
USOO595481.6A

United States Patent (19) 11 Patent Number: 5,954,816
Tran et al. (45) Date of Patent: *Sep. 21, 1999

54 BRANCHSELECTOR PREDICTION 0259095 3/1988 European Pat. Off..
0381471 8/1990 European Pat. Off..

75 Inventors: Thang M. Tran, Austin; David E.
Kroesche, Pflugerville; Karthikeyan (List continued on next page.)
Muthusamy; Andrew McBride, both
of Austin, all of Tex. OTHER PUBLICATIONS

73 Assignee: Advanced Micro Devices, Inc., Young, et al., “An Intelligent I-Cache Prefetch Mechanism,”
Sunnyvale, Calif. IBM Research Division, Almaden Research Center, San

Jose, Ca, published in Proceedings of the International
(*) Notice: This patent issued on a continued pros- Conference on Computer Design: VLSI In Computers and

ecution application filed under 37 CFR Processors, Cambridge Ma., Oct. 3-6, 1993, pp. 44-49.
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C. (List continued on next page.)
154(a)(2).

Primary Examiner Krisna Lim
21 Appl. No.: 08/972,988 Attorney, Agent, or Firm-Conley, Rose & Tayon;
22 Filed: Nov. 19, 1997 Lawrence J. Merkel; B. Noel Kivlin

Related U.S. Application Data 57 ABSTRACT
A branch prediction unit includes a branch prediction entry 63 Continuation-in-part of application No. 08/752.691, Nov. 19, 1996. corresponding to a group of contiguous instruction bytes.

2 6 The branch prediction entry Stores branch predictions cor
51) Int. Cl. .. G06F 9/38 responding to branch instructions within the group of con
52 U.S. Cl. 712/239; 712/233 tiguous instruction bytes. Additionally, the branch prediction
58 Field of Search 395/586, 580; entry Stores a Set of branch Selectors corresponding to the

712/239, 233 group of contiguous instruction bytes. The branch Selectors
identify which branch prediction is to be selected if the

56) References Cited corresponding byte (or bytes) is selected by the offset
portion of the fetch address. Still further, a predicted branch

U.S. PATENT DOCUMENTS Selector is Stored. The predicted branch Selector is used to
4,044,338 8/1977 Wolf .. 365/49 Select a branch prediction for forming the fetch address. In
4,179,737 12/1979 Kim. parallel, a Selected branch Selector is Selected from the Set of
4,453,212 6/1984 Gaither et al. 711/2 branch selectors. The predicted branch selector is verified
4,807,115 2/1989 Torng.............. ... 395/391 using the Selected branch Selector. If the Selected branch
4,858,105 8/1989 Kuriyama et al. 395/582 Selector and the predicted branch Selector mismatch, the
4,860,197 8/1989 Langendorf et al.. correct branch prediction is generated and the predicted

(List continued on next page.) branch Selector is updated to indicate the Selected branch
Selector.

FOREIGN PATENT DOCUMENTS

0 199947 A2 11/1986 European Pat. Off.. 22 Claims, 10 Drawing Sheets

from from
Instruction ReOrder
Cache 16 Buffer

108

from
Instruction
Cache 16

Prediction Unit
14 126

106 124

Fetch Adress T Update Bus 118
116 from

Functional
Units and
Decode
Units
from

Prefetchi
Predecode

Unit

12O

Sik. SEQ

122

-

Branch Tag
to instruction Cache 16

5,954,816
Page 2

4,928,223
5,053,631
5,058,048
5,129,067
5,136,697
5,142,634
5,226,126
5,226,130
5,235,697
5,381,533
5,418,922
5,454,117
5,553,254
5,592,634
5,649,137
5,649,178
5,708,803
5,737.590
5,758,142
5,764,946

U.S. PATENT DOCUMENTS

5/1990
10/1991
10/1991
7/1992
8/1992
8/1992
7/1993
7/1993
8/1993
1/1995
5/1995
9/1995
9/1996
1/1997
7/1997
7/1997
1/1998
4/1998
5/1998
6/1998

Dao et al. 395/597
Perlman et al. 364/748.14
Gupta et al. 364/748.14
Johnson 395/389
Johnson 395/586
Fite et al. .
McFarland et al. 395/394
Favor et al. 395/586
Steely, Jr. et al. 711/137
Peleg et al..
Liu .. 711/128
Puziol et al. .
Bertis et al. .
Circello et al. 395/586
Favor et al. .
Blaner et al. .
Ishimi et al. .
Hara .. 395/585
McFarling et al. ... 395/586
Tran et al. 395/586

FOREIGN PATENT DOCUMENTS

O 394 711 A2
O459232

O 586 O57 A2
O 605876 A1

2263985
2263987
2281.422

2285 526

10/1990
12/1991
3/1994
7/1994
8/1993
8/1993
3/1995
7/1995

European Pat. Off..
European Pat. Off..
European Pat. Off..
European Pat. Off..
United Kingdom.
United Kingdom.
United Kingdom.
United Kingdom.

WO 93/17385 9/1993 WIPO.

OTHER PUBLICATIONS

Calder, et al., “Next Cache Line and Set Prediction,” Depart
ment of computer Science, University of Colorado, Boulder,
Co., 8345 Architecture News, May 23, (1995), No. 2, New
York, pp. 287–296.
International Search Report for PCT 97/21048 dated Mar.
30, 1998.
Intel, “Chapter 2: Microprocessor Architecture Overview,”
pp. 2–1 through 2–4.
Michael Slater, “AMD's K5 Designed to Outrun Pentium,”
Microprocessor Report, vol. 8, No. 14, Oct. 24, 1994, 7
pageS.
Sebastian Rupley and John Clyman, “P6: The Next Step?,”
PC Magazine, Sep. 12, 1995, 16 pages.
Tom R. Halfhill, “AMD K6 Takes On Intel P6,” BYTE, Jan.
1996, 4 pages.
U.S. Application Serial No.
U.S. Application Serial No.
U.S. Application Serial No.
U.S. Application Serial No.
U.S. Application Serial No.
U.S. Application Serial No.
U.S. Application Serial No.
U.S. Application Serial No.
U.S. Application Serial No.
U.S. Application Serial No.
U.S. Application Serial No.

08/752,691.
08/481,914.
08/472.249.
08/819,109.
08/472,665.
08/550,296.
08/570,242.
08/713.287.
08/731,765.
08/752,691.
08/713,499.

5,954,816 Sheet 1 of 10 Sep. 21, 1999 U.S. Patent

U.S. Patent Sep. 21, 1999 Sheet 2 of 10 5,954,816

from Instruction Alignment Unit 18

Early DeCode Early DeCode
40B 40C

from
MROM
Unit 34

to register
file 30,
reOrder

buffer 32,
and load/
Store unit

26

OpCOde DeCode
44B

OB

to Reservation Stations 22

FIG 2

5,954,816 Sheet 3 of 10

89 79

Sep. 21, 1999 U.S. Patent

5,954,816 Sheet 4 of 10 Sep. 21, 1999 U.S. Patent

7/

0
Z

O UO1638

U.S. Patent Sep. 21, 1999 Sheet 5 of 10 5,954,816

S

?h
O

n
CC

N
CO

LP
r

c
CN sSss
s |

5,954,816 Sheet 6 of 10 Sep. 21, 1999 U.S. Patent

U.S. Patent Sep. 21, 1999 Sheet 7 of 10 5,954,816

Branch Selectors

136

Way PredictOr Call

140 144 146 148

FIG. 7

Branch Selector Encoding

EnCOding (Binary)

1
O

11

U.S. Patent Sep. 21, 1999 Sheet 8 of 10 5,954,816

150

PrevioUS
Predicted Branch

Selector
incorrect?

Yes

Cancel Current
Read, Correct

Branch Prediction,
Update Predicted
Branch Selector

154

Branch Misprediction?

Update Branch
Prediction (including
Predicted Branch

Selector)

156

Form Prediction
Using Predicted
Branch Selector
Corresponding to Fetch Corrected
Current Read BranchTarget

158

FIG. 9

U.S. Patent Sep. 21, 1999 Sheet 10 0f 10 5,954,816

Microprocessor
10

208

Bus Bridge Main Memory
202 204

206A
I/O Device

210
206B 200

I/O Device

206N
I/O Device

FIG 11

5,954,816
1

BRANCHSELECTOR PREDICTION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation in part of application
Ser. No. 08/752,691 filed Nov. 19, 1996.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of microprocessors and,
more particularly, to branch prediction mechanisms within
microprocessors.

2. Description of the Related Art
SuperScalar microprocessors achieve high performance

by executing multiple instructions per clock cycle and by
choosing the Shortest possible clock cycle consistent with
the design. AS used herein, the term “clock cycle” refers to
an interval of time accorded to various Stages of an instruc
tion processing pipeline within the microprocessor. Storage
devices (e.g. registers and arrays) capture their values
according to the clock cycle. For example, a Storage device
may capture a value according to a rising or falling edge of
a clock signal defining the clock cycle. The Storage device
then Stores the value until the Subsequent rising or falling
edge of the clock signal, respectively. The term “instruction
processing pipeline' is used herein to refer to the logic
circuits employed to process instructions in a pipelined
fashion. Although the pipeline may be divided into any
number of Stages at which portions of instruction processing
are performed, instruction processing generally comprises
fetching the instruction, decoding the instruction, executing
the instruction, and Storing the execution results in the
destination identified by the instruction.
An important feature of a SuperScalar microprocessor (and

a Superpipelined microprocessor as well) is its branch pre
diction mechanism. The branch prediction mechanism indi
cates a predicted direction (taken or not-taken) for a branch
instruction, allowing Subsequent instruction fetching to con
tinue within the predicted instruction Stream indicated by the
branch prediction. A branch instruction is an instruction
which causes Subsequent instructions to be fetched from one
of at least two addresses: a Sequential address identifying an
instruction Stream beginning with instructions which
directly follow the branch instruction; and a target address
identifying an instruction Stream beginning at an arbitrary
location in memory. Unconditional branch instructions
always branch to the target address, while conditional
branch instructions may Select either the Sequential or the
target address based on the outcome of a prior instruction.
Instructions from the predicted instruction Stream may be
Speculatively executed prior to execution of the branch
instruction, and in any case are placed into the instruction
processing pipeline prior to execution of the branch instruc
tion. If the predicted instruction Stream is correct, then the
number of instructions executed per clock cycle is advan
tageously increased. However, if the predicted instruction
Stream is incorrect (i.e. one or more branch instructions are
predicted incorrectly), then the instructions from the incor
rectly predicted instruction Stream are discarded from the
instruction processing pipeline and the number of instruc
tions executed per clock cycle is decreased.

In order to be effective, the branch prediction mechanism
must be highly accurate Such that the predicted instruction
Stream is correct as often as possible. Typically, increasing
the accuracy of the branch prediction mechanism is achieved

15

25

35

40

45

50

55

60

65

2
by increasing the complexity of the branch prediction
mechanism. For example, a cache-line based branch predic
tion Scheme may be employed in which branch predictions
are Stored corresponding to a particular cache line of instruc
tion bytes in an instruction cache. A cache line is a number
of contiguous bytes which are treated as a unit for allocation
and deallocation of Storage space within a cache. When the
instruction cache line is fetched, the corresponding branch
predictions are also fetched. Furthermore, when the particu
lar cache line is discarded, the corresponding branch pre
dictions are discarded as well. The cache line is aligned in
memory. A cache-line based branch prediction Scheme may
be made more accurate by Storing a larger number of branch
predictions for each cache line. A given cache line may
include multiple branch instructions, each of which is rep
resented by a different branch prediction. Therefore, more
branch predictions allocated to a cache line allows for more
branch instructions to be represented and predicted by the
branch prediction mechanism. A branch instruction which
cannot be represented within the branch prediction mecha
nism is not predicted, and Subsequently a "misprediction'
may be detected if the branch is found to be taken. However,
complexity of the branch prediction mechanism is increased
by the need to Select between additional branch predictions.
AS used herein, a “branch prediction' is a value which may
be interpreted by the branch prediction mechanism as a
prediction of whether or not a branch instruction is taken or
not taken. Furthermore, a branch prediction may include the
target address. For cache-line based branch prediction
mechanisms, a prediction of a Sequential line to the cache
line being fetched is a branch prediction when no branch
instructions are within the instructions being fetched from
the cache line.
A problem related to increasing the complexity of the

branch prediction mechanism is that the increased complex
ity generally requires an increased amount of time to form
the branch prediction. For example, Selecting among mul
tiple branch predictions may require a Substantial amount of
time. The offset of the fetch address identifies the first byte
being fetched within the cache line: a branch prediction for
a branch instruction prior to the offset should not be selected.
The offset of the fetch address within the cache line may
need to be compared to the offset of the branch instructions
represented by the branch predictions Stored for the cache
line in order to determine which branch prediction to use.
The branch prediction corresponding to a branch instruction
Subsequent to the fetch address offset and nearer to the fetch
address offset than other branch instructions which are
Subsequent to the fetch address offset should be selected. As
the number of branch predictions is increased, the complex
ity (and time required) for the Selection logic increases.
When the amount of time needed to form a branch prediction
for a fetch address exceeds the clock cycle time of the
microprocessor, performance of the microprocessor may be
decreased. Because the branch prediction cannot be formed
in a Single clock cycle, "bubbles' are introduced into the
instruction processing pipeline during clock cycles that
instructions cannot be fetched due to a lack of a branch
prediction corresponding to a previous fetch address. The
bubble occupies various Stages in the instruction processing
pipeline during Subsequent clock cycles, and no work occurs
at the Stage including the bubble because no instructions are
included in the bubble. Performance of the microprocessor
may thereby be decreased.

SUMMARY OF THE INVENTION

The problems outlined above are in large part solved by
a branch prediction unit in accordance with the present

5,954,816
3

invention. The branch prediction unit includes a branch
prediction entry corresponding to a group of contiguous
instruction bytes. The branch prediction entry Stores branch
predictions corresponding to branch instructions within the
group of contiguous instruction bytes. Additionally, the
branch prediction entry Stores a Set of branch Selectors
corresponding to the group of contiguous instruction bytes.
The branch selectors identify which branch prediction is to
be selected if the corresponding byte (or bytes) is selected by
the offset portion of the fetch address. Still further, a
predicted branch selector is stored. The predicted branch
Selector is used to Select a branch prediction for forming the
fetch address. Advantageously, the Selection of one of the Set
of branch selectors is removed from the branch prediction
Selection. Branch prediction Selection may be performed
more rapidly than achievable if branch Selectors were
Selected prior to Selecting the branch prediction. The branch
prediction unit may be operable at a higher frequency, which
may allow its use in higher frequency microprocessors than
other branch prediction units.

In parallel, a Selected branch Selector is Selected from the
set of branch selectors. The predicted branch selector is
Verified using the Selected branch Selector. If the Selected
branch Selector and the predicted branch Selector mismatch,
the correct branch prediction is generated and the predicted
branch Selector is updated to indicate the Selected branch
Selector. Advantageously, the accuracy of the branch pre
diction mechanism may be maintained with a minor penalty
(e.g. a clock cycle) when the predicted branch Selector is
incorrect.

Broadly Speaking, the present invention contemplates a
branch prediction unit comprising a branch prediction Stor
age and a selection device. The branch prediction storage is
coupled to receive a fetch address, and is configured to Select
a predicted branch Selector Stored therein in response to the
fetch address. The Selection device is configured to Select a
Subsequent fetch address from at least two Selectable
addresses responsive to the predicted branch Selector.
The present invention further contemplates a method for

generating a Subsequent fetch address from a fetch address
in a microprocessor. A predicted branch Selector is read from
a branch prediction Storage responsive to the fetch address.
The Subsequent fetch address is predicted responsive to the
predicted branch Selector. Subsequently, the predicted
branch Selector is verified as corresponding to the fetch
address.

Moreover, the present invention contemplates a micro
processor comprising an instruction cache and a branch
prediction unit. The instruction cache is configured to Select
a group of contiguous instruction bytes Stored therein
responsive to a fetch address. Coupled to receive the fetch
address, the branch prediction unit is configured to Select a
predicted branch Selector responsive to the fetch address.
Additionally, the branch prediction unit is configured to
generate a Subsequent fetch address response to the pre
dicted branch selector. Furthermore, the branch prediction
unit is configured to Verify the predicted branch Selector by
Selecting one of a plurality of branch Selectors correspond
ing to the fetch address and comparing the one of the
plurality of branch Selectors to the predicted branch Selector.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and advantages of the invention will
become apparent upon reading the following detailed
description and upon reference to the accompanying draw
ings in which:

1O

15

25

35

40

45

50

55

60

65

4
FIG. 1 is a block diagram of one embodiment of a

SuperScalar microprocessor.
FIG. 2 is a block diagram of one embodiment of a pair of

decode units shown in FIG. 1.
FIG. 3 is a diagram illustrating a group of contiguous

instruction bytes and a corresponding Set of branch Selectors
according to one embodiment of branch Selectors.

FIG. 4 is a diagram illustrating a group of contiguous
instruction bytes and a corresponding Set of branch Selectors
according to another embodiment of branch Selectors.

FIG. 5 is a table illustrating byte positions, branch
Selectors, read addresses, and encoding addresses according
to the branch selectors shown in FIG. 4.

FIG. 6 is a block diagram of one embodiment of a branch
prediction unit shown in FIG. 1.

FIG. 7 is a diagram illustrating one embodiment of a
branch prediction entry which may be employed by the
branch prediction unit shown in FIG. 6.

FIG. 8 is a table illustrating an encoding of a branch
Selector according to one embodiment of branch Selectors.

FIG. 9 is a flowchart illustrating operation of one embodi
ment of the branch prediction unit shown in FIG. 6.

FIG. 10 is a timing diagram illustrating operation of one
embodiment of the branch prediction unit shown in FIG. 6.

FIG. 11 is a block diagram of one embodiment of a
computer System including the microprocessor shown in
FIG. 1.

While the invention is susceptible to various modifica
tions and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and will
herein be described in detail. It should be understood,
however, that the drawings and detailed description thereto
are not intended to limit the invention to the particular form
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
Spirit and Scope of the present invention as defined by the
appended claims.

DETAILED DESCRIPTION OF THE
INVENTION

Turning now to FIG. 1, a block diagram of one embodi
ment of a microprocessor 10 is shown. Microprocessor 10
includes a prefetch/predecode unit 12, a branch prediction
unit 14, an instruction cache 16, an instruction alignment
unit 18, a plurality of decode units 20A-20C, a plurality of
reservation Stations 22A-22C, a plurality of functional units
24A-24C, a load/Store unit 26, a data cache 28, a register file
30, a reorder buffer 32, and an MROM unit 34. Elements
referred to herein with a particular reference number fol
lowed by a letter will be collectively referred to by the
reference number alone. For example, decode units
20A-20C will be collectively referred to as decode units 20.

Prefetch/predecode unit 12 is coupled to receive instruc
tions from a main memory Subsystem (not shown), and is
further coupled to instruction cache 16 and branch predic
tion unit 14. Similarly, branch prediction unit 14 is coupled
to instruction cache 16. Still further, branch prediction unit
14 is coupled to decode units 20 and functional units 24.
Instruction cache 16 is further coupled to MROM unit 34
and instruction alignment unit 18. Instruction alignment unit
18 is in turn coupled to decode units 20. Each decode unit
20A-20C is coupled to load/store unit 26 and to respective
reservation Stations 22A-22C. Reservation Stations
22A-22C are further coupled to respective functional units
24A-24C. Additionally, decode units 20 and reservation

5,954,816
S

stations 22 are coupled to register file 30 and reorder buffer
32. Functional units 24 are coupled to load/store unit 26,
register file 30, and reorder buffer 32 as well. Data cache 28
is coupled to load/store unit 26 and to the main memory
Subsystem. Finally, MROM unit 34 is coupled to decode
units 20.

Generally Speaking, branch prediction unit 14 employs a
cache-line based branch prediction mechanism for predict
ing branch instructions. Multiple branch predictions may be
Stored for each cache line. Additionally, a set of branch
Selectors are Stored for each cache line. The branch Selector
for a particular byte indicates which of the branch predic
tions which may be stored with respect to the cache line is
the branch prediction appropriate for an instruction fetch
address which fetches that byte. The appropriate branch
prediction is the branch prediction for the first predicted
taken branch instruction encountered within the cache line
Subsequent to the particular byte. AS used herein, the terms
“subsequent” and “prior to” refer to an ordering of bytes
within the cache line. A byte Stored at a memory address
which is numerically Smaller than the memory address at
which a Second byte is Stored is prior to the Second byte.
Conversely, a byte Stored at a memory address which is
numerically larger than the memory address of a Second byte
is Subsequent to the Second byte. Similarly, a first instruction
is prior to a Second instruction in program order if the first
instruction is encountered before the Second instruction
when Stepping one at a time through the Sequence of
instructions forming the program. AS used herein, an
“instruction fetch address' or “fetch address” is an address
generated by microprocessor 10 in order to fetch instructions
for execution.

In order to further increase the speed of branch prediction
Selection, branch prediction unit 14 Stores a predicted branch
Selector. The predicted branch Selector comprises one of the
branch SelectorS Stored for the cache line. More particularly,
the predicted branch Selector is used directly to Select the
branch prediction for use in forming the Subsequent fetch
address. In parallel, one of the plurality of branch Selectors
is selected by decoding the offset portion of the fetch
address. The predicted branch Selector and the Selected one
of the plurality of branch Selectors are compared to Verify
the predicted branch Selector. Advantageously, the logic for
Selecting a branch Selector is removed from the path for
generating a Subsequent fetch address. The predicted branch
Selector may be set to, for example, the branch Selector
Selected during a previous fetch of the cache line.

In one embodiment, the cache line is divided into multiple
byte ranges and a branch Selector is Stored for each byte
range within the cache line (as opposed to storing a branch
Selector for each byte). AS used herein, a byte range is one
or more contiguous bytes within a cache line (or portion
thereof, if less than a full cache line is provided at the output
of instruction cache 16 as described below). By storing a
branch Selector per byte range instead of a branch Selector
per byte, the number of branch Selectors Stored may advan
tageously be reduced. Reducing the number of branch
Selectors Stored (and hence the size of the storage) may lead
to a more rapid access, as well as cost Savings realized by
reducing the Substrate area occupied by microprocessor 10.

In one embodiment, microprocessor 10 employs a micro
processor architecture in which the instruction Set is a
variable byte length instruction Set (e.g. the x86 micropro
cessor architecture). When a variable byte length instruction
Set is employed, any byte within the cache line may be
identified as the first byte to be fetched by a given fetch
address. For example, a branch instruction may have a target

15

25

35

40

45

50

55

60

65

6
address at byte position two within a cache line. In Such a
case, the bytes at byte positions Zero and one are not being
fetched during the current cache access. Additionally, bytes
Subsequent to a predicted-taken branch which is Subsequent
to the first fetched byte are not fetched during the current
cache access. The branch prediction for the predicted taken
branch can be located by Selecting the branch Selector
corresponding to the byte range including the first byte to be
fetched from the cache line. The branch selector is used to
Select the appropriate branch prediction, which is then
provided to the instruction fetch logic in instruction cache
16. During the Succeeding clock cycle, the branch prediction
is used as the fetch address. Advantageously, the process of
comparing the byte position of the first byte being fetched to
the byte positions of the predicted-taken branch instructions
is eliminated from the generation of a branch prediction in
response to a fetch address. The amount of time required to
form a branch prediction may be reduced accordingly,
allowing the branch prediction mechanism to operate at
higher clock frequencies (i.e. shorter clock cycles) while still
providing a single cycle branch prediction.

It is noted that, although the term “cache line' has been
used in the preceding discussion, Some embodiments of
instruction cache 16 may not provide an entire cache line at
its output during a given clock cycle. For example, in one
embodiment instruction cache 16 is configured with 32 byte
cache lines. However, only 16 bytes are fetched in a given
clock cycle (either the upper half or the lower half of the
cache line). The branch prediction storage locations and
branch Selectors are allocated to the portion of the cache line
being fetched. AS used herein, the term “group of contiguous
instruction bytes” is used to refer to the instruction bytes
which are provided by the instruction cache in a particular
clock cycle in response to a fetch address. A group of
contiguous instruction bytes may be a portion of a cache line
or an entire cache line, according to various embodiments.
When a group of contiguous instruction bytes is a portion of
a cache line, it is still an aligned portion of a cache line. For
example, if a group of contiguous instruction bytes is half a
cache line, it is either the upper half of the cache line or the
lower half of the cache line. A number of branch prediction
Storage locations are allocated to each group of contiguous
instruction bytes, and branch Selectors indicate one of the
branch prediction Storage locations associated with that
group. Furthermore, branch Selectors may indicate a return
Stack address from a return Stack Structure or a Sequential
address if no branch instructions are encountered between
the corresponding byte and the last byte in the group of
contiguous instruction bytes.

Instruction cache 16 is a high Speed cache memory
provided to Store instructions. Instructions are fetched from
instruction cache 16 and dispatched to decode units 20. In
one embodiment, instruction cache 16 is configured to Store
up to 64 kilobytes of instructions in a 4 way Set associative
Structure having 32 byte lines (a byte comprises 8 binary
bits). Alternatively, 2 way set associativity may be employed
as well as any other desired associativity. Instruction cache
16 may additionally employ a way prediction Scheme in
order to Speed access times to the instruction cache. Instead
of accessing tags identifying each line of instructions and
comparing the tags to the fetch address to Select a way,
instruction cache 16 predicts the way that is accessed. In this
manner, the way is Selected prior to accessing the instruction
Storage. The access time of instruction cache 16 may be
Similar to a direct-mapped cache. A tag comparison is
performed and, if the way prediction is incorrect, the correct
instructions are fetched and the incorrect instructions are

5,954,816
7

discarded. It is noted that instruction cache 16 may be
implemented as a fully associative, Set associative, or direct
mapped configuration.

Instructions are fetched from main memory and Stored
into instruction cache 16 by prefetch/predecode unit 12.
Instructions may be prefetched prior to the request thereof
from instruction cache 16 in accordance with a prefetch
Scheme. A variety of prefetch Schemes may be employed by
prefetch/predecode unit 12. AS prefetch/predecode unit 12
transferS instructions from main memory to instruction
cache 16, prefetch/predecode unit 12 generates three prede
code bits for each byte of the instructions: a start bit, an end
bit, and a functional bit. The predecode bits form tags
indicative of the boundaries of each instruction. The prede
code tags may also convey additional information Such as
whether a given instruction can be decoded directly by
decode units 20 or whether the instruction is executed by
invoking a microcode procedure controlled by MROM unit
34, as will be described in greater detail below. Still further,
prefetch/predecode unit 12 may be configured to detect
branch instructions and to Store branch prediction informa
tion corresponding to the branch instructions into branch
prediction unit 14.
One encoding of the predecode tags for an embodiment of

microprocessor 10 employing a variable byte length instruc
tion set will next be described. A variable byte length
instruction Set is an instruction Set in which different instruc
tions may occupy differing numbers of bytes. An exemplary
variable byte length instruction Set employed by one
embodiment of microprocessor 10 is the x86 instruction set.

In the exemplary encoding, if a given byte is the first byte
of an instruction, the start bit for that byte is set. If the byte
is the last byte of an instruction, the end bit for that byte is
set. Instructions which may be directly decoded by decode
units 20 are referred to as “fast path' instructions. The
remaining x86 instructions are referred to as MROM
instructions, according to one embodiment. For fast path
instructions, the functional bit is Set for each prefix byte
included in the instruction, and cleared for other bytes.
Alternatively, for MROM instructions, the functional bit is
cleared for each prefix byte and set for other bytes. The type
of instruction may be determined by examining the func
tional bit corresponding to the end byte. If that functional bit
is clear, the instruction is a fast path instruction. Conversely,
if that functional bit is set, the instruction is an MROM
instruction. The opcode of an instruction may thereby be
located within an instruction which may be directly decoded
by decode units 20 as the byte associated with the first clear
functional bit in the instruction. For example, a fast path
instruction including two prefix bytes, a Mod R/M byte, and
an immediate byte would have Start, end, and functional bits
as follows:

Start bits 1OOOO
End bits OOOO1
Functional bits 11OOO

According to one particular embodiment, early identifi
cation of an instruction that includes a Scale-index-base
(SIB) byte is advantageous for MROM unit 34. For such an
embodiment, if an instruction includes at least two bytes
after the opcode byte, the functional bit for the Mod R/M
byte indicates the presence of an SIB byte. If the functional
bit for the ModR/M byte is set, then an SIB byte is present.
Alternatively, if the functional bit for the Mod R/M byte is
clear, then an SIB byte is not present.

1O

15

25

35

40

45

50

55

60

65

8
MROM instructions are instructions which are deter

mined to be too complex for decode by decode units 20.
MROM instructions are executed by invoking MROM unit
34. More specifically, when an MROM instruction is
encountered, MROM unit 34 parses and issues the instruc
tion into a Subset of defined fast path instructions to effec
tuate the desired operation. MROM unit 34 dispatches the
Subset of fast path instructions to decode units 20. A listing
of exemplary x86 instructions categorized as fast path
instructions will be provided further below.

Microprocessor 10 employs branch prediction in order to
Speculatively fetch instructions Subsequent to conditional
branch instructions. Branch prediction unit 14 is included to
perform branch prediction operations. In one embodiment,
up to two branch target addresses are Stored with respect to
each 16 byte portion of each cache line in instruction cache
16. Prefetch/predecode unit 12 determines initial branch
targets when a particular line is predecoded. Subsequent
updates to the branch targets corresponding to a cache line
may occur due to the execution of instructions within the
cache line. Instruction cache 16 provides an indication of the
instruction address being fetched, So that branch prediction
unit 14 may determine which branch target addresses to
select for forming a branch prediction. Decode units 20 and
functional units 24 provide update information to branch
prediction unit 14. Because branch prediction unit 14 stores
two targets per 16 byte portion of the cache line, Some
branch instructions within the line may not be stored in
branch prediction unit 14. Decode units 20 detect branch
instructions which were not predicted by branch prediction
unit 14. Functional units 24 execute the branch instructions
and determine if the predicted branch direction is incorrect.
The branch direction may be “taken”, in which subsequent
instructions are fetched from the target address of the branch
instruction. Conversely, the branch direction may be “not
taken”, in which Subsequent instructions are fetched from
memory locations consecutive to the branch instruction.
When a mispredicted branch instruction is detected, instruc
tions Subsequent to the mispredicted branch are discarded
from the various units of microprocessor 10. A variety of
Suitable branch prediction algorithms may be employed by
branch prediction unit 14.

Instructions fetched from instruction cache 16 are con
veyed to instruction alignment unit 18. AS instructions are
fetched from instruction cache 16, the corresponding pre
decode data is Scanned to provide information to instruction
alignment unit 18 (and to MROM unit 34) regarding the
instructions being fetched. Instruction alignment unit 18
utilizes the Scanning data to align an instruction to each of
decode units 20. In one embodiment, instruction alignment
unit 18 aligns instructions from three Sets of eight instruction
bytes to decode units 20. Instructions are Selected indepen
dently from each Set of eight instruction bytes into prelimi
nary issue positions. The preliminary issue positions are then
merged to a set of aligned issue positions corresponding to
decode units 20, Such that the aligned issue positions contain
the three instructions which are prior to other instructions
within the preliminary issue positions in program order.
Decode unit 20A receives an instruction which is prior to
instructions concurrently received by decode units 20B and
20C (in program order). Similarly, decode unit 20B receives
an instruction which is prior to the instruction concurrently
received by decode unit 20C in program order.

Decode units 20 are configured to decode instructions
received from instruction alignment unit 18. Register oper
and information is detected and routed to register file 30 and
reorder buffer 32. Additionally, if the instructions require

5,954,816
9

one or more memory operations to be performed, decode
units 20 dispatch the memory operations to load/store unit
26. Each instruction is decoded into a Set of control values
for functional units 24, and these control values are dis
patched to reservation Stations 22 along with operand
address information and displacement or immediate data
which may be included with the instruction.

Microprocessor 10 Supports out of order execution, and
thus employs reorder buffer 32 to keep track of the original
program Sequence for register read and write operations, to
implement register renaming, to allow for Speculative
instruction execution and branch misprediction recovery,
and to facilitate precise exceptions. A temporary Storage
location within reorder buffer 32 is reserved upon decode of
an instruction that involves the update of a register to
thereby Store speculative register States. If a branch predic
tion is incorrect, the results of Speculatively-executed
instructions along the mispredicted path can be invalidated
in the buffer before they are written to register file 30.
Similarly, if a particular instruction causes an exception,
instructions Subsequent to the particular instruction may be
discarded. In this manner, exceptions are "precise” (i.e.
instructions Subsequent to the particular instruction causing
the exception are not completed prior to the exception). It is
noted that a particular instruction is speculatively executed
if it is executed prior to instructions which precede the
particular instruction in program order. Preceding instruc
tions may be a branch instruction or an exception-causing
instruction, in which case the Speculative results may be
discarded by reorder buffer 32.

The instruction control values and immediate or displace
ment data provided at the outputs of decode units 20 are
routed directly to respective reservation stations 22. In one
embodiment, each reservation Station 22 is capable of hold
ing instruction information (i.e., instruction control values as
well as operand values, operand tags and/or immediate data)
for up to three pending instructions awaiting issue to the
corresponding functional unit. It is noted that for the
embodiment of FIG. 1, each reservation station 22 is asso
ciated with a dedicated functional unit 24. Accordingly,
three dedicated “issue positions” are formed by reservation
Stations 22 and functional units 24. In other words, issue
position 0 is formed by reservation station 22A and func
tional unit 24A. Instructions aligned and dispatched to
reservation Station 22A are executed by functional unit 24A.
Similarly, issue position 1 is formed by reservation Station
22B and functional unit 24B; and issue position 2 is formed
by reservation station 22C and functional unit 24C.
Upon decode of a particular instruction, if a required

operand is a register location, register address information is
routed to reorder buffer 32 and register file 30 simulta
neously. Those of skill in the art will appreciate that the x86
register file includes eight 32 bit real registers (i.e., typically
referred to as EAX, EBX, ECX, EDX, EBP, ESI, EDI and
ESP). In embodiments of microprocessor 10 which employ
the x86 microprocessor architecture, register file 30 com
prises Storage locations for each of the 32 bit real registers.
Additional Storage locations may be included within register
file 30 for use by MROM unit 34. Reorder buffer 32 contains
temporary Storage locations for results which change the
contents of these registers to thereby allow out of order
execution. A temporary Storage location of reorder buffer 32
is reserved for each instruction which, upon decode, is
determined to modify the contents of one of the real regis
ters. Therefore, at various points during execution of a
particular program, reorder buffer 32 may have one or more
locations which contain the Speculatively executed contents

15

25

35

40

45

50

55

60

65

10
of a given register. If following decode of a given instruction
it is determined that reorder buffer 32 has a previous location
or locations assigned to a register used as an operand in the
given instruction, the reorder buffer 32 forwards to the
corresponding reservation station either: 1) the value in the
most recently assigned location, or 2) a tag for the most
recently assigned location if the value has not yet been
produced by the functional unit that will eventually execute
the previous instruction. If reorder buffer 32 has a location
reserved for a given register, the operand value (or reorder
buffer tag) is provided from reorder buffer 32 rather than
from register file 30. If there is no location reserved for a
required register in reorder buffer 32, the value is taken
directly from register file 30. If the operand corresponds to
a memory location, the operand value is provided to the
reservation Station through load/store unit 26.

In one particular embodiment, reorder buffer 32 is con
figured to Store and manipulate concurrently decoded
instructions as a unit. This configuration will be referred to
herein as "line-oriented”. By manipulating Several instruc
tions together, the hardware employed within reorder buffer
32 may be simplified. For example, a line-oriented reorder
buffer included in the present embodiment allocates Storage
Sufficient for instruction information pertaining to three
instructions (one from each decode unit 20) whenever one or
more instructions are dispatched by decode units 20. By
contrast, a variable amount of Storage is allocated in con
ventional reorder buffers, dependent upon the number of
instructions actually dispatched. A comparatively larger
number of logic gates may be required to allocate the
variable amount of storage. When each of the concurrently
decoded instructions has executed, the instruction results are
Stored into register file 30 simultaneously. The Storage is
then free for allocation to another Set of concurrently
decoded instructions. Additionally, the amount of control
logic circuitry employed per instruction is reduced because
the control logic is amortized over Several concurrently
decoded instructions. A reorder buffer tag identifying a
particular instruction may be divided into two fields: a line
tag and an offset tag. The line tag identifies the Set of
concurrently decoded instructions including the particular
instruction, and the offset tag identifies which instruction
within the Set corresponds to the particular instruction. It is
noted that Storing instruction results into register file 30 and
freeing the corresponding Storage is referred to as "retiring”
the instructions. It is further noted that any reorder buffer
configuration may be employed in various embodiments of
microprocessor 10.
AS noted earlier, reservation Stations 22 Store instructions

until the instructions are executed by the corresponding
functional unit 24. An instruction is Selected for execution if:
(i) the operands of the instruction have been provided; and
(ii) the operands have not yet been provided for instructions
which are within the same reservation station 22A-22C and
which are prior to the instruction in program order. It is
noted that when an instruction is executed by one of the
functional units 24, the result of that instruction is passed
directly to any reservation Stations 22 that are waiting for
that result at the same time the result is passed to update
reorder buffer 32 (this technique is commonly referred to as
“result forwarding”). An instruction may be selected for
execution and passed to a functional unit 24A-24C during
the clock cycle that the associated result is forwarded.
Reservation stations 22 route the forwarded result to the
functional unit 24 in this case.

In one embodiment, each of the functional units 24 is
configured to perform integer arithmetic operations of addi

5,954,816
11

tion and Subtraction, as well as shifts, rotates, logical
operations, and branch operations. The operations are per
formed in response to the control values decoded for a
particular instruction by decode units 20. It is noted that a
floating point unit (not shown) may also be employed to
accommodate floating point operations. The floating point
unit may be operated as a coprocessor, receiving instructions
from MROM unit 34 and Subsequently communicating with
reorder buffer 32 to complete the instructions. Additionally,
functional units 24 may be configured to perform address
generation for load and Store memory operations performed
by load/store unit 26.

Each of the functional units 24 also provides information
regarding the execution of conditional branch instructions to
the branch prediction unit 14. If a branch prediction was
incorrect, branch prediction unit 14 flushes instructions
Subsequent to the mispredicted branch that have entered the
instruction processing pipeline, and causes fetch of the
required instructions from instruction cache 16 or main
memory. It is noted that in Such situations, results of
instructions in the original program Sequence which occur
after the mispredicted branch instruction are discarded,
including those which were speculatively executed and
temporarily stored in load/store unit 26 and reorder buffer
32.

Results produced by functional units 24 are sent to reorder
buffer 32 if a register value is being updated, and to
load/Store unit 26 if the contents of a memory location are
changed. If the result is to be Stored in a register, reorder
buffer 32 stores the result in the location reserved for the
value of the register when the instruction was decoded. A
plurality of result buses 38 are included for forwarding of
results from functional units 24 and load/store unit 26.
Result buses 38 convey the result generated, as well as the
reorder buffer tag identifying the instruction being executed.

Load/store unit 26 provides an interface between func
tional units 24 and data cache 28. In one embodiment,
load/store unit 26 is configured with a load/store buffer
having eight Storage locations for data and address infor
mation for pending loads or Stores. Decode units 20 arbitrate
for access to the load/store unit 26. When the buffer is full,
a decode unit must wait until load/store unit 26 has room for
the pending load or Store request information. Load/store
unit 26 also performs dependency checking for load memory
operations against pending Store memory operations to
ensure that data coherency is maintained. A memory opera
tion is a transfer of data between microprocessor 10 and the
main memory Subsystem. Memory operations may be the
result of an instruction which utilizes an operand Stored in
memory, or may be the result of a load/store instruction
which causes the data transfer but no other operation.
Additionally, load/store unit 26 may include a Special reg
ister Storage for Special registerS Such as the Segment reg
isters and other registers related to the address translation
mechanism defined by the x86 microprocessor architecture.

In one embodiment, load/store unit 26 is configured to
perform load memory operations Speculatively. Store
memory operations are performed in program order, but may
be speculatively Stored into the predicted way. If the pre
dicted way is incorrect, the data prior to the Store memory
operation is Subsequently restored to the predicted way and
the Store memory operation is performed to the correct way.
In another embodiment, Stores may be executed Specula
tively as well. Speculatively executed Stores are placed into
a Store buffer, along with a copy of the cache line prior to the
update. If the Speculatively executed Store is later discarded
due to branch misprediction or exception, the cache line may

15

25

35

40

45

50

55

60

65

12
be restored to the value stored in the buffer. It is noted that
load/Store unit 26 may be configured to perform any amount
of Speculative eXecution, including no speculative eXecu
tion.

Data cache 28 is a high Speed cache memory provided to
temporarily Store data being transferred between load/store
unit 26 and the main memory Subsystem. In one
embodiment, data cache 28 has a capacity of Storing up to
Sixteen kilobytes of data in an eight way Set associative
Structure. Similar to instruction cache 16, data cache 28 may
employ a way prediction mechanism. It is understood that
data cache 28 may be implemented in a variety of Specific
memory configurations, including a Set associative configu
ration.

In one particular embodiment of microprocessor 10
employing the x86 microprocessor architecture, instruction
cache 16 and data cache 28 are linearly addressed. The linear
address is formed from the offset specified by the instruction
and the base address Specified by the Segment portion of the
x86 address translation mechanism. Linear addresses may
optionally be translated to physical addresses for accessing
a main memory. The linear to physical translation is speci
fied by the paging portion of the x86 address translation
mechanism. It is noted that a linear addressed cache Stores
linear address tags. A set of physical tags (not shown) may
be employed for mapping the linear addresses to physical
addresses and for detecting translation aliases. Additionally,
the physical tag block may perform linear to physical
address translation.

Turning now to FIG. 2, a block diagram of one embodi
ment of decode units 20B and 20O is shown. Each decode
unit 20 receives an instruction from instruction alignment
unit 18. Additionally, MROM unit 34 is coupled to each
decode unit 20 for dispatching fast path instructions corre
sponding to a particular MROM instruction. Decode unit
20B comprises early decode unit 40B, multiplexor 42B, and
opcode decode unit 4.4B. Similarly, decode unit 20C
includes early decode unit 40C, multiplexor 42C, and
opcode decode unit 44C.

Certain instructions in the x86 instruction set are both
fairly complicated and frequently used. In one embodiment
of microprocessor 10, Such instructions include more com
plex operations than the hardware included within a par
ticular functional unit 24A-24C is configured to perform.
Such instructions are classified as a special type of MROM
instruction referred to as a “double dispatch” instruction.
These instructions are dispatched to a pair of opcode decode
units 44. It is noted that opcode decode units 44 are coupled
to respective reservation Stations 22. Each of opcode decode
units 44A-44C forms an issue position with the correspond
ing reservation Station 22A-22C and functional unit
24A-24C. Instructions are passed from an opcode decode
unit 44 to the corresponding reservation Station 22 and
further to the corresponding functional unit 24.

Multiplexor 42B is included for selecting between the
instructions provided by MROM unit 34 and by early
decode unit 40B. During times in which MROM unit 34 is
dispatching instructions, multiplexor 42B Selects instruc
tions provided by MROM unit 34. At other times, multi
plexor 42B selects instructions provided by early decode
unit 40B. Similarly, multiplexor 42C selects between
instructions provided by MROM unit 34, early decode unit
40B, and early decode unit 40C. The instruction from
MROM unit 34 is selected during times in which MROM
unit 34 is dispatching instructions. During times in which the
early decode unit within decode unit 20A (not shown)

5,954,816
13

detects a double dispatch instruction, the instruction from
early decode unit 40B is selected by multiplexor 42C.
Otherwise, the instruction from early decode unit 40C is
Selected. Selecting the instruction from early decode unit
40B into opcode decode unit 44C allows a fast path instruc
tion decoded by decode unit 20B to be dispatched concur
rently with a double dispatch instruction decoded by decode
unit 20A.

According to one embodiment employing the x86 instruc
tion Set, early decode units 40 perform the following opera
tions:

(i) merge the prefix bytes of the instruction into an
encoded prefix byte;

(ii) decode unconditional branch instructions (which may
include the unconditional jump, the CALL, and the
RETURN) which were not detected during branch
prediction;

(iii) decode Source and destination flags;
(iv) decode the Source and destination operands which are

register operands and generate operand size informa
tion; and

(V) determine the displacement and/or immediate size So
that displacement and immediate data may be routed to
the opcode decode unit.

Opcode decode units 44 are configured to decode the opcode
of the instruction, producing control values for functional
unit 24. Displacement and immediate data are routed with
the control values to reservation Stations 22.

Since early decode units 40 detect operands, the outputs
of multiplexors 42 are routed to register file 30 and reorder
buffer 32. Operand values or tags may thereby be routed to
reservation Stations 22. Additionally, memory operands are
detected by early decode units 40. Therefore, the outputs of
multiplexors 42 are routed to load/store unit 26. Memory
operations corresponding to instructions having memory
operands are Stored by load/store unit 26.

Turning now to FIG. 3, a diagram of an exemplary group
of contiguous instruction bytes 50 and a corresponding Set of
branch selectors 52 are shown. In FIG. 3, each byte within
an instruction is illustrated by a short vertical line (e.g.
reference number 54). Additionally, the vertical lines sepa
rating instructions in group 50 delimit bytes (e.g. reference
number 56). The instructions shown in FIG. 3 are variable
in length, and therefore the instruction Set including the
instructions shown in FIG. 3 is a variable byte length
instruction Set. In other words, a first instruction within the
variable byte length instruction Set may occupy a first
number of bytes which is different than a second number of
bytes occupied by a Second instruction within the instruction
Set. Other instruction Sets may be fixed-length, Such that
each instruction within the instruction Set occupies the same
number of bytes as each other instruction.
As illustrated in FIG. 3, group 50 includes non-branch

instructions INO-IN5. Instructions INO, IN3, IN4, and IN5
are two byte instructions. Instruction IN1 is a one byte
instruction and instruction IN2 is a three byte instruction.
Two predicted-taken branch instructions PBO and PB1 are
illustrated as well, each shown as occupying two bytes. It is
noted that both non-branch and branch instructions may
occupy various numbers of bytes.

The end byte of each predicted-taken branch PB0 and
PB1 provides a division of group 50 into three regions: a first
region 58, a second region 60, and a third region 62. If a
fetch address identifying group 50 is presented, and the
offset of the fetch address within the group identifies a byte
position within first region 58, then the first predicted-taken

15

25

35

40

45

50

55

60

65

14
branch instruction to be encountered is PBO and therefore
the branch prediction for PB0 is selected by the branch
prediction mechanism. Similarly, if the offset of the fetch
address identifies a byte within Second region 60, the appro
priate branch prediction is the branch prediction for PB1.
Finally, if the offset of the fetch address identifies a byte
within third region 62, then there is no predicted-taken
branch instruction within the group of instruction bytes and
Subsequent to the identified byte. Therefore, the branch
prediction for third region 62 is Sequential. The Sequential
address identifies the group of instruction bytes which
immediately follows group 50 within main memory.
AS used herein, the offset of an address comprises a

number of least significant bits of the address. The number
is sufficient to provide different encodings of the bits for
each byte within the group of bytes to which the offset
relates. For example, group 50 is 16 bytes. Therefore, four
least Significant bits of an address within the group form the
offset of the address. The remaining bits of the address
identify group 50 from other groups of contiguous instruc
tion bytes within the main memory. Additionally, a number
of least Significant bits of the remaining bits form an index
used by instruction cache 16 to Select a row of Storage
locations which are eligible for Storing group 50.

Set 52 is an exemplary Set of branch Selectors for group
50. One branch selector is included for each byte within
group 50. The branch selectors within set 52 use the encod
ing shown in FIG. 8 below. In the example, the branch
prediction for PB0 is stored as the second of two branch
predictions associated with group 50 (as indicated by a
branch selector value of “3”). Therefore, the branch selector
for each byte within first region 58 is set to “3”. Similarly,
the branch prediction for PBI is stored as the first of the
branch predictions (as indicated by a branch Selector value
of "2"). Therefore, the branch selector for each byte within
second region 60 is set to “2”. Finally, the sequential branch
prediction is indicated by the branch selectors for bytes
within third region 62 by a branch selector encoding of “0”.

It is noted that, due to the variable byte length nature of
the x86 instruction Set, a branch instruction may begin
within one group of contiguous instruction bytes and end
within a Second group of contiguous instruction bytes. In
Such a case, the branch prediction for the branch instruction
is Stored with the Second group of contiguous instruction
bytes. Among other things, the bytes of the branch instruc
tion which are Stored within the Second group of contiguous
instruction bytes need to be fetched and dispatched. Forming
the branch prediction in the first group of contiguous instruc
tion bytes would cause the bytes of the branch instruction
which lie within the Second group of instruction bytes not to
be fetched.

Employing a set of branch SelectorS Such as Set 52 allows
for a rapid determination of the predicted fetch address (i.e.
by decoding the offset portion of the fetch address and
Selecting the corresponding Selector from Set 52). However,
a large number of branch Selectors are Stored (i.e. one for
each byte). The amount of branch prediction storage
employed for Storing the branch Selectors would correspond
ingly be large. Still further, a relatively wide Selection device
(Such as a mux) would be needed to Select the branch
selector in response to the offset of the fetch address. The
wider the Selection device, in general, the greater the delay
in propagating the Selected value through the Selection
device (e.g. the Selected branch Selector).

FIG. 3 illustrates that the branch selector for each byte
within a region is the Same, and regions are delimited by
branch instructions (more particularly, predicted-taken

5,954,816
15

branch instructions). Branch instructions would generally
include at least an opcode (identifying the branch instruction
within the instruction set employed by microprocessor 10)
and a displacement to be added to the address of the branch
instruction (or the address of the instruction immediately
following the branch instruction) to form the branch target
address. Therefore, a branch instruction occupies at least
two bytes. By taking advantage of this fact, the number of
branch SelectorS Stored with respect to a group of contiguous
instruction bytes may be reduced.

For the remainder of this description, the x86 micropro
ceSSor architecture will be used as an example. However, the
branch Selector technique described herein may be
employed within any microprocessor architecture, and Such
embodiments are contemplated. It is noted that, in the X86
microprocessor architecture, a Subroutine return instruction
is defined (e.g. the RET instruction). The subroutine return
instruction specifies that its branch target address is drawn
from the top of the stack indicated by the ESP register.
Therefore, the RET instruction is a single byte (i.e. an
opcode byte).

Turning next to FIG. 4, a diagram illustrating group 50,
regions 58, 60, and 62, and one embodiment of a set of
branch selectors 70 is illustrated. The branch selectors
within set 70 correspond to byte ranges defined within group
50. For the example shown in FIG. 4, nine branch selectors
are used for a group of 16 contiguous instruction bytes. Set
70 therefore occupies less storage within a branch prediction
Storage than Set 52 shown in FIG. 3 occupies, allowing the
branch prediction Storage to be made Smaller. Still further, a
narrower Selection device may be used to Select a branch
Selector in response to a fetch address. The Selected branch
Selector may be provided more rapidly, and may thereby
provide for a higher frequency implementation in which
predicted fetch addresses are provided each clock cycle.

Generally, the largest byte range defined for a given
branch Selector may be made equal to the shortest branch
instruction (excluding the return instruction as described in
more detail below). The majority of the byte ranges are
Selected to be the largest size. However, to handle certain
conditions, the embodiment shown in FIG. 4 employs two
byte ranges which are Smaller than the maximum size. In
particular, the initial byte of the group 50 forms a byte range
having a Single byte. Since group 50 is an even number of
bytes, the byte range corresponding to the initial byte
includes only the initial byte, and the largest byte range is
two bytes in this example, another byte range is defined to
have a single byte as well. For set 70, the byte within group
50 which is contiguous to the initial byte is selected to be a
Single byte range. This Selection allows for a relatively
simple decode of the offset of the fetch address to select a
branch selector, as illustrated in FIG. 5.

Since the byte ranges are Selected to be no larger than the
Shortest branch instruction, a branch instruction may begin
in one byte range and end in a Subsequent byte range.
However, at most one branch instruction ends in a particular
byte range, even if branch instructions are consecutive
within a particular group of contiguous instruction bytes.
For the case of a branch instruction which ends within a
particular byte range but not at the end of the byte range, the
branch Selector for that byte range is Selected to be the
branch Selector corresponding to instruction bytes Subse
quent to the branch instruction. For example, the branch
selector for byte range 72 (which includes bytes 3-4, where
the initial byte is numbered byte 0) indicates the branch
prediction corresponding to predicted branch PB1. The
above rule is used because a fetch address within the byte

15

25

35

40

45

50

55

60

65

16
range is not fetching the branch instruction (which begins in
the preceding byte range). Therefore, the correct branch
prediction is the prediction for the Subsequent branch.
On the other hand, if the branch instruction ends at the last

byte within the byte range, the branch selector for the byte
range is the branch Selector corresponding to the branch
instruction (e.g. byte range 74). Therefore, if a fetch address
specifying predicted branch PB1 (i.e. the offset is within
byte range 74), then the branch prediction used for the fetch
is the branch prediction corresponding to branch PB1.

Turning now to FIG. 5, a table 76 is shown corresponding
to the Selection of byte ranges for branch Selectors as
illustrated in the example of FIG. 4. The row of table 76
labeled “Byte Position” lists the byte positions within group
50 which correspond to each byte range (i.e. the offset
portion of the address for each byte which is within each
byte range). The row labeled “Branch Selector Position”
illustrates the branch selector position within the set 70 of
the branch Selector corresponding to each byte range. The
row labeled “Read Addresses' lists the fetch address offsets
(in binary) which are decoded to select the branch selector
within the corresponding byte range (in order to form a
predicted fetch address for the Subsequent clock cycle). An
“X” in the read addresses indicates a don't care position.
Finally, the row labeled “Encoding Addresses' lists the fetch
address offsets (in binary) at which a branch instruction can
end and still have the branch selector for that byte range
indicate the branch prediction corresponding to that branch
instruction. For example, branch Selector position 2 can
indicate the branch prediction for a branch instruction which
ends at either byte position 3 or 4. More particularly, a
branch instruction which ends at byte position 2 is not
represented by the branch Selector in branch selector posi
tion 2 (because the branch instruction begins in a different
byte range than that associated with branch Selector position
2, and is therefore not being fetched if the fetch address
offset is within the byte range associated with branch Selec
tor position 2).
The “Read Addresses' row of table 76 illustrates that a

relatively simple decoding of the fetch address offset can be
used to Select the appropriate branch Selector for that fetch
address. The decoding for branch selector positions 0 and 1
include each of the fetch address offset bits, but the decoding
for the remaining positions may exclude the least significant
bit (since it is a don't care). A rapid decode and branch
Selector Selection may be achieved using the allocation of
byte ranges illustrated in FIG. 4.

Turning now to FIG. 6, a portion of one embodiment of
branch prediction unit 14 is shown. Other embodiments of
branch prediction unit 14 and the portion shown in FIG. 6
are contemplated. AS shown in FIG. 6, branch prediction
unit 14 includes a branch prediction storage 90, a way
multiplexor 92, a branch selector multiplexor 94, a branch
prediction multiplexor 96, a Sequential/return multiplexor
98, a final prediction multiplexor 100, an update logic block
102, and a decoder 104. Branch prediction storage 90 and
decoder 104 are coupled to a fetch address bus 106 from
instruction cache 16. A fetch address concurrently provided
to instruction cache 16 is conveyed upon fetch address bus
106. Decoder block 104 provides selection controls to
branch selector multiplexor 94. Prediction controls for way
multiplexor 92 are provided via a way selection bus 108
from instruction cache 16. Way selection bus 108 provides
the way of instruction cache 16 which is Storing the cache
line corresponding to the fetch address provided on fetch
address bus 106. Additionally, a selection control is provided
by decoder 104 based upon which portion of the cache line

5,954,816
17

is being fetched. Way multiplexor 92 is coupled to receive
the contents of each Storage location within the row of
branch prediction storage 90 which is indexed by the fetch
address upon fetch address bus 106. Branch selector multi
plexor 94 and branch prediction multiplexor 96 are coupled
to receive portions of the output of way multiplexor 92 as
inputs. Additionally, a portion of the output of way multi
plexor 92 provides selection controls for multiplexors 96,
98, and 100. Sequential/return multiplexor 98 selects
between a Sequential address provided upon a Sequential
address bus 110 from instruction cache 16 and a return
address provided upon a return address buS 112 from a return
stack. The output of multiplexors 96 and 98 is provided to
final prediction multiplexor 100, which provides a branch
prediction bus 114 to instruction cache 16. Instruction cache
16 uses the branch prediction provided upon branch predic
tion bus 114 as the fetch address for the Subsequent clock
cycle. Update logic block 102 is coupled to branch predic
tion storage 90 via an update bus 116 used to update branch
prediction information Stored therein. Update logic block
102 provides updates in response to a misprediction Sig
nalled via a mispredict bus 118 from functional units 24 and
decode units 20. Additionally, update logic block 102 pro
vides updates in response to newly predecoded instruction
indicated by prefetch/predecode unit 12 upon a predecode
bus 120.

In the present embodiment, branch prediction storage 90
is arranged with a number of ways equal to the number of
ways in instruction cache 16. For each way, a branch
prediction entry is Stored for each group of contiguous
instruction bytes existing within a cache line. In the embodi
ment of FIG. 6, two groups of instruction bytes are included
in each cache line. Therefore, branch prediction entry Poo is
the branch prediction entry corresponding to the first group
of contiguous instruction bytes in the first way and branch
prediction entry Po is the branch prediction entry corre
sponding to the Second group of contiguous instruction bytes
in the first way. Similarly, branch prediction entry Po is the
branch prediction entry corresponding to the first group of
contiguous instruction bytes in the Second way and branch
prediction entry P is the branch prediction entry corre
sponding to the Second group of contiguous instruction bytes
in the Second way, etc. Each branch prediction entry Poo to
Ps in the indexed row is provided as an output of branch
prediction Storage 90, and hence as an input to way multi
plexor 92. The indexed row is similar to indexing into a
cache: a number of bits which are not part of the offset
portion of the fetch address are used to Select one of the rows
of branch prediction storage 90. It is noted that branch
prediction storage 90 may be configured with fewer rows
than instruction cache 16. For example, branch prediction
storage 90 may include 4 the number of rows of instruction
cache 16. In Such a case, the address bits which are indeX bits
of instruction cache 16 but which are not index bits of
branch prediction storage 90 may be stored with the branch
prediction information and checked against the correspond
ing bits of the fetch address to confirm that the branch
prediction information is associated with the row of instruc
tion cache 16 which is being accessed.
Way multiplexor 92 selects one of the sets of branch

prediction information Poo-P based upon the way Selec
tion provided from instruction cache 16 and the group of
instruction bytes referenced by the fetch address. In the
embodiment shown, for example, a 32 byte cache line is
divided into two 16 byte groups. Therefore, the fifth least
significant bit of the fetch address is used to select which of
the two groups contains the fetch address. If the fifth least

15

25

35

40

45

50

55

60

65

18
Significant bit is Zero, then the first group of contiguous
instruction bytes is selected. If the fifth least significant bit
is one, then the Second group of contiguous instruction bytes
is Selected. It is noted that the way Selection provided upon
way selection bus 108 may be a way prediction produced by
a branch prediction from the previous clock cycle, according
to one embodiment. Alternatively, the way Selection may be
generated via tag comparisons between the fetch address and
the address tags identifying the cache lines Stored in each
way of the instruction cache. It is noted that an address tag
is the portion of the address which is not an offset within the
cache line nor an indeX into the instruction cache.
The selected branch prediction entry provided by way

multiplexor 92 includes a Set of branch Selectors correspond
ing to the group of contiguous instruction bytes, a predicted
branch selector, and branch predictions BP1 and BP2. The
branch Selectors are provided to branch Selector multiplexor
94, which selects one of the branch selectors based upon
selection controls provided by decoder 104. Decoder 104
decodes the offset of the fetch address into the group of
contiguous instruction bytes to Select the corresponding
branch Selector (for example, according to the “read
address' row of table 76, in one embodiment or according
to the particular byte, in another embodiment). For example,
if a group of contiguous instruction bytes is 16 bytes, then
decoder 104 decodes the four least significant bits of the
fetch address. In this manner, a branch Selector is chosen.
The predicted branch Selector is used to provide Selection

controls to branch prediction multiplexor 96, Sequential/
return multiplexor 98, and final prediction multiplexor 100.
In one embodiment, the encoding of the branch Selector can
be used directly as the multiplexor Select controls. In other
embodiments, a logic block may be inserted to decode the
predicted branch selector and to control multiplexors 96, 98,
and 100. For the embodiment shown, branch selectors
comprise two bits. One bit of the predicted branch selector
provides the selection control for prediction multiplexor 96
and sequential/return multiplexor 98. The other bit provides
a selection control for final prediction multiplexor 100. A
branch prediction is thereby selected from the multiple
branch predictions stored in branch prediction storage 90
corresponding to the group of contiguous instruction bytes
being fetched, the Sequential address of the group of con
tiguous instruction bytes Sequential to the group of contigu
ouS instruction bytes being fetched, and a return Stack
address from a return Stack Structure. It is noted that mul
tiplexors 96, 98, and 100 may be combined into a single 4
to 1 multiplexor for which the predicted branch selector
provides Selection controls to Select between the two branch
predictions from branch prediction Storage 90, the Sequential
address, and the return address.
The return Stack structure (not shown) is used to Store

return addresses corresponding to Subroutine call instruc
tions previously fetched by microprocessor 10. In one
embodiment, the branch predictions Stored by branch pre
diction storage 90 include an indication that the branch
prediction corresponds to a Subroutine call instruction. Sub
routine call instructions are a Subset of branch instructions
which save the address of the Sequential instruction (the
return address) in addition to redirecting the instruction
Stream to the target address of the Subroutine call instruction.
For example, the in the x86 microprocessor architecture, the
Subroutine call instruction (CALL) pushes the return address
onto the stack indicated by the ESP register.
A Subroutine return instruction is another Subset of the

branch instructions. The Subroutine return instruction uses
the return address Saved by the most recently executed

5,954,816
19

Subroutine call instruction as a target address. Therefore,
when a branch prediction includes an indication that the
branch prediction corresponds to a Subroutine call
instruction, the Sequential address to the Subroutine call
instruction is placed at the top of the return Stack. When a
Subroutine return instruction is encountered (as indicted by
a particular branch selector encoding), the address nearest
the top of the return Stack which has not previously been
used as a prediction is used as the prediction of the address.
The address nearest the top of the return Stack which has not
previously been used as a prediction is conveyed by the
return Stack upon return address bus 112 (along with the
predicted way of the return address, provided to the return
stack similar to its provision upon way selection bus 108.
Branch prediction unit 14 informs the return stack when the
return address is Selected as the prediction. Additional
details regarding an exemplary return Stack Structure may be
found in the commonly assigned, co-pending patent appli
cation entitled: “Speculative Return Address Prediction Unit
for a SuperScalar Microprocessor”, Ser. No. 08/550,296,
filed Oct. 30, 1995 by Mahalingaiah, et al. The disclosure of
the referenced patent application is incorporated herein by
reference in its entirety.

The Sequential address is provided by instruction cache
16. The Sequential address identifies the next group of
contiguous instruction bytes within main memory to the
group of instruction bytes indicated by the fetch address
upon fetch address bus 106. It is noted that, according to one
embodiment, a way prediction is Supplied for the Sequential
address when the Sequential address is Selected. The way
prediction may be Selected to be the same as the way
Selected for the fetch address. Alternatively, a way predic
tion for the Sequential address may be stored within branch
prediction storage 90.

In addition to Selecting a branch prediction, the predicted
branch selector is provided to a comparator 126. The
selected branch selector from branch selector multiplexor 94
is also provided to comparator 126. The output of compara
tor 126 is provided to update unit 102, and acts as a
Verification that the predicted branch Selector corresponds to
the Selected branch Selector Selected in accordance with the
offset of the fetch address. The predicted branch selector is
Set to the most recently Selected branch Selector, and there
fore may differ from the branch Selector corresponding to the
current fetch address. It is noted that the verification of the
predicted branch Selector may be pipelined to a Subsequent
clock cycle from the clock cycle in which the Selectors are
read from branch prediction storage 90. In such an
embodiment, Storage devices (not shown) may be inserted at
an appropriate point to Store the intermediate values for
continued operation in the Subsequent clock cycle. However,
it is noted that the present Structure may advantageously be
employed even if the Verification can be completed in the
Same clock cycle. The delay in generating the branch
prediction on branch prediction bus 114 may still be
decreased using the predicted branch Selector, and the time
Saved may be put to other uses.

If comparator 126 detects inequality between the pre
dicted branch Selector and the Selected branch Selector,
update logic 102 cancels the current fetch (corresponding to
the fetch address upon fetch address bus 106) because the
current fetch address (generated from a branch prediction
Selected by the predicted branch Selector) is incorrect.
Update logic 102 updates the predicted branch selector
within the branch prediction entry within branch prediction
storage 90 from which the prediction was fetched with the
Selected branch Selector, and uses the Selected branch pre

15

25

35

40

45

50

55

60

65

20
diction to generate a corrected fetch address. It is noted that
update logic 102 may store the fetched branch prediction
entry to allow for fetch address correction without reacceSS
ing branch prediction storage 90.
AS mentioned above, update logic block 102 is configured

to update a branch prediction entry upon detection of a
branch misprediction or upon detection of a branch instruc
tion while predecoding the corresponding group of contigu
ouS instruction bytes in prefetch/predecode unit 12. The
branch prediction entry corresponding to each branch pre
diction may be stored in update logic block 102 as the
prediction is performed. Abranch tag is conveyed along with
the instructions being fetched (via a branch tag bus 122),
Such that if a misprediction is detected or a branch instruc
tion is detected during predecoding, the corresponding
branch prediction entry can be identified via the branch tag.
In one embodiment, the branch prediction entry as shown in
FIG. 7 is stored, as well as the index of the fetch address
which caused the branch prediction entry to be fetched and
the way in which the branch prediction entry is Stored.
When a branch misprediction is detected, the correspond

ing branch tag is provided upon mispredict bus 118 from
either the functional unit 24 which executes the branch
instruction or from decode units 20. If decode units 20
provide the branch tag, then the misprediction is of the
previously undetected type (e.g. there are more branch
instructions in the group than can be predicted using the
corresponding branch predictions). Decode units 20 detect
mispredictions of unconditional branch instructions (i.e.
branch instructions which always select the target address).
Functional units 24 may detect a misprediction due to a
previously undetected conditional branch instruction or due
to an incorrect taken/not-taken prediction. Update logic 102
Selects the corresponding branch prediction entry out of the
aforementioned Storage. In the case of a previously unde
tected branch instruction, one of the branch predictions
within the branch prediction entry is assigned to the previ
ously undetected branch instruction. According to one
embodiment, the algorithm for Selecting one of the branch
predictions to Store the branch prediction for the previously
undetected branch instruction is as follows: If the branch
instruction is a Subroutine return instruction, the branch
Selector for the instruction is selected to be the value
indicating the return Stack. Otherwise, a branch prediction
which is currently predicted not-taken is Selected. If each
branch prediction is currently predicted-taken, then a branch
prediction is randomly Selected.
The branch selector for the newly detected branch instruc

tion is Set to indicate the Selected branch prediction.
Additionally, the branch Selectors corresponding to byte
ranges between the first branch instruction prior to the newly
detected branch instruction and the newly detected branch
instruction are set to the branch Selector corresponding to the
new prediction. For a mispredicted taken prediction which
causes the prediction to become predicted not-taken, the
branch Selectors corresponding to the mispredicted predic
tion are set to the branch Selector corresponding to the byte
Subsequent to the mispredicted branch instruction. In this
manner, a prediction for a Subsequent branch instruction will
be used if the instructions are fetched again at a later clock
cycle. Additionally, the predicted branch Selector is set to the
branch Selector being updated (i.e. the branch Selector
indicating the newly detected branch instruction or the
branch Selector updated into the previously predicted branch
instruction in the case that a branch instruction becomes
predicted not-taken).
When prefetch/predecode unit 12 detects a branch instruc

tion while predecoding a group of contiguous instruction

5,954,816
21

bytes, prefetch/predecode unit 12 provides the branch tag for
the group of contiguous instruction bytes if the predecoding
is performed because invalid predecode information is
Stored in the instruction cache for the cache line (case (i)).
Alternatively, if the predecoding is being performed upon a
cache line being fetched from the main memory Subsystem,
prefetch/predecode unit 12 provides the address of the group
of contiguous instruction bytes being predecoded, the offset
of the end byte of the branch instruction within the group,
and the way of the instruction cache Selected to Store the
group (case (ii)). In case (i), the update is performed similar
to the branch misprediction case above. In case (ii), there is
not yet a valid branch prediction entry Stored in branch
prediction storage 90 for the group of instructions. For this
case, update logic block 102 initializes the branch Selectors
prior to the detected branch to the branch selector selected
for the detected branch. Furthermore, the branch selectors
Subsequent to the detected branch are initialized to the
Sequential value. Alternatively, each of the branch Selectors
may be initialized to Sequential when the corresponding
cache line in instruction cache 16 is allocated, and Subse
quently updated Via detection of a branch instructions during
predecode in a manner similar to case (i).
Upon generation of an update, update logic block 102

conveys the updated branch prediction entry, along with the
fetch address indeX and corresponding way, upon update bus
116 for storage in branch prediction storage 90. It is noted
that, in order to maintain branch prediction Storage 90 as a
Single ported Storage, branch prediction Storage 90 may
employ a branch holding register. The updated prediction
information is Stored into the branch holding register and
updated into the branch prediction Storage upon an idle cycle
on fetch address bus 106. An exemplary cache holding
register Structure is described in the commonly assigned,
co-pending patent application entitled: “Delayed Update
Register for an Array', Ser. No. 08/481,914, filed Jun. 7,
1995, by Tran, et al., incorporated herein by reference in its
entirety.

It is noted that a correctly predicted branch instruction
may result in an update to the corresponding branch predic
tion as well. A counter indicative of previous executions of
the branch instruction (used to form the taken/not-taken
prediction of the branch instruction) may need to be incre
mented or decremented, for example. Such updates may be
performed upon retirement of the corresponding branch
prediction. Retirement is indicated via a branch tag upon
retire tag bus 124 from reorder buffer 32.

Turning now to FIG. 7, an exemplary branch prediction
entry 130 employed by one embodiment of the branch
prediction unit 14 as shown in FIG. 6 is shown. Branch
prediction entry 130 includes a set of branch selectors 136,
a first branch prediction (BP1) 132, a second branch pre
diction (BP2) 134, and a predicted branch selector 135. Set
of branch selectors 136 includes a branch selector for each
byte (or byte range, depending upon the embodiment) of the
group of contiguous instruction bytes corresponding to
branch prediction entry 130. Predicted branch selector 135
Stores the most recently Selected branch Selector, and is used
to select a branch prediction when entry 130 is fetched.

First branch prediction 132 is shown in an exploded view
in FIG. 7. Second branch prediction 134 may be configured
similarly. First branch prediction 132 includes an index 140
for the cache line containing instruction bytes corresponding
to the target address, and a way Selection 144 for the cache
line as well. According to one embodiment, index 140
includes the offset portion of the target address, as well as
the index. Index 140 is concatenated with the tag of the way

15

25

35

40

45

50

55

60

65

22
indicated by way selection 144 to form the branch target
address. Alternatively, the entire branch target address may
be stored in index field 140. Way prediction may be provided
in addition to the entire branch target address, or way
Selection may be performed using tag comparisons against
the tags in the indexed row of instruction cache 16.

Additionally, a predictor 146 is stored for each branch
prediction. Predictor 146 is incremented each time the
corresponding branch instruction is executed and is taken,
and is decremented each time the corresponding branch
instruction is executed and is not-taken. The most significant
bit of predictor 146 is used as the taken/not-taken prediction.
If the most significant bit is Set, the branch instruction is
predicted taken. Conversely, the branch instruction is pre
dicted not-taken if the most significant bit is clear. In one
embodiment, the prediction counter is a two bit Saturating
counter. The counter Saturates when incremented at binary
11 and saturates when decremented at a binary '01. In
another embodiment, the predictor is a Single bit which
indicates a strong (a binary one) or a weak (a binary Zero)
taken prediction. If a strong taken prediction is mispredicted,
it becomes a weak taken prediction. If a weak taken pre
diction is mispredicted, the branch becomes predicted not
taken and the branch Selector is updated (i.e. the case of a
mispredicted branch that becomes not-taken). Finally, a call
bit 148 is included in first branch prediction 132. Call bit 148
is indicative, when Set, that the corresponding branch
instruction is a Subroutine call instruction. If call bit 148 is
Set, the current fetch address and way are Stored into the
return Stack Structure mentioned above.

Turning next to FIG. 8, a table 138 illustrating an exem
plary branch Selector encoding is shown. A binary encoding
is listed (most significant bit first), followed by the branch
prediction which is Selected when the branch Selector is
encoded with the corresponding value. As table 138
illustrates, the least significant bit of the branch Selector can
be used as a Selection control for branch prediction multi
plexor 96 and sequential/return multiplexor 98. If the least
Significant bit is clear, then the first branch prediction is
selected by branch prediction multiplexor 96 and the
Sequential address is Selected by Sequential/return multi
plexor 98. On the other hand, the second branch prediction
is selected by branch prediction multiplexor 96 and the
return address is Selected by Sequential/return multiplexor
98 if the least significant bit is clear. Furthermore, the most
Significant bit of the branch Selector can be used as a
selection control for final prediction multiplexor 100. If the
most Significant bit is Set, the output of branch prediction
multiplexor 96 is selected. If the most significant bit is clear,
the output of sequential/return multiplexor 98 is selected.

Turning next to FIG. 9, a flowchart illustrating operation
of one embodiment of branch prediction unit 14 is shown.
The steps shown in the flowchart of FIG.9 may be evaluated
each clock cycle by branch prediction unit 14. It is noted
that, although the steps shown in FIG. 9 are shown serially
for ease of understanding, the Steps may be performed in any
suitable order and may be performed in parallel by combi
natorial logic within branch prediction unit 14.

Branch prediction unit 14 determines if the previously
predicted branch selector is incorrect (decision block 150).
In other words, branch prediction unit 14 determines if the
predicted branch Selector matches the Selected branch Selec
tor provided in response to the offset portion of the fetch
address. If the predicted branch Selector is incorrect, then
branch prediction unit 14 performs recovery operations (Step
152). The current read address (formed using the incorrect
predicted branch Selector) is cancelled. Additionally, the

5,954,816
23

branch prediction address (i.e. the fetch address) is corrected
to indicate the branch prediction corresponding to the
selected branch selector. Furthermore, the predicted branch
Selector for the corresponding entry is updated to indicate
the Selected branch Selector.
On the other hand, if the previously predicted branch

Selector is correct, then branch prediction unit 14 determines
if a misprediction is being Signalled by decode units 20 or
functional units 24 (decision block 154). If a misprediction
is being Signalled, then branch prediction unit 14 updates the
branch prediction entry which generated the misprediction
(step 156). Included in updating the branch prediction entry
is updating the predicted branch Selector to indicate the
corrected branch prediction (which may be a sequential
prediction or one of the branch predictions which is allo
cated to the mispredicted branch, for example). Additionally,
the corrected branch target corresponding to the mispredic
tion is fetched (step 158). If no misprediction is signalled,
branch prediction unit 14 forms a branch prediction in
response to the current fetch address, using the predicted
branch selector (step 160).

Turning now to FIG. 10, a timing diagram illustrating
operation of one embodiment of branch prediction unit 14 is
shown. Clock cycles are shown in FIG. 10 delimited by
vertical dashed lines. The clock cycles are labeled CLK0,
CLK1, etc. During clock cycle CLK0, a fetch address A is
presented to branch prediction unit 14 (and concurrently to
instruction cache 16-reference numeral 162). Branch pre
diction unit 14 Selects a branch prediction using the pre
dicted branch Selector (reference numeral 164) and creates a
fetch address B using the Selected branch prediction
(reference numeral 166). During clock cycle CLK1, the
predicted branch Selector corresponding to fetch address A
(i.e. the branch Selector used to generate fetch address B) is
verified to be correct (reference numeral 168). Concurrently,
fetch address B is presented (reference numeral 170).

Similar to clock cycle CLK0, a predicted branch selector
corresponding to fetch address B is used to Select a branch
prediction and a fetch address C is created using the Selected
branch prediction during clock cycle CLK1 (reference
numerals 172 and 174). However, during clock cycle CLK2,
branch prediction unit 14 detects that the predicted branch
selector is mispredicted (reference numeral 176). In other
words, the Selected branch Selector corresponding to fetch
address B does not match the predicted branch Selector.
Therefore, fetch address C is cancelled and the correct
branch prediction (according to the Selected branch Selector)
is used to generate fetch address C" (reference numerals 178
and 180).

During clock cycle CLK3, fetch address C" is provided
(reference numeral 182). A corresponding predicted branch
selector is read from branch prediction storage 90 and a fetch
address D is created therefrom (reference numerals 184 and
186). During clock cycle CLK4, the predicted branch selec
tor corresponding to fetch address C" is verified as matching
the Selected branch Selector corresponding to fetch address
C" (reference numeral 188). Concurrently, fetch address D is
presented and a corresponding predicted branch Selector is
used to generate a fetch address E (reference numerals 190,
192, and 194).

Turning now to FIG. 11, a computer system 200 including
microprocessor 10 is shown. Computer system 200 further
includes a bus bridge 202, a main memory 204, and a
plurality of input/output (I/O) devices 206A-206.N. Plurality
of I/O devices 206A-206N will be collectively referred to as
I/O devices 206. Microprocessor 10, bus bridge 202, and
main memory 204 are coupled to a system bus 208. I/O

15

25

35

40

45

50

55

60

65

24
devices 206 are coupled to an I/O bus 210 for communica
tion with bus bridge 202.

Bus bridge 202 is provided to assist in communications
between I/O devices 206 and devices coupled to system bus
208. I/O devices 206 typically require longer bus clock
cycles than microprocessor 10 and other devices coupled to
system bus 208. Therefore, bus bridge 202 provides a buffer
between system bus 208 and input/output bus 210.
Additionally, bus bridge 202 translates transactions from
one bus protocol to another. In one embodiment, input/
output bus 210 is an Enhanced Industry Standard Architec
ture (EISA) bus and bus bridge 202 translates from the
system bus protocol to the EISA bus protocol. In another
embodiment, input/output bus 210 is a Peripheral Compo
nent Interconnect (PCI) bus and bus bridge 202 translates
from the system bus protocol to the PCI bus protocol. It is
noted that many variations of System bus protocols exist.
Microprocessor 10 may employ any suitable system bus
protocol.

I/O devices 206 provide an interface between computer
system 200 and other devices external to the computer
System. Exemplary I/O devices include a modem, a Serial or
parallel port, a sound card, etc. I/O devices 206 may also be
referred to as peripheral devices. Main memory 204 stores
data and instructions for use by microprocessor 10. In one
embodiment, main memory 204 includes at least one
Dynamic Random Access Memory (DRAM) and a DRAM
memory controller.

It is noted that although computer system 200 as shown in
FIG. 11 includes one bus bridge 202, other embodiments of
computer system 200 may include multiple bus bridges 202
for translating to multiple dissimilar or similar I/O bus
protocols. Still further, a cache memory for enhancing the
performance of computer System 200 by Storing instructions
and data referenced by microprocessor 10 in a faster
memory Storage may be included. The cache memory may
be inserted between microprocessor 10 and system bus 208,
or may reside on system bus 208 in a “lookaside” configu
ration. It is still further noted that the functions of bus bridge
202, main memory 204, and the cache memory may be
integrated into a chipset which interfaces to microprocessor
10.

It is still further noted that the present discussion may
refer to the assertion of various signals. AS used herein, a
Signal is “asserted” if it conveys a value indicative of a
particular condition. Conversely, a signal is “deasserted” if
it conveys a value indicative of a lack of a particular
condition. A signal may be defined to be asserted when it
conveys a logical Zero value or, conversely, when it conveys
a logical one value. Additionally, various values have been
described as being discarded in the above discussion. A
value may be discarded in a number of manners, but
generally involves modifying the value Such that it is
ignored by logic circuitry which receives the value. For
example, if the value comprises a bit, the logic State of the
value may be inverted to discard the value. If the value is an
n-bit value, one of the n-bit encodings may indicate that the
value is invalid. Setting the value to the invalid encoding
causes the value to be discarded. Additionally, an n-bit value
may include a valid bit indicative, when set, that the n-bit
value is valid. Resetting the valid bit may comprise discard
ing the value. Other methods of discarding a value may be
used as well.

Table 1 below indicates fast path, double dispatch, and
MROM instructions for one embodiment of microprocessor
10 employing the x86 instruction set:

5,954,816
25 26

TABLE 1. TABLE 1-continued

x86 Fast Path, Double Dispatch, and MROM Instructions x86 Fast Path, Double Dispatch, and MROM Instructions

X86 Instruction Instruction Category 5 X86 Instruction Instruction Category

AAA MROM LOOP double dispatch
AAD MROM LOOPcond MROM
AAM MROM LSL MROM
AAS MROM LTR MROM
ADC aS a 1O MOV fast path
ADD aS a MOVCC fast path
AND aS a MOVCR MROM
ARPL MROM MOVDR MROM
BOUND MROM MOVS MROM
BSF aS a MOVSB MROM
BSR aS a 15 MOVSW MROM
BSWAP MROM MOVSD MROM
BT aS a MOVSX fast path
BTC aS a MOVZX fast path
BTR aS a MUL double dispatch
BTS aS a NEG fast path
CALL ast pathfdouble dispatch 2O NOP fast path
CBW aS a NOT fast path
CWDE aS a OR fast path
CLC aS a OUT MROM
CLD aS a OUTS MROM
CLI MROM OUTSB MROM
CLTS MROM OUTSW MROM
CMC aS a 25 OUTSD MROM
CMP aS a POP double dispatch
CMPS MROM POPA MROM
CMPSB MROM POPAD MROM
CMPSW MROM POPF MROM
CMPSD MROM POPFD MROM
CMPXCHG, MROM 3O PUSH fast path/double dispatch
CMPXCHG8B MROM PUSHA MROM
CPUID MROM PUSHAD MROM
CWD MROM PUSHF fast path
CWO MROM PUSHFD fast path
DDA MROM RCL MROM
DAS MROM 35 RCR MROM
DEC fast path ROL fast path
DIV MROM ROR fast path
ENTER MROM RDMSR MROM
HLT MROM REP MROM
IDIV MROM REPE MROM
IMUL double dispatch 40 REPZ. MROM
IN MROM REPNE MROM
INC fast path REPNZ MROM
INS MROM RET double dispatch
INSB MROM RSM MROM
INSW MROM SAHF fast path
INSD MROM SAL fast path
INT MROM 45 SAR fast path
INTO MROM SHL fast path
INVD MROM SHR fast path
INVLPG MROM SBB fast path
IRET MROM SCAS double dispatch
RETD MROM SCASB MROM
Jcc fast path 50 SCASW MROM
JCXZ. double dispatch SCASD MROM
JECXZ. double dispatch SETcc fast path
JMP fast path SGDT MROM
LAHF fast path SDT MROM
LAR MROM SHLD MROM
LDS MROM 55 SHRD MROM
LES MROM SLDT MROM
LFS MROM SMSW MROM
LGS MROM STC fast path
LSS MROM STD fast path
LEA fast path ST MROM
LEAVE double dispatch 60 STOS MROM
LGDT MROM STOSB MROM
LIDT MROM STOSW MROM
LLDT MROM STOSD MROM
LMSW MROM STR MROM
LODS MROM SUB fast path
LODSB MROM TEST fast path
LODSW MROM 65 VERR MROM
LODSD MROM WERW MROM

5,954,816
27

TABLE 1-continued

x86 Fast Path, Double Dispatch, and MROM Instructions

X86 Instruction Instruction Category

WBINVD MROM
WRMSR MROM
XADD MROM
XCHG MROM
XLAT fast path
XLATE fast path
XOR fast path

Note: Instructions including an SIB byte are also considered double dispatch
instructions.

In accordance with the above disclosure, a branch pre
diction unit has been shown which stores a set of branch
Selectors corresponding to a group of contiguous instruction
bytes within an instruction cache. The Set of branch Selectors
identify, for each byte within the group of contiguous
instruction bytes, which branch prediction should be used to
form a Subsequent fetch address. Additionally, the branch
prediction unit Stores a predicted branch Selector. The pre
dicted branch Selector is used to Select the branch prediction
for forming the Subsequent fetch address, and is Subse
quently verified by comparison to a Selected branch Selector
from the set of branch selectors. The selected branch selector
is Selected in response to the fetch address. Advantageously,
the process of Selecting a branch Selector from the Set is
removed from the path of generating a branch prediction.
The branch prediction process may be more rapid than
would otherwise be achievable, and branch prediction accu
racy may be maintained by Verifying the predicted branch
Selector with the selected branch selector.
Numerous variations and modifications will become

apparent to those skilled in the art once the above disclosure
is fully appreciated. It is intended that the following claims
be interpreted to embrace all Such variations and modifica
tions.
What is claimed is:
1. A branch prediction unit comprising:
a branch prediction Storage coupled to receive a fetch

address, wherein Said branch prediction Storage is con
figured to Select a predicted branch Selector Stored
therein in response to Said fetch address, and

a Selection device configured to Select a Subsequent fetch
address from at least two Selectable addresses, Said
Selection device responsive to Said predicted branch
Selector.

2. The branch prediction unit as recited in claim 1 wherein
Said predicted branch Selector is coded to Select one of Said
at least two Selectable addresses, and wherein Said one of
Said at least two Selectable addresses comprises an address
Selected during a previous clock cycle in which Said fetch
address is presented.

3. The branch prediction unit as recited in claim 1 wherein
at least a first one of Said at least two Selectable addresses is
derived from a first branch prediction stored in said branch
prediction Storage, and wherein Said first branch prediction
is Selected in response to Said fetch address.

4. The branch prediction unit as recited in claim3 wherein
a Second one of Said at least two Selectable addresses
comprises a Sequential address.

5. The branch prediction unit as recited in claim 4 wherein
Said at least two Selectable addresses comprises a third
address, and wherein Said third address is derived from a
Second branch prediction Stored in Said branch prediction
Storage, and wherein Said Second branch prediction is
Selected in response to Said fetch address.

15

25

35

40

45

50

55

60

65

28
6. The branch prediction unit as recited in claim 5 wherein

Said at least two Selectable addresses further comprises a
fourth address, and wherein Said fourth address is a return
address corresponding to a return instruction.

7. The branch prediction unit as recited in claim 1 wherein
Said branch prediction Storage is configured to Store a
plurality of branch Selectors corresponding to a group of
contiguous instruction bytes corresponding to Said fetch
address.

8. The branch prediction unit as recited in claim 7 wherein
at least one of Said plurality of branch Selectors is equal to
Said predicted branch Selector.

9. The branch prediction unit as recited in claim 7 further
comprising a Second Selection device configured to Select
one of Said plurality of branch Selectors in response to Said
fetch address.

10. The branch prediction unit as recited in claim 9 further
comprising a comparator coupled to receive Said one of Said
plurality of branch Selectors and Said predicted branch
Selector, wherein Said comparator is configured to compare
Said one of Said plurality of branch Selectors to Said pre
dicted branch Selector.

11. The branch prediction unit as recited in claim 10
further comprising an update unit coupled to Said
comparator, wherein Said update unit is configured to detect
a misprediction if Said comparator indicates inequality.

12. The branch prediction unit as recited in claim 11
wherein Said update unit is configured to update Said pre
dicted branch Selector within Said branch prediction Storage
to indicate Said one of Said plurality of branch Selectors if
Said comparator indicates inequality.

13. A method for generating a Subsequent fetch address
from a fetch address in a microprocessor, comprising:

reading a predicted branch Selector from a branch predic
tion Storage responsive to Said fetch address,

predicting Said Subsequent fetch address responsive to
Said predicted branch Selector; and

Verifying that Said predicted branch Selector corresponds
to Said fetch address.

14. The method as recited in claim 13 wherein said
Verifying comprises Selecting one of a plurality of branch
Selectors from Said branch prediction Storage, Said plurality
of branch Selectors corresponding to a group of contiguous
instruction bytes corresponding to Said fetch address.

15. The method as recited in claim 14 wherein said
Verifying further comprises comparing Said one of Said
plurality of branch Selectors to Said predicted branch Selec
tor.

16. The method as recited in claim 15 further comprising
correcting Said fetch address if Said comparing indicates
inequality between Said one of Said plurality of branch
Selectors and Said predicted branch Selector.

17. The method as recited in claim 13 wherein said
predicting comprises Selecting one of at least two addresses
responsive to Said predicted branch Selector.

18. The method as recited in claim 17 wherein at least one
of Said at least two addresses is derived from a branch
prediction corresponding to Said fetch address.

19. The method as recited in claim 18 wherein another one
of Said at least two addresses is a Sequential address.

20. A microprocessor comprising:
an instruction cache configured to Select a group of

contiguous instruction bytes Stored therein responsive
to a fetch address, and

a branch prediction unit coupled to receive Said fetch
address, wherein Said branch prediction unit is config

5,954,816
29

ured to Select a predicted branch Selector responsive to
Said fetch address, and wherein Said branch prediction
unit is configured to generate a Subsequent fetch
address response to Said predicted branch Selector, and
wherein Said branch prediction unit is configured to
Verify Said predicted branch Selector by Selecting one of
a plurality of branch Selectors corresponding to Said
fetch address and comparing Said one of Said plurality
of branch Selectors to Said predicted branch Selector.

21. The microprocessor as recited in claim 20 wherein
Said predicted branch Selector is coded to Select one of at

30
least two Selectable addresses, and wherein Said branch
prediction unit is configured to generate Said Subsequent
fetch address by Selecting Said one of Said at least two
Selectable addresses responsive to Said predicted branch
Selector.

22. The microprocessor as recited in claim 21 wherein at
least one of Said two Selectable addresses is derived from a
branch prediction Stored by Said branch prediction unit.

