PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 96/23317
HO01) 31/00 Al

(43) International Publication Date: 1 August 1996 (01.08.96)

(21) International Application Number: PCT/US96/00855 | (81) Designated States: CA, JP, European patent (AT, BE, CH, DE,

(22) International Filing Date: 23 January 1996 (23.01.96)

(30) Priority Data: .
08/377,076 23 January 1995 (23.01.95) US
08/463,458 5 June 1995 (05.06.95) Us
(71) Applicant: TANDEM COMPUTERS INCORPORATED

(US/US]; 10435 North Tantau Avenue, Cupertino, CA
95014 (US).

(72) Inventors: PUTZOLU, Franco; Apartment 406, 1000 North-
point, San Francisco, CA 94109 (US). MURTHY, Srini-
vasa, D.; 1410 Goldenlake Road, San Jose, CA 95131 (US).
USAS, Alan, M.; 1101 Suffolk Court, Los Altos, CA 94024
(US). TOM, Gary, F.; 3845 Panda Place, San Jose, CA
95117 (US). GUPTA, Minoo; 43309 Debrum Common,
Fremont, CA 94539 (US). STRELLIS, Eric, G.; 1107 Ord-
way Street, Albany, CA 94706 (US).

(74) Agents: MENDENHALL, Larry et al; Townsend and
Townsend and Crew, Steuart Street Tower, One Market,
San Francisco, CA 94105-1492 (US).

DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.

(54) Title: A METHOD FOR ACCESSING A FILE IN A MULTI-PROCESSOR COMPUTER SYSTEM USING PIPES AND FIFOS

(57) Abstract

A loosely coupled multi-processor imple-

USER PROCESS 26

menting a Posix file system, including pipes and fi-
fos. A pipe server (214) and a pipe library together USER CODE 200
implement the complete fifo semantics required by =A==~ -SYSTE
Posix and offers these capabilities to any process VIRTUAL FILE SYSTEN 204 N CALL ENTRY LEVEL
(216) using the Posix interface.
28N fitots | fioops 208
20~ pibinterfoce \
\
pib_ops \
\

PIPE SERVER

PIPE SERVER CODE

pib_inferfoce

pib_sps

LZIZ

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG
BJ)
BR
BY
CA
CF
CG

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armmenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria
Benin

Central African Republic
Congo
Switzerland
Ciee d'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 96/23317 PCT/US96/00855

A method for accessing a file in a multiprocessor computer system using pipes and
fifos

10

15

20

25

30

35

BACKGROUND OF THE INVENTION

The present invention relates to inter-process
communications. An understanding of certain inter-process
operations, described below, is necessary in order to
understand the invention. UNIX® is taken as an example.

Recent years have seen a significant rise in the
commercial popularity of the UNIX® operating system. Although
UNIX® was originally preferred only by computer scientists,
computer science students and other extremely technically
proficient computer users, the preference for UNIX® as a
commercial programming environment is growing as those
students matriculate into the work force and carry their
developed preferences with them. Accordingly, it behooves a
computer manufacturer to provide a UNIX® or UNIX®-like
programming environment along with its proprietary hardware.

Two interfaces which a UNIX® environment typically
provides are pipes and fifos. Pipes and fifos are
memory-resident first-in, first-out gueues of data which
cooperating processes may use for communicating with each
other without knowing the identity of each other. (In UNIX®,
a "process" is the dynamic, run-time embodiment of a program.
The program typically resides in a static state on a storage
medium such as disk or tape, while the process is loaded into
memory and is executing. UNIX® is a multitasking operating
system: Many processes can be executing essentially
simultaneously.) Both pipes and fifos are file system objects
accessed via normal file system calls. Pipes and fifos differ
from a regular file system file in that its data is transient:
Once data is read from a pipe or fifo, that data cannot be
read again.

An important difference between pipes and fifos is
that fifos have normal file system file names while pipes do

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00835

2

not. As a result, many operations which require a file system
file name work for fifos but do not work for pipes.

In UNIX®, a process can create another process by
performing the fork() system call. The result of a fork()
system call is the creation of a new process which is a copy
of the old process, except inter alia it has its own unique
process identification number. This procedure of a process
creating a copy of itself is called "forking." 1In forking,
the older process is called the "parent" and the newer process
is called the "child." Of course, a parent can have many
children, while a child has only one parent.

A pipe is created and opened using the pipe() system
call. Opened pipes in a process are propagated to child
processes upon forking. After one or many forks, all of the
descendants of the process which called pipe(), as well as the
process itself, can communicate using the pipe.

A fifo is created using the mkfifo() (pronounced,
‘make fifo') system call. A call to this system entry point
creates an entry for the fifo in the file system. After
creation of the fifo, any process with sufficient permission
may open (i.e., open()) the file. Consequently, processes
which do not share a common ancestor can communicate using the
fifo.

UNIX®, however, has historically been an operating
system for uniprocessors: originally the Digital Equipment
Corporation's PDP-11, later mainframes, and still later
microprocessors with the boom in microcomputers. Even today,
only a handful of multiprocessor implementations of UNIX®
exist.

In implementations of the prior art, pipes and
fifos could be established only between two processes running
on the same cpu. For example, the Network File System (NFS)
from Sun Microsystems of Mountain View, California permits a
process to communicate with other processes only on the same
machine.

An implementation of distributed pipes and fifos
stand a high chance of performing below a user's expectations.

SYBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

3

Still further, an implementation of distributed
pipes and fifos significantly complicates error recovery.

Accordingly, one object of this invention is a
UNIX-like operating system on a multiprocessor which
transparently supports the pipes and fifos found on
traditional UNIX®-like implementations.

These and other objects of the invention will be
readily apparent to those of skill in the art on reading the
disclosure below. ‘

SUMMARY OF THE INVENTION

Accordingly, hereinbelow is described a
multiprocessor implementation of a UNIX®-like operating system
wherein any process desiring to signal another process must
enter arbitration for an inter-processor lock maintained by a
controlling processor.

If the desiring processor succeeds in acquiring the
inter-processor lock, the processor then informs each
processor -- in a predetermined sequence -- of the signal.

The desiring processor then releases the inter-processor lock.

If the desiring processor fails in acgquiring the
inter-processor lock, the desiring processor delays before
entering into arbitration again. Typically, the desiring
processor will run such processes as do not require the
inter-processor lock while it is waiting to re-enter
arbitration.

Each processor to which a signal is delivered will
deliver the signal to the appropriate, if any, process on that
processor.

Each receiving processor, once it has received the
incoming signal, operates asynchronously from all other
processors. Each receiving processor's pre- or post-signal
actions need not be and are not coordinated with the actions
of any other processor.

On failure of a signalling processor which has not
acquired the inter-processor lock, no recovery is necessary to
insure consistency of the particular distributed data

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

4

structures. On failure of a signalling processor which has
acquired the inter-processor lock, the controlling processor
takes over the function of informing all of the receiving
processors of the signal.

on failure of the controlling processor, the
surviving processors follow a pre-determined procedure to
determine which of the surviving processors succeeds to be the

controlling processor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an abstract representation of the sequence
of events the multiprocessor system of the invention
undertakes in response to a call by a process to open a fifo.

FIG. 2 illustrates the layers of software within a
process and within a pipe server according to the present
invention.

FIG. 3 schematically represents vnodes in the fifé
file system of the invention.

'FIG. 4 is a representation of fifo data structures
in a particular state.

FIG. 7 is a state transition diagram for an open
request on a fifo.

FIG. 8 is a state transition diagram for a read
request on a fifo.

FIG. 9 is a state transition diagram for a write
request on a fifo.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The 0SS File System offered by the assignee of this
patent application implements the Posix file system as
specified in the Portable Operating System Interface, Part I
("Posix," International Standard ISO/IEC 9945-1: 1990; IEEE
std 1003.1-1990, incorporated herein by reference). The 0SS
File System is designed to take full advantage of the loosely
coupled and truly distributed architecture of the computer
system architectures of the products of the assignee of this
patent application. The 0SS File System therefore supports
the concept of distributed pipes and fifos.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

5

There is a single instance of a fifo which has been
registered in a Posix file system directory on an entire
Expand network available from the assignee of this patent
application. As a result, a process on any one node of the
network may read data which another process has written to a
fifo. In other words, Posix processes which wish to
communicate with each other across the Expand network may use
a fifo.

The present invention supports pipes only for Posix
processes running on a single node, though the processes
themselves can be running on different cpus.

vera esign

A pipe server and a pipe library of the present
invention together implement the complete fifo semantics
required by the Posix standard for Posix processes. The
present invention provides these fifo capabilities to any
process which uses the Posix interfaces.

A pipe server is a system process which preferably
runs on each cpu in a multi-processor system embodying the
invention. A pipe server maintains the control data
structures for pipes and fifos located locally, i.e., for
pipes and fifos whose memory-resident, first-in first-out data
queues are located on the same cpu as is the process of
interest (the pipe server, here). Using an inter-processor
message interface, a pipe server provides I/O services for
remote processes desiring access to the pipes and fifos local
to the cpu of the pipe server. (Remote processes are
processes running on a cpu other than that on which the
process of interest is running. Here again the process of
interest is the pipe server.)

All pipe servers and any process potentially
accessing the distributed pipes and fifos of the invention
incorporate the pipe library. If the process seeks to access
-- in a Posix-specified manner -- a pipe or fifo not local to
the cpu of the process, then the pipe library code in the
process converts the requested Posix function to a
corresponding message for transmission on the inter-processor

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

6

message interface. The message is forwarded to the pipe
server on whose cpu the pipe or fifo is local. Using the
inter-processor message interface in the pipe library code,
this pipe server provides the requested I/O service for the
remote process.

If, however, the process requests Posix access to a
pipe or fifo local to the cpu of the requesting process, then
the pipe library executes the complete Posix request in the
context of the user process. Likewise, a pipe server
receiving a message requesting a Posix service for a local
pipe or fifo executes that request in its own context, using
the pipe library. The pipe library code maintains the local
pipe and fifo data control structures, and the pipe server and
any local process potentially accessing the pipes and fifos of
the invention each contain the pipe library.

An additional component of the present invention is
a name server. A name server does name resolution for fifos.
The name server also performs all necessary security checks on
a fifo when the server performs pathname resolution. The
security checks which the name server performs are exactly the
same as those security checks performed on other Posix files.
Each Posix file system has an associated name server.

Oorganization of the Fifo File System
FIG. 2 illustrates the layers of software within a

user process 216 and a pipe server 214 according to the
present invention. Each layer may request services from the
layer directly above or below, though in most cases a layer
only requests services from the layer below. For a given
layer, the interface to the next-lower layer is herein termed
the “"lower interface" and the interface to the next-higher
layer is termed the "higher interface." Each layer provides a
well-defined interface which specifies all the assumptions
which the layer may make about its caller and which the caller
may make about the layer. An interface includes a set of data
types and a set of callable functions. 1In addition to
parameters, a function in an interface may include rules about

SUBSTITUTE SHEET (RILE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

7

the global state, e.g., semaphores which the caller must
possess while using the function.

In addition to its interface, each layer may contain
private data structures and functions. To insure modularity,
these private data structures and function may be used only
within the layer.

Processes such as process 216 are typically
application programs such as a database, word processor or
file system backup program. A call to an operating system
entry point (e.g., Posix open()) occurs in the code 200 which
the user writes. This user code 200 performs operations on
pipes and fifos (as well as other file types) by using the
Posix file system interface directly or indirectly through
some library providing a programmer-friendly interface to the
system entry points. The user code 200 is not a part of the
invention. L

The invention includes a Virtual File System, VFS,
which provides a file system interface 204 to the user
application code 200. This interface 204 allows users to
access files in many types of file systems in a consistent,
file system-independent manner. In a preferred embodiment,
the higher interface of the file system interface 204 is the
Posix file system interface, though it can be any file system
interface supporting the capabilities required by the user
process 216. The Posix file system supports regular files
(i.e., a file which is a randomly accessible sequence of
bytes, with no further structure imposed by the file system),
pipes, fifos and special files (i.e., files through which
processes can access hardware devices such as disk drives,
terminals, etc.).

To accomplish its task, the VFS invokes lower level
file system-dependent layers of software such as layers 206
and 208. The VFS interface 204 includes important data
structures which the lower, file system-dependent layers use.

In the preferred embodiment, these data structure
are not part of the Posix file system higher interface and the
user code may not refer to or use these data structures.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/008SS

8

These VFS data structures include a Posix open block, a vnode
and various semaphores (all not shown). A Posix open block
contains the information about the open state of an oren file.
While a file system-dependent layer may extend this block, the
VFS interface 204 itself does not modify the file
system-dependent extension.

Vnodes contain per-file information representing a
pipe or fifo in the VFS. Like a Posix open block, a vnode can
contain a file system-dependent extension which the VFS
ignores. Each file system implements a complete set of vnode
operation (VOP) functions (not shown) which the VFS uses to
perform file system-dependent operations. In a preferred
embodiment, for example, the fifo_ops layer 206 defines VOP
functions for pipes and fifos.

The VFS interface 204 includes semaphores useful for
synchronizing access to VFS data structures.

In a preferred embodiment, the VFS interface 204
also provides functions for operating on vnodes and Posix open
blocks. For example, the VFS provides functions which add
vnodes to hash lists and others which use the hash lists to
efficiently find vnodes. .

The fifo ops layer 206 supports the VOP interface
which the VFS uses to request file system-dependent operations
for a fifo or pipe. Each of the fifo ops functions operates
on a single pipe or fifo. Thus, most functions receives a
vnode and a Posix open block as input parameters. A fifo ops
function can, however, take additional parameters. For
example, fifo read requires the number of bytes to read and
the location to store the data that get reads.

Each function returns a Posix completion code and
preferably a completion code for the underlying operating
system (here, Guardian, available from the assignee of this
patent application).

The responsibilities of the fifo ops layer 206
include requesting the underlying pipe control block interface
layer 210 to manipulate pipe control blocks; manipulating the
fifo file system extensions to Posix open blocks and vnodes
(including synchronizing access to a Posix open block with

STRSTITUTE SHEEY (WOLE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

9

semaphores) ; requesting the name server associated with the
file system to remove fifo file identifiers after the pipe
control block interface 210 indicates that the corresponding
pipe control blocks have gone away; requesting the name server
to update the access, status change and modification times
attributes of open fifos when the pipe control block interface
210 indicates that these times should be updated; and
returning indications requesting the VFS layer 204 to retry an
open request if the pipe control block for a fifo being open
has gone away. These responsibilities are further explained
below.

The fifo fs layer 208 includes all the functions
required to set up the file system-dependent parts of the
Posix open block and vnode data structures. For example, fifo
fs layer 210 includes the function which returns the length of
the file system-dependent part of the Posix open block data
structure. »

The pipe control block interface layer 210
implements the concept of a request for an operation on a pipe
control block (described below). A local request accesses a
pipe control block on the requesting process' cpu. The pipe
control block interface layer 210 calls the pipe control block
ops layer 212 directly.

The performance of some local requests requires the
invocation of the pipe control block ops layer 212 a multiple
of times in sequence. Each invocation of the layer 212 is
herein termed a "pib operation." "Pib" is a contract of "pipe
control block." For example, for local blocking requests such
as a read from a pipe control block, the pipe block control
interface layer 210 blocks between pib operations. This is
further described below.

In comparison, a remote request accesses a pipe
control block on another cpu. The pipe control block
interface layer 210 in the requesting process sends the
request in a message to the pipe server 214 on that remote
cpu, and that pipe server's pipe control block interface layer
210 reads the request message and invokes the pipe control
block ops layer 218 on that remote cpu.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

10

The capabilities which the pipe control block
interface layer 210 provides to the pipe control block ops
layer 212 include the following (These capabilities enable
the pipe control block ops layer 212 to run in the context of
a pipe server 214 or in the context of a user process 216.):
reading data associated with a request; replying to a request;
and continuing a request. In the pipe server, data is read
from a message and the reply is packaged as a message while in
a user process, data is read from the caller's data buffers
and the reply is moved to the caller's data buffers. As to
continuing blocked requests, an unblocked request is put on a
ready list in a pipe server and a blocked user process is
awakened.

The pipe control block interface 210 also provides a
function whereby a pipe server 214 can read requests sent by a
user process 216.

If a process receives a signal while the pipe
control block interface layer 210 is blocked between pib
operations, the interface layer 210 requests that the pipe
control block ops layer 212 cancel the outstanding request.

If a process 216 receives a signal while its pipe control
block interface layer 210 is waiting for a pipe server 214 to
reply to a request, the interface layer 210 requests that the
pipe server 214 cancel the outstanding request.

The pipe control block ops layer 212 implements the
non-blocking operation required to support the lower interface
of the pipe control block interface layer 210. The operations
are non-blocking in order to allow the pipe server 214 to
execute them without its blocking. The functions in the pib
ops layer 212 take an operation data structure (described
below) as a parameter. This operation data structure
completely describes the pib operation which the requesting
process wishes to perform.

The pipe control block layer 210 begins executing a
request by invoking a (possibly first-in-a-sequence)
non-blocking operation in the pib ops layer 212. After this
pib operation, the pipe control block ops layer 212 returns
the Posix (and Guardian) completion code for the pib

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

11

operation, an indication of the next operation to invoke, if
any, and an indication whether the caller should block before
invoking that next operation.

As implied above, the pipe control block ops layer
212 supports cancelling outstanding requests.

Vnodes jin the Fifo File System

The Posix file system supports directory entries for
fifos but not pipes. Like the directory entries for disk
files, the directory entries for fifos last from the time the
fifo is created until its last link is removed.

Some system calls affect the directory entry for a
fifo, for example, the Posix chmod() system call which sets
the access permissions for a file. Other system calls affect
the resource which the fifo represents. A system call to
write to a fifo, for example, adds some data to the fifo's
memory-resident data queue. The file system which contains
the fifo's directory entry (e.g., the Posix or NFS file
system) must perform the directory-affecting operations. The
fifo file system itself must perform the operations which
affect the fifo resource itself. To support these two types
of operations, the present invention allocates two vnodes
(described below), one for directory entry operations and one
for operations on the fifo.

FIG. 3 schematically represents vnodes in the fifo
file system of the invention. These vnodes are created in a
Posix Extended Segment (PXS) 36, an extended segment which is
allocated and initialized on a cpu, preferably during boot-up.
The PXS 306 contains control blocks (such as vnodes) that are
shared by user processes and system processes of the cpu.
Preferably, the PXS 306 includes a fixed-length header and a
pool and is locatable via an absolute pointer stored in system
data space. The PXS pool is used to store Posix open blocks,
pipe control blocks, the pipe table (the table of (pointers
to) pipe control blocks), and vnodes.

FIG. 3 shows the two vnodes 302, 304 needed to
represent a fifo which exists in a Posix file system directory
(not shown). Fifo vnode 302 enables operations affecting the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

12

fifo resource while Posix vnode 304 enables
directory-affecting operations. These vnodes are created in
the PXS 306 the first time a process on a cCpu opens cr uses
the fifo. Subsequent opens or uses of the fifo on the same
cpu will refer to these same vnodes. System calls to open the
fifo on another cpu will create or refer to a copy of the
vnodes local to that other cpu. When the last user on a cpu
closes the fifo (using the close() system call), the vnode
data structures are destroyed.

The VFS performs operations on the fifo resource by
executing the appropriate function in the fifo ops layer 206.
For example, when performing a Posix write() system call on a
fifo, the VFS invokes the fifo ops write operation of the fifo
ops layer 266. The fifo ops write operation has the
responsibility for transferring the data the caller wishes to
write to the fifo. The fifo ops write and other fifo ops
operations such as open, close, read and write are discussed
fully below.

The first process on a cpu to refer to a pipe or
fifo creates the vnodes 302, 304. Subsequent processes on the
cpu use the existing vnodes 302, 304 by incrementing a
reference count. When the last process on a cpu stops using a
pipe or fifo's vnodes, that process frees the vnodes 302, 304.
To allow a process to efficiently find a fifo vnode 302 for a
particular fifo on its own cpu, a hashed mapping from the
fifo's fifo identifier to the fifo's vnode. The hashing
function indicates the fifo vnode 302 of a particular fifo
exists on the caller's cpu.

The fifo vnode data structure 302 represents both
pipes and fifos and preferably contains the following
information: a pointer to the vnode 304 for the directory
entry of the fifo (this reference would be NULL for pipes); a
flag indicating whether the fifo vnode 302 represents a fifo
or a pipe; the phandle of the name server for the file system
of the fifo; and the phandle of the pipe server which has the
pipe control block (described below) for the pipe or fifo
which the fifo vnode 302 represents. A phandle is a unique,

though not necessarily constant, inter-processor identifier

SYBSTITUTE SHEET (RULE 26)

WO 96/23317 PCT/US96/00855

10

15

20

25

30

35

13

for a process. A phandle for a service may change, for
example, if a backup process for the service takes over.

Consider an invocation of the Posix stat() system
call, which obtains status information about a file named in
one parameter and writes that information to an area pointed
to by another parameter. This operation affects the directory
entry for the fifo. Assume that the vnodes 302, 304 for the
fifo already exist on the local cpu and that, therefore, the
stat() system call refers to the existing vnodes 302, 304
rather than requiring the construction of new ones. 1In
performing the stat operation, the VFS calls the fifo ops
function getattr() via the fifo ops data structure 308. The
fifo fops data structure 308 associates Posix functions
affecting a fifo resource with corresponding file
system-dependent functions.

In addition to returning the status information, the
fifo ops getattr operation must permanently store the times
attributes information with the directory entry for the fifo.
To store this information, the fifo ops getattr operation
invokes the Posix setattr operation using the normal vnode
interface. Posix ops data structure 310 associates Posix
functions affecting a fifo file entry with corresponding
file-system-dependent functions.

This design isolates the fifo file system's
implementation from the implementation of the file system
which contains a particular fifo file. The fifo file system
need not know what kind of file system contains a particular
fifo file in order to perform operations on the special file's

directory entries.

ata Structures

Active pipes and fifos are represented by control
blocks or "pipe control blocks". Each process which opens an
otherwise unopened fifo or calls pipe() to create and open a
pipe causes the creation of a pipe control block. Each such
opening process is termed a client of the pipe and has a
corresponding client data structure in the pipe control block
data structure. The client data structure, among other

SUBSTITUTE SHEET (RUE 25)

WO 96/23317 PCT/US96/00855

10

15

20

25

30

35

14

things, describes how each client process is using the pipe or
fifo. Because of the open file duplication involved in
forking, the result of a client process' forking is the
addition of the child process as a client of the pipe or fifo.

As described above, client processes may share open
files as a result of forks. According to the invention, the
client processes sharing the open file need not reside on the
same cpu. Nonetheless, changing an attribute of a shared open
file must affect all the sharing processes. With pipes and
fifos, an important shared attribute subject to change is the
flag indicating whether I/O on the pipe is non-blocking. To
support shared opens of pipes and fifos, a system embodying
the present invention stores the attributes of an open file
that can be shared in an open control block. All client
processes sharing the open file refer to the same open control
block, preferably through the client data structure.

The present invention labels each open which a
process performs with a unique open identifier. Uses of a
pipe or fifo other than opens have a single, reserved open
identifier which indicates that the use is other than an open.
Since the present invention forces non-open uses of a pipe or
fifo through a single Posix system call, enforcement of the
rule that a single process may have at most one non-open use
of a pipe or fifo at any given time is easy. The result is
that a pair consisting of a client process identifier and an
open identifier uniquely defines a particular use of a pipe or
fifo. All requests to access a pipe control block on behalf
of a process contain such a pair.

The Posix file system uses the fifo file identifier
for a pipe or fifo to locate the vnodes 302, 304 of the pipe
or fifo. These vnodes 302, 304 are locatable by a hash table.
This requires that the fifo file identifier must be unique
within an Expand network. Also, the pipe control block ops
layer 212 uses the fifo identifier to locate a pipe control
block. Therefore, the fifo identifier contains the pipe
control block's cpu number and the block's index in the pipe
table.

SYBSTETUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

15

Vnodes 302, 304 for a pipe or fifo may exist on many
cpu's. The failure of the cpu containing the pipe control
block may not affect these vnodes. Accordingly, VFS functions
may continue to reference the pipe control block -- even after
the failing cpu deletes that block. A pathological condition
results if a new pipe control block is created on the same cpu
after the cpu restarts. To resolve this problem, the present
invention requires that fifo identifiers be unique for every
instance of a pipe control block creation. The present
invention achieves this requirement by adding a unique
sequence number to the fifo identifier.

The pipe control block for a pipe or fifo exists on
a single cpu. The pipe control block ops layer 212 on that
cpu creates the pipe control block. After such a creation,
the pipe control block ops open() function creates a fifo
identifier which identifies the new pipe control block. The
new fifo identifier must differ from existing fifo
identifiers, even those created prior to an earlier cpu
failure. To satisfy this requirement, the present invention
restricts the pipe control block ops layer 212 to execute only
after the pipe server initializes its global data structures.
In other words, after a cpu failure, the pipe server must be
initialized on that cpu before any fifo identifiers are
generated. To generate a unique sequence number for fifo
identifiers created across cpu deaths and restarts, the pipe
server's phandle becomes a part of the unique seguence number.
The phandle of a process is unique across the cpu ups and
downs. Also, the phandle of the pipe server preferably
contains the system number and the cpu of the pipe server
which are the same as the system and cpu of the pipe control
block.

In short, the fifo identifier for a pipe or fifo
includes the pipe server phandle, the pipe table index for the
pipe control block and the sequence number for the pipe
control block since the last cpu load. The sequence number is
preferably a 32-bit number.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

16

The present invention maintains a number of
semaphores in PXS 306, including the pipe semaphore, the
allocation semaphore and the posix open block semaphore.

The pipe server and the system library use the pipe
semaphore to synchronize access to pipe and fifo data
structures. The semaphore protects all the data structures
associated with pipes and fifos, including the pipe table, the
pipe control blocks, the client and operation data structures,
and the ready list. As a result, at any give time only one
process can access the pipe control blocks on any given cpu
and processes must give up the semaphore before blocking.

The allocation semaphore synchronizes the allocation
and deallocation of memory in the PXS segment. The allocation
semaphore also synchronizes the use of data structures in the
PXS segment.

The processes use the Posix open block semaphore to
synchronize access to the Posix open block data structure.

The PXS 306 pool also contains a number of data
structures, including the pipe operation data structure, the
pipe interim data buffer and the pipe ready list. The pipe
server uses the pipe operation data structure to read requests
for services and uses the pipe interim data buffer to read in
a data buffer if the data buffer associated with the pipe
control block does not have enough space at the time. The
pipe ready list is a list of unblocked pipe control block ops
layer 212 operations for the pipe server to execute. The pipe
control block ops layer 212 adds entries to and deletes
entries from this 1list.

In a preferred embodiment, the pipe control block
data structure includes the following information: a fifo
identifier, a unique identifier of the pipe control block,
which includes the system number, the cpu number, the pipe
control block number (i.e., index in the pipe table) and a
sequence number; a flag indicating whether the pipe control
block describes a fifo; a client count, the total number of
clients currently using the pipe control block due to calls to
the Posix open() and fork() system calls; a client read count,

the total number of current clients using the pipe control

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

17

block for read or read/write access; a client write count, the
total number of clients using the pipe control block for write
or read/write access; a client list, a list of currert clients
(Each entry in this list represents an active use of the pipe
control block by a process. For example, when a process calls
open() an entry is added to the client list. The entries in
this list are client data structures.); a pipe control block
buffer pointer, a pointer to a FIFO data buffer allocated in
the PXS 306; first and last indices, boundaries of current
data in the pipe control block buffer; an open-waiter head,
the first entry in the list of open operations waiting for
another type of opener, e.g., an opener with read-only access
waiting for an opener with write-only access; a write-waiter
head, the first entry in the list of write operations waiting
to write to the pipe control block_buffer (The writes blocked
because the pipe control block_buffer was full at the time of
the operation.); a read-waiter head, the first entry in the
list of read operations waiting to read from the pipe control
block_buffer (The reads blocked because the pipe control
block buffer was empty.); a name server block pointer pointing
to name server-related information (not used for pipes); a
directory entry file identifier, the file identifier for a
fifo's directory entry; a fifo file identifier, the fifo file
system file identifier for a pipe or fifo; a unique sequence
number to distinguish this use of the pipe control block's
pipe control block number (This sequence number is a
duplicate of the fifo identifier.); a local copy of the access
time; the name server's last copy of the access time (not
used by pipes); the local copy of the fifo or pipe's modify

‘time; the name server's last copy of the fifo's or pipe's

modify time (not used by pipes); the local copy of the pipe's
or fifo's create time; the name server's last copy of the pipe
or fifo's create time (not used by pipes); and a next open
identifier, a counter for assigning open identifiers for the
client structure.

A client structure describes a single use of a pipe
or fifo and is allocated in the PXS 306. In a preferred
embodiment, the client data structure includes the following

SURSTIVUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

18

information: the phandle of the user process using the pipe
or fifo; a pipe control block identifier of the pipe control
block to which the client belongs; a pointer to the open
control block containing the attributes of the open, if the
client structure represents an open (The attributes include
an open identifier, a unique identifier which processes
sharing the fifo or pipe file descriptors may share; the open
control flags; and a count of the clients sharing the open.
If one client changes the open flags, then all the other
clients sharing the open see the change.); the sequence number
of the last fifo function successfully executed; the sequence
number of the last fifo function successfully cancelled; and
the operation structure used for queuing blocked requests.

An operation data structure completely describes the
state of a request on a pipe or fifo. All the functions in
the pipe control block ops layer 212 use an operation data
structure. The pipe library or the pipe server itself can
initialize operation data structures.

In a preferred embodiment, the operation data
structure includes the following information: an operation
request type, the type of the operation being described by
this data structure (The values could be OPEN, READ, WRITE,
CLOSE, etc.); and an operation state, one of INIT, BLOCKED,
READY, and DONE.

The following information preferably included in the
operation data structure associates a given operation with a
client: a file identifier, the fifo identifier part of which
jdentifies the pipe control block on which this operation
will be performed; the process identifier of the process which
initiated the operation; an open identifier to uniquely
identify the client given the above information; a request
sequence nuﬁber, a sequence number generated by the fifo ops
layer 206 for each invocation. (This is used to identify
cancel and duplicate requests from a client.); and a flag
indicating whether the operation is being performed locally
form the system library.

The following information preferably included in the
operation data structure chains this operation structure on

SYBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

19

various lists: an operation list type, identifying which 1list
this operation belongs to (i.e., blocked openers, readers,
writers or the ready list); a pointer to the operation data
structure at the head of the list; and a pointer to tie next
operation data structure chained in the list to which this
operation belongs.

The following information preferably included in the
operation data structure stores the request and reply
information. These fields may be filled in by the library or
the pipe server: a message id which the pipe server fills in
after reading the initial control information; the length of
the request data; a pointer to the request data (If the
library performs this operation, the library uses this field
to fill the user's buffer in write() operations); the maximum
length of the reply control; a pointer to the reply control
buffer (which the library fills in for local operations); the
maximum length of reply data and a pointer to the reply data
buffer (which the library fills in for local operations).

A name server block stores name server-specific
information and is also allocated in the PXS 306. As
explained above, the pipe control block data structure points
to one of these. 1In a preferred embodiment, the name server
block data structure includes the following information: the
phandle of the primary name server which has an "I am OK"
message pending with the pipe server; the well-known name of
the name server process (primary and backup) pair whose
primary phandle is stored as suggested above; the message
identifier of the pending "I am OK" message; the tag provided
to this block by the pipe server; a reference count of the
number of active fifos registered with this particular name
server; and a pointer to the next block of the name server.

FIG. 4 sketches certain fifo data structures when a
fifo has been opened by two processes. Each open results in
the creation of a Posix open block 402, 404. Each Posix open
block 402, 404 for the fifo refers to fifo vnode 406 for the
fifo in the fifo file system. The fifo vnode contains a fifo
identifier and directory entry vnode pointer. The fifo
identifier in the fifo vnode 406 is used to reference the pipe

SUBSTITUTE SHEET (RULE 26)

WO 96/23317 PCT/US96/00855

10

15

20

25

30

35

20

control block 410. The figure also shows the relaticnship
between the pipe control block 410, the client data structures
416, 420 and the operation data structures 418, 422.

e e Se

Each fifo is registered in a single Posix file
system. The name server for the file system containing a fifo
can provide users of the fifo several services described
below.

The name server maintains the vnode information and
directory entries for the fifo in the file system's directory
tree. This information is stored in the PXINODE and PXLINK
files for the file system. The PXINODE file describes inodes
of directories and files. PXINODE records include some
Posix-defined fields which are a part of the Posix
<sys/stat.h> stat data structure. A field of the PXINODE
record (preferably the st _mode field) indicates that the inode
describes a fifo.

A process registers the fifo in the file system by
performing a Posix mkfifo() call. When a process removes the
last link to the fifo using a Posix unlink() céll, deletion of
the fifo from the file system is a result.

The name server also performs Posix directory entry
operations including access(), chmod, chown(), link(),
mkfifo(), pathconf(), rename(), unlink() and utime(). The name
server also does name resolution and permission checking.

- The name server requests the pipe server to create a
fifo's pipe control block and return the fifo identifier of
the pipe control block when a process opens an unopened fifo.
The name server constructs a file identifier which contains
this fifo identifier and returns the file identifier to the
caller performing name resolution.

During the time the request to the pipe server is
outstanding, the name server blocks other name resolution
requests involving the same fifo. When the pipe server
responds with a fifo identifier, the name server unblocks the
blocked requests and includes the newly created file
identifier in the replies to the blocked request.

SUBSTITUTE SHEET (RULE 26)

WO 96/23317 PCT/US96/00855

10

15

20

25

30

35

21

The name server deletes the file identifier
associated with an open fifo when the pipe control block for
the fifo is destroyed. This occurs when the last process
using the fifo closes it and sends the name server a 'last
close' request. The pipe control block is also destroyed when
the cpu containing the pipe control block fails, so the name
server must monitor the pipe control block's cpu.

The name server permanently stores the time
attributes of a fifo. These times are cached in the pipe
control block while the fifo is open. The name server updates
the times when it receives a 'last close' message from the
last process to close a fifo.

When processing a Posix utime() operation on an open
fifo, the name server sends the new times to the pipe server
for the pipe control block which contains the cached times.

The name server performs all necessary security
checks on a fifo when it performs path name resolution. The
checks performed on a fifo are exactly the same as those
performed on a disk file.

The System Library ,
The fifo ops layer 206, the pipe control block

interface layer 210 and the pipe control block ops layer 212
are completely executed in the context of a user process if
the pipe control block to the fifo of interest is on the same
cpu as the user process. This is local execution.

If the pipe control block is on another cpu, the
pipe control block interface layer 210 sends a request
containing an operation data structure to the pipe server 214
on the cpu which contains the pipe control block. This is
remote execution. In remote execution, the pipe server 214
executes the pipe control block ops layer 212 upon receipt of
the request using the operation data structure.

The pipe control block interface functions and the
pipe control block ops layer functions take an operation data
structure as the input parameter. In a preferred embodiment,
the operation data structure specifies: the request to be
performed; whether the request is local or remote; the fifo

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

22

identifier, the process identifier and the open identifier
uniquely identifying the relevant pipe control block, client
block and open; the request sequence number, obtained from a
counter in the Posix open block by every invocation of a fifo
ops function (A request to be cancelled is identified by its
sequence number.); and the location for the reply.

The fifo ops layer 206 checks the return status from
the pipe control block interface layer 220 and decides whether
it needs to send a times update message or a 'last close'
message to the name server. If a messages needs to be sent,
the fifo ops layer 206 will assemble and send the message.

The fifo ops layer 206 invokes the a pipe control
block interface function, herein termed "PerformRequest()" to
execute requests on a pipe control block. During local
execution, the interface function PerformRequest running
within a user process invokes the pipe control block ops layer
212 to perform one or more non-blocking pib operations. If
the request blocks (e.g., a fifo read() request blocking until
data is written to the pipe control block), the pipe control
block interface 210 waits. During remote execution, the
interface function PerformRequest ships the request to the
pipe server and blocks until it replies.

_ The general sequence of steps which PerformRequest
are as follows: The PerformRequest synchronizes access with
the pipe server via the pipe semaphore. If execution is
local, PerformRequest calls another function, herein termed
"RequestMyCpu()," to invoke a pib operation. If execution is
remote, PerformRequest calls the function herein termed
"RequestOtherCpu()" to send a request using the operation data
structure to the pipe server. PerformRequest then waits for
the request, local or remote, to complete.

If a signal comes in while the request is blocked,
PerformRequest cancels the request.

Upon successful completion, Perform returns the
reply to the user.

When a request blocks, the pipe control block ops
layer 212 returns a blocked status and the next operation to
invoke. RequestMyCPU then waits for an LPIPE or LSIG signal

SUBSTITUTE SEZET (RULE 26)

WO 96/23317 PCT/US96/00855

10

15

20

25

30

35

23

event. LPIPE events are generated from either the pipe server
or from another user process executing a pipe control block
ops layer function. For example, when a pipe control block
read operation blocks, RequestMyCpu() waits. Later, a pipe
control block write operation running in the pipe server or a
user process will generate an LPIPE event to continue the
blocked read. After receiving the event, RequestMyCpu()
invokes the next pipe control block operation in the request.
An LSIG event is generated upon receipt of a signal and the
blocked request is cancelled.

The RequestOtherCpu() waits for either a reply from
the pipe server or an LSIG-event to cancel the request.

To cancel a pending request, the pipe control block
interface layer 210 sets up a cancel operation data structure
which includes the operation control information and the
sequence number of the request to be cancelled.

RequestMyCpu() invokes the pipe control block cancel operation
and RequestOtherCpu() sends a message to the pipe server.

The Pipe Server

Pipe Servers are system processes that support the
remote operation for pipes and fifos. A pipe server 214
provides to user processes running in different Cpus a message
interface supporting pipe control block interface requests.

In its main loop, a pipe server 214 preferably
proceeds as follows: The pipe server 214 reads a
communications interface to get the next request for a pib
operation. The pipe server 214 then synchronizes with the
system library using the pipe semaphore. The server 214 then
executes the requested pib operation. The pib operation
includes identifying the client process using the fifo
identifier, the process identifier and the open identifier.
The pib operation also updates and allocates the pipe control
block and buffer of the pipe or fifo. The pib operation then
wakes up local user processes that are in the blocked state,
using the LPIPE event, moves unblocked remote operating to a
ready list for later processing and generates an LPIPE event
for the pipe server. The pib operation queues the operation

WO 96/23317 PCT/US96/00855

10

15

20

25

30

35

24

on to one of the wait lists if the request is to be blocked,
setting up the next pib operation to be performed in the
operation data structure to be executed when the operation
becomes unblocked, and returning to the top of the loop to
listen on the communications link for the next request. The
pib operation sends a reply message to the requesting user
process if the request successfully completes.

For the pipe server 214, the pipe control block
interface layer 210 preferably offers two services for pib
operations: a read() service and a do() service. The read()
service reads a request incoming on the communications link or
dequeues the operations chained on the ready list. The do()
service invokes the underlying pipe control block ops layer
212, using an operation data structure.

When the pipe control block ops layer 212 is
blocked, the layer 212 returns a blocked status to the do()
function. The pipe server 214 must then either wait for an
LPIPE event or perform another operation, preferably from the
ready list. As described above, the pipe control block ops
layer 212 generates an LPIPE event when, running in the
context of another user process, the layer 212 unblocks
operations and chains the unblocked operations onto a ready
list. The pipe server 214 in turn dequeues operations on the
read list.

only the pipe server 214 dequeues operations that
are chained on the ready list. The pipe server 214 invokes
the next operation to be execution upon becoming unblocked.

One of the requests which a pipe server 214 handles
is a request to cancel a service. A cancel request can arrive
at the server 214 before the corresponding request which is to
be cancelled. In order to detect this out-of-sequence
arrival, the system pipe library includes a sequence number in
every request sent to a pipe server 214. The cancel request
includes the sequence number of the request to be cancelled.
Every client data structure tracks the sequence number of the
last cancelled request as well as the sequence number of the
last request processed.

SUBSTITUTE SHEET (R¥LE 26)

WO 96/23317 PCT/US96/00855

10

15

20

25

30

35

25

The pipe server 214 monitors the cpus of all the
remote clients of each pipe control block, in part to
determine when any of the cpus goes down. The server 214
processes a cpu down message in two steps. In the first step,
all the client data structures representing user processes on
the dead cpu are deleted from their pipe control blocks, if
they were neither blocked nor had partially completed
operations, that is to say, there was no reply outstanding.
The user requests which were blocked or were partially
completed are set up to execute the next operation which will
reply to their outstanding requests. The blocked operations
from the remote user processes are queued on to the ready list
and the local user processes are awakened by an LPIPE event.

In the second step, the next pipe control block
function is executed from the main loop of the pipe server 214
for operations which were added to the ready list and also
executed by the system pipe library which wakes up as a result
of the LPIPE event. This operation will reply to the
outstanding request and deallocate the associated client data
structure and the pipe control block structure if no more
clients remain.

Every name server servicing a fifo has an "I am OK"
message outstanding with the pipe server serving the fifo. 1If
the name server dies for any reason (due to cpu death or its
own process death), the message system of the underlying
operating system cancels this message. This cancel message
serves as an indication to the pipe server that at least one
member of the name server process pair is dead.

Upon receiving this cancel message the pipe server
takes the actions described below. The pipe server will
perform a DCT lookup by phandle to determine if the name
server process pair is still active. If the name server
phandle is changed due to the backup takeover, the name server
block will be updated to reflect the change. Until the pipe
server gets another "I am OK" message from the primary name
server, it polls the DCT using a timer. At every timer pop,
the pipe server will perform a DCT lookup to check if there is
any change in the name server status.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

26

If the DCT lookup fails, this suggests that both the
primary and backup name servers are dead. All the fifo
operations are terminated for the fifo that were registered
with this name server process pair. The termination of these
operations is handled in the same manner as described in the
two-step client death processing.

In certain situations, after cpu-down processing,
the pipe server and the name server can get out of sync with
respect to the fifo identifiers. Consider a situation where a
pipe control block will be deleted because all the clients
associated with this pipe control block were on the dead cpu.
In this case, no message is sent to the name server to delete
the fifo identifier mapping. To correct this situation, a
retry mechanism is used at the time of open(): The pipe
control block open() detects that the pipe control block no
longer exists and returns such an indication to fifo open().
Fifo open() sends a message to the name server asking to
delete the mapping between the fifo and the fifo identifier.
Fifo open() returns a indication to retry the open(), starting
from lookup.

Times Updates for Pipes and Fifos

Both pipes and fifos have three time related
attributes, atime, ctime and mtime. The atime reflects the
jast time the data for a pipe or fifo was accessed. The ctime
reflects the last time a pipe or fifo changed. The mtime
reflects the last time data was written to a pipe or fifo.

The pipe() system call includes initial values for
these times in the new pipe's pipe control block. Later,
other Posix system calls on the pipe modify the times. When
the last process with the pipe open executes a Posix close()
system call, the pipe control block is removed and the times
are lost. The system does not permanently store the times for
a pipe.

The Posix mkfifo() system call adds a new fifo to a
Posix file system. The name server for the file system
registers the fifo in its data base. When the name server
registers th fifo, it includes initial values for the fifo's

SUBSTITUTE SHEE (RFLE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

27

times attributes. The fifo's times remain in the nanec
server's data base until the last link to the fifo is removed.
Since the data base in kept in disk files, the times in the
data base persist when the system stops and starts.

As a performance optimization, the times for a fifo
are cached in its pipe control block while the fifo is open.
This caching avoids the need to request the name server to
update the times in its data base for each function that
affects the times. The fifo file system updates the name
server's permanent copy of a fifo's times in the following
situations: during Posix stat() and fstat() operations on a
fifo, as required by the Posix standard; during a Posix
close() by the last opener of a fifo, since the fifo's pipe
control block and the cached times within the pipe control
block will be destroyed; during any operation that would cause
the cached times to become more than 5 minutes out of date
(This attempts to keep the times kept by the name server
somewhat in sync with those cached in the pipe control block
in case the pipe control block's cpu fails.); and after an
unpoen fifo is opened, during the first operation that would
cause the cached times to be out of date (This attempts to
cause the times kept in the name server to reflect that the
fifo has been used, in case the pipe control block's cpu fails
before five minutes have elapsed.).

Table I shows information about each system call
that changes the times for a pipe or fifo. If also lists some
functions which operate upon pipes and fifos without changing
their times. The 'argument' column of the table indicates
which calls identify the fifo by providing its path and which
identify the pipe or fifo by providing a file descriptor (fd).
In the times column of the table, 'p' indicates the function
updates the pipe control block's cached copy of the times. A
‘u' indicates the function updates the times either in the
pipe control block or on disk. A 'w' indicates that for fifos
the function update the name servers permanent copy of the
times.

Table I

[;peration Argument atime ctime mtime u
SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 96/23317 PCT/US96/00855

28
access() path
chmod () ‘]l path u, w
chown () path u, w
close() fd ' w w w .
link() path u, w
mkfifo() path u, w u, w u, w
open() path
‘pipe() fd P, u P, 1 p, u
fstat() fd w w w
rename () path
read() fd P, 1
write() fd P, Q P, u
stat() path w w w
unlink() path u, w
utime() path p, U, W P, u, w P, U, W

In general, Posix requires that the times attributes
of a pie or fifo be updated only after successful file system
operations. 1In a distributed system this rule cannot be
followed. 1In particular, if a pipe server completes an
operation such as read, and updates a fifo's times, there is
no guarantee that the result of the operation will reach the
client process. If the result does not reach the client the
operation has really failed, although the Pipe Server will
have updated the time attributes stored in the pipe control
block.

To implement updating the name server's copy of a
fifo's times attributes whenever they become more than five
minutes out of date, the last values of the times sent to the
name server are stored in the pipe control block.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

29

Pib operations which change the times attributes of
a fifo and cause the name server's values for the time to be
more than five minutes out of date will return the new times
and an indication to update the name server's times. The fifo
ops layer 206 will send a message to the name server with the
new times.

CPU Death Fajlures

The implementation of pipes and fifos requires the
cooperation of name servers, pipe servers and system library
code. The activities of these components when a cpu fails is
explained below. A basis of the design of the activities is
the fact that an instance of a pipe control block is
recognized by a unique fifo identifier, as described above.

When a pipe server containing a fifo's pipe control
block dies, the name server deletes the fifo identifier used
to identify the pipe control block from its tables. The name
server treats the next Posix open() of the fifo as a first
open() .

Note that the pipe server and the name Server are
always on the same system. _

When a cpu containing a client of a pipe or fifo
dies or when the pipe server looses network communication with
the cpu, the pipe server frees any resources associated with
the client's open of the pipe control block, continues blocked
write operation if the client was the pipe control block's
last reader and frees the pipe control block if no other
clients have the pipe or fifo open. The client executing the
write() receives POSIX EPIPE error and the POSIX SIGPIPE
signal when the blocked operations are continued.

The pipe server does not monitor the name server's
cCpu using system messages, rather it uses the algorithm
described earlier to recognize the death of the name server.

If one of the primary or backup name servers dies,
the pipe server remembers the fact and continues to process
all the requests normally. When both the primary and backup
name server processes fail, the pipe server completes all
pending operations returning EPIPEGONE errors and frees all

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

30

resources associated with fifos registered with the dead name
server. This includes the fifos' pipe control blocks and all
the active client data structures.

In short, a pipe control block for a pipe or fifo is
removed when its cpu fails, when its name server fails and
when its pipe server looses network communication with all of
its clients. In any of these situations, the Posix library
code causes the following behavior with future or outstanding
operations on a file descriptor for the pipe or fifo: Writes
may get a SIGPIPE signal and an EPIPE error, and all
operations get an EPIPEGONE signal.

When network communications is lost between the pipe
server and a client, the pipe server deletes the client from
the pipe control block. While the pipe server is unreachable
the system library returns an error ENET_DOWN. When the pipe
server becomes reachable again, it will return a reply with
error EOPEN_LOST.

The VFS laver

When given a pathname as input, a lookup() function
performs any necessary permission checks and returns enough
information to find or construct a vnode for the file being
opened. If the file is already open by a process on the
caller's cpu, a vnode for the file already exists for the
file. The lookup() function provides a convenient callable
interface to the name server. It is the name server which
performs the path resolution and security checks. In the case
of a fifo, lookup() preferably returns the following
information: the file system identifier of the fifo file
system which contains the fifo; the fifo file identifier of
the fifo (When a caller invokes lookup() on an unopen file,
the name server requests the pipe server to create a pipe
control block and fifo identifier for the fifo. The name
server includes the fifo identifier in the file identifier.);
the file system identifier of the Posix file system containing
the fifo; and the Posix file identifier for the fifo's

directory entry.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

31

In a preferred embodiment, all fifo vnodes cre
stored on a hash chain and can be efficiently located using a
key including the fifo file system identifier and the fifo
file identifier. Thus, after calling lookup(), the file
system can efficiently determine if a fifo vnode already
exists.
It is important to note that a fifo vnode may
continue to exist after its pipe control block is deleted.
For example, the pipe control block's cpu may fail while a
client on another cpu has a fifo open. This can lead to two
situations: One, the name server knows the pipe control block
is gone and deletes its fifo identifier. When lookup() is
called in this case, the name server thinks the fifo is not
open. It requests a pipe server to create a pipe control
block and unique fifo identifier for the fifo. The name
server returns the new, unique fifo identifier to lookup()
which returns a new fifo file identifier to the VFS layer.
Since the fifo file identifier is new, the VFS layer will not
find a vnode with the new file identifier on the hash chain.
Having failed to locate the vnode, the VFS layer will allocate
it. The clients using the fifo's original vnode will clean it
up when they attempt to use it and learn the pipe control
block it references is gone.
The second case is when the name server does not know the
pipe control block is gone and remembers its fifo
identifier. When lookup() is called in this case, the
name server returns the file identifier for a pipe
control block which is gone. The VFS layer will find or
allocate a fifo vnode. Later, when the fifo ops layer
attempts to open the fifo it will get an error. At that
time the fifo ops layer will delete the fifo vnode if no
other processes were using it and will notify the name
server to delete the fifo's file identifier from its
tables. Next the VFS layer will retry the lookup().
Notice that the posix lookup() function returns
enough information to build a posix vnode 304 for the fifo's
directory information. The posix vnode 304 associated with
the fifo is used for operation on the fifo's directory entry.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

32

As noted above, when lookup() is called during an
open of an unopen file, the pipe server creates a pipe control
block for the fifo. In addition, the pipe server creates a
client block client to indicate that the caller of lookup() is
using the fifo. The fifo ops layer 206 completes the open()
as a second distinct operation on the pipe control block. The
operation data structure used to perform the open() preferably
contains the unique fifo identifier, extracted from the fifo's
file identifier; the underlying operating system's process
identifier of the opener; and a reserved open identifier
indicating that the resource is not open (NOT_OPEN).

Though a single process can open a fifo more than
once, it can only perform one Posix open() call at a time. If
open() fails, the client data structure will be freed. If
open() succeeds, the client will be associated with an open
identifier other than NOT_OPEN. The new open identifier will
not be used by any other opener of the fifo. This assures '
that no single client process will ever have more than one
client whose open identifier equals the special value
NOT_OPEN. In other words, the triplet (fifo identifier,
client process identifier , open identifier) always uniquely
identifies a client.

The Fifo Fs Laver
In the fifo fs layer 208, a function

allocate_vnode() allocates a fifo vnode. It also allocates
the ‘'shadow' Posix vnode associated with the fifo's directory
entry. If allocating the first vnode within a particular file
system, it also allocates a vnode_vfs structure. The function
is to be executed under the protection of the allocation
semaphore.

(In the code examples below, 'fsid,' 'fid,!
'dirEntryVp,' 'pib,' 'pob' are contractions for file system
identifier, file identifier, directory entry vnode pointer,
pipe control block, Posix open block, respectively.)

allocate_vnode(fifo fsid,
fifo fid,
Posix fsid, /* for dir entry */

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

40

45

50

WO 96/23317 PCT/US96/00855

33
posix fid, /* for dir entry */

if (first vnode in fifo's file system)
Allocate and initialize the file system's vnode_vfs
struct
Add new vnode_vfs structure to vnode_vfs_list
/* Allocate and 1nitialize the vnode for the fifo's
directory entry.

*/

dirEntryVp = VFS_ALLOCATEVNODE(Posix fsid, Posix fid)
vnp = allocate the fifo wvnode

vnp.v_fid = fifo fid

vnp.v_op = operation structure for fifo file system
vnp.file type = fifo

add new vnode to hash chains

vnp.v_vnode_vsp = vnode vfs struct for fifo's file system
bump reference count of vnode vfs struct for fifo's file
system

vnp.dirEntryVp = dirEntryvp

As described above, the name server requests the
pipe server to create a pipe control block and client block
for an unopen fifo during lookup() processing. In case an
error prevents the Posix library code from following a
successful lookup() with an fifo open(), the fifo fs
client_open function frees the pipe control block resources
already allocated.

client open(fifo fsid,

fifo fiq,
Posix fsid, /* for dir entry #*/
Posix fid, /* for dir entry */
Client process Id)
{
If pib with matching fifo fsid, fifo fid, Posix fsid and
Posix fid exists
{
if client block with open_id = NOT_OPEN and
matching client process Id
free client block
if no clients remaining
free pib
}
}

The fifo fs function pob_len returns the length of
the fifo file system-dependent extension to an Posix open

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

40

WO 96/23317 PCT/US96/00855

34

block. This function to be executed under the protectiion of
the allocation semaphore.

The fifo fs function free_vnode frees a fifo vnode.
This function is only called if the vnode is not in use.

free_vnode(vnode_to_free_p)

{
p(vnode_to_free_p->semaphore.x)
remove vnode from hash chain;
v(vnode_to_free p.semaphore)
VOP_DEALLOCATE (vnode_to_free-P->dirEntry_vp);
free vnode_to_free-p;
}

The fifo fs functions emTobInfo and emTnodelInfo

returns the information stored in the tob structure
contained within a Posix open block and all the information
contained within the tnode structure contained within a vnode,
respectively. These two functions are executed in the cpu
where the migration of a process to a cpu is initiated.

The fifo fs emVnodeAlloc function takes the vnode
and tnode info passed by the migrating process and builds the
vnode, locates or builds the vnode_vfs structure and attaches
the vnode ops structures to the vnode. All this is done under
the protection of the vnode semaphore. The function returns
the pointer to the allocated vnode.

Finally, the fifo fs emSharablePob function takes
the tob and tnode information received from the migrating cpu
and a pointer to a pob that is checked for being sharable. If
the pob to be shared is found, the function returns an
indication whether the pob is sharable.

FIGS. 5 and 6 are state transition diagrams for
requests on a fifo and a pipe, respectively. The fifo ops
layer 206 sets up an operation data structure and invokes the
pipe control block interface PerformRequest function which
performs requests with an operation data structure and an
interruptability flag as parameters. The fifo ops layer 206
sets the operation type in the operation data structure based
on the function being performed and sets the operation state
data structure to INIT. For example, for a fifo read(), the
type of the operation and the state would be READ and INIT,

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/0085S

35

respectively. Between them, the type and state elements of
the operation data structure define a pipe control block
operation for execution.

The PerformRequest function decides whether the
execution of a requested pipe control block operation will be
local or remote. At any given time and for a given client,
the type of operation requested and the state elements of the
operation data structure reflect the state of the function
performing the requested operation. This function sends a
message containing the operation structure to the associated
pipe server on a remote cpu if the execution is to be remote.

In local execution, the return status from a pipe
control block operation reflects whether or not PerformRequest
needs to drive the next pipe control block operation. If a
pipe control block operation cannot complete, the software
will change the state of the operation data structure to
blocked and return an indication of a blocked status. In this
case, a pipe server services other requests. The blocked
function waits for an LPIPE or LSIG event before resuming the
next pipe control block operation.

The LPIPE event can be generated by the pipe server
or from the context of another process executing pipe control
block operations locally. Before generating an LPIPE event
for the pipe server, all blocked operations are set to the
ready state and are chained onto the ready list. Before
generating an LPIPE event for local pib operations, the
software changes the state of the operation data structure to
READY.

If the local execution is interrupted by an LSIG
event while the operation is blocked or ready state,
RequestMyCpu will set up a new operation data structure to
perform the cancel operation. 1In local execution, the cancel
is executed immediately. With remote execution, an LSIG event
satisfies a wait and a message with the cancel operation data
structure is sent to the pipe server. The cancel operation
will cancel the pending operation in the BLOCKED or READY
state and will return the cancelled status back to

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

36

PerformRequest which will in turn complete the fifo ops
function.

If the name server process pair dies while the pipe
control block operation is in the BLOCKED or READY state, the
next operation is set up to do a cpu-down cleanup operation
and the operation state is set to READY. When the cpu-down
cleanup function is executed, it completes the pending
PerformRequest function with the necessary return information.
The pipe control block representing a pipe will never
transition in this fashion as pipes are not registered with
any name server.

The various fifo operations preferably supported y
the pib ops layer 212 are described below:

Only a pipe server invokes the creation of a pipe
and invokes the fifo ops functionality in response to a fifo
creation message from a name server. In processing a request
for creation of a pipe, the fifo ops layer 206 allocates space
for the pipe control block and client data structure and
generates a unique sequence number. The fifo ops layer 206
then stores the process identifier of the process which
initialized the lookup (for late use in identifying the client
during an open operation). For the open identifier, the fifo
ops layer 206 stores the special NOT_OPEN identifier.

Fifo Open: Fifo open is invoked after the
successful execution of a lookup. A fifo open sets up an
operation data structure with its operation type and state
being OPEN and INIT, respectively. Fifo opens can be executed
locally or remote. In case of remote execution, the
RequestOtherCpu() sends a message containing the operation
data structure to the associated pipe server.

The open request is preferably divided into two pib
operations, a first which determines whether the open request
should block after the allocation of new structures and a
second which executes when the first operation is unblocked.
After executing the PerformRequest() successfully, the fifo
open() function stores the open identifier returned by
PerformRequest() in the Posix open block data structure.

SUBSTITUTE SHEET (ROLE 28)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

37

The open request is for fifos only. For p:pes, an
open is part of a pipe's creation.

If the fifo open is interrupted and a pending
operation is to be cancelled, the next operation will execute
a cancel pib operation.

FIG. 7 is a state transition diagram for an open
request on a fifo.

Open Pib Operation, First Division: The first
division of the open pib operation discussed above finds the
pipe control block using the fifo identifier which has its
unigue sequence number and pipe control block number. If the
operation cannot find the pipe control block with the unique
sequence number in the fifo identifier, the open operation
returns an error indicating that the overlaying software
should retry. After detecting this error and cleaning up all
the data structures which might have been allocated, the fifo
open retries. Such cleaning up would be necessary when a pipe
server deletes the pipe control block, and the name server
couldn't be notified to delete the fifo identifier mapping
from its table.

Upon finding the pipe control block with the unique
sequence number, the first division of the pib open operations
performs a special protocol required for fifos. This protocol
includes storing the open flags for the open in an open
control block associated with the client; generating and
storing the open identifier for the open in the open control
block; clearing the flag indicating that the I/0 is
non-blocking for fifos performing opens for blocking I/O
(Preferably, the first division will block if the fifo open is
opening the fifo for reading only until another process opens
the fifo for writing (and vice versa)); and completing and
returning without delay for fifos performing opens for
non-blocking I/O, setting the flag indicating that I/0 is
non-blocking in the process. For non-blocking read access,
the first division returns successfully. For non-blocking
write access when no process has the fifo open for read
access, the open pib operation returns an error indicating

SYBSTITUTE SEZET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

38

that I/0 requested refers to a device which does not exist or
unable to perform the function.

If the operation blocks, the state of the operation
data structure becomes BLOCKED; the next function to be
executed will be set up as the second divisional open pib
operation, and the operation is chained onto the pipe control
block's open waiter list, the list of open operations waiting
for another type of opener.

If the fifo open operation is BLOCKED or READY when
the first division of the open pib operation receives a
cpu-down request for the client to which this operation
belongs, the state of the operation is set to READY and the
next operation is set up to be the cleanup. 1In a normal case
when a blocked request is unblocked and the state of the
operation is READY, the next operation is the second
divisional open pib operation.

Open Pib Operatijon, Second Divisjon: The second
divisional open pib operation discussed above executes when
the first divisional open pib operation unblocks. After
opening successfully, this second open operation wakes up all
the blocked open operations waiting for completion. Before
completing, the second divisional open pib operation generates
an LPIPE event for all of the unblocked local operations,
chains the unblocked remote operations to the ready list and
generates an LPIPE event to the pipe server. [1:14.2.2]

on successful completion, the fifo open returns an
open identifier to the calling process and the state of the
operation is set as COMPLETED. The operation may block again
if no other openers are found on execution. This condition is
the result of a time delay between receiving an LPIPE event
and being scheduled to run. Also, time delays can occur when
a process attempts to acquire the pipe semaphore.

Pipe Create: In the present invention, a call to
pipe() creates a local pipe control block. The pipe server
local to the caller's cpu is responsible for maintaining this
pipe control block. The pipe create operation never blocks
and upon successful completion returns two open identifiers

for association with a reader and a writer.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

39

The pipe create operation allocates a pipe control
block data structure, two client data structures and two open
control blocks associated with the client data structures.

The pipe create operation also generate two open identifiers
for storage in the respective two open control blocks. The
operation sets one client to be the pipe reader and the other
to be the pipe writer. ‘

Fifo Fork: As explained above, a parent process
creates a child process using the fork() system call. Upon
its creation, the child inherits all of the open files of the
parent. For every pipe or fifo file descriptor the parent has
open, the child calls the fifo fork operation indirectly. The
fifo fork operation sets up an operation data structure with
its state set to INIT and the operation type of FORK_OPEN in
order to perform a fork open pib operation via the pipe
control block interface layer 210.

If the fork() call spans cpus and no fifo vnode
exists for the pipe or fifo on the child's cpu, the fifo fork
operation creates a fifo vnode. The new fifo vnode refers to
the pipe or fifo's pipe control block via a fifo identifier.
The child must invoke the fifo fork operation in order to
create this fifo vnode on the child's cpu.

If the fork() system call results in the creation of
a new Posix open block for the child, the fifo fork operation
bumps the reference count of the fifo vnode data structure on
the child's cpu. The caller must specify whether the fork()
required the creation of a new Posix open block.

Fork Open Pib Operation: The fork open pib operation
never blocks. The operation performs two functions: First,
the function adds a client entry in the pipe control block for
the child process. To reflect the fact that this is a shared
open, the caller provides the open identifier found in the
parent's Posix open block. Second, the function stores this
shared open identifier in the new client entry. This new
client's pointer to an open control block points to the
already existing open control block with the open identifier
provided in the operation data structure.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

40

There are no state transitions during this pipe
control block operation. It is a one-step operation.

Fifo Close: The fifo close function frees any
resources associated with a particular use of a fifo or pipe
by the caller. This will set up an operation data structure
with the operation type and state set to CLOSE and INIT,
respectively, which will drive the close pib operation. The
operation control information is set using the caller's fifo
identifier, process identifier and open identifier. The fifo
close request is a single-step operation with no state
transitions.

After completing the corresponding pib operation,
the fifo close decrements the use count in the fifo's fifo
vnode on its own cpu. If this use count drops to zero, the
fifo close frees the fifo vnode and the Posix vnode for the
fifo's directory entry. For pipes, there is no Posix vnode
association with the fifo vnode.

The fifo close checks the reply of the close pib
operation to see whether this close was the last close of the
fifo. If so, the operation sends a fifo 'last close' message
to the name server holding this fifo identifier. Upon receipt
of the fifo close message, the name server removes the pipe
control blocks fifo identifier from its tables. The message
to the name server also contains the final times from the pipe
control block.

Close Pib Operation: The close pib operation frees
the client list entry which registers the caller's use of the
fifo in the pipe control block of the fifo. The operation
also decrements the reference count of the fifo's pipe control
block. If the caller is the last user of the pipe control
block of the fifo, the operation frees the pipe control block
and replies with enough information so that a fifo close
message can be sent to the name server.

Before returning, the pipe control block close
operation unblocks all the blocked readers is all the writers
are closed. The unblocking will change the operation state
from BLOCKED to READY and generate a LPIPE event for local

SYBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 96/23317 PCT/US96/00855

41

processes and for the pipe server after moving remote
operations to the ready list.

Fifo Fcntl: The fifo fcntl function implements
control function on an open pipe or fifo. TABLE II shows the
action taken by fifo fcntl for each Posix fcntl() system call.

Table II

" Command Return Value Errno

" F_DUPFD 0 0
F_GETFD 0 0 '
F_SETFD 0 0

"E_GETFL Status flags-Access modes/-1 o/EPIPEGONE
F_SETFL o/ -1 0/EDADFLAG

EPIPEGONE

F_GETLK -1 EEINVAL
F_SETLK -1 EINVAL
F_SETLKW -1 EINVAL

The only status flag which can be changed for pipes
and fifos is the non-blocking flag.

The fifo fcntl operation returns constant
information for most commands. The exception to this are the
F_GETFL and F_SETFL commands which get and set attributes of
an open. Since an open may be shared by processes in
different cpus, these attributes are stored in the open
control block. The caller must provide the fifo identifier,
the client's process identifier and an open identifier to
uniquely identify the open control block to the corresponding
pipe control block ops fcntl operation.

The PerformRequest() executes RequestOthercCpu()
which sends a message to the pipe server to execute the fentl
pib operation. The operation type and state are set to FCNTL
and INIT, respectively.

SUBSTITUTE SIEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

42

Fcntl Pib Operation: This operation sets and
retrieves the attributes of an open for a given process
identifier and an open identifier. This is done using the
F_SETFL and F_GETFL in the fcntl() system call. This pipe

‘control block ops operation is a one-step operation which

never blocks. Accordingly, there are no state transitions.

The F_GETFL command fails and sets errno to
EPIPEGONE if the fifo or pipe has been deallocated. This
deallocation can occur if the pipe server responsible for the
pipe control block of the pipe or fifo dies. The F_SETFL
command fails if the user tries to set an undef ined flag
(EBADFLAG) or the pipe control block of the pipe or fifo has
gone away (EPIPEGONE).

Fifo Read: The fifo read function reads data from a
pipe or fifo and returns it to the caller. Any data read is
also removed from the fifo. The fifo read operation requires
that the pipe or fifo be open for reading. If the fifo read
function transfer any data to a caller, the operation returns
the number of bytes transferred -- even if a signal interrupts
the read.

The PerformRequest() for fifo read can be a
multi-step operation if the initial read pib operation has to
be blocked. In case a signal interrupts fifo read, the pib
operation is to be cancelled and the cancel pib operation
executes next.

Read Pib Operation: A read pib operation of a
non-empty pipe or fifo containing fewer bytes than are
requested returns whatever data is available in the pipe or
fifo.

A read pib operation of an empty pipe or fifo
returns a first value (0) to indicate EOF if no process has
the pipe or fifo open for writing. Otherwise, the operation
returns a second value (-1) and sets errno to EAGAIN if the
open flag for non-blocking I/O is set.

If the client was opened with the non-blocking I/O
open flag clear and there was no data to read in the pipe
control block, the function sets up the next operation to be
executed and the client is added to the pipe control block's

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

43

read wait list. Otherwise, the function blocks until some
data is written or the pipe is closed by all processes which
had the pipe open for writing. At this point the read
operation returns the number of bytes actually read, which can
be zero.

After reading some or all bytes successfully,
the read pib operation will wake up all the blocked write
operations waiting to write to the pipe control block buffer.
Before returning, the read operation sends a LPIPE event to
all of the unblocked local operations, chains the un-blocked
remote operations to the ready list and sends a PIPE event to
the pipe server.

In the event the operation is in a blocked or ready
state and fifo read receives a cpu-down request for the client
to which this operation belongs or in the event the name
server process pair dies (only for fifos), the state of the
operation is changed to READY and the next operation is set to
be a cleanup pib operation. 1In the normal case, when a
blocked request is unblocked and the state is set to ready,
the next pib operation is the same as the current operation,
i.e., a read pib operation.

FIG. 8 is a state transition diagram for a read
request on a fifo.

Fifo Write: The fifo write function writes data to
a fifo or pipe. The data is written to the end of the pipe or
fifo and will be read only after all of the existing data in
the pipe or fifo has been read. The fifo write operation does
not interleave write requests not greater than PIPE BUF (i.e.,
the maximum number of bytes which can be written atomically
when writing a pipe) with data from other processes doing
writes on the same pipe. The fifo write operation may
interleave writes larger than PIPE_BUF on arbitrary boundaries
with writes from other processes. If a signal interrupts a
write which has transferred some data to a pipe or fifo, the
fifo write operation returns the number of bytes it has
actually transferred.

If a process attempts to write to a pipe or fifo
which is not open by any readers, the process receives an

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

44

EPIPE error and SIGPIPE signal. In the case where a processes
is attempting to write to a local pipe control block, the
process sends the signal to itself. 1In the case wherc the
process is writing to a remote pipe control block via a pipe
server, the pipe serve responds to the caller's request with
an errno. Once again the process sends the signal to itself.

The PerformRequest() for a fifo write can be a
multi-step operation. The initial write pib operation can
block. In case fifo write is interrupted and the operation is
to be cancelled, the cancel pib operation executes next. Fifo
write will set up an operation data structure with an INIT
operation state and WRITE operation type.

Write Pib Operatjon: If the flag for non-blocking
I/0 is clear, a pipe control block write request may cause the
caller's process to block, but on normal completion, the
operation will have transferred all the data which the caller
requested. If the flag for non-blocking I/O is set, then the
write operation traverses the following decision tree: If the
caller wishes to write data not greater than PIPE_BUF and the
pipe or fifo has room for the data, the operation transfers
the data. If the caller wishes to write data not greater than
PIPE_BUF and the pipe or fifo does no have room for the data,
the operation does not transfer any data and returns a first
value (-1) with errno set to EAGAIN. If the caller requests
to write data larger than PIPE_BUF and the pipe or fifo has
room for at least 1 byte, the operation transfers at least 1
byte before completion. If the caller requests to write data
larger than PIPE BUF and the pipe or fifo has no room for any
data, the operation returns an error -1 with errno set to
EAGAIN.

After writing some or all of the bytes successfully,
the write pib operation will wake up all the blocked read
operations waiting to read from the pipe buffer. The write
operation generates a LPIPE event to all the unblocked local
operations, chains the unblocked remote operations to the
ready list and generates an LPIPE event to the pipe server.

If the operation is blocked or ready when fifo write
receives a cpu-down request for the client to which this

SUBSTITUTE SHEET (RULE 28)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

45

operation belongs or if the operation is blocked or ready when
the name server process pair dies, the state of the operation
becomes READY and the write pib operation sets up the Cleanup
pib operation as the next operation. In the normal case, when
a blocked request is unblocked and the operation state is
ready, the next operation is the same as the current
operation, i.e., a write pib operation.

FIG. 9 is a state transition diagram for a write
request on a fifo.

Fifo Getattr: The fifo getattr function collects
the information required to fill in the stat data structure
(described above) for a pipe or fifo. For fifos, the name
server maintains all of the fields of the stat data structure
in its data base. 1In additional, the fifo's pipe control
block contains the time-related fields of the stat data
structure. The fifo getattr function has the responsibility
of sending the time stored in a fifo's pipe control block to
the name server before returning.

The stat data structure preferably contains an
inode, a unique number generated to represent each pipe within
a fifo file system; an identifier for the device containing
the fifo; the number of links to the fifo; the user identifier
of the owner of the fifo; the group identifier of the group of
the file, the number of bytes available for reading in the
pipe data buffer, the time of last access of the fifo, the
time of last data modification of the fifo and the time of
last file status change for the fifo.

The fifo getattr function provides the modification
time, the inode, the device identifier, the number of links,
the user identifier and the group identifier of a fifo. The
getattr pib operation fills in the rest of the information.

Getattr Pib Operation: This function returns the
times stored in the pipe control block for the active pipes
and fifos. This function also sets the value of the access,
modification and change times. The library on the caller's
cpu or the pipe server (if the caller is on some other cpu)
can invoke the getattr pib operation.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 96/23317 PCT/US96/00855

46

Fifo Setattr: The fifo setattr vnode operation sets
various directory attributes of a fifo. For the active fifos,
the access, modification and status change times are cached in
the pipe control block of the fifo. 1If the pipe control block
is local to the cpu, then PerformRequest() calls the setattr
pib operation locally, else it sends the times in a remote
message to the pipe server controlling the pipe control block.
In this case, the pipe server updates the times sent in a
message by invoking the setattr pib operation.

Setattr Pib Operation: This function updates the
cached times in the pipe control block to reflect the new
times. This function can change all three times in the pipe
control block.

o) thconf: For a fifo, the fifo pathconf
function provides a method for the application to determine
the current value of a configurable limit or option associated
with a named file or directory. The function always calls the
Posix pathconf() function for the fifo's directory entry.

For a pipe, the fifo pathconf function preferably
supports the following named configurable limits or options:
_PC_LINK_MAX (The maximum number of links to a pipe is always
0); _PC_PIPE_BUF (The returned value is always defined in
unistd.h); and _PC_CHOWN_RESTRICTED (The returned value is
always -1, indicating the operation is restricted).

Fifo Seek: This function always fails and sets
errno to EPIPE.

Fifo Em Shareopen: This function takes tob and
tnode information on the target cpu with the information
received from the migrating cpu. The function updates the tob
and tnode on the target cpu with the information received.
This function invokes the exec migrate pib operation after
setting up the request structure.

Fifo Em Openmigrate: This function invokes the exec
migrate pib operation after setting up the request structure.

xec Migrate Pib Operation: This function allocates
a new client block and copies all the relevant information

from the migrating client to this new client structure. The

SUBSTITUTE SHEET (RULE 26)

10

WO 96/23317 PCT/US96/00855

47

exec migrate pib operation also points the new client block to
the open control block of the migrating client. The migrating
client will be deleted when a close pib operation is performed
for that client. This is a one-shot operation.

Of course, variations on the above teachings will be
readily apparent to one of ordinary skill in the art. For
example, the names of services can be readily changed without
affecting the operation of the invention.

SUBSTITUTE SHEET (ROLE 26)

O 0 N O 0 b W N

T N I o ol el
S oW e WN RO

WO 96/23317 PCT/US96/00855

48

WHAT IS CLAIMED IS:

1. In a computer system having a plurality of
processors coupled by an inter-processor communications link,
each processor of said plurality of processors having a
memory, a method for accessing a file, said method comprising:

requesting a service by invoking a first function in

a first, file system implementation-independent
interface, said service related to a file;

determining the file system which provides said

service and requesting said service of said file system
by invoking a second, file system
implementation-dependent function;

determining the processor of said plurality of

processors which provide said service for said file and
requesting said service for said file using said
inter-processor communications link; and

performing said service for said file on the

processor.

SUBSTITUTE SHEET (RULE 26)

WO 96/23317 PCT/US96/00855

PROCESS
open (ialb! fifo)

NAME SERVER
lolbi fifo-file_id .

pib structure

|
|
|
\[PXS SEGNENT
|
|
l
|
|

SEQUENCE OF EVENTS L LOOKUP NAME

—== GUARDIAN MESSAGE (1) 2. CREATE pib

— 0. GREATES pib
ACTION PERFORMED (a) 3. RETURNS A fifo_id

4. RETURNS A file_id
b. LIBRARY OPENS FIRST CLIENT

FlG. |/
~306
{_PXS fifo_ops :
: fito_vn fifo_open() l
| 399 v-ops fifo-close:; :
= ¢ | fifo_read
| fle-type VFIFO | 3081 oo arite() | |
! dir-entry_vp |
: Fifo_fs details |
I posSix_ops |
: posix-open() :
I posix_vn / posix_close() | |
| v_0ps posiz_getattr() |
: 304~ file-type VREG 310~ posiz_setattr() :
: Posix_fs details |
| I
e e e e e e e e e e e . J

WO 96/23317 PCT/US96/00855

2/6

USER PROCESS
USER CODE

VIRTUAL FILE SYSTEN

fifo _fs fifo_ops

pib.interface

pib_ops

214

PIPE SERVER

PIPE SERVER CODE

pib_interface

pib_ops

L2l2

Fl6. 2.

SURSTITUTE SHEET (RELE 2%)

WO 96/23317 PCT/US96/00855

3/6
I o
| PXS 402 406 408
: pob .l fifo_vn posix.vn
| e " fifo id=1,2,34
l fob_p ref_cnt=| dir_entry_vp
| f = pob_flags
| tobd |
I openid = tob
I req-seqnum openid=2 |404
[req-seqnum
[
| .
! __ L0 pipe datalil! 424
| pib 414 £
b fite.id=1,2,3,4 open_block open_block
I | is.fifo=1 ref_cnt=| ref_cnt=|
|| client_count=2 4 openid * | openid=2
L1 pipe_buffer. ptr open_flags open. flags
P 1 client_list - 1
: Name Server_ph client | client |
. | pib_atime fifo.id=1,2,3,4 fifo_id=1,2,3,4
| | pib_mtime processid processid
: ?lzaeth: head o'pen;-_block_p/ openi_block _p - 420
ead_wait_hea ' - ‘ -
: o ‘cnen ops 416 £cllenLog‘s
| e operation operation
, Lpenw ~head peration_req_typel-418 |operation_req.typd.- 422
I operation_state operation_state
| 0ps-reg.-seqnum ops.req_seqnum
|
b e e e e e e e e e ___ J
FlG. 4

SUBSTITUTE SHEET (RULE 26)

WO 96/23317 PCT/US96/00855

4/6

completely processed
interrupted by cancel

OPERATION
req_type= XXXX
state = OPS_INIT
unc® pib_xxxx|

OPERATION
req_type=

state= OPS_DONE
fune:

blocked completely processed

OPERATION
req-type=XXXX
state=0PS_BLOCK
func=pib_xxxx2

couldn't Name Server cpu down

S
unblocked OPERATION

req-type=XXXX

state = OPS.READY
func = pib_xxxx2 or
pib_cleanup

completely processed
OR

cancelled

OPS_INIT- INITIAL STATE FOR ALL REQUESTS.

OPS_BLOCKED - REQUEST BLOCKED. FOR EXAMPLE, A READ REQUEST ON A PIB
WITH NO DATA BLOCKS IN THIS STATE.

OPS_READY - PREVIOUSLY BLOCKED REQUEST IS READY TO CONTINUE. FOR
EXAMPLE, WHEN DATA IS WRITTEN TO A PIB, BLOCKED READERS

ARE PUT IN THIS STATE.
OPS_DONE - THE REQUEST IS COMPLETE AND REPLY RETURNED.

F1G. &.

SYBSTITUTE SHEET (RULE 26)

WO 96/23317 PCT/US96/00855

5/6
OPERATION

req_type=XXXX
state = OPS_INIT
fune=pib_xxxx|

completely processed

interrupted by cancel
cancelled

OPERATION

req_type=
blocked state=0PS_DONE
fune=
OPERATION
req_type= XXXX

state=0PS_BLOCK
func=pib_nmx2

completely processed
0

OPERATIQON
req_type=XXXX
unblocked & state=0PS_READY

func=pib_zxn?

cancelled

FIG. 6.

OPERATION

req-type= OPEN
state=0OPS_INIT
func=pib_open!

completely opened
0_NONBLOCK set
OR cancelled

OPERATION
req-type=

state= OPS_DONE
func=

cancelled

no other
opener

OPERATION
req-type=OPEN
state= 0PS_BLOCK
func=pib_open2

' Name Server cpu down
gomplete coon;tpletely opened
opener req_type=0PEN cancelled

state=0PS_READY
func=pib_open2
OR pib_cleanup

WO 96/23317

PCT/US96/00855

6/6

OPERATION "\ completely processed

req-type=READ Y O_NONBLOCK set
state=OPS_INIT | OR concelled OPERATION
func=pib_read

req-type=
state= OPS_DONE
fune=

concelled
no data

-~ .

OPERATION
req-type=OPEN
state=0PS.BLOCK
func=pib_reoad

completely processed
OR

cancelled
state=0PS_READY

func=pib_read
OR pib_cleanup

Fl6. 8.

OPERATION completely processed
req-type=WRITE \ O_NONBLOCK set
-state=OPS_INIT | OR cancelled

func= pib_write

OPERATION
req.type=

state= OPS_DONE
fune=

cancelled

no dota
to read)

OPERATION
req.type=0PEN
state=0PS_BLOCK

func=pib_write

completely processed
OPERATION OR

req-type=WRITE
state=0PS_READY
func=pib_write

cancelled

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/00855

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :HO1J 31/00
US CL : 395/200.01, 200.03, 650

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

US. : 395/200.01, 200.03, 650

Minimum documentation scarched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

APS

Electronic data base consulted during the international search (name of data base and, where practicable, scarch terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US, A, 5,287,453 (ROBERTS) 15 Febuary 1994, abstract,| 1
col17, figs5C &D

Y US, A, 5,329,619 (PAGE et al) 12 July 1994, cols 19-24 1

Y US, A, 5,265,250 (ANDRADE et al) 23 November 1993, cols| 1
8-14

Y US, A, 5,253,342 (BLOUNT et al) 12 October 1993, cols 5, | 1
9-15

Y US, A, 5,247,616 (BERGGREN) 21 September 1993, cols 5-| 1
9

D Further documents are listed in the continuation of Box C.

D Sec patent family annex.

hd Special categories of cited docwuments:

*A° document dofining the gomeral stats of the art which is not comsidered
10 be part of particular relevence

carlier document published oa or after the internstional filing date
document which may throw doubts oa priority claim(s) or which is
cited 1o establish the publiontion date of amother citation or other
special reason (as specified)

document reforring 0 sa oral discloswre, wse, exhibition or other
messs
documment published prior %0 the intersationai filing dats but later thea

"E*
oL

0°

P

T lnter & blished after the intermational filing dats or priority
“du-mﬂnvlﬁbwhcﬂh“

principls or theory underlying the inventica

document of particular relsvancs; ths claimed inveation camaot be
comsidered aovel or cannot be comsidersd 10 invoive ea inventive siep
when the document is taken aloas

document of pasticular relsvance; the claimed invention cansot be
comsidered 10 involve aa inventive step whem the documest i
combincd with cac or more othor such Aocumenss, such combination
being obvious 10 & pereon akilled in the art

document member of the samse patent family

°Y*

&

Date of the actual complietion of the international search

03 APRIL 1996

Date of mailing of the international search report

18 APR1996

Name and mailing address of the ISA/US
Cmofhhunlnd'l‘m

Wm D.C. 20231

Facsimile No. _ (703) 305-3230

offiggh ¢
OBERT E. STACHLER 11
Telephone No. __(707) 305-9600

Form PCT/ISA/210 (second sheet)(July 1992)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

