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BRANCHSELECTOR PREDICTION 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation in part of application 
Ser. No. 08/752,691 filed Nov. 19, 1996. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

This invention relates to the field of microprocessors and, 
more particularly, to branch prediction mechanisms within 
microprocessors. 

2. Description of the Related Art 
SuperScalar microprocessors achieve high performance 

by executing multiple instructions per clock cycle and by 
choosing the Shortest possible clock cycle consistent with 
the design. AS used herein, the term “clock cycle” refers to 
an interval of time accorded to various Stages of an instruc 
tion processing pipeline within the microprocessor. Storage 
devices (e.g. registers and arrays) capture their values 
according to the clock cycle. For example, a Storage device 
may capture a value according to a rising or falling edge of 
a clock signal defining the clock cycle. The Storage device 
then Stores the value until the Subsequent rising or falling 
edge of the clock signal, respectively. The term “instruction 
processing pipeline' is used herein to refer to the logic 
circuits employed to process instructions in a pipelined 
fashion. Although the pipeline may be divided into any 
number of Stages at which portions of instruction processing 
are performed, instruction processing generally comprises 
fetching the instruction, decoding the instruction, executing 
the instruction, and Storing the execution results in the 
destination identified by the instruction. 
An important feature of a SuperScalar microprocessor (and 

a Superpipelined microprocessor as well) is its branch pre 
diction mechanism. The branch prediction mechanism indi 
cates a predicted direction (taken or not-taken) for a branch 
instruction, allowing Subsequent instruction fetching to con 
tinue within the predicted instruction Stream indicated by the 
branch prediction. A branch instruction is an instruction 
which causes Subsequent instructions to be fetched from one 
of at least two addresses: a Sequential address identifying an 
instruction Stream beginning with instructions which 
directly follow the branch instruction; and a target address 
identifying an instruction Stream beginning at an arbitrary 
location in memory. Unconditional branch instructions 
always branch to the target address, while conditional 
branch instructions may Select either the Sequential or the 
target address based on the outcome of a prior instruction. 
Instructions from the predicted instruction Stream may be 
Speculatively executed prior to execution of the branch 
instruction, and in any case are placed into the instruction 
processing pipeline prior to execution of the branch instruc 
tion. If the predicted instruction Stream is correct, then the 
number of instructions executed per clock cycle is advan 
tageously increased. However, if the predicted instruction 
Stream is incorrect (i.e. one or more branch instructions are 
predicted incorrectly), then the instructions from the incor 
rectly predicted instruction Stream are discarded from the 
instruction processing pipeline and the number of instruc 
tions executed per clock cycle is decreased. 

In order to be effective, the branch prediction mechanism 
must be highly accurate Such that the predicted instruction 
Stream is correct as often as possible. Typically, increasing 
the accuracy of the branch prediction mechanism is achieved 
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2 
by increasing the complexity of the branch prediction 
mechanism. For example, a cache-line based branch predic 
tion Scheme may be employed in which branch predictions 
are Stored corresponding to a particular cache line of instruc 
tion bytes in an instruction cache. A cache line is a number 
of contiguous bytes which are treated as a unit for allocation 
and deallocation of Storage space within a cache. When the 
instruction cache line is fetched, the corresponding branch 
predictions are also fetched. Furthermore, when the particu 
lar cache line is discarded, the corresponding branch pre 
dictions are discarded as well. The cache line is aligned in 
memory. A cache-line based branch prediction Scheme may 
be made more accurate by Storing a larger number of branch 
predictions for each cache line. A given cache line may 
include multiple branch instructions, each of which is rep 
resented by a different branch prediction. Therefore, more 
branch predictions allocated to a cache line allows for more 
branch instructions to be represented and predicted by the 
branch prediction mechanism. A branch instruction which 
cannot be represented within the branch prediction mecha 
nism is not predicted, and Subsequently a "misprediction' 
may be detected if the branch is found to be taken. However, 
complexity of the branch prediction mechanism is increased 
by the need to Select between additional branch predictions. 
AS used herein, a “branch prediction' is a value which may 
be interpreted by the branch prediction mechanism as a 
prediction of whether or not a branch instruction is taken or 
not taken. Furthermore, a branch prediction may include the 
target address. For cache-line based branch prediction 
mechanisms, a prediction of a Sequential line to the cache 
line being fetched is a branch prediction when no branch 
instructions are within the instructions being fetched from 
the cache line. 
A problem related to increasing the complexity of the 

branch prediction mechanism is that the increased complex 
ity generally requires an increased amount of time to form 
the branch prediction. For example, Selecting among mul 
tiple branch predictions may require a Substantial amount of 
time. The offset of the fetch address identifies the first byte 
being fetched within the cache line: a branch prediction for 
a branch instruction prior to the offset should not be selected. 
The offset of the fetch address within the cache line may 
need to be compared to the offset of the branch instructions 
represented by the branch predictions Stored for the cache 
line in order to determine which branch prediction to use. 
The branch prediction corresponding to a branch instruction 
Subsequent to the fetch address offset and nearer to the fetch 
address offset than other branch instructions which are 
Subsequent to the fetch address offset should be selected. As 
the number of branch predictions is increased, the complex 
ity (and time required) for the Selection logic increases. 
When the amount of time needed to form a branch prediction 
for a fetch address exceeds the clock cycle time of the 
microprocessor, performance of the microprocessor may be 
decreased. Because the branch prediction cannot be formed 
in a Single clock cycle, "bubbles' are introduced into the 
instruction processing pipeline during clock cycles that 
instructions cannot be fetched due to a lack of a branch 
prediction corresponding to a previous fetch address. The 
bubble occupies various Stages in the instruction processing 
pipeline during Subsequent clock cycles, and no work occurs 
at the Stage including the bubble because no instructions are 
included in the bubble. Performance of the microprocessor 
may thereby be decreased. 

SUMMARY OF THE INVENTION 

The problems outlined above are in large part solved by 
a branch prediction unit in accordance with the present 
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invention. The branch prediction unit includes a branch 
prediction entry corresponding to a group of contiguous 
instruction bytes. The branch prediction entry Stores branch 
predictions corresponding to branch instructions within the 
group of contiguous instruction bytes. Additionally, the 
branch prediction entry Stores a Set of branch Selectors 
corresponding to the group of contiguous instruction bytes. 
The branch selectors identify which branch prediction is to 
be selected if the corresponding byte (or bytes) is selected by 
the offset portion of the fetch address. Still further, a 
predicted branch selector is stored. The predicted branch 
Selector is used to Select a branch prediction for forming the 
fetch address. Advantageously, the Selection of one of the Set 
of branch selectors is removed from the branch prediction 
Selection. Branch prediction Selection may be performed 
more rapidly than achievable if branch Selectors were 
Selected prior to Selecting the branch prediction. The branch 
prediction unit may be operable at a higher frequency, which 
may allow its use in higher frequency microprocessors than 
other branch prediction units. 

In parallel, a Selected branch Selector is Selected from the 
set of branch selectors. The predicted branch selector is 
Verified using the Selected branch Selector. If the Selected 
branch Selector and the predicted branch Selector mismatch, 
the correct branch prediction is generated and the predicted 
branch Selector is updated to indicate the Selected branch 
Selector. Advantageously, the accuracy of the branch pre 
diction mechanism may be maintained with a minor penalty 
(e.g. a clock cycle) when the predicted branch Selector is 
incorrect. 

Broadly Speaking, the present invention contemplates a 
branch prediction unit comprising a branch prediction Stor 
age and a selection device. The branch prediction storage is 
coupled to receive a fetch address, and is configured to Select 
a predicted branch Selector Stored therein in response to the 
fetch address. The Selection device is configured to Select a 
Subsequent fetch address from at least two Selectable 
addresses responsive to the predicted branch Selector. 
The present invention further contemplates a method for 

generating a Subsequent fetch address from a fetch address 
in a microprocessor. A predicted branch Selector is read from 
a branch prediction Storage responsive to the fetch address. 
The Subsequent fetch address is predicted responsive to the 
predicted branch Selector. Subsequently, the predicted 
branch Selector is verified as corresponding to the fetch 
address. 

Moreover, the present invention contemplates a micro 
processor comprising an instruction cache and a branch 
prediction unit. The instruction cache is configured to Select 
a group of contiguous instruction bytes Stored therein 
responsive to a fetch address. Coupled to receive the fetch 
address, the branch prediction unit is configured to Select a 
predicted branch Selector responsive to the fetch address. 
Additionally, the branch prediction unit is configured to 
generate a Subsequent fetch address response to the pre 
dicted branch selector. Furthermore, the branch prediction 
unit is configured to Verify the predicted branch Selector by 
Selecting one of a plurality of branch Selectors correspond 
ing to the fetch address and comparing the one of the 
plurality of branch Selectors to the predicted branch Selector. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Other objects and advantages of the invention will 
become apparent upon reading the following detailed 
description and upon reference to the accompanying draw 
ings in which: 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

4 
FIG. 1 is a block diagram of one embodiment of a 

SuperScalar microprocessor. 
FIG. 2 is a block diagram of one embodiment of a pair of 

decode units shown in FIG. 1. 
FIG. 3 is a diagram illustrating a group of contiguous 

instruction bytes and a corresponding Set of branch Selectors 
according to one embodiment of branch Selectors. 

FIG. 4 is a diagram illustrating a group of contiguous 
instruction bytes and a corresponding Set of branch Selectors 
according to another embodiment of branch Selectors. 

FIG. 5 is a table illustrating byte positions, branch 
Selectors, read addresses, and encoding addresses according 
to the branch selectors shown in FIG. 4. 

FIG. 6 is a block diagram of one embodiment of a branch 
prediction unit shown in FIG. 1. 

FIG. 7 is a diagram illustrating one embodiment of a 
branch prediction entry which may be employed by the 
branch prediction unit shown in FIG. 6. 

FIG. 8 is a table illustrating an encoding of a branch 
Selector according to one embodiment of branch Selectors. 

FIG. 9 is a flowchart illustrating operation of one embodi 
ment of the branch prediction unit shown in FIG. 6. 

FIG. 10 is a timing diagram illustrating operation of one 
embodiment of the branch prediction unit shown in FIG. 6. 

FIG. 11 is a block diagram of one embodiment of a 
computer System including the microprocessor shown in 
FIG. 1. 

While the invention is susceptible to various modifica 
tions and alternative forms, specific embodiments thereof 
are shown by way of example in the drawings and will 
herein be described in detail. It should be understood, 
however, that the drawings and detailed description thereto 
are not intended to limit the invention to the particular form 
disclosed, but on the contrary, the intention is to cover all 
modifications, equivalents and alternatives falling within the 
Spirit and Scope of the present invention as defined by the 
appended claims. 

DETAILED DESCRIPTION OF THE 
INVENTION 

Turning now to FIG. 1, a block diagram of one embodi 
ment of a microprocessor 10 is shown. Microprocessor 10 
includes a prefetch/predecode unit 12, a branch prediction 
unit 14, an instruction cache 16, an instruction alignment 
unit 18, a plurality of decode units 20A-20C, a plurality of 
reservation Stations 22A-22C, a plurality of functional units 
24A-24C, a load/Store unit 26, a data cache 28, a register file 
30, a reorder buffer 32, and an MROM unit 34. Elements 
referred to herein with a particular reference number fol 
lowed by a letter will be collectively referred to by the 
reference number alone. For example, decode units 
20A-20C will be collectively referred to as decode units 20. 

Prefetch/predecode unit 12 is coupled to receive instruc 
tions from a main memory Subsystem (not shown), and is 
further coupled to instruction cache 16 and branch predic 
tion unit 14. Similarly, branch prediction unit 14 is coupled 
to instruction cache 16. Still further, branch prediction unit 
14 is coupled to decode units 20 and functional units 24. 
Instruction cache 16 is further coupled to MROM unit 34 
and instruction alignment unit 18. Instruction alignment unit 
18 is in turn coupled to decode units 20. Each decode unit 
20A-20C is coupled to load/store unit 26 and to respective 
reservation Stations 22A-22C. Reservation Stations 
22A-22C are further coupled to respective functional units 
24A-24C. Additionally, decode units 20 and reservation 
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stations 22 are coupled to register file 30 and reorder buffer 
32. Functional units 24 are coupled to load/store unit 26, 
register file 30, and reorder buffer 32 as well. Data cache 28 
is coupled to load/store unit 26 and to the main memory 
Subsystem. Finally, MROM unit 34 is coupled to decode 
units 20. 

Generally Speaking, branch prediction unit 14 employs a 
cache-line based branch prediction mechanism for predict 
ing branch instructions. Multiple branch predictions may be 
Stored for each cache line. Additionally, a set of branch 
Selectors are Stored for each cache line. The branch Selector 
for a particular byte indicates which of the branch predic 
tions which may be stored with respect to the cache line is 
the branch prediction appropriate for an instruction fetch 
address which fetches that byte. The appropriate branch 
prediction is the branch prediction for the first predicted 
taken branch instruction encountered within the cache line 
Subsequent to the particular byte. AS used herein, the terms 
“subsequent” and “prior to” refer to an ordering of bytes 
within the cache line. A byte Stored at a memory address 
which is numerically Smaller than the memory address at 
which a Second byte is Stored is prior to the Second byte. 
Conversely, a byte Stored at a memory address which is 
numerically larger than the memory address of a Second byte 
is Subsequent to the Second byte. Similarly, a first instruction 
is prior to a Second instruction in program order if the first 
instruction is encountered before the Second instruction 
when Stepping one at a time through the Sequence of 
instructions forming the program. AS used herein, an 
“instruction fetch address' or “fetch address” is an address 
generated by microprocessor 10 in order to fetch instructions 
for execution. 

In order to further increase the speed of branch prediction 
Selection, branch prediction unit 14 Stores a predicted branch 
Selector. The predicted branch Selector comprises one of the 
branch SelectorS Stored for the cache line. More particularly, 
the predicted branch Selector is used directly to Select the 
branch prediction for use in forming the Subsequent fetch 
address. In parallel, one of the plurality of branch Selectors 
is selected by decoding the offset portion of the fetch 
address. The predicted branch Selector and the Selected one 
of the plurality of branch Selectors are compared to Verify 
the predicted branch Selector. Advantageously, the logic for 
Selecting a branch Selector is removed from the path for 
generating a Subsequent fetch address. The predicted branch 
Selector may be set to, for example, the branch Selector 
Selected during a previous fetch of the cache line. 

In one embodiment, the cache line is divided into multiple 
byte ranges and a branch Selector is Stored for each byte 
range within the cache line (as opposed to storing a branch 
Selector for each byte). AS used herein, a byte range is one 
or more contiguous bytes within a cache line (or portion 
thereof, if less than a full cache line is provided at the output 
of instruction cache 16 as described below). By storing a 
branch Selector per byte range instead of a branch Selector 
per byte, the number of branch Selectors Stored may advan 
tageously be reduced. Reducing the number of branch 
Selectors Stored (and hence the size of the storage) may lead 
to a more rapid access, as well as cost Savings realized by 
reducing the Substrate area occupied by microprocessor 10. 

In one embodiment, microprocessor 10 employs a micro 
processor architecture in which the instruction Set is a 
variable byte length instruction Set (e.g. the x86 micropro 
cessor architecture). When a variable byte length instruction 
Set is employed, any byte within the cache line may be 
identified as the first byte to be fetched by a given fetch 
address. For example, a branch instruction may have a target 

15 

25 

35 

40 

45 

50 

55 

60 

65 

6 
address at byte position two within a cache line. In Such a 
case, the bytes at byte positions Zero and one are not being 
fetched during the current cache access. Additionally, bytes 
Subsequent to a predicted-taken branch which is Subsequent 
to the first fetched byte are not fetched during the current 
cache access. The branch prediction for the predicted taken 
branch can be located by Selecting the branch Selector 
corresponding to the byte range including the first byte to be 
fetched from the cache line. The branch selector is used to 
Select the appropriate branch prediction, which is then 
provided to the instruction fetch logic in instruction cache 
16. During the Succeeding clock cycle, the branch prediction 
is used as the fetch address. Advantageously, the process of 
comparing the byte position of the first byte being fetched to 
the byte positions of the predicted-taken branch instructions 
is eliminated from the generation of a branch prediction in 
response to a fetch address. The amount of time required to 
form a branch prediction may be reduced accordingly, 
allowing the branch prediction mechanism to operate at 
higher clock frequencies (i.e. shorter clock cycles) while still 
providing a single cycle branch prediction. 

It is noted that, although the term “cache line' has been 
used in the preceding discussion, Some embodiments of 
instruction cache 16 may not provide an entire cache line at 
its output during a given clock cycle. For example, in one 
embodiment instruction cache 16 is configured with 32 byte 
cache lines. However, only 16 bytes are fetched in a given 
clock cycle (either the upper half or the lower half of the 
cache line). The branch prediction storage locations and 
branch Selectors are allocated to the portion of the cache line 
being fetched. AS used herein, the term “group of contiguous 
instruction bytes” is used to refer to the instruction bytes 
which are provided by the instruction cache in a particular 
clock cycle in response to a fetch address. A group of 
contiguous instruction bytes may be a portion of a cache line 
or an entire cache line, according to various embodiments. 
When a group of contiguous instruction bytes is a portion of 
a cache line, it is still an aligned portion of a cache line. For 
example, if a group of contiguous instruction bytes is half a 
cache line, it is either the upper half of the cache line or the 
lower half of the cache line. A number of branch prediction 
Storage locations are allocated to each group of contiguous 
instruction bytes, and branch Selectors indicate one of the 
branch prediction Storage locations associated with that 
group. Furthermore, branch Selectors may indicate a return 
Stack address from a return Stack Structure or a Sequential 
address if no branch instructions are encountered between 
the corresponding byte and the last byte in the group of 
contiguous instruction bytes. 

Instruction cache 16 is a high Speed cache memory 
provided to Store instructions. Instructions are fetched from 
instruction cache 16 and dispatched to decode units 20. In 
one embodiment, instruction cache 16 is configured to Store 
up to 64 kilobytes of instructions in a 4 way Set associative 
Structure having 32 byte lines (a byte comprises 8 binary 
bits). Alternatively, 2 way set associativity may be employed 
as well as any other desired associativity. Instruction cache 
16 may additionally employ a way prediction Scheme in 
order to Speed access times to the instruction cache. Instead 
of accessing tags identifying each line of instructions and 
comparing the tags to the fetch address to Select a way, 
instruction cache 16 predicts the way that is accessed. In this 
manner, the way is Selected prior to accessing the instruction 
Storage. The access time of instruction cache 16 may be 
Similar to a direct-mapped cache. A tag comparison is 
performed and, if the way prediction is incorrect, the correct 
instructions are fetched and the incorrect instructions are 
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discarded. It is noted that instruction cache 16 may be 
implemented as a fully associative, Set associative, or direct 
mapped configuration. 

Instructions are fetched from main memory and Stored 
into instruction cache 16 by prefetch/predecode unit 12. 
Instructions may be prefetched prior to the request thereof 
from instruction cache 16 in accordance with a prefetch 
Scheme. A variety of prefetch Schemes may be employed by 
prefetch/predecode unit 12. AS prefetch/predecode unit 12 
transferS instructions from main memory to instruction 
cache 16, prefetch/predecode unit 12 generates three prede 
code bits for each byte of the instructions: a start bit, an end 
bit, and a functional bit. The predecode bits form tags 
indicative of the boundaries of each instruction. The prede 
code tags may also convey additional information Such as 
whether a given instruction can be decoded directly by 
decode units 20 or whether the instruction is executed by 
invoking a microcode procedure controlled by MROM unit 
34, as will be described in greater detail below. Still further, 
prefetch/predecode unit 12 may be configured to detect 
branch instructions and to Store branch prediction informa 
tion corresponding to the branch instructions into branch 
prediction unit 14. 
One encoding of the predecode tags for an embodiment of 

microprocessor 10 employing a variable byte length instruc 
tion set will next be described. A variable byte length 
instruction Set is an instruction Set in which different instruc 
tions may occupy differing numbers of bytes. An exemplary 
variable byte length instruction Set employed by one 
embodiment of microprocessor 10 is the x86 instruction set. 

In the exemplary encoding, if a given byte is the first byte 
of an instruction, the start bit for that byte is set. If the byte 
is the last byte of an instruction, the end bit for that byte is 
set. Instructions which may be directly decoded by decode 
units 20 are referred to as “fast path' instructions. The 
remaining x86 instructions are referred to as MROM 
instructions, according to one embodiment. For fast path 
instructions, the functional bit is Set for each prefix byte 
included in the instruction, and cleared for other bytes. 
Alternatively, for MROM instructions, the functional bit is 
cleared for each prefix byte and set for other bytes. The type 
of instruction may be determined by examining the func 
tional bit corresponding to the end byte. If that functional bit 
is clear, the instruction is a fast path instruction. Conversely, 
if that functional bit is set, the instruction is an MROM 
instruction. The opcode of an instruction may thereby be 
located within an instruction which may be directly decoded 
by decode units 20 as the byte associated with the first clear 
functional bit in the instruction. For example, a fast path 
instruction including two prefix bytes, a Mod R/M byte, and 
an immediate byte would have Start, end, and functional bits 
as follows: 

Start bits 1OOOO 
End bits OOOO1 
Functional bits 11OOO 

According to one particular embodiment, early identifi 
cation of an instruction that includes a Scale-index-base 
(SIB) byte is advantageous for MROM unit 34. For such an 
embodiment, if an instruction includes at least two bytes 
after the opcode byte, the functional bit for the Mod R/M 
byte indicates the presence of an SIB byte. If the functional 
bit for the ModR/M byte is set, then an SIB byte is present. 
Alternatively, if the functional bit for the Mod R/M byte is 
clear, then an SIB byte is not present. 
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8 
MROM instructions are instructions which are deter 

mined to be too complex for decode by decode units 20. 
MROM instructions are executed by invoking MROM unit 
34. More specifically, when an MROM instruction is 
encountered, MROM unit 34 parses and issues the instruc 
tion into a Subset of defined fast path instructions to effec 
tuate the desired operation. MROM unit 34 dispatches the 
Subset of fast path instructions to decode units 20. A listing 
of exemplary x86 instructions categorized as fast path 
instructions will be provided further below. 

Microprocessor 10 employs branch prediction in order to 
Speculatively fetch instructions Subsequent to conditional 
branch instructions. Branch prediction unit 14 is included to 
perform branch prediction operations. In one embodiment, 
up to two branch target addresses are Stored with respect to 
each 16 byte portion of each cache line in instruction cache 
16. Prefetch/predecode unit 12 determines initial branch 
targets when a particular line is predecoded. Subsequent 
updates to the branch targets corresponding to a cache line 
may occur due to the execution of instructions within the 
cache line. Instruction cache 16 provides an indication of the 
instruction address being fetched, So that branch prediction 
unit 14 may determine which branch target addresses to 
select for forming a branch prediction. Decode units 20 and 
functional units 24 provide update information to branch 
prediction unit 14. Because branch prediction unit 14 stores 
two targets per 16 byte portion of the cache line, Some 
branch instructions within the line may not be stored in 
branch prediction unit 14. Decode units 20 detect branch 
instructions which were not predicted by branch prediction 
unit 14. Functional units 24 execute the branch instructions 
and determine if the predicted branch direction is incorrect. 
The branch direction may be “taken”, in which subsequent 
instructions are fetched from the target address of the branch 
instruction. Conversely, the branch direction may be “not 
taken”, in which Subsequent instructions are fetched from 
memory locations consecutive to the branch instruction. 
When a mispredicted branch instruction is detected, instruc 
tions Subsequent to the mispredicted branch are discarded 
from the various units of microprocessor 10. A variety of 
Suitable branch prediction algorithms may be employed by 
branch prediction unit 14. 

Instructions fetched from instruction cache 16 are con 
veyed to instruction alignment unit 18. AS instructions are 
fetched from instruction cache 16, the corresponding pre 
decode data is Scanned to provide information to instruction 
alignment unit 18 (and to MROM unit 34) regarding the 
instructions being fetched. Instruction alignment unit 18 
utilizes the Scanning data to align an instruction to each of 
decode units 20. In one embodiment, instruction alignment 
unit 18 aligns instructions from three Sets of eight instruction 
bytes to decode units 20. Instructions are Selected indepen 
dently from each Set of eight instruction bytes into prelimi 
nary issue positions. The preliminary issue positions are then 
merged to a set of aligned issue positions corresponding to 
decode units 20, Such that the aligned issue positions contain 
the three instructions which are prior to other instructions 
within the preliminary issue positions in program order. 
Decode unit 20A receives an instruction which is prior to 
instructions concurrently received by decode units 20B and 
20C (in program order). Similarly, decode unit 20B receives 
an instruction which is prior to the instruction concurrently 
received by decode unit 20C in program order. 

Decode units 20 are configured to decode instructions 
received from instruction alignment unit 18. Register oper 
and information is detected and routed to register file 30 and 
reorder buffer 32. Additionally, if the instructions require 
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one or more memory operations to be performed, decode 
units 20 dispatch the memory operations to load/store unit 
26. Each instruction is decoded into a Set of control values 
for functional units 24, and these control values are dis 
patched to reservation Stations 22 along with operand 
address information and displacement or immediate data 
which may be included with the instruction. 

Microprocessor 10 Supports out of order execution, and 
thus employs reorder buffer 32 to keep track of the original 
program Sequence for register read and write operations, to 
implement register renaming, to allow for Speculative 
instruction execution and branch misprediction recovery, 
and to facilitate precise exceptions. A temporary Storage 
location within reorder buffer 32 is reserved upon decode of 
an instruction that involves the update of a register to 
thereby Store speculative register States. If a branch predic 
tion is incorrect, the results of Speculatively-executed 
instructions along the mispredicted path can be invalidated 
in the buffer before they are written to register file 30. 
Similarly, if a particular instruction causes an exception, 
instructions Subsequent to the particular instruction may be 
discarded. In this manner, exceptions are "precise” (i.e. 
instructions Subsequent to the particular instruction causing 
the exception are not completed prior to the exception). It is 
noted that a particular instruction is speculatively executed 
if it is executed prior to instructions which precede the 
particular instruction in program order. Preceding instruc 
tions may be a branch instruction or an exception-causing 
instruction, in which case the Speculative results may be 
discarded by reorder buffer 32. 

The instruction control values and immediate or displace 
ment data provided at the outputs of decode units 20 are 
routed directly to respective reservation stations 22. In one 
embodiment, each reservation Station 22 is capable of hold 
ing instruction information (i.e., instruction control values as 
well as operand values, operand tags and/or immediate data) 
for up to three pending instructions awaiting issue to the 
corresponding functional unit. It is noted that for the 
embodiment of FIG. 1, each reservation station 22 is asso 
ciated with a dedicated functional unit 24. Accordingly, 
three dedicated “issue positions” are formed by reservation 
Stations 22 and functional units 24. In other words, issue 
position 0 is formed by reservation station 22A and func 
tional unit 24A. Instructions aligned and dispatched to 
reservation Station 22A are executed by functional unit 24A. 
Similarly, issue position 1 is formed by reservation Station 
22B and functional unit 24B; and issue position 2 is formed 
by reservation station 22C and functional unit 24C. 
Upon decode of a particular instruction, if a required 

operand is a register location, register address information is 
routed to reorder buffer 32 and register file 30 simulta 
neously. Those of skill in the art will appreciate that the x86 
register file includes eight 32 bit real registers (i.e., typically 
referred to as EAX, EBX, ECX, EDX, EBP, ESI, EDI and 
ESP). In embodiments of microprocessor 10 which employ 
the x86 microprocessor architecture, register file 30 com 
prises Storage locations for each of the 32 bit real registers. 
Additional Storage locations may be included within register 
file 30 for use by MROM unit 34. Reorder buffer 32 contains 
temporary Storage locations for results which change the 
contents of these registers to thereby allow out of order 
execution. A temporary Storage location of reorder buffer 32 
is reserved for each instruction which, upon decode, is 
determined to modify the contents of one of the real regis 
ters. Therefore, at various points during execution of a 
particular program, reorder buffer 32 may have one or more 
locations which contain the Speculatively executed contents 
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10 
of a given register. If following decode of a given instruction 
it is determined that reorder buffer 32 has a previous location 
or locations assigned to a register used as an operand in the 
given instruction, the reorder buffer 32 forwards to the 
corresponding reservation station either: 1) the value in the 
most recently assigned location, or 2) a tag for the most 
recently assigned location if the value has not yet been 
produced by the functional unit that will eventually execute 
the previous instruction. If reorder buffer 32 has a location 
reserved for a given register, the operand value (or reorder 
buffer tag) is provided from reorder buffer 32 rather than 
from register file 30. If there is no location reserved for a 
required register in reorder buffer 32, the value is taken 
directly from register file 30. If the operand corresponds to 
a memory location, the operand value is provided to the 
reservation Station through load/store unit 26. 

In one particular embodiment, reorder buffer 32 is con 
figured to Store and manipulate concurrently decoded 
instructions as a unit. This configuration will be referred to 
herein as "line-oriented”. By manipulating Several instruc 
tions together, the hardware employed within reorder buffer 
32 may be simplified. For example, a line-oriented reorder 
buffer included in the present embodiment allocates Storage 
Sufficient for instruction information pertaining to three 
instructions (one from each decode unit 20) whenever one or 
more instructions are dispatched by decode units 20. By 
contrast, a variable amount of Storage is allocated in con 
ventional reorder buffers, dependent upon the number of 
instructions actually dispatched. A comparatively larger 
number of logic gates may be required to allocate the 
variable amount of storage. When each of the concurrently 
decoded instructions has executed, the instruction results are 
Stored into register file 30 simultaneously. The Storage is 
then free for allocation to another Set of concurrently 
decoded instructions. Additionally, the amount of control 
logic circuitry employed per instruction is reduced because 
the control logic is amortized over Several concurrently 
decoded instructions. A reorder buffer tag identifying a 
particular instruction may be divided into two fields: a line 
tag and an offset tag. The line tag identifies the Set of 
concurrently decoded instructions including the particular 
instruction, and the offset tag identifies which instruction 
within the Set corresponds to the particular instruction. It is 
noted that Storing instruction results into register file 30 and 
freeing the corresponding Storage is referred to as "retiring” 
the instructions. It is further noted that any reorder buffer 
configuration may be employed in various embodiments of 
microprocessor 10. 
AS noted earlier, reservation Stations 22 Store instructions 

until the instructions are executed by the corresponding 
functional unit 24. An instruction is Selected for execution if: 
(i) the operands of the instruction have been provided; and 
(ii) the operands have not yet been provided for instructions 
which are within the same reservation station 22A-22C and 
which are prior to the instruction in program order. It is 
noted that when an instruction is executed by one of the 
functional units 24, the result of that instruction is passed 
directly to any reservation Stations 22 that are waiting for 
that result at the same time the result is passed to update 
reorder buffer 32 (this technique is commonly referred to as 
“result forwarding”). An instruction may be selected for 
execution and passed to a functional unit 24A-24C during 
the clock cycle that the associated result is forwarded. 
Reservation stations 22 route the forwarded result to the 
functional unit 24 in this case. 

In one embodiment, each of the functional units 24 is 
configured to perform integer arithmetic operations of addi 



5,954,816 
11 

tion and Subtraction, as well as shifts, rotates, logical 
operations, and branch operations. The operations are per 
formed in response to the control values decoded for a 
particular instruction by decode units 20. It is noted that a 
floating point unit (not shown) may also be employed to 
accommodate floating point operations. The floating point 
unit may be operated as a coprocessor, receiving instructions 
from MROM unit 34 and Subsequently communicating with 
reorder buffer 32 to complete the instructions. Additionally, 
functional units 24 may be configured to perform address 
generation for load and Store memory operations performed 
by load/store unit 26. 

Each of the functional units 24 also provides information 
regarding the execution of conditional branch instructions to 
the branch prediction unit 14. If a branch prediction was 
incorrect, branch prediction unit 14 flushes instructions 
Subsequent to the mispredicted branch that have entered the 
instruction processing pipeline, and causes fetch of the 
required instructions from instruction cache 16 or main 
memory. It is noted that in Such situations, results of 
instructions in the original program Sequence which occur 
after the mispredicted branch instruction are discarded, 
including those which were speculatively executed and 
temporarily stored in load/store unit 26 and reorder buffer 
32. 

Results produced by functional units 24 are sent to reorder 
buffer 32 if a register value is being updated, and to 
load/Store unit 26 if the contents of a memory location are 
changed. If the result is to be Stored in a register, reorder 
buffer 32 stores the result in the location reserved for the 
value of the register when the instruction was decoded. A 
plurality of result buses 38 are included for forwarding of 
results from functional units 24 and load/store unit 26. 
Result buses 38 convey the result generated, as well as the 
reorder buffer tag identifying the instruction being executed. 

Load/store unit 26 provides an interface between func 
tional units 24 and data cache 28. In one embodiment, 
load/store unit 26 is configured with a load/store buffer 
having eight Storage locations for data and address infor 
mation for pending loads or Stores. Decode units 20 arbitrate 
for access to the load/store unit 26. When the buffer is full, 
a decode unit must wait until load/store unit 26 has room for 
the pending load or Store request information. Load/store 
unit 26 also performs dependency checking for load memory 
operations against pending Store memory operations to 
ensure that data coherency is maintained. A memory opera 
tion is a transfer of data between microprocessor 10 and the 
main memory Subsystem. Memory operations may be the 
result of an instruction which utilizes an operand Stored in 
memory, or may be the result of a load/store instruction 
which causes the data transfer but no other operation. 
Additionally, load/store unit 26 may include a Special reg 
ister Storage for Special registerS Such as the Segment reg 
isters and other registers related to the address translation 
mechanism defined by the x86 microprocessor architecture. 

In one embodiment, load/store unit 26 is configured to 
perform load memory operations Speculatively. Store 
memory operations are performed in program order, but may 
be speculatively Stored into the predicted way. If the pre 
dicted way is incorrect, the data prior to the Store memory 
operation is Subsequently restored to the predicted way and 
the Store memory operation is performed to the correct way. 
In another embodiment, Stores may be executed Specula 
tively as well. Speculatively executed Stores are placed into 
a Store buffer, along with a copy of the cache line prior to the 
update. If the Speculatively executed Store is later discarded 
due to branch misprediction or exception, the cache line may 
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be restored to the value stored in the buffer. It is noted that 
load/Store unit 26 may be configured to perform any amount 
of Speculative eXecution, including no speculative eXecu 
tion. 

Data cache 28 is a high Speed cache memory provided to 
temporarily Store data being transferred between load/store 
unit 26 and the main memory Subsystem. In one 
embodiment, data cache 28 has a capacity of Storing up to 
Sixteen kilobytes of data in an eight way Set associative 
Structure. Similar to instruction cache 16, data cache 28 may 
employ a way prediction mechanism. It is understood that 
data cache 28 may be implemented in a variety of Specific 
memory configurations, including a Set associative configu 
ration. 

In one particular embodiment of microprocessor 10 
employing the x86 microprocessor architecture, instruction 
cache 16 and data cache 28 are linearly addressed. The linear 
address is formed from the offset specified by the instruction 
and the base address Specified by the Segment portion of the 
x86 address translation mechanism. Linear addresses may 
optionally be translated to physical addresses for accessing 
a main memory. The linear to physical translation is speci 
fied by the paging portion of the x86 address translation 
mechanism. It is noted that a linear addressed cache Stores 
linear address tags. A set of physical tags (not shown) may 
be employed for mapping the linear addresses to physical 
addresses and for detecting translation aliases. Additionally, 
the physical tag block may perform linear to physical 
address translation. 

Turning now to FIG. 2, a block diagram of one embodi 
ment of decode units 20B and 20O is shown. Each decode 
unit 20 receives an instruction from instruction alignment 
unit 18. Additionally, MROM unit 34 is coupled to each 
decode unit 20 for dispatching fast path instructions corre 
sponding to a particular MROM instruction. Decode unit 
20B comprises early decode unit 40B, multiplexor 42B, and 
opcode decode unit 4.4B. Similarly, decode unit 20C 
includes early decode unit 40C, multiplexor 42C, and 
opcode decode unit 44C. 

Certain instructions in the x86 instruction set are both 
fairly complicated and frequently used. In one embodiment 
of microprocessor 10, Such instructions include more com 
plex operations than the hardware included within a par 
ticular functional unit 24A-24C is configured to perform. 
Such instructions are classified as a special type of MROM 
instruction referred to as a “double dispatch” instruction. 
These instructions are dispatched to a pair of opcode decode 
units 44. It is noted that opcode decode units 44 are coupled 
to respective reservation Stations 22. Each of opcode decode 
units 44A-44C forms an issue position with the correspond 
ing reservation Station 22A-22C and functional unit 
24A-24C. Instructions are passed from an opcode decode 
unit 44 to the corresponding reservation Station 22 and 
further to the corresponding functional unit 24. 

Multiplexor 42B is included for selecting between the 
instructions provided by MROM unit 34 and by early 
decode unit 40B. During times in which MROM unit 34 is 
dispatching instructions, multiplexor 42B Selects instruc 
tions provided by MROM unit 34. At other times, multi 
plexor 42B selects instructions provided by early decode 
unit 40B. Similarly, multiplexor 42C selects between 
instructions provided by MROM unit 34, early decode unit 
40B, and early decode unit 40C. The instruction from 
MROM unit 34 is selected during times in which MROM 
unit 34 is dispatching instructions. During times in which the 
early decode unit within decode unit 20A (not shown) 
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detects a double dispatch instruction, the instruction from 
early decode unit 40B is selected by multiplexor 42C. 
Otherwise, the instruction from early decode unit 40C is 
Selected. Selecting the instruction from early decode unit 
40B into opcode decode unit 44C allows a fast path instruc 
tion decoded by decode unit 20B to be dispatched concur 
rently with a double dispatch instruction decoded by decode 
unit 20A. 

According to one embodiment employing the x86 instruc 
tion Set, early decode units 40 perform the following opera 
tions: 

(i) merge the prefix bytes of the instruction into an 
encoded prefix byte; 

(ii) decode unconditional branch instructions (which may 
include the unconditional jump, the CALL, and the 
RETURN) which were not detected during branch 
prediction; 

(iii) decode Source and destination flags; 
(iv) decode the Source and destination operands which are 

register operands and generate operand size informa 
tion; and 

(V) determine the displacement and/or immediate size So 
that displacement and immediate data may be routed to 
the opcode decode unit. 

Opcode decode units 44 are configured to decode the opcode 
of the instruction, producing control values for functional 
unit 24. Displacement and immediate data are routed with 
the control values to reservation Stations 22. 

Since early decode units 40 detect operands, the outputs 
of multiplexors 42 are routed to register file 30 and reorder 
buffer 32. Operand values or tags may thereby be routed to 
reservation Stations 22. Additionally, memory operands are 
detected by early decode units 40. Therefore, the outputs of 
multiplexors 42 are routed to load/store unit 26. Memory 
operations corresponding to instructions having memory 
operands are Stored by load/store unit 26. 

Turning now to FIG. 3, a diagram of an exemplary group 
of contiguous instruction bytes 50 and a corresponding Set of 
branch selectors 52 are shown. In FIG. 3, each byte within 
an instruction is illustrated by a short vertical line (e.g. 
reference number 54). Additionally, the vertical lines sepa 
rating instructions in group 50 delimit bytes (e.g. reference 
number 56). The instructions shown in FIG. 3 are variable 
in length, and therefore the instruction Set including the 
instructions shown in FIG. 3 is a variable byte length 
instruction Set. In other words, a first instruction within the 
variable byte length instruction Set may occupy a first 
number of bytes which is different than a second number of 
bytes occupied by a Second instruction within the instruction 
Set. Other instruction Sets may be fixed-length, Such that 
each instruction within the instruction Set occupies the same 
number of bytes as each other instruction. 
As illustrated in FIG. 3, group 50 includes non-branch 

instructions INO-IN5. Instructions INO, IN3, IN4, and IN5 
are two byte instructions. Instruction IN1 is a one byte 
instruction and instruction IN2 is a three byte instruction. 
Two predicted-taken branch instructions PBO and PB1 are 
illustrated as well, each shown as occupying two bytes. It is 
noted that both non-branch and branch instructions may 
occupy various numbers of bytes. 

The end byte of each predicted-taken branch PB0 and 
PB1 provides a division of group 50 into three regions: a first 
region 58, a second region 60, and a third region 62. If a 
fetch address identifying group 50 is presented, and the 
offset of the fetch address within the group identifies a byte 
position within first region 58, then the first predicted-taken 
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branch instruction to be encountered is PBO and therefore 
the branch prediction for PB0 is selected by the branch 
prediction mechanism. Similarly, if the offset of the fetch 
address identifies a byte within Second region 60, the appro 
priate branch prediction is the branch prediction for PB1. 
Finally, if the offset of the fetch address identifies a byte 
within third region 62, then there is no predicted-taken 
branch instruction within the group of instruction bytes and 
Subsequent to the identified byte. Therefore, the branch 
prediction for third region 62 is Sequential. The Sequential 
address identifies the group of instruction bytes which 
immediately follows group 50 within main memory. 
AS used herein, the offset of an address comprises a 

number of least significant bits of the address. The number 
is sufficient to provide different encodings of the bits for 
each byte within the group of bytes to which the offset 
relates. For example, group 50 is 16 bytes. Therefore, four 
least Significant bits of an address within the group form the 
offset of the address. The remaining bits of the address 
identify group 50 from other groups of contiguous instruc 
tion bytes within the main memory. Additionally, a number 
of least Significant bits of the remaining bits form an index 
used by instruction cache 16 to Select a row of Storage 
locations which are eligible for Storing group 50. 

Set 52 is an exemplary Set of branch Selectors for group 
50. One branch selector is included for each byte within 
group 50. The branch selectors within set 52 use the encod 
ing shown in FIG. 8 below. In the example, the branch 
prediction for PB0 is stored as the second of two branch 
predictions associated with group 50 (as indicated by a 
branch selector value of “3”). Therefore, the branch selector 
for each byte within first region 58 is set to “3”. Similarly, 
the branch prediction for PBI is stored as the first of the 
branch predictions (as indicated by a branch Selector value 
of "2"). Therefore, the branch selector for each byte within 
second region 60 is set to “2”. Finally, the sequential branch 
prediction is indicated by the branch selectors for bytes 
within third region 62 by a branch selector encoding of “0”. 

It is noted that, due to the variable byte length nature of 
the x86 instruction Set, a branch instruction may begin 
within one group of contiguous instruction bytes and end 
within a Second group of contiguous instruction bytes. In 
Such a case, the branch prediction for the branch instruction 
is Stored with the Second group of contiguous instruction 
bytes. Among other things, the bytes of the branch instruc 
tion which are Stored within the Second group of contiguous 
instruction bytes need to be fetched and dispatched. Forming 
the branch prediction in the first group of contiguous instruc 
tion bytes would cause the bytes of the branch instruction 
which lie within the Second group of instruction bytes not to 
be fetched. 

Employing a set of branch SelectorS Such as Set 52 allows 
for a rapid determination of the predicted fetch address (i.e. 
by decoding the offset portion of the fetch address and 
Selecting the corresponding Selector from Set 52). However, 
a large number of branch Selectors are Stored (i.e. one for 
each byte). The amount of branch prediction storage 
employed for Storing the branch Selectors would correspond 
ingly be large. Still further, a relatively wide Selection device 
(Such as a mux) would be needed to Select the branch 
selector in response to the offset of the fetch address. The 
wider the Selection device, in general, the greater the delay 
in propagating the Selected value through the Selection 
device (e.g. the Selected branch Selector). 

FIG. 3 illustrates that the branch selector for each byte 
within a region is the Same, and regions are delimited by 
branch instructions (more particularly, predicted-taken 
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branch instructions). Branch instructions would generally 
include at least an opcode (identifying the branch instruction 
within the instruction set employed by microprocessor 10) 
and a displacement to be added to the address of the branch 
instruction (or the address of the instruction immediately 
following the branch instruction) to form the branch target 
address. Therefore, a branch instruction occupies at least 
two bytes. By taking advantage of this fact, the number of 
branch SelectorS Stored with respect to a group of contiguous 
instruction bytes may be reduced. 

For the remainder of this description, the x86 micropro 
ceSSor architecture will be used as an example. However, the 
branch Selector technique described herein may be 
employed within any microprocessor architecture, and Such 
embodiments are contemplated. It is noted that, in the X86 
microprocessor architecture, a Subroutine return instruction 
is defined (e.g. the RET instruction). The subroutine return 
instruction specifies that its branch target address is drawn 
from the top of the stack indicated by the ESP register. 
Therefore, the RET instruction is a single byte (i.e. an 
opcode byte). 

Turning next to FIG. 4, a diagram illustrating group 50, 
regions 58, 60, and 62, and one embodiment of a set of 
branch selectors 70 is illustrated. The branch selectors 
within set 70 correspond to byte ranges defined within group 
50. For the example shown in FIG. 4, nine branch selectors 
are used for a group of 16 contiguous instruction bytes. Set 
70 therefore occupies less storage within a branch prediction 
Storage than Set 52 shown in FIG. 3 occupies, allowing the 
branch prediction Storage to be made Smaller. Still further, a 
narrower Selection device may be used to Select a branch 
Selector in response to a fetch address. The Selected branch 
Selector may be provided more rapidly, and may thereby 
provide for a higher frequency implementation in which 
predicted fetch addresses are provided each clock cycle. 

Generally, the largest byte range defined for a given 
branch Selector may be made equal to the shortest branch 
instruction (excluding the return instruction as described in 
more detail below). The majority of the byte ranges are 
Selected to be the largest size. However, to handle certain 
conditions, the embodiment shown in FIG. 4 employs two 
byte ranges which are Smaller than the maximum size. In 
particular, the initial byte of the group 50 forms a byte range 
having a Single byte. Since group 50 is an even number of 
bytes, the byte range corresponding to the initial byte 
includes only the initial byte, and the largest byte range is 
two bytes in this example, another byte range is defined to 
have a single byte as well. For set 70, the byte within group 
50 which is contiguous to the initial byte is selected to be a 
Single byte range. This Selection allows for a relatively 
simple decode of the offset of the fetch address to select a 
branch selector, as illustrated in FIG. 5. 

Since the byte ranges are Selected to be no larger than the 
Shortest branch instruction, a branch instruction may begin 
in one byte range and end in a Subsequent byte range. 
However, at most one branch instruction ends in a particular 
byte range, even if branch instructions are consecutive 
within a particular group of contiguous instruction bytes. 
For the case of a branch instruction which ends within a 
particular byte range but not at the end of the byte range, the 
branch Selector for that byte range is Selected to be the 
branch Selector corresponding to instruction bytes Subse 
quent to the branch instruction. For example, the branch 
selector for byte range 72 (which includes bytes 3-4, where 
the initial byte is numbered byte 0) indicates the branch 
prediction corresponding to predicted branch PB1. The 
above rule is used because a fetch address within the byte 
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range is not fetching the branch instruction (which begins in 
the preceding byte range). Therefore, the correct branch 
prediction is the prediction for the Subsequent branch. 
On the other hand, if the branch instruction ends at the last 

byte within the byte range, the branch selector for the byte 
range is the branch Selector corresponding to the branch 
instruction (e.g. byte range 74). Therefore, if a fetch address 
specifying predicted branch PB1 (i.e. the offset is within 
byte range 74), then the branch prediction used for the fetch 
is the branch prediction corresponding to branch PB1. 

Turning now to FIG. 5, a table 76 is shown corresponding 
to the Selection of byte ranges for branch Selectors as 
illustrated in the example of FIG. 4. The row of table 76 
labeled “Byte Position” lists the byte positions within group 
50 which correspond to each byte range (i.e. the offset 
portion of the address for each byte which is within each 
byte range). The row labeled “Branch Selector Position” 
illustrates the branch selector position within the set 70 of 
the branch Selector corresponding to each byte range. The 
row labeled “Read Addresses' lists the fetch address offsets 
(in binary) which are decoded to select the branch selector 
within the corresponding byte range (in order to form a 
predicted fetch address for the Subsequent clock cycle). An 
“X” in the read addresses indicates a don't care position. 
Finally, the row labeled “Encoding Addresses' lists the fetch 
address offsets (in binary) at which a branch instruction can 
end and still have the branch selector for that byte range 
indicate the branch prediction corresponding to that branch 
instruction. For example, branch Selector position 2 can 
indicate the branch prediction for a branch instruction which 
ends at either byte position 3 or 4. More particularly, a 
branch instruction which ends at byte position 2 is not 
represented by the branch Selector in branch selector posi 
tion 2 (because the branch instruction begins in a different 
byte range than that associated with branch Selector position 
2, and is therefore not being fetched if the fetch address 
offset is within the byte range associated with branch Selec 
tor position 2). 
The “Read Addresses' row of table 76 illustrates that a 

relatively simple decoding of the fetch address offset can be 
used to Select the appropriate branch Selector for that fetch 
address. The decoding for branch selector positions 0 and 1 
include each of the fetch address offset bits, but the decoding 
for the remaining positions may exclude the least significant 
bit (since it is a don't care). A rapid decode and branch 
Selector Selection may be achieved using the allocation of 
byte ranges illustrated in FIG. 4. 

Turning now to FIG. 6, a portion of one embodiment of 
branch prediction unit 14 is shown. Other embodiments of 
branch prediction unit 14 and the portion shown in FIG. 6 
are contemplated. AS shown in FIG. 6, branch prediction 
unit 14 includes a branch prediction storage 90, a way 
multiplexor 92, a branch selector multiplexor 94, a branch 
prediction multiplexor 96, a Sequential/return multiplexor 
98, a final prediction multiplexor 100, an update logic block 
102, and a decoder 104. Branch prediction storage 90 and 
decoder 104 are coupled to a fetch address bus 106 from 
instruction cache 16. A fetch address concurrently provided 
to instruction cache 16 is conveyed upon fetch address bus 
106. Decoder block 104 provides selection controls to 
branch selector multiplexor 94. Prediction controls for way 
multiplexor 92 are provided via a way selection bus 108 
from instruction cache 16. Way selection bus 108 provides 
the way of instruction cache 16 which is Storing the cache 
line corresponding to the fetch address provided on fetch 
address bus 106. Additionally, a selection control is provided 
by decoder 104 based upon which portion of the cache line 
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is being fetched. Way multiplexor 92 is coupled to receive 
the contents of each Storage location within the row of 
branch prediction storage 90 which is indexed by the fetch 
address upon fetch address bus 106. Branch selector multi 
plexor 94 and branch prediction multiplexor 96 are coupled 
to receive portions of the output of way multiplexor 92 as 
inputs. Additionally, a portion of the output of way multi 
plexor 92 provides selection controls for multiplexors 96, 
98, and 100. Sequential/return multiplexor 98 selects 
between a Sequential address provided upon a Sequential 
address bus 110 from instruction cache 16 and a return 
address provided upon a return address buS 112 from a return 
stack. The output of multiplexors 96 and 98 is provided to 
final prediction multiplexor 100, which provides a branch 
prediction bus 114 to instruction cache 16. Instruction cache 
16 uses the branch prediction provided upon branch predic 
tion bus 114 as the fetch address for the Subsequent clock 
cycle. Update logic block 102 is coupled to branch predic 
tion storage 90 via an update bus 116 used to update branch 
prediction information Stored therein. Update logic block 
102 provides updates in response to a misprediction Sig 
nalled via a mispredict bus 118 from functional units 24 and 
decode units 20. Additionally, update logic block 102 pro 
vides updates in response to newly predecoded instruction 
indicated by prefetch/predecode unit 12 upon a predecode 
bus 120. 

In the present embodiment, branch prediction storage 90 
is arranged with a number of ways equal to the number of 
ways in instruction cache 16. For each way, a branch 
prediction entry is Stored for each group of contiguous 
instruction bytes existing within a cache line. In the embodi 
ment of FIG. 6, two groups of instruction bytes are included 
in each cache line. Therefore, branch prediction entry Poo is 
the branch prediction entry corresponding to the first group 
of contiguous instruction bytes in the first way and branch 
prediction entry Po is the branch prediction entry corre 
sponding to the Second group of contiguous instruction bytes 
in the first way. Similarly, branch prediction entry Po is the 
branch prediction entry corresponding to the first group of 
contiguous instruction bytes in the Second way and branch 
prediction entry P is the branch prediction entry corre 
sponding to the Second group of contiguous instruction bytes 
in the Second way, etc. Each branch prediction entry Poo to 
Ps in the indexed row is provided as an output of branch 
prediction Storage 90, and hence as an input to way multi 
plexor 92. The indexed row is similar to indexing into a 
cache: a number of bits which are not part of the offset 
portion of the fetch address are used to Select one of the rows 
of branch prediction storage 90. It is noted that branch 
prediction storage 90 may be configured with fewer rows 
than instruction cache 16. For example, branch prediction 
storage 90 may include 4 the number of rows of instruction 
cache 16. In Such a case, the address bits which are indeX bits 
of instruction cache 16 but which are not index bits of 
branch prediction storage 90 may be stored with the branch 
prediction information and checked against the correspond 
ing bits of the fetch address to confirm that the branch 
prediction information is associated with the row of instruc 
tion cache 16 which is being accessed. 
Way multiplexor 92 selects one of the sets of branch 

prediction information Poo-P based upon the way Selec 
tion provided from instruction cache 16 and the group of 
instruction bytes referenced by the fetch address. In the 
embodiment shown, for example, a 32 byte cache line is 
divided into two 16 byte groups. Therefore, the fifth least 
significant bit of the fetch address is used to select which of 
the two groups contains the fetch address. If the fifth least 
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Significant bit is Zero, then the first group of contiguous 
instruction bytes is selected. If the fifth least significant bit 
is one, then the Second group of contiguous instruction bytes 
is Selected. It is noted that the way Selection provided upon 
way selection bus 108 may be a way prediction produced by 
a branch prediction from the previous clock cycle, according 
to one embodiment. Alternatively, the way Selection may be 
generated via tag comparisons between the fetch address and 
the address tags identifying the cache lines Stored in each 
way of the instruction cache. It is noted that an address tag 
is the portion of the address which is not an offset within the 
cache line nor an indeX into the instruction cache. 
The selected branch prediction entry provided by way 

multiplexor 92 includes a Set of branch Selectors correspond 
ing to the group of contiguous instruction bytes, a predicted 
branch selector, and branch predictions BP1 and BP2. The 
branch Selectors are provided to branch Selector multiplexor 
94, which selects one of the branch selectors based upon 
selection controls provided by decoder 104. Decoder 104 
decodes the offset of the fetch address into the group of 
contiguous instruction bytes to Select the corresponding 
branch Selector (for example, according to the “read 
address' row of table 76, in one embodiment or according 
to the particular byte, in another embodiment). For example, 
if a group of contiguous instruction bytes is 16 bytes, then 
decoder 104 decodes the four least significant bits of the 
fetch address. In this manner, a branch Selector is chosen. 
The predicted branch Selector is used to provide Selection 

controls to branch prediction multiplexor 96, Sequential/ 
return multiplexor 98, and final prediction multiplexor 100. 
In one embodiment, the encoding of the branch Selector can 
be used directly as the multiplexor Select controls. In other 
embodiments, a logic block may be inserted to decode the 
predicted branch selector and to control multiplexors 96, 98, 
and 100. For the embodiment shown, branch selectors 
comprise two bits. One bit of the predicted branch selector 
provides the selection control for prediction multiplexor 96 
and sequential/return multiplexor 98. The other bit provides 
a selection control for final prediction multiplexor 100. A 
branch prediction is thereby selected from the multiple 
branch predictions stored in branch prediction storage 90 
corresponding to the group of contiguous instruction bytes 
being fetched, the Sequential address of the group of con 
tiguous instruction bytes Sequential to the group of contigu 
ouS instruction bytes being fetched, and a return Stack 
address from a return Stack Structure. It is noted that mul 
tiplexors 96, 98, and 100 may be combined into a single 4 
to 1 multiplexor for which the predicted branch selector 
provides Selection controls to Select between the two branch 
predictions from branch prediction Storage 90, the Sequential 
address, and the return address. 
The return Stack structure (not shown) is used to Store 

return addresses corresponding to Subroutine call instruc 
tions previously fetched by microprocessor 10. In one 
embodiment, the branch predictions Stored by branch pre 
diction storage 90 include an indication that the branch 
prediction corresponds to a Subroutine call instruction. Sub 
routine call instructions are a Subset of branch instructions 
which save the address of the Sequential instruction (the 
return address) in addition to redirecting the instruction 
Stream to the target address of the Subroutine call instruction. 
For example, the in the x86 microprocessor architecture, the 
Subroutine call instruction (CALL) pushes the return address 
onto the stack indicated by the ESP register. 
A Subroutine return instruction is another Subset of the 

branch instructions. The Subroutine return instruction uses 
the return address Saved by the most recently executed 
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Subroutine call instruction as a target address. Therefore, 
when a branch prediction includes an indication that the 
branch prediction corresponds to a Subroutine call 
instruction, the Sequential address to the Subroutine call 
instruction is placed at the top of the return Stack. When a 
Subroutine return instruction is encountered (as indicted by 
a particular branch selector encoding), the address nearest 
the top of the return Stack which has not previously been 
used as a prediction is used as the prediction of the address. 
The address nearest the top of the return Stack which has not 
previously been used as a prediction is conveyed by the 
return Stack upon return address bus 112 (along with the 
predicted way of the return address, provided to the return 
stack similar to its provision upon way selection bus 108. 
Branch prediction unit 14 informs the return stack when the 
return address is Selected as the prediction. Additional 
details regarding an exemplary return Stack Structure may be 
found in the commonly assigned, co-pending patent appli 
cation entitled: “Speculative Return Address Prediction Unit 
for a SuperScalar Microprocessor”, Ser. No. 08/550,296, 
filed Oct. 30, 1995 by Mahalingaiah, et al. The disclosure of 
the referenced patent application is incorporated herein by 
reference in its entirety. 

The Sequential address is provided by instruction cache 
16. The Sequential address identifies the next group of 
contiguous instruction bytes within main memory to the 
group of instruction bytes indicated by the fetch address 
upon fetch address bus 106. It is noted that, according to one 
embodiment, a way prediction is Supplied for the Sequential 
address when the Sequential address is Selected. The way 
prediction may be Selected to be the same as the way 
Selected for the fetch address. Alternatively, a way predic 
tion for the Sequential address may be stored within branch 
prediction storage 90. 

In addition to Selecting a branch prediction, the predicted 
branch selector is provided to a comparator 126. The 
selected branch selector from branch selector multiplexor 94 
is also provided to comparator 126. The output of compara 
tor 126 is provided to update unit 102, and acts as a 
Verification that the predicted branch Selector corresponds to 
the Selected branch Selector Selected in accordance with the 
offset of the fetch address. The predicted branch selector is 
Set to the most recently Selected branch Selector, and there 
fore may differ from the branch Selector corresponding to the 
current fetch address. It is noted that the verification of the 
predicted branch Selector may be pipelined to a Subsequent 
clock cycle from the clock cycle in which the Selectors are 
read from branch prediction storage 90. In such an 
embodiment, Storage devices (not shown) may be inserted at 
an appropriate point to Store the intermediate values for 
continued operation in the Subsequent clock cycle. However, 
it is noted that the present Structure may advantageously be 
employed even if the Verification can be completed in the 
Same clock cycle. The delay in generating the branch 
prediction on branch prediction bus 114 may still be 
decreased using the predicted branch Selector, and the time 
Saved may be put to other uses. 

If comparator 126 detects inequality between the pre 
dicted branch Selector and the Selected branch Selector, 
update logic 102 cancels the current fetch (corresponding to 
the fetch address upon fetch address bus 106) because the 
current fetch address (generated from a branch prediction 
Selected by the predicted branch Selector) is incorrect. 
Update logic 102 updates the predicted branch selector 
within the branch prediction entry within branch prediction 
storage 90 from which the prediction was fetched with the 
Selected branch Selector, and uses the Selected branch pre 
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diction to generate a corrected fetch address. It is noted that 
update logic 102 may store the fetched branch prediction 
entry to allow for fetch address correction without reacceSS 
ing branch prediction storage 90. 
AS mentioned above, update logic block 102 is configured 

to update a branch prediction entry upon detection of a 
branch misprediction or upon detection of a branch instruc 
tion while predecoding the corresponding group of contigu 
ouS instruction bytes in prefetch/predecode unit 12. The 
branch prediction entry corresponding to each branch pre 
diction may be stored in update logic block 102 as the 
prediction is performed. Abranch tag is conveyed along with 
the instructions being fetched (via a branch tag bus 122), 
Such that if a misprediction is detected or a branch instruc 
tion is detected during predecoding, the corresponding 
branch prediction entry can be identified via the branch tag. 
In one embodiment, the branch prediction entry as shown in 
FIG. 7 is stored, as well as the index of the fetch address 
which caused the branch prediction entry to be fetched and 
the way in which the branch prediction entry is Stored. 
When a branch misprediction is detected, the correspond 

ing branch tag is provided upon mispredict bus 118 from 
either the functional unit 24 which executes the branch 
instruction or from decode units 20. If decode units 20 
provide the branch tag, then the misprediction is of the 
previously undetected type (e.g. there are more branch 
instructions in the group than can be predicted using the 
corresponding branch predictions). Decode units 20 detect 
mispredictions of unconditional branch instructions (i.e. 
branch instructions which always select the target address). 
Functional units 24 may detect a misprediction due to a 
previously undetected conditional branch instruction or due 
to an incorrect taken/not-taken prediction. Update logic 102 
Selects the corresponding branch prediction entry out of the 
aforementioned Storage. In the case of a previously unde 
tected branch instruction, one of the branch predictions 
within the branch prediction entry is assigned to the previ 
ously undetected branch instruction. According to one 
embodiment, the algorithm for Selecting one of the branch 
predictions to Store the branch prediction for the previously 
undetected branch instruction is as follows: If the branch 
instruction is a Subroutine return instruction, the branch 
Selector for the instruction is selected to be the value 
indicating the return Stack. Otherwise, a branch prediction 
which is currently predicted not-taken is Selected. If each 
branch prediction is currently predicted-taken, then a branch 
prediction is randomly Selected. 
The branch selector for the newly detected branch instruc 

tion is Set to indicate the Selected branch prediction. 
Additionally, the branch Selectors corresponding to byte 
ranges between the first branch instruction prior to the newly 
detected branch instruction and the newly detected branch 
instruction are set to the branch Selector corresponding to the 
new prediction. For a mispredicted taken prediction which 
causes the prediction to become predicted not-taken, the 
branch Selectors corresponding to the mispredicted predic 
tion are set to the branch Selector corresponding to the byte 
Subsequent to the mispredicted branch instruction. In this 
manner, a prediction for a Subsequent branch instruction will 
be used if the instructions are fetched again at a later clock 
cycle. Additionally, the predicted branch Selector is set to the 
branch Selector being updated (i.e. the branch Selector 
indicating the newly detected branch instruction or the 
branch Selector updated into the previously predicted branch 
instruction in the case that a branch instruction becomes 
predicted not-taken). 
When prefetch/predecode unit 12 detects a branch instruc 

tion while predecoding a group of contiguous instruction 
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bytes, prefetch/predecode unit 12 provides the branch tag for 
the group of contiguous instruction bytes if the predecoding 
is performed because invalid predecode information is 
Stored in the instruction cache for the cache line (case (i)). 
Alternatively, if the predecoding is being performed upon a 
cache line being fetched from the main memory Subsystem, 
prefetch/predecode unit 12 provides the address of the group 
of contiguous instruction bytes being predecoded, the offset 
of the end byte of the branch instruction within the group, 
and the way of the instruction cache Selected to Store the 
group (case (ii)). In case (i), the update is performed similar 
to the branch misprediction case above. In case (ii), there is 
not yet a valid branch prediction entry Stored in branch 
prediction storage 90 for the group of instructions. For this 
case, update logic block 102 initializes the branch Selectors 
prior to the detected branch to the branch selector selected 
for the detected branch. Furthermore, the branch selectors 
Subsequent to the detected branch are initialized to the 
Sequential value. Alternatively, each of the branch Selectors 
may be initialized to Sequential when the corresponding 
cache line in instruction cache 16 is allocated, and Subse 
quently updated Via detection of a branch instructions during 
predecode in a manner similar to case (i). 
Upon generation of an update, update logic block 102 

conveys the updated branch prediction entry, along with the 
fetch address indeX and corresponding way, upon update bus 
116 for storage in branch prediction storage 90. It is noted 
that, in order to maintain branch prediction Storage 90 as a 
Single ported Storage, branch prediction Storage 90 may 
employ a branch holding register. The updated prediction 
information is Stored into the branch holding register and 
updated into the branch prediction Storage upon an idle cycle 
on fetch address bus 106. An exemplary cache holding 
register Structure is described in the commonly assigned, 
co-pending patent application entitled: “Delayed Update 
Register for an Array', Ser. No. 08/481,914, filed Jun. 7, 
1995, by Tran, et al., incorporated herein by reference in its 
entirety. 

It is noted that a correctly predicted branch instruction 
may result in an update to the corresponding branch predic 
tion as well. A counter indicative of previous executions of 
the branch instruction (used to form the taken/not-taken 
prediction of the branch instruction) may need to be incre 
mented or decremented, for example. Such updates may be 
performed upon retirement of the corresponding branch 
prediction. Retirement is indicated via a branch tag upon 
retire tag bus 124 from reorder buffer 32. 

Turning now to FIG. 7, an exemplary branch prediction 
entry 130 employed by one embodiment of the branch 
prediction unit 14 as shown in FIG. 6 is shown. Branch 
prediction entry 130 includes a set of branch selectors 136, 
a first branch prediction (BP1) 132, a second branch pre 
diction (BP2) 134, and a predicted branch selector 135. Set 
of branch selectors 136 includes a branch selector for each 
byte (or byte range, depending upon the embodiment) of the 
group of contiguous instruction bytes corresponding to 
branch prediction entry 130. Predicted branch selector 135 
Stores the most recently Selected branch Selector, and is used 
to select a branch prediction when entry 130 is fetched. 

First branch prediction 132 is shown in an exploded view 
in FIG. 7. Second branch prediction 134 may be configured 
similarly. First branch prediction 132 includes an index 140 
for the cache line containing instruction bytes corresponding 
to the target address, and a way Selection 144 for the cache 
line as well. According to one embodiment, index 140 
includes the offset portion of the target address, as well as 
the index. Index 140 is concatenated with the tag of the way 
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indicated by way selection 144 to form the branch target 
address. Alternatively, the entire branch target address may 
be stored in index field 140. Way prediction may be provided 
in addition to the entire branch target address, or way 
Selection may be performed using tag comparisons against 
the tags in the indexed row of instruction cache 16. 

Additionally, a predictor 146 is stored for each branch 
prediction. Predictor 146 is incremented each time the 
corresponding branch instruction is executed and is taken, 
and is decremented each time the corresponding branch 
instruction is executed and is not-taken. The most significant 
bit of predictor 146 is used as the taken/not-taken prediction. 
If the most significant bit is Set, the branch instruction is 
predicted taken. Conversely, the branch instruction is pre 
dicted not-taken if the most significant bit is clear. In one 
embodiment, the prediction counter is a two bit Saturating 
counter. The counter Saturates when incremented at binary 
11 and saturates when decremented at a binary '01. In 
another embodiment, the predictor is a Single bit which 
indicates a strong (a binary one) or a weak (a binary Zero) 
taken prediction. If a strong taken prediction is mispredicted, 
it becomes a weak taken prediction. If a weak taken pre 
diction is mispredicted, the branch becomes predicted not 
taken and the branch Selector is updated (i.e. the case of a 
mispredicted branch that becomes not-taken). Finally, a call 
bit 148 is included in first branch prediction 132. Call bit 148 
is indicative, when Set, that the corresponding branch 
instruction is a Subroutine call instruction. If call bit 148 is 
Set, the current fetch address and way are Stored into the 
return Stack Structure mentioned above. 

Turning next to FIG. 8, a table 138 illustrating an exem 
plary branch Selector encoding is shown. A binary encoding 
is listed (most significant bit first), followed by the branch 
prediction which is Selected when the branch Selector is 
encoded with the corresponding value. As table 138 
illustrates, the least significant bit of the branch Selector can 
be used as a Selection control for branch prediction multi 
plexor 96 and sequential/return multiplexor 98. If the least 
Significant bit is clear, then the first branch prediction is 
selected by branch prediction multiplexor 96 and the 
Sequential address is Selected by Sequential/return multi 
plexor 98. On the other hand, the second branch prediction 
is selected by branch prediction multiplexor 96 and the 
return address is Selected by Sequential/return multiplexor 
98 if the least significant bit is clear. Furthermore, the most 
Significant bit of the branch Selector can be used as a 
selection control for final prediction multiplexor 100. If the 
most Significant bit is Set, the output of branch prediction 
multiplexor 96 is selected. If the most significant bit is clear, 
the output of sequential/return multiplexor 98 is selected. 

Turning next to FIG. 9, a flowchart illustrating operation 
of one embodiment of branch prediction unit 14 is shown. 
The steps shown in the flowchart of FIG.9 may be evaluated 
each clock cycle by branch prediction unit 14. It is noted 
that, although the steps shown in FIG. 9 are shown serially 
for ease of understanding, the Steps may be performed in any 
suitable order and may be performed in parallel by combi 
natorial logic within branch prediction unit 14. 

Branch prediction unit 14 determines if the previously 
predicted branch selector is incorrect (decision block 150). 
In other words, branch prediction unit 14 determines if the 
predicted branch Selector matches the Selected branch Selec 
tor provided in response to the offset portion of the fetch 
address. If the predicted branch Selector is incorrect, then 
branch prediction unit 14 performs recovery operations (Step 
152). The current read address (formed using the incorrect 
predicted branch Selector) is cancelled. Additionally, the 
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branch prediction address (i.e. the fetch address) is corrected 
to indicate the branch prediction corresponding to the 
selected branch selector. Furthermore, the predicted branch 
Selector for the corresponding entry is updated to indicate 
the Selected branch Selector. 
On the other hand, if the previously predicted branch 

Selector is correct, then branch prediction unit 14 determines 
if a misprediction is being Signalled by decode units 20 or 
functional units 24 (decision block 154). If a misprediction 
is being Signalled, then branch prediction unit 14 updates the 
branch prediction entry which generated the misprediction 
(step 156). Included in updating the branch prediction entry 
is updating the predicted branch Selector to indicate the 
corrected branch prediction (which may be a sequential 
prediction or one of the branch predictions which is allo 
cated to the mispredicted branch, for example). Additionally, 
the corrected branch target corresponding to the mispredic 
tion is fetched (step 158). If no misprediction is signalled, 
branch prediction unit 14 forms a branch prediction in 
response to the current fetch address, using the predicted 
branch selector (step 160). 

Turning now to FIG. 10, a timing diagram illustrating 
operation of one embodiment of branch prediction unit 14 is 
shown. Clock cycles are shown in FIG. 10 delimited by 
vertical dashed lines. The clock cycles are labeled CLK0, 
CLK1, etc. During clock cycle CLK0, a fetch address A is 
presented to branch prediction unit 14 (and concurrently to 
instruction cache 16-reference numeral 162). Branch pre 
diction unit 14 Selects a branch prediction using the pre 
dicted branch Selector (reference numeral 164) and creates a 
fetch address B using the Selected branch prediction 
(reference numeral 166). During clock cycle CLK1, the 
predicted branch Selector corresponding to fetch address A 
(i.e. the branch Selector used to generate fetch address B) is 
verified to be correct (reference numeral 168). Concurrently, 
fetch address B is presented (reference numeral 170). 

Similar to clock cycle CLK0, a predicted branch selector 
corresponding to fetch address B is used to Select a branch 
prediction and a fetch address C is created using the Selected 
branch prediction during clock cycle CLK1 (reference 
numerals 172 and 174). However, during clock cycle CLK2, 
branch prediction unit 14 detects that the predicted branch 
selector is mispredicted (reference numeral 176). In other 
words, the Selected branch Selector corresponding to fetch 
address B does not match the predicted branch Selector. 
Therefore, fetch address C is cancelled and the correct 
branch prediction (according to the Selected branch Selector) 
is used to generate fetch address C" (reference numerals 178 
and 180). 

During clock cycle CLK3, fetch address C" is provided 
(reference numeral 182). A corresponding predicted branch 
selector is read from branch prediction storage 90 and a fetch 
address D is created therefrom (reference numerals 184 and 
186). During clock cycle CLK4, the predicted branch selec 
tor corresponding to fetch address C" is verified as matching 
the Selected branch Selector corresponding to fetch address 
C" (reference numeral 188). Concurrently, fetch address D is 
presented and a corresponding predicted branch Selector is 
used to generate a fetch address E (reference numerals 190, 
192, and 194). 

Turning now to FIG. 11, a computer system 200 including 
microprocessor 10 is shown. Computer system 200 further 
includes a bus bridge 202, a main memory 204, and a 
plurality of input/output (I/O) devices 206A-206.N. Plurality 
of I/O devices 206A-206N will be collectively referred to as 
I/O devices 206. Microprocessor 10, bus bridge 202, and 
main memory 204 are coupled to a system bus 208. I/O 
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devices 206 are coupled to an I/O bus 210 for communica 
tion with bus bridge 202. 

Bus bridge 202 is provided to assist in communications 
between I/O devices 206 and devices coupled to system bus 
208. I/O devices 206 typically require longer bus clock 
cycles than microprocessor 10 and other devices coupled to 
system bus 208. Therefore, bus bridge 202 provides a buffer 
between system bus 208 and input/output bus 210. 
Additionally, bus bridge 202 translates transactions from 
one bus protocol to another. In one embodiment, input/ 
output bus 210 is an Enhanced Industry Standard Architec 
ture (EISA) bus and bus bridge 202 translates from the 
system bus protocol to the EISA bus protocol. In another 
embodiment, input/output bus 210 is a Peripheral Compo 
nent Interconnect (PCI) bus and bus bridge 202 translates 
from the system bus protocol to the PCI bus protocol. It is 
noted that many variations of System bus protocols exist. 
Microprocessor 10 may employ any suitable system bus 
protocol. 

I/O devices 206 provide an interface between computer 
system 200 and other devices external to the computer 
System. Exemplary I/O devices include a modem, a Serial or 
parallel port, a sound card, etc. I/O devices 206 may also be 
referred to as peripheral devices. Main memory 204 stores 
data and instructions for use by microprocessor 10. In one 
embodiment, main memory 204 includes at least one 
Dynamic Random Access Memory (DRAM) and a DRAM 
memory controller. 

It is noted that although computer system 200 as shown in 
FIG. 11 includes one bus bridge 202, other embodiments of 
computer system 200 may include multiple bus bridges 202 
for translating to multiple dissimilar or similar I/O bus 
protocols. Still further, a cache memory for enhancing the 
performance of computer System 200 by Storing instructions 
and data referenced by microprocessor 10 in a faster 
memory Storage may be included. The cache memory may 
be inserted between microprocessor 10 and system bus 208, 
or may reside on system bus 208 in a “lookaside” configu 
ration. It is still further noted that the functions of bus bridge 
202, main memory 204, and the cache memory may be 
integrated into a chipset which interfaces to microprocessor 
10. 

It is still further noted that the present discussion may 
refer to the assertion of various signals. AS used herein, a 
Signal is “asserted” if it conveys a value indicative of a 
particular condition. Conversely, a signal is “deasserted” if 
it conveys a value indicative of a lack of a particular 
condition. A signal may be defined to be asserted when it 
conveys a logical Zero value or, conversely, when it conveys 
a logical one value. Additionally, various values have been 
described as being discarded in the above discussion. A 
value may be discarded in a number of manners, but 
generally involves modifying the value Such that it is 
ignored by logic circuitry which receives the value. For 
example, if the value comprises a bit, the logic State of the 
value may be inverted to discard the value. If the value is an 
n-bit value, one of the n-bit encodings may indicate that the 
value is invalid. Setting the value to the invalid encoding 
causes the value to be discarded. Additionally, an n-bit value 
may include a valid bit indicative, when set, that the n-bit 
value is valid. Resetting the valid bit may comprise discard 
ing the value. Other methods of discarding a value may be 
used as well. 

Table 1 below indicates fast path, double dispatch, and 
MROM instructions for one embodiment of microprocessor 
10 employing the x86 instruction set: 
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TABLE 1. TABLE 1-continued 

x86 Fast Path, Double Dispatch, and MROM Instructions x86 Fast Path, Double Dispatch, and MROM Instructions 

X86 Instruction Instruction Category 5 X86 Instruction Instruction Category 

AAA MROM LOOP double dispatch 
AAD MROM LOOPcond MROM 
AAM MROM LSL MROM 
AAS MROM LTR MROM 
ADC aS a 1O MOV fast path 
ADD aS a MOVCC fast path 
AND aS a MOVCR MROM 
ARPL MROM MOVDR MROM 
BOUND MROM MOVS MROM 
BSF aS a MOVSB MROM 
BSR aS a 15 MOVSW MROM 
BSWAP MROM MOVSD MROM 
BT aS a MOVSX fast path 
BTC aS a MOVZX fast path 
BTR aS a MUL double dispatch 
BTS aS a NEG fast path 
CALL ast pathfdouble dispatch 2O NOP fast path 
CBW aS a NOT fast path 
CWDE aS a OR fast path 
CLC aS a OUT MROM 
CLD aS a OUTS MROM 
CLI MROM OUTSB MROM 
CLTS MROM OUTSW MROM 
CMC aS a 25 OUTSD MROM 
CMP aS a POP double dispatch 
CMPS MROM POPA MROM 
CMPSB MROM POPAD MROM 
CMPSW MROM POPF MROM 
CMPSD MROM POPFD MROM 
CMPXCHG, MROM 3O PUSH fast path/double dispatch 
CMPXCHG8B MROM PUSHA MROM 
CPUID MROM PUSHAD MROM 
CWD MROM PUSHF fast path 
CWO MROM PUSHFD fast path 
DDA MROM RCL MROM 
DAS MROM 35 RCR MROM 
DEC fast path ROL fast path 
DIV MROM ROR fast path 
ENTER MROM RDMSR MROM 
HLT MROM REP MROM 
IDIV MROM REPE MROM 
IMUL double dispatch 40 REPZ. MROM 
IN MROM REPNE MROM 
INC fast path REPNZ MROM 
INS MROM RET double dispatch 
INSB MROM RSM MROM 
INSW MROM SAHF fast path 
INSD MROM SAL fast path 
INT MROM 45 SAR fast path 
INTO MROM SHL fast path 
INVD MROM SHR fast path 
INVLPG MROM SBB fast path 
IRET MROM SCAS double dispatch 
RETD MROM SCASB MROM 
Jcc fast path 50 SCASW MROM 
JCXZ. double dispatch SCASD MROM 
JECXZ. double dispatch SETcc fast path 
JMP fast path SGDT MROM 
LAHF fast path SDT MROM 
LAR MROM SHLD MROM 
LDS MROM 55 SHRD MROM 
LES MROM SLDT MROM 
LFS MROM SMSW MROM 
LGS MROM STC fast path 
LSS MROM STD fast path 
LEA fast path ST MROM 
LEAVE double dispatch 60 STOS MROM 
LGDT MROM STOSB MROM 
LIDT MROM STOSW MROM 
LLDT MROM STOSD MROM 
LMSW MROM STR MROM 
LODS MROM SUB fast path 
LODSB MROM TEST fast path 
LODSW MROM 65 VERR MROM 
LODSD MROM WERW MROM 
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TABLE 1-continued 

x86 Fast Path, Double Dispatch, and MROM Instructions 

X86 Instruction Instruction Category 

WBINVD MROM 
WRMSR MROM 
XADD MROM 
XCHG MROM 
XLAT fast path 
XLATE fast path 
XOR fast path 

Note: Instructions including an SIB byte are also considered double dispatch 
instructions. 

In accordance with the above disclosure, a branch pre 
diction unit has been shown which stores a set of branch 
Selectors corresponding to a group of contiguous instruction 
bytes within an instruction cache. The Set of branch Selectors 
identify, for each byte within the group of contiguous 
instruction bytes, which branch prediction should be used to 
form a Subsequent fetch address. Additionally, the branch 
prediction unit Stores a predicted branch Selector. The pre 
dicted branch Selector is used to Select the branch prediction 
for forming the Subsequent fetch address, and is Subse 
quently verified by comparison to a Selected branch Selector 
from the set of branch selectors. The selected branch selector 
is Selected in response to the fetch address. Advantageously, 
the process of Selecting a branch Selector from the Set is 
removed from the path of generating a branch prediction. 
The branch prediction process may be more rapid than 
would otherwise be achievable, and branch prediction accu 
racy may be maintained by Verifying the predicted branch 
Selector with the selected branch selector. 
Numerous variations and modifications will become 

apparent to those skilled in the art once the above disclosure 
is fully appreciated. It is intended that the following claims 
be interpreted to embrace all Such variations and modifica 
tions. 
What is claimed is: 
1. A branch prediction unit comprising: 
a branch prediction Storage coupled to receive a fetch 

address, wherein Said branch prediction Storage is con 
figured to Select a predicted branch Selector Stored 
therein in response to Said fetch address, and 

a Selection device configured to Select a Subsequent fetch 
address from at least two Selectable addresses, Said 
Selection device responsive to Said predicted branch 
Selector. 

2. The branch prediction unit as recited in claim 1 wherein 
Said predicted branch Selector is coded to Select one of Said 
at least two Selectable addresses, and wherein Said one of 
Said at least two Selectable addresses comprises an address 
Selected during a previous clock cycle in which Said fetch 
address is presented. 

3. The branch prediction unit as recited in claim 1 wherein 
at least a first one of Said at least two Selectable addresses is 
derived from a first branch prediction stored in said branch 
prediction Storage, and wherein Said first branch prediction 
is Selected in response to Said fetch address. 

4. The branch prediction unit as recited in claim3 wherein 
a Second one of Said at least two Selectable addresses 
comprises a Sequential address. 

5. The branch prediction unit as recited in claim 4 wherein 
Said at least two Selectable addresses comprises a third 
address, and wherein Said third address is derived from a 
Second branch prediction Stored in Said branch prediction 
Storage, and wherein Said Second branch prediction is 
Selected in response to Said fetch address. 
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6. The branch prediction unit as recited in claim 5 wherein 

Said at least two Selectable addresses further comprises a 
fourth address, and wherein Said fourth address is a return 
address corresponding to a return instruction. 

7. The branch prediction unit as recited in claim 1 wherein 
Said branch prediction Storage is configured to Store a 
plurality of branch Selectors corresponding to a group of 
contiguous instruction bytes corresponding to Said fetch 
address. 

8. The branch prediction unit as recited in claim 7 wherein 
at least one of Said plurality of branch Selectors is equal to 
Said predicted branch Selector. 

9. The branch prediction unit as recited in claim 7 further 
comprising a Second Selection device configured to Select 
one of Said plurality of branch Selectors in response to Said 
fetch address. 

10. The branch prediction unit as recited in claim 9 further 
comprising a comparator coupled to receive Said one of Said 
plurality of branch Selectors and Said predicted branch 
Selector, wherein Said comparator is configured to compare 
Said one of Said plurality of branch Selectors to Said pre 
dicted branch Selector. 

11. The branch prediction unit as recited in claim 10 
further comprising an update unit coupled to Said 
comparator, wherein Said update unit is configured to detect 
a misprediction if Said comparator indicates inequality. 

12. The branch prediction unit as recited in claim 11 
wherein Said update unit is configured to update Said pre 
dicted branch Selector within Said branch prediction Storage 
to indicate Said one of Said plurality of branch Selectors if 
Said comparator indicates inequality. 

13. A method for generating a Subsequent fetch address 
from a fetch address in a microprocessor, comprising: 

reading a predicted branch Selector from a branch predic 
tion Storage responsive to Said fetch address, 

predicting Said Subsequent fetch address responsive to 
Said predicted branch Selector; and 

Verifying that Said predicted branch Selector corresponds 
to Said fetch address. 

14. The method as recited in claim 13 wherein said 
Verifying comprises Selecting one of a plurality of branch 
Selectors from Said branch prediction Storage, Said plurality 
of branch Selectors corresponding to a group of contiguous 
instruction bytes corresponding to Said fetch address. 

15. The method as recited in claim 14 wherein said 
Verifying further comprises comparing Said one of Said 
plurality of branch Selectors to Said predicted branch Selec 
tor. 

16. The method as recited in claim 15 further comprising 
correcting Said fetch address if Said comparing indicates 
inequality between Said one of Said plurality of branch 
Selectors and Said predicted branch Selector. 

17. The method as recited in claim 13 wherein said 
predicting comprises Selecting one of at least two addresses 
responsive to Said predicted branch Selector. 

18. The method as recited in claim 17 wherein at least one 
of Said at least two addresses is derived from a branch 
prediction corresponding to Said fetch address. 

19. The method as recited in claim 18 wherein another one 
of Said at least two addresses is a Sequential address. 

20. A microprocessor comprising: 
an instruction cache configured to Select a group of 

contiguous instruction bytes Stored therein responsive 
to a fetch address, and 

a branch prediction unit coupled to receive Said fetch 
address, wherein Said branch prediction unit is config 



5,954,816 
29 

ured to Select a predicted branch Selector responsive to 
Said fetch address, and wherein Said branch prediction 
unit is configured to generate a Subsequent fetch 
address response to Said predicted branch Selector, and 
wherein Said branch prediction unit is configured to 
Verify Said predicted branch Selector by Selecting one of 
a plurality of branch Selectors corresponding to Said 
fetch address and comparing Said one of Said plurality 
of branch Selectors to Said predicted branch Selector. 

21. The microprocessor as recited in claim 20 wherein 
Said predicted branch Selector is coded to Select one of at 

30 
least two Selectable addresses, and wherein Said branch 
prediction unit is configured to generate Said Subsequent 
fetch address by Selecting Said one of Said at least two 
Selectable addresses responsive to Said predicted branch 
Selector. 

22. The microprocessor as recited in claim 21 wherein at 
least one of Said two Selectable addresses is derived from a 
branch prediction Stored by Said branch prediction unit. 


