PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F A2

(11) International Publication Number:

(43) International Publication Date:

WO 97/42558

13 November 1997 (13.11.97)

(21) International Application Number: PCT/US97/08003

(22) International Filing Date: 8 May 1997 (08.05.97)

(30) Priority Data:

08/643,454 us

8 May 1996 (08.05.96)

(71) Applicant: MIJENIX CORPORATION [US/US]; Suite 122,
6666 Odana Road, Madison, WI 53719 (US).

(72) Inventors: KRONENBERG, Piere-Michel; 9101 Old Salk
Road, Middletwon, WI 53562 (US). ZAHN, Derek, T.; 420
N. Sherman Avenue, Madison, WI 53704 (US).

(74) Agent: RUDISILL, Stephen, G.; Amold, White & Durkee, P.O.
Box 4433, Houston, TX 77210 (US).

(81) Designated States: AU, CA, JP, European patent (AT, BE,
CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: A DEVICE DRIVER FOR ACCESSING COMPUTER FILES

10

RAM 1
(BANK 1) |— /2 BUS SLOTS

RAM e MICROPROCESSOR j
(BANK 2) > . .] |] 15
/ r —_
1 13 —— ROM —
DMA [+

14

(57) Abstract

A computer device driver for accessing compressed files held in archives in a memory device, the device driver comprising: means
for reading a compressed file from an archive in the memory device, decompressing the file in RAM and retaining the decompressed file
in RAM in whole or in part so that operations to the memory device can be performed on the decompressed file by the operating system
without having first to write the decompressed file to the memory device. The device driver also comprises means for accessing the file in
said RAM and changing the contents of the file; and for returning the file to the archive in said memory device.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT,

Albania
Ammenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Ctte d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

ireland

Israel

Tceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People's
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT

Lesotho

Lithuania
.uxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

St
SK
SN
Sz
™
TG
TJ
™

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 97/42558 PCT/US97/08003

1
A DEVICE DRIVER FOR ACCESSING COMPUTER FILES

FIELD OF INVENTION

The invention relates generally to device drivers in computer systems with
memory devices. In particular, the invention relates to device drivers which provide for
accessing and updating compressed files on disk storage devices, particularly in personal

computer systems.

SUMMARY OF THE INVENTION

It is an object of the invention to provide for the fast and efficient accessing and
updating of compressed files stored on storage devices.

A further object of the invention is to provide a system which displays archives as
folders and provides for the fast accessing and updating of files on storage devices.

Still another object of the invention is to provide a system in which virtual folders
are accessible by an operating system.

Yet another object of the invention is to provide a system which accesses
compressed files in memory for a user in a simple and understandable manner and which
uses a minimal number of steps in performing the access.

In accordance with the present invention, the foregoing objectives are realized
by a computer device driver for interfacing with an operating system and for accessing
compressed files held in archives in a memory device, said device driver comprising:
means for reading a compressed file from an archive in said memory device,
decompressing said file in RAM and retaining the decompressed file in RAM in whole or
in part so that operations can be performed on the decompressed file by the operating
system without having first to write the decompressed file to the storage device; means
for accessing said file in said RAM and changing the contents of said file; and means for

returning said file to said archive in said storage device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system using a device driver according

to principles of the present invention;

5

10

15

20

25

30

WO 97/42558 PCT/US97/08003

2
FIG. 2 is a block diagram of the software hierarchy according to principles of the

present invention;

FIG. 3 is a block diagram describing the operation of the device driver according
to principles of the present invention;

FIG. 4 is a flowchart illustrating the operation of the device driver according to
principles of the present invention; and

FIG. 5 is a flowchart illustrating the operation of the device driver according to

principles of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Several illustrative embodiments of a device driver are described below as they
might be implemented to provide for improved methods of accessing compressed files.
It will of course be appreciated that in the development of any actual implementation,
numerous implementation-specific decisions must be made to achieve the developers'
specific goals and subgoals which will vary from one implementation to another.
Moreover, it will be appreciated that such a development effort might be complex and
time-consuming, but would nevertheless be a routine undertaking of device engineering
for those of ordinary skill having the benefit of this disclosure.

The general architecture of the computer system that is one embodiment of this
invention is shown in FIG. 1. The computer main memory or RAM can be divided into
banks 10 and 11 and contain data, intermediate results as well as programs stored by the
microprocessor 12. The microprocessor 12 can also execute instructions stored in ROM
13. The microprocessor 12 can be, for example, a i486 or Pentium processor
manufactured by Intel Corporation. The ROM contains the Basic Input OQutput System
(BIOS) which is a set of programs and data that are executed by the microprocessor at
power-up. The BIOS also provides various support routines for input/output access and
control. Also shown is a direct memory access (DMA) unit 14 which provides for the
direct transfer of data from an outside source (connected at bus 15) and the RAM.

FIG. 2 illustrates the various levels of software present in a preferred embodiment
of the invention. At the top level is an application program 20, at a lower level is an

operating system 21, and at an even lower level is BIOS 22. The operating system 21 is

10

15

20

25

30

WO 97/42558 PCT/US97/08003

3
layered as well. Its center is occupied by the Kernel which comprises at least the

routines for memory management, executing task switches, and handling critical errors.
Device drivers run in a layer on top of the Kernel and supply functions such as data and
file management, character input, hardware device interfaces, and drive access. The
operating system can also use device drivers to bypass BIOS and access devices directly.

Turning next to FIGs. 3, 4, and 5 a preferred embodiment of a device driver
program embodying the present invention begins by receiving a file system request from
the operating system at step 301. The file system request contains information indicating
the type of request to be performed, the identity of the file on which the operation is to be
performed, and any other information needed to perform a successful operation. The
operation specified in the file system request may be an operation to enumerate the
contents of a folder, perform file system operations which do not modify the contents of
a file, or perform some type of operation that modifies the contents of a particular file.

At step 302, the driver determines if the file system request is a request to
enumerate the contents of a folder. If the answer at step 302 is affirmative, then at step
303, the driver checks to see if the enumeration points to an archive file. The term
“archive” is defined to mean a file which contains compressed files or other folders
(which themselves contain files and folders). For example, in a file system where
compressed files are denoted by using a .ZIP suffix, step 303 checks to see if a file with a
.ZIP suffix is the subject of the enumeration.

If the answer to step 303 is affirmative, then at step 304 the device driver creates,
in RAM, a virtual folder that represents the archive file. A virtual folder appears to user
programs and the operating system as a folder containing files and folders but is not
actually stored as a folder in the underlying storage device. The device driver then
augments the enumerated request with information describing the virtual folder and
passes this information to the operating system. This information includes file attributes
and a time and date stamp. By virtual, it is meant that the folder exists in RAM only and
is, therefore, temporary since upon program completion, the folder disappears. At this
point, nothing is contained inside the virtual folder.

If the answer at step 303 is negative, then the driver checks to see if the

information requested in the file system request is a description of the contents of a

10

15

20

25

WO 97/42558 PCT/US97/08003

4
virtual folder at step 305. If the answer to step 305 is affirmative, then the contents of

the virtual folder are revealed at step 306. By “revealing”, it is meant that the contents
are made available to the operating system. These contents are contents of the archive
that the virtual folder represents. If the answer to step 305 is negative, then the request is
passed to the operating system at step 307.

If step 302 determines that a folder enumeration is not requested, then the driver
determines at step 308 whether a file system operation is requested. A file system
operation includes operations such as a “rename”, “copy”, “move”, “delete”, or “get
attributes” operations. If the operation requested is a file system operation, then the
driver continues at step 310 by checking to see if the requested operation is for a file
contained in a virtual folder. If the file is contained in a virtual folder, then the driver
continues with step 312 where it emulates (performs) the file system operation request.
Step 312 is expanded in the flowchart of FIG. 4 and discussed in greater detail below.

If the answer at step 310 is negative, then at step 312 the request is passed to the
operating system. In this case, a file would not be in a virtual folder and the operating
system can perform the operation using its normal procedures.

If the answer at step 308 is negative, then at step 309 the driver checks to see if
the request is for a file operation. By a file operation, it is meant “read”, “write”, “open”
or “close” file operations. If the answer is negative, then at step 307, the request is
passed onto the operating system. If the answer is affirmative, then at step 311, the
system checks to see if the file is in a virtual folder. Ifit is not, the driver, passes the
request to the operating system at step 307. However, if it is, at step 313 the driver
emulates the file request operation. Step 313 is expanded in the flowchart of FIG. 5 and
discussed in greater detail below.

Turning next to FIG. 4, the emulation of a file system operation begins at step
401 when the driver checks to see if the central directory of the archive has been loaded
into RAM. The central directory is an index of files and can be represented, for example,
by a conventional tree structure. If the directory has not been loaded, then at step 402 the

driver loads the central directory structure. The driver then continues with step 403.

10

15

20

25

30

WO 97/42558 PCT/US97/08003

5
If the central directory is loaded, then at step 403 the driver checks to see if the

request is valid, i.e., that the file exists in the archive. If the request is not valid, then the
driver posts an error message to the operating system at step 404.

If the path is valid, the driver next determines at step 405 whether the request is
valid, i.e., whether all the correct parameters are present in the request. For example, for
a copy operation whether a source and destination information are included. If the
request is not valid, then at step 406 the driver reports an error to the operating system.

If the request is valid, then at step 407, the driver uses the central directory
information to emulate a request. In other words, the central directory is modified to
account for the differences due to the addition and deletion of files. For example, in a
delete operation, the file is removed from the archive and the central directory is
changed to reflect the deletion.

If the operation is a copy or a move, then the driver proceeds to FIG. 5. After
executing the steps enumerated in FIG. 5, the driver then returns to the flowchart of FIG.
4 at step 408.

At step 408, the driver determines whether the central directory information has
been changed. If it has not changed, then, at step 409 the procedure ends by returning to
the operating system without updating the central directory. On the other hand, if the
central directory structure has changed, then at step 410 the driver updates the archive
central directory and the files affected in the archive.

Turning next to the flowchart of FIG. 5, emulation of a file operation begins
when the driver determines whether the central directory has been loaded from the disk at
step 501. As described above, the central directory is an indexed listing of the contents
of the archive. The directory can be represented, for example, by a tree structure. If the
directory is not loaded from disk, then at step 502 the driver loads the directory from the
hard drive and then control proceeds to step 503. If the driver determines that the
directory is loaded, then the driver also continues by executing step 503.

If the central directory has been loaded, then at step 503 the driver checks to see
if the request is valid, i.e., that the file exists in the archive. If the request is not valid,

then the driver posts an error message to the operating system at step 504.

10

15

20

25

30

WO 97/42558 PCT/US97/08003

6
If the path is valid, the driver next determines at step 505 whether the request is

valid, i.e., whether all the correct parameters are present in the request. For example, for
an open operation whether the source file is already open for writing by another process.
If the request is not valid, then at step 506 the driver reports an error to the operating
system.

At step 507, the driver determines whether the operation is an open operation,
that is, a request to open a file and obtain a handle for it. If the operation is an open
operation, at step 512 the driver creates data structures in RAM necessary for opening the
file. Next, at step 517 the driver returns a file handle which refers to the file in the
archive. A handle is a unique identifier, such a number or pointer, that serves to identify
the file. Upon a read operation, the driver will check whether a handle is present.

If the answer to step 507 is negative, that is the operation is not an open
operation, then at step 508 the driver determines whether the operation is a read
operation. If the answer is affirmative, then at step 513, the driver determines whether
the file has been decompressed. If it has, at step 518 the driver provides the file
information requested by the read operation. If the answer at step 513 is negative, then at
step 516, the driver decompresses the file and places it in RAM before proceeding with
step 518.

If the answer to step 508 is negative, that is the operation is not a read operation,
then at step 509 the driver determines whether the operation is a write operation. If the
answer is affirmative, then at step 514, the driver determines whether the file has been
decompressed. If it has, at step 519 the driver copies the write data to memory. If the
answer at step 514 is negative, then at step 516, the driver decompresses the file and
places it in RAM before proceeding with step 519.

If the answer to step 509 is negative, in other words, the operation is not a write,
step 510 checks to see if the operation is a close operation. If the operation is not a close,
the driver returns control to the operating system at step 511 and ignores the attempted
operation.

If the answer to step 510 is affirmative, then at step 5135 the driver determines if
the file data has changed. If no changes are detected, then at step 515 the data structures

are cleaned up. By cleaning up, it is meant that the memory allocated at step 512 is

10

15

20

WO 97/42558 PCT/US97/08003

7
released as well as the memory allocated for the file data. On the other hand, if the file

data has changed, the driver continues at step 520 where it updates the archive data file
on disk. That is, it writes the data from RAM to the appropriate place in disk. Control
then proceeds to step 521 where the archive central directory structure is updated. The
procedure concludes at step 522 where any data structures left over are cleaned up, i.e.,
removed so that space can be used by other programs.

As discussed above, the driver of the present invention has the advantage that the
contents of an archive, i.e., its compressed files and folders, are made available
throughout the operating system. That is, a user and the operating system have full
access to the contents of an archive through the virtual folder that represents the archive
no matter what function the operating system is performing.

The driver above also is fast and efficient. This is because the virtual folder and
all files that are accessed in the archive are cached in RAM. As is well known in the art,
using RAM to house files is a fast and efficient method for file manipulation.

The driver is efficient for other reasons. The user sees a “real” file when it is in
fact virtual using the above mechanism. The user can perform operations on the file
directly without having to first explicitly compress and/or decompress data.

The driver also makes accessing compressed files stored in memory easy and
simple for the user since the user is not required to start and execute a separate
decompression program.

While the present invention has been described with reference to one or more
particular embodiments, those skilled in the art will recognize that many changes may
be made thereto without departing from the spirit and scope of the present invention,

which is set forth in the following claims.

WO 97/42558 PCT/US97/08003

CLAIMS:

1. A computer device driver for interfacing with an operating system and for
accessing compressed files held in archives in a storage device, said device driver
comprising:

means for reading a compressed file from an archive in said memory device,

5 decompressing said file in RAM and retaining the decompressed file in RAM in whole or
in part so that operations can be performed on the decompressed file by the operating
system without having first to write the decompressed file to the storage device,

means for accessing said file in said RAM and changing the contents of said file;
and

10 means for returning said file to said archive in said storage device.

2. The driver of claim 1 further including means for compressing said file.

3. The driver of claim 1 wherein said means for accessing and changing the

contents of said file is responsive to a request from an operating system.

4. The driver of claim 3 wherein said request from said operating system is

15 selected from the set of requests for reading, writing, opening, and closing said file.

5. The driver of claim 3 wherein said request from said operating system is
selected from the set of requests to renaming, copying, moving, deleting, or obtaining the

attributes of said file.

6. The driver of claim 1 wherein said file in said RAM is accessible to an

20 operating system and user programs.

7. The driver of claim 1 wherein said driver is part of an operating system.

8. A computer device driver for interfacing with an operating system and
application programs, and for accessing compressed files held in archives in a memory

device, said device driver comprising:

WO 97/42558 PCT/US97/08003

9
means for creating virtual folders or directories for archives to represent archives

as folders throughout all levels of the operating system and application programs; and
means for representing files and folders contained in archives as files and folders

in virtual folders corresponding to said archives.

5 9. A computer device driver for interfacing with an operating system and
accessing compressed files held in archives in a memory device said device driver
comprising:

means for creating virtual folders or directories, said virtual folders and
directories representing archives and directories on said memory device and accessible to
10 all levels of said operating system;
means for representing files and folders contained in said archives as files and
folders in the virtual folders and directories corresponding to said archives;
means for updating said folders and said memory device after an operation from
said operating system on said files and virtual folders;
15 means for selectively supplying said operating system with information from said
virtual folders; and
means for updating and returning said files and folders to said archive in said

memory device.

10. The driver of claim 9 wherein said virtual folder is stored in RAM.

20 11. The driver of claim 9 further comprising means for receiving a request
from said operating system, said request from said operating system selected from the set

of requests for reading, writing, opening, and closing said file.

12. The driver of claim 9 further comprising means for receiving a request
from said operating system, said request from said operating system selected from the set

25 of'requests for renaming, copying, moving, deleting, or obtaining the attributes of said

file.

WO 97/42558 PCT/US97/08003

10
13. A computer device driver for interfacing with an operating system and for

accessing compressed files held in archives in a memory device, said compressed files
accessible using a directory structure, said device driver comprising:
means for creating virtual folders or directories in RAM, said virtual folders and
5 directories representing archives on said memory device and accessible by an operating
system;
means for representing files and folders contained in said archives as files and
folders in the virtual folders corresponding to said archives;
means for reading a compressed file from said archive in said memory device,
10 decompressing said file in RAM, and retaining the decompressed file in RAM in whole
or in part so that operations can be performed on the decompressed file by the operating
system without having first to write the decompressed file to the memory device;
means for accessing said file in said RAM and changing the contents of said file;
means responsive to accessing said files for adjusting said virtual directory
15 structure; and

means for returning said file to said archive in said memory device.

14. A device driver for accessing computer files held in archives on a memory
device and selectively passing information from said files to an operating system, said
device driver comprising:
20 means for identifying and determining an operation requested to be performed by
said operating system on a particular compressed file on said memory device;
means for extracting said particular compressed file from an archive on said
memory device, decompressing said particular file, and placing said file in a RAM for a
time sufficient to perform said operation;
25 means for supplying said operating system with information from said
compressed file in said memory device as needed by said operating system;
means for changing the contents of said file; and

means for returning said file to said archive in said memory device.

WO 97/42558 PCT/US97/08003

11
15. A computer system comprising:

an operating system;
permanent memory for permanently storing archives, said archives containing
files and folders;
5 temporary memory for temporarily storing files, folders, or directories;
a device driver means comprising:
means for creating virtual folders or directories in said temporary memory, said
virtual folders and directories representing archives and directories in said permanent
memory and accessible by said operating system,
10 means for representing files and folders contained in said archives as files and
folders in the virtual folders and directories corresponding to said archives;
means for updating said virtual directories and said permanent memory
directories after an operation on said files and folders;
means for selectively supplying said operating system with information from said
15 files; and

means for returning said file to said archive in said permanent memory.

16. The system of claim 15 wherein said permanent memory comprises a

plurality of PROMs.

17. The system of claim 15 wherein said temporary memory comprises a

20 plurality of RAM banks.

18. The system of claim 15 further comprising an application program.

19. A method for accessing compressed files held in archives in a storage
device , said method comprising the steps of:
reading a compressed file from an archive in said memory device, decompressing
25 said file in RAM and retaining the decompressed file in RAM in whole or in part so that
operations can be performed on the decompressed file by the operating system without

having first to write the decompressed file to the storage device,

WO 97/42558 12 PCT/US97/08003

accessing said file in said RAM and changing the contents of said file; and

returning said file to said archive in said storage device.

20. A method for accessing compressed files held in archives in a memory
device, said compressed files accessible using a directory structure, said method
5 comprising the steps of:
creating virtual folders or directories in RAM, said virtual folders and directories
representing archives on said memory device and accessible to an operating system;
representing files and folders contained in said archives as files and folders in the
virtual folders corresponding to said archives;

10 reading a compressed file from said archive in said memory device,
decompressing said file in RAM, and retaining the decompressed file in RAM in whole
or in part so that operations to the memory device can be performed on the decompressed
file by the operating system without having first to write the decompressed file to the
memory device;

15 accessing said file in said RAM and changing the contents of said file;

adjusting said virtual directory structure; and

returning said file to said archive in said memory device.

21. A method for accessing computer files held in archives on a memory
device and selectively passing information from said files to an operating system, said
20 method comprising the steps of:
identifying and determining an operation requested to be performed by said
operating system on a particular compressed file on said memory device;
extracting said particular compressed file from an archive on said memory
device, decompressing said particular file, and placing said file in RAM in whole or in
25 part for a time sufficient to perform said operation;
supplying said operating system with information from said compressed file in
said memory device as needed by said operating system;
changing the contents of said file; and

returning said file to said archive in said memory device.

WO 97/42558 13 PCT/US97/08003

22. A computer device driver for interfacing with an operating system and for
accessing compressed files held in archives in a storage device , said device driver
comprising:

means for identifying and determining an operation requested to be performed by

5 said operating system on a particular compressed file on said storage device;

means for creating virtual folders or directories in RAM, said virtual folders and
directories representing archives on said memory device and accessible to an operating
system;

means for representing files and folders contained in said archives as files and

10 folders in the virtual folders corresponding to said archives;

means for reading a compressed file from an archive in said memory device,
decompressing said file in RAM and retaining the decompressed file in RAM in whole or
in part so that operations can be performed on the decompressed file by the operating
system without having first to write the decompressed file to the storage device,

15 means for copying, moving, renaming, deleting, or getting the attributes of said
file;

means for reading, writing, opening or closing said file;

means responsive to copying, moving, renaming, or deleting of a file and
adjusting the virtual directory structure;

20 means for supplying said operating system with information from said
compressed file in said memory device as needed by said operating system; and

means for returning said file to said archive in said memory device.

WO 97/42558

10

RAM
(BANK 1)

T

RAM [<

(BANK 2)

1

BUS SLOTS

PCT/US97/08003

il

12
MICROPROCESSOR
f i y
DMA
)
/

14

.

i

B\\Y72

FIG. 1

WO 97/42558

PCT/US97/08003

2/5

APPLICATION PROGRAM

OPERATING SYSTEM | 2
AND DEVICE DRIVERS

BIOS

\ 4

DISK ORMEMORY |~ 22

A

DISK OR
MEMORY

7

24

CONTROLLER
y y
DISK OR DISK OR
MEMORY MEMORY
24 24

FIG. 2

PCT/US97/08003

WO 97/42558
3/5
FILE SYSTEM | — 301
REQUEST
|
302 308 ~ 309

FOLDER

FILE
SYSTEM

ENUMERATION

VIRTUAL
FOLDER

OPERATION

VIRTUAL \\No
FOLDER

VIRTUAL
FOLDER

' 312
A 4 v A 4 A 4 /_'/ |
AUGMENT |
ENUMERATION EMULATE ";’:’Z‘éﬂgg\f EMULATE THE
WITH VIRTUAL ENUMERATION bty FILE OPERATION
FOLDER THAT OF VIRTUAL il REQUEST
REPRESENTS THE FOLDER e (FIG. 3)
ARCHIVE FILE (FIG. 2)
307 |
v v

FIG. 3

PASS REQUEST TO OPERATING SYSTEM

WO 97/42558

401

CENTRAL
DIRECTORY

PCT/US97/08003

4/5

LOAD ARCHIVE FILE [402

LOADED No

”| CENTRAL DIRECTORY

VALID

L~ 404

4

PATH IN

REQUEST
2

405

REQUEST No

RETURN ERROR

—— 406

Y

IS VALID
?

RETURN ERROR

USE CENTRAL DIRECTORY
INFORMATION TO EMULATE
REQUEST

— 407

CENTRAL
DIRECTORY

409

408 (

No .| RETURN WITHOUT UPDATING

INFORMATION
CHANGED

CENTRAL DIRECTORY

CENTRAL DIRECTORY

UPDATE ARCHIVE FILE |— 410

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 97/42558

5/5

501

PCT/US97/08003

CENTRAL LOAD ARCHIVE FILE | /~ 502
DIRECTORY CENTRAL
LOADED DIRECTORY
503
VALID o4
N
PATH IN 0 RETURN ERROR 4
REQUEST,
Yes 505
511
_—~ 506
REQUEST_ No
IS VALID RETURN ERROR)
IGNORE

Yes

507

OPERATION

OPERATION

Yes Yes

-~ 512 513
CREATE DATA
STRUCTURES FILE o No” FILE
DECOMPRESSED DECOMPRESSED
? ?
Yes Yes
.| DECOMPRESS | e
‘ FILE TO MEMORY ARCHIVE
-~ 517 . ¥
RETURN 516 521~{~(PDATE
FILE HANDLE v y ARCHIVE
WHICH REFERS RETURN FILE WRITE FILE FILE CENTRAL
TOFILE IN DATA FROM DATA IN DIRECTORY
ARCHIVE MEMORY MEMORY !
) CLEAN UP DATA
| STRUCTURES
518 519

SUBSTITUTE SHEET (RULE 26)

522

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

