»UK Patent  .,GB

2921135 1D

(45)Date of B Publication 02.06.2021

(54) Title of the Invention: CONfiguring thread scheduling on a multi-threaded data

processing apparatus

(51) INT CL: GO6F 9/30 (2018.01) GO6F 9/48 (2006.01)

(21) Application No: 1321841.7
(22) Date of Filing: 10.12.2013
(43) Date of A Publication 17.06.2015

(56) Documents Cited:

US 20100082944 A1 US 20090307698 A1
US 20070266387 A1

(58) Field of Search:

As for published application 2521155 A viz:

INT CL GO6F
Other: Online: WPI, EPODOC, TXTE
updated as appropriate

Additional Fields
Other: None

(72) Inventor(s):

Cedric Nugteren
Anton Lokhmotov

(73) Proprietor(s):
ARM Limited

(Incorporated in the United Kingdom)
110 Fulbourn Road, Cherry Hinton, CAMBRIDGE,
CB1 9NJ, United Kingdom

(74) Agent and/or Address for Service:

D Young & Co LLP
120 Holborn, LONDON, EC1N 2DY, United Kingdom

d S49l1¢4¢ 899



1/16

SOURCE PROGRAM |28 10

22
ey 6 7

. EXPLICIT "y
: SPECIFICATION | EXECUTABLE BINARY
7 OF VAL UE EXECUTABLE BINARY

; 20 21 12

i DATA PROCESSING
THREAD SCHEDULE | CONTROL
SELECTION SIGNAL | PARAMETER| APPARATUS (GPU)

THREAD THREAD SCHEDULE
SCHEDULING CONFIGURATION |~18

16 § CIRCUITRY STORAGE

MULTI-THREAD EXECUTION CIRCUITRY 14

213241

CONTROL - PERFORMANCE DATA

PERFORMANCE CONTROL
CIRCUITRY

34 36

32
IPC ||[ENERGY|| CACHE
COUNT || USE || MISSES

PERFORMANCE DATA

LINE SIZE LINE SIZE CACHE

if—— e if— e

= ==

+
FIG. 1



2/16

EXAMPLE CODE A: VARIANT B:
TID=@:
y =(0..3){ <«——————————— THESE LINES
K= (0.3)4 SWITCHED
OR

TARGET [TID] = (xy)

TID++: ) l_lt
++
| SUBSTITUTE = (

NEXT x : ¥, X
NEXT y
(ROW MAJOR ORDERING) (COLUMN MAJOR ORDERING)
40 42

CACHE ACCESSES CACHE ACCESSES
LINE 0 [INE
SELECTED V LINEO SELECTED V

THREAD THREAD
SCHEDULE V LINE 1 SCHEDULE V LINE 1

RDER | |- RDER | |12
0 4 ——[[INE> 0 T ——[TINE?
- P ——
| MAXVENORY [ MAXMEMORY
SPACE DISTANCE SPACE DISTANCE

FIG. 2



3/16

\

/.
ey

(uwn|o9 Jad) Adoo-x1ew

Nz |7
NV
A

UONN|OAUOD || AQ |}

£ Old

NONNNARCTARNNN
27777889777

(moJ Jad) Adoo-xijew

(8SIM-|092) abewl [eiba)ul

———(f=})peaiy—

uonealdnjnw xuew

Spealy)
c ¢ L 0

N\

(8SIM-m0J) abew! [ribajul



4/16

sequentlal stride (2,2)
2|gzag (4 1) tile (4,2,2) Hllbert( )

' l

AL
A/,
%
AN
=7

A/
’@%
/

A
L

o ‘%
R

FIG. 4

8

s

/|

/|

V
A/, l
g | 4
‘5




5/16

STRIDE VALUES
OF 2N ANALYSED THREAD SCHEDULES
N=0 0.1.23 4.
N=1 0,2,40,8.... NB
"MODULO
N=2 0.4.812 1. 15"
N=3 0.819 2.
FIG. 5A
<
—
QN
o TILE DIMENSIONS
ANALYSED:
o0
—

(2,1) (4,1)
g b oo -
“~H HH HEH
A -

(
(«4\@

2,

2) (2,4) (4,2)

FIG. 5B



6/16

TEST TARGET FOR PERFORMANCE ANALY SIS

TARGET DATA

SET

(999,999)

FIG. 6A

SUBSET OF THREADS
FOR PERFORMANCE
D=0 ANALYSIS PROCESS TTD = 990 89

OFFSET .
\}illllllllllllllllllllllllllllllllllllll‘(
T T7171"

ALL THREADS TO BE EXECUTED
H_J H_/

WORKGROUP @ WORKGROUP 1
(512 THREADS) (512 THREADS)

ETC.—

18 02 14

DATAPROCESSING | 5
APPARARTUS

52 (GPU)

CORE CORE 54
1024 THREADS| 1024 THREADS
56

(1 CACHE 1 CACHE P28

19 CACHE 60

MEMORY
FIG. 6B



7116

14°

8§

7

09
0§

.

‘% 5157 Joof
IS Al

.

7

/.

9§

N\

%’
gzl NN NN

Q9 Dl

7 19|npayos

5%
2 NN

MARN

Z
\n\

/

/// 7._ //

0 98\

JAARNRR

| Ja|npayos




8/16

100
DATA PROCESSING
THREAD SCHEDULE | 120 APPARATUS (GPU)
SELECTION SIGNAL
114
THREAD SCHEDULE
JOBMANAGER | CONFIGURATION 122

v STORAGE
102
116
™~ 118 126 194

— vy~ 7
L Y f—
RANDOMLY

‘ RANDOMLY
THREAD |~ THREAD

ACCESSIBLE | ACCESSIBLE
SCHEDULER [ THREAD POOL SCHEDULER [*+ THREAD POOL

I I 132 I I 132
I — I I
1128 /130 1128 —130
I — I I I -
I I I I I I
I I I I I I
— — — — — —
I I I I I I
- — I I — I

L1 CACHE L1 CACHE

106 108
110

FIG. 7



9/16

SELECT MINORITY SUBSET OF ALL
THREADS FOR ANALY SIS AT AN

OFFSET FROM START OF THREADS | M202
(.E. FROM THREAD ID = @)

DEFINE SUBSET FROM
MINORITY SUBSET
SET THREAD SCHEDULE
SELECTION SIGNAL

CONTROL

PARAMETER

TO SET
7

SET CONTROL PARAMETER
216
EXECUTE THIS SUBSET OF THREADS IN
‘TEEQ;ER%STNETFEQOL SELECTED ORDER. GATHERING PERFORMANCE DATA

18 02 14

(E.G. NEXT N
FOR STRIDE = 2M

ITERATION

Y OF CONTROL
PARAMETER? 214
N 218
A ANOTHER
222 - SUBSET & THREAD %

_____ D B SCHEDULE TO ANALYSE
' REPEAT PERFORMANCE ?
. ANALYSIS PROCESS |
| AFTER SET ; N

. TIMEINTERVAL/ i [DETERMINE PREFERRED THREAD | ~220
. #EXECUTED THREADS SCHEDULE & APPLY

FIG. 8



10/16

RECEIVE EXECUTABLE
BINARY 242

SELECT THREAD SCHEDULE
CONFIGURATION FROM

STORED THREAD SCHEDULE [\244

<t CONFIGURATIONS

<

>

- SELECTION SIGNAL 246
o0

-

FIG. 9



18 02 14

PERFORMANCE DATA

11/16

SOURCE PROGRAM

ANALYSIS FUNCTION 300

MEMORY ACCESS 302
DETERMINATION

SIMILARITY METRIC 304
CALCULATION
THREAD SCHEDULE 306

SELECTION & l
CONTROL

VALUE ANNOTATION

28

COMPILER

308

THREAD SCHEDULE
PARAME TER II CONFIGURATION
SELECTION . STORAGE

EXECUTABLE GENERATION
& THREAD SCHEDULE SELECTION

310

DATA PROCESSING
APPARATUS (GPU)

PERFORMANCE CONTROL 30
CIRCUITRY

FIG. 10

26

12



12/16

THREAD |MEMORY ACCESSES

SIMILARITY
METRIC

2/3

18 02 14

SIMILARITY METRIC
ALLOWING 0 < 2

FIG. 11B



13/16

RECEIVE SOURCE PROGRAM  |320

DETERMINE SET OF MEMORY
ACCESSES TO BE PERFORMED |~322
BY ANALY SIS MINORITY SUBSET

OF THREADS

CALCULATE SIMILARITY METRIC WITH 324
DISTANCE METRIC 0 SET IN
DEPENDENCE ON CACHE LINE LENGTH

SELECT THREAD SCHEDULE CONFIGURATION 326
TO REDUCE/MINIMISE ORDERING DISTANCE
OF HIGHLY CORRELATED PAIRS OF THREADS

18 02 14

GENERATE EXECUTABLE ANNOTATED
WITH THREAD SCHEDULE SELECTION 3238

VALUE (DEFINITION)

PROVIDE EXECUTABLE TO GPU b330

FIG. 12



14/16

23
SOURCE PROGRAM

COMPILER

26
ANALYSIS FUNCTION 400

404
THREAD SCHEDULE -~ 4V2

SELECTION & THREAD SCHEDULE
CONTROL | {"| CONFIGURATION
PARAMETER STORAGE
SELECTION I

(PARTIAL) EXECUTABLE GENERATION
& THREAD SCHEDULE SELECTION
VALUE ANNOTATION

406

18 02 14

GPU SIMULATION

PERFORMANCE DATA
V1V FONVINHOdddd

410
GPU CACHE MODEL

412
PERFORMANCE CONTROL
FUNCTION

DATA PROCESSING APPARATUS |/ 12
(GPU)

FIG. 13



15/16

RECEIVE SOURCE PROGRAM P~ 49U

SELECT (NEXT) THREAD SCHEDULE | 4.
CONFIGURATION AND/OR CONTROL

PARAMETER SELECTION

GENERATE (PARTIAL) EXECUTABLE 454
WITH ANNOTATED THREAD SCHEDULE
SELECTION VALUE

456

AN} HARDWARE SIMULATION SIMULATION
OR HARDWARE

M EXECUTION

QN ’

-

O 458 PASS (PARTIAL)EXECTABLE

™— PASS EXECTABLE TO TO GPU SIMULATION
GPU FOR EXECUTION 462 COR EXECUTION

RECEIVE PERFORMANCE 460 RECEIVE PERFORMANCE
DATA FROM PERFORMANCE 464~ DAIA FROM PERFORMANCE

CONTROL CIRCUITRY CONTROL CIRCUITRY

463 GENERATE FINAL

4606 EXECUTABLE FOR
GPUANNOTATED WITH
y ANOTHER THREAD N THREAD SCHEDULE

SCHEDULE OR CONTROL
PARAMETER SETTING
TO TEST?

SELECTION VALUE
WHICH GAVE
PREFERRED

PERFORMANCE
DATA

FIG. 14



18 02 14

TS A ST S S Y Y Y Y YYD

L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L

L B B B B B U B U B B R B B B B B B N B B B B N
L B B B B B B B U L O N

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

16/16

TS S S ST Y Y YY Y YY Y WS

L B B B B e
L B B B BN B B B A B A B B B B B B B B B B B N

L L L L U L L L L L L L L L L L L L L L L L L L L L L L L L

AR R L L L L L L L e

-

- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
LY L)
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -

L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5038

TS A S ST Y Y Y Y Y Y YY Y YSY AN

L L L L L D L L L L L L L L L L L L L L L L L L L L L L L L L L L

TS A S 00 S 0SS S TS S S S S S S S SSSSSSS S S S S S S AN

TS HE S 00000 S 0SS0 S S S S S S S S S S S S S S S S SS S SAS

DISPLAY
DRIVER

w
0SS E S S S ESE S S S S SN

TS E 000000 S S S S S S S SSSSSSYSERSSS S S S S S S AS

USER
/O

FIG. 15




10

15

20

23

30

CONFIGURING THREAD SCHEDULING ON A MULTI-THREADED DATA
PROCESSING APPARATUS

FIELD OF THE INVENTION

The present invention relates to data processing. More particularly, the present
invention relates to the scheduling of multiple threads executed on a multi-threaded

data processing apparatus.

BACKGROUND OF THE INVENTION

Data processing apparatuses which are programmed i1n a single program
multiple data (SPMD) fashion to then execute multiple threads to perform the required
data processing, 1n particular graphics processing units (GPUs), have grown in
capability and 1indeed have emerged as a popular platform for non-graphics
computations. Through programming models such as OpenCL, Renderscript and
CUDA, programmers can use these massively parallel architectures for computational
domains such as linear algebra, image processing and molecular science. The
increased popularity of such devices has made programmability, maintainability and
portability 1ssues of major importance.

SPMD programming models such as those mentioned above are
advantageously flexible 1n that they allow the programmer to specity the independence
of threads, removing ordering constraints. However, this very flexibility also places a
burden on the programmer, because of the effect that the particular manner 1n which
the threads are programmed can have on the architecture performance. As such,
programmers are still required to manually perform data-locality optimizations such as
memory coalescing or loop tiling, and to take into account GPU architectural
characteristics such as the core count and the on-chip memory hierarchy. Furthermore,
the programmer’s freedom to determine the allocation of the threads to workgroups (in
OpenCL) / blocks (in CUDA) may be desirable from a pure programming point of
view but can negatively affect the GPU’s scheduling freedom and cache performance.

Previously, cache-locality aware thread scheduling has been investigated for

non-GPU processor architectures. For example, J. Philbin, J. Edler, O. J. Anshus, C.
C. Douglas, and K. Li, “Thread Scheduling for Cache Locality”, in ASPLOS ’96:



10

15

20

23

30

Architectural Support for Programming Languages and Operating Systems, ACM,
1996 formulises the problem of locality-aware thread scheduling for a single-core
processor. A metric of thread similarity 1s proposed 1in R. Thekkath and S. J. Eggers.
“Impact of Sharing-Based Thread Placement on Multithreaded Architectures”, 1n
ISCA-21: International Symposium on Computer Architecture, IEEE, 1994 and 1n D.
Tam, R. Azimi, and M. Stumm, “Thread Clustering: Sharing-Aware Scheduling on
SMP-CMP-SMT Multiprocessors”, 1n EuroSys ’07: 2nd European Conference on
Computer Systems. ACM, 2007. However these approaches cannot be applied
directly to multi-threaded architectures such as GPUs, as they do not take into account
aspects such as: scalability to many threads, cache sizes, the thread-warp-block
hierarchy, or the active thread count.

Other recent work on GPUs has investigated the potential of scheduling tewer
active threads to improve cache behaviour. See for example, O. Kayiran, A. Jog, M.
T. Kandemir, and C. R. Das, “Neither More Nor Less: Optimizing Thread-level
Parallelism for GPGPUs”, Technical Report CSE-12-006, The Pennsylvania State
University, 2012 and T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-
Conscious Wavefront Scheduling” in MICRO-45: International Symposium on
Microarchitecture, IEEE, 2012. These works propose to adapt the number of
simultaneously active threads at run-time or compile-time, but do not consider thread
scheduling.

Warp scheduling, 1n particular for NVIDIA and AMD GPUs has been widely
discussed. However, this work has mainly focussed on the 1ssue of divergent control
flow and how this can be addressed. Examples may be found in: A. Lashgar, A.
Baniasadi, and A. Khonsari, “Dynamic Warp Resizing: Analysis and Benefits in High-
Performance SIMT”, in ICCD: 30th International Conference on Computer Design,
IEEE, 2012; 1n J. Meng, D. Tarjan, and K. Skadron, “Dynamic Warp Subdivision for
Integrated Branch and Memory Divergence Tolerance”, in ISCA-7: International
Symposium on Computer Architecture, ACM, 2010; in M. Gebhart, D. R. Johnson, D.
Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm, and K. Skadron, “A Hierarchical
Thread Scheduler and Register File for Energy-Efficient Throughput Processors”,
ACM Transactions on Computer Systems, 30:8:1-8:38, 2012; in A. Jog, O. Kayiran,
N. C. Nachiappan, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,



10

15

20

23

30

“OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving
GPGPU Performance”, in ASPLOS ’13: International Conference on Architectural
Support for Programming Languages and Operating Systems, ACM, 2013; and in V.
Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt,
“Improving GPU Performance via Large Warps and Two-level Warp Scheduling,” in
MICRO-44: International Symposium on Microarchitecture, ACM, 2011.

There remains the potential to improve the performance of a multi-threaded

data processing apparatus (such as a GPU).

SUMMARY OF THE INVENTION

Viewed from a first aspect, the present invention provides an apparatus for
performing data processing in a single program multiple data fashion on a target data
set, the apparatus comprising:

execution circuitry configured to execute multiple threads to perform the data
processing;

thread schedule configuration storage configured to store information defining
a plurality of thread schedule configurations, each thread schedule configuration
defining an order in which the multiple threads are to be executed by the execution
circuitry; and

thread scheduling circuitry configured to cause the execution circuitry to
execute the multiple threads 1n a selected order defined by a selected thread schedule
configuration of the plurality of thread schedule configurations in response to a thread
schedule selection signal.

The 1nventors of the present invention have found that the performance of a
multi-threaded data processing apparatus which 1s programmed 1n a single program
multiple data (SPMD) fashion to execute multiple threads concurrently to perform the
data processing, for example measured 1n the terms of instructions-per-cycle (IPC),
can vary widely in dependence on the thread scheduling policy with which the
apparatus 1s configured to operate. This data processing may for example be a
graphics processing task, but 1s not limited thereto and could (as mentioned above for
the diverse applications that GPUs now find) be a non-graphics task, such as related to

linear algebra or molecular science. Staying with an example of graphics processing,



10

15

20

23

30

when considering five different styles of thread scheduling, namely simple sequential,
“stride” (having a configurable stride length and granularity), “zigzag” (1n a 2D gnd of
threads, reversing the ordering of odd rows), “tiled” (2D sub-tiling within a 2D grid of
threads), and a “Hilbert curve” (a space filling fractal for traversing a 2D grid) and
testing a number of configuration of each of these styles using six different benchmark
processing tasks, namely an integral image (row-wise) calculation, an integral 1mage
(column-wise) calculation, an 11 by 11 convolution, a matrix multiplication, a matrix
copy (per row) and a matrix copy (per column), the inventors investigations have
shown that wide performance variation results. The present invention addresses this
1ssue by providing the apparatus with a thread schedule configuration storage which 1s
configured to store information defining a plurality of thread schedule configurations
which define an order in which the multiple threads are to be executed by the
execution circuitry. Information defining a great number of different thread schedule
configurations can be stored 1n the thread schedule configuration storage thus allowing
the apparatus advantageously to be reconfigured in the manner in which it schedules
its threads for execution. This reconfiguration may for example be in dependence on
the particular kind of data processing which the apparatus 1s required to perform, the
nature of the target data set on which that data processing 1s performed and / or the
particular architectural arrangement of the apparatus. In order to implement one of the
stored thread schedule configurations, thread scheduling circuitry 1s provided which 1s
responsive to a thread schedule selection signal to cause the execution circuitry to
execute the multiple threads 1in accordance with a corresponding selected thread
schedule (1.e. to execute the multiple threads in the particular order defined by that
selected thread schedule). The thread schedule selection signal itself may come from a
number of different sources either internal to the apparatus or external to it, and this
further provides an advantageous degree of flexibility in the adaptability of the
apparatus to different processing requirements.

In some embodiments, the apparatus may further comprise performance control
circuitry configured to gather performance data relating to the data processing
performed by the execution circuitry and to generate the thread schedule selection
signal 1n dependence on the performance data. Accordingly, the thread schedule

selection signal may be generated within the apparatus 1itself, in particular by circuitry



10

15

20

23

30

which monitors the performance of the execution circuitry in carrying out the data
processing and then generates the thread schedule selection signal in dependence on
that performance observation. The performance control circuitry may for example
change the thread schedule selection circuitry to cause the execution circuitry to switch
to a new thread schedule configuration which can be expected to change one or more
performance metrics represented by the performance data. Typically desirable
performance improvements are to increase the instruction throughput (1.e. IPC) or to
reduce energy consumption.

In some embodiments the performance control circuitry 1s configured to
control a performance analysis process, the performance analysis process comprising
the steps of:

selecting a minority subset of the multiple threads which are to be executed;

controlling the execution circuitry to execute a first subset of the minority
subset of the multiple threads 1n a first selected order defined by a first thread schedule
configuration;

changing the thread schedule selection signal to cause the execution circuitry to
execute a next subset of the minority subset of the multiple threads 1in a next selected
order defined by a next thread schedule configuration; and

repeating the changing step until all threads of the minority subset of threads
have been executed by the execution circuitry,

wherein the performance control circuitry 1s configured to set the thread
selection signal to cause the execution circuitry to execute a majority remaining subset
of the multiple threads which are to be executed to perform the data processing on the
target data set in an order defined by a selected thread schedule tested in the
performance analysis process.

The performance control circuitry may therefore be configured to participate 1n
an essentially empirical approach to selecting the appropriate thread schedule
configuration to define the order in which the execution circuitry schedules the
multiple threads. This may be advantageous due to the number of different possible
thread schedule configurations and the number of different data processing contexts in
which the apparatus may be required to perform data processing, which may 1in some

situations make a more analytical approach difficult to the point of being impractical.



10

15

20

23

30

Accordingly, the performance analysis process controlled by the performance control
circuitry takes an iterative approach in which a number of different thread schedule
configurations are tested and the performance data i1s gathered for each, such that
finally, the performance control circuitry can set the thread selection signal such that
the execution circuitry thereafter continues to perform its data processing using the
thread schedule configuration which (on the basis of the performance data gathered)
has been determined to be preferable (as mentioned above this “preference” can take a
number of forms depending on the context). Moreover, the performance analysis
process 18 performed on a minority subset of the multiple threads which are to be
executed. In other words, the performance control circuitry selects a small test sample
group of threads from amongst all the multiple threads which are required to be
executed and controls the performance analysis to be carried out on that test sample.
Thereafter (1.e. when the performance analysis performance 1s complete) the selected
thread schedule configuration is used by the execution circuitry to order the majority
of the multiple threads which are to be executed, 1.e. the larger part of all threads to be
executed remaining after the performance analysis process has been performed on an
initial “test” subset.

In some embodiments the first subset and next subset each correspond to a
workgroup of threads, wherein a workgroup of threads i1s a selected subset of the
multiple threads defined by a programmer of the apparatus or set by default. A
“workgroup” (in OpenCL terminology) or a “block” (in CUDA terminology)
represents a grouped together number of threads (which may be defined by the
programmer, although this can also be left to a default setting) which are to be
allocated to a processor core together for execution and such a grouping may therefore
provide a suitable subset of the threads selected by the performance control circuitry to
be the subject of the performance analysis process for testing at each iteration of the
performance analysis process.

In some embodiments at least some of the plurality of thread schedule
configurations are further configured in dependence on a control parameter and the
performance analysis process further comprises gathering performance data relating to
the data processing performed by the execution circuitry for a plurality of values of the

control parameter. A great range of thread schedule configurations may be envisaged



10

15

20

23

30

(some examples of which are mentioned above) but not only may there be a range of
“styles” of thread schedule configuration (e.g. sequential, stride, tiled etc.) but some of
these styles of thread configuration may lend themselves to further configuration (e.g.
the stride length or tile size) and 1n such situations 1t 1s advantageous 1f the
performance analysis process further gathers performance data for a range of values of
the control parameter. For example, this may take the form of a nested loop within the
iterative procedure of the performance analysis procedure of the performance analysis
process, wherein an outer loop iterates over different styles of thread schedule
configuration, whilst an inner loop iterates over the range of values of the control
parameter. Further, it should be appreciated that whilst some thread schedule
configurations may be configured in dependence on a single control parameter, other
thread schedule configurations may be configured on two or more control parameters
(e.g. 1n a stride style thread schedule configuration one control parameter may
determine the stride length, whilst another control parameter may determine the
granularity (1.e. how may threads are taken as a group at each stride interval)). This
granularity could for example correspond to a warp or thread block granularity.

In 1terating over the plurality of values of the control parameter in the
performance analysis process the manner in which the particular values of the control
parameter that are tested are chosen could take a variety of different forms. For
example, whilst the control parameter could be simply incremented, a function may be
applied to determine the next iteration of the control parameter value. For example, in
some embodiments the plurality of values of the control parameter corresponds to a
geometric progression of the control parameter. This can be advantageous because of
the greater range of values of the control parameter 1t enables the performance analysis
to test 1n a limited number of iterations. This may enable the performance analysis
process to more rapidly identify (at least roughly, perhaps then to be followed by a
more detailed performance analysis process focussed on control parameter values in
that region) the appropriate setting for the control parameter value. The geometric
progression may take a number of different forms, but in some embodiments the
geometric progression 1s powers of two of the control parameter. Powers of two of the

control parameter may be advantageous because of 1its relatively simple



10

15

20

23

30

implementation combined with its potential to correspond to a typical data block sizes
and patterns 1n data processing algorithms.

The control parameter may control aspects of various different thread schedule
configurations, but in some embodiments the control parameter 1s a stride value, the
stride value determining a number of threads which are skipped to find a next thread in
the selected order, the next thread in the selected order being determined subject to a
modulo of a total number of the multiple threads. The next thread in the selected order
1s determined subject to a modulo of the total number of the multiple threads such that
the ordering of the threads “wraps around” approprnately within the full set of threads.
As mentioned above, this stride value could also be associated with the further
granularity control parameter defining the number of threads which are taken together
at each stride interval.

In some embodiments the control parameter 1s at least one tiling dimension
value, the tiling dimension value determining a dimension of tiles within an at least
two-dimensional coordinate space of the threads, and wherein the selected order
causes the execution circuitry to execute the multiple threads on a tile-by-tile basis.
Accordingly, the thread schedule configuration may define a thread ordering in which
the threads are scheduled on the basis of tiles within a two-dimensional coordinate
space of the threads. Higher dimension coordinate spaces are also envisaged. Whilst
only one tiling dimensional value may be provided, multiple tiling dimension values
are also envisaged, both 1n terms of, say, the x and y dimensions of the defined tile, but
also defining for example the length of a row in the two-dimensional coordinate space,
where the sequential numbering system used for the threads 1s only defined one-
dimensionally.

Whilst the data processing which the apparatus performs after the performance
analysis process has completed may be relatively uniform in its configuration
requirements, 1t 1s recognised that these requirements may change over time, for
example where the particular application being performed by the data processing
changes and accordingly in some embodiments the performance control circuitry 1s
configured to repeat the performance analysis process at predetermined intervals.

These predetermined intervals may be selected as appropriate for the particular system



10

15

20

23

30

requirements, for example the interval may be a time interval, a number of threads
completed, a number of 1image frames processed, and so on.

When selecting the minority subset of the threads on which the performance
analysis process 1s to be carried out, 1t may be advantageous to avoid a first set of
threads which are to be found at the beginning of all the multiple threads (1.e. 1n a
sequential numbering system of the threads, those threads which have a first sequence
of thread numbers). For example, in the context of 1image processing, and where
thread numbers are allocated to pixel locations 1n a traditional raster scan fashion, it
may be the case that data processing performed by threads assigned to the corners
and/or edges of each image frame may not represent “typical” data processing (for
example, where a blur or convolution 1s performed using a 3x3 set of pixels around the
current pixel, then threads on the edge will proceed into special if-statements to handle
the fact that there are no pixels above or left of the current pixel. They will thus have a
different control flow and most probably also different memory accesses).
Accordingly 1in some embodiments the performance control circuitry 1s configured to
select the minority subset of the threads to start at a predetermined offset from a
beginning of all the multiple threads. This enables the performance analysis process to
be carried out on a minority subset of the threads which 1s at least more “typical” of
the bulk of the data processing to be performed.

As mentioned above, the performance data gathered by the performance
control circuitry may take a number of different forms, but in some embodiments the
performance control circuitry 1s configured to measure a performance versus time
taken metric for the data processing as the performance data. For example, this may
be parameterised 1n the form of an instructions per cycle (IPC) count or could for
example be a time measurement for a specific performance benchmark to complete.

Alternatively, or 1n addition, in some embodiments the performance control
circuitry 1s configured to measure an energy use metric for the data processing as the
performance data. This could for example be the (estimated) energy consumed by the
apparatus when performing a predetermined data processing task. The energy
consumption could for example be estimated by counting high-energy operations such
as floating point add/multiply, 1nstructions fetches and data moves between L1 and L2

caches and memory. By assigning a nominal energy cost at each operation 1t 1s



10

15

20

23

30

10

possible to estimate the total energy used. In addition, the static energy used could be
determined by measuring the number of active cycles for each monitored unit and
having a nominal energy cost per cycle (equals power) for each unit. Alternatively,
explicit circuitry to measure the energy used directly may be provided.

Alternatively, or 1n addition, in some embodiments the performance control
circuitry comprises at least one event counter configured to count occurrences of a
predetermined event during the data processing as the performance data. There are a
number of predetermined events which could be counted in this way, but 1n some
embodiments the predetermined event 1s a cache miss 1n a cache which forms part of
the apparatus. It 1s recognised that improved data processing performance may be
strongly correlated with efficient use of a cache structure and monitoring cache misses
may therefore be a particularly useful metric.

The cache 1n which the cache misses are monitored may for example be an L1
cache provided 1n association with a particular processor core, but 1n some
embodiments the execution circuitry comprises multiple processor cores and the cache
1s shared by the multiple processor cores (e.g. such as an L2 or last level cache).

In some embodiments the apparatus may be further configured to receive the
thread schedule selection signal from an external source. This provides a further
advantageous degree of configurability to the apparatus. The external source may take
a variety of forms, such as being an explicit input to the apparatus such that the system
user can intervene to specify a particular thread schedule configuration which should
be used. Alternatively, the thread schedule selection signal may be encapsulated in a
program received by the apparatus and 1n this case the thread schedule selection signal,
perhaps 1n the form of a thread schedule selection value 1n that program, could on the
one hand have been explicitly set by the programmer, but 1t 1s also envisaged that this
value could be set by a compiler provided to generate an executable for the apparatus
on the basis of a source program. It should be noted that the thread schedule selection
value might be explicitly set as a value received by the apparatus from the compiler,
but could also be defined 1n terms of a function, for example which will be resolved 1n
the apparatus to determine the specific thread schedule selection value. For example

such a function could take, say, a workgroup number or thread number as a variable.



10

15

20

23

30

11

A variety of ways 1in which the compiler may determine such an appropriate thread
schedule selection are envisaged, as 1s described 1n more detail below.

Accordingly, in some embodiments the apparatus 1s configured to receive a set
of instructions defining the data processing to be performed in the single program
multiple data fashion on the target data set, wherein the thread schedule selection
signal 1s generated by the apparatus 1n dependence on a thread schedule selection value
definition associated with the set of 1nstructions.

The apparatus may be a multi-core device, and 1n some embodiments the
execution circuitry comprises multiple processor cores, the thread scheduling circuitry
comprises job manager circuitry, and the selected thread schedule configuration further
defines the allocation of threads to cores by the job manager circuitry. Accordingly, in
such a multi-core environment, i1t 1s recognised that not only may the ordering of
thread execution within a given processor core affect system performance (for example
because of the variation 1n usage efficiency of an L1 cache associated with that core),
but system performance 1s also dependent on the parallel execution of groups of
threads on parallel processor cores (for example 1n terms of usage efficiency of an L2
cache shared by those multiple cores), and thus configuring the thread schedule
configurations to further define the allocation of threads to cores by the job manager
circuitry enables an advantageous degree of control to be maintained over which
groups of threads are concurrently being executed on the parallel cores.

In some embodiments the thread scheduling circuitry further comprises
randomly accessible thread pool storage configured to store an indication of threads
which are immediately available for execution by the execution circuitry. Whilst
previously a thread scheduler within a processor core has typically retrieved a next
thread for scheduling from a thread pool 1n a first-come-first-served fashion, the
flexibility of the present techniques are enhanced by the provision of thread pool
storage which 1s randomly accessible to the thread scheduling circuitry. In other
words the thread scheduling circuitry 1s free to pick any thread of which an indication
1s currently stored 1n the thread pool storage, thus enabling a greater range of thread

schedule configurations to be implemented.



10

15

20

23

30

12

Viewed from a second aspect the present invention provides a method of
performing data processing in a single program multiple data fashion on a target data
set, the method comprising the steps of:

executing multiple threads to perform the data processing;

storing information defining a plurality of thread schedule configurations, each
thread schedule configuration defining an order in which the multiple threads are to be
executed 1n the executing step; and

controlling the execution of the multiple threads to be 1n a selected order
defined by a selected thread schedule configuration of the plurality of thread schedule
configurations in response to a thread schedule selection signal.

Viewed from a third aspect the present invention provides an apparatus for
performing data processing in a single program multiple data fashion on a target data
set comprising:

means for executing multiple threads to perform the data processing;

means for storing information defining a plurality of thread schedule
configurations, each thread schedule configuration defining an order in which the
multiple threads are to be executed by the means for executing multiple threads; and

means for controlling the execution of the multiple threads to be 1n a selected
order defined by a selected thread schedule configuration of the plurality of thread
schedule configurations in response to a thread schedule selection signal.

Viewed from a fourth aspect the present invention provides a method of
compiling a source program which defines data processing to be performed on an
apparatus 1n a single program multiple data fashion on a target data set, wherein the
apparatus cComprises:

execution circuitry configured to execute multiple threads to perform the data
processing;

thread schedule configuration storage configured to store information defining
a plurality of thread schedule configurations, each thread schedule configuration
defining an order in which the multiple threads are to be executed by the execution
circuitry; and

thread scheduling circuitry configured to cause the execution circuitry to

execute the multiple threads 1n a selected order defined by a selected thread schedule



10

15

20

23

30

13

configuration of the plurality of thread schedule configurations in response to a thread
schedule selection value, the method comprising the steps of:

selecting the selected thread schedule configuration in dependence on analysis
information derived from an analysis procedure carried out using the source program
as an 1nput; and

generating an executable program for the apparatus on the basis of the source
program, wherein the executable program 1s annotated with a definition of the thread
schedule selection value corresponding to the selected thread schedule configuration
selected 1n the selecting step.

Accordingly, the present invention envisages that the decision as to which
thread schedule configuration should be used by the apparatus may be taken externally
to the apparatus, and 1n particular as part of the process of compiling a source program
which defines the data processing to be performed by the apparatus. An analysis
procedure 1s carried out using a source program as an input and on the basis of the
results of that analysis procedure the selected thread schedule configuration 1s
determined. Thereafter, an executable program for the apparatus 1s generated on the
basis of the source program and the executable 1s annotated with a definition of the
thread schedule selection value which in turn will cause the appropriate selected thread
schedule configuration to be used.

The analysis procedure may take a variety of forms, depending on the
particular system, source program and performance constraints. For example, where
the source program will result 1in relatively static behaviour of the apparatus (1.e. the
manner in which the apparatus performs the data processing defined by the source
program does not significantly (or at all) change for subsequent executions of the same
executable program), the analysis procedure may take a more explicitly analytical
form wherein predictions about the expected performance behaviour of the apparatus
when executing the executable may be made. Alternatively, 1n situations in which the
source program 1s expected to result in a more dynamic behaviour (i.e. where the
performance behaviour varies more widely for subsequent iterations), for example
where the source program takes further inputs which will vary from execution iteration

to execution 1iteration, then the analysis procedure may take a more empirical form



10

15

20

23

30

14

where the compiler relies on some variety of performance data to inform its decision
making process.

In some embodiments, 1n which a static analysis 1s possible, the analysis
procedure comprises the steps of:

analysing the source program to determine a set of memory accesses which
will be performed by a set of threads of the multiple threads;

calculating a value of a similarity metric which quantifies correlations between
memory accesses for each pair of threads in the set of threads; and

selecting the selected thread schedule configuration such that the selected order
causes pairs of threads for which the value of the similarity metric indicates a high
correlation to be executed with a close ordering distance to one another 1n the selected
order.

This particular technique recognises that the performance of the apparatus may
benefit from pairs of threads which have respective sets of memory accesses which are
highly correlated with one another are placed close to one another in the selected
order. This 1s 1n particular because of the nature of the memory system of the
apparatus 1n which highly correlated memory accesses will tend to result 1n more
efficient usage of that memory structure, for example by memory accesses for each
thread being co-stored 1n a given cache line. Hence, the analysis procedure 1s
configured to first identify the memory accesses which will be performed by a set of
threads of the multiple threads and to then calculate, using a similarity metric, how
closely related those memory accesses are (in particular in terms of shared or
sequentially close memory addresses). A thread schedule configuration 1s then
selected which seeks, amongst the different possible thread schedule configurations, to
bring those pairs of threads which are determined to be highly correlated in terms of
memory accesses to closer positions to one another i1n the selected order. This then
increases the likelihood that, for example, cache locality benefits such as those
described above may result.

Nevertheless the present invention further recognises that a fully deterministic,
exhaustive static analysis of the similarity metric for all of the multiple threads to be
executed may prove to be prohibitively complex. For example, where the target data

set 1s a 1000 x 1000 two-dimensional data set and a thread 1s generated for each of



10

15

20

23

30

15

those one million data items the number of correlations which would need to be
determined to calculate the value of the a similarity metric covering all pairs of threads
(and therefore comprise 10°! permutations) this may be beyond the realms of current
practical possibility. Accordingly, in some embodiments the set of threads 1s a
minority subset of the multiple threads. By appropriately sizing the set of threads on
which the analysis procedure 1s carried out an acceptable trade off may be found
between the required processing to carry out the analysis procedure and the resulting
accuracy of the analysis procedure in terms of correct selection of an appropriate
thread schedule configuration.

In some embodiments the minority subset of the multiple threads 1s selected to
start at a predetermined offset from a beginning of all the multiple threads. As
explained above, where such a “test” subset of the multiple threads is being used, it
may be advantageous to select this test subset such that more typical data processing
for the threads 1s represented and this may involve avoiding selecting this test set such
that the target data values processed lie near edges or corners of a two dimensional
target data set.

In some embodiments the similarity metric quantifies correlations between
plural pairs of memory accesses for each pair of threads. It 1s advantageous 1f the
similarity metric 1s able to represent how well correlated a given pair of threads 1s with
respect to several memory accesses which are to be made by those threads. The choice
of how many pairs of memory accesses to analyse for each pair of threads 1s another
example of where a suitable trade off can be found between the computational
processing required to determine the value of this similarity metric and the resulting
accuracy of the prediction for the appropriate thread schedule configuration. In some
embodiments the similarity metric 1s configured 1in dependence on a distance metric
which determines a maximum memory space distance between two memory accesses
for which the two memory accesses can be determined by the similarity metric to have
a non-zero correlation. Accordingly, whilst 1t 1s clearly of benefit for a pair of threads
to be placed close to one another 1n the selected order where those threads make, at
least partially, the same memory accesses (1.e. to at least some i1dentical memory

locations), 1t 1s recognised that a certain memory space distance between two memory



10

15

20

23

30

16

accesses may nevertheless be allowable, i1f the proximity of these two memory
accesses can still result 1n performance benetit.

This memory space distance could take a number of forms. For example, 1n
one such embodiment the maximum memory space distance 1s given by a cache line
size 1n the data processing apparatus. This 1s due to the fact that as long as two
memory accesses fit within a given cache line, the resulting cache locality benefits
may be gained. In one embodiment the maximum memory space distance 1s given by
an ordering distance between two threads to which the two memory accesses belong.
This allows for a pair of threads to be placed close (but perhaps not to execute in lock-
step with one another) in the selected order and for the performance benefit to still
result.

In some embodiments at least some of the plurality of thread schedule
configurations are further configured in dependence on a control parameter. Similar
embodiments (mutatis mutandis with respect to the performance analysis process
carried out by performance control circuitry of the apparatus) have been described
above and are not repeated here for brevity. Similarly to the above described
embodiments, the geometric progression may take a number of different forms, but in
some embodiments the geometric progression 1s powers of two of the control
parameter.  Similarly to the above described embodiments, the control parameter
may control aspects of various different thread schedule configurations, but in some
embodiments the control parameter 1s a stride value, the stride value determining a
number of threads which are skipped to find a next thread in the selected order, the
next thread in the selected order being determined subject to a modulo of a total
number of the multiple threads. Similarly to the above described embodiments, in
some embodiments the control parameter 1s at least one tiling dimension value, the
tiling dimension value determining a dimension of tiles within at least a two-
dimensional coordinate space of the target data set, and wherein the selected order
causes the execution circuitry to execute the multiple threads on a tile-by-tile basis.

As mentioned above, the analysis procedure carried out as part of the method
of compiling the source program may take an at least partially empirical form and 1n

some embodiments the analysis procedure comprises:



10

15

20

23

30

17

test generating a test executable program for the data processing apparatus on
the basis of the source program, wherein the test executable program 1s annotated with
a test thread schedule selection value definition corresponding to a test thread schedule
configuration;

causing the test executable program to be executed on the apparatus, wherein
the apparatus further comprises performance control circuitry configured to gather
performance data relating to the data processing performed by the execution circuitry;

receiving the performance data from the apparatus;

repeating the test generating, causing and receiving steps, wherein the test
executable program 1s annotated with a new test thread schedule selection value
definition corresponding to a new test thread schedule configuration for each
repetition,

and 1n the generating step the thread schedule selection signal 1s generated 1n
dependence on the performance data.

In such an embodiment, the apparatus and compiler thus cooperate with one
another to 1nitially form a test system for the purposes of carrying out the analysis
procedure 1in which the compiler generates a sequence of test executable programs
cach annotated with a new test thread schedule selection value definition such that the
apparatus then (via 1ts performance control circuitry) gathers performance data relating
to the data processing pertormed by the execution circuitry in response to that
particular test execution program and this performance data 1s returned to the compiler
for evaluation. After a sequence of such test executable programs have been executed
and their respective performance data have been analysed, the compiler can then
determine a preferred thread schedule configuration and can then, when generating the
final executable program to be executed for the whole of target set, annotate that
executable with the appropriate thread schedule selection value definition.

An empirical approach to the analysis procedure may however also be carried
out without involving the apparatus itself, for example where the compiler has access
(whether 1nternal to the compiler or merely accessible to 1t) to a simulation of the
apparatus. Accordingly, in some embodiments the analysis procedure comprises:

test generating an at least partial test executable program on the basis of the

source program, wherein the at least partial test executable program 1s annotated with a



10

15

20

23

30

18

test thread schedule selection value definition corresponding to a test thread schedule
configuration;

causing the at least partial test executable program to be executed on an at least
partial simulation of the apparatus, wherein the at least partial simulation of the
apparatus further comprises a performance control function configured to gather
performance data relating to the data processing performed by the at least partial
simulation of the apparatus;

receiving the performance data from the at least partial simulation of the
apparatus;

repeating the test generating, causing and receiving steps, wherein the test
executable program 1s annotated with a new test thread schedule selection value
definition corresponding to a new test thread schedule configuration for each
repetition,

and 1n the generating step the thread schedule selection signal 1s generated 1n
dependence on the performance data.

Accordingly, where the compiler has access to such an at least partial
simulation of the apparatus then the compiler can generate a corresponding at least
partial test executable program for execution on the at least partial simulation of the
apparatus and can receive performance data from a performance control function of
that simulation giving performance data relating to the data processing performed by
the simulation. As with the above described example of causing a sequence of test
executable programs to be executed on the apparatus itself, also here a sequence of test
executable programs are caused to be executed on the simulation and each test
executable program 1s annotated with a new test thread schedule selection value
definition 1n order to test the performance of a different thread schedule configuration
for each repetition. The compiler can then determine the preferred schedule
configuration i1n dependence on the performance data received and when a final
executable 1s then generated for execution on the apparatus itself this can be annotated
with the corresponding thread schedule selection value definition. It should be noted
that the simulation of the apparatus need only be at least partial, for example where the
focus of the analysis procedure 1s to determine the preferred thread schedule

configuration with respect to the performance of a particular apparatus component.



10

15

20

23

30

19

For example, 1n some embodiments the at least partial simulation of the
apparatus comprises a model of a cache within the apparatus. For example, the
compiler may comprise a model of a GPU cache structure, where the apparatus 1s a
GPU, and only those aspects of the execution of the threads relating to the usage of the
cache need therefore be simulated. For similar reasons, the test executable program
neced only be a partial test executable program, 1n particular providing a suitable
executable for testing on the partial simulation of the apparatus.

Viewed from a fifth aspect the present invention provides computer readable
storage medium storing in a non-transient fashion a computer program configured to

cause a computer to carry out the method of the fourth aspect.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described further, by way of example only, with
reference to embodiments thereof as illustrated in the accompanying drawings, in
which:

Figure 1 schematically 1llustrates a data processing system in which a compiler
generates an executable from a source program for execution on an apparatus
according to one embodiment;

Figure 2 shows how algorithmic choices made by the programmer can have an
effect on cache access efficiency and how the present techniques can address this
1Ssue;

Figure 3 schematically illustrates six different types of data processing which
may be carried out by an apparatus 1in one embodiment;

Figure 4 schematically illustrates five different styles of thread schedule
configuration;

Figure 5A schematically illustrates some thread schedules configured i1n a
“stride” style using different configuration stride values in one embodiment;

Figure 5B schematically illustrates different tile sizes for a “tiled” style of
thread schedule configuration in one embodiment;

Figure 6A schematically illustrates a two dimensional target data set in one

embodiment;



10

15

20

23

30

20

Figure 6B schematically illustrates a full set of threads to be executed
corresponding to the target data set shown in Figure 6A and how subsets of those
threads may be allocated to processor cores for execution;

Figure 6C schematically illustrates two scheduling techniques for allocating
four thread blocks onto two parallel multi-threaded processor cores;

Figure 7 schematically illustrates an apparatus in one embodiment having two
parallel processor cores;

Figure 8 schematically 1llustrates a sequence of steps which may be carried out
in one embodiment during a performance analysis process;

Figure 9 schematically illustrates a series of steps which may be taken in the
method of one embodiment;

Figure 10 schematically 1illustrates in more detail a compiler in one
embodiment;

Figure 11A schematically 1llustrates the calculation of a similarity metric for a
sequence of memory accesses for a number of threads in one embodiment;

Figure 11B schematically illustrates the calculation of a similarity metric
allowing for a memory space distance between two memory accesses for a sequence of
memory accesses for a number of threads in one embodiment;

Figure 12 schematically 1llustrates a series of steps which may be taken by a
compiler in one embodiment;

Figure 13 schematically 1illustrates in more detaill a compiler in one
embodiment;

Figure 14 schematically 1llustrates a sequence of steps which may be taken by a
compiler in one embodiment; and

Figure 15 schematically generates a general purpose computing device on

which the present techniques may be carried out 1n some embodiments.

DESCRIPTION OF EMBODIMENTS

Figure 1 schematically illustrates a data processing system 10, which
essentially consists of a data processing apparatus 12, which here 1s a graphics

processing unit (GPU). As such, 1t will be understood by those of ordinary skill in the



10

15

20

23

30

21

art that the data processing system 10 will therefore typically further contain a central
processing unit (CPU) which has overall control of the data processing system 10 and
in particular determines what data processing tasks are delegated to the GPU 12. Such
a CPU 1s however not illustrated for brevity. The GPU 12 1s a multi-threaded data
processing apparatus, which 1s configured to execute its data processing in a single
program multiple data (SPMD) fashion and comprises multi-thread execution circuitry
14 for this purpose. Ditferent threads to be executed by the multi-thread execution
circuitry 14 are defined by a programmer of the apparatus. Where the target data set of
the GPU 12 1s an 1image frame of data values, the programmer may for example define
one thread to correspond to each pixel within that image frame. It will be appreciated
therefore that a great number of threads can be defined by the programmer, and these
may well exceed the number of threads which the multi-thread execution circuitry 1s
configured to be able to handle 1n parallel. For example, where the target data set 1s an
image frame having a resolution of 1920 x 1080, a one-to-one relationship between
pixels and threads gives 2,073,600 threads. The multi-thread execution circuitry could
for example be configured to be able to handle 1024 threads in parallel and therefore
will process this target data set in 2025 1iterations.

However, whilst the multi-thread circuitry 14 1s constrained in the total number
of threads which 1t can execute 1n parallel (for example 1024 as 1n the above example)
the GPU 12 1s configured such that it has a great deal of flexibility in the order 1n
which the threads are scheduled. This 1s not only in terms of the order in which the
threads are scheduled for execution within the constraint of the maximum number of
threads which the multi-thread execution circuitry 14 can handle in parallel, but also
with respect to the order in which groups of threads (e.g. OpenCL workgroups or
CUDA blocks) are scheduled for execution at a higher level or granularity. For this
purpose, the GPU 12 1s provided with thread scheduling circuitry 16 and thread
schedule configurations storage 18. The thread scheduling circuitry 16 determines the
order in which threads are to be scheduled for execution by the multi-thread execution
circuitry 14 and this 1s done with reference to the information stored in the thread
schedule configuration storage 18. Essentially, the thread schedule configuration
storage 18 stores information defining a number of (and advantageously a great

number of) different thread schedule configurations which the thread scheduling



10

15

20

23

30

22

circuitry 16 can use. Whilst the thread schedule configurations could be stored 1n a
more explicit format in the thread schedule configuration storage 18, 1t 1s preferred (in
order to limit the amount of storage required) it functional definitions are provided
enabling the thread scheduling circuitry 16 to calculate the ordering. The thread
scheduling circuitry 16 selects a particular thread schedule configuration from those
stored 1n the thread schedule configuration storage 18 on the basis of a thread schedule
selection signal 20 which 1t receives. In addition, the thread schedule selection signal
may be augmented by a control parameter 21, which enables a particular thread
schedule configuration to be configured 1n a particular manner, as will be described 1n
more detail below.

The thread schedule selection signal 20 may be provided by a number of
different sources of which several possibilities are illustrated in Figure 1. In one
variant, the thread schedule selection signal may be provided by the explicit
specification of this value 22 being provided from an external source to the GPU 12.
This gives the programmer of the apparatus the opportunity to intervene directly in the
operation of the GPU 12 to set the thread schedule selection signal 20 and therefore the
particular thread schedule configuration which will be used. Alternatively, the thread
schedule selection signal 20 may be generated on the basis of a thread schedule
selection value (or a function defining how to calculate that value, for example in
dependence on a workgroup number or thread number) annotated to an executable
binary 24 received by the GPU 12. This executable binary 24 1s generated by a
compiler 26 on the basis of a source program 28 provided by the programmer. The
thread schedule selection value (definition) annotated to the executable binary 24 may
have been explicitly selected by the programmer and therefore have formed part of the
source program 28, thus providing the system user with another mechanism for
dictating which thread schedule configuration should be used. However, the thread
schedule value may also be annotated to the executable binary 24 by the compiler 26
on the basis of either its own analysis of the source program 28, on the basis of
performance data it receives from the GPU 12, or on the basis of a simulation of the
GPU 12. These variants will be discussed individually in more detail below.

Where the GPU 12 provides the compiler 26 with performance data this comes

from performance control circuitry 30 which 1s configured to gather the performance



10

15

20

23

30

23

data relating to the activity of the multi-thread execution circuitry 14.  This
performance data 1s 1n particular selected to enable the performance control circuitry
30 to gather information relating to how efficiently the multi-thread execution circuitry
14 1s currently operating on the basis of the thread schedule configuration which the
thread scheduling circuitry 16 1s using to schedule its threads for execution. The
performance control circuitry 30 may use a number of different metrics to assess this,
but as illustrated, these may comprise an instructions-per-cycle (IPC) count 32, an
energy use metric 34 and/or a count of cache misses 36. The energy use metric could
for example be the (estimated) energy consumed by the apparatus when performing a
predetermined data processing task. The energy consumption could for example be
estimated by counting high-energy operations such as floating point add / multiply,
instructions fetches and data moves between L1 cache, L2 cache and memory. By
assigning a nominal energy cost at each operation 1t 1s possible to estimate the total
energy used. In addition, the static energy used could be determined by measuring the
number of active cycles for each monitored unit and having a nominal energy cost per
cycle (equals power) for each unit. Alternatively, explicit circuitry to measure the
energy used directly may be provided. The count of cache misses 36 therefore derives
its information from the usage by the multi-thread execution circuitry 14 of a cache 38
(which 1t should be noted may be only one of several caches in a hierarchy) via which
the multi-thread execution circuitry 14 accesses data stored in memory 40.

The GPU 12 may be configured to select a thread schedule configuration in a
relatively autonomous fashion, and in such embodiments the performance control
circuitry 30 1s configured to select the appropriate thread schedule configuration on the
basis of the performance data which 1t gathers and to generate the thread schedule
selection signal accordingly. This may for example be performed on the basis of an
iterative testing procedure such as that which 1s described below with reference to
Figure 8. In other embodiments the compiler 26 and GPU 12 may cooperate to
determine the appropriate thread schedule configuration (such as by a method
described below with reference to Figure 14) and in this situation the performance
circuitry 30 1s configured to pass the performance data back to the compiler 26.

Figure 2 1llustrates a simple example of how the selected thread schedule

ordering can benefit system performance, and in particular how the selected thread



10

15

20

23

30

24

schedule order can be used to mitigate against source code which has not been
optimized for the apparatus on which it 1s to be executed. Example code A provides a
simple pseudo-code example (1.e. from which the principle discussed can be
understood by the skilled person, without being constrained by a particular
programming language or target apparatus) where sixteen threads (TID=0-15) are
generated and a selected target data point 1n a 2D space 1s allocated to each for
processing. Accordingly, 1t can be seen that the example code A will result in the
allocation of threads to target data items as shown by reference numeral 40. This
corresponds to row major ordering in which a sequential ordering of the threads
naturally corresponds to a sequential (raster scan) order of the target data items. In the
lower part of Figure 2 the 1llustration shows how the target data item accessed by each
thread uses a local cache, which 1n this example 1s configured such that a cache line
can hold data corresponding to two target data items. Accordingly, it can be seen 1n
the lower left cache usage example in Figure 2 that the simple sequential thread
schedule order can make efficient usage of this cache, by virtue of the fact that cache
line O holds target data corresponding to threads O and 1, whilst cache line 1 holds
target data corresponding to threads 2 and 3, cache line 2 holds target data
corresponding to threads 4 and 5 etc. The “maximum memory space distance” shown

refers to the cache line size and 1s discussed 1n more detail below with reference to
Figure 11B.

Figure 2 also illustrates the potential for system performance to be significantly
atfected by only a simple change in the program code. As illustrated in variant B the
switching of the two lines of code or the inversion of the variables x and y will result
in a column major ordering of the allocation of target data items to threads, as shown
by reference numeral 42. Were the apparatus to also use a simple sequential thread
schedule order in this situation then the cache usage would be significantly less
efficient, because adjacent threads in the schedule order would not correspond to
adjacent data items 1n the target data set. However, as shown lower right in Figure 2,
the apparatus 1s able to address this 1ssue by selecting a thread schedule order such as
that shown (1.e. O, 4, 8, 12, 1, 3, etc.) such that the efficient cache usage can be

regained.



10

15

20

23

30

25

It will however be appreciated that the data processing tasks carried out by the
individual threads can vary greatly and moreover the target data items which each
thread accesses may vary considerably from a simple one-to-one correspondence
between threads and target data items. Figure 3 schematically illustrates six different
example types of data processing which may be carried out by the apparatus, and gives
an overview of some of the variety of different ways in which individual threads may
reference different portions of a target data set. Depending on the relative complexity
of the data processing which 1s to be carried out, the approach taken by the present
techniques to determining thread schedule may be more analytical or more empirical
as appropriate. For example, for data processing operations such as the matrix-copy
operations shown i1t may be possible for a more analytical approach (for example
carried out by the compiler 26 shown 1n Figure 1) to be taken, whilst for potentially
more complex operations such as the 11x11 convolution shown (or for example
computation on unstructured meshes where the data 1s indirectly accessed through
index arrays e.g. A[B[1]]) it may be the case that only an empirical approach to
determining the selected thread schedule configuration may be practical.

Figure 4 schematically illustrates five different example styles of thread
schedule ordering. Furthermore, 1t can be seen that the styles other than “sequential™
cach take at least one configuration control parameter which determines how that
particular style of thread schedule 1s implemented. For example, the stride style of
thread schedule configuration takes two control parameters, one indicating the stride
length (1.e. how many threads are skipped at each iteration) and the other defining a
granularity (1.e. how many threads are taken together as a block at each iteration). In
the “tile” style of thread schedule configuration, three control parameters are given, the
first (4) giving the row length, and the second and third (2, 2) giving the tle
dimensions. The thread schedule configuration storage 18 of the GPU 12 shown 1n
Figure 1 can be configured to store information defining any of these styles of thread
schedule configuration, as well as allowing for their particular configuration based on
the selection of the control parameters. However, it should be appreciated that the
thread schedule configurations which can be stored in thread schedule configuration

storage 18 are not limited to those shown in Figure 4 and any other regular



10

15

20

23

30

26

(functionally defined) or even bespoke (e.g. irregular) thread schedule configurations
could also be stored.

Figure 5A 1illustrates different particular configurations of a “stride” style
thread schedule configuration, and how the particular thread schedule can be
configured in dependence on a control parameter N which sets the stride value as 2.
Accordingly, where N=0 a simple sequential thread schedule results, where N=1 the
sequence 0, 2, 4 etc. results, where N=2 the sequence 0, 4, 8, 12 etc. results and so on.
Note 1n addition that the example thread schedules shown 1n Figure 5A are given in the
simplified example where the total number of threads to be scheduled 1s 16, and the
determination of the thread schedule ordering 1s subject to “modulo 157, such that for
example 1n the sequence given by N=2, thread ID 1 follows thread ID 12 (rather than
this being thread ID 16). As part of an analysis procedure (for example an empirical
analysis procedure carried out by the data processing apparatus 12 shown in Figure 1)
the use of the control parameter to set a geometric progression of stride values enables
the data processing apparatus, when performing an iterative analysis procedure to
determine which thread schedule configuration should be used, to more rapidly sweep
through a wide range of configurations of this stride style of thread schedule. As part
of an 1terative process to analyse this particular style of thread schedule configuration,
this can therefore allow the appropriate thread schedule configuration to be more
rapidly i1dentified.

Figure 5B illustrates a similar principle being applied to an analysis of a “tile”
style of thread schedule configuration where this time two control parameters are
varied, these corresponding to the linear dimensions of the selected tile. Each of these
1s 1terated 1n a geometric fashion like the control parameter N 1n Figure 5A, again
allowing a range of tile sizes to be quickly and efficiently analysed.

Figure 6 A schematically 1llustrates a target data set arranged two dimensionally
and having 1000 x 1000 individual target data items within the set. Also shown in
Figure 6A 1s a subset of the target data set which has been determined as a test target
for performance analysis. Note in particular that this test target 1s chosen to be at an
offset from the beginning of the target data set such that the resulting data processing
represents a more “typical” subset of the data processing of the full target data set

(avoiding edge effects and so on).



10

15

20

23

30

27

Figure 6B schematically illustrates the set of threads which may be generated
corresponding to the target data set shown 1n Figure 6A. Accordingly, a sequence of
one million threads are shown. Also shown 1s an indication of a subset of the threads
which are used for a performance analysis process which begin at an offset from the
start (viewed sequentially 1n terms of thread ID) of the full set of threads.

Figure 6B also 1llustrates how groups of threads may be allocated to processor
cores for execution 1n the example where the data processing apparatus 1s a multicore
device. Note that the group of threads 1s shown as a 1D array for simplicity of
illustration, and may indeed be flattened 1nto such a data structure, but could equally
be handled as a 2D array corresponding to the target data set. Figure 6B schematically
illustrates a data processing apparatus 50 which comprises two processor cores 52, 34,
ecach of which 1s configured to be able to execute up to 1024 threads concurrently.
Each processor core has its own associated L1 cache 56, 58 respectively and the
processor cores 52, 54 share an L2 cache 60. As shown 1n Figure 6B, the full set of
threads to be executed may have been grouped into a number of “workgroups”, each
consisting of 512 threads, this allocation being determined by the programmer. These
workgroups must then be allocated as a unit to a given processor core for execution,
but each processor core can thus handle two workgroups. The manner in which
workgroups are allocated to cores represents a further manner in which the selected
thread schedule configuration may be implemented.

Figure 6C schematically illustrates how 4 workgroups of threads (A-D) may be
allocated to the two processor cores 52, 54 of the GPU 50 shown in Figure 6B.
Scheduler 1 shown 1n Figure 6C shows the workgroups being allocated to cores 1n a
round-robin fashion, whilst scheduler 2 in Figure 6C shows subsequent workgroups (in
alphabetical, 1.e. original, order) being allocated to subsequent cores (though note that
the illustrated ordering of the workgroups for scheduler 2 has been switched). The
choice of which scheduler to implement (defined by the selected thread schedule
configuration) will depend on the nature of the memory accesses performed within
each workgroup. Where workgroups with locality are grouped close to each other, the
scheduler 1 can benefit from locality in the L2 cache 60 (in space among different
cores), whilst the scheduler 2 can benefit from locality 1in the L1 caches 56 and 358 (in

time amongst different workgroups). Note that the shading of the workgroups A-D



10

15

20

23

30

28

indicates whether they are assumed to share data (1.e. paired as A & B and C & D
respectively).

Figure 7 schematically illustrates an example multi-core GPU 100, which
comprises two processor cores 102, 104. Each of these processor cores 102, 104 has
its own associated L1 cache 106, 108 and the processor cores 102, 104 share an L2
cache 110 via which accesses to memory 112 are made. In this data processing
apparatus, the thread scheduling circuitry described above 1s provided by the
coordination of a job manager 114 and a thread scheduler 116, 118 provided within
each processor core 102, 104 respectively. Accordingly, each of the job manager 114,
thread scheduler 116 and thread scheduler 118 receives the thread schedule selection
signal 120 to configure their operation and in particular to determine which of the
thread schedule configurations stored in the thread schedule configuration storage 122
(to which job manager 114, thread scheduler 116 and thread scheduler 118 each have
access) to use. Accordingly, a thread schedule configuration can determine how
workgroups of threads are allocated by the job manager 114 to the cores 102, 104 (for
example as described above with reference to Figure 6C) but also configures how the
individual thread schedulers 116, 118 schedule the threads for execution within each
processor core 102, 104 (for example using a particular configuration of one of the
thread schedule configuration styles illustrated in Figure 4). When the job manager
114 allocates a workgroup of threads to one of the processor cores 102, 104,
indications of those threads within that workgroup which are now available for
immediate scheduling are stored within a randomly accessible thread pool 124, 126
within that processor core. Accordingly, rather than the workgroup of threads
allocated to a particular core then being accessed by the thread scheduler 1n a simple
first-come-first-served fashion, the thread schedulers 116, 118 are able to freely pick
threads from amongst the population stored in the randomly accessible thread pools
124, 126 for scheduling. The scheduling of threads by the thread schedulers 116, 118
causes particular instructions from the kernel being executed by each thread to be
dispatched to one of several different pipelines 128, 130, 132 provided within each
processor core. These pipelines 128, 130, 132 may be dedicated to particular types of
data processing operation and accordingly (as 1llustrated) may be of differing lengths.

Once an instruction exits its respective pipeline, an indication of this fact 1s returned to



10

15

20

23

30

29

the respective thread scheduler 116, 118 such that it can correctly administer further
scheduling of threads and instructions. In view of the above discussion, it should
therefore be appreciated that the choice of thread schedule configuration may seek to
take advantage of locality effects at different levels of granularity with respect to the
allocation of threads to processor cores. This may for example involve arranging that
two particular threads will be executed approximately in parallel with one another on
the two processor cores 102, 104, for example to benefit from cache locality in the L2
cache 110. It may involve selecting a thread schedule configuration such that two
particular threads are scheduled close to one another by a particular thread scheduler
on a particular processor core (for example to take advantage of cache locality effects
within the L1 caches 106, 108). It may also involve an instruction-level locality where
threads are scheduled such that it 1s expected that individual instructions (for example
in parallel pipeline 128 and 130) are expected to benefit from locality effects.

Figure 8 schematically 1llustrates a sequence of steps which may be taken
during a method of determining a preferred thread schedule configuration according to
an essentially empirical technique. This therefore corresponds to the configuration
shown 1n Figure 1 where the performance control circuitry 30 1s configured to
administer this performance analysis process and to generate the thread schedule
selection signal both as part of the performance analysis process and thereafter when
setting the final selected thread schedule selection signal to be used for the main data
processing carried out by the data processing apparatus 12. The performance analysis
process begins at step 200. Then, at step 202, a minority subset of all the threads
which should be executed (for example to process an entire 1image frame) are selected
for the performance analysis process. This minority subset 1s selected at an offset from
the start of the set of threads as 1s schematically 1llustrated in Figure 6B, such that the
test target data set for the performance analysis 1s offset from the edge of the two-
dimensional target data set (1mage {frame) as schematically 1llustrated in Figure 6A. It
should be noted that it 1s not always possible to avoid the use of particular portions of
the target data set 1n the simplistic manner 1llustrated 1n Figure 6A, for example where
cach thread references target data items from a range of positions (or even all
positions) across the target data set. Next, at step 204 a first subset 1s defined from

within this minority subset and on which the first iteration of testing should be



10

15

20

23

30

30

performed. Then at step 206 the thread schedule selection signal 1s set to correspond
to a thread schedule configuration to be tested at this iteration. At step 208 1t 1s
determined 1f this thread schedule configuration requires an additional control
parameter to be set and 1f 1t does, then the flow proceeds via step 210 where this
control parameter 1s set to a first value to be tested. The flow then reaches step 212
where this subset of threads 1s executed 1n the order determined by the thread schedule
configuration selected by the thread schedule selection signal and performance data
relating to this execution 1s gathered. At step 214 1f there 1s a control parameter to be
tested and 1f further iteration of values of this control parameter are to be tested then
the flow returns, via step 216, where the next iteration of this control parameters 1s set,
to step 210. The iteration of this control parameter could for example be the setting of
the parameter N as described with reference to Figure SA for a stride style thread
schedule configuration. If there are no control parameters to iterate, or if all iterations
of the control parameters have been tested, then from step 214 the flow proceeds to
step 218 where 1t 1s determined 1if there 1s another subset of threads within the minority
subset of all threads selected for performance analysis to be tested against a new thread
schedule. If there 1s then the flow returns to step 204 for this subset of threads to be
tested using the new thread schedule configuration. Once all of the minority subset of
the threads have been executed and accordingly a number of thread schedules have
been tested (potentially with a range of control parameters), then at step 220 the
preferred thread schedule (and possibly control parameters) are determined on the
basis of the performance data gathered at each iteration of step 212. The performance
control circuitry 30 then sets the thread schedule selection signal to configure the
thread scheduling circuitry 16 to cause the multi-thread execution circuitry 14 to
performs 1its data processing using the selected thread schedule configuration.
Optional step 222 1n Figure 8 schematically illustrates that the performance analysis
process may be repeated after time intervals or executed number of threads, 1f it 1s
expected that the performance of the apparatus 12 may vary over that interval. This
could for example be the case where the application being executed by the apparatus
12 1s expected to change and that a new thread schedule configuration may be more

appropriate when the application changes.



10

15

20

23

30

31

Figure 9 schematically 1llustrates a high-level view of a method of operating an
apparatus such as that shown by GPU 12 in Figure 1. At step 242 an executable binary
(generated by a compiler) 1s received by the apparatus and at step 244 a thread
schedule configuration 1s selected from a number of stored thread schedule
configurations. This selection at step 244 may for example correspond to a
performance analysis process such as that described above with reference to Figure 8.
Then at step 246 the thread schedule selection signal 1s set to cause this thread
schedule configuration to be used and at step 248 the threads are executed.

We turn now to consideration in more detail of the compiler 26 shown in
Figure 1, and 1n particular where this compiler 1s configured to determine a thread
schedule selection value (definition) to annotate to the executable binary 24 which it
generates on the basis of the source program 28. In the embodiment schematically
illustrated in Figure 10, the compiler 26 1s in particular in a configuration which 1s
suitable when a static analysis of the source program 28 1s possible. In order to
perform this static analysis, the compiler 26 1s provided with an analysis function 300,
which 1s configured to enable the compiler 26 to perform an analysis procedure on the
source program 28. The analysis function 300 comprises three main functional stages
as 1llustrated, namely a memory access determination stage 302, a similarity
calculation stage 304 and a thread schedule selection and control parameter selection
stage 306. The thread schedule selection and control parameter selection stage 306
operates with reference to a thread schedule configuration storage 308 which 1s
essentially identical to the thread schedule configuration storage 18 (in particular
having 1dentical content) such that the compiler 26 1s able to select a thread schedule
configuration which 1s available to the data processing apparatus 12 and set the thread
schedule selection value (definition) (and control parameter where appropriate)
corresponding to that thread schedule configuration. As mentioned before, the thread
schedule selection value may be an explicit value or may be a function defining how to
calculate that value, for example 1in dependence on a workgroup number or thread
number). More detail of the operation of the analysis function 300 1s given below with
reference to Figures 11A, 11B and Figure 12. Once the thread schedule selection and
control parameter selection component 306 of the analysis function 300 has

determined a chosen thread schedule configuration, the compiler 26 generates an



10

15

20

23

30

32

executable (see component 310) and annotates the appropriate thread schedule
selection value (definition) (and control parameter 1f appropriate) to this executable.
The executable 1s then passed to the data processing apparatus 12 for execution.
Whilst the compiler 26 illustrated in Figure 10 may be configured to perform the
analysis procedure 1n a purely analytic and static fashion, 1.e. in which a determination
of the selected thread schedule configuration 1s made without any reference to the
performance of the data processing apparatus 12, Figure 10 also illustrates a variant in
which performance data from the performance circuitry 30 in the data processing
apparatus 12 1s returned to the compiler 26, and 1n particular to the analysis function
300, such that this performance data may be used to tune the behaviour of the analysis
function 300. This configuration variant may therefore been seen as a hybrid
configuration 1n which the analysis procedure performed by the analysis function 300
remains essentially static, but 1s augmented by a dynamic aspect in the feedback of the
performance data from the performance control circuitry 30.

Figures 11A and 11B schematically illustrate the function of the memory
access determination stage 302 and the similarity metric calculation stage 304 of the
analysis function 300 shown in Figure 10. The essential function of these two stages
of the analysis function 300 1s to quantify the memory space locality between threads
generated by the source program 28. Firstly, as shown in the upper part of Figure 11A,
the memory access determination function 302 identifies a set of memory accesses
which will be made by a number of different threads. Note that the memory accesses
are represented by a number which indicates, say, the memory location or cache line
number for each access. The progression of memory accesses 1s from left to right. For
simplicity of 1llustration only a limited set of three memory accesses and five different
threads are shown. Next, the similarity metric calculation function 304 determines a
value of the similarity metric on the basis of the memory access patterns found, which
in the example of the memory accesses shown 1n the upper part of Figure 11A may be
represented by a similarity graph such as that shown 1n the lower part of Figure 11A.
The figure given on each edge of the similarity graph represents the degree of
matching for the memory accesses of the two threads which that edge joins together.
This degree of similarity 1s parameterised as a value between zero (no matching) and

one (full matching). Accordingly, for example, it can seen that a value of 1 1s



10

15

20

23

30

33

annotated on the edge connecting threads ty and t,, since all three memory accesses
match, whilst a value of a third 1s annotated to the edge connecting the threads t; and t3
because only one memory access (to location 7) matches.

It 1s however not necessary for the memory locations of the respective memory
accesses of two threads to identically match for there to be a performance benefit
which may be derived from ordering those two threads close to one another in the
schedule. This 1s due to the fact that the performance benefit may be gained 1if the two
memory accesses are for example shared within a single cache line. Refer again to the
discussion of the lower part of Figure 2. Accordingly, Figure 11B illustrates an
example of the calculation of the similarity metric in which a difference o between the
two memory access locations 1s allowed for those memory accesses to still be
determined to “match”. In the example illustrated in Figure 11B, the maximum
memory space distance o 1s set to 2 meaning that the memory accesses shown in the
upper part of Figure 11B can differ by up to 2 and still be determined to “match”. This
maximum memory space distance o can be set in dependence on the particular
configuration of the part of the memory hierarchy for which the analysis procedure 1s
seeking to improve the performance, for example 1in dependence on the line size of a
cache, whose performance 1s sought to be improved. The resulting similarity metric
for the memory accesses shown in the upper part of 11B 1s illustrated by the similarity
graph shown 1n lower part of Figure 11B. Determining a thread schedule
configuration on the basis of the calculated similarity metric may then for example be
performed by determining a path through a similarity graph such as those 1llustrated in
the lower parts of Figure 11A and 11B which maximises the similarity. For example,
in the example of Figure 11A this ordering could be ty-tp-t-t4-t3. In the example of
Figure 11B, this ordering could be t;-ty-t,-t3. The memory space distance may instead
(or 1n addition) be used to parameterise the degree to which the thread ordering can be
allowed to deviate and for the matching to still be found. This 1s because threads do
not execute 1n lock-step, but might diverge a little. For example, the second
instruction of thread 1 might in fact be executed at (more or less) the same time as the
first instruction of thread 0. Therefore, similarity 1s also important not only at the

same 1nstruction but also at mismatching (but close) instructions.



10

15

20

23

30

34

Figure 12 schematically 1llustrates a sequence of steps which may be taken by a
compiler 26 configured such as i1s illustrated in the embodiment shown in Figure 10.
At step 320 the compiler receives the source program and, using this as an input, at
step 322 the set of memory accesses to be performed by an “analysis minority subset”
of all the threads defined by the source program 1s determined. Accordingly, it should
be appreciated that the analysis function 300 of the compiler 26 1s configured to select
only a minority subset of all the threads defined by the source program 28 as the basis
on which the analysis procedure will be performed. Selecting a minority subset in this
manner 1s 1mportant because 1t 1s recognised that the number of similarities which
must be determined 1s quadratic with the number of threads. Furthermore, the
determination of the path through a similarity graph 1s known to be NP (non-
deterministic polynomial-time) hard. Accordingly, a careful limit on the size of the
subset of the threads on which the analysis procedure 1s carried out must be made, 1n
order to enable the required calculations to be practicable. Alternatively or 1n addition
(but not explicitly shown) it would be possible to reduce the computation required by
limiting the number of permutations (e.g. strided or tiled) and compute the (average)
similarities between adjacently scheduled threads for those permutations.

Next at step 324 the similarity metric i1s calculated with a distance metric o set
in dependence on the cache line length of a cache whose performance the analysis
procedure 1s seeking to improve. Then at step 326 a thread schedule configuration 1s
selected to minimise (or at least reduce) the ordering distance between highly
correlated pairs of threads. It should be noted that whilst a full minimization between
the ordering distance of highly correlated pairs of threads may 1n practice be
prohibitively expensive 1n terms of the computational power/time required, an
improved thread schedule configuration may nevertheless be chosen which can be
identified to reduce the order of distance between highly correlated pairs of threads.
For example, pairs of threads which are recognised to be entirely uncorrelated can
explicitly be separated and at least a portion of the pairs of threads which are
determined to be highly correlated can be brought to a close ordering distance (e.g.
adjacent) with respect to one another. Thus, even though a full fully optimized thread
schedule configuration may not have been determined, and an improvement 1n system

performance may nevertheless be achieved. Thereafter, at step 328 the compiler



10

15

20

23

30

335

generates an executable on the basis of the source program 28 annotated with the
selected thread schedule selection value (definition) (and control parameter as
appropriate) and at step 330, this executable 1s provided to the GPU 12.

Figure 13 schematically 1llustrates in more detail the compiler 26 when 1t 1s
configured to determine the appropriate thread schedule configuration in a more
dynamic or empirical fashion. In this configuration the analysis procedure to
determine a selected thread schedule configuration 1s not performed based on an
analysis of the source program 28, but rather by performing an iterative testing process
in which a number of thread schedule configurations are tested. Accordingly, 1n this
configuration, the analysis function 400 selects a first thread schedule selection value
(definition) (and control parameter where appropriate), causes this thread schedule
configuration to be tested and receives performance data related to the execution of
threads 1n accordance with that thread schedule configuration. It then continues
through an 1iterative process of changing the thread schedule selection value
(definition) (and control parameter as appropriate) to receive performance data for a
number of different thread schedule configurations. The thread schedule selection and
control parameter selection component 402 of the analysis function 400 (like
component 306 shown 1n Figure 10) has access to a thread schedule configuration
storage 404, which (like component 308 1n Figure 10) matches the thread schedule
configuration storage 18 in GPU 12. Two possibilities are 1llustrated in Figure 13 for
the manner in which the compiler 26 may test a particular thread schedule
configuration. On the one hand the compiler 26 can at each iteration of the testing
procedure generate a new executable and annotate the thread schedule selection value
(definition) for that iteration to the executable and pass this to the data processing
apparatus 12 for execution. In this configuration the performance control circuitry 30
of the GPU 12 then returns the performance data to the analysis function 400. On the
other hand, the compiler 26 illustrated in Figure 13 1s provided with a simulation of the
GPU 408, to which 1t can pass an executable annotated with a thread schedule
selection value (definition) for testing. A performance control function 412 within this
GPU simulation 408 can then return performance data to the analysis function 400 to
enable the analysis function 400 to determine the preferred thread schedule

configuration. It should be noted that the GPU simulation 408 1s schematically



10

15

20

23

30

36

illustrated 1n Figure 13 as forming part of the compiler 26, but this 1s not strictly
necessary and 1t may be the case that the compiler 26 merely has access to a separately
provided GPU simulation. Furthermore, note that as 1llustrated in Figure 13, it may in
fact be a partial executable which 1s generated by component 406 to be passed to the
GPU simulation 408. This 1s 1n particular because the GPU simulation 408 may not be
a full ssmulation of the GPU 12, but rather may only be a simulation of one or more
parts of the GPU, the performance of which the compiler 26 1s seeking to improve.
For example, as 1in the example of Figure 13, the GPU simulation 408 may comprise a
GPU cache model 410 and accordingly, the executable generated on the basis of the
source program 28 for testing on this partial GPU simulation may only need to
represent those parts of the source program which are relevant to the GPU cache
usage. The GPU cache model 410 then provides the perftormance control function 412
with 1ts own performance data which 1n turn are then returned to the analysis function
400.

Figure 14 schematically 1llustrates a sequence of steps which may be taken by a
compiler 26 such as that illustrated in the example of Figure 13 when carrying out an
analysis procedure using the source program 28 as an 1nput, either to gather
performance data from the GPU 12 itselt or from a simulation thereof. The flow
begins at step 450 where the compiler 26 receives the source program 28 and at step
452 the analysis function 400 of the compiler 26 begins the iterative process by the
thread schedule selection and control parameter selection component 402 selecting a
thread schedule configuration (and control parameter as appropriate) for this iteration
of testing. Next, at step 454 an executable 1s generated annotated with the appropriate
thread schedule selection value (definition) (and control parameter as appropriate) and
at step 456 the flow diverges in dependence on whether this executable 1s to be tested
on the hardware (1.e. the GPU 12) or on a simulation. For the hardware testing the
flow proceeds to step 458 where the executable 1s passed to the GPU 12 for execution
and at step 460 the analysis function 400 receives performance data from the
performance control circuitry 30 of the GPU 12. Alternatively, if the executable 1s to
be tested on the GPU simulation 408 then from step 456 the flow proceeds to step 462
where the executable 1s passed to the GPU simulation 408 for execution. Note that, as

explained above, when proceeding via the simulation path it may be the case that 1t 1s



10

15

20

23

30

37

in fact only a partial executable which 1s generated and tested. Then at step 464 the
analysis function 400 receives performance data from the performance control
function 412 of the GPU simulation 408. Whether the hardware or simulation path 1s
followed at step 466 it 1s then determined by the analysis function 400 1f there 1s
another thread schedule or control parameter setting to test. If there 1s then the flow
returns to step 452 for the next thread schedule configuration or control parameter
selection to be tested. Once all thread schedule configurations and control parameters
have been tested then at step 468 the compiler generates the final executable for the
GPU 12 annotated with the thread schedule selection value (definition) (and control
parameter selection value as appropriate) which gave the preferred performance data.
Figure 15 schematically illustrates a general purpose computing device 500 of
the type that may be used to implement some of the above described techniques. The
general purpose computing device 500 includes a central processing unit 502, a
random access memory 504 and a read only memory 506, connected together via bus
522. It also further comprises a network interface card 508, a hard disk drive 510, a
display driver 512 and monitor 514 and a user input/output circuit 516 with a keyboard
518 and mouse 520 all connected via the common bus 522. In operation, such as when
providing the functionality of at least one of the compilers described above, the central
processing unit 502 will execute computer program instructions that may for example
be stored in the random access memory 504 and/or the read only memory
506. Program instructions could be additionally retrieved from the hard disk drive 510
or dynamically downloaded via the network interface card 508. The results of the
processing performed may be displayed to a user via a connected display driver 512
and monitor 514. User 1nputs for controlling the operation of the general purpose
computing device 500 may be received via a connected user input output circuit 516
from the keyboard 518 or the mouse 520. It will be appreciated that the computer
program could be written 1n a variety of different computer languages. The computer
program may be stored locally on a recording medium or dynamically downloaded to
the general purpose computing device 500. When operating under control of an
appropriate computer program, the general purpose computing device 500 can perform
the above described compiler-related techniques and can be considered to form a

compiler for performing the corresponding above described techniques. Note that a



10

15

33

GPU for which the compiler 1s generating an executable would typically also be
connected to the bus 522, but this 1s not shown here since only example features of a
device providing the compiler itself are shown. The architecture of the general
purpose computing device 500 could vary considerably and Figure 15 1s only one
example.

Although a particular embodiment has been described herein, 1t will be
appreciated that the invention 1s not limited thereto and that many modifications and
additions thereto may be made within the scope of the invention. For example, various
combinations of the features of the following dependent claims could be made with the
features of the independent claims without departing from the scope of the present
invention.

The work leading to this invention has received funding from the European

Union Seventh Framework Programme [FP7/2007-2013] under grant agreement n°

287767.14



08 01 21

10

15

20

25

30

39

CLAIMS

1. Apparatus for performing data processing in a single program multiple data
fashion on a target data set, the apparatus comprising:

execution circuitry configured to execute multiple threads to perform the data
processing;

thread schedule configuration storage configured to store information defining
a plurality of thread schedule configurations, each thread schedule configuration
defining an order in which the multiple threads are to be executed by the execution
circuitry, wherein a first thread schedule configuration and a second thread schedule
configuration of the plurality of thread schedule configurations each comprise a
respectively different order in which the multiple threads are to be executed; and

thread scheduling circuitry configured to cause the execution circuitry to
execute the multiple threads 1n a selected order defined by a selected thread schedule
configuration of the plurality of thread schedule configurations in response to a thread
schedule selection signal; and

wherein the apparatus also comprises performance control circuitry configured
to gather performance data relating to the data processing performed by the execution
circuitry and to generate the thread schedule selection signal in dependence on the

performance data.

2. The apparatus as claimed 1n claim 1, wherein the performance control circuitry
1s configured to control a performance analysis process, the performance analysis
process comprising the steps of:

selecting a minority subset of the multiple threads which are to be executed;

controlling the execution circuitry to execute a first subset of the minority
subset of the multiple threads 1n a first selected order defined by a first thread schedule
configuration;

changing the thread schedule selection signal to cause the execution circuitry to
execute a next subset of the minority subset of the multiple threads in a next selected

order defined by a next thread schedule configuration; and



08 01 21

10

15

20

25

30

40

repeating the changing step until all threads of the minority subset of threads
have been executed by the execution circuitry,

wherein the performance control circuitry 1s configured to set the thread
selection signal to cause the execution circuitry to execute a majority remaining subset
of the multiple threads which are to be executed to perform the data processing on the
target data set in an order defined by a selected thread schedule tested in the

performance analysis process.

3. The apparatus as claimed 1n claim 2, wherein the first subset and next subset
each correspond to a workgroup of threads, wherein a workgroup of threads 1s a
selected subset of the multiple threads defined by a programmer of the apparatus or set

by default.

4. The apparatus as claimed 1n claiam 2 or claim 3, wherein at least some of the
plurality of thread schedule configurations are further configured in dependence on a
control parameter and the performance analysis process further comprises gathering
performance data relating to the data processing performed by the execution circuitry

for a plurality of values of the control parameter.

5. The apparatus as claimed 1n claam 4, wherein the plurality of values of the

control parameter corresponds to a geometric progression of the control parameter.

6. The apparatus as claimed 1n claam 5, wherein the geometric progression 1s

powers of two of the control parameter.

7. The apparatus as claimed 1n any of claims 4-6, wherein the control parameter 1s
a stride value, the stride value determining a number of threads which are skipped to
find a next thread in the selected order, the next thread in the selected order being

determined subject to a modulo of a total number of the multiple threads.

8. The apparatus as claimed 1n any of claims 4-6, wherein the control parameter 1s

at least one tiling dimension value, the tiling dimension value determining a dimension



08 01 21

10

15

20

25

30

41

of tiles within an at least two-dimensional coordinate space of the threads, and wherein
the selected order causes the execution circuitry to execute the multiple threads on a

tile-by-tile basis.

9. The apparatus as claimed in any of claims 2-8, wherein the performance
control circuitry 1s configured to repeat the performance analysis process at

predetermined intervals.

10. The apparatus as claimed 1n any of claims 2-9, wherein the performance
control circuitry 1s configured to select the minority subset of the threads to start at a

predetermined offset from a beginning of all the multiple threads.

11. The apparatus as claimed 1n any of claams 1-10, wherein the performance
control circuitry 1s configured to measure a performance versus time taken metric for

the data processing as the performance data.

12. The apparatus as claimed in any of claams 1-11, wherein the performance
control circuitry 1s configured to measure an energy use metric for the data processing

as the performance data.

13. The apparatus as claimed 1n any of claams 1-12, wherein the performance
control circuitry comprises at least one event counter configured to count occurrences

of a predetermined event during the data processing as the performance data.

14.  The apparatus as claimed in claim 13, wherein the predetermined event 1s a

cache miss 1n a cache which forms part of the apparatus.

15. The apparatus as claimed in claim 14, wherein the execution circuitry
comprises multiple processor cores and the cache 1s shared by the multiple processor

COTICS.



08 01 21

10

15

20

25

30

42

16. The apparatus as claamed 1n any preceding claim, further configured to receive

the thread schedule selection signal from an external source.

17. The apparatus as claimed in claam 16, wherein the apparatus 1s configured to
receive a set of instructions defining the data processing to be performed i1n the single
program multiple data fashion on the target data set, wherein the thread schedule
selection signal 1s generated by the apparatus in dependence on a thread schedule

selection value definition associated with the set of instructions.

18. The apparatus as claimed in any preceding claim, wherein the execution
circuitry comprises multiple processor cores, the thread scheduling circuitry comprises
job manager circuitry, and the selected thread schedule configuration further defines

the allocation of threads to cores by the job manager circuitry.

19. The apparatus as claimed 1n any preceding claim, wherein the thread
scheduling circuitry further comprises randomly accessible thread pool storage
configured to store an indication of threads which are immediately available for

execution by the execution circuitry.

20. A method of performing data processing 1in a single program multiple data
fashion on a target data set, the method comprising the steps of:

executing multiple threads to perform the data processing;

storing information defining a plurality of thread schedule configurations, each
thread schedule configuration defining an order 1n which the multiple threads are to be
executed 1n the executing step, wherein a first thread schedule configuration and a
second thread schedule configuration of the plurality of thread schedule configurations
each comprise a respectively different order in which the multiple threads are to be
executed:

controlling the execution of the multiple threads to be 1n a selected order
defined by a selected thread schedule configuration of the plurality of thread schedule

configurations in response to a thread schedule selection signal; and



08 01 21

10

15

20

25

30

43

gathering performance data relating to the data processing performed by the
execution circuitry, wherein
the thread schedule selection signal 1s generated 1in dependence on the

performance data.

21. A method of compiling a source program which defines data processing to be
performed on an apparatus 1n a single program multiple data fashion on a target data
set, wherein the apparatus comprises:

execution circuitry configured to execute multiple threads to perform the data
processing;

thread schedule configuration storage configured to store information defining
a plurality of thread schedule configurations, each thread schedule configuration
defining an order in which the multiple threads are to be executed by the execution
circuitry, wherein a first thread schedule configuration and a second thread schedule
configuration of the plurality of thread schedule configurations each comprise a
respectively different order in which the multiple threads are to be executed:;

thread scheduling circuitry configured to cause the execution circuitry to
execute the multiple threads 1in a selected order defined by a selected thread schedule
configuration of the plurality of thread schedule configurations in response to a thread
schedule selection value, the method comprising the steps of:

selecting the selected thread schedule configuration 1n dependence on analysis
information derived from an analysis procedure carried out using the source program
as an input;

generating an executable program for the apparatus on the basis of the source
program, wherein the executable program 1s annotated with a definition of the thread
schedule selection value corresponding to the selected thread schedule configuration

selected 1n the selecting step.

22. The method as claimed 1n claim 21, wherein the analysis procedure comprises

the steps of:



08 01 21

10

15

20

25

30

44

analysing the source program to determine a set of memory accesses which
will be performed by a set of threads of the multiple threads;

calculating a similarity metric which quantifies correlations between memory
accesses for each pair of threads in the set of threads; and

selecting the selected thread schedule configuration such that the selected order
causes pairs of threads for which the similarity metric indicates a high correlation to be

executed with a close ordering distance to one another in the selected order.

23. The method as claimed 1n claim 22, wherein the set of threads 1s a minority

subset of the multiple threads.

24 The method as claimed 1n claim 23, wherein the minority subset of the threads
1s selected to start at a predetermined offset from a beginning of all the multiple

threads.

25.  The method as claimed 1n any of claims 23-26, wherein the similarity metric
quantifies correlations between plural pairs of memory accesses for each pair of

threads.

26.  The method as claimed 1n any of claims 21-25, wherein the similarity metric 1s
configured 1n dependence on a distance metric which determines a maximum memory
space distance between two memory accesses for which the two memory accesses can

be determined by the similarity metric to have a non-zero correlation.

27.  The method as claimed i1n claim 26, wherein the maximum memory space

distance 1s given by a cache line size 1n the data processing apparatus.

28. The method as claimed 1n claim 26, wherein the maximum memory space
distance 1s given by an ordering distance between two threads to which the two

memory accesses belong.



08 01 21

10

15

20

25

30

45

29. The method as claimed 1n any of claims 22-28, wherein at least some of the
plurality of thread schedule configurations are further configured 1n dependence on a

control parameter.

30. The method as claimed 1n claim 29, wherein the plurality of values of the

control parameter corresponds to a geometric progression of the control parameter.

31. The method as claamed 1n claim 30, wherein the geometric progression 1s

powers of two of the control parameter.

32. The method as claimed 1n any of claims 29-31, wherein the control parameter
1s a stride value, the stride value determining a number of threads which are skipped to
find a next thread in the selected order, the next thread in the selected order being

determined subject to a modulo of a total number of the multiple threads.

33. The method as claimed 1n any of claims 29-31, wherein the control parameter
1s at least one tiling dimension value, the tiling dimension value determining a
dimension of tiles within a two-dimensional coordinate space of the target data set, and
wherein the selected order causes the execution circuitry to execute the multiple

threads on a tile-by-tile basis.

34. The method as claimed in claim 21, wherein the analysis procedure comprises:

test generating a test executable program for the data processing apparatus on
the basis of the source program, wherein the test executable program 1s annotated with
a test thread schedule selection value definition corresponding to a test thread schedule
configuration;

causing the test executable program to be executed on the apparatus, wherein
the apparatus further comprises performance control circuitry configured to gather
performance data relating to the data processing performed by the execution circuitry;

receiving the performance data from the apparatus;

repeating the test generating, causing and receiving steps, wherein the test

executable program 1s annotated with a new test thread schedule selection value



08 01 21

10

15

20

25

30

46

definition corresponding to a new test thread schedule configuration for each
repetition,
and 1n the generating step the thread schedule selection signal 1s generated in

dependence on the performance data.

35. The method as claimed 1n claim 21, wherein the analysis procedure comprises:

test generating an at least partial test executable program on the basis of the
source program, wherein the at least partial test executable program 1s annotated with a
test thread schedule selection value definition corresponding to a test thread schedule
configuration;

causing the at least partial test executable program to be executed on an at least
partial stmulation of the apparatus, wherein the at least partial simulation of the
apparatus further comprises a performance control function configured to gather
performance data relating to the data processing performed by the at least partial
simulation of the apparatus;

receiving the performance data from the at least partial simulation of the
apparatus;

repeating the test generating, causing and receiving steps, wherein the test
executable program 1s annotated with a new test thread schedule selection value
definition corresponding to a new test thread schedule configuration for each
repetition,

and 1n the generating step the thread schedule selection signal 1s generated in

dependence on the performance data.

36.  The method as claimed in claim 35, wherein the at least partial stmulation of

the apparatus comprises a model of a cache within the apparatus.

37. A computer readable storage medium storing in a non-transient fashion a

computer program configured to cause a computer to carry out the method of any of

claims 21-36.



	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DRAWINGS
	Page 10 - DRAWINGS
	Page 11 - DRAWINGS
	Page 12 - DRAWINGS
	Page 13 - DRAWINGS
	Page 14 - DRAWINGS
	Page 15 - DRAWINGS
	Page 16 - DRAWINGS
	Page 17 - DRAWINGS
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - CLAIMS
	Page 57 - CLAIMS
	Page 58 - CLAIMS
	Page 59 - CLAIMS
	Page 60 - CLAIMS
	Page 61 - CLAIMS
	Page 62 - CLAIMS
	Page 63 - CLAIMS

