mmol), diketone **O** (150 mg, 0.4 mmol), and DBU (30.4 mg, 0.2 mmol) in 2.0 mL benzene was heated to reflux for 12 hours. The solution was cooled to room temperature and concentrated under reduced pressure. The product **P** (118 mg, 58%) was isolated as a pale yellow solid from the residue by column chromatography on silica (10-50% EtOAc / hexanes). ¹H NMR (CDCl₃) δ : 7.34 (m, 5H), 7.10 (d, J = 8.1 Hz, 1H), 7.01 (t, J = 13.4 Hz), 6.93 (d, J = 8.0 Hz), 6.35 (s, 1H), 5.35 (s, 2H), 5.10

-333-

(s, 2H), 4.27 (bm, 2H), 2.68 (m, 1H), 2.60 (bm, 2H), 2.30 (s, 3H), 2.28 (s, 3H), 1.63 (m, 2H), 1.57 (m, 2H).



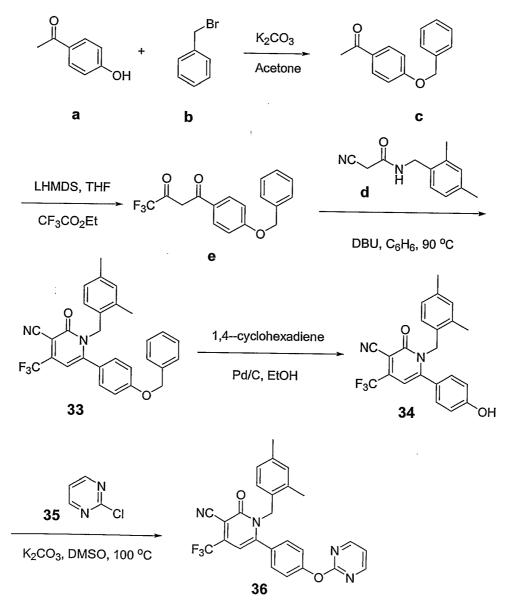
To a solution of pyridone **P** (50 mg, 0.1 mmol) in 0.5 mL MeOH was added 10% Pd-C (5 mg, 10 wt%). The mixture was then stirred under H₂ (1 atm) at room temperature for 30 minutes. The flask was purged with N₂ and

the mixture filtered through a pad of Celite using an EtOAc wash. The filtrate was concentrated under reduced pressure and the product 67 (20 mg, 51%) was isolated from the residual oil by column chromatography on silica (5-20% MeOH / CH₂Cl₂). ¹H NMR (CDCl₃) δ: 7.10 (d, J = 7.6 Hz, 1H), 7.01 (t, J = 14.6 Hz, 1H), 6.93 (d, J = 7.3 Hz, 1H), 6.35 (s, 1H), 5.34 (m, 2H), 4.26 (bm, 2H), 2.65 (m, 1H), 2.51 (m, 2H), 2.30 (s, 3H), 2.28 (s, 3H), 1.66 (m, 2H).

Example 68

This example illustrates the preparation of compound 68.

20


To a solution of indole V (0.5 g, 3.1 mmols) in 10 mL DMF was added MeI (483 mg, 3.4 mmols) and K_2CO_3 (1.3 g, 9.3 mmols). The resulting

-334-

mixture was heated to 70 °C for 15 hours, cooled to room temperature, and concentrated under reduced pressure. The product **68** (569 mg, 99%) was isolated as an off-white solid from the residual oil by column chromatography on silica (5-10% MeOH / CH_2Cl_2). ¹H NMR (CDCl₃) \Box : 8.12 (m, 1H), 7.27 (s, 1H), 7.05-6.92 (m, 3H), 3.38 (s, 3H), 2.16 (s, 3H).

Example 69

This example illustrates the preparation of compound 69.

WO 03/059884

PCT/US02/41306

-335-

To a solution of 4-hydroxyacetophenone **30** (6.81 g, 50 mmol) and benzyl bromide **23** (5.95 mL, 50 mmol) in acetone (100 mL) was added potassium carbonate (7.6 g, 55 mmol). The reaction mixture was stirred at ambient temperature under nitrogen atmosphere for overnight. The white solid was

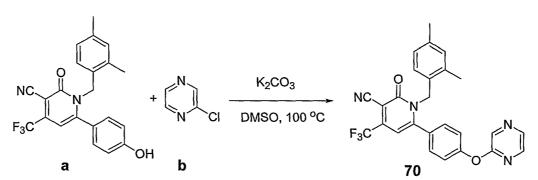
5 filtered off and the solvent was concentrated *in vacuo* to yield product **31** (11.8 g, 98% yield). The product was used for the next reaction without further purification.

The aryl benzyl ether **31**(11.14 g, 49.2 mmol) was dissolved in anhydrous THF (70 mL) and cooled to -78 °C under nitrogen atmosphere. A solution of

- 10 lithium bis(trimethylsilyl)amide (49.2 mL, 1.0 M) in THF was added slowly. The reaction mixture was stirred at -20 °C under nitrogen atmosphere for 2 h. The reaction mixture was then cooled to -78 °C, and to it was added ethyl trifluoroacetate (8.78 mL, 73.8 mmol). The vigorously stirred solution was allowed to warm to ambient temperature overnight. The reaction mixture was
- 15 poured into a mixture of 10% aq HCl and ice and extracted with chloroform three times. The chloroform extract was washed with water. The organic layer was separated and dried with anhydrous MgSO₄ and concentrated *in vacuo* to give crude product **32** (15.5 g, 98% yield). The product was used for the next reaction without purification.
- 20 2,4-dimethylbenzyl cyanoacetamide 13 (2.02 g, 10 mmol) and diketone 32 (3.22 g, 10 mmol) were suspended in 25 mL of benzene. To the above reaction mixture was added DBU (0.75 mL, 5.0 mmol). The mixture was heated to reflux under nitrogen atmosphere for overnight. The reaction mixture was concentrated *in vacuo* and the resulting residue was purified by
- column chromatography (20% ethyl acetate in hexane) to yield product 33 (3.2 g, 66% yield).

To a solution of **33** (2.84 g, 5.81 mmol) in anhydrous ethanol (90 mL) was added 2.85 g of 10% Pd/C and 1,4-cyclohexadiene (5.5 mL, 58.1 mmol). The mixture was stirred under nitrogen atmosphere for overnight. The solution was

30 filtered through a pad of celite and the solvent was concentrated in vacuo to yield product **34** (2.20 g, 95%).


-336-

To a solution of **34** (100 mg, 0.25 mmol) and 2-chloropyrimidine **35** (29 mg, 0.25 mmol) in DMSO (2 mL) was added potassium carbonate (52 mg, 0.38 mmol). The reaction mixture in a sealed vial was stirred and heated to 100 $^{\circ}$ C overnight. After cooling off, the mixture was poured into water and extracted

- with chloroform. The chloroform extract was dried with anhydrous MgSO₄ and concentrated in vacuo. The crude product was purified by column chromatography (30 –60% EtOAc in hexane) to yield the product 36 (65 mg, 55% yield). ¹H-NMR (CDCl₃): δ8.58 (d, J = 4.8 Hz, 2H), 7.21 (m, 3 H), 7.12 (m, 1 H), 6.95 (m, 1 H), 6.91 (s, 1 H), 6.63 (m, 1 H), 6.50 (s, 1 H), 5.15 (s, 2 H).
- **10** H), 2.27 (s, 3 H), 1.97 (s, 3 H). MS (ES+): 477.1 (M+H).

Example 70

This example illustrates the preparation of compound **70**.

15

To a solution of **a** (71 mg, 0.18 mmol) and 2-chloropyrazine **b** (20 mg, 0.18 mmol) in DMSO (2 mL) was added potassium carbonate (37 mg, 0.27 mmol). The reaction mixture in a sealed vial was stirred and heated to 100 $^{\circ}$ C overnight. After cooling off, the mixture was poured into water and extracted

- with chloroform. The chloroform extract was dried with anhydrous MgSO₄ and concentrated in vacuo. The crude product was purified by column chromatography (25 –50% EtOAc in hexane) to yield the product 70 (48 mg, 57% yield). ¹H-NMR (CDCl₃): δ8.49 (m, 1 H), 8.34 (m, 1 H), 8.11(m, 1 H), 7.19 (m, 4 H), 6.95 (m, 1 H), 6.92 (m, 1 H), 6.63 (m, 1 H), 6.49 (s, 1 H), 5.15 (s, 2
- **25** H), 2.28 (s, 3 H), 1.98 (s, 3 H). MS (ES+): 477.2 (M+H).

Example 71

WO 03/059884

-337-

FRET Coactivator assay

The FRET coactivator assay measures the ability of LXR ligands to promote protein-protein interactions between the ligand binding domain (LBD) of LXR and transcriptional coactivator proteins. The assay involves the use a

- 5 recombinant Glutathione-S-transferase (GST)-nuclear receptor ligand binding domain (LBD) fusion protein and a synthetic biotinylated peptide sequence derived from the receptor interacting domain of a co-activator peptide such as the steroid receptor coactivator 1 (SRC-1). Typically GST-LBD is labeled with a europium chelate (donor) via a europium-tagged anti-GST antibody, and the
- **10** coactivator peptide is labeled with allophycocyanin via a streptavidin-biotin linkage.

In the presence of an agonist for the nuclear receptor, the peptide is recruited to the GST-LBD bringing europium and allophycocyanin into close proximity to enable energy transfer from the europium chelate to the

- 15 allophycocyanin. Upon excitation of the complex with light at 340 nm excitation energy absorbed by the europium chelate is transmitted to the allophycocyanin moiety resulting in emission at 665 nm. If the europium chelate is not brought in to close proximity to the allophycocyanin moiety there is little or no energy transfer and excitation of the europium chelate results in
- **20** emission at 615 nm. Thus the intensity of light emitted at 665 nm gives an indication of the strength of the protein-protein interaction.

A. Required Materials:

- Partially purified recombinant protein comprising glutathione-S transferase fused in frame to the LXR-ligand binding domain (comprising amino acids 188-447 of human LXR α, or amino acids 198-461 of human LXR β).
 - 2. Biotinylated peptide containing a SRC-1 LXXLL receptor interaction motif (B-SRC-1)

- Anti-GST antibody conjugated to an Europium chelate (αGST-K) (From Wallac/PE Life Sciences Cat# AD0064)
- 4. Streptavidin linked allophycocyanin (SA-APC) (From Wallac/PE Life Sciences CAT# AD0059A)
- 5 5. 1x FRET Buffer: (20mM KH₂PO₄/K₂HPO₄ pH 7.3, 150mM NaCl, 2.5mM CHAPS, 2mM EDTA, 1mM DTT (add fresh))
 - 6. 96 well or 384 well black multiwell plates (from LJL)

Stock Solutions:

10 0.5M KH₂PO₄/K₂HPO₄: pH 7.3

5M NaCl

20

25

80mM (5%) CHAPS

0.5M EDTA pH 8.0

1M DTT (keep at -20° C)

15 B. Preparation of Screening Reagents:

Prepare reaction mixture for the appropriate number of wells by combining the following reagents 5nM / well GST-hLXR α LBD, 5nM / well GST-hLXR β LBD, 5nM / well Anti-GST antibody (Eu), 12nM / well biotin-SRC-1 peptide, 12nM / well APC-SA adjust the volume to 10μ L/well with 1x-FRET buffer.

C. Procedure:

Add 0.5μ l of a 1mM stock compound (for approx. 10μ M final concentration) or solvent to each well in a 96 well or 384 well black plate (LJL).

1. Add 10μl reaction mixture (prepared above) to each well of the multiwell plate.

- Incubate covered or in the dark (the APC is light sensitive) at room temperature for 1-4hr. After this time if reactions are not read they can be stored at 4 degrees for several more hours without too much loss of signal.
- 3. Read the plate using an LJL Analyst, or similar instrument, using the following conditions:

Channel 1: Excitation is 330nm and emission is 615. This is for Eu

10 chelate

Channel 2: Excitation is 330nm and emission is 665. This is for APC

For channel 1: Flashes per well = 100; Integration time = 1000μ s; interval between flashes = 1×10 ms; Delay after flash = 200μ s

15

5

For channel 2: Flashes per well = 100; Integration time = 100μ s; interval between flashes = 1×10 ms; Delay after flashes = 65μ s

Example 72

20

Scintillation proximity assay (SPA):

The SPA assay measures the radioactive signal generated by the binding of ³H-24, 25-epoxycholesterol to LXRα or LXRβ. The basis of the assay is the use of SPA beads containing a scintillant, such that when binding to the receptor brings the labeled ligand into proximity with the bead, the energy from the label stimulates the scintillant to emit light. The light is measured using a standard microplate scintillation reader. The ability of a ligand to bind to a receptor can be measured by assessing the degree to which the compound can compete off a radiolabelled ligand with known affinity for the receptor.

30 A. Required Materials:

1. Label: ³H-24, 25-epoxy-cholesterol (Amersham)

- LXRα lysate: Baculovirus expressed LXRα/RXR heterodimer with RXR having a 6-HIS tag produced as a crude lysate
- LXRβ lysate: Baculovirus expressed LXRβ/RXR heterodimer with RXR having a 6-HIS tag produced as a crude lysate
- 5 4. SPA beads: Ysi copper His-tag SPA beads (Amersham)
 - 5. Plates: Non-binding surface 96-well plate (Corning)
 - Protein lysate dilution buffer: (20mM Tris-HCl pH 7.9, 500mM NaCl, 5mM Imidazole).
- 10
 7.
 2x SPA Buffer: (40mM K₂HPO₄/KH₂PO₄ pH7.3, 100mM NaCl, 0.05%

 Tween 20, 20% Glycerol, 4mM EDTA)
 - 2x SPA Buffer w/o EDTA: (40mM K₂HPO₄/KH₂PO₄ pH7.3, 100mM NaCl, 0.05% Tween 20, 20% Glycerol)

A. Stock Solutions

15 0.5M K₂HPO₄/KH₂PO₄ pH 7.3

0.5M EDTA pH 8.0

5M NaCl

10% Tween-20

Glycerol

25

20 B. Preparation of Screening Reagents:

- [³H] 24,25 Epoxycholesterol (EC) solution. For a single 384-well plate (or 400 wells), add 21μl [³H] EC (specific activity 76.5Ci/mmol, concentration 3.2mCi/ml) in 4.4ml of 2x SPA buffer to a final concentration of 200nM. For each additional 384-well plate, add 19.1μl additional [³H] EC and 4.0ml additional 2x SPA buffer. The final concentration of [³H] EC in the well will be 50nM.
- Dilute LXRα lysate with protein lysate dilution buffer. Make 1400µl of diluted LXRα lysate for a 384-well plate, (or 200 wells) and 1120µl of diluted LXRα lysate for each additional 384-well plate.

- Diluted LXRβ lysate with protein lysate dilution buffer. Make 1400µl of diluted LXRβ lysate for 1 a 384-well plate, (or 200 wells) and 1120µl of diluted LXRβ lysate for each additional 384-well plate.
- 5
- 4. SPA bead solution. For 1 a 384-well plate (or 400 wells), mix 3.75ml of 2x SPA buffer w/o EDTA, 2.25ml of H₂O, and 1.5ml of Ysi His-tag SPA beads (Vortex well before taking). For each addition 384-well plate, mix additional 3.5ml of 2x SPA buffer w/o EDTA, 2.1ml of H₂O, and 1.4ml of Ysi His-tag SPA beads to the SPA bead solution.
- C. Procedure:
- 10

20

25

- 1. Prepare appropriate dilutions of each compound and pipette into the appropriate wells of a multiwell plate.
- 2. Add 9.1µl of [3H] EC to each well of column 2-23 of the multiwell plate.
- 3. Add 5μ l of diluted LXR α lysate to each well of column 2-23 on odd rows of the multiwell plate.
 - Add 5ul of diluted LXR β lysate to each well of column 2-23 on even rows of the multiwell plate.
- 4. Add 17.5μl of SPA bead solution to each well of column 2-23 of the multiwell plate.
- Cover the plates with clear sealer. Place the plates in the MicroBeta.
 Incubate at room temperature for 1hr.
- Count using program n ABASE 3H_384DPM. The setting for n ABASE 3H_384DPM is:

Counting Mode: DPM

Sample Type: SPA

ParaLux Mode: low background

Count time: 30sec.

Assays for LXR α and LXR β were performed in the identical manner. The determined Ki represents the average of at least two independent dose response experiments. The binding affinity for each compound may be

30 determined by non-linear regression analysis using the one site competition formula to determine the IC50 where:

-342-

Y=Bottom+ (Top-Bottom) 1+10^{X-LogIC50}

5 The Ki is than calculated using the Cheng and Prusoff equation where:

Ki= <u>IC50</u> 1+[Ligand]/Kd

10 Ligand = 50nM EC and Kd = 200nM as determined by saturation bindingExample 73

Co-Transfection Assay

To measure the ability of compounds to activate or inhibit the transcriptional activity of LXR, in a cell based assay, the cotransfection assay

- 15 may be used. It has been shown that LXR functions as a heterodimer with RXR. For the co-transfection assay, expression plasmids for LXR and RXR are introduced via transient transfection into mammalian cells along with a luciferase reporter plasmid that contains one copy of a DNA sequence that is bound by LXR-RXR heterodimers (LXRE; Willy, P. et al. 1995). Treatment of
- 20 transfected cells with an LXR agonist increases the transcriptional activity of LXR, which is measured by an increase in luciferase activity. Similarly, LXR antagonist activity can be measured by determining the ability of a compound to competitively inhibit the activity of a LXR agonist.

A. Required Materials

25 1. CV-1 African Green Monkey Kidney Cells

2. Co-transfection Expression plasmids, CMX-hLXR, or CMX-hLXR, CMX-RXR, reporter (LXREx1-Tk-Luciferase), and control (CMX--Galactosidase expression vector).

30 3. Transfection reagent such as FuGENE6 (Roche).

4. 1x Cell lysis buffer (1 % Triton X 100 (JT Baker X200-07), 10% Glycerol (JT Baker M778-07), 5mM Ditriotreitol (Quantum Bioprobe DTT03; add fresh before lysing), 1mM EGTA (Ethylene Glycol-bis (B-Amino ethyl ether)-N,N,N',N'-Tetracetic Acid) (Sigma E-4378), 25mM Tricine (ICN 807420) pH 7.8

5. 1x Luciferase assay buffer (pH at 7.8) (0.73mM ATP , 22.3mM Tricine, 0.11mM EDTA 33.3mM DTT)

6. 1x Luciferrin/CoA (11 mM Luciferin, 3.05mM Coenzyme A, 10 mM HEPES

B. Preparation of Screening Reagents

10

15

5

 CV-1 cells are prepared 24 hours prior to the experiment by plating them into T-175 flasks or 500cm² dishes in order to achieve 70-80% confluency on the day of the transfection. The number of cells to be transfected is determined by the number of plates to be screened. Each 384 well plate requires 1.92x10⁶ cells or 5000 cells per well.

 DNA Transfection Reagent is prepared by mixing the required plasmid DNAs with a cationic lipid transfection reagent such as DOTAP or FuGENE6 by following the instructions provided with the reagents.
 Optimal DNA amounts need to be determined empirically per cell line and size of vessel to be transfected.

20

25

 Add 10-12mls media to the DNA Transfection Reagent and add this mixture to the cells after aspirating media from a T175 cm² flask.

4. Incubate at least 5 hours at 37 degrees to prepare screening cells.

Luciferase assay reagent is prepared by combining before use (per 10 ml):

10 ml 1x Luciferase assay buffer 0.54 mls of 1x Luciferrin/CoA 0.54 mls of 0.2 M Magnesium sulfate

-344-

1. C. Procedure

- Prepare assay plates by dispensing 0.5μl of 1mM compound per well of a 384 well plate to achieve final compound concentration of 10μM and 1% DMSO.
- 5
- Remove media from the screening cells, trypsinize, harvest cells by centrifugation, count the cells, and plate at 5000 cells per well in the 384 well assay plate prepared above in a volume of about 45µl.
- 3. Incubate assay plates containing both compounds and screening cells for 20 hours at 37 C degrees.
- 10

15

- Carefully aspirate media from cells and ensure that cells are not lifted off.
- 5. Add lysis buffer (30μl/well) and incubate at least 30 minutes room temp.
- Add Iuciferase assay buffer (30μl/well) and read assay plates on luminometer (PE Biosystems Northstar reader with on-board injectors, or equivalent).
- Read plates immediately after addition of luciferase assay reagent. The LXR/LXRE co-transfection assay can be used to establish the EC₅₀/IC₅₀ values for potency and percent activity or inhibition for efficacy.
- 20 Efficacy defines the activity of a compound relative to a high control ((N-(3-((4-fluorophenyl)-(naphthalene-2-sulfonyl)-amino)propyl)-2,2dimethylpropionamide)) or a low control (DMSO/vehicle). The dose response curves are generated from an 8 point curve with concentrations differing by ¹/₂ LOG units. Each point represents the average of 4 wells of data from a 384
- 25 well plate. The curve for the data is generated by using the equation:

Y = Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope))

The EC_{50}/IC_{50} is therefore defined as the concentration at which an agonist or antagonist elicits a response that is half way between the Top (maximum) and Bottom (baseline) values. The EC_{50}/IC_{50} values represented

30 are the averages of at least 3 independent experiments. The determination of the relative efficacy or %control for an agonist is by comparison to the

-345-

maximum response achieved by ((N-(3-((4-fluoro-phen-yl)-(naphthalene-2sulfonyl)-amino)propyl)-2,2-dimethylpropionamide) that is measured individually in each dose response experiment.

For the antagonist assay, a LXR agonist can be added to each well of a 384
well plate to elicit a response. The %inhibition for each antagonist is therefore a measurement of the inhibition of the activity of the agonist. In this example 100% inhibition would indicate that the activity of a specific concentration of LXR agonist has been reduced to baseline levels, defined as the activity of the assay in the presence of DMSO only.

Example 74

In Vivo studies:

In order to evaluate direct regulation of key target genes by the compounds of the invention, animals are administered a single oral dose of the test compound and tissues collected at six or fifteen hours after dose. Male

- 15 C57BL/6 mice (n=8) are dosed by oral gavage with vehicle or compound. At six and fifteen hours after the dose, animals are bled via the retro orbital sinus for plasma collection. Animals are then euthanized and tissues, such as liver and intestinal mucosa are collected and snap frozen for further analysis. Plasma is analyzed for lipid parameters, such as total cholesterol, HDL
- 20 cholesterol and triglyceride levels. RNA is extracted for frozen tissues and can be analyzed by quantitative real time PCR for regulation of key target genes. To identify specificity of target gene regulation by LXR subtypes, LXR deficient mice ($LXR\alpha^{-/-}$ or $LXR\beta^{-/-}$) and C57BL/6 wild-type controls are used in this same protocol.
- 25

Plasma Lipid Evaluation:

To compare the effects of compounds on plasma cholesterol and triglycerides, animals are dosed with compound for one week and plasma lipid

30 levels are monitored throughout the study. Male C57BL/6 mice (n=8) are dosed daily by oral gavage with vehicle or compound. Plasma samples are taken on day –1 (in order to group animals), day 1, 3, and 7. Samples are

10

PCT/US02/41306

-346-

collected three hours after the daily dose. On day 7 of the study, following plasma collection, animals are euthanized and tissues, such as liver and intestinal mucosa are collected and snap frozen for further analysis. Plasma is analyzed for lipid parameters, such as total cholesterol, HDL cholesterol

- **5** and triglyceride levels. RNA is extracted for frozen tissues and can be analyzed by quantitative real time PCR for regulation of key target genes. To identify specificity of target gene regulation by LXR subtypes, LXR deficient mice (LXR $\alpha^{-/-}$ or LXR $\beta^{-/-}$) and C57BL/6 wild-type controls are used in this same protocol.
- **10** Cholesterol Absorption:

Evaluation of compounds to inhibit cholesterol absorption is done via measurement of labeled cholesterol in feces. Male A129 mice (n=7) are dosed daily by oral gavage with vehicle or compound for 7 days. On day 7 of

- 15 the study, animals are administered [¹⁴C]-cholesterol and [³H]-sitostanol by oral gavage. Animals are individually housed on wire racks for the next 24 hours in order to collect feces. Feces are then dried and ground to a fine powder. Labeled cholesterol and sitostanol are extracted from the feces and ratios of the two are counted on a liquid scintillation counter in order to
- 20 evaluate the amount of cholesterol absorbed by the individual animal.

-347-

Results of Examples 71, 72 and 73

Most of the compounds disclosed herein and tested exhibited activity in at least one of the above assays (EC₅₀ or IC₅₀ less than 10 μ m). Most showed activity at below 1 μ M. Some showed activity below

5 100 nM. Representative data is shown in the Tables below. Ki's are determined in a scintillation proximity binding assay (Example 70). EC₅₀ and % efficacy are determined in a co-transfection assay (Example 71).

	Compound	Ki(a) µM	Ki(β) μΜ	LXRa/LXRE EC ₅₀ (µM)
10	1-Cyclohexylideneamino-2-oxo-6- phenyl-4-trifluoromethyl-1,2- dihydropyridine-3-carbonitrile	0.69	0.45	3.4
	1-benzyl-3-cyano-6-(3- methoxyphenyl)-4-trifluoromethyl- 1 <i>H</i> -pyridin-2-one	0.51	0.12	1.2
15	1-Benzyl-2-oxo-6-thiophen-2-yl-4- trifluoromethyl-1,2-dihydro- pyridine-3-carbonitrile	1.4	0.58	1.6
20	1-(5-Methyl-furan-2-ylmethyl)-2- oxo-6-phenyl-4-trifluoromethyl- 1,2-dihydro-pyridine-3-carbonitrile	0.36	0.23	0.58

	Compound	LXRa/LXRE Eff (%)	LXR <i>β/</i> LXRE EC ₅₀ (µM)	LXRβ/LXRE Eff (%)
25	1-Cyclohexylideneamino-2- oxo-6-phenyl-4- trifluoromethyl-1,2- dihydropyridine-3- carbonitrile	90	4.3	72
30	1-benzyl-3-cyano-6-(3- methoxyphenyl)-4- trifluoromethyl-1 <i>H</i> -pyridin- 2-one	78	0.84	79

....

ς.

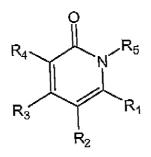
-348-

Compound	LXRa/LXRE Eff (%)	LXRβ/LXRE EC ₅₀ (µM)	LXR <mark>β/L</mark> XRE Eff (%)
1-Benzyl-2-oxo-6-thiophen- 2-yl-4-trifluoromethyl-1,2- dihydro-pyridine-3- carbonitrile	56	1.8	82
1-(5-Methyl-furan-2- ylmethyl)-2-oxo-6-phenyl-4- trifluoromethyl-1,2-dihydro- pyridine-3-carbonitrile	91	0.81	93

5

10

Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.


10

15

20

The claims defining the invention are as follows:

A compound having formula I:

or a pharmaceutically acceptable derivative thereof, wherein

 R^1 is selected from substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaralkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted cycloalkynyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted cycloalkynyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted cycloalkynyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted cycloalkylalkyl and substituted or unsubstituted

heterocyclylalkyl; R^2 is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted

alkenyl, substituted or unsubstituted alkynyl;

 R^3 and R^4 are selected from (i) or (ii) as follows:

(i) R^3 is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted alkylaminocarbonyl or C(J)OR³⁰; and R⁴ is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, halide, cyanide, cyanate, thiocyanate, selenocyanate, trifluoromethoxy, azide, C(J)R³⁰, C(J)NR³¹R³², CH₂NR³¹R³², CH₂OR³¹, CR³⁰=CR³¹R³², NO₂, NR³¹R³²;

(ii) R³ and R⁴, together with the atoms to which they are attached, form a substituted or unsubstituted heterocyclic ring, with the proviso that the heterocyclic ring has one oxo substituent;

R⁵ is substituted or unsubstituted aralkyl or substituted or unsubstituted heteroaralkyl,- wherein R⁵ is optionally substituted with one or more groups selected from alkyl, haloalkyl, halohydroxyalkyl, alkoxy, alkoxyalkoxyalkyl, alkoxyalkyl, aryl, halo, alkoxycarbonyl, alkylthio, aryloxy, haloalkoxy, aralkyl, heteroaryl, hydroxy,

COMS ID No: ARCS-275108 Received by IP Australia: Time (H:m) 12:49 Date (Y-M-d) 2010-04-28

(2671877_1):KZA

arvicarbonyl, alkylcarbonyl, heterocyclylalkyl, heterocyclyl, hydroxyalkyl, alkylalkelenedioxy and dialkylalkelenedioxy;

 R^{30} is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, or substituted or unsubstituted heteroaralkyl;

 R^{31} and R^{32} are each independently hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or 10 unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocyclylalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted heteroaralkyl, or $C(J)R^{35}$; or R^{31} and R^{32} together with the atoms to which they are attached, form substituted or unsubstituted cycloalkyl ring, a substituted or unsubstituted heterocyclic ring or a substituted or unsubstituted 15 heteroaryl ring;

J is O, S or NR⁴⁰;

R³⁵ is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, substituted or unsubstituted aryl, substituted or 20 unsubstituted heteroaryl, substituted or unsubstituted alkoxy, substituted or unsubstituted substituted or unsubstituted alkylamino, substituted or unsubstituted alkoxy. dialkylamino, substituted or unsubstituted arylalkylamino, or substituted or unsubstituted

diarylamino; 25

30

 R^{40} is hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl;

where the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, alkylene, alkenylene, alkynylene, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, heteroaralkyl, heteroaralkenyl, and heteroaralkynyl moieties of R^1 , R^2 , and R^3 , are unsubstituted or substituted with one or more substituents, in one embodiment one to three or four substituents, each independently selected from Q^1 , where Q^1 is halo, cyanide, cyanate, thiocyanate, selenocyanate, trifluoromethoxy, azide, hydroxy, oxo, thia, nitrile, nitro formyl, mercapto, hydroxyalkylaryl, hydroxyaryl, hydroxyalkylaryloxy, hydroxyalkyl, amino, hydroxycarbonyl, hydroxycarbonylalkyl, alkyl, haloalkyl, polyhaloalkyl, aminoalkyl, 35

(2671877_1):KZA

351

diaminoalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing 1 to 2 triple bonds, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, aryl, diaryl, alkylaralkyl, aralkynyl, aralkenyl, alkylaryl, heteroaryl, aralkyl, hydroxyaryl, heteroarylalkyl, trialkylsilyl, dialkylarylsilyl, alkyldiarylsilyl, triarylsilyl, alkylidene, arylalkylidene, alkylcarbonyl, alkylarylcarbonyl, arylcarbonyl, heterocyclylcarbonyl, alkoxycarbonylaryloxy, alkoxycarbonylaikyl, alkoxycarbonyl, heteroarylcarbonyl, aryloxycarbonyl, aryloxycarbonylalkyl, heterocyclylcarbonylalkylaryl, aralkoxycarbonyl, alkylaminocarbonyl, aminocarbonyl, arylcarbonylalkyl, aralkoxycarbonylalkyl, dialkylaminocarbonyl, arylaminocarbonyl, diarylaminocarbonyl, arylalkylaminocarbonyl, alkoxy, aryloxy, haloalkoxy, alkoxyaryloxy, alkylaryloxy, diaryloxy, alkylaryloxyalkyl, 10 aryloxyalkoxy, alkynyloxy, alkenyloxy, perfluoroalkoxy, alkyldiaryloxy, alkoxyalkyl, heterocyclyloxy, alkylarylcycloalkyloxy, aralkoxyaryloxy, cycloalkyloxy, alkylcycloalkoxy, alkylheteroaryloxy, alkoxyalkoxyalkyl, alkylheteroaryloxy, heteroaryloxy, haloaryloxy, aralkoxy, heterocyclyloxy, alkylcarbonyloxy, alkylcarbonylaryloxy, alkoxycarbonylheterocyclyloxy, aryloxycarbonyloxy, 15 alkoxycarbonyloxy, aralkylcarbonyloxy, arylcarbonyloxy, alkoxyaryloxy, aralkoxycarbonyloxy, ureido, alkylureido, arylureido, amino, aminoalkyl, diarylaminoalkyl, arylaminoalkyl, dialkylaminoalkyl, alkylaminoalkyl, haloalkylarylamino, alkylarylaminoalkyl, alkylamino, dialkylamino, haloalkylamino, alkylcarbonylamino, aralkylamino, alkylarylamino, diarylamino, arvlamino, 20 alkoxycarbonylamino, haloalkylcarbonylamino, aralkylcarbonylamino, arylcarbonylaminoalkyl, arylcarbonylamino, aralkoxycarbonylamino, aryloxycarbonylamino, aryloxyarylcarbonylamino, aryloxycarbonylaminoalkyl, alkylenedioxyalkyl, dialkylalkylenedioxyalkyl, alkylsulfonylamino, arylsulfonylamino, azido, dialkylphosphonyl, alkylarylphosphonyl, diarylphosphonyl, alkylthio, arylthio, perfluoroalkylthio, hydroxycarbonylalkylthio, thiocyano, isothiocyano, alkylsulfinyl, 25 alkylaminosulfonyl, aminosulfonyl, arylsulfonyl, arylsulfinyl, alkylsulfonyl, dialkylaminosulfonyl, arylaminosulfonyl, diarylaminosulfonyl or alkylarylaminosulfonyl; or two Q¹ groups, which substitute atoms in a 1,2 or 1,3 arrangement, together form -S-(CH₂)_z-O-) ٥r (i.e., thioalkylenoxy -O-(CH₂)_z-O-), alkylenedioxy (i.e., 30 alkylenedithioxy(i.e., $-S-(CH_2)_z-S-$) where z is 1 or 2; and

each Q^1 is independently unsubstituted or substituted with one or more substituents, in one embodiment one to three or four substituents, each independently selected from Q^2 , where Q^2 is halo, cyanide, cyanate, thiocyanate, selenocyanate, trifluoromethoxy, azide, hydroxy, oxo, thia, nitrile, nitro, formyl, mercapto, amino,

35

(2671877_1);KZA

352

hydroxyalkyl, hydroxyaryl, hydroxycarbonyl, alkyl, haloalkyl, polyhaloalkyl, aminoalkyl, diaminoalkyl, alkenyl containing 1 to 2 double bonds, alkynyl containing 1 to 2 triple bonds, cycloalkyl, heterocyclyl, aryl, heteroaryl, aralkyl, aralkenyl, aralkynyl, alkoxycarbonyl, aryloxycarbonyl, aralkoxycarbonyl, arylcarbonylalkyl, a minocarbonyl, alkoxy, aryloxy, aralkoxy, alkylenedioxy, amino, aminoalkyl, dialkylamino, arylamino, diarylamino, alkylamino, dialkylamino, haloalkylamino, arylamino, diarylamino, alkylarylamino, aralkylamino, alkoxycarbonylamino, arylcarbonylamino, alkylthio or arylthio.

2. The compound of claim 1, wherein \mathbb{R}^1 is substituted or unsubstituted

10 aryl.

3. The compound of claim 1, wherein \mathbb{R}^1 is substituted or unsubstituted heteroaryl.

4. The compound of claim 1, wherein \mathbb{R}^1 is substituted or unsubstituted heterocyclyl.

15 5. The compound of claim 1, wherein \mathbb{R}^1 is substituted or unsubstituted cyclohexyl, substituted or unsubstituted cyclopentenyl, substituted or unsubstituted phenyl, substituted or unsubstituted benzyl, substituted or unsubstituted naphthyl, substituted or unsubstituted furyl, substituted or unsubstituted thienyl, substituted or unsubstituted pyrrolyl, substituted or unsubstituted pyrazolyl, substituted or unsubstituted thiazolyl, substituted or unsubstituted piperidinyl, substituted or unsubstituted pyridinyl, substituted or unsubstituted pyrazinyl, substituted or unsubstituted indanyl, substituted or unsubstituted benzofuryl, substituted or unsubstituted benzothiophenyl or substituted or unsubstituted indolyl, where the substituents are each independently selected from one or more Q^1 .

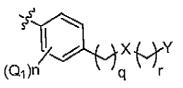
6. The compound of any one of claims 1-5, wherein R¹ is substituted or unsubstituted furyl, substituted or unsubstituted thienyl, substituted or unsubstituted pyrrolyl, substituted or unsubstituted pyrazolyl, substituted or unsubstituted thiazolyl, substituted or unsubstituted piperidinyl, substituted or unsubstituted pyridinyl, substituted or unsubstituted pyrazinyl, substituted or unsubstituted benzofuryl, substituted or unsubstituted benzothiophenyl or substituted or unsubstituted indolyl, where the substituents are each independently selected from one or more Q¹.

(2671877_1):KZA

The compound of any one of claims 1-6, wherein R^1 is substituted with, 7. in one embodiment one to five, in another embodiment one to three, in another embodiment one or two Q^1 , where Q^1 is halo, cyanide, cyanate, thiocyanate, trifluoromethoxy, azide, nitro, hydroxy, amino, hydroxyalkyl, selenocyanate, hydroxyalkylaryloxy, hydroxyaryl, hydroxyalkylaryl, hydroxycarbonyl, haloalkyl, alkyl, heterocyclyl, heterocyclylalkyl, aryl, heteroaryl, aralkyl, heteroaralkyl, alkylaralkyl, 5 alkoxycarbonylaryloxy, alkoxycarbonyl, heterocyclylcarbonyl, alkylarylcarbonyl, heterocyclylcarbonylalkylaryl, aralkoxycarbonyl, alkoxy, aryloxy, aryloxycarbonyl, heteroaryloxy, aralkoxy, alkylaryloxy, alkylaryloxyalkyl, alkyldiaryloxy, aryloxyalkoxy, cycloalkyloxy, alkylheteroaryloxy, alkylarylcycloalkyloxy, aralkoxyaryloxy, 10 alkylarylamino, arylamino, alkylcarbonylaryloxy, haloaryloxy, heterocyclyloxy, aralkylamino, alkylcarbonylamino, alkylaminocarbonyl, haloalkylcarbonylamino, or arylthio; and each Q^1 is unsubstituted or further substituted with Q^2 , which is hydrogen, alkyl, aryl, alkoxy, hydroxycarbonyl, alkoxycarbonyl, cyanide, cyanate, thiocyanate, selenocyanate, trifluoromethoxy, azide, halo, aryloxy, aralkoxy, haloalkyl, alkylthio, 15 alkylamino, dialkylamino or hydroxy.

The compound any one of claims 1-7, wherein R^1 is substituted with 8. one or more Q¹, which are independently selected from methyl, ethyl, trifluoromethyl, methylcarbonylamino, 3-(2-piperidinyl)ethoxy, n-butyloxy, hydroxy, nitro, methylphenoxymethyl, benzylamino, bromo, chioro, ethylaminocarbonylamino, 20 trifluoromethylcarbonylamino, methoxycarbonyl, phenoxy, cyano, n-butoxy, benzoxy, tert-butoxycarbonylpiperazinylcarbonyl, hydroxycarbonyl, methoxy, 1-piperidinyl. dimethylamino, methylphenyl, 1-piperidinylcarbonyl, phenyl, hydroxymethyl, methylcarbonylamino, methoxyphenoxy, methylphenoxy, piperidinylmethyl, biphenoxy, benzoxycarbonyl, piperazinylcarbonyl, benzyl, phenylthio, chlorophenoxy, methylbenzyl, 25 tertbutylmethylphenoxy, ethoxycarbonylphenoxy, hydroxymethylphenoxy, tertbutylphenoxy, isopropylphenoxy, ethylphenoxy, tertbutylbiphenoxy, trifluoromethylphenoxy, 3-methylphenyl-1-amino, -N,N-phenylmethylamino, ethylphenoxy, methylcarbonylphenoxy, tetrahydropyranyloxy, tetrahydronaphthoxy, cyclohexyloxy, indanyloxy, benzoxyphenoxy, hydroxycarbonylphenoxy, 30 tert-butylphenoxy, isopropylphenoxy, methoxycarbonylphenoxy, fluorophenoxy, cyanophenoxy, methoxyphenoxy, N,N-dimethylaminophenoxy, benzoxyphenoxy, trifluoromethylphenoxy, bromophenoxy, 3,5-ditrifluoromethylphenoxy,

(2671877_1):KZA


28. APR. 2010 12:48

5

354

methylthiophenoxy, indolyl, tert-butoxycarbonyl-piperidinyloxy, hydroxyphenoxy, pyrimidinoxy and pyrazinoxy.

9. The compound of claim 1, wherein \mathbb{R}^1 has formula II:

where, q and r are each independently an integer from 0 to 5, or from 0 to 3, or 0 or 1; n is an integer from 0 to 4, in one embodiment 0 to 2, in another embodiment 0 or 1; X is 0, S or NR', where R' is alkyl, aryl or hydrogen; Y is alkyl, aryl, heteroaryl, heterocyclyl or cycloalkyl.

10. The compound of claim 9, wherein X is O.

The compound of claim 1, wherein R¹ is cyclohexyl, 1-cyclopentenyl, 11. 10 2-chlorophenyl, 3-methylphenyl, 2-naphthyl, 1-naphthyl, phenyl, indanyl, 4-chlorophenyl, 3-ethylphenyl, 3-trifluoromethylphenyl, 3-nitrophenyl, 3-hydroxyphenyl, 3-(2-piperidinyl)ethoxyphenyl, 3-benzyloxyphenyl, 3-n-butoxyphenyl, 3-methylcarbonyl-amino-phenyl, 3-ethylaminocarbonylaminophenyl, 2-methylphenyl, 2-methoxyphenyl, 4-methylphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3-chlorophenyl, 15 3-benzylaminophenyl, 3-(3-methyl)phenoxymethylphenyl, benzyl, 4-chlorophenyl, 3-trifluoromethylcarbonylaminophenyl, 3,5-dimethylphenyl, 2-chloro-3-methylphenyl, 4-phenoxyphenyl, 4-methoxycarbonylphenyl, 4-butoxyphenyl, phenylethyl, 4-cyanophenyl, 4-benzoxyphenyl, 4-(1-piperidinyl)phenyl, 4-hydroxycarbonylphenyl, 4-hydroxymethylphenyl, 4-(4-tert-butoxycarbonylpiperazin-1-ylcarbonyl)phenyl, 20 4-(1-piperidinylcarbonyl)phenyl, 4-dimethylaminophenyl, 4-methylcarbonylaminophenyl, 4-(4-methoxyphenoxy)phenyl, 6-(1,2,3,4-tetrahydro)naphthyl, 4-nitrophenyl, 4-(2-methylphenoxy)phenyl, 4-(3-methylphenoxy)phenyl, 4-(4-methylphenoxy)phenyl, 4-(3-methoxyphenoxy)phenyl, 4-(1-piperidinylmethyl)phenyl, 4-(4-biphenoxy)phenyl, 3-(1-benzoxycarbonyl)-piperidinyl, 4-(1-piperazinylcarbonyl)phenyl, 5-(2-methyl-2,3-25 4-(4-chlorophenoxy)-2-4-phenylthiophenyl, 4-benzylphenyl, dihydro)benzofuryl, chlorophenyl, 4-(3-biphenoxy)phenyl, 4-(1-benzoxycarbonyl)-piperidinyl, 4-piperidinyl, 4-(1-(3-methylbenzyl))-piperidinyl, 4-(3-methyl-4-hydroxyphen-1-oxy)phenyl, 4-(2methyl-4-hydroxyphenoxy)phenyl, 4-(4-ethoxycarbonylphenoxy)phenyl, 4-(2-methyl-4-

355

4-(3-4-(2-phenyl-4-tertbutylphenoxy)phenyl, tertbutylphenoxy)phenyl, 4-(3-isopropylphenoxy)phenyl, 4-(3-tertbutylphenoxy)phenyl, ethylphenoxy)phenyl, 4-phenoxy-2-methylphenyl, 4-(2-methylphenoxy)-2-4-(3,5-dimethylphenoxy)phenyl, methylphenyl, 4-(2-methylphenoxy)-3-methylphenyl, 4-N-methyl-N-phenylaminophenyl, 4-(4-4-(4-ethylphenoxy)phenyl, 4-(3-trifluoromethylphenoxy)phenyl, 4-(3-4-(4-tertbutylphenoxy)phenyl, isopropylphenoxy)phenyl, 4-(2-4-(3,4-dimethylphenoxy)phenyl, methylcarbonylphenoxy)phenyl, 4-(2-tetrahydropyranyloxy)-3-methylphenyl, tetrahydropyranyloxy)phenyl, 4-(4-methylphenoxy)-3-methylphenyl, 3-methyl-4-hydroxyphenyl, 4-hydroxyphenyl, 4-(5,6,7,8-4-(2-isopropylphenoxy)phenyl, 4-(2-ethylphenoxy)phenyl, 10 2-methyl-4-4-(3-hydroxycarbonylphenoxy)phenyl, tetrahydronaphthyloxy)phenyl, 4-(2,3,4-3-phenoxyphenyl, 4-phenoxy-2-hydroxyphenyl, hydroxyphenyl, 4-(3-(methyl-3-4-(4-benzyloxyphenoxy)phenyl, trimethylphenoxy)phenyl, indanyloxy)phenyl, 4-(2-methyl-5-benzothiazoloxy)phenyl, 4-cyclohexyloxyphenyl, 4-(3methoxycarbonylphenoxy)phenyl, 4-(3-isopropylphenoxy)-3-methylphenyl, 4-tert-butyl-15 phenoxy-3-methylphenyl, 4-N,N-dimethylaminophenoxy-3-methylphenyl, 4-methoxyphenoxy-3-methylphenyl, 3-methoxy-phenoxy-3-methylphenyl, 4-(3-methoxycarbonylphenoxy)-3-methylphenyl, 4-(3-cyanophenoxy)-3-methylphenyl, 4-(4-fluorophenoxy)-3-4-(3-benzoxy-phenoxy)-3-4-(4-benzoxy-phenoxy)-3-methylphenyl, methylphenyl, 4-(2-chlorophenoxy)-3-4-(2,5-dimethylphenoxy)-3-methylphenyl, methylphenyl, 20 4-(3-chlorophenoxy)-3-methylphenyl, 4-(2-trifluoromethylphenoxy)-3methylphenyl, 4-(3-trifluoromethylphenoxy)-2-methylphenyl, 4-(3-bromophenoxy)methylphenyl, 4-(3-4-(3-benzyloxy-phenoxy)-phenyl, 4-(4-bromophenoxy)-phenyl, phenyl, cyanophenoxy)-phenyl, 4-(4-cyanophenoxy)phenyl, 4-(2,4-dimethylphenoxy)-phenyl, 4-4-(4-N,N-4-(4-methylthio-phenoxy)-phenyl, (3,5-trifluoromethylphenoxy)phenyl, 25 4-(1-tert-butoxycarbonyl-5-indolyloxyphenyl, dimethylamino-phenoxy)-phenyl, 4-(2-pyrimidinoxy)-phenyl, 4-(4-hydroxyphenoxy)-phenyl, piperidin-4-oxy)-phenyl, 4-(2-pyrazinoxy)-phenyl, 2-thienyl, 2-(5-chloro)thienyl, 2-(5-bromo)thienyl, 2-(5phenyl)thienyl, 3-benzothiophenyl, 3-methyl-2-benzothiophenyl, 2-(5-(3-methylphenyl))thienyl, 3-pyridinyl, 2-pyrazinyl, 4-(1-phenyl-5-methyl)pyrazolyl, 2-(1-methyl)pyrrolyl, 30 4-(1-benzyloxycarbonyl)-3-(1-benzyloxycarbonyl)-piperidinyl, 3-(1-methyl)indolyl, piperidinyl, 4-piperidinyl, 4-(1-(3-methylbenzyl)-piperidinyl, 2-furyl, 2-(5-methyl)-furyl, 3-(2,5-dimethyl)-furyl, benzofuryl, 3-(2,4-dimethyl)-furyl, 2-(1,3-thiazolyl) or 5-(2,4dimethyl)-1,3-thiazolyl.

(2571877_!):KZA

12. The compound of any one of claims 1-11, wherein \mathbb{R}^2 is alkyl or hydrogen.

13. The compound of any one of claims 1-12, wherein \mathbb{R}^3 is substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted alkoxycarbonyl or substituted or unsubstituted alkylaminocarbonyl, where the substituents are each independently selected from one or more \mathbb{Q}^1 .

14. The compound of any one of claims 1-13, wherein \mathbb{R}^3 is substituted with one or more \mathbb{Q}^1 , which are independently selected from halo, cyanide, cyanate, thiocyanate, selenocyanate, trifluoromethoxy, azide, alkyl, alkoxy, alkoxycarbonyl and aryloxycarbonyl.

15. The compound of any one of claims 1-13, wherein R³ is methyl, trifluoromethyl, pentafluoroethyl, heptafluoropropyl, chlorodifluoromethyl, 1-(1-methoxy-1-fluoro)ethyl, methoxycarbonyl, ethoxycarbonyl, methylaminocarbonyl, dimethoxymethyl, methoxycarbonylmethyl or phenyl.

16. The compound of any one of claims 1-15, wherein \mathbb{R}^4 is substituted or unsubstituted methyl, substituted or unsubstituted acetyl or cyano, where the substituents are each independently selected from one or more \mathbb{Q}^1 .

17. The compound of any one of claims 1-15, wherein R⁴ is hydrogen, cyano, nitro, hydroxycarbonyl, trimethylsilylacetyl, acetyl, methylcarbonylaminomethyl, ethylcarbonylaminomethyl, n-propylcarbonylaminomethyl, isopropylcarbonylaminomethyl, n-octylcarbonylaminomethyl, phenylcarbonylaminomethyl, ethoxycabonylaminomethyl dimethylaminomethyl or aminomethyl.

18. The compound of any one of claims 1-15, wherein \mathbb{R}^3 and \mathbb{R}^4 , together with the atoms to which they are attached, form a substituted or unsubstituted heterocyclic ring, with the proviso that the heterocyclic ring has one oxo substituent.

5

15

10

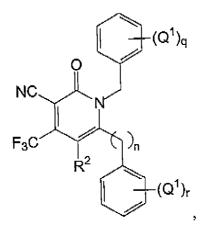
357

The compound of any one of claims 1-18, wherein \mathbb{R}^5 is substituted or 19. unsubstituted aralkyl, where the substituents are each independently selected from one or more groups selected from alkyl, haloalkyl, halohydroxyalkyl, alkoxy, alkoxyalkoxyalkyl, alkoxyalkyl, aryl, halo, alkoxycarbonyl, alkylthio, aryloxy, haloalkoxy, aralkyl, heteroaryl, hydroxy, hydroxyalkyl, heterocyclyl, heterocyclylalkyl, alkylcarbonyl, arylcarbonyl, alkylalkelenedioxy, and dialkylalkelenedioxy.

The compound of any one of claims 1-18, wherein R^5 is substituted or 20. unsubstituted heteroaralkyl, where the substituents are each independently selected from one or more groups selected from alkyl, haloalkyl, halohydroxyalkyl, alkoxy, alkoxyalkoxyalkyl, alkoxyalkyl, aryl, halo, alkoxycarbonyl, alkylthio, aryloxy, haloalkoxy, aralkyl, heteroaryl, hydroxy, hydroxyalkyl, heterocyclyl, heterocyclylalkyl, alkylcarbonyl, arylcarbonyl, alkylalkelenedioxy, and dialkylalkelenedioxy.

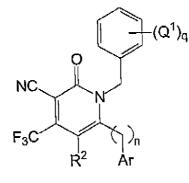
The compound of any one of claims 1-18, wherein R^5 is substituted or 21. unsubstituted benzyl, substituted or unsubstituted 2-phenethyl, substituted or unsubstituted 1-phenethyl, substituted or unsubstituted 3-phenylpropyl, substituted or 15 unsubstituted 3-pyridylmethyl, substituted or unsubstituted 4-pyridylmethyl, -substituted or unsubstituted thiazolylmethyl, substituted or unsubstituted oxazolylmethyl, where the substituents are each independently selected from one or more groups selected from alkyl, haloalkyl, halohydroxyalkyl, alkoxy, alkoxyalkoxyalkyl, alkoxyalkyl, aryl, halo, hydroxy, aralkyl, heteroaryl, haloalkoxy, aryloxy, alkylthio, alkoxycarbonyl, 20 arylcarbonyl, alkylcarbonyl, heterocyclylalkyl, heterocyclyl, hydroxyalkyl, alkylalkelenedioxy, and dialkylalkelenedioxy.

The compound of any one of claims 1-18, wherein R⁵ is substituted with 22. one or more groups independently selected from alkyl, haloalkyl, halohydroxyalkyl, alkoxy, alkoxyalkoxyalkyl, alkoxyalkyl, aryl, halo, alkoxycarbonyl, alkylthio, aryloxy, 25 haloalkoxy, aralkyl, heteroaryl, hydroxy, hydroxyalkyl, heterocyclyl, heterocyclylalkyl, alkylcarbonyl, and arylcarbonyl.


(2671677_1):KZA

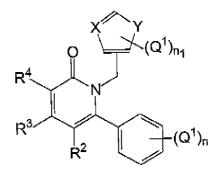
The compound of any one of claims 1-18, wherein R^5 is 2,4-23. 2,4,5-trifluorobenzyl, 4-tert-butylbenzyl, 4-isopropylbenzyl, dimethylbenzyl, 1-naphthylmethyl, 4-methylbenzyl, 4-ethylbenzyl, -4-methylcarbonylbenzyl, benzyl, 4-(2-phenyl)thiazolylmethyl, 4-(2-methyl)-thiazolylmethyl, 4-hydroxymethylbenzyl, 3-hydroxymethylbenzyl, 3-methoxymethoxymethylbenzyl, 5 4-hydroxyethylbenzyl, 4-methoxymethylbenzyl, 4-(1-piperidinylmethyl)benzyl, 4-(2ethyl)thiazolylmethyl, 4-(2-isopropyl)thiazolylmethyl, 4-(2-propyl)thiazolylmethyl, 4-(2benzyl)thiazolylmethyl, 4-(2-methyl)oxazolylmethyl, 4-(2-ethyl)oxazolylmethyl, 4-(2propyl)oxazolylmethyl, 4-(2-phenyl)oxazolylmethyl, 4-(2-benzyl)oxazolylmethyl, 4-npropyloxymethylbenzyl, 2-(5-methyl)pyrazinylmethyl, 4-n-pentyloxymethylbenzyl, 4-n-10 3-n-butoxymethylbenzyl, 3-n-3-ethoxymethylbenzyl, octyloxymethylbenzyl, hexyloxymethylbenzyl, 3-n-octyloxymethylbenzyl, 2-methylbenzyl, 4-methylbenzyl, 3-4-(2,5-dimethyl)thiazolylmethyl, 4-(2-isopropyl-5phenylethyl, methylbenzyl, 4-(2-ethyl-5-methyl)thiazolylmethyl, 4-(2-methyl-5methyl)thiazolylmethyl, ethyl)thiazolylmethyl, 4-(2,5-diethyl)thiazolylmethyl, 2-phenylethyl, 3-phenylpropyl, 15 3-trifluoromethylbenzyl, 2-trifluoromethylbenzyl, 3-methylbenzyl, benzyl. 4-methoxybenzyl, 3-methoxybenzyl, 2-methoxybenzyl, 4-trifluoromethylbenzyl, 2,4-difluorobenzyl, 4-phenylbenzyl, 1-phenylethyl, 2-fluorobenzyl, 4-fluorobenzyl, 4-chlorobenzyl, 2-chlorobenzyl, 4-methoxycarbonylbenzyl, 4-bromobenzyl, 4-methylthiobenzyl, 4-phenoxybenzyl, 4-trifluoromethoxybenzyl, 3-pyridylmethyl or 20 4-pyridylmethyl.

The compound of any one of claims 1-18, wherein \mathbb{R}^5 is 4-(2-methyl)-24. 4-(2-phenyl)thiazolylmethyl, 4-(1-piperidinylmethyl)benzyl, 4-(2thiazolylmethyl, ethyl)thiazolylmethyl, 4-(2-isopropyl)thiazolylmethyl, 4-(2-propyl)thiazolylmethyl, 4-(2benzyl)thiazolylmethyl, 4-(2-methyl)oxazolylmethyl, 4-(2-ethyl)oxazolylmethyl, 4-(2-25 propyl)oxazolylmethyl, 4-(2-phenyl)oxazolylmethyl, 4-(2-benzyl)oxazolylmethyl, 4-(2-4-(2,5-2-(5-methyl)pyrazinylmethyl, cyclohexyl)oxazolylmethyl, 4-(2-isopropyl-5-methyl)thiazolylmethyl, 4-(2-ethyl-5dimethyl)thiazolylmethyl, 4-(2,5-4-(2-methyl-5-ethyl)thiazolylmethyl, methyl)thiazolylmethyl,

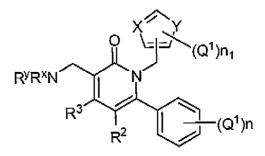

30 diethyl)thiazolylmethyl, 3-pyridylmethyl or 4-pyridylmethyl.

25. The compound of claim 1 that has formula V:

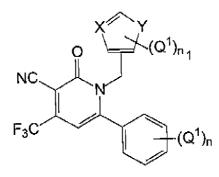
wherein n is an integer from 0 to 6 and q is an integer from 0 to 5.


26. The compound of claim 1 that has formula VII:

2


wherein n is an integer from 0 to 6 and q is an integer from 0 to 5.

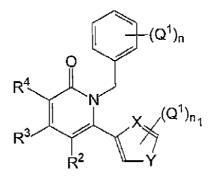
27. The compound of claim 1 that has formula XI:


wherein n is an integer from 0 to 5; n_1 is an integer from 0 to 2; Y is selected from -CH=CH-, -C(Q¹)=CH-, -C(Q¹)=C(Q¹)-, -CH=N-, -C(Q¹)=N-, O, S and NR', where R' is hydrogen, alkyl or aryl and X is N or CH.

28. The compound of claim 1 that has formula XII:

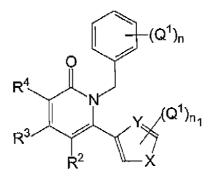
wherein n is an integer from 0 to 5; n₁ is an integer from 0 to 2; Y is selected from -CH=CH-, -C(Q¹)=CH-, -C(Q¹)=C(Q¹)-, -CH=N-, -C(Q¹)=N-, O, S and NR', where R' is hydrogen, alkyl or aryl and X is N or CH; R^x and R^y are each independently selected from hydrogen, alkyl, alkylcarbonyl, aryl, arylcarbonyl, alkoxycarbonyl, and aralkoxycarbonyl.

29. The compound of claim 1 that has formula XIII:

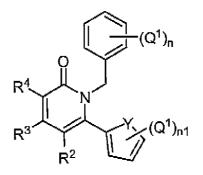


wherein n is an integer from 0 to 5; n_1 is an integer from 0 to 2; Y is selected from -CH=CH-, -C(Q¹)=CH-, -C(Q¹)=C(Q¹)-, -CH=N-, -C(Q¹)=N-, O, S and NR', where R' is hydrogen, alkyl or aryl and X is N or CH.

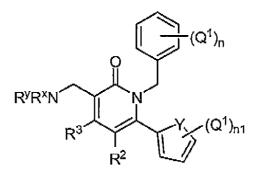
(267)877_1):KZA


10

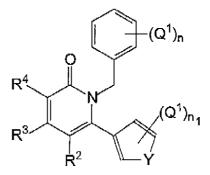
30. The compound of claim 1 that has formula XIV:


wherein n is an integer from 0 to 5; n_1 is an integer from 0 to 2; Y is selected from -CH=CH-, -C(Q¹)=CH-, -C(Q¹)=C(Q¹)-, -CH=N-, -C(Q¹)=N-, O, S and NR', where R' is hydrogen, alkyl or aryl and X is N.

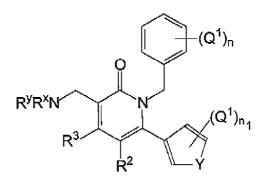
31. The compound of claim 1 that has formula XVI:


wherein n is an integer from 0 to 5; n_1 is an integer from 0 to 2; Y is selected from -CH=CH-, -C(Q¹)=CH-, -C(Q¹)=C(Q¹)-, -CH=N-, -C(Q¹)=N-, O, S and NR', where R' is hydrogen, alkyl or aryl and X is N.

32. The compound of claim 1 that has formula XVII:


wherein n is an integer from 0 to 5; n_1 is an integer from 0 to 2; Y is selected from 0, S and NR', where R' is hydrogen, alkyl or aryl.

33. The compound of claim 1 that has formula XVIII:


wherein n is an integer from 0 to 5; n₁ is an integer from 0 to 2; Y is selected from O, S and NR', where R' is hydrogen, alkyl or aryl; and R^x and R^y are each independently selected from hydrogen, alkyl, alkylcarbonyl, aryl, arylcarbonyl, alkoxycarbonyl, and aralkoxycarbonyl.

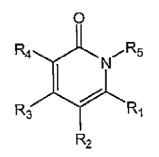
34. The compound of claim 1 that has formula XIX:

wherein n is an integer from 0 to 5; n_1 is an integer from 0 to 2; Y is selected from 0, S and NR', where R' is hydrogen, alkyl or aryl.

35. The compound of claim 1 that has formula XX:

wherein n is an integer from 0 to 5; n_1 is an integer from 0 to 2; Y is selected from O, S and NR', where R' is hydrogen, alkyl or aryl and R^{*} and R^y are each independently selected from hydrogen, alkyl, alkylcarbonyl, aryl, arylcarbonyl, alkoxycarbonyl, and aralkoxycarbonyl.

36. A compound of claim 1 selected from Figure 1.


37. A pharmaceutical composition, comprising the compound of any one of claims 1-36, or a pharmaceutically acceptable derivative thereof, in a pharmaceutically
 acceptable carrier.

38. Use of a compound of any one of claims 1-36, or a pharmaceutically acceptable derivative thereof, for the manufacture of a medicament for treatment of a disease or disorder selected from hypercholesterolemia, hyperlipoproteinemia, hypertriglyceridemia, lipodystrophy, hyperglycemia, diabetes mellitus, dyslipidemia, atherosclerosis, gallstone disease, acne vulgaris, acneiform skin conditions, diabetes, Parkinson's disease, cancer, Alzheimer's disease, inflammation, immunological disorders, lipid disorders, obesity, conditions characterized by a perturbed epidermal barrier function, conditions of disturbed differentiation or excess proliferation of the epidermis or mucous membrane, and cardiovascular disorders.

20 39. Use of a compound of any one of claims 1-36 or a pharmaceutically acceptable derivative thereof for reducing cholesterol levels in a subject in need thereof.

disease or disorder selected from A method of treating a 40. hypertriglyceridemia, lipodystrophy, hyperlipoproteinemia, hypercholesterolemia, hyperglycemia, diabetes mellitus, dyslipidemia, atherosclerosis, gallstone disease, acne vulgaris, acneiform skin conditions, diabetes, Parkinson's disease, cancer, Alzheimer's disease, inflammation, immunological disorders, lipid disorders, obesity, conditions characterized by a perturbed epidermal barrier function, conditions of disturbed differentiation or excess proliferation of the epidermis or mucous membrane, and cardiovascular disorders, comprising administering to a subject in need thereof an effective amount of a compound of any one of claims 1 to 36 or a pharmaceutically acceptable derivative thereof, or a composition according to claim 37. 10

> A compound having formula I 41.

or a pharmaceutically acceptable derivative thereof as defined in claim 1 and substantially as hereinbefore described with reference to any one of Examples 1 to 70.

15

Dated 28 April, 2010 X-Ceptor Therapeutics, Inc.

Patent Attorneys for the Applicant/Nominated Person SPRUSON & FERGUSON

(1/78)

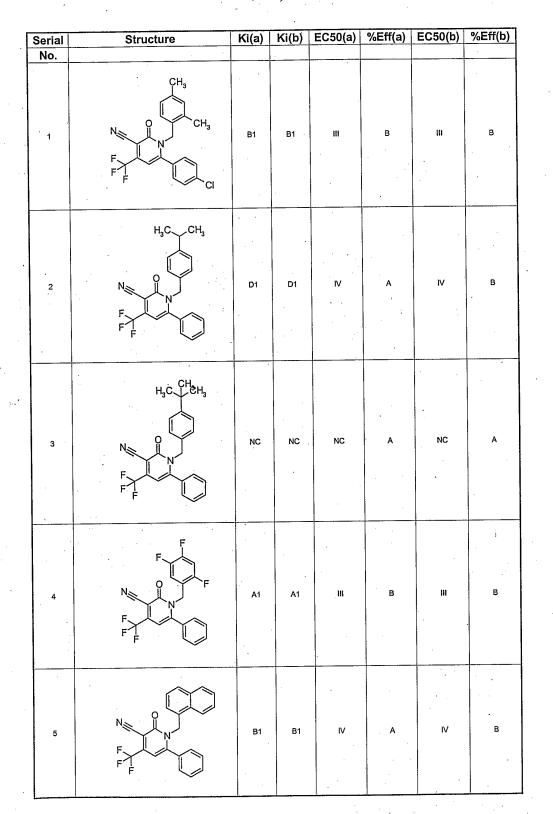


FIG. 1A

PCT/US02/41306

(2/78)

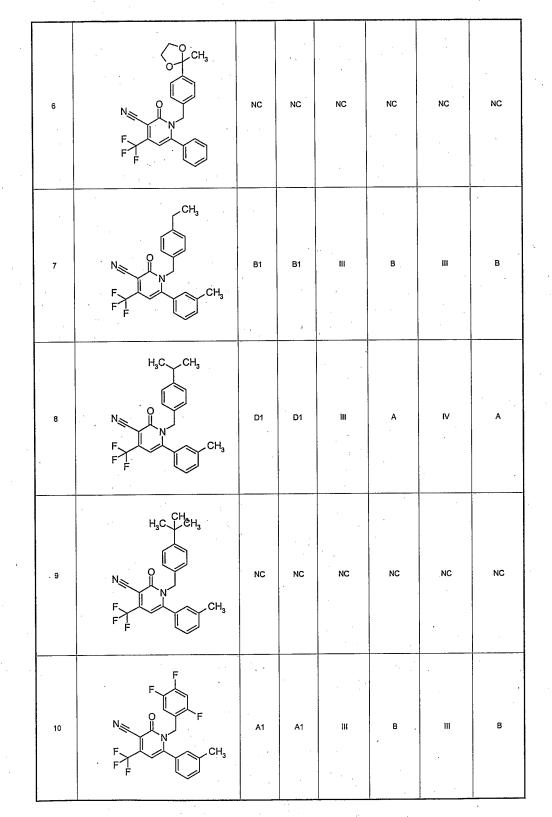


FIG. 1B

)

(3/78)

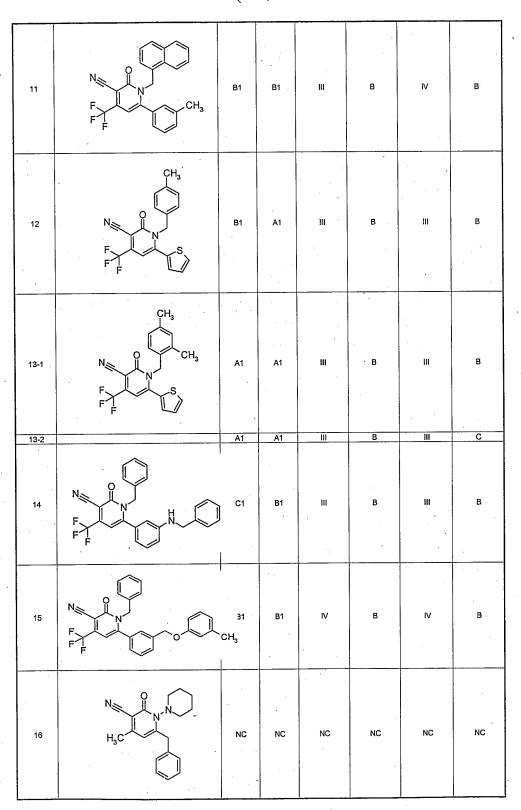


FIG. 1C

WO 03/059884

PCT/US02/41306

(4/78)

17	N CH ₃	D1	NC	NC	NC	NC	NC
18	H ₃ C _F O N _F F _F	C1	В1	IV	в	V	В
19	$H_{3}C \xrightarrow{CH_{3}}{0}$	NC	D1	111	A	NC	в
20		NC	NC	NC	NC	NC	NC
21	CH ₃ CH ₃ CH ₃ CH ₃	NC	NC	NC	NC	NC	NC

FIG. 1D

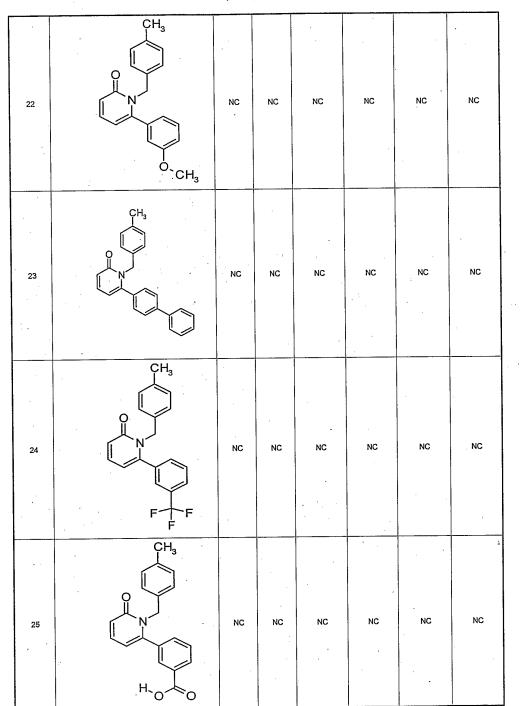


FIG. 1E

(6/78)

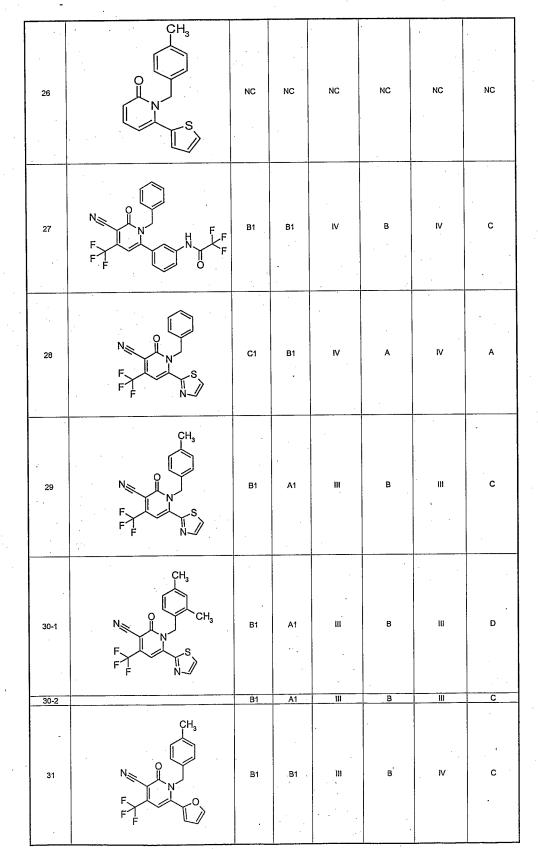


FIG. 1F

(7/78)

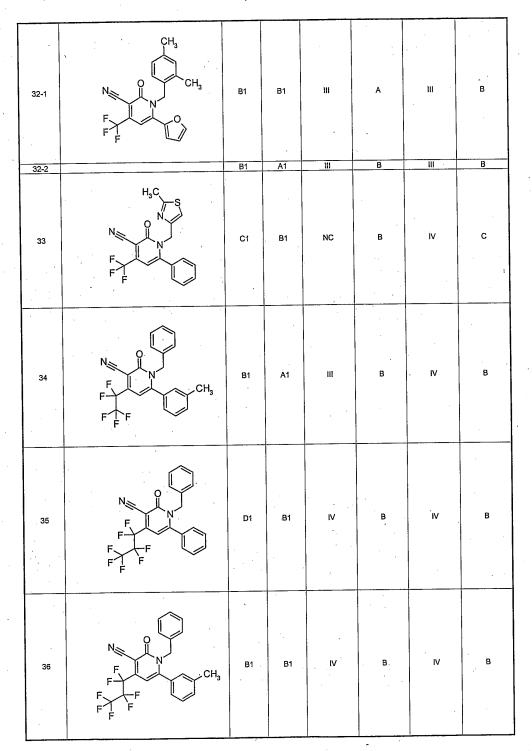
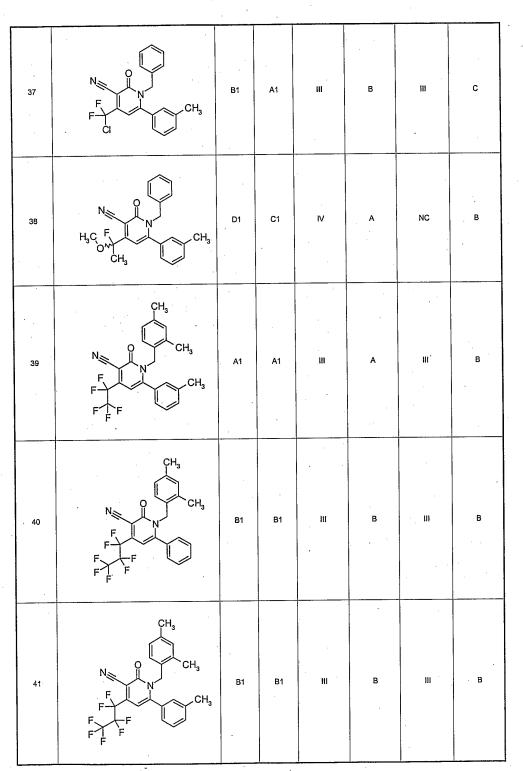
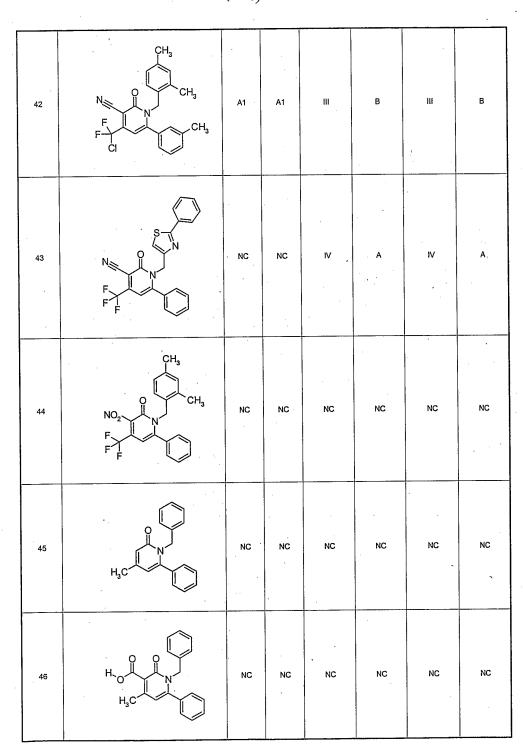



FIG. 1G



WO 03/059884

PCT/US02/41306

FIG. 1I

(10/78)

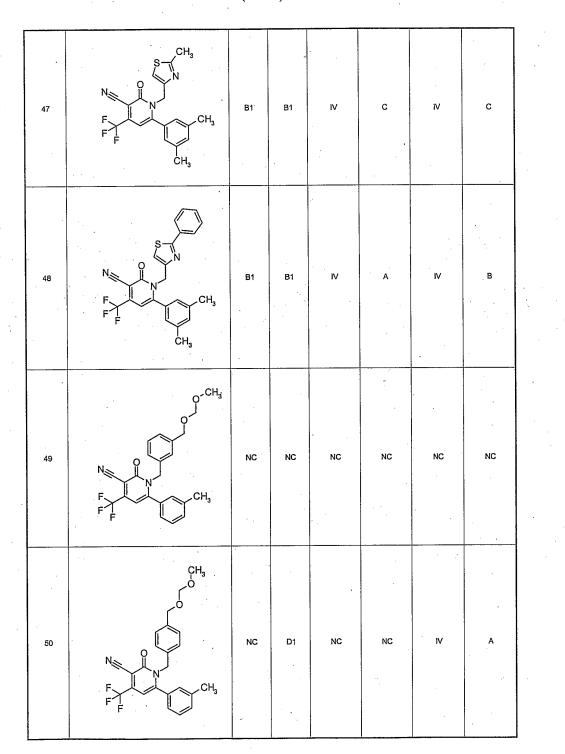
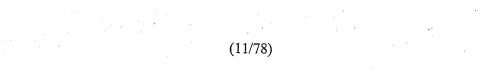
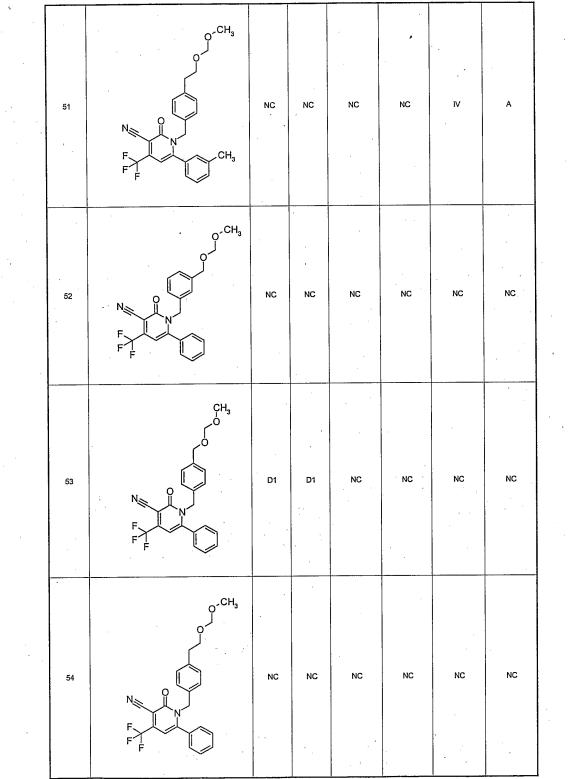
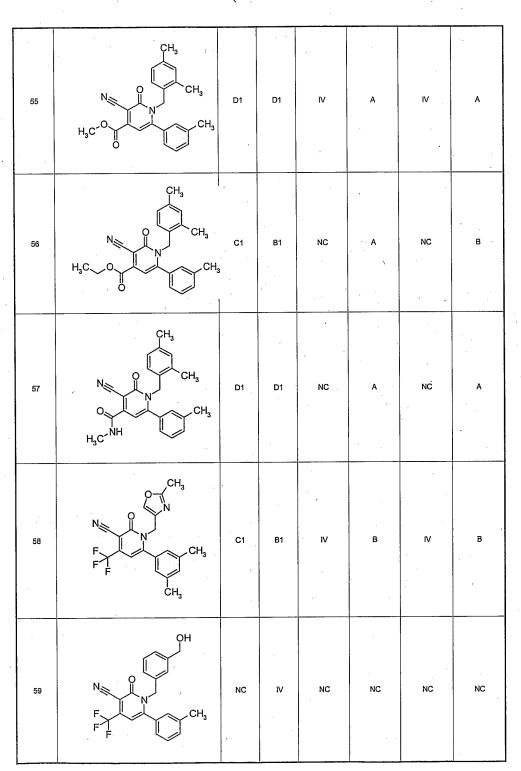
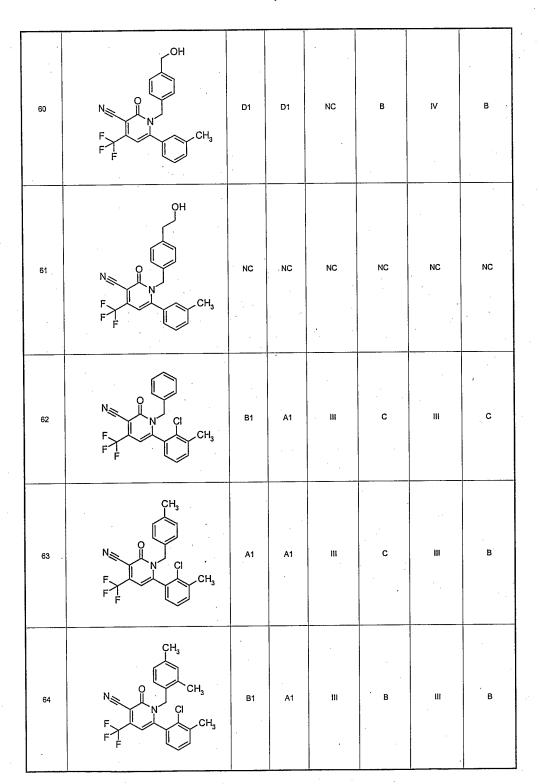



FIG. 1J

WO 03/059884

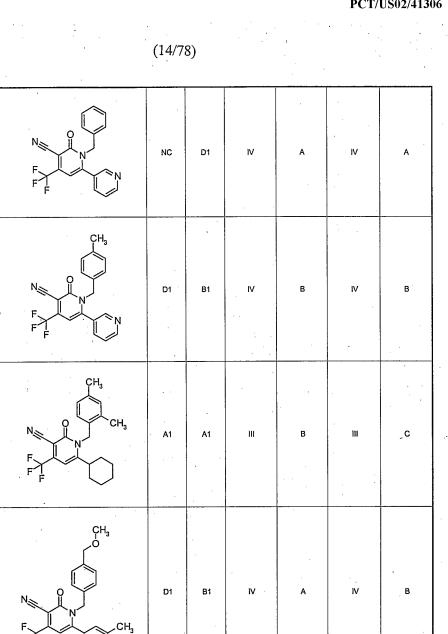
PCT/US02/41306


FIG. 1K

PCT/US02/41306

.*


66

67

F

F

PCT/US02/41306

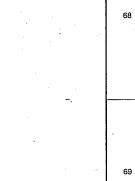


FIG. 1N

B1

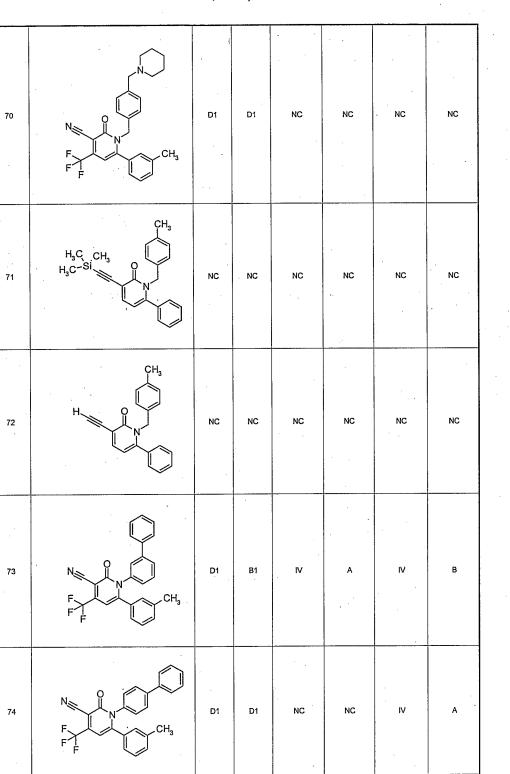
B1

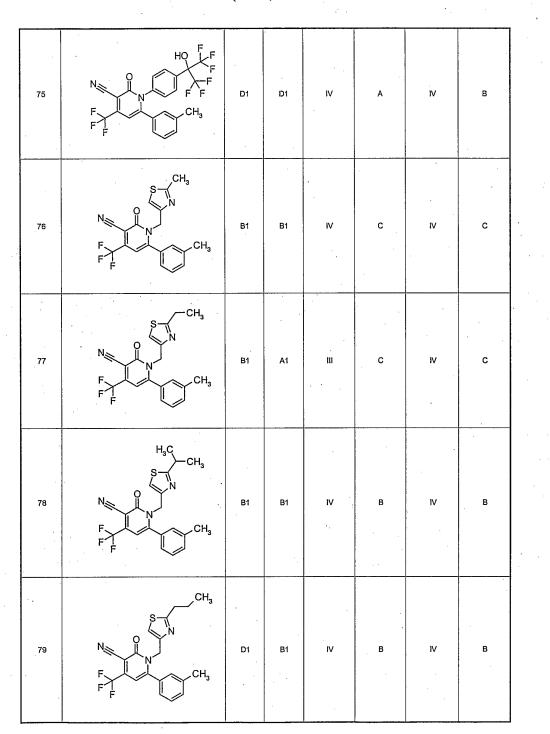
IV

в

• `

10


в


СН₃

,

PCT/US02/41306

(15/78)

FIG. 1P

(17/78)

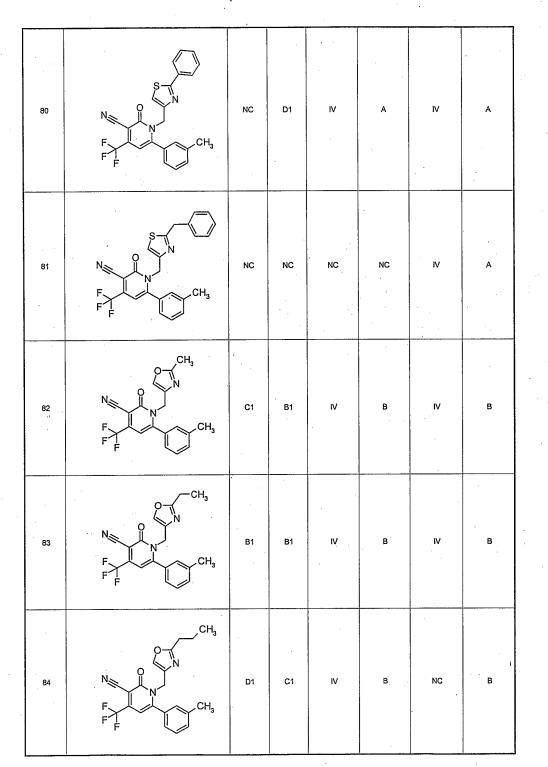


FIG. 1Q

(18/78)

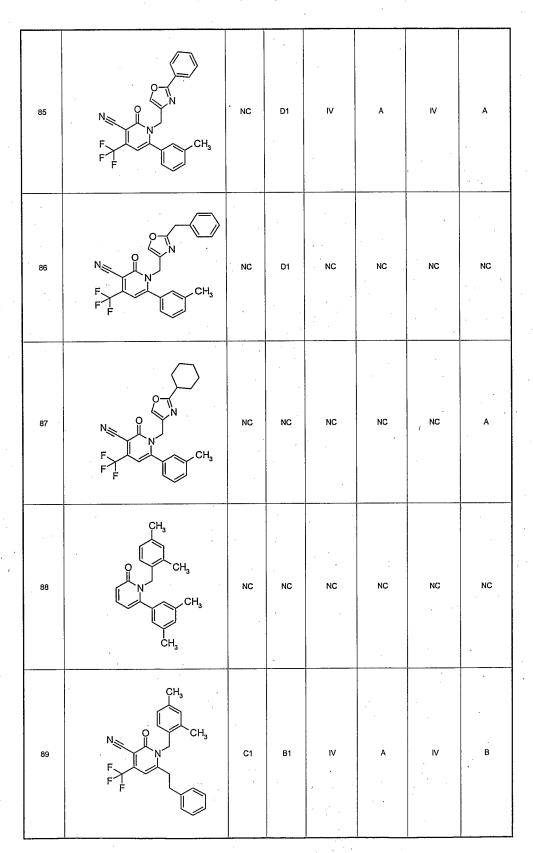
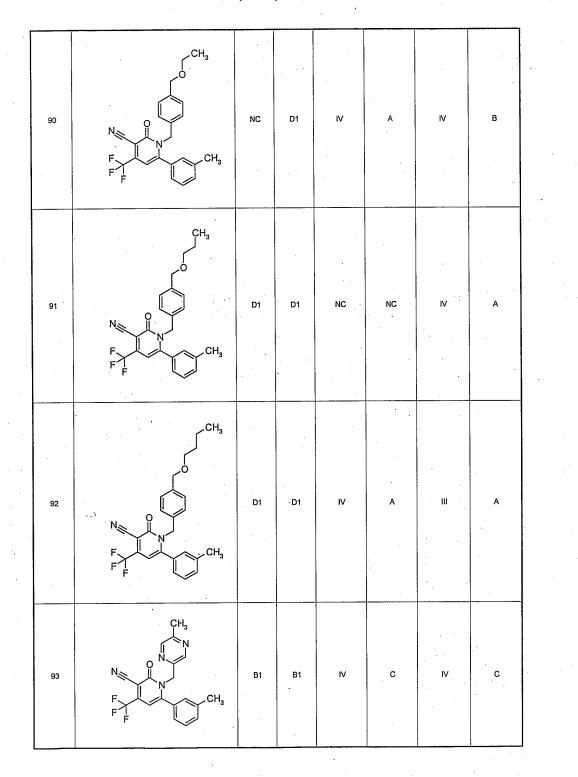
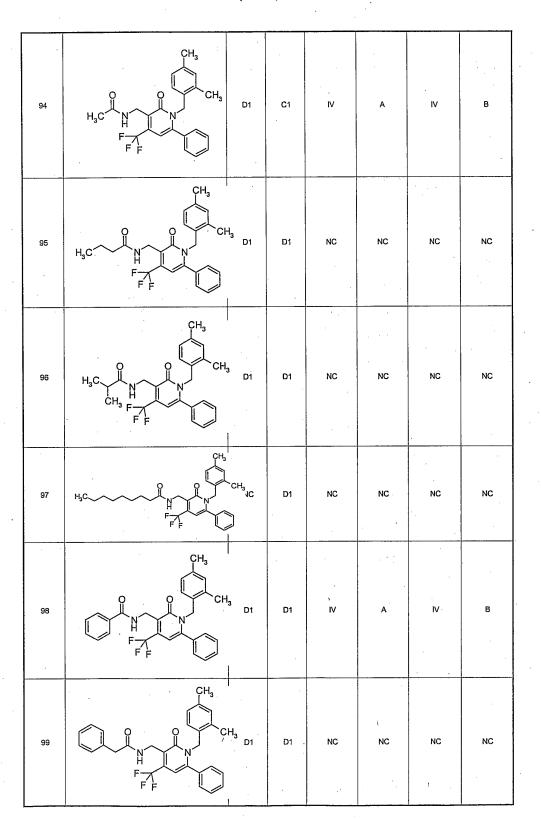



FIG. 1R


PCT/US02/41306

(19/78)

(20/78)

FIG. 1T

PCT/US02/41306

(21/78)

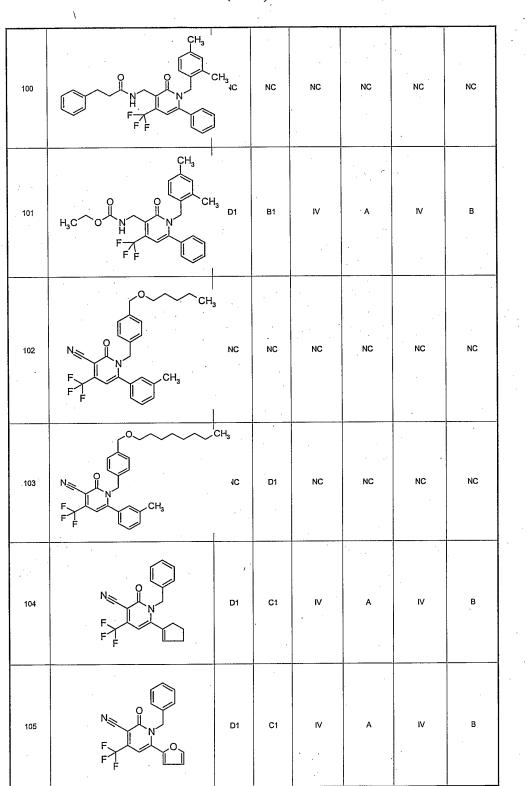
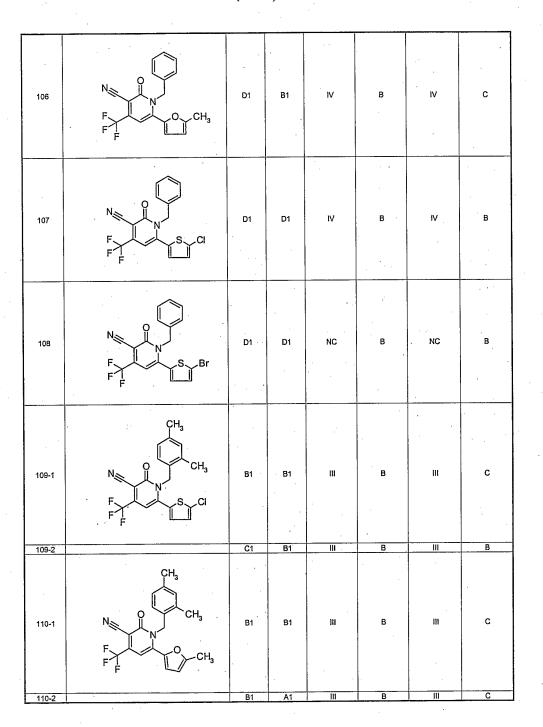



FIG. 1U

(22/78)

FIG. 1V

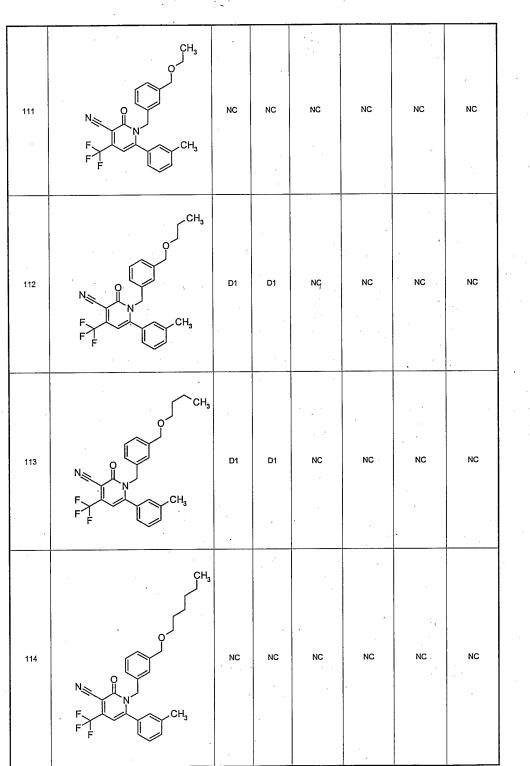


FIG. 1W

(24/78)

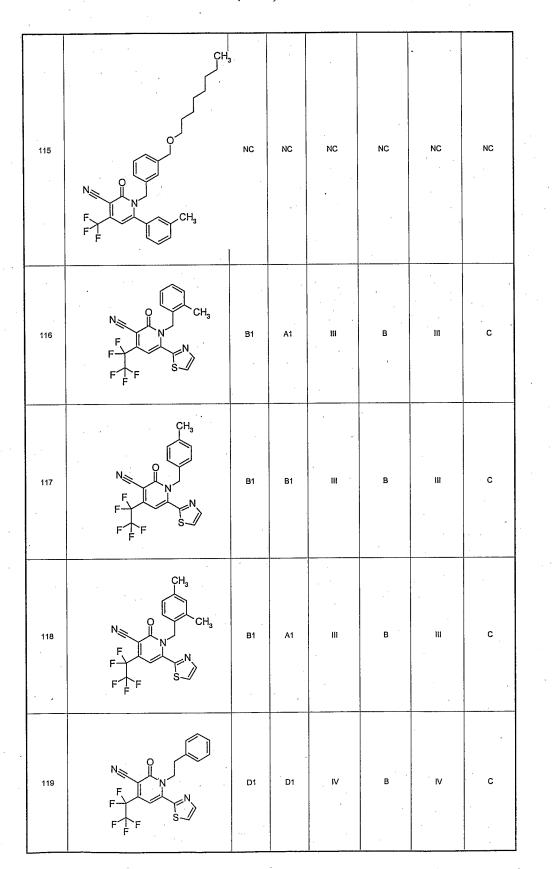
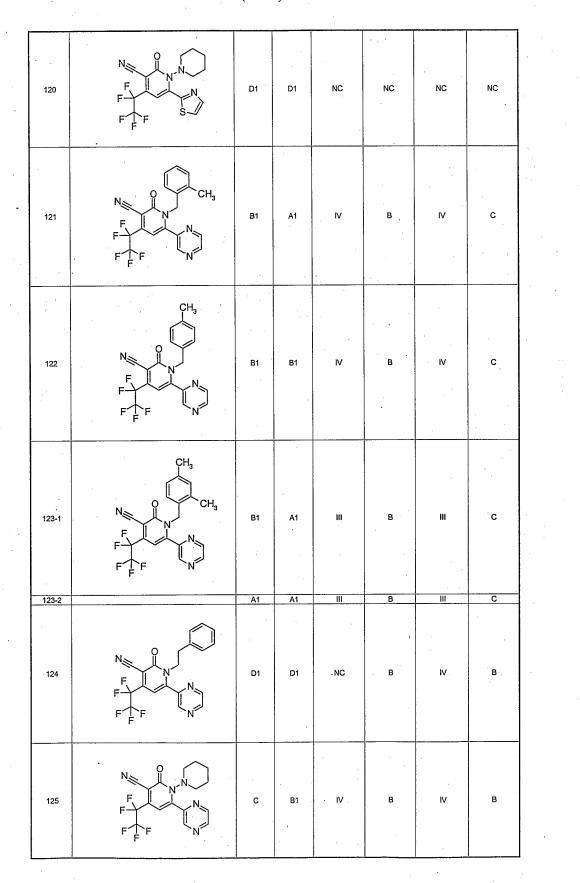



FIG. 1X

PCT/US02/41306

(25/78)

FIG. 1Y

(26/78)

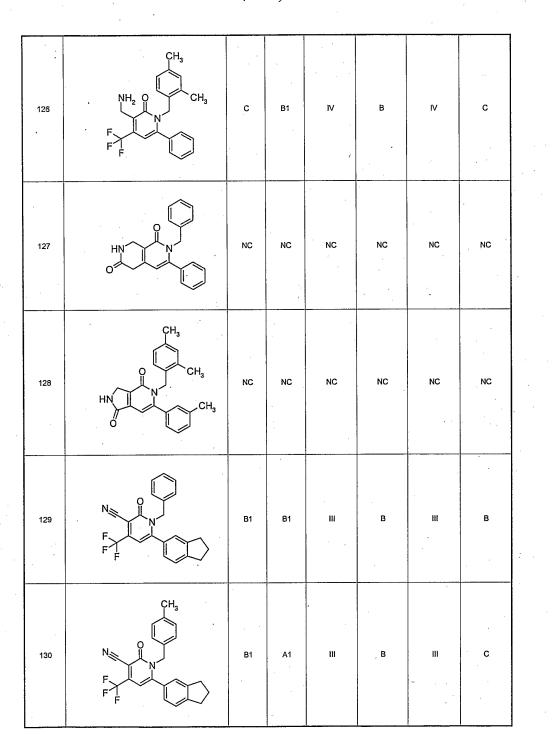


FIG. 1Z

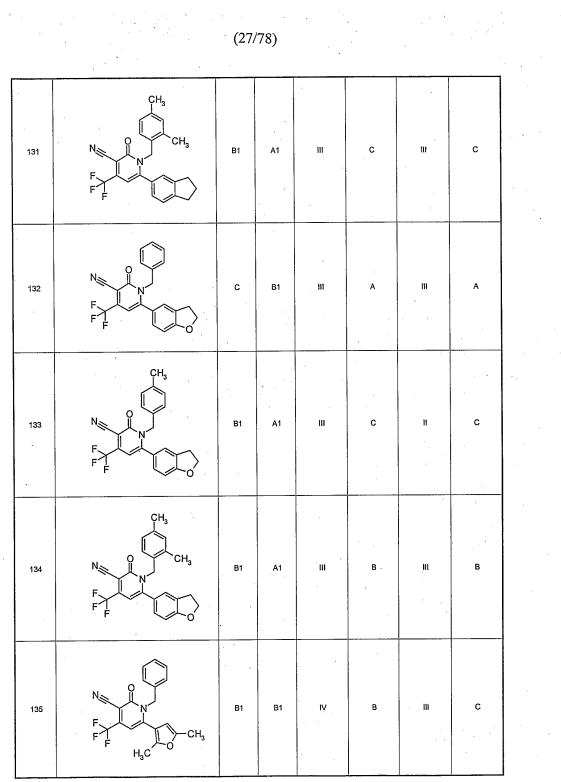


FIG. 1AA

(28/78)

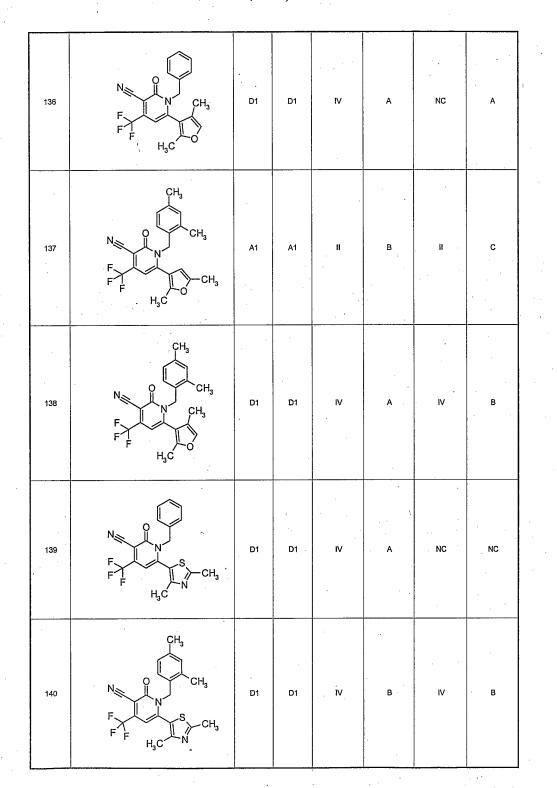


FIG. 1AB

(29/78)

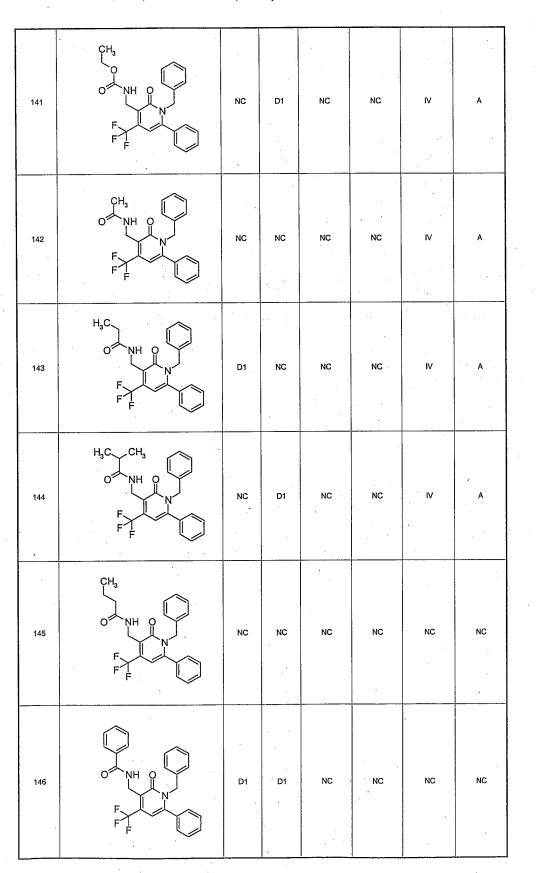
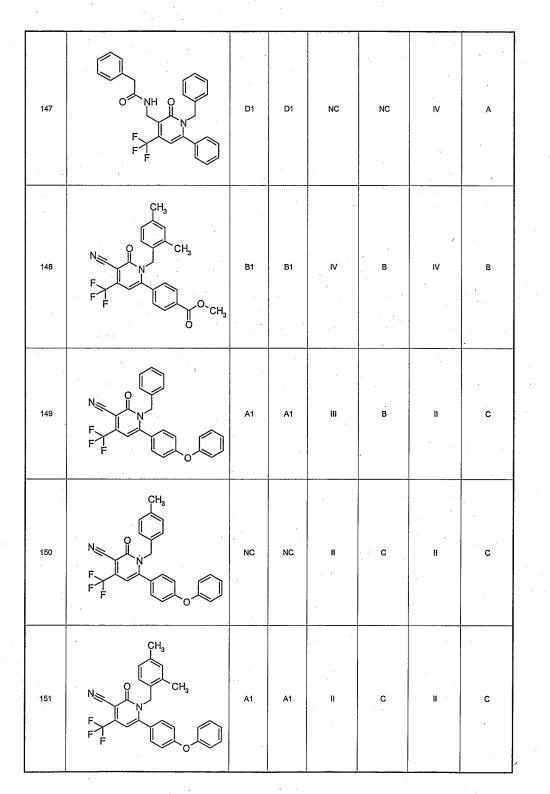



FIG. 1AC

(30/78)

(31/78)

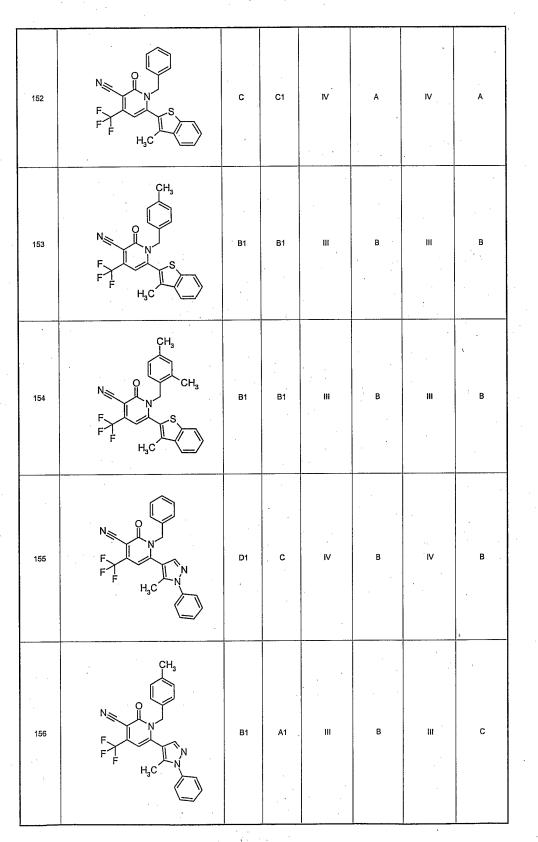
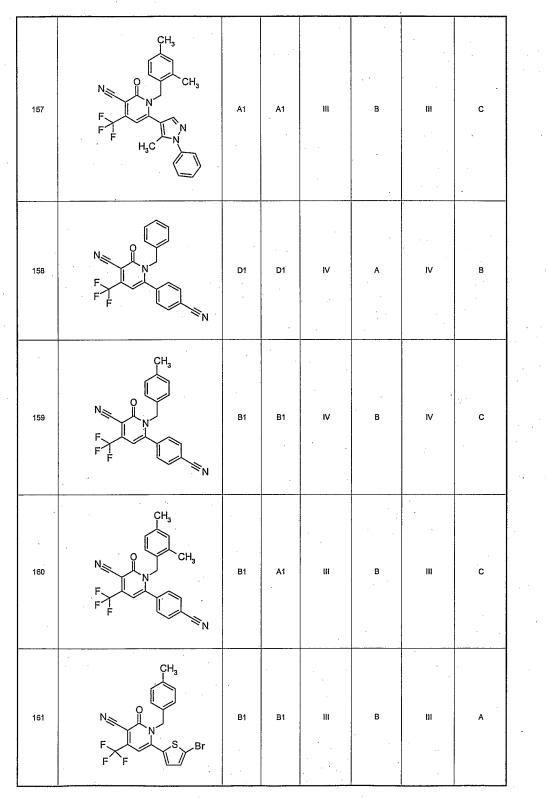



FIG. 1AE

•

· · · ·

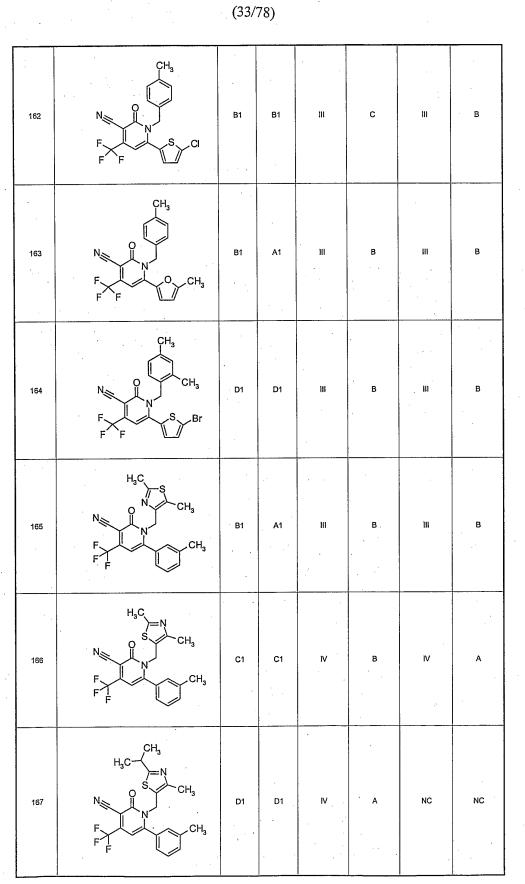


FIG. 1AG

(34/78)

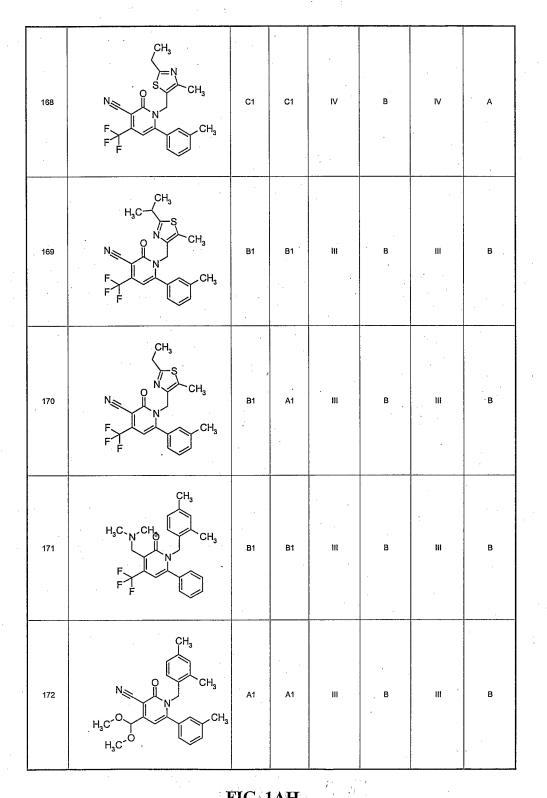


FIG. 1AH

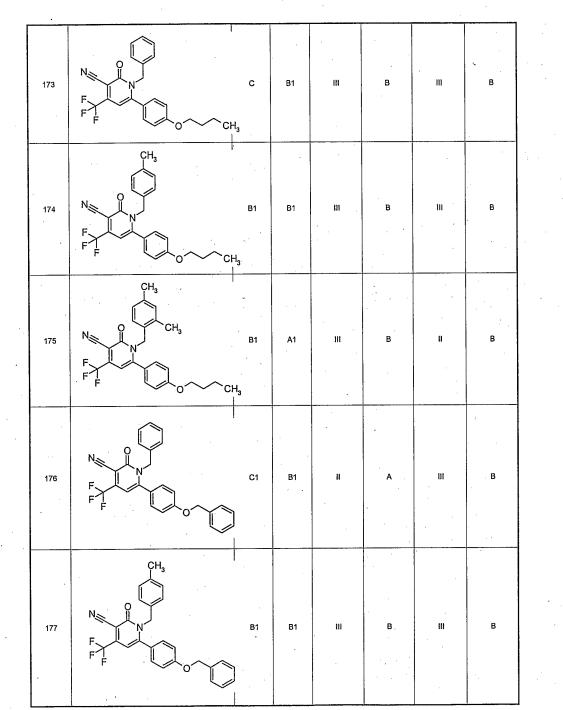


FIG. 1AI

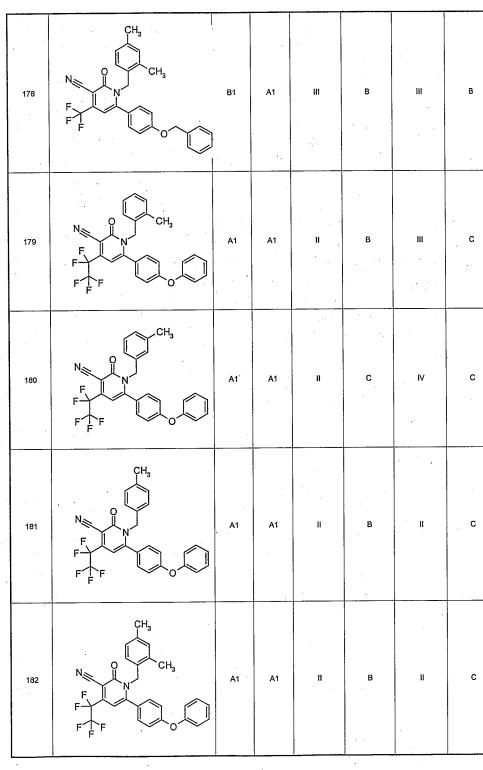


FIG. 1AJ

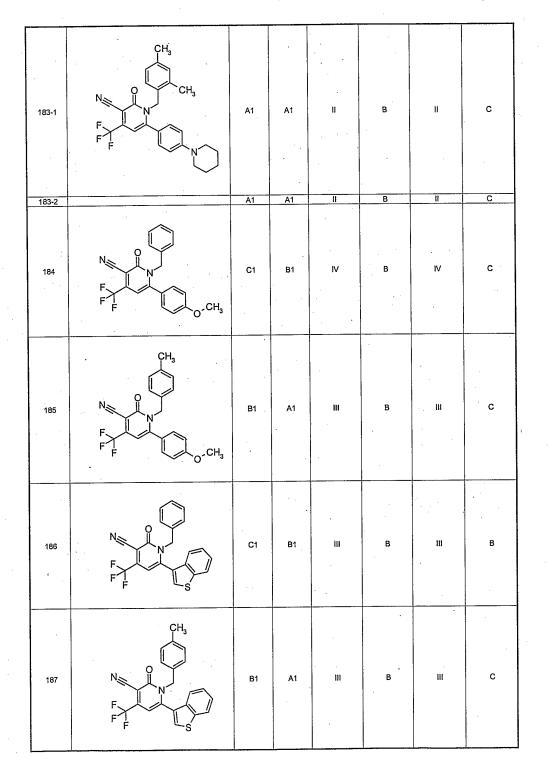


FIG. 1AK

(38/78)

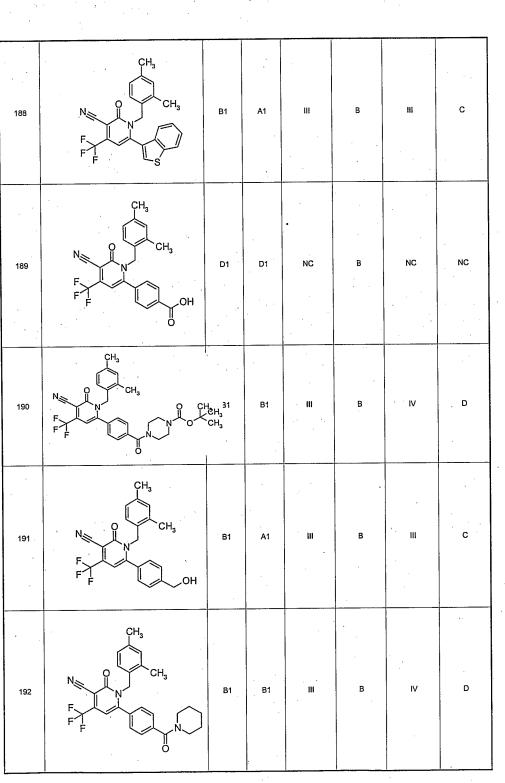


FIG. 1AL

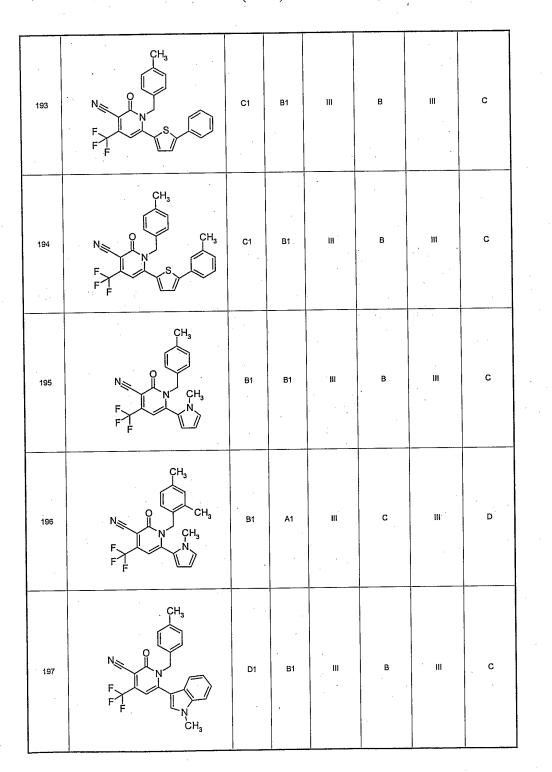


FIG. 1AM

(40/78)

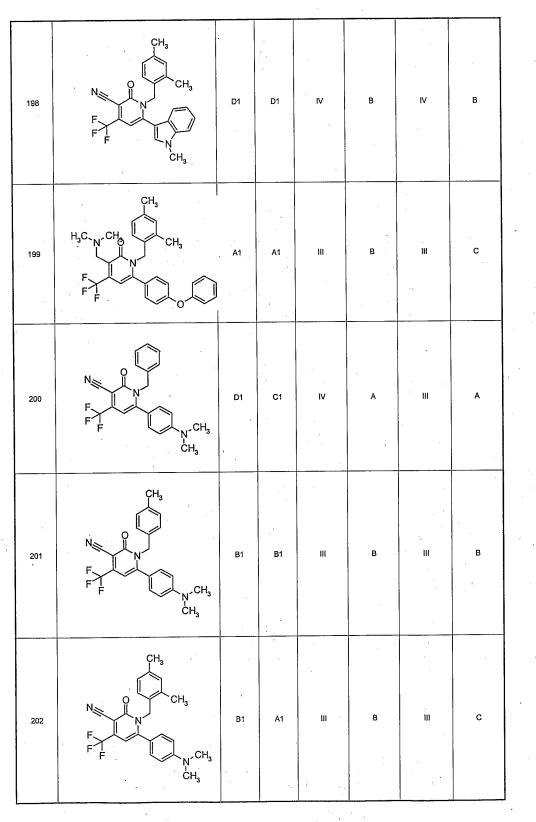


FIG. 1AN

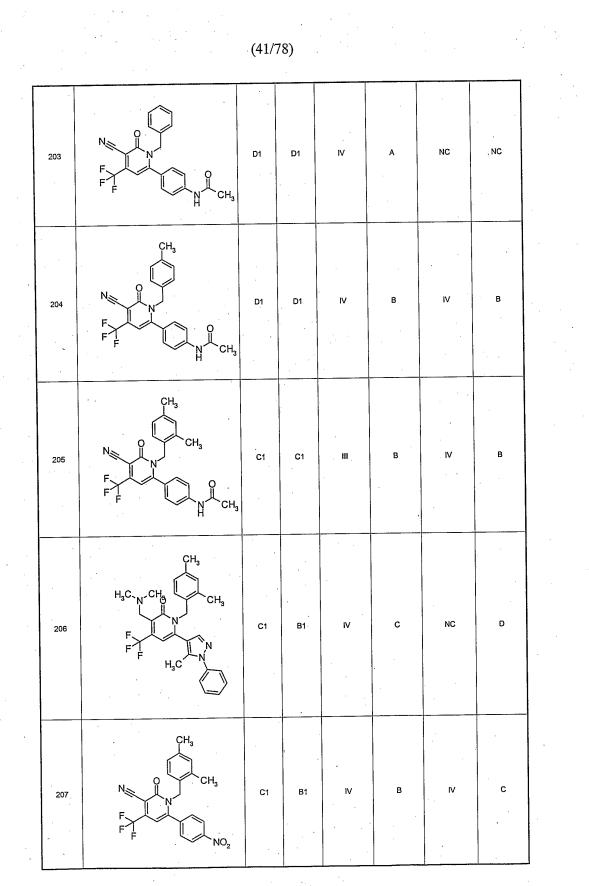


FIG. 1AO

WO 03/059884

PCT/US02/41306

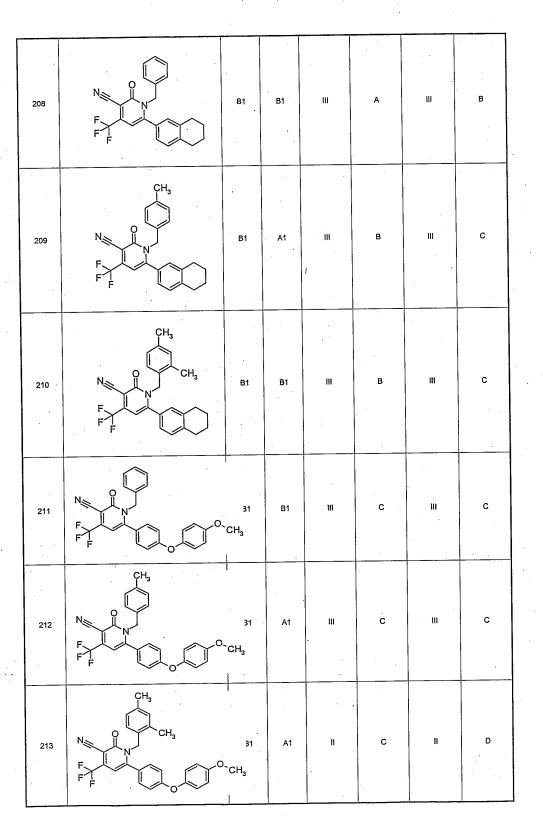


FIG. 1AP

(43/78)

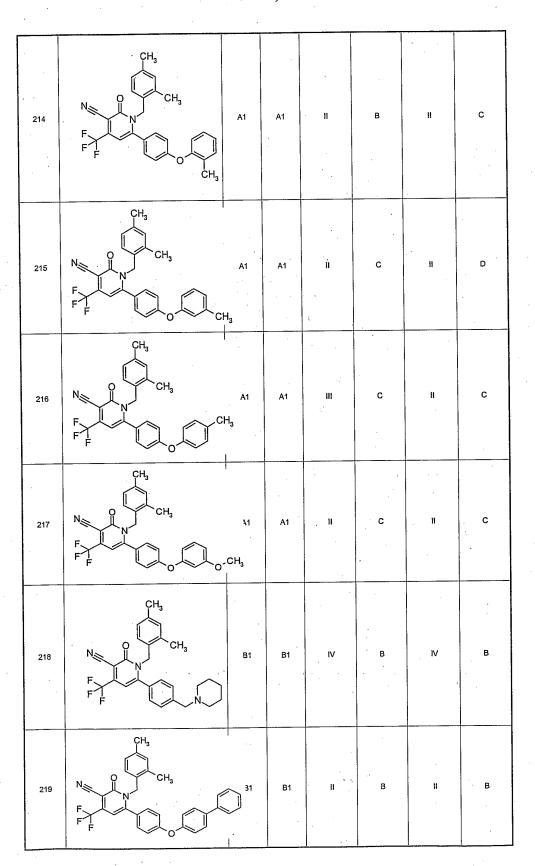


FIG. 1AQ

WO 03/059884

PCT/US02/41306

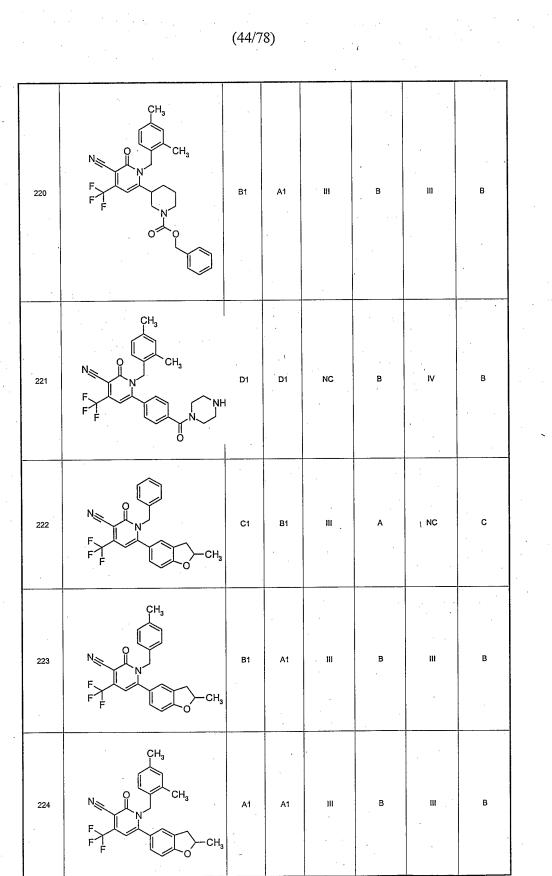


FIG. 1AR

(45/78)

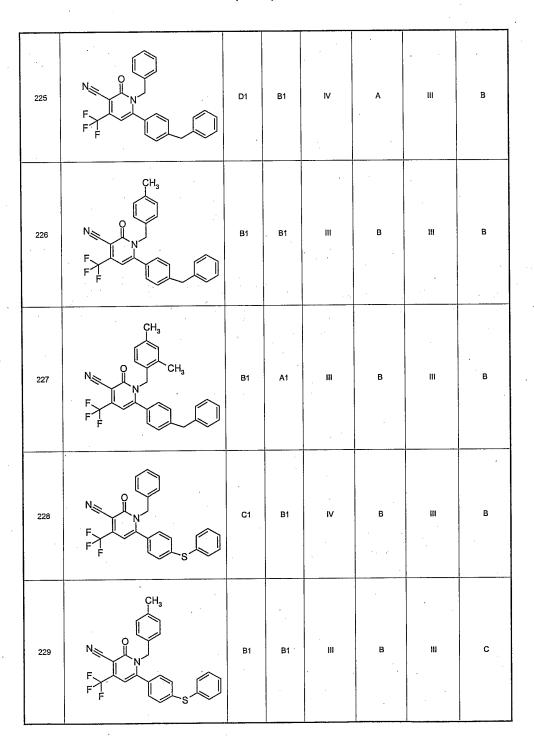


FIG. 1AS

WO 03/059884

PCT/US02/41306

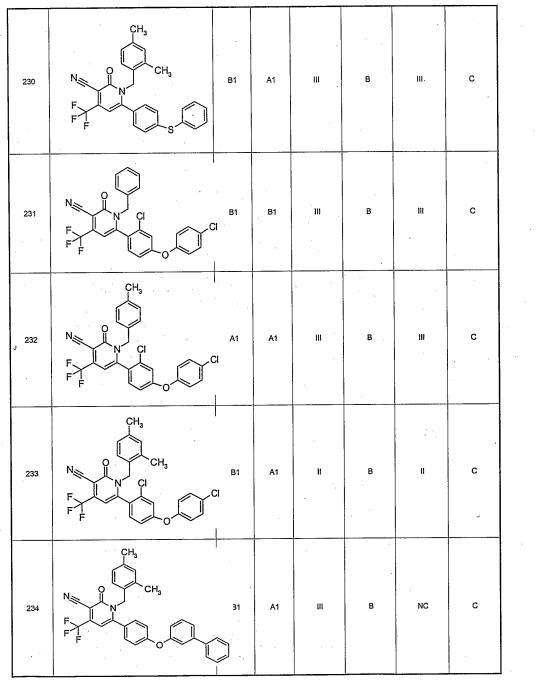


FIG. 1AT

(47/78)

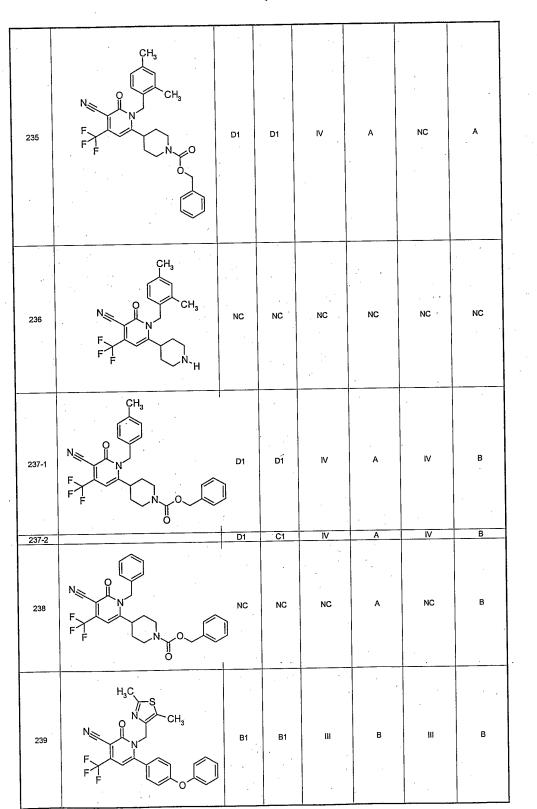


FIG. 1AU

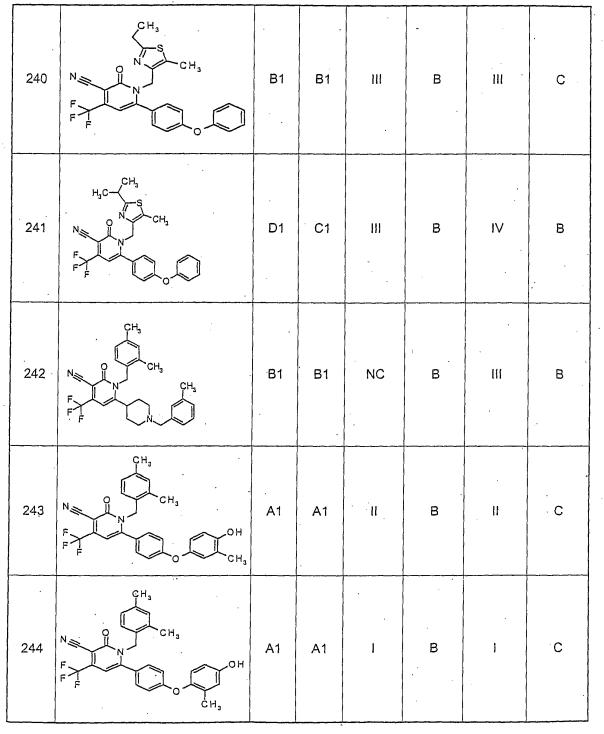


FIG. 1AV

SUBSTITUTE SHEET (RULE 26)

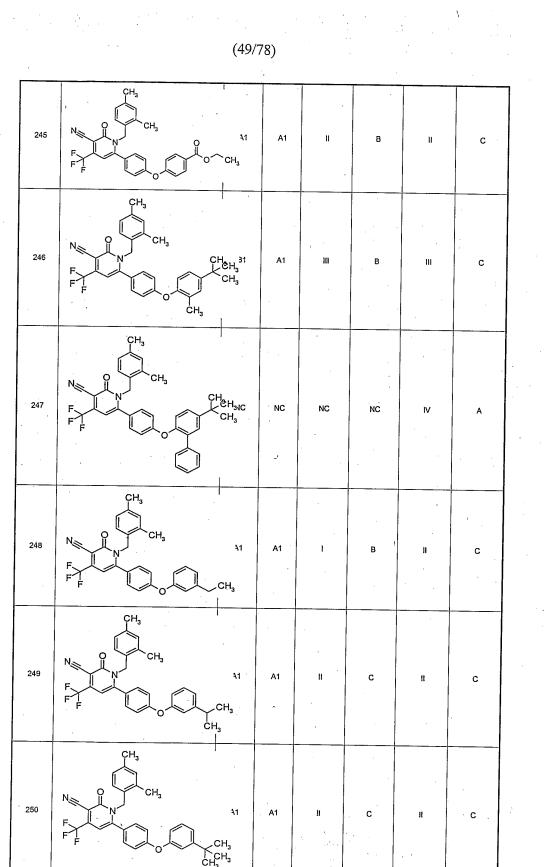


FIG. AW

(50/78)

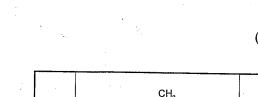



FIG. AX

WO 03/059884

PCT/US02/41306

(51/78)

ÇH₃ CH3 N. 257 A1 A1 H в 11 С F 258 B1 B1 ш 8 Ш с F1 259 A1 A1 H в 11 с C F ٥ СН CH, 260 A1 A1 H С с H F 261 A1 A1 11 с II с

FIG. AY

(52/78)

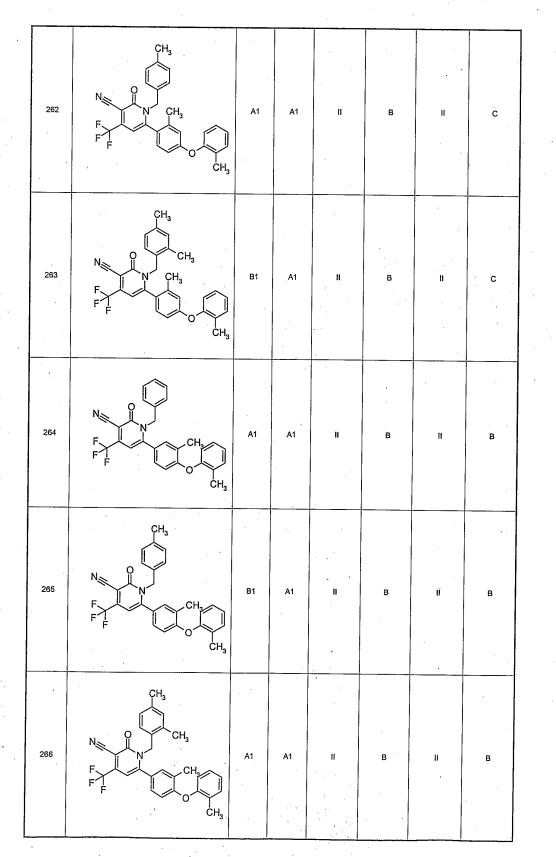


FIG. AZ

(53/78)

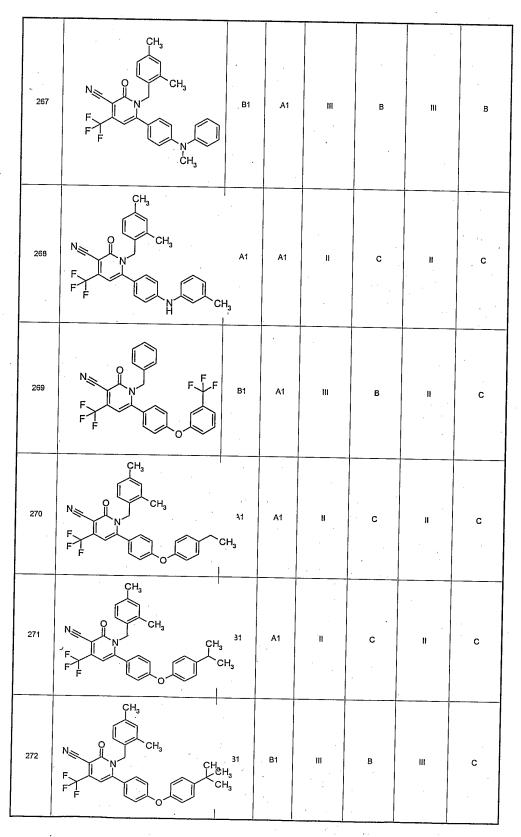


FIG. 1BA

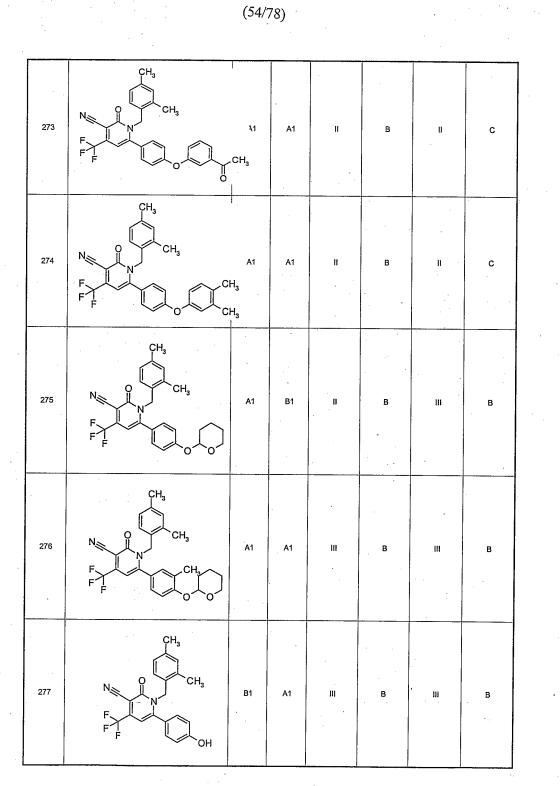


FIG. 1BB

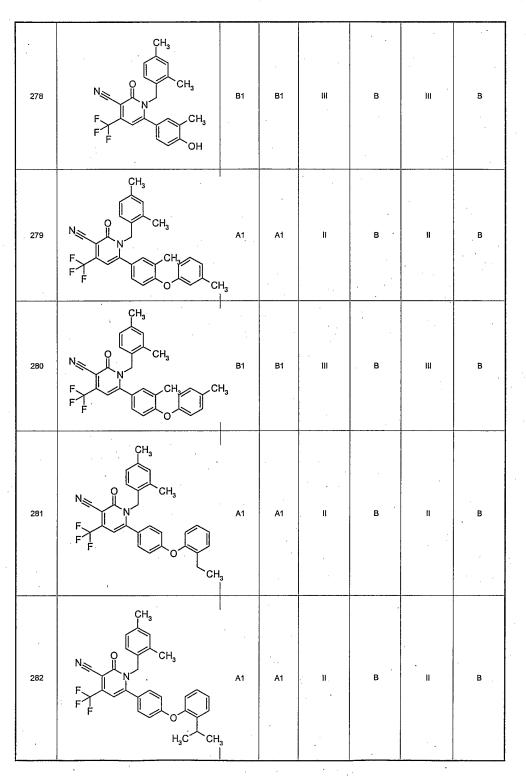


FIG. 1BC

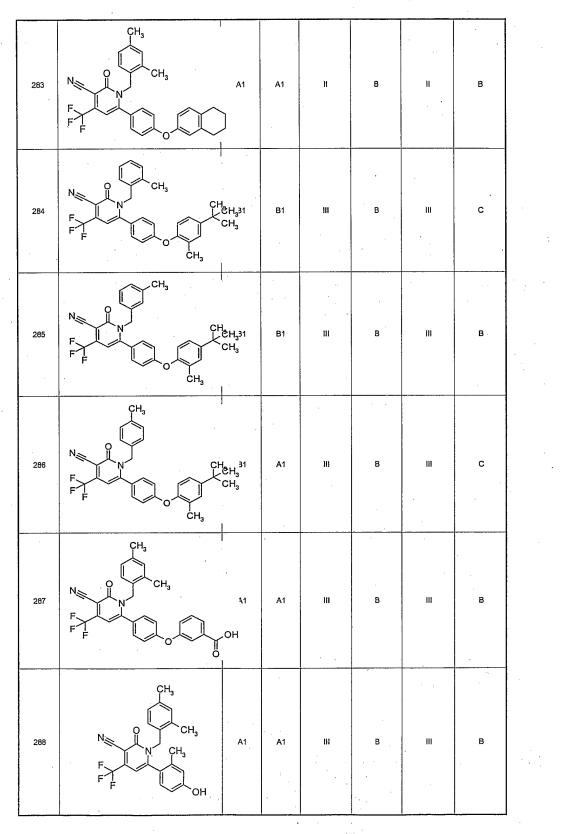


FIG. 1BD

(57/78)

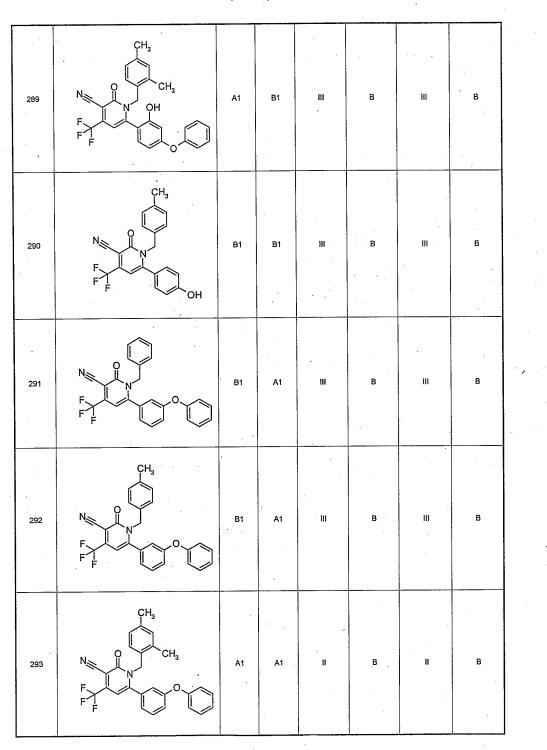
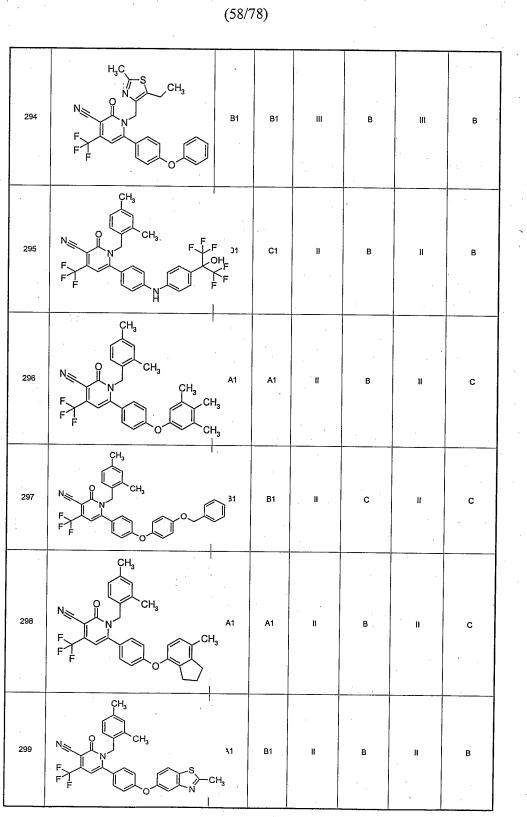



FIG. 1BE

WO 03/059884

PCT/US02/41306

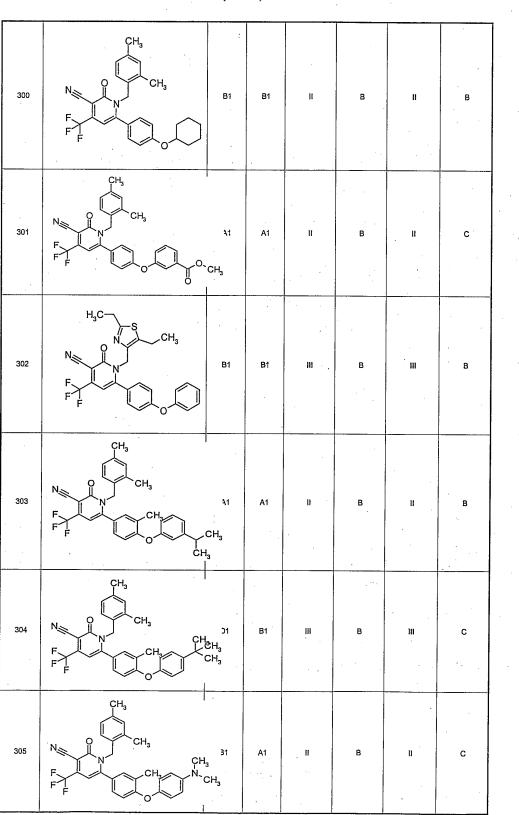


FIG. 1BG

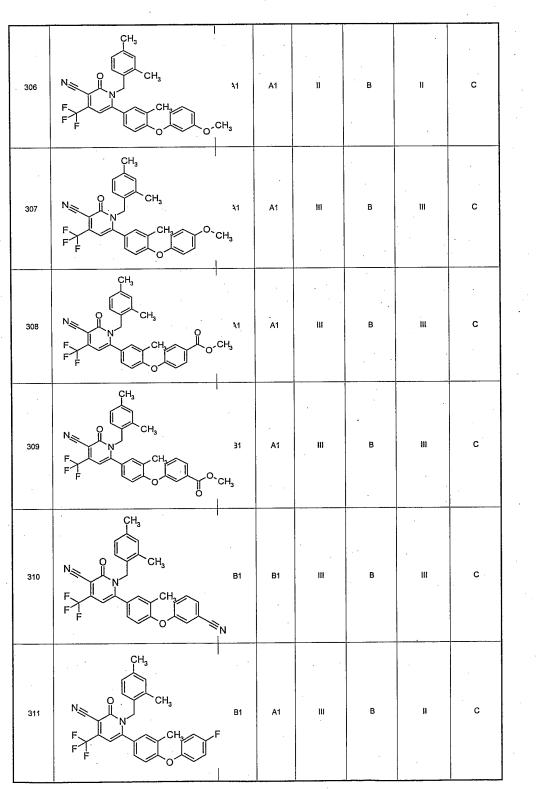


FIG. 1BH

(61/78)

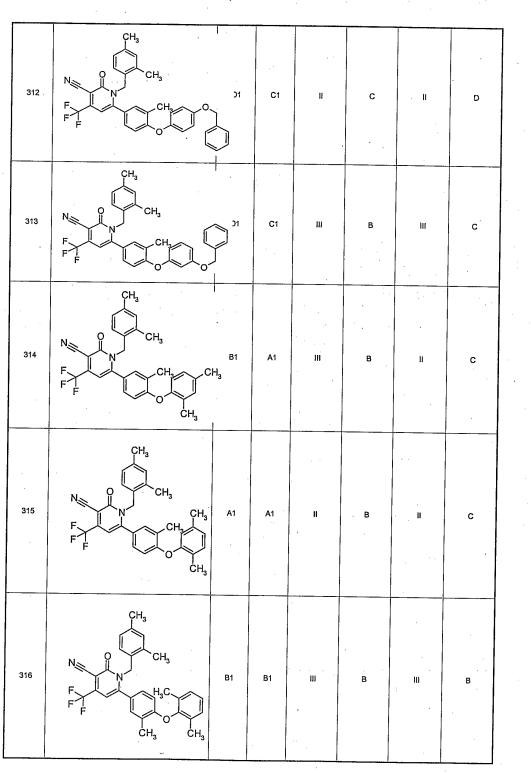
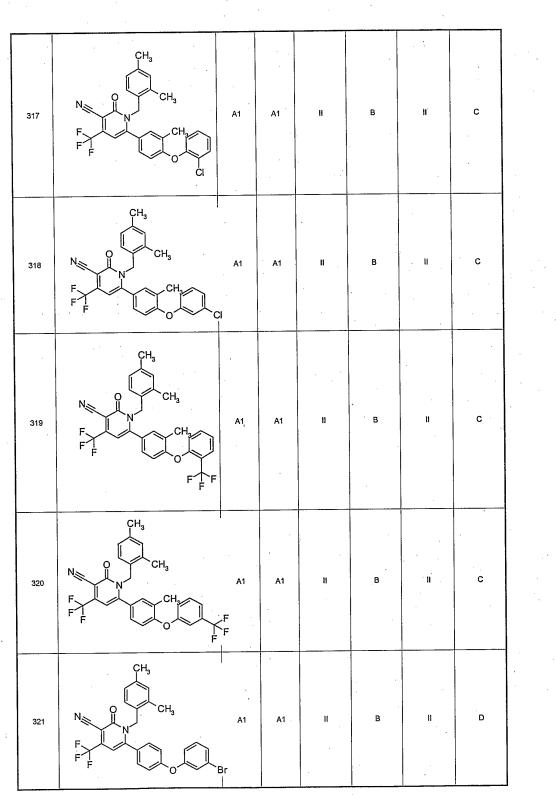



FIG. 1BI

(62/78)

PCT/US02/41306

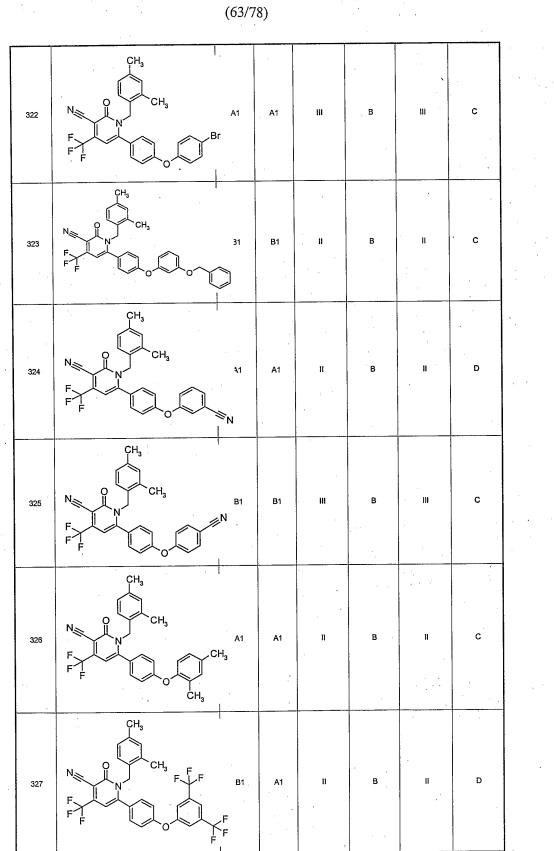


FIG. 1BK

PCT/US02/41306

1

(64/78)

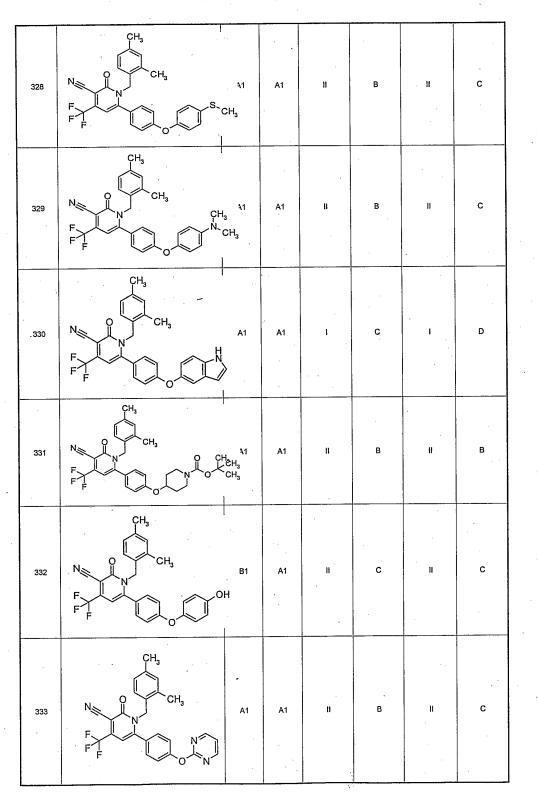


FIG. 1BL

(65/78)

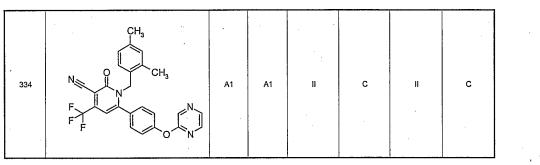


FIG. 1BM

•

PCT/US02/41306

·	۰ ۰	· · · · ·	(66/78)		· · ·	· .
335		B1	B1	IV .	В	IV	NC
336		D1	D1	NC	A	NC	NC
337		NC	NC	NC	Α	NC	NC
338		NC	NC	NC	A	NC	NC
339		NC	NC	NC	Α.	NC	NC
340		NC	D1	NC	A	NC	NC
341		D1	D1	NC	A	NC	NC
342		NC	NC	NC	A	NC	NC
343		D1	D1	IV .	В	NC	NC
344		D1	D1	IV	А	NC	NC
345		D1	D1	IV	Α	NC	NC
346	44 ₽ ¹ 64	NC	NC	NC	Α	NC	NC
347		D1	B1 .	IV	в	NC	NC
348		D1	D1	IV	A	NC	. NC

349 D1 B1 W в NC NC NC NC NC 350 D1 D1 Α 351 D1 C1 IV в NC NC D1 D1 352 IV А NC NC D1 VI ' в NC NC 353 D1 \geq 354 D1 D1 NC Α NC NC 355 NC D1 NC Α NC NC 2 ۲ NC NC NC NC NC 356 Α Ş 357 . D1 D1 NC NC NC Α NC NC NC Α NC NC 358 F F 359 NC NC NC Α NC NC Í сн, NC D1 IV А NC 360 D1 ₿ 361 C1 B1 ١V NC NC 362 D1 D1 NC в NC NC Ŷ

(67/78)

FIG. 1BO

4

			(-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-		
363		NC	D1	NC	. A	NC	NC
364		D1	D1	NC	A	NC	NC
365		D1	, D1	NC	Å	NC	NC
366		NC	NC	NC	Α.,	NC	NC
367	$\begin{array}{c} & H_{1} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & F_{-} \\ & F_{-} \\ \end{array} \right) $	D1	D1	NC	A	NC	NC
368		NC	NC	NC	Α	NC	NC
369		NC	NC	NC	A	NC	NC
370		NC	D1	NC	A	NC	NC
371		NC	D1	NC	A	NC	NC
372		NC	NC	NC	A	NC	NC
373		NC	D1	NC	A	NC	NC
374		NC	NC	NC	A	NC	NC
375		NC	NC	NC	A	NC	NC
376		NC	NC	NC	A	NC	NC

(68/78)

FIG. 1BP

.

,

		((69/78)	· .			
377		NC	NC	NC	A	NC	NC
378		NC	NC	NC	A	NC	NC
379		NC	NC	NC	A	NC	NC
380		C1	D1	IV	Α	NC	NC
381		D1	C1	NC	A	NC	NC
382		D1	D1	IV	A .	NC	NC
383	HG HG	B1	B1	IV	В.	NC	NC
384	H,G, O, H, C, O, C,	C1	D1	iv	A .	NC	NC
385	H _H C ₀ H _H C ₀ H _H C ₀ H _H C ₀	D1	D1	NC	A	NC	NC
386		D1 .	D1	IV	A	NC	NC
387		B1	B1	IV	A	NC	NC
388		B1	B1	IV	В	NC	NC
389		B1	B1	١V	В	NC	NC
390		C1	В1	١V	A	NC	NC

3/059884	(70)/78)	· ·	·	н.	Γ/US
391	C1	C1	î۷	A	NC	N
392	_B1	B1	IV	в	NC	N
393	D1	B1	ïV	В	III	E
394	C1	B1	IV	В	NC	Ň
395	D1 -	D1	IV .	Α	NC	N
396	NC	NC	NC	A	NC	N
397	NC	NC	NC	A	NC	N
398	D1	C1	1V	A	١V	4
399	C1	В1	10	В	V	Ņ
400	NC	NC	NC	A	NC	
401	NC	NC	NC	A	NC	ħ
402	NC	D1	IV	A	NC	1
403	NC	NC	NC	A	NC	1
404	NC	D1	IV	A	NC	

03/05988	34						PCT	Г/US02/41	130
	•			(71/78)	· · ·			•	
40	5		NC	D1	NC	A	NC	NC	
40	6		NC	D1	IV	A	NC	NC	*
,40	7	HG. O C N	D1	C1	IV	С	IV .	NC	
40	8	HG O HG	D1	C1	IV	В	IV	NC	
, 40	9		.D1	D1	IV	В	IV	NC	
41	0		B1	B1	111	В.,	IV	NC	
4	11		B1	B1	III	В	١V	NC	
4	12		C1	B1	311	B	iv	NC	
- 4	13	a C A A C A A A A A A A A A A A A A A A	C1	B1	101	А	Ň	NC	
4	14		C1	В1	١V	В	IV	NC	
	15		C1	C1	١V	В	ĪV	NC	
	16		NC	D1	1V	A	IV	NC	
	17		D1	D1	١V	B	IV -	NC	
4	18		C1	B1	IV	A	IV	В	

FIG. 1BS

(72/78) D1 C1 ١V А ł٧ в 419 IV D1 C1 IV А в 420 D1 IV А NC NC D1 421 ŧ NC NC NC NC NC А 422 NC NC 423 D1 D1 ١V Α NC NC NC А NC NC 424 NC NC Α NC 425 NC NC NC NC NC NC А NC 426 NC NC NC NC . 111 А 427 NC Α NC NC 428 D1 D1 D1 D1 NC А NC NC 429 NC NC NC NC NC NC 430 NC NC NC NC D1 D1 431 NC NC NC NC NC NC 432

FIG. 1BT

•. · ·

(73/78)

	F, F	(72	3/78)				·
433		S D1	D1	III	Α	NC	NC
434		B1	B1	iV	В	IV	в
435		D1	C1	IV	A	NC	NC
436	турсн, ;-}	B1	A1	IV	В	111	в
437		B1	A1	III	A		В
438		B1	A1	M	C	B	В
439		B1	B1	١V	В	' III s	В
440		B1	B1	- m	В	111	В
441		B1	A1	III	в	111	В
442		B1	B1	10	В	10	В.
443		B1	A1	10	С	ш ^с .	в
444		B1	B1	īV	В	IV	Α,
445	N L L L L L L L L L L L L L L L L L L L	NC	D1	NC	Α.	NC	NC
446	N CH.	D1	B1	IV ,	A	NC	NC
		•	FIG.	1BU	- 		•

ı.

* .			1		2 -		
447		D1	D1	NC	NC	NC	A
448		D1	B1	IV	В	NC ,	NC
449	N H C	D1	D1	NC	NC	NC	A
450	246	D1	C1	IV	В	iV	В
451		B1	B1	IV	В	IV	В
452		C1	[•] B1	, iv	В	IV	В
453		D1	C1	IV	A	IV	В
454	N C C C C C C C C C C C C C C C C C C C	В1	B1	IV .	В	IV	. в
455		В1	B1	١V	В	IV .	в
456		B1	B1	١V	В	IV	В
457	2	NC	NC	NC	A	NC	A
458		B1	B1	111	В	111	В
459	, , , , , , , , , , , , , , , , , , ,	D1	· Dt	IV	Ă	IV	A

FIG. 1BV

WO 03/059884

PCT/US02/41306

	. (7	75/78)		
460	C1	B1	311	

460	in the second se	C1	B1		В	111	в
461		D1	D1	, IV	A	īV	В
462	N CH3 P CH3 P F	. B1	B1	11 111 	В	IV	В
463)		B1	B1	111	В	111	В
464		B1	B1	111	B)11	c
465	in the second se	D1	NC	NC	A	١V	A
466		B1	В1	IV "	В	111	В
, 467		B1	B1)))	В	IH	В
468	n l l l l l l l l l l l l l l l l l l l	B1	A1	111	В	111	В
469		D1	C1	īV	A	IV	В
- 470		D1	C1	١V	A	IV 	В
471	N I V F V V OH	D1	B1	IV	В	IV	В
472		B1	B1	V	В	IV	в

)3/059884			(76/78)	•	,	PC	Г/US02
473		D1	C1	IV	A	IV	B
474		D1	C1	IV	В	IV.	В
475		D1	C1	IV	A	IV	В
476		D1	C1	IV	A	HI .	A
477	in the second	B1	B1	111	Α	III	В
478	N H Samo	NC	D1	NC	A	NC	A
479	ny ly ry ly ny ai	D1	B1	IV	В	IV	С
480		D1.	D1	NC	A	iV	B
481		B1	A1	111	с	m	В
482		B1	A1	M	в	i)I	В
483	Y C	B1	B1	IV	С	111	В
484		B1	A1	111	В	111	В
485		B1	Ē1	m	В	111	в

FIG. 1BX

			(77/78)				
486		C1	. В1	, IV	В	IV	в
487		B1	B1	- 111	с	111	. C
488		В1	A1	111	В	121	В
489	H.	C1	В1	IV	В	118	в
490	A C	NC	D1	NC	A	NC	A
491		A1	A1	131	С	tt	В
492		B1	A1	337	В	111	В
493		В1	A1	III	В))) ,	В
494	n H Gou	B1	A1	111	В	111	В
495		B1	B1	111	С	111	В
496		B1	B1	111	С	10	В
497		B1	A1	III	в	111	В
498	ns ↓ → → → → → → → → → → → → →	B1	A1	III	. C	IH	В
		FIG	1BY	· · ·	۰ ۲۰۰۰ - ۲۰۰۰ ۲۰	•	•

• •		(78/78)
	_04	

	~~~~~	1					
499		B1	B1	m	В	111	B
500	to.	NC	NC	NC	· A	NC	A
501	на-о-о	NC	NC	NC	A	NC	A
502		D1	D1	, IV ,	A	IN	А
503		NC	D1	ÌV	A	IV	в
504		NC	NC	NC	A	NC	A
505		B1	· A1	111	В	133	с
506	All a	D1	D1	IV	A	111	в
507	N I I I I I I I I I I I I I I I I I I I	D1	D1	111	В	NI	в
508		NC	NC	NC	A	NC	A

FIG. 1BZ

-1-

## SEQUENCE LISTING

<110> X-Ceptor Therapeutics, Inc. Bayne Christopher D. Johnson Alan T. Lu Shao-Po Mohan Raju Griffith Ronald C. <120> Modulators Of LXR <130> 38205-3005PC <140> Unassigned <141> Herewith <150> 60/342,707 <151> 2001-12-21 <160> 18 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 1528 <212> DNA <213> Homo Sapien <220> <221> CDS <222> (36)...(1379) <300> <308> GeneBank Nm 005693 <309> 2002-05-14 <400> 1 cagtgccttg gtaatgacca gggctccaga aagag atg tcc ttg tgg ctg ggg 53 Met Ser Leu Trp Leu Gly 1 5 gee eet gtg eet gae att eet eet gae tet geg gtg gag etg tgg aag 101 Ala Pro Val Pro Asp Ile Pro Pro Asp Ser Ala Val Glu Leu Trp Lys 10 15 20 149 Pro Gly Ala Gln Asp Ala Ser Ser Gln Ala Gln Gly Gly Ser Ser Cys 25 30 35 atc ctc aga gag gaa gcc agg atg ccc cac tct gct ggg ggt act gca Ile Leu Arg Glu Glu Ala Arg Met Pro His Ser Ala Gly Gly Thr Ala 197 40 45 50 ggg gtg ggg ctg gag gct gca gag ccc aca gcc ctg ctc acc agg gca 245 Gly Val Gly Leu Glu Ala Ala Glu Pro Thr Ala Leu Leu Thr Arg Ala 55 60 70 gag ccc cct tca gaa ccc aca gag atc cgt cca caa aag cgg aaa aag 293 Glu Pro Pro Ser Glu Pro Thr Glu Ile Arg Pro Gln Lys Arg Lys 75 80 85 ggg cca gcc ccc aaa atg ctg ggg aac gag cta tgc agc gtg tgt ggg 341 Gly Pro Ala Pro Lys Met Leu Gly Asn Glu Leu Cys Ser Val Cys Gly 90 95 100

-2-

gao Asp	e aag b Lys	gcc Ala 105	i ser	: Gly	ttc Phe	cac His	tac Tyr 110	: Asr	gtt Val	t cto L Lei	g ago 1 Sei	tgo Cys 115	s Glu	ı Gly	c tgc 7 Cys	389
aaç Lys	gga Gly 120	r Pne	tto Phe	cgc Arg	çgc Arg	ago Ser 125	· Val	atc Ile	aag Lys	a dl ^y A dl ^y	a gcg 7 Ala 130	l His	tao Tyi	c ato c Ile	tgc Cys	437
cac His 135	Ser	. Glà	. Glà	cac His	tgc Cys 140	Prc	atg Met	gac Asp	acc Thr	tac Tyr 145	: Met	g cgt : Arg	cgo Arg	: aag J Lys	f tgc Cys 150	485
cag Glr	gag Glu	tgt Cys	cgg Arg	r ctt Leu 155	Arg	aaa Lys	tgc Cys	cgt Arg	cac Glr 160	ı Ala	: ggc 1 Gly	atg Met	a cgo Arc	gag Glu 165	. Glu	533
tgt Cys	gtc Val	ctg Leu	tca Ser 170	GLu	gaa Glu	cag Gln	atc Ile	cgc Arg 175	cto Leu	aag Lys	f aaa Lys	. ctg Leu	aag Lys 180	cgg   Arg	caa Gln	581
gag Glu	gag Glu	gaa Glu 185	cag Gln	gct Ala	cat His	gcc Ala	aca Thr 190	tcc Ser	ttg Leu	ccc Pro	ccc Pro	agg Arg 195	cgt Arg	tcc Ser	tca Ser	629
ccc Pro	ccc Pro 200	caa Gln	atc Ile	ctg Leu	ccc Pro	cag Gln 205	ctc Leu	agc Ser	ccg Pro	gaa Glu	caa Gln 210	ctg Leu	ggc Gly	atg Met	atc Ile	677
gag Glu 215	aag Lys	ctc Leu	gtc Val	gct Ala	gcc Ala 220	cag Gln	caa Gln	cag Gln	tgt Cys	aac Asn 225	cgg Arg	cgc Arg	tcc Ser	ttt Phe	tct Ser 230	725
gac Asp	cgg Arg	ctt Leu	cga Arg	gtc Val 235	acg Thr	cct Pro	tgg Trp	ccc Pro	atg Met 240	gca Ala	cca Pro	gat Asp	ccc Pro	cat His 245	agc Ser	773
cgg Arg	gag Glu	gcc Ala	cgt Arg 250	cag Gln	cag Gln	cgc Arg	ttt Phe	gcc Ala 255	cac His	ttc Phe	act Thr	gag Glu	ctg Leu 260	gcc Ala	atc Ile	821
gtc Val	tct Ser	gtg Val 265	cag Gln	gag Glu	ata Ile	gtt Val	gac Asp 270	ttt Phe	gct Ala	aaa Lys	cag Gln	cta Leu 275	ccc Pro	ggc Gly	ttc Phe	869
ctg Leu	cag Gln 280	ctc Leu	agc Ser	cgg Arg	GLu	gac Asp 285	Gln	att Ile	gcc Ala	Leu	ctg Leu 290	Lys	acc Thr	tct Ser	gcg Ala	917
atc Ile 295	gag Glu	gtg Val	atg Met	ctt Leu	ctg Leu 300	gag Glu	aca Thr	tct Ser	cgg Arg	agg Arg 305	tac Tyr	aac Asn	cct Pro	glà aaa	agt Ser 310	965
gag Glu	agt Ser	atc Ile	acc Thr	ttc Phe 315	ctc Leu	aag Lys	gat Asp	ttc Phe	agt Ser 320	tat Tyr	aac Asn	cgg Arg	gaa Glu	gac Asp 325	ttt Phe	1013
gcc Ala	aaa Lys	gca Ala	330 813 833	ctg Leu	caa Gln	gtg Val	gaa Glu	ttc Phe 335	atc Ile	aac Asn	ccc Pro	atc Ile	ttc Phe 340	gag Glu	ttc Phe	1061
tcc Ser	agg Arg	gcc Ala 345	atg Met	aat Asn	gag Glu	ctg Leu	caa Gln 350	ctc Leu	aat Asn	gat Asp	gcc Ala	gag Glu 355	ttt Phe	gcc Ala	ttg Leu	1109
ctc Leu	att Ile 360	gct Ala	atc Ile	agc Ser	TTe	ttc Phe 365	tct Ser	gca Ala	gac Asp	cgg Arg	ccc Pro 370	aac Asn	gtg Val	cag Gln	gac Asp	1157

-3-

cag ctc cag gtg gag agg ctg cag cac aca tat gtg gaa gcc ctg cat 🐇 Gln Leu Gln Val Glu Arg Leu Gln His Thr Tyr Val Glu Ala Leu His gee tae gte tee ate cae cat eee cat gae ega etg atg tte eea egg Ala Tyr Val Ser Ile His His Pro His Asp Arg Leu Met Phe Pro Arg atg cta atg aaa ctg gtg agc ctc cgg acc ctg agc agc gtc cac tca Met Leu Met Lys Leu Val Ser Leu Arg Thr Leu Ser Ser Val His Ser gag caa gtg ttt gca ctg cgt ctg cag gac aaa aag ctc cca ccg ctg Glu Gln Val Phe Ala Leu Arg Leu Gln Asp Lys Lys Leu Pro Pro Leu ctc tct gag atc tgg gat gtg cac gaa tga ctgttctgtc cccatatttt Leu Ser Glu Ile Trp Asp Val His Glu * ctgttttctt ggccggatgg ctgaggcctg gtggctgcct cctagaagtg gaacagactg 1459 agaagggcaa acatteetgg gagetgggca aggagateet eeegtggcat taaaagagag 1519 tcaaagggt <210> 2 <211> 447 <212> PRT <213> Homo Sapien <400> 2 Met Ser Leu Trp Leu Gly Ala Pro Val Pro Asp Ile Pro Pro Asp Ser Ala Val Glu Leu Trp Lys Pro Gly Ala Gln Asp Ala Ser Ser Gln Ala Gln Gly Gly Ser Ser Cys Ile Leu Arg Glu Glu Ala Arg Met Pro His Ser Ala Gly Gly Thr Ala Gly Val Gly Leu Glu Ala Ala Glu Pro Thr Ala Leu Leu Thr Arg Ala Glu Pro Pro Ser Glu Pro Thr Glu Ile Arg Pro Gln Lys Arg Lys Lys Gly Pro Ala Pro Lys Met Leu Gly Asn Glu Leu Cys Ser Val Cys Gly Asp Lys Ala Ser Gly Phe His Tyr Asn Val Leu Ser Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Ser Val Ile Lys Gly Ala His Tyr Ile Cys His Ser Gly Gly His Cys Pro Met Asp Thr Tyr Met Arg Arg Lys Cys Gln Glu Cys Arg Leu Arg Lys Cys Arg Gln Ala Gly Met Arg Glu Glu Cys Val Leu Ser Glu Glu Gln Ile Arg Leu Lys Lys Leu Lys Arg Gln Glu Glu Glu Gln Ala His Ala Thr Ser Leu Pro Pro Arg Arg Ser Ser Pro Pro Gln Ile Leu Pro Gln Leu Ser Pro Glu Gln Leu Gly Met Ile Glu Lys Leu Val Ala Ala Gln Gln Gln Cys 21.0 Asn Arg Arg Ser Phe Ser Asp Arg Leu Arg Val Thr Pro Trp Pro Met Ala Pro Asp Pro His Ser Arg Glu Ala Arg Gln Gln Arg Phe Ala His Phe Thr Glu Leu Ala Ile Val Ser Val Gln Glu Ile Val Asp Phe Ala Lys Gln Leu Pro Gly Phe Leu Gln Leu Ser Arg Glu Asp Gln Ile Ala 

.

.

\$

-4-

Leu Leu Lys Thr Ser Ala Ile Glu Val Met Leu Leu Glu Thr Ser Arg Arg Tyr Asn Pro Gly Ser Glu Ser Ile Thr Phe Leu Lys Asp Phe Ser Tyr Asn Arg Glu Asp Phe Ala Lys Ala Gly Leu Gln Val Glu Phe Ile Asn Pro Ile Phe Glu Phe Ser Arg Ala Met Asn Glu Leu Gln Leu Asn Asp Ala Glu Phe Ala Leu Leu Ile Ala Ile Ser Ile Phe Ser Ala Asp Arg Pro Asn Val Gln Asp Gln Leu Gln Val Glu Arg Leu Gln His Thr Tyr Val Glu Ala Leu His Ala Tyr Val Ser Ile His His Pro His Asp Arg Leu Met Phe Pro Arg Met Leu Met Lys Leu Val Ser Leu Arg Thr Leu Ser Ser Val His Ser Glu Gln Val Phe Ala Leu Arg Leu Gln Asp Lys Lys Leu Pro Pro Leu Leu Ser Glu Ile Trp Asp Val His Glu <210> 3 <211> 1815 <212> DNA <213> Homo Sapien <220> <221> CDS <222> (56)...(1438) <300> <308> GeneBank XM_046419 <309> 2002-08-01 <400>3cgctgttgct tggagagggg cgggacctgg agagaggctg ctccgtgacc ccacc atg Met tee tet eet ace acg agt tee etg gat ace eet etg eet gga aat gge Ser Ser Pro Thr Thr Ser Ser Leu Asp Thr Pro Leu Pro Gly Asn Gly ccc cct cag cct ggc gcc cct tct tct tca ccc act gta aag gag gag Pro Pro Gln Pro Gly Ala Pro Ser Ser Ser Pro Thr Val Lys Glu Glu ggt ccg gag ccg tgg ccc ggg ggt ccg gac cct gat gtc cca ggc act Gly Pro Glu Pro Trp Pro Gly Gly Pro Asp Pro Asp Val Pro Gly Thr gat gag gcc agc tca gcc tgc agc aca gac tgg gtc atc cca gat ccc Ăsp Ĝlu Āla Sēr Ser Āla Cys Sēr Thr Āsp Trp Val Ile Pro Āsp Pro Ğlu Ğlu Ğlu Pro Ğlu Arg Lys Arg Lys Lys Ğly Pro Ala Pro Lys Met ctg ggc cac gag ctt tgc cgt gtc tgt ggg gac aag gcc tcc ggc ttc Leu Gly His Glu Leu Cys Arg Val Cys Gly Asp Lys Ala Ser Gly Phe cac tac aac gtg ctc agc tgc gaa ggc tgc aag ggc ttc ttc cgg cgc His Tyr Asn Val Leu Ser Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg 

agt Sei	r gtg Val 115	Val	cgt Arg	ggt Gly	glà aaa	gcc Ala 120	agg Arg	cgc Arg	tat Tyr	gcc Ala	tgo Cys 125	Arg	ggt Gly	gga Gly	gga Gly	442
aco Th: 130	tgo Cys )	cag Gln	atg Met	gac Asp	gct Ala 135	ttc Phe	atg Met	cgg Arg	cgc Arg	aag Lys 140	tgc Cys	cag Gln	cag Gln	l tgc Cys	cgg Arg 145	490
ct <u>o</u> Lei	j cgc 1 Arg	aag Lys	tgc Cys	aag Lys 150	gag Glu	gca Ala	gjà aaa	atg Met	agg Arg 155	gag Glu	cag Gln	tgc Cys	gto Val	ctt Leu 160	tct Ser	538
gaa Glu	a gaa 1 Glu	cag Gln	atc Ile 165	Arg	aag Lys	aag Lys	aag Lys	att Ile 170	cgg Arg	aaa Lys	cag Gln	cag Gln	cag Gln 175	Glu	tca Ser	586
ca <u>c</u> Glr	g tca 1 Ser	cag Gln 180	Ser	cag Gln	tca Ser	cct Pro	gtg Val 185	glà aaa	ccg Pro	cag Gln	ggc Gly	agc Ser 190	agc Ser	agc Ser	tca Ser	634
gco Ala	tct Ser 195	Gly	cct Pro	elà aaa	gct Ala	tcc Ser 200	cct Pro	ggt Gly	gga Gly	tct Ser	gag Glu 205	gca Ala	ggc Gly	agc Ser	cag Gln	682
990 Gly 210	tcc Ser	elà aaa	gaa Glu	ggc Gly	gag Glu 215	ggt Gly	gtc Val	cag Gln	cta Leu	aca Thr 220	gcg Ala	gct Ala	caa Gln	gaa Glu	cta Leu 225	730
at <u>o</u> Met	r atc Ile	cag Gln	cag Gln	ttg Leu 230	gtg Val	gcg Ala	gcc Ala	caa Gln	ctg Leu 235	cag Gln	tgc Cys	aac Asn	aaa Lys	cgc Arg 240	tcc Ser	778
tto Phe	tcc Ser	gac Asp	cag Gln 245	ccc Pro	aaa Lys	gtc Val	acg Thr	ccc Pro 250	tgg Trp	ccc Pro	ctg Leu	ggc Gly	gca Ala 255	gac Asp	ccc Pro	826
cag Glr	tcc Ser	cga Arg 260	gat Asp	gcc Ala	cgc Arg	cag Gln	caa Gln 265	cgc Arg	ttt Phe	gcc Ala	cac His	ttc Phe 270	acg Thr	gag Glu	ctg Leu	874
gcc Ala	atc Ile 275	atc Ile	tca Ser	gtc Val	cag Gln	gag Glu 280	atc Ile	gtg Val	gac Asp	ttc Phe	gct Ala 285	aag Lys	caa Gln	gtg Val	cct Pro	922
ggt Gly 290	ttc Phe	ctg Leu	Gln	ctg Leu	Gly	Arg	Glu	Asp	Gln	atc Ile 300	Ala	ctc Leu	ctg Leu	Lys	gca Ala 305	970
tcc Ser	act Thr	atc Ile	gag Glu	atc Ile 310	atg Met	ctg Leu	cta Leu	gag Glu	aca Thr 315	gcc Ala	agg Arg	cgc Arg	tac Tyr	aac Asn 320	cac His	1018
gag Glu	aca Thr	gag Glu	tgt Cys 325	atc Ile	acc Thr	ttc Phe	ttg Leu	aag Lys 330	gac Asp	ttc Phe	acc Thr	tac Tyr	agc Ser 335	aag Lys	gac Asp	1066
gac Asp	ttc Phe	cac His 340	cgt Arg	gca Ala	ggc Gly	ctg Leu	cag Gln 345	gtg Val	gag Glu	ttc Phe	atc Ile	aac Asn 350	ccc Pro	atc Ile	ttc Phe	1114
gag Glu	ttc Phe 355	tcg Ser	cgg Arg	gcc Ala	atg Met	cgg Arg 360	cgg Arg	ctg Leu	ggc Gly	ctg Leu	gac Asp 365	gac Asp	gct Ala	gag Glu	tac Tyr	1162
gcc Ala	ctg Leu	ctc Leu	atc Ile	gcc Ala	atc Ile	aac Asn	atc Ile	ttc Phe	tcg Ser	gcc Ala	gac Asp	cgg Arg	ccc Pro	aac Asn	gtg Val	1210

1

-6-

370	375	5			380					385	
cag gag ccg ggc Gln Glu Pro Gly	cgc gto Arg Val	gag g . Glu A	jcg ttg la Leu	cag Gln	cag Gln	ccc Pro	tac Tvr	gtg Val	gag Glu	aca	1258
	390			395			-		400		
ctg ctg tcc tac Leu Leu Ser Tyr 405	Thr Arg	: atc a f Ile L	ag agg ys Arg 410	Pro	cag Gln	gac Asp	cag Gln	ctg Leu 415	cgc Arg	ttc Phe	1306
ccg cgc atg ctc Pro Arg Met Leu 420	atg aag Met Lys	Leu V	tg agc al Ser 25	ctg Leu	cgc Arg	acg Thr	ctg Leu 430	agc Ser	tct Ser	gtg Val	1354
cac tcg gag cag His Ser Glu Gln 435	gtc ttc Val Phe	gcc t Ala L 440	tg cgg eu Arg	ctc Leu	cag Gln	gac Asp 445	aag Lys	aag Lys	ctg Leu	ccg Pro	1402
cct ctg ctg tcg Pro Leu Leu Ser 450	gag ato Glu Ile 455	Trp A	ac gtc sp Val	cac His	gag Glu 460	tga *	<u>aaaa</u>	gatg	gee		1448
acccagcccc acag cttcctaggg tgga ggataagccc cagt ggtgaaaggg ttgc acacctcaag ccca cccccctagc ccgg aaaacag	agggggc c ccaggt c aggtcc c gcacgc a	ctgggc caggag gaccac gtgcac	cga gco gct cco tga cco ctt gaa	ctgta ctccc cttcc acaga	lgac tgc cgg	ctat ccag ctgo	cggo Jogag coto	tc t tc t cc t	tcat tcca tcccat	cccttg agaagg cagctt	1568 1628 1688 1748
<210> 4 <211> 460							,				
<212> PRT <213> Homo Sapio	en										
<212> PRT <213> Homo Sapio <400> 4 Met Ser Ser Pro		Ser Se	er Leu		Thr	Pro	Leu	Pro		Asn	
<212> PRT <213> Homo Sapio <400> 4 Met Ser Ser Pro 1 Gly Pro Pro Gln	Thr Thr 5		ro Ser	10				Val	15		
<212> PRT <213> Homo Sapio <400> 4 Met Ser Ser Pro 1	Thr Thr 5 Pro Gly	Ala Pi	ro Ser 25 ly Gly	10 Ser	Ser	Pro	Thr Asp	Val 30	15 [°] Lys	Glu	
<212> PRT <213> Homo Sapio <400> 4 Met Ser Ser Pro 1 Gly Pro Pro Gln 20 Glu Gly Pro Glu 35 Thr Asp Glu Ala 50	Thr Thr 5 Pro Gly Pro Trp Ser Ser	Ala Pr Pro G 4( Ala Cy 55	ro Ser 25 ly Gly 0 ys Ser	10 Ser Pro J Thr J	Ser Asp Asp	Pro Pro Trp 60	Thr Asp 45 Val	Val 30 Val Ile	15 Lys Pro Pro	Glu Gly Asp	
<212> PRT <213> Homo Sapio <400> 4 Met Ser Ser Pro 1 Gly Pro Pro Gln 20 Glu Gly Pro Glu 35 Thr Asp Glu Ala 50 Pro Glu Glu Glu	Thr Thr 5 Pro Gly Pro Trp Ser Ser Pro Glu 70	Ala Pro Pro G Ala Cy 55 Arg Ly	ro Ser 25 ly Gly 0 ys Ser ys Arg	10 Ser Pro Thr Lys	Ser Asp Asp Lys 75	Pro Pro Trp 60 Gly	Thr Asp 45 Val Pro	Val 30 Val Ile Ala	15 Lys Pro Pro Pro	Glu Gly Asp Lys 80	
<212> PRT <213> Homo Sapio <400> 4 Met Ser Ser Pro 1 Gly Pro Pro Gln 20 Glu Gly Pro Glu 35 Thr Asp Glu Ala 50 Pro Glu Glu Glu 65 Met Leu Gly His	Thr Thr 5 Pro Gly Pro Trp Ser Ser Pro Glu 70 Glu Leu 85	Ala Pro Pro GI Ala Cy 55 Arg Ly Cys An	ro Ser 25 ly Gly 0 ys Ser ys Arg rg Val	10 Ser Pro Thr Lys Cys 90	Ser Asp Asp Lys 75 Gly	Pro Pro Trp 60 Gly Asp	Thr Asp 45 Val Pro Lys	Val 30 Val Ile Ala Ala	15 Lys Pro Pro Pro Ser 95	Glu Gly Asp Lys 80 Gly	
<212> PRT <213> Homo Sapio <400> 4 Met Ser Ser Pro 1 Gly Pro Pro Gln 20 Glu Gly Pro Glu 35 Thr Asp Glu Ala 50 Pro Glu Glu Glu 65 Met Leu Gly His Phe His Tyr Asn 100	Thr Thr 5 Pro Gly Pro Trp Ser Ser Pro Glu 70 Glu Leu 85 Val Leu	Ala Pro Pro G ² Ala C ₂ 55 Arg L ₂ Cys Ar Ser C ₂	ro Ser 25 1y Gly 0 ys Ser ys Arg rg Val ys Glu 105	10 Ser Pro Thr Lys Cys Gly Gly	Ser Asp Asp Lys 75 Gly Cys	Pro Pro Trp 60 Gly Asp Lys	Thr Asp 45 Val Pro Lys Gly	Val 30 Val Ile Ala Ala Phe 110	15 Lys Pro Pro Pro Ser 95 Phe	Glu Gly Asp Lys 80 Gly Arg	
<212> PRT <213> Homo Sapio <400> 4 Met Ser Ser Pro 1 Gly Pro Pro Gln 20 Glu Gly Pro Glu 35 Thr Asp Glu Ala 50 Pro Glu Glu Glu 65 Met Leu Gly His Phe His Tyr Asn 100 Arg Ser Val Val	Thr Thr Pro Gly Pro Trp Ser Ser Pro Glu 70 Glu Leu 85 Val Leu Arg Gly	Ala Pro Pro G ² Ala Cy 55 Arg Ly Cys An Ser Cy Gly Al	ro Ser 25 1y Gly 0 ys Ser ys Arg rg Val ys Glu 105 1a Arg 20	10 Ser Pro Thr Lys Cys Gly Arg	Ser Asp Asp Lys 75 Gly Cys Tyr	Pro Pro Trp 60 Gly Asp Lys Ala	Thr Asp 45 Val Pro Lys Gly Cys 125	Val 30 Val Ile Ala Ala Phe 110 Arg	15 Lys Pro Pro Pro Ser 95 Phe Gly	Glu Gly Asp Lys 80 Gly Arg Gly	
<212> PRT <213> Homo Sapio <400> 4 Met Ser Ser Pro 1 Gly Pro Pro Gln 20 Glu Gly Pro Glu 35 Thr Asp Glu Ala 50 Pro Glu Glu Glu 65 Met Leu Gly His Phe His Tyr Asn 100 Arg Ser Val Val 115 Gly Thr Cys Gln 130	Thr Thr 5 Pro Gly Pro Trp Ser Ser Pro Glu 70 Glu Leu 85 Val Leu Arg Gly Met Asp	Ala Pro Pro GI Ala Cy 55 Arg Ly Cys An Ser Cy Gly Al 12 Ala Pri 135	ro Ser 25 y Gly 0 ys Ser ys Arg rg Val ys Glu 105 la Arg 20 ne Met	10 Ser Pro Lys Cys Gly Arg Arg	Ser Asp Asp Lys Gly Cys Tyr	Pro Pro Trp 60 Gly Asp Lys Ala Lys Lys 140	Thr Asp 45 Val Pro Lys Gly Cys Cys	Val 30 Val Ile Ala Ala Phe 110 Arg Gln	15 Lys Pro Pro Pro Ser 95 Phe Gly Gln	Glu Gly Asp Lys 80 Gly Arg Gly Cys	
<pre>&lt;212&gt; PRT &lt;213&gt; Homo Sapio &lt;400&gt; 4 Met Ser Ser Pro 1 Gly Pro Pro Gln 20 Glu Gly Pro Glu 35 Thr Asp Glu Ala 50 Pro Glu Glu Glu 65 Met Leu Gly His Phe His Tyr Asn 100 Arg Ser Val Val 115 Gly Thr Cys Gln 130 Arg Leu Arg Lys 145</pre>	Thr Thr 5 Pro Gly Pro Trp Ser Ser Pro Glu 70 Glu Leu 85 Val Leu Arg Gly Met Asp Cys Lys 150	Ala Pr Pro GI Ala Cy 55 Arg Ly Cys An Ser Cy Gly Al 12 Ala Pr 135 Glu Al	ro Ser 25 1y Gly 0 ys Ser ys Arg rg Val ys Glu 105 1a Arg 20 me Met 1a Gly	10 Ser Thr Lys Cys Gly Arg Arg Met 2 Met 2	Ser Asp Asp Lys Gly Cys Tyr Arg	Pro Pro Gly Asp Lys Ala Lys 140 Glu	Thr Asp 45 Val Pro Lys Gly Cys Cys Gln	Val 30 Val Ala Ala Phe 110 Arg Gln Cys	15 Lys Pro Pro Ser 95 Phe Gly Gln Val	Glu Gly Asp Lys 80 Gly Arg Gly Cys Leu 160	
<pre>&lt;212&gt; PRT &lt;213&gt; Homo Sapio &lt;400&gt; 4 Met Ser Ser Pro 1 Gly Pro Pro Gln 20 Glu Gly Pro Glu 35 Thr Asp Glu Ala 50 Pro Glu Glu Glu 65 Met Leu Gly His Phe His Tyr Asn 100 Arg Ser Val Val 115 Gly Thr Cys Gln 130 Arg Leu Arg Lys 145 Ser Glu Glu Glu Gln</pre>	Thr Thr 5 Pro Gly Pro Trp Ser Ser Pro Glu 70 Glu Leu 85 Val Leu Arg Gly Met Asp Cys Lys 150 Ile Arg 165	Ala Pr Pro GI Ala Cy 55 Arg Ly Cys An Ser Cy Gly Al 12 Ala Pr 135 Glu Al Lys Ly	ro Ser 25 1y Gly 0 ys Ser ys Arg rg Val ys Glu 105 1a Arg 20 Met la Gly ys Lys	10 Ser Pro Lys Cys Gly Gly Arg Arg Met Ile 70	Ser Asp Asp Lys Gly Cys Tyr Arg 155 Arg	Pro Pro Gly Asp Lys Ala Lys Glu Lys	Thr Asp 45 Val Pro Lys Gly Cys Cys Gln Gln	Val 30 Val Ile Ala Ala Phe 110 Arg Gln Cys Gln	15 Lys Pro Pro Ser 95 Phe Gly Gln Val Gln 175	Glu Gly Asp Lys 80 Gly Arg Gly Cys Leu 160 Glu	
<pre>&lt;212&gt; PRT &lt;213&gt; Homo Sapio &lt;400&gt; 4 Met Ser Ser Pro 1 Gly Pro Pro Gln 20 Glu Gly Pro Glu 35 Thr Asp Glu Ala 50 Pro Glu Glu Glu 65 Met Leu Gly His Phe His Tyr Asn 100 Arg Ser Val Val 115 Gly Thr Cys Gln 130 Arg Leu Arg Lys 145 Ser Glu Glu Gln Ser Gln Ser Gln 180</pre>	Thr Thr 5 Pro Gly Pro Trp Ser Ser Pro Glu 70 Glu Leu 85 Val Leu Arg Gly Met Asp Cys Lys 150 165 Ser Gln	Ala Pr Pro GI Ala Cy 55 Arg Ly Cys An Ser Cy Gly Al 12 Ala Pr 135 Glu Al Lys Ly Ser Pr	ro Ser 25 1y Gly 0 ys Ser ys Arg rg Val ys Glu 105 1a Arg 20 he Met La Gly ys Lys ro Val 185	10 Ser Pro Lys Cys Gly Gly Arg Arg Met Tile To Gly I	Ser Asp Asp Lys 75 Gly Cys Tyr Arg 155 Arg	Pro Pro Gly Asp Lys Ala Lys Glu	Thr Asp 45 Val Pro Lys Gly Cys Cys Gln Gln Gln	Val 30 Val Ile Ala Ala Phe 110 Arg Gln Cys Gln Ser 190	15 Lys Pro Pro Ser 95 Phe Gly Gln Val Gln 175 Ser	Glu Gly Asp Lys 80 Gly Arg Gly Cys Leu 160 Glu Ser	
<pre>&lt;212&gt; PRT &lt;213&gt; Homo Sapio &lt;400&gt; 4 Met Ser Ser Pro 1 Gly Pro Pro Gln 20 Glu Gly Pro Glu 35 Thr Asp Glu Ala 50 Pro Glu Glu Glu 65 Met Leu Gly His Phe His Tyr Asn 100 Arg Ser Val Val 115 Gly Thr Cys Gln 130 Arg Leu Arg Lys 145 Ser Glu Glu Glu Gln Ser Gln Ser Gln 180 Ser Ala Ser Gly 195</pre>	Thr Thr Pro Gly Pro Trp Ser Ser Pro Glu Clu Leu Arg Gly Met Asp Cys Lys 150 165 Ser Gln Pro Gly	Ala Pro Pro GI Ala Cy 55 Arg Ly Cys An Ser Cy Gly Al 12 Ala Ph 135 Glu Al Lys Ly Ser Pr Ala Se 20	ro Ser 25 y Gly ys Ser ys Arg rg Val ys Glu 105 la Arg 20 he Met la Gly ys Lys ro Val 185 er Pro	10 Ser Pro Lys Cys 90 Gly Arg 2 Arg 2 Met 2 11e 4 Cys 90 Gly 1 Cys 90 Gly 1 Cys 90 Gly 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 Cys 1 C Cys Cys 1 C Cys Cys 1 Cys Cys Cys Cys Cys Cys Cys Cys Cys Cys	Ser Asp Asp Cys Cys Tyr Arg Arg Arg Sly	Pro Pro Gly Asp Lys Ala Lys Glu Lys Gln Ser	Thr Asp 45 Val Pro Lys Gly Cys Gly Gln Gln Gly Gly 205	Val 30 Val Ile Ala Ala Phe 110 Arg Gln Cys Gln Cys Gln Ser 190 Ala	15 Lys Pro Pro Ser 95 Phe Gly Gln Val Gln 175 Ser Gly	Glu Gly Asp Lys Gly Arg Gly Cys Leu 160 Glu Ser Ser	
<pre>&lt;212&gt; PRT &lt;213&gt; Homo Sapio &lt;400&gt; 4 Met Ser Ser Pro 1 Gly Pro Pro Glu 20 Glu Gly Pro Glu 35 Thr Asp Glu Ala 50 Pro Glu Glu Glu 65 Met Leu Gly His Phe His Tyr Asn 100 Arg Ser Val Val 115 Gly Thr Cys Gln 130 Arg Leu Arg Lys 145 Ser Glu Glu Gln Ser Ala Ser Gly 195 Gln Gly Ser Gly</pre>	Thr Thr Pro Gly Pro Trp Ser Ser Pro Glu Clu Leu Arg Gly Met Asp Cys Lys 150 Ile Arg 165 Ser Gln Pro Gly Glu Gly	Ala Pro Pro G ¹ Ala C ₅ 55 Arg L ₃ Cys Ar Ser C ₃ Gly Al 12 Ala Pr 135 Glu Al Lys Ly Ser Pr Ala Se 20 Glu Gl	ro Ser 25 y Gly ys Ser ys Arg rg Val ys Glu 105 la Arg 20 he Met la Gly ys Lys ro Val 185 po 0 y Val	10 Ser Pro Lys Cys 0 Gly 0 Gly 0 Arg 2 Met 2 170 Gly 1 Gly 0 Gly 0 Gly 0 Gly 1	Ser Asp Asp Lys Gly Cys Tyr Arg Arg Sly Leu	Pro Pro Gly Asp Lys Ala Lys Glu Lys Glu Ser Fhr	Thr Asp 45 Val Pro Lys Gly Cys Gly Gln Gln Gly 205 Ala	Val 30 Val Ile Ala Ala Phe 110 Arg Gln Cys Gln Ser 190 Ala Ala	15 Lys Pro Pro Ser 95 Phe Gly Gln Val Gln 175 Ser Gly Gln	Glu Gly Asp Lys 80 Gly Arg Gly Cys Leu 160 Glu Ser Ser Glu	
<pre>&lt;212&gt; PRT &lt;213&gt; Homo Sapio &lt;400&gt; 4 Met Ser Ser Pro 1 Gly Pro Pro Gln 20 Glu Gly Pro Glu 35 Thr Asp Glu Ala 50 Pro Glu Glu Glu 65 Met Leu Gly His Phe His Tyr Asn 100 Arg Ser Val Val 115 Gly Thr Cys Gln 130 Arg Leu Arg Lys 145 Ser Glu Glu Gln Ser Gln Ser Gln 180 Ser Ala Ser Gly 195 Gln Gly Ser Gly</pre>	Thr Thr Pro Gly Pro Trp Ser Ser Pro Glu Clu Leu Arg Gly Met Asp Cys Lys 150 Ile Arg 165 Ser Gln Pro Gly Glu Gly Gln Leu 230	Ala Pro Pro GI Ala Cy 55 Arg Ly Cys An Ser Cy Gly Al 12 Ala Pr 135 Glu Al Lys Ly Ser Pr Ala Se 20 Glu Gl 215 Val Al	ro Ser 25 y Gly ys Ser ys Arg rg Val ys Glu 105 la Arg 20 Met la Gly ys Lys co Val 185 er Pro 00 y Val	10 Ser Pro Lys Cys Gly Gly Gly Gly Gly Gly Gly Gln I Cln I Cln I	Ser Asp Asp Lys Gly Cys Tyr Arg 155 Arg Sly Sly Leu	Pro Pro Gly Asp Lys Ala Lys Glu Lys Glu Ser Fhr 220 Sln	Thr Asp 45 Val Pro Lys Gly Cys Gln Gln Gln Gln Cys Ala Zos Ala	Val 30 Val Ile Ala Ala Phe 110 Arg Gln Cys Gln Ser 190 Ala Ala Asn	15 Lys Pro Pro Ser 95 Phe Gly Gln Val Gln 175 Ser Gly Gln Lys	Glu Gly Asp Lys 80 Gly Arg Gly Cys Leu 160 Glu Ser Ser Glu Arg 240	

-7-

Pro Gln Ser Arg Asp Ala Arg Gln Gln Arg Phe Ala His Phe Thr Glu Leu Ala Ile Ile Ser Val Gln Glu Ile Val Asp Phe Ala Lys Gln Val Pro Gly Phe Leu Gln Leu Gly Arg Glu Asp Gln Ile Ala Leu Leu Lys Ala Ser Thr Ile Glu Ile Met Leu Leu Glu Thr Ala Arg Arg Tyr Asn His Glu Thr Glu Cys Ile Thr Phe Leu Lys Asp Phe Thr Tyr Ser Lys Asp Asp Phe His Arg Ala Gly Leu Gln Val Glu Phe Ile Asn Pro Ile Phe Glu Phe Ser Arg Ala Met Arg Arg Leu Gly Leu Asp Asp Ala Glu Tyr Ala Leu Leu Ile Ala Ile Asn Ile Phe Ser Ala Asp Arg Pro Asn Val Gln Glu Pro Gly Arg Val Glu Ala Leu Gln Gln Pro Tyr Val Glu Ala Leu Leu Ser Tyr Thr Arg Ile Lys Arg Pro Gln Asp Gln Leu Arg Phe Pro Arg Met Leu Met Lys Leu Val Ser Leu Arg Thr Leu Ser Ser Val His Ser Glu Gln Val Phe Ala Leu Arg Leu Gln Asp Lys Lys Leu Pro Pro Leu Leu Ser Glu Ile Trp Asp Val His Glu <210> 5 <211> 2070 <212> DNA <213> Rattus norvegicus <220> <221> CDS <222> (172)...(1581) <300> <308> GeneBank U18374 <309> 1995-06-21 <400>5ctgagttctg agcgtctaca gcgaaagtgc tgggctttgg aaaggagacc tgggctccga 60 atcetetcag ggeettggae gtetetgaee caaaacaate caaggttett atttgaagae 120 caccateeca gaageacatt etegagttga aaagttggag tggtgttega a atg aat 177 Met Asn ctg att ggg ccc tcc cat tta caa gcc acg gac gag ttt gct ctt tct Leu Ile Gly Pro Ser His Leu Gln Ala Thr Asp Glu Phe Ala Leu Ser gaa aac tta ttt gga gtg cta aca gag cac gcg gca ggt cct ctg ggg Glu Asn Leu Phe Gly Val Leu Thr Glu His Ala Ala Gly Pro Leu Gly cag aat ctg gac ttg gaa tcg tac tcc cca tac aac aat gtg cag ttt Gln Asn Leu Asp Leu Glu Ser Tyr Ser Pro Tyr Asn Asn Val Gln Phe cct caa gtt cag cca cag atc tcc tcc tcg tcc tat tat tcc aac ctg Pro Gln Val Gln Pro Gln Ile Ser Ser Ser Ser Tyr Tyr Ser Asn Leu ggt ttc tac ccg caa caa ccg gaa gac tgg tac tct cct gga ctc tat Gly Phe Tyr Pro Gln Gln Pro Glu Asp Trp Tyr Ser Pro Gly Leu Tyr

			70					75					80	)		
gaa Glu	ctc Leu	agg Arg 85	Arg	atg Met	ccc Pro	act Thr	gag Glu 90	. Ser	gtg Val	tac Tyr	cag Gln	gga Gly 95	Glu	g act 1 Thr	gag Glu	465
gta Val	tcc Ser 100	GLu	atg Met	cct Pro	gtg Val	aca Thr 105	aag Lys	aag Lys	ccg Pro	cga Arg	atg Met 110	gcc Ala	gcc Ala	tca Ser	tcg Ser	513
gcg Ala 115	gga Gly	aga Arg	ata Ile	aaa Lys	999 Gly 120	gat Asp	gag Glu	ctg Leu	tgt Cys	gtg Val 125	gtc Val	tgc Cys	gga Gly	gac Asp	agg Arg 130	561
gcc Ala	tct Ser	glà aaa	tac Tyr	cat His 135	tac Tyr	aac Asn	gcg Ala	ctc Leu	acc Thr 140	tgc Cys	gag Glu	ggc Gly	tgo Cys	aaa Lys 145	ggt Gly	609
ttc Phe	ttc Phe	cga Arg	aga Arg 150	agc Ser	atc Ile	acc Thr	aaa Lys	aac Asn 155	gcc Ala	gtg Val	tac Tyr	aag Lys	tgt Cys 160	Lys	aac Asn	657
glà aaa	ggc Gly	aac Asn 165	tgc Cys	gtg Val	atg Met	gat Asp	atg Met 170	tac Tyr	atg Met	cgt Arg	cgg Arg	aag Lys 175	tgc Cys	cag Gln	gat Asp	705
tgc Cys	cgg Arg 180	cta Leu	agg Arg	aag Lys	tgc Cys	aga Arg 185	gag Glu	atg Met	gga Gly	atg Met	ttg Leu 190	gct Ala	gaa Glu	tgt Cys	ttg Leu	753
tta Leu 195	act Thr	gaa Glu	att Ile	cag Gln	tgt Cys 200	aaa Lys	tct Ser	aaa Lys	cgg Arg	cta Leu 205	agg Arg	aaa Lys	aat Asn	gtg Val	aag Lys 210	801
cag Gln	cat His	gcg Ala	gat Asp	cag Gln 215	aca Thr	gtg Val	aat Asn	gag Glu	gac Asp 220	agc Ser	gaa Glu	glà aaa	cgt Arg	gac Asp 225	ttg Leu	849
cgg Arg	caa Gln	gtg Val	acc Thr 230	tcc Ser	acg Thr	acc Thr	aag Lys	cta Leu 235	tgc Cys	agg Arg	gag Glu	aaa Lys	act Thr 240	gaa Glu	ctc Leu	897
act Thr	gta Val	gac Asp 245	cag Gln	cag Gln	acc Thr	ctc Leu	ctg Leu 250	gat Asp	tat Tyr	att Ile	atg Met	gac Asp 255	tca Ser	tac Tyr	agc Ser	945
aaa Lys	cag Gln 260	aga Arg	atg Met	cca Pro	cag Gln	gag Glu 265	atc Ile	aca Thr	aat Asn	aaa Lys	atc Ile 270	tta Leu	aaa Lys	gaa Glu	gaa Glu	993
ttt Phe 275	agt Ser	gca Ala	gaa Glu	gaa Glu	aat Asn 280	ttt Phe	ctc Leu	ata Ile	tta Leu	aca Thr 285	gaa Glu	atg Met	gct Ala	acc Thr	agt Ser 290	1041
cac His	gta Val	cag Gln	att Ile	ctc Leu 295	gta Val	gaa Glu	ttc Phe	aca Thr	aaa Lys 300	aga Arg	ctt Leu	cca Pro	glà aaa	ttt Phe 305	cag Gln	1089
aca Thr	ctg Leu	gac Asp	cac His 310	gaa Glu	gac Asp	cag Gln	att Ile	gct Ala 315	ttg Leu	ctc Leu	aaa Lys	glà aaa	tcc Ser 320	gca Ala	gtc Val	1137
gag Glu	gcc Ala	atg Met 325	ttc Phe	ctt Leu	cgt Arg	Ser	gcg Ala 330	gag Glu	att Ile	ttc Phe	Asn	aag Lys 335	aaa Lys	ctt Leu	cct Pro	1185
gcc	gga	cac	gca	gac	ctg	ttg	gaa	gaa	aga	att	cga	aag	agc	ggc	atc	1233

100

115

Ala Gly His Ala Asp Leu Leu Glu Glu Arg Ile Arg Lys Ser Gly Ile 340 345 350 tcc gat gag tac ata acc ccg atg ttt agt ttc tat aaa agt gtc ggg 1281 Ser Asp Glu Tyr Ile Thr Pro Met Phe Ser Phe Tyr Lys Ser Val Gly 355 360 365 370 gag ctg aaa atg acc cag gaa gag tac gct ctg ctc aca gca att gtc 1329 Glu Leu Lys Met Thr Gln Glu Glu Tyr Ala Leu Leu Thr Ala Ile Val 375 380 385 atc ctc tct cca gac aga caa tac ata aag gat aga gag gca gtg gag 1377 Ile Leu Ser Pro Asp Arg Gln Tyr Ile Lys Asp Arg Glu Ala Val Glu 390 395 400 aag ott cag gag oot otg oto gat gto ota caa aaa oto tgo aag ato 1425 Lys Leu Gln Glu Pro Leu Leu Asp Val Leu Gln Lys Leu Cys Lys Ile 405 410 415 tac cag ccc gag aac cct cag cat ttc gcc tgc ctc ctg ggt cgc ctg 1473 Tyr Gln Pro Glu Asn Pro Gln His Phe Ala Cys Leu Leu Gly Arg Leu 420 425 430 aca gaa ctc cgg aca ttc aac cat cac cac gct gag atg ctg atg tct 1521 Thr Glu Leu Arg Thr Phe Asn His His His Ala Glu Met Leu Met Ser 435 440 445 tgg agg gtg aat gac cac aag ttc acc ccg ctc ctc tgt gag atc tgg 1569 Trp Arg Val Asn Asp His Lys Phe Thr Pro Leu Leu Cys Glu Ile Trp 455 460 465 gat gtg cag tga aggacacggg gagaggctag ctccttgtcc tcctcagagc 1621 Asp Val Gln agcaacctgg tattggactt cccttctttt catttgtacc aggtctcact caagaatctc 1681 aatgaatatt tatgtggcaa ttatacaatt cccacaactg taaatacagg ctccatagaa 1741 ttgetteece tacactgtat tttacaagge ttegggaaae eecactgaca egeeetttt 1801 gcctcattaa atcaattgtt acttcaattt tgtcaactga gctagggacc gcctcgtttt 1861 atcetecatg cggcaacatt atatatat atattttate aaatagetgt tttetettee 1921 ttttttttt ttttttttt cggagctggg gactgaaccc agggccttgc gcttgctagg 1981 caagcgctct accactgagc taaatcccca acccctatta aatagctgtt ttcaactgag 2041 acaataaact gaacgtaatg ccaagagaa 2070 <210> 6 <211> 469 <212> PRT <213> Rattus norvegicus <400>6Met Asn Leu Ile Gly Pro Ser His Leu Gln Ala Thr Asp Glu Phe Ala 1 5 10 15 Leu Ser Glu Asn Leu Phe Gly Val Leu Thr Glu His Ala Ala Gly Pro 20 25 30 Leu Gly Gln Asn Leu Asp Leu Glu Ser Tyr Ser Pro Tyr Asn Asn Val 35 40 45 Gln Phe Pro Gln Val Gln Pro Gln Ile Ser Ser Ser Tyr Tyr Ser 50 55 60 Asn Leu Gly Phe Tyr Pro Gln Gln Pro Glu Asp Trp Tyr Ser Pro Gly 65 70 75 80 Leu Tyr Glu Leu Arg Arg Met Pro Thr Glu Ser Val Tyr Gln Gly Glu 85 90 95 Thr Glu Val Ser Glu Met Pro Val Thr Lys Lys Pro Arg Met Ala Ala

105

Ser Ser Ala Gly Arg Ile Lys Gly Asp Glu Leu Cys Val Val Cys Gly

Asp Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu Thr Cys Glu Gly Cys

120

110

125

-9-

......

-10-

											<b>T</b> 0						
	Lys 145	130 Gly	Phe	Phe	Arg	Arg 150	135 Ser	Ile	Thr	Lys		140 Ala	Val	Tyr	Lys	-	
		Asn	Gly	Gly	Asn			Met	Asp	Met	155 Tyr	Met	Arg	Arg	Lys	160 Cys	
					165				Arg	170		Gly		Leu	175		
	Cys	Leu	Leu 195		Glu	Ile	Gln	Cys	185 Lys	Ser	Lys	Arg		190 Arg	Lys	Asn	
	Val	Lys 210		His	Ala	Asp	Gln 215	200 Thr	Val	Asn	Glu	Asp	205 Ser	Glu	Gly	Arg	
	Asp 225		Arg	Gln	Val	Thr 230		Thr	Thr	Lys	Leu 235	220 Cys	Arg	Glu	Lys		
		Leu	Thr	Val	Asp 245	Gln	Gln	Thr	Leu	Leu 250	Asp	Tyr	Ile	Met	Asp 255	240 Ser	
				260					265	Ile		Asn		270	Leu	-	
( married and the second se			275					280	Phe			Leu	285	Glu			
		290					295					Lys 300	Arg				
	305					310					315	Leu				320	
					325					330		Ile			335	Lys	
				340					345			Arg		350			
			355					360				Ser	365				
		370					375					Ala 380					
	385					390					395	Lys				400	
					405					410		Leu			415	-	
				420					425			Ala		430		-	
			435					440				His	445				
		450	Asp				455 455	птр	гуз	Pne		Pro 460	Leu	Leu	Cys	Glu	
	465		11010	VUL													
•	<210 <211 <212 <213	> 22 > DN		apie	n												
	<220:																
	<221: <222:		S 54).	(1	772)												
<		> Ge	neBa: 02-1:		м_оо	5123											
	steed staga stett	yact tga tagg agg agg	ge a ge ei ag te tt ee	ttga gaaa ctqq	tage aagt gaag attt	a aaa c ca a aaa c tto	atcg tctci agaa ctqq	ctgg tgac gact acat	gato ccaa taga ttco	ctgga aaaca aaaca ctcaa	aga g aat d ata g	ggaag ccaag	gacto ggagg aaagt	ca gi gt ag cg aa	tccag gaaga acact	ŧ	0 0 0 0

-11-

gga Gly	tca Ser	aaa Lys	atg Met 5	aat Asn	ctc Leu	att Ile	gaa Glu	cat His 10	tcc Ser	cat His	tta Leu	. cct . Pro	acc Thr 15	Thr	. gat `Asp	404
gaa Glu	ttt Phe	tct Ser 20	ttt Phe	tct Ser	gaa Glu	aat Asn	tta Leu 25	ttt Phe	ggt Gly	gtt Val	tta Leu	aca Thr 30	Glu	. caa . Gln	gtg Val	452
gca Ala	ggt Gly 35	cct Pro	ctg Leu	gga Gly	cag Gln	aac Asn 40	Leu	gaa Glu	gtg Val	gaa Glu	cca Pro 45	Tyr	tcg Ser	caa Gln	tac Tyr	500
agc Ser 50	aat Asn	gtt Val	cag Gln	ttt Phe	ccc Pro 55	caa Gln	gtt Val	caa Gln	cca Pro	cag Gln 60	att Ile	tcc Ser	tcg Ser	tca Ser	tcc Ser 65	548
tat Tyr	tat Tyr	tcc Ser	aac Asn	ctg Leu 70	ggt Gly	ttc Phe	tac Tyr	ccc Pro	cag Gln 75	cag Gln	cct Pro	gaa Glu	gag Glu	tgg Trp 80	tac Tyr	596
tct Ser	cct Pro	gga Gly	ata Ile 85	tat Tyr	gaa Glu	ctc Leu	agg Arg	cgt Arg 90	atg Met	cca Pro	gct Ala	gag Glu	act Thr 95	ctc Leu	tac Tyr	644
cag Gln	gga Gly	gaa Glu 100	act Thr	gag Glu	gta Val	gca Ala	gag Glu 105	atg Met	cct Pro	gta Val	aca Thr	aag Lys 110	aag Lys	ccc Pro	cgc Arg	692
atg Met	ggc Gly 115	gcg Ala	tca Ser	gca Ala	glà ðað	agg Arg 120	atc Ile	aaa Lys	Glà aaa	gat Asp	gag Glu 125	ctg Leu	tgt Cys	gtt Val	gtt Val	740
Cys 130	gga Gly	Asp	Arg	Ala	Ser 135	Gly	Tyr	His	Tyr	Asn 140	Ala	Leu	Thr	Cys	Glu 145	788
GIY	tgt Cys	Lys	GIY	Phe 150	Phe	Arg	Arg	Ser	Ile 155	Thr	Lys	Asn	Ala	Val 160	Tyr	836
гла	tgt Cys	Lys	Asn 165	GIY	Gly	Asn	Cys	Val 170	Met	Asp	Met	Tyr	Met 175	Arg	Arg	884
Lys		Gln 180	Glu	Cys	Arg	Leu	Arg 185	Lys	Cys	Lys	Glu	Met 190	Ğly	Met	Leu	932
Ala	gaa Glu 195	Cys	Leu	Leu	Thr	Glu 200	Ile	Gln	Cys	Lys	Ser 205	Lys	Arg	Leu	Arg	980
aaa Lys 210	aat Asn	gtg Val	aag Lys	cag Gln	cat His 215	gca Ala	gat Asp	cag Gln	acc Thr	gtg Val 220	aat Asn	gaa Glu	gac Asp	agt Ser	gaa Glu 225	1028
ggt Gly	cgt Arg	gac Asp	ttg Leu	cga Arg 230	caa Gln	gtg Val	acc Thr	tcg Ser	aca Thr 235	aca Thr	aag Lys	tca Ser	tgc Cys	agg Arg 240	gag Glu	1076
aaa Lys	act Thr	gaa Glu	ctc Leu 245	acc Thr	cca Pro	gat Asp	Gln	cag Gln 250	act Thr	ctt Leu	cta Leu	cat His	ttt Phe 255	att Ile	atg Met	1124
gat Asp	tca Ser	tat Tyr	aac Asn	aaa Lys	cag Gln	agg Arg	atg Met	cct Pro	cag Gln	gaa Glu	ata Ile	aca Thr	aat Asn	aaa Lys	att Ile	1172

	260					265					270				
tta aa Leu Ly 27	rs Glu														1220
atg go Met Al 290	a acc a Thr	aat Asn	cat His	gta Val 295	cag Gln	gtt Val	ctt Leu	gta Val	gaa Glu 300	ttc Phe	aca Thr	aaa Lys	aag Lys	cta Leu 305	1268
cca go Pro Gl	ga ttt .y Phe	cag Gln	act Thr 310	ttg Leu	gac Asp	cat His	gaa Glu	gac Asp 315	cag Gln	att Ile	gct Ala	ttg Leu	ctg Leu 320	aaa Lys	1316
ggg to Gly Se															1364
aag aa Lys Ly															1412
aat ag Asn Se 35	er Ğly														1460
aaa ag Lys Se 370															1508
aca go Thr Al															1556
gag go Glu Al															1604
ttg tg Leu Cy		Ile													1652
ctg gg Leu G] 43	y Arg														1700
atg ct Met Le 450	g atg eu Met	tca Ser	tgg Trp	aga Arg 455	gta Val	aac Asn	gac Asp	cac His	aag Lys 460	ttt Phe	acc Thr	cca Pro	ctt Leu	ctc Leu 465	1748
tgt ga Cys G]	a atc u Ile	tgg Trp	gac Asp 470	gtg Val	cag Gln	tga *	tggg	ggatt	ac a	agggg	gagg	gg to	ctago	ctect	1802
aatatt ctgcat ctgttg	gaaa gggc tcta gaact gtat aaaaa	totto taga attgo aggga tcaa	gatga tagaa gcaag aaaal tcttg	aa ta ac aa gc co tc to gg ca	attta actti ctgti catti aataa	atgti tetei tgci tgci aagca	c gta c aca c taa c cat a aao	aatta attgi attaa cctta cataa	acat gtt aatt acca atgg	gtgt ttaa gatt tatt caac	caact aaagg cgtta cgcat cagaa	tc o gct o act i tat a aaa a	cacaa ccago tcaat atttt aaaaa	actgta ggaatc tctat cattaa aaaaaa	1922 1982 2042 2102
<211> <212> <213>	472 PRT	Sapie	en												

-13-

<400> 8 Met Gly Ser Lys Met Asn Leu Ile Glu His Ser His Leu Pro Thr Thr Asp Glu Phe Ser Phe Ser Glu Asn Leu Phe Gly Val Leu Thr Glu Gln Val Ala Gly Pro Leu Gly Gln Asn Leu Glu Val Glu Pro Tyr Ser Gln Tyr Ser Asn Val Gln Phe Pro Gln Val Gln Pro Gln Ile Ser Ser Ser Ser Tyr Tyr Ser Asn Leu Gly Phe Tyr Pro Gln Gln Pro Glu Glu Trp Tyr Ser Pro Gly Ile Tyr Glu Leu Arg Arg Met Pro Ala Glu Thr Leu Tyr Gln Gly Glu Thr Glu Val Ala Glu Met Pro Val Thr Lys Lys Pro Arg Met Gly Ala Ser Ala Gly Arg Ile Lys Gly Asp Glu Leu Cys Val Val Cys Gly Asp Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu Thr Cys 130 135 140 Glu Gly Cys Lys Gly Phe Phe Arg Arg Ser Ile Thr Lys Asn Ala Val Tyr Lys Cys Lys Asn Gly Gly Asn Cys Val Met Asp Met Tyr Met Arg Arg Lys Cys Gln Glu Cys Arg Leu Arg Lys Cys Lys Glu Met Gly Met Leu Ala Glu Cys Leu Leu Thr Glu Ile Gln Cys Lys Ser Lys Arg Leu Arg Lys Asn Val Lys Gln His Ala Asp Gln Thr Val Asn Glu Asp Ser Glu Gly Arg Asp Leu Arg Gln Val Thr Ser Thr Thr Lys Ser Cys Arg Glu Lys Thr Glu Leu Thr Pro Asp Gln Gln Thr Leu Leu His Phe Ile Met Asp Ser Tyr Asn Lys Gln Arg Met Pro Gln Glu Ile Thr Asn Lys Ile Leu Lys Glu Glu Phe Ser Ala Glu Glu Asn Phe Leu Ile Leu Thr Glu Met Ala Thr Asn His Val Gln Val Leu Val Glu Phe Thr Lys Lys Leu Pro Gly Phe Gln Thr Leu Asp His Glu Asp Gln Ile Ala Leu Leu 310 315 Lys Gly Ser Ala Val Glu Ala Met Phe Leu Arg Ser Ala Glu Ile Phe Asn Lys Lys Leu Pro Ser Gly His Ser Asp Leu Leu Glu Glu Arg Ile Arg Asn Ser Gly Ile Ser Asp Glu Tyr Ile Thr Pro Met Phe Ser Phe Tyr Lys Ser Ile Gly Glu Leu Lys Met Thr Gln Glu Glu Tyr Ala Leu Leu Thr Ala Ile Val Ile Leu Ser Pro Asp Arg Gln Tyr Ile Lys Asp Arg Glu Ala Val Glu Lys Leu Gln Glu Pro Leu Leu Asp Val Leu Gln Lys Leu Cys Lys Ile His Gln Pro Glu Asn Pro Gln His Phe Ala Cys Leu Leu Gly Arg Leu Thr Glu Leu Arg Thr Phe Asn His His His Ala 435 440 445 Glu Met Leu Met Ser Trp Arg Val Asn Asp His Lys Phe Thr Pro Leu Leu Cys Glu Ile Trp Asp Val Gln 

<210> 9 <211> 5449 <212> DNA <213> Homo Sapien

-14-

<220> <221> CDS <222> (69)...(1457) <300> <308> GeneBank NM_002957 <309> 2002-06-21 <400> 9 togcagac atg gac acc aaa cat tto ctg ccg ctc gat tto tcc acc cag 110 Met Asp Thr Lys His Phe Leu Pro Leu Asp Phe Ser Thr Gln 5 10 gtg aac tee tee etc ace tee ecg acg ggg ega gge tee atg get gee Val As<br/>n Ser Ser Leu Thr Ser Pro $\rm Thr$ Gly Arg Gly Ser Met Al<br/>a Ala 158 20 25 ccc tcg ctg cac ccg tcc ctg ggg cct ggc atc ggc tcc ccg gga cag 206 Pro Ser Leu His Pro Ser Leu Gly Pro Gly Ile Gly Ser Pro Gly Gln 35 40 45 ctg cat tct ccc atc agc acc ctg agc tcc ccc atc aac ggc atg ggc 254 Leu His Ser Pro Ile Ser Thr Leu Ser Ser Pro Ile Asn Gly Met Gly 50 55 60 ccg cct ttc tcg gtc atc agc tcc ccc atg ggc ccc cac tcc atg tcg 302 Pro Pro Phe Ser Val Ile Ser Ser Pro Met Gly Pro His Ser Met Ser 65 70 75 gtg ccc acc aca ccc acc ctg ggc ttc agc act ggc agc ccc cag ctc 350 Val Pro Thr Thr Pro Thr Leu Gly Phe Ser Thr Gly Ser Pro Gln Leu 80 85 age tea cet atg aac eec gte age age gag gae ate aag eec eec 398 Ser Ser Pro Met Asn Pro Val Ser Ser Ser Glu Asp Ile Lys Pro Pro 100 105 110 ctg ggc ctc aat ggc gtc ctc aag gtc ccc gcc cac ccc tca gga aac 446 Leu Gly Leu Asn Gly Val Leu Lys Val Pro Ala His Pro Ser Gly Asn 115 120 125 atg get tee tte ace aag cae ate tge gee ate tge ggg gae ege tee 494 Met Ala Ser Phe Thr Lys His Ile Cys Ala Ile Cys Gly Asp Arg Ser 130 135 140 tca ggc aag cac tat gga gtg tac agc tgc gag ggg tgc aag ggc ttc Ser Gly Lys His Tyr Gly Val Tyr Ser Cys Glu Gly Cys Lys Gly Phe 542 145 150 155590 ttc aag cgg acg gtg cgc aag gac ctg acc tac acc tgc cgc gac aac Phe Lys Arg Thr Val Arg Lys Asp Leu Thr Tyr Thr Cys Arg Asp Asn 165 160 170 aag gac tgc ctg att gac aag cgg cag cgg aac cgg tgc cag tac tgc 638 Lys Asp Cys Leu Ile Asp Lys Arg Gln Arg Asn Arg Cys Gln Tyr Cys 180 185 cgc tac cag aag tgc ctg gcc atg ggc atg aag cgg gaa gcc gtg cag 686 Arg Tyr Gln Lys Cys Leu Ala Met Gly Met Lys Arg Glu Ala Val Gln 195 200 205 gag gag cgg cag cgt ggc aag gac cgg aac gag aat gag gtg gag tcg 734 Glu Glu Arg Gln Arg Gly Lys Asp Arg Asn Glu Asn Glu Val Glu Ser 210 215 220 acc agc agc gcc aac gag gac atg ccg gtg gag agg atc ctg gag gct 782

Thr Ser Ser Ala Asn Glu Asp Met Pro Val Glu Arg Ile Leu Glu Ala gag ctg gcc gtg gag ccc aag acc gag acc tac gtg gag gca aac atg Glu Leu Ala Val Glu Pro Lys Thr Glu Thr Tyr Val Glu Ala Asn Met ggg ctg aac ccc agc tcg ccg aac gac cct gtc acc aac att tgc caa Gly Leu Asn Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile Cys Gln  $25\bar{5}$ gca gcc gac aaa cag ctt ttc acc ctg gtg gag tgg gcc aag cgg atc Ala Ala Asp Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile cca cac ttc tca gag ctg ccc ctg gac gac cag gtc atc ctg ctg cgg Pro His Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg gca ggc tgg aat gag ctg ctc atc gcc tcc ttc tcc cac cqc tcc atc Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile gee gtg aag gae ggg ate ete etg gee ace ggg etg eae gte eae egg Ala Val Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg aac agc gcc cac agc gca ggg gtg ggc gcc atc ttt gac agg gtg ctg Asn Ser Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu acg gag ctt gtg tcc aag atg cgg gac atg cag atg gac aag acg gag Thr Glu Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu ctg ggc tgc ctg cgc gcc atc gtc ctc ttt aac cct gac tcc aag ggg Leu Gly Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly ctc tcg aac ccg gcc gag gtg gag gcg ctg agg gag aag gtc tat gcg Leu Ser Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala tcc ttg gag gcc tac tgc aag cac aag tac cca gag cag ccg gga agg Ser Leu Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg tte get aag ete ttg ete ege etg eeg get etg ege tee ate ggg ete Phe Ala Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu aaa tgc ctg gaa cat ctc ttc ttc ttc aag ctc atc ggg gac aca ccc Lys Cys Leu Glu His Leu Phe Phe Phe Lys Leu Ile Gly Asp Thr Pro att gac acc ttc ctt atg gag atg ctg gag gcg ccg cac caa atg act Ile Asp Thr Phe Leu Met Glu Met Leu Glu Ala Pro His Gln Met Thr 

tag geetgeggge ceateetttg tgeecaceeg ttetggeeae eetgeetgga 1507

cgccagctgt tetteteage etgageeetg teeetgeeet tetetgeetg geetgtttgg 1567 actttgggge acageetgte actgetetge etaagagatg tgttgteace eteettattt 1627 etgttaetae ttgtetgtgg eccagggeag tggettteet gaggeageag eettegtgge 1687 aagaactage gtgageeeag eccaggegeet ecceaeeggg eteteaggae accetgeeae 1747

-15-

1

-16-

accccacqqq	gcttgggcga	ctacaqqqtc	ttcqqqcccc	aqccctqqaq	ctqcaqqaqt	1807
	gcttttgttt					
	gtctggagtg					
	ccccctaatc					
caaaqacctc	agccgcctcg	qqqatqaqaq	qqqactcqtq	qqqcaaqcaa	actaccctat	2047
	agggggaagg					
	aacatgagct					
	ctcacccccc					
	cagaccagag					
	ctgaggcttg					
	cacctcactg					
	cgcgggggatg					
	tggagagaga					
	ggagtggctc					
	ttgtgtctaa					
	ccacacgcag					
	cccagagcct					
agatagaa	cggggcttgg	acctccta	actegacce	atacagata	gguugaaggu	2101
	gcccccgggc aggccctccc					
	tttgtcagtg					
atactetta	tcttcccagc cccacctgga	agaagaatt	gaalgalgeg	gggggggggga	agatagagat	2127
	ggcagtggct					
	ccttcctgga					
	tctgtgcccg					
	ccctgccttt					
	ggcagagtgt					
	actgccagga					
	tactcttggg					
	tgcagccagc					
	aaaagcccag					
	tttccggcgc					
	tgaaagcaga					
	ggcacttccc					
	ggtttgaaaa					
	tatttaacca					
	ttattattat					
	ttagccacct					
ccccgcaggg	cccccacttc	ccagtggctg	cttcctgggg	acccagggca	ccccggcacc	4147
	ctcctcagct					
	gaagatgcca					
	ccaggacctt					
	cggcctctgg					
tcccaagaat	tctgggctgg	cggcctggtg	gcagtgctgg	agatgacccc	gagcccctcc	4447
ccgtggggca	cccaggaggg	ccctgccgga	atgtgcagcc	tgtgggtagt	cggctggtgt	4507
	gagctggggt					
	ctgtacagag					
	cggttaccag					
	ttgcttcgtg					
ttcgaatgaa	tatctcaagg	caggagatgc	atctattta	agatgctttg	gagcagacag	4807
	tcccaatcct					
	gatccataaa					
	aaaaatctat					
	ggagggctgg					
	aacgccagga					
ggcttgggag	gaaaccgccg	caatgggggt	gtcttccctc	ggggcaggag	ggtgggcctg	5167
	gggttttctt					
	tctggccttc					
	gtggcctcag					
	caaagggaga				ttaaaataca	5407
tcgccattca	gttcgttaaa	aaaaaaaaaa	aaaaaaaaaa	aa		5449
010 10						
<210> 10						

<210> 10 <211> 462 <212> PRT <213> Homo Sapien

-17-

-401	0> 1(	n													
	Asp	-	Lys	His 5	Phe	Leu	Pro	Leu	Asp 10	Phe	Ser	Thr	Gln	Val 15	Asn
	Ser		20					25	Gly				30	Pro	
	His	35					40					45			
Ser	Pro 50	Ile	Ser	Thr	Leu	Ser 55	Ser	Pro	Ile	Asn	Gly 60	Met	Gly	Pro	Pro
65	Ser				70			-		75					80
	Thr			85					90					95	
	Met		100					105					110		_
	Asn	115					120					125			
	Phe 130					135					140				
145	His				150					155					160
	Thr			165					170					175	_
	Leu		180					185					190		
	Lys	195					200					205			
	Gln 210					215					220				
225	Ala				230				-	235					240
	Val Pro			245					250					255	
	Lys		260					265					270		
	Ser	275					280		_		-	285			
	290 Asn					295					300		_		-
305	Asp				310					315					320
	His			325					330				-	335	
	Val		340					345					350		
	Leu	355					360					365			_
	370 Pro					375					380				
385	Ala				390					395					400
	Leu			405					410					415	
	Glu		420					425					430		
	Phe	435		_			440					445		C	ЧОЪ
	450					455	<u>u</u>	- 34 4	110	21 L D	460	-1-1			

<210> 11 <211> 2081 <212> DNA <213> Mus musculus

<220>

-18-

<221> CDS <222> (167)...(1573) <300> <308> GeneBank X57638 <309> 1991-03-19 <400> 11 gtcacagcct aggctttgct ggggacctga gaaacgctgc cgccaagttg aagttcaagg 60 ccctgccttc cctgtgaact gacgtttgtg gctggtcaag ttcgggaaca agacgttgtc 120 atcacagett agegetetgt ggeetgeetg geeacateea teeaae atg gtg gae 175 Met Val Asp 1 aca gag age eec ate tgt eet ete tee eea etg gag gea gat gae etg 223 Thr Glu Ser Pro Ile Cys Pro Leu Ser Pro Leu Glu Ala Asp Asp Leu 5 10 15 gaa agt ccc tta tct gaa gaa ttc tta caa gaa atg gga aac att caa 271 Glu Ser Pro Leu Ser Glu Glu Phe Leu Gln Glu Met Gly Asn Ile Gln 20 25 30 35 gag att tet cag tee ate ggt gag gag age tet gga age ttt ggt ttt 319 Glu Ile Ser Gln Ser Ile Gly Glu Glu Ser Ser Gly Ser Phe Gly Phe 40 50 45 gca gac tac cag tac tta gga agc tgt ccg ggc tcc gag ggc tct gtc 367 Ala Asp Tyr Gln Tyr Leu Gly Ser Cys Pro Gly Ser Glu Gly Ser Val 55 60 ate aca gae ace etc tet cea egt tee age ect tee tea gte age tge 415 Ile Thr Asp Thr Leu Ser Pro Arg Ser Ser Pro Ser Ser Val Ser Cys 75 80 ccc gtg atc ccc gcc agc acg gac gag tcc ccc ggc agt gcc ctg aac 463 Pro Val Ile Pro Ala Ser Thr Asp Glu Ser Pro Gly Ser Ala Leu Asn 85 90 95 atc gag tgt cga ata tgt ggg gac aag gcc tca ggg tac cac tac gga 511 Ile Glu Cys Arg Ile Cys Gly Asp Lys Ala Ser Gly Tyr His Tyr Gly 100 105 110 gtt cac gca tgt gaa ggc tgt aag ggc ttc ttt cgg cga act att cgg 559 Val His Ala Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Ile Arg 120 125 130 ctg aag ctg gtg tac gac aag tgt gat cgg agc tgc aag att cag aag Leu Lys Leu Val Tyr Asp Lys Cys Asp Arg Ser Cys Lys Ile Gln Lys 607 135 140 145 aag aac cgg aac aaa tgc cag tac tgc cgt ttt cac aag tgc ctg tct 655 Lys Asn Arg Asn Lys Cys Gln Tyr Cys Arg Phe His Lys Cys Leu Ser 150 155 160 gtc ggg atg tca cac aat gca att cgc ttt gga aga atg cca aga tct 703 Val Gly Met Ser His Asn Ala Ile Arg Phe Gly Arg Met Pro Arg Ser 165 170 175 gaa aaa gca aaa ctg aaa gca gaa att ctt acc tgt gaa cac gac ctg 751 Glu Lys Ala Lys Leu Lys Ala Glu Ile Leu Thr Cys Glu His Asp Leu 180 185 190 195 aaa gat tog gaa act goa gao oto aaa tot otg ggo aag aga ato cao 799 Lys Asp Ser Glu Thr Ala Asp Leu Lys Ser Leu Gly Lys Arg Ile His 200 205 210 gaa gcc tac ctg aag aac ttc aac atg aac aag gtc aag gcc cgg gtc 847

-19-

Glu	Ala	Tyr	Leu 215	Lys	Asn	Phe	Asn	Met 220		Lys	Val	Lys	Ala 225		Val		
ata Ile	ctc Leu	gcg Ala 230	gga Gly	aag Lys	acc Thr	agc Ser	aac Asn 235	aac Asn	ccg Pro	cct Pro	ttt Phe	gtc Val 240	ata Ile	cat His	gac Asp	895	
atg Met	gag Glu 245	acc Thr	ttg Leu	tgt Cys	atg Met	gcc Ala 250	gag Gļu	aag Lys	acg Thr	ctt Leu	gtg Val 255	gcc Ala	aag Lys	atg Met	gtg Val	943	
gcc Ala 260	Asn	ggc Gly	gtc Val	gaa Glu	gac Asp 265	aaa Lys	gag Glu	gca Ala	gag Glu	gtc Val 270	cga Arg	ttc Phe	ttc Phe	cac His	tgc Cys 275	991	
tgc Cys	cag Gln	tgc Cys	atg Met	tcc Ser 280	gtg Val	gag Glu	acc Thr	gtc Val	acg Thr 285	gag Glu	ctc Leu	aca Thr	gaa Glu	ttt Phe 290	gcc Ala	1039	
aag Lys	gct Ala	atc Ile	cca Pro 295	ggc Gly	ttt Phe	gca Ala	aac Asn	ttg Leu 300	gac Asp	ttg Leu	aac Asn	gac Asp	caa Gln 305	gtc Val	acc Thr	1087	
ttg Leu	cta Leu	aag Lys 310	tac Tyr	ggt Gly	gtg Val	tat Tyr	gaa Glu 315	gcc Ala	atc Ile	ttc Phe	acg Thr	atg Met 320	ctg Leu	tcc Ser	tcc Ser	1135	
ttg Leu	atg Met 325	aac Asn	aaa Lys	gac Asp	glà aaa	atg Met 330	ctg Leu	atc Ile	gcg Ala	tac Tyr	ggc Gly 335	aat Asn	ggc Gly	ttt Phe	atc Ile	1183	
aca Thr 340	cgc Arg	gag Glu	ttc Phe	ctt Leu	aag Lys 345	aac Asn	ctg Leu	agg Arg	aag Lys	ccg Pro 350	ttc Phe	tgt Cys	gac Asp	atc Ile	atg Met 355	1231	
gaa Glu	ccc Pro	aag Lys	ttt Phe	gac Asp 360	ttc Phe	gct Ala	atg Met	aag Lys	ttc Phe 365	aat Asn	gcc Ala	tta Leu	gaa Glu	ctg Leu 370	gat Asp	1279	
gac Asp	agt Ser	gac Asp	att Ile 375	tcc Ser	ctg Leu	ttt Phe	gtg Val	gct Ala 380	gct Ala	ata Ile	att Ile	tgc Cys	tgt Cys 385	gga Gly	gat Asp	1327	
cgg Arg	cct Pro	ggc Gly 390	ctt Leu	cta Leu	aac Asn	ata Ile	ggc Gly 395	tac Tyr	att Ile	gag Glu	aag Lys	ttg Leu 400	cag Gln	gag Glu	gly aaa	1375	
att Ile	gtg Val 405	cac His	gtg Val	ctt Leu	aag Lys	ctc Leu 410	cac His	ctg Leu	cag Gln	agc Ser	aac Asn 415	cat His	cca Pro	gat Asp	gac Asp	1423	
acc Thr 420	ttc Phe	ctc Leu	ttc Phe	cca Pro	aag Lys 425	ctc Leu	ctt Leu	caa Gln	aaa Lys	atg Met 430	gtg Val	gac Asp	ctt Leu	cgg Arg	cag Gln 435	1471	
ctg Leu	gtc Val	acg Thr	gag Glu	cat His 440	gcg Ala	cag Gln	ctc Leu	gta Val	cag Gln 445	gtc Val	atc Ile	aag Lys	aag Lys	acc Thr 450	gag Glu	1519	
tcc Ser	gac Asp	gca Ala	gcg Ala 455	ctg Leu	cac His	cca Pro	Leu	ttg Leu 460	caa Gln	gag Glu	atc Ile	Tyr	aga Arg 465	gac Asp	atg Met	1567	
tac Tyr	tga *	tctt	tcct	ga g	atgg	cagg	c ca	ttac	cact	gtt	cagg	gac	ctcc	gagg	cc	1623	

T

.

-20-

tgcggcccca tacaggagag cagggatttg cacagagggc ctccctccta cgcttgggga 1683 tgaagagggc tgagcgtagg taatgcgggc tctccccaca tcctttctga atgggcactt 1743 ctaagactac ctgctaccga aatgggggtg atcggaggct aataggattc agacagtgac 1803 agacaacggc agtccccagt ctggtcttaa ccggcccaat gttaatcaat gcacagcact 1863 ctacgttgcg tttataattc gccattaatt aacgggtaac ctcgaagtct gagcggtctg 1923 ttcccttcct gccaccette tggetatgtg cactetetta aateetgaa aactaatetg 1983 cactttttaa cctttgaaaa cctacaagtc aaggtgtggc ccaaggttag ccatttaaat 2043 gtggcaaaaa aaaaaaaaa aaaaaaaaa aaaaaaaa <210> 12 <211> 468 <212> PRT <213> Mus musculus <400> 12 Met Val Asp Thr Glu Ser Pro Ile Cys Pro Leu Ser Pro Leu Glu Ala Asp Asp Leu Glu Ser Pro Leu Ser Glu Glu Phe Leu Gln Glu Met Gly Asn Ile Gln Glu Ile Ser Gln Ser Ile Gly Glu Glu Ser Ser Gly Ser Phe Gly Phe Ala Asp Tyr Gln Tyr Leu Gly Ser Cys Pro Gly Ser Glu Gly Ser Val Ile Thr Asp Thr Leu Ser Pro Arg Ser Ser Pro Ser Ser Val Ser Cys Pro Val Ile Pro Ala Ser Thr Asp Glu Ser Pro Gly Ser Ala Leu Asn Ile Glu Cys Arg Ile Cys Gly Asp Lys Ala Ser Gly Tyr His Tyr Gly Val His Ala Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Ile Arg Leu Lys Leu Val Tyr Asp Lys Cys Asp Arg Ser Cys Lys Ile Gln Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys Arg Phe His Lys Cys Leu Ser Val Gly Met Ser His Asn Ala Ile Arg Phe Gly Arg Met Pro Arg Ser Glu Lys Ala Lys Leu Lys Ala Glu Ile Leu Thr Cys Glu His Asp Leu Lys Asp Ser Glu Thr Ala Asp Leu Lys Ser Leu Gly Lys Arg Ile His Glu Ala Tyr Leu Lys Asn Phe Asn Met Asn Lys Val Lys Ala Arg Val Ile Leu Ala Gly Lys Thr Ser Asn Asn Pro Pro Phe Val Ile His Asp Met Glu Thr Leu Cys Met Ala Glu Lys Thr Leu Val Ala Lys Met Val Ala Asn Gly Val Glu Asp Lys Glu Ala Glu Val Arg Phe Phe His Cys Cys Gln Cys Met Ser Val Glu Thr Val Thr Glu Leu Thr Glu Phe Ala Lys Ala Ile Pro Gly Phe Ala Asn Leu Asp Leu Asn Asp Gln Val Thr Leu Leu Lys Tyr Gly Val Tyr Glu Ala Ile Phe Thr Met Leu Ser Ser Leu Met Asn Lys Asp Gly Met Leu Ile Ala Tyr Gly Asn Gly Phe Ile Thr Arg Glu Phe Leu Lys Asn Leu Arg Lys Pro Phe Cys Asp Ile Met Glu Pro Lys Phe Asp Phe Ala Met Lys Phe Asn Ala Leu Glu Leu Asp Asp Ser Asp Ile Ser Leu Phe Val Ala Ala Ile Ile Cys Cys Gly Asp Arg Pro Gly Leu Leu Asn Ile Gly Tyr Ile Glu Lys Leu Gln Glu Gly Ile Val His Val Leu Lys Leu His Leu Gln Ser Asn His 

-21-

Pro Asp Asp Thr Phe Leu Phe Pro Lys Leu Leu Gln Lys Met Val Asp Leu Arg Gln Leu Val Thr Glu His Ala Gln Leu Val Gln Val Ile Lys Lys Thr Glu Ser Asp Ala Ala Leu His Pro Leu Leu Gln Glu Ile Tyr Arg Asp Met Tyr <210> 13 <211> 1323 <212> DNA <213> Mus musculus <220> <221> CDS <222> (1)...(1323) <300> <308> GeneBank U10375 <309> 1994-07-22 <400> 13 atg gaa cag cca cag gag gag acc cct gag gcc cgg gaa gag gag aaa Met Glu Gln Pro Gln Glu Glu Thr Pro Glu Ala Arg Glu Glu Glu Lys gag gaa gtg gcc atg ggt gac gga gcc ccg gag ctc aat ggg gga cca Glu Glu Val Ala Met Gly Asp Gly Ala Pro Glu Leu Asn Gly Gly Pro gaa cac acg ctt cct tcc agc agc tgt gca gac ctc tcc cag aat tcc Glu His Thr Leu Pro Ser Ser Ser Cys Ala Asp Leu Ser Gln Asn Ser tcc cct tcc tcc ctg ctg gac cag ctg cag atg ggc tgt gat ggg gcc Ser Pro Ser Ser Leu Leu Asp Gln Leu Gln Met Gly Cys Asp Gly Ala tca ggc ggc agc ctc aac atg gaa tgt cgg gtg tgc ggg gac aag gcc Ser Gly Gly Ser Leu Asn Met Glu Cys Arg Val Cys Gly Asp Lys Ala tcg ggc ttc cac tac ggg gtc cac gcg tgc gag ggg tgc aag ggc ttc Ser Gly Phe His Tyr Gly Val His Ala Cys Glu Gly Cys Lys Gly Phe tte ege egg aca ate ege atg aag ete gag tat gag aag tge gat egg Phe Arg Arg Thr Ile Arg Met Lys Leu Glu Tyr Glu Lys Cys Asp Arg atc tgc aag atc cag aag aag aac cgc aac aag tgt cag tac tgc cgc Ile Cys Lys Ile Gln Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys Arg ttc cag aag tgc ctg gca ctc ggc atg tcg cac aac gct atc cgc ttt Phe Gln Lys Cys Leu Ala Leu Gly Met Ser His Asn Ala Ile Arg Phe gga cgg atg ccg gac ggc gag aag agg aag ctg gtg gcg ggg ctg act Gly Arg Met Pro Asp Gly Glu Lys Arg Lys Leu Val Ala Gly Leu Thr gee age gag ggg tge cag cae aae eee cag etg gee gae etg aag gee Ala Ser Glu Gly Cys Gln His Asn Pro Gln Leu Ala Asp Leu Lys Ala 

-22-

tto Pho	c tci e Sei	z aag r Lys	g cad 8 His 180	3 776	tao Typ	c aac c Asr	c gco 1 Ala	tac Tyr 185	: Lei	g aaa 1 Lys	a aac s Ası	tto 1 Phe	2 aa 2 As 19	n Met	g acc : Thr	576
aaa Ly	a aag s Lys	g aag s Lys 195	S ATS	c cgo a Arc	g ago g Sei	c ato c Ile	c cto E Leu 200	1 Thr	: Gl ⁷ Gl ⁷	c aag 7 Lys	g tco Sei	ago Ser 205	: His	c aad s Asr	c gca 1 Ala	624
cco Pro	c ttt > Phe 210	s vai	ato Ile	cac His	gao gao	ato 11e 215	e Giu	aca ۱ Thr	cto Lei	g tgg 1 Trr	g cag Glr 220	ı Ala	ı gag ı Glı	g aag 1 Lys	g ggc Gly	672
cto Leu 225	r var	g tgg . Trp	r aaa b Lys	cag Gln	r cto Leu 230	l Val	aac Asn	gaa Gly	ct <u>c</u> Leu	g ccg 1 Pro 235	) Prc	tac Tyr	aac Asr	gag Glu	f atc Ile 240	720
agt Ser	gtg Val	) cac . His	gtg Val	Phe 245	Tyr	cgc Arg	tga Cys	cag Gln	tcc Ser 250	Thr	aca Thr	gtg Val	gag Glu	aca Thr 255	gtc Val	768
cga Arg	ı gag g Glu	ctc Leu	acc Thr 260	gag Glu	ttc Phe	gcc Ala	aag Lys	aac Asn 265	Ile	ccc Pro	aac Asn	ttc Phe	ago Ser 270	Ser	ctc Leu	816
ttc Phe	ctc Leu	aat Asn 275	gac Asp	cag Gln	gtg Val	acc Thr	ctc Leu 280	ctc Leu	aag Lys	tat Tyr	ggc Gly	gtg Val 285	cac His	gag Glu	gcc Ala	864
atc Ile	ttt Phe 290	Ara	atg Met	ctg Leu	gcc Ala	tcc Ser 295	atc Ile	gtc Val	aac Asn	aaa Lys	gac Asp 300	elà aaa	ctg Leu	ctg Leu	gtg Val	912
gcc Ala 305	ASII	ggc Gly	agt Ser	ggc Gly	ttc Phe 310	gtc Val	acc Thr	cac His	gag Glu	ttc Phe 315	ttg Leu	cga Arg	agt Ser	ctc Leu	cgc Arg 320	960
aag Lys	ccc Pro	ttc Phe	agt Ser	gac Asp 325	atc Ile	att Ile	gag Glu	ccc Pro	aag Lys 330	ttc Phe	gag Glu	ttt Phe	gct Ala	gtc Val 335	aag Lys	100'8
ttc Phe	aat Asn	gcg Ala	ctg Leu 340	gag Glu	ctc Leu	gat Asp	gac Asp	agt Ser 345	gac Asp	ctg Leu	gcg Ala	ctc Leu	ttc Phe 350	atc Ile	gcg Ala	1056
gcc Ala	atc Ile	att Ile 355	ctg Leu	tgt Cys	gga Gly	gac Asp	cgg Arg 360	cca Pro	ggc Gly	ctc Leu	atg Met	aat Asn 365	gtg Val	ccc Pro	cag Gln	1104
gta Val	gaa Glu 370	gcc Ala	atc Ile	cag Gln	gac Asp	acc Thr 375	att Ile	ctg Leu	cgg Arg	gct Ala	cta Leu 380	gaa Glu	ttc Phe	cat His	ctg Leu	1152
cag Gln 385	gtc Val	aac Asn	cac His	cct Pro	gac Asp 390	agc Ser	cag Gln	tac Tyr	ctc Leu	ttc Phe 395	ccc Pro	aag Lys	ctg Leu	ctg Leu	cag Gln 400	1200
aag Lys	atg Met	gca Ala	gac Asp	ctg Leu 405	cgg Arg	cag Gln	ctg Leu	gtc Val	act Thr 410	gag Glu	cat His	gcc Ala	cag Gln	atg Met 415	atg Met	1248
cag Gln	tgg Trp	цец	aag Lys 420	aag Lys	acg Thr	gag Glu	Ser	gag Glu 425	acc Thr	ttg Leu	ctg Leu	His	ccc Pro 430	ctg Leu	ctc Leu	1296
cag Gln	gaa Glu	atc Ile	tac Tyr	aag Lys	gac Asp	atg Met	tac Tyr	taa *								1323

ï

-23-

<210> 14 <211> 440 <212> PRT <213> Mus musculus <400> 14 Met Glu Gln Pro Gln Glu Glu Thr Pro Glu Ala Arg Glu Glu Glu Lys Glu Glu Val Ala Met Gly Asp Gly Ala Pro Glu Leu Asn Gly Gly Pro Glu His Thr Leu Pro Ser Ser Ser Cys Ala Asp Leu Ser Gln Asn Ser Ser Pro Ser Ser Leu Leu Asp Gln Leu Gln Met Gly Cys Asp Gly Ala Ser Gly Gly Ser Leu Asn Met Glu Cys Arg Val Cys Gly Asp Lys Ala Ser Gly Phe His Tyr Gly Val His Ala Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Ile Arg Met Lys Leu Glu Tyr Glu Lys Cys Asp Arg Ile Cys Lys Ile Gln Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys Arg Phe Gln Lys Cys Leu Ala Leu Gly Met Ser His Asn Ala Ile Arg Phe Gly Arg Met Pro Asp Gly Glu Lys Arg Lys Leu Val Ala Gly Leu Thr Ala Ser Glu Gly Cys Gln His Asn Pro Gln Leu Ala Asp Leu Lys Ala Phe Ser Lys His Ile Tyr Asn Ala Tyr Leu Lys Asn Phe Asn Met Thr Lys Lys Lys Ala Arg Ser Ile Leu Thr Gly Lys Ser Ser His Asn Ala Pro Phe Val Ile His Asp Ile Glu Thr Leu Trp Gln Ala Glu Lys Gly Leu Val Trp Lys Gln Leu Val Asn Gly Leu Pro Pro Tyr Asn Glu Ile - 235 Ser Val His Val Phe Tyr Arg Cys Gln Ser Thr Thr Val Glu Thr Val Arg Glu Leu Thr Glu Phe Ala Lys Asn Ile Pro Asn Phe Ser Ser Leu Phe Leu Asn Asp Gln Val Thr Leu Leu Lys Tyr Gly Val His Glu Ala Ile Phe Ala Met Leu Ala Ser Ile Val Asn Lys Asp Gly Leu Leu Val Ala Asn Gly Ser Gly Phe Val Thr His Glu Phe Leu Arg Ser Leu Arg Lys Pro Phe Ser Asp Ile Ile Glu Pro Lys Phe Glu Phe Ala Val Lys .330 Phe Asn Ala Leu Glu Leu Asp Asp Ser Asp Leu Ala Leu Phe Ile Ala Ala Ile Ile Leu Cys Gly Asp Arg Pro Gly Leu Met Asn Val Pro Gln Val Glu Ala Ile Gln Asp Thr Ile Leu Arg Ala Leu Glu Phe His Leu Gln Val Asn His Pro Asp Ser Gln Tyr Leu Phe Pro Lys Leu Leu Gln Lys Met Ala Asp Leu Arg Gln Leu Val Thr Glu His Ala Gln Met Met Gln Trp Leu Lys Lys Thr Glu Ser Glu Thr Leu Leu His Pro Leu Leu Gln Glu Ile Tyr Lys Asp Met Tyr 

-24-

<210> 15 <211> 1827 <212> DNA <213> Homo Sapien <220> <221> CDS <222> (292)...(1683) <300> <308> GeneBank XM 053680 <309> 2002-05-08 <400> 15 gtagcggtga cggcggcggc ggcggcggcg gcagcattat gcgtgattac tgacaggcac 60 cagetgetge egecacagee gteteaaaeg caetatgtgg acteteegat etagaggeag 120 atteetgaet aateecagag ggetggeeca geetgtgete eeegggetge taggaagega 180 tgaccactct tgttagccca agttgaagaa agccgggctg tgcctgggag ccgagagagg 240 cggtaatatt tagaagctgc acaggagagg aacatgaact gacgagtaaa c atg tat 297 Met Tyr gga aat tat tet cae tte atg aag ttt eee gea gge tat gga gge tee 345 Gly Asn Tyr Ser His Phe Met Lys Phe Pro Ala Gly Tyr Gly Gly Ser 10 cct ggc cac act ggc tct aca tcc atg agc cca tca gca gcc ttg tcc 393 Pro Gly His Thr Gly Ser Thr Ser Met Ser Pro Ser Ala Ala Leu Ser 20 25 30 aca ggg aag cca atg gac agc cac ccc agc tac aca gat acc cca gtg 441 Thr Gly Lys Pro Met Asp Ser His Pro Ser Tyr Thr Asp Thr Pro Val 40 45 50 agt gee eea egg act etg agt gea gtg ggg ace eee ete aat gee etg 489 Ser Ala Pro Arg Thr Leu Ser Ala Val Gly Thr Pro Leu Asn Ala Leu 55 60 gge tet eca tat ega gte ate ace tet gee atg gge eca ece tea gga Gly Ser Pro Tyr Arg Val Ile Thr Ser Ala Met Gly Pro Pro Ser Gly 537 70 75 80 gca ctt gca gcg cct cca gga atc aac ttg gtt gcc cca ccc agc tct 585 Ala Leu Ala Ala Pro Pro Gly Ile Asn Leu Val Ala Pro Pro Ser Ser 85 90 95 cag cta aat gtg gtc aac agt gtc agc agt tca gag gac atc aag ccc Gln Leu Asn Val Val Asn Ser Val Ser Ser Ser Glu Asp Ile Lys Pro 633 100 105 110 tta cca ggg ctt ccc ggg att gga aac atg aac tac cca tcc acc agc 681 Leu Pro Gly Leu Pro Gly Ile Gly Asn Met Asn Tyr Pro Ser Thr Ser 115 120 125 130 ccc gga tet etg gtt aaa cae ate tgt gee ate tgt gga gae aga tee 729 Pro Gly Ser Leu Val Lys His Ile Cys Ala Ile Cys Gly Asp Arg Ser 135 140 tca gga aag cac tac ggg gta tac agt tgt gaa ggc tgc aaa ggg ttc Ser Gly Lys His Tyr Gly Val Tyr Ser Cys Glu Gly Cys Lys Gly Phe 777 150 155 tte aag agg acg ata agg aag gae ete ate tae acg tgt egg gat aat Phe Lys Arg Thr Ile Arg Lys Asp Leu Ile Tyr Thr Cys Arg Asp Asn 825 165 170 175 aaa gac tgc ctc att gac aag cgt cag cgc aac cgc tgc cag tac tgt 873

PCT/US02/41306

-25-

Lys	Asp 180	Cys	Leu	Ile	Asp	Lys 185	Arg	Gln	. Arg	I Asn	1 Arg 190		Gln	. Туз	Cys	
cgc Arg 195	tat Tyr	cag Gln	aag Lys	tgc Cys	ctt Leu 200	gtc Val	atg Met	ggc Gly	atg Met	aag Lys 205	: Arg	gaa Glu	gct Ala	gto Val	g caa . Gln 210	921
gaa Glu	gaa Glu	aga Arg	cag Gln	agg Arg 215	agc Ser	cga Arg	gag Glu	cga Arg	gct Ala 220	Glu	agt Ser	gag Glu	gca Ala	gaa Glu 225	tgt Cys	969
gct Ala	acc Thr	agt Ser	ggt Gly 230	cat His	gaa Glu	gac Asp	atg Met	cct Pro 235	gtg Val	gag Glu	agg Arg	att Ile	cta Leu 240	gaa Glu	gct Ala	1017
gaa Glu	ctt Leu	gct Ala 245	gtt Val	gaa Glu	cca Pro	aag Lys	aca Thr 250	gaa Glu	tcc Ser	tat Tyr	ggt Gly	gac Asp 255	atg Met	aat Asn	atg Met	1065
gag Glu	aac Asn 260	tcg Ser	aca Thr	aat Asn	gac Asp	cct Pro 265	gtt Val	acc Thr	aac Asn	ata Ile	tgt Cys 270	cat His	gct Ala	gct Ala	gac Asp	1113
aag Lys 275	cag Gln	ctt Leu	ttc Phe	acc Thr	ctc Leu 280	gtt Val	gaa Glu	tgg Trp	gcc Ala	aag Lys 285	cgt Arg	att Ile	ccc Pro	cac His	ttc Phe 290	1161
tct Ser	gac Asp	ctc Leu	acc Thr	ttg Leu 295	gag Glu	gac Asp	cag Gln	gtc Val	att Ile 300	ttg Leu	ctt Leu	cgg Arg	gca Ala	999 Gly 305	tgg Trp	1209
aat Asn	gaa Glu	ttg Leu	ctg Leu 310	att Ile	gcc Ala	tct Ser	ttc Phe	tcc Ser 315	cac His	cgc Arg	tca Ser	gtt Val	tcc Ser 320	gtg Val	cag Gln	1257
gat Asp	ggc Gly	atc Ile 325	ctt Leu	ctg Leu	gcc Ala	acg Thr	ggt Gly 330	tta Leu	cat His	gtc Val	cac His	cgg Arg 335	agc Ser	agt Ser	gcc Ala	1305
cac His	agt Ser 340	gct Ala	GlÀ aaa	gtc Val	ggc Gly	tcc Ser 345	atc Ile	ttt Phe	gac Asp	aga Arg	gtc Val 350	cta Leu	act Thr	gag Glu	ctg Leu	1353
gtt Val 355	tcc Ser	aaa Lys	atg Met	aaa Lys	gac Asp 360	atg Met	cag Gln	atg Met	gac Asp	aag Lys 365	tcg Ser	gaa Glu	ctg Leu	gga Gly	tgc Cys 370	1401
ctg Leu	cga Arg	gcc Ala	att Ile	gta Val 375	ctc Leu	ttt Phe	aac Asn	cca Pro	gat Asp 380	gcc Ala	aag Lys	ggc Gly	ctg Leu	tcc Ser 385	aac Asn	1449
ccc Pro	tct Ser	gag Glu	gtg Val 390	gag Glu	act Thr	ctg Leu	cga Arg	gag Glu 395	aag Lys	gtt Val	tat Tyr	gcc Ala	acc Thr 400	ctt Leu	gag Glu	1497
gcc Ala	tac Tyr	acc Thr 405	aag Lys	cag Gln	aag Lys	Tyr	ccg Pro 410	gaa Glu	cag Gln	cca Pro	ggc Gly	agg Arg 415	ttt Phe	gcc Ala	aag Lys	1545
ctg Leu	ctg Leu 420	ctg Leu	cgc Arg	ctc Leu	Pro	gct Ala 425	ctg Leu	cgt Arg	tcc Ser	Ile	ggc Gly 430	ttg Leu	aaa Lys	tgc Cys	ctg Leu	1593
gag Glu 435	cac His	ctc Leu	ttc Phe	Phe	ttc Phe 440	aag Lys	ctc Leu	atc Ile	glà aaa	gac Asp 445	acc Thr	ccc Pro	att Ile	gac Asp	acc Thr 450	1641

ttc ctc atg gag atg ttg gag acc ccg ctg cag atc acc tga Phe Leu Met Glu Met Leu Glu Thr Pro Leu Gln Ile Thr gccccaccag ccacagcete cccacccagg atgaceetg ggcaggtgtg tgtggaceee 1743 caccetgeac ttteeteeac eteccaceet gaceceette etgteeceaa aatgtgatge 1803 ttataataaa gaaaaccttt ctac <210> 16 <211> 463 <212> PRT <213> Homo Sapien <400> 16 Met Tyr Gly Asn Tyr Ser His Phe Met Lys Phe Pro Ala Gly Tyr Gly 1.0 Gly Ser Pro Gly His Thr Gly Ser Thr Ser Met Ser Pro Ser Ala Ala Leu Ser Thr Gly Lys Pro Met Asp Ser His Pro Ser Tyr Thr Asp Thr Pro Val Ser Ala Pro Arg Thr Leu Ser Ala Val Gly Thr Pro Leu Asn Ala Leu Gly Ser Pro Tyr Arg Val Ile Thr Ser Ala Met Gly Pro Pro Ser Gly Ala Leu Ala Ala Pro Pro Gly Ile Asn Leu Val Ala Pro Pro Ser Ser Gln Leu Asn Val Val Asn Ser Val Ser Ser Ser Glu Asp Ile Lys Pro Leu Pro Gly Leu Pro Gly Ile Gly Asn Met Asn Tyr Pro Ser Thr Ser Pro Gly Ser Leu Val Lys His Ile Cys Ala Ile Cys Gly Asp Arg Ser Ser Gly Lys His Tyr Gly Val Tyr Ser Cys Glu Gly Cys Lys Gly Phe Phe Lys Arg Thr Ile Arg Lys Asp Leu Ile Tyr Thr Cys Arg Asp Asn Lys Asp Cys Leu Ile Asp Lys Arg Gln Arg Asn Arg Cys Gln Tyr Cys Arg Tyr Gln Lys Cys Leu Val Met Gly Met Lys Arg Glu Ala Val Gln Glu Glu Arg Gln Arg Ser Arg Glu Arg Ala Glu Ser Glu Ala Glu Cys Ala Thr Ser Gly His Glu Asp Met Pro Val Glu Arg Ile Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr Glu Ser Tyr Gly Asp Met Asn Met Glu Asn Ser Thr Asn Asp Pro Val Thr Asn Ile Cys His Ala Ala Asp Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe Ser Asp Leu Thr Leu Glu Asp Gln Val Ile Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Val Ser Val Gln Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Ser Ser Ala His Ser Ala Gly Val Gly Ser Ile Phe Asp Arg Val Leu Thr Glu Leu Val Ser Lys Met Lys Asp Met Gln Met Asp Lys Ser Glu Leu Gly Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ala Lys Gly Leu Ser Asn Pro Ser Glu Val Glu Thr Leu Arg Glu Lys Val Tyr Ala Thr Leu Glu Ala Tyr Thr Lys Gln Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys

-26-

-27-

420 425 430 Cys Leu Glu His Leu Phe Phe Phe Lys Leu Ile Gly Asp Thr Pro Ile 435 440 445 Asp Thr Phe Leu Met Glu Met Leu Glu Thr Pro Leu Gln Ile Thr 450 455 460 <210> 17 <211> 1330 <212> DNA <213> Homo Sapien <220> <221> CDS <222> (97)...(837) <300> <308> GeneBank XM_042579 <309> 2002-02-06 <400> 17 ttggggttgt gctccaggga tggcctttca catagactgc agtgtaaatg acagcctctg 60 gaatgigcat igcagggeet igettagigg taggga aig ait tee aie act tet 114 Met Ile Ser Ile Thr Ser 1 5 gtg aca ttc tgc ttc cca ata agt ctt cct gtg act tcc cta ttt ccc 162 Val Thr Phe Cys Phe Pro Ile Ser Leu Pro Val Thr Ser Leu Phe Pro 10 15 20 cca tcc cag att aac tca aca gtg tca ctc cct ggg ggt ggg tct ggc Pro Ser Gln Ile Asn Ser Thr Val Ser Leu Pro Gly Gly Gly Ser Gly 210 25 30 35 ccc cct gaa gat gtg aag cca cca gtc tta ggg gtc cgg ggc ctg cac Pro Pro Glu Asp Val Lys Pro Pro Val Leu Gly Val Arg Gly Leu His 258 40 45 50 tgt cca ccc cct cca ggt ggc cct ggg gct ggc aaa cgg cta tgt gca 306 Cys Pro Pro Pro Pro GIy GIy Pro GIY Ala GIy Lys Arg Leu Cys Ala 60 70 atc tgc ggg gac aga agc tca ggc aaa cac tac ggg gtt tac agc tgt 354 Ile Cys Gly Asp Arg Ser Ser Gly Lys His Tyr Gly Val Tyr Ser Cys 75 80 85 gag ggt tgc aag ggc ttc ttc aaa cgc acc atc cgc aaa gac ctt aca 402 Glu Gly Cys Lys Gly Phe Phe Lys Arg Thr Ile Arg Lys Asp Leu Thr 90 95 tac tct tgc cgg gac aac aaa gac tgc aca gtg gac aag cgc cag cgg 450 Tyr Ser Cys Arg Asp Asn Lys Asp Cys Thr Val Asp Lys Arg Gln Arg 105 110 115 aac cgc tgt cag tac tgc cgc tat cag aag tgc ctg gcc act ggc atg 498 Asn Arg Cys Gln Tyr Cys Arg Tyr Gln Lys Cys Leu Ala Thr Gly Met 120 125 130 aag agg gag gcg gta cag gag gag cgt cag cgg gga aag gac aag gat 546 Lys Arg Glu Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp Lys Asp 140 145 150 aga gat gag gag ggg gct ggg gga gcc ccc gag gag atg cct gtg gac 594 Gly Asp Gly Glu Gly Ala Gly Gly Ala Pro Glu Glu Met Pro Val Asp 155 160 165 agg atc ctg gag gca gag ctt gct gtg gaa cag aag agt gac cag ggc 642

-28-

Arg	Ile	e Lei	ı Glı 170	ı Ala )	a Glu	1 Lei	ı Ala	a Va 175	l Glı 5	ı Glr	n Lys	s Se:	r As 18		n Gly	
gtt Val	gag Glu	9 99t 1 Gly 185	PLC	) GJ ⁷ 2 GJ ⁷ 2 GJ ⁷	\ G17 9 994	a aco 7 Thi	2 999 2 913 190	Z GTZ	z ago 7 Ser	ggc Gly	c ago 7 Sei	2 ago 2 Se: 19!	r Va	g ag 1 Se	t gtt r Val	690
glà aaa	gtc Val 200	- upr	: cca 1 Pro	a cto Deu	c tco 1 Sei	r tto Phe 205	e val	g at <u>c</u> . Met	: Glà A aaa	gtt Val	999 Gly 210	r Gly	a gg 7 Gl	c ag y Se	t cta r Leu	738
ggt Gly 215	ctg Leu	r tto Phe	tac Tyr	ato Ile	c ccc e Pro 220	) Ser	c ccc Pro	tco Ser	ttt Phe	ccc Pro 225	> Leu	ata Ile	a aco e Th:	r tto r Pho	c cta e Leu 230	786
aca Thr	cta Leu	. ctt . Leu	glà daa	act Thr 235	: сту	ı ggt Gly	gct Ala	gcc Ala	aaa Lys 240	Gln	ggt Gly	ctt Leu	tca Sei	a aa c Ası 24!	c atc n Ile 5	834
tga *	ggt	ggat	gtg	atag	lctcc	tt c	tgto	tcca	c tc	ccca	aaca	acc	cact	ggc		887
gtcc tcac aggt cccc	gct gct cat	gca tgt att ttg	gcca tgag gctg	aggg aatg tggg cggg cccq	gg c ac c cg a ca g at c	ctgt agag gtca ttta	agca gact gatc qtqa	t at a ac c ca c ct	ctca atct cact	aaat gtca tttc tccc	ctt ggc ctc	ccat agct cttg	aac gac cct	tctt aaac ctgg	gggtgtc accccc agctat gatgatc atttga caggga	1067 1127 1187
<210																
<210 <211 <212 <213	.> 24  > P]  > Ho	46 RT OMO (	Sapio	en												
<210 <211 <212 <213 <400 4et	.> 24 > Pl > Ho > 18	46 RT OMO :		Thr	Ser	Val	Thr	Phe	Cys	Phe	Pro	Ile	Ser	Leu	Pro	
<210 <211 <212 <213 <400 Met	> 2 > Pl > Ho > 18 Ile	46 RT Smo Ser	Ile Leu	Thr 5				Gln	10				Val	15	Pro	
<210 <211 <212 <213 <400 Met 1 /al	> 2' > P] > Ho > 18 Ile Thr	46 RT Somo ; Ser Ser Gly	Ile Leu 20	Thr 5 Phe	Pro	Pro	Ser Pro	Gln 25	10 Ile	Asn	Ser	Thr Pro	Val 30	15 Ser		
<210 <211 <212 <213 <400 Met 1 /al / Pro (	> 24 > P1 > H0 > 18 Ile Thr Gly Val	46 RT Somo : Ser Ser Gly 35	Ile Leu 20 Gly	Thr 5 Phe Ser	Pro Gly	Pro Pro Cys	Ser Pro 40	Gln 25 Glu	10 Ile Asp	Asn Val	Ser Lys Gly	Thr Pro 45	Val 30 Pro	15 Ser Val	Leu	
<210 <211 <212 <213 <400 Met 1 /al ?ro ( Sly )	> 24 > PI > Ho > 18 Ile Thr Gly Val 50	46 RT Smo Ser Ser Gly 35 Arg	Ile Leu 20 Gly Gly	Thr 5 Phe Ser Leu	Pro Gly His Ala	Pro Pro Cys 55	Ser Pro 40 Pro	Gln 25 Glu Pro	10 Ile Asp Pro	Asn Val Pro Arg	Ser Lys Gly	Thr Pro 45 Gly	Val 30 Pro Pro	15 Ser Val Gly	Leu Leu Ala His	
<210 <211 <212 <213 <400 Met 1 Val Pro 5	> 2: > PI > Ho > 1: Ile Thr Gly Val 50 Lys	46 RT Ser Ser Gly 35 Arg Arg	Ile Leu 20 Gly Gly Leu	Thr 5 Phe Ser Leu Cys Ser	Pro Gly His Ala 70	Pro Pro Cys 55 Ile	Ser Pro 40 Pro Cys	Gln 25 Glu Pro Gly	10 Ile Asp Pro Asp Lys	Asn Val Pro	Ser Lys Gly 60 Ser	Thr Pro 45 Gly Ser	Val 30 Pro Pro Gly	15 Ser Val Gly Lys Arg	Leu Leu Ala His	
<210 <211 <212 <213 <400 Met 1 /al Pro ( Gly ) Sly 1 Sly 1 Syr (	<pre>&gt; 2: &gt; PI &gt; Ho Ile Thr Gly Val 50 Lys Gly</pre>	46 RT Ser Ser Gly 35 Arg Arg Val	Ile Leu 20 Gly Gly Leu Tyr Asp	Thr 5 Phe Ser Leu Cys Ser 85	Pro Gly His Ala 70 Cys	Pro Pro Cys 55 Ile Glu	Ser Pro 40 Pro Cys Gly	Gln 25 Glu Pro Gly Cys Cys	10 Ile Asp Pro Asp Lys 90	Asn Val Pro Arg	Ser Lys Gly Ser Phe	Thr Pro 45 Gly Ser Phe	Val 30 Pro Pro Gly Lys Asp	15 Ser Val Gly Lys Arg	Leu Leu Ala His 80 Thr	
<210 <211 <212 <213 <400 Met 1 /al ?ro ( Gly ) 55 yr ( :1e 2	> 2/ > PI > H Ile Thr Gly Val 50 Lys Gly Arg	46 RT Ser Ser Gly 35 Arg Arg Val Lys	Ile Leu 20 Gly Gly Leu Tyr Asp 100	Thr 5 Phe Ser Leu Cys Ser 85 Leu	Pro Gly His Ala 70 Cys Thr	Pro Pro Cys 55 Ile Glu Tyr	Ser Pro 40 Pro Cys Gly Ser Arg	Gln 25 Glu Pro Gly Cys 2005	10 Ile Asp Pro Asp Lys 90 Arg	Asn Val Pro Arg 75 Gly	Ser Lys Gly 60 Ser Phe Asn	Thr Pro 45 Gly Ser Phe Lys Arg	Val 30 Pro Pro Gly Lys Asp	15 Ser Val Gly Lys Arg 95 Cys	Leu Leu Ala His 80 Thr Thr	
<210 <211 <212 <213 <400 Met 1 /al /al / Sly / Sly / Sly / Sly / Cyr ( :le <i>A</i> / al <i>A</i>	> 2/ > PI > Ha Ile Thr Gly Val 50 Lys Gly Arg Asp	46 RT Ser Ser Gly 35 Arg Val Lys Lys 115	Ile Leu 20 Gly Leu Tyr Asp 100 Arg	Thr 5 Phe Ser Leu Cys Ser 85 Leu Gln	Pro Gly His Ala 70 Cys Thr Arg	Pro Pro Cys 55 Ile Glu Tyr Asn Lys	Ser Pro 40 Pro Cys Gly Ser Arg 120	Gln 25 Glu Pro Gly Cys Cys 105 Cys	10 Ile Asp Pro Asp Lys 90 Arg Gln	Asn Val Pro Arg 75 Gly Asp Tyr Val	Ser Lys Gly Ser Phe Asn Cys Gln	Thr Pro 45 Gly Ser Phe Lys Arg	Val 30 Pro Gly Lys Asp 110 Tyr	15 Ser Val Gly Lys Arg 95 Cys Gln	Leu Leu Ala His 80 Thr Thr Lys	
<210 <211 <212 <213 <400 Met 1 Val 2 Fyr 0 S5 Cyr 0 Ile 2 Val 2 Val 2 Yal 2 Yal 2	> 2/ > PI > Ha Ile Thr Gly Val 50 Lys Gly Arg Asp Leu 130	46 RT Ser Ser Gly 35 Arg Val Lys Lys 115 Ala	Ile Leu 20 Gly Leu Tyr Asp 100 Arg Thr	Thr 5 Phe Ser Leu Cys Ser 85 Leu Gln Gly	Pro Gly His Ala 70 Cys Thr Arg Met Asp	Pro Pro Cys 55 Ile Glu Tyr Asn Lys 135	Ser Pro 40 Pro Cys Gly Ser Arg 120 Arg	Gln 25 Glu Pro Gly Cys Cys Cys Cys Cys Glu	10 Ile Asp Pro Asp Lys 90 Arg Gln Ala Glu	Asn Val Pro Arg Gly Asp Tyr Val Gly	Ser Lys Gly Ser Phe Asn Cys Gln	Thr Pro 45 Gly Ser Phe Lys Arg 125 Glu	Val 30 Pro Gly Lys Asp 110 Tyr Glu	15 Ser Val Gly Lys Arg 95 Cys Gln Arg	Leu Leu Ala His 80 Thr Thr Lys Gln Pro	
<210 <211 <212 <213 <400 Met Val Val Val S5 Cyr ( S1y ) S5 Cyr ( Cle A Val A Cys I Cys I Cys I Cys I	> 2 > PI > H Ile Thr Gly Val 50 Lys Gly Arg Asp Leu 130 3ly	46 RT Ser Ser Gly 35 Arg Val Lys Lys 115 Ala Lys	Ile Leu 20 Gly Leu Tyr Asp 100 Arg Thr Asp	Thr 5 Phe Ser Leu Cys Ser 85 Leu Gln Gly Lys Val	Pro Gly His Ala 70 Cys Thr Arg Met Asp 150	Pro Pro Cys 55 Ile Glu Tyr Asn Lys 135 Gly	Ser Pro 40 Pro Cys Gly Ser Arg 120 Arg Asp	Gln 25 Glu Pro Gly Cys Cys Cys Glu Gly	10 Ile Asp Pro Asp Lys 90 Arg Gln Ala Glu Glu	Asn Val Pro Arg 75 Gly Asp Tyr Val	Ser Lys Gly Ser Phe Asn Cys Gln 140 Ala	Thr Pro 45 Gly Ser Phe Lys Arg 125 Glu Gly	Val 30 Pro Gly Lys Asp 110 Tyr Glu Gly	15 Ser Val Gly Lys Arg 95 Cys Gln Arg Ala Val	Leu Leu Ala His 80 Thr Thr Lys Gln Pro	
<pre>&lt;210 &lt;211 &lt;212 &lt;213 &lt;400 Met 1 Val ' Pro 0 Gly ' Gly '</pre>	> 2/ > PI > Ha Ile Thr Gly Val 50 Lys Gly Arg Asp Leu 130 Gly Sly	46 RT Ser Ser Gly 35 Arg Arg Val Lys Lys 115 Ala Lys Met	Ile Leu 20 Gly Leu Tyr Asp 100 Arg Thr Asp Pro Asp	Thr 5 Phe Ser Leu Cys Ser 85 Leu Gln Gly Lys Val 165	Pro Gly His Ala 70 Cys Thr Arg Met Asp 150 Asp	Pro Pro Cys 55 Ile Glu Tyr Asn Lys 135 Gly Arg	Ser Pro 40 Pro Cys Gly Ser Arg 120 Arg Arg 120 Asp Ile Glu	Gln 25 Glu Pro Gly Cys Cys Cys Glu Gly Leu	10 Ile Asp Pro Asp Lys 90 Arg Gln Ala Glu Glu	Asn Val Pro Arg 75 Gly Asp Tyr Val Gly 155	Ser Lys Gly Ser Phe Asn Cys Gln 140 Ala Glu	Thr Pro 45 Gly Ser Phe Lys Arg 125 Glu Gly Leu	Val 30 Pro Gly Lys Asp 110 Tyr Glu Gly Ala Gly	15 Ser Val Gly Lys Arg 95 Cys Gln Arg Ala Val	Leu Leu Ala His 80 Thr Thr Lys Gln Pro 160 Glu	
<210 <211 <212 <213 <400 Met 1 Val 9 Fro Gly 55 Fyr Gly 55 Fyr Cle Arg Gly 1 Arg Gly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly 1 Sly Sly 1 Sly Sly Sly Sly Sly Sly Sly Sly Sly Sly	> 2/ > PI > PI Ile Thr Gly Val 50 Lys Gly Arg Asp Leu 130 Gly Gly Gly Gly Gly Slu	46 RT Ser Ser Gly 35 Arg Val Lys Lys Lys Ala Lys Ala Ser Ser	Ile Leu 20 Gly Leu Tyr Asp 100 Arg Thr Asp Pro Asp 180	Thr 5 Phe Ser Leu Cys Ser 85 Leu Gln Gly Lys Val 165 Gln	Pro Gly His Ala 70 Cys Thr Arg Met Asp 150 Asp Gly	Pro Pro Cys 55 Ile Glu Tyr Asn Lys 135 Gly Arg Val Gly	Ser Pro 40 Pro Cys Gly Ser Arg 120 Arg Asp Ile Glu Val	Gln 25 Glu Pro Gly Cys Cys Cys Glu Gly Leu Gly 185	10 Ile Asp Pro Asp Lys 90 Arg Gln Ala Glu 170 Pro	Asn Val Pro Arg 75 Gly Asp Tyr Val Gly 155 Ala	Ser Lys Gly Ser Phe Asn Cys Gln 140 Ala Glu Gly Ser	Thr Pro 45 Gly Ser Phe Lys Arg 125 Glu Gly Leu Thr Phe	Val 30 Pro Gly Lys Asp 110 Tyr Glu Gly Ala Gly	15 Ser Val Gly Lys Arg 95 Cys Gln Arg Ala Val 175 Gly	Leu Leu Ala His 80 Thr Thr Lys Gln Pro 160 Glu Ser	
<pre>&lt;210 &lt;211 &lt;212 &lt;213 &lt;400 Met 1 Val ' Pro 0 Gly ' Gly '</pre>	> 2/ > PI > PI Ile Thr Gly Val 50 Lys Gly Gly Arg Gly Arg Gly Gly Gly Ser Ser	46 RT Ser Ser Gly 35 Arg Val Lys Lys Lys Lys Lys Ser Ser Ser 195	Ile Leu 20 Gly Leu Tyr Asp 100 Arg Thr Asp Pro Asp 180 Val	Thr 5 Phe Ser Leu Cys Ser 85 Leu Gln Gly Lys Val 165 Gln Ser	Pro Gly His Ala 70 Cys Thr Arg Met Asp 150 Asp Gly Val Leu	Pro Pro Cys 55 Ile Glu Tyr Asn Lys 135 Gly Arg Val Gly	Ser Pro 40 Pro Cys Gly Ser Arg 120 Arg Ile Glu Val 200	Gln 25 Glu Pro Gly Cys Cys Glu Gly Leu Gly 185 Asn	10 Ile Asp Pro Asp Lys 90 Arg Gln Ala Glu 170 Pro Pro	Asn Val Pro Arg 75 Gly Asp Tyr Val Gly 155 Ala Gly Leu	Ser Lys Gly Ser Phe Asn Cys Gln 140 Ala Glu Gly Ser	Thr Pro 45 Gly Ser Phe Lys Arg 125 Glu Gly Leu Thr Phe 205	Val 30 Pro Gly Lys Asp 110 Tyr Glu Gly Ala Gly 190 Val	15 Ser Val Gly Lys Arg 95 Cys Gln Arg Ala Val 175 Gly Met	Leu Leu Ala His 80 Thr Lys Gln Pro 160 Glu Ser Gly	

.

.

.

225 230 Gln Gly Leu Ser Asn Ile 245	235	240
-------------------------------------------	-----	-----

•

,