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(57) Abstract: Al-based method and system are provided for embryo morphological grading, blastocyst embryo selection, a neuploidy
prediction, and final live birth outcome prediction in. In vitro fertilization (IVF). The method and system can employ deep learning
models based on image data of one or more human embryos, where the image data include a plurality of images of the one or more
human embryo at different time points within the first few days after the formation of the one or more embryos.
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SYSTEM AND METHOD FOR OUTCOME EVALUATIONS ON HUMAN
IVF-DERIVED EMBRYOS

Cross Reference to Related Application
This application claims the benefit of U.S. Provisional Application No.
63186179, filed May 10, 2021, the disclosure of which is incorporated herein by

reference in its entirety.

Background

More than 80 million couples suffer from infertility. In vitro fertilization (IVF)
has revolutionized treatment for infertility in which more than 5 million babies have
been born from IVF. However, to achieve a favorable live birth outcome is still
challenging. Traditional methods of embryo selection depend on visual inspection of
embryo morphology and are experience-dependent and highly variable!=. An
automated system that performs a complex task of a skilled embryologist and
incorporates assessments such as zona pellucida thickness variation, number of
blastomeres, degree of cell symmetry and cytoplasmic fragmentation, aneuploidy
status, and maternal conditions to predict the final outcome of a live birth is highly
desirable *°.

Artificial intelligence has the potential to revolutionize healthcare and improve
outcomes®” in all areas, such as image-based diagnosis'’, voice recognition, and
natural language processing!!. In particular, the use of convolutional neural networks
with transfer learning has facilitated efficient and accurate image diagnosis'®-12.

Application of deep learning in IVF has been explored in classifying embryos
based on morphological quality or and transfer outcomes, although their accuracies
and general applicability remain to be a major challenge*>1*-1°. Furthermore, sub-
optional outcome predictions based on traditional human performance severely limits
the impact of the IVF technology, particularly in resource and access poor areas'”!8.
An Ai algorithm capable of assessing and ranking embryos for implantation, and
combining maternal metrics to predict live birth outcomes have great utility.

Preimplantation genetic testing (PGT) for the detection of aneuploidy has
improved the success rate of embryo transfer and pregnancy outcomes. However, it
has several limitations including invasiveness, the cost of sequencing, mosaicism,

experience in trophectoderm biopsy.
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Summary of the Invention

In one aspect, the present disclosure provides a computer-implemented
method comprising the steps of: receiving image data of one or more human embryos,
the image data including a plurality of images of the one or more human embryo at
different time points within the first 6 days of the formation of the one or more
embryos; determining a viability indicator for the one or more human embryos,
wherein the viability indicator represents a likelihood that selection for implantation
of the one or more embryos will result in a viable embryo, based on one or more the
following: by using at least one computer processor, determining embryo
morphological grading of the one or more embryos using a first neural network based
on the image data; by using at least one computer processor, determining aneuploidy
of the one or more embryos using a second deep learning model at least partly based
on the image data; by using at least one computer processor, predicting live-birth
occurrence of a transfer of the one or more embryos for implantation using a third
deep learning model at least partly based on the image data; and outputting the
viability indicator.

In some embodiments, determining the embryo morphological grading
comprises using a multitask machine learning model based on the following three
tasks: (1) aregression task for the cytoplasmic fragmentation rate of the embryo, (2) a
binary classification task for the number of cells of the embryo, and (3) a binary
classification task for the blastomere asymmetry of the embryo determined, based on
the image data. In some embodiments, the multitask machine learning model was
trained jointly through combining the loss functions of the three tasks by using a
homoscedastic uncertainty approach in minimizing the joint loss. In some
embodiments, output parameters for the embryo morphological grading comprise
pronucleus type on Day 1, the number of blastomeres, asymmetry, and fragmentation
of blastomeres on Day 3.

In some embodiments, determining the viability indicator comprises
determining aneuploidy of the one or more embryos using the second deep learning
model at least partly based on the image data. In some embodiments, determining the
viability indicator comprises predicting live-birth occurrence of a transfer of the one
or more embryos for implantation using the third deep learning model at least partly

based on the image data.
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In some embodiments, determining a viability indicator for the human embryo
further comprises using clinical metadata of the donor of the egg from the embryo is
developed, the metadata includes at least one of maternal age, menstrual status,
uterine status, and cervical status, previous pregnancy, and fertility history.

In some embodiments, the second deep learning model in the aneuploidy
determination comprises a 3D CNN model trained by time-lapse image videos and
PGT-A based ploidy outcomes assessed by biopsy.

In some embodiments, the method further comprises: determining blastocyst
formation based on the embryo image data based on Day 1 and Day 3.

In some embodiments, the third deep learning model comprises a CNN model.
In some embodiments, the third deep learning model can further comprise an RNN
model, and a two-layer perceptron classifier.

In some embodiments, the method further includes: determining a ranking of a
plurality of human embryos based on their viability indicators.

In some embodiments, the method further includes: selecting, based on the
ranking, one of the plurality of human embryos for a single embryo transfer or the
order in which multiple embryos should be transferred.

In some embodiments, the method further comprises selecting the embryo for
transfer and implantation based on the determined viability indicator. The selection
for transfer and implantation can be on Day 3, Day 5/6.

In another aspect, the present disclosure provides a method of selecting a
human embryo in an IVF/ICSI cycle, which includes determining a viability indicator
using a computer-implemented prediction method described herein, and based on the
predicted viability indicator, selecting the human embryo for transfer and
implantation.

In another aspect, the present disclosure provides a system, including at least
one processor configured to: receive image data of one or more human embryos, the
image data including a plurality of images of the one or more human embryos with at
different time points within the first 6 days after the formation of the one or more
embryos; apply at least one three-dimensional (3D) artificial neural network to the
image data to determine a viability indicator for the one or more human embryos; and

output the viability score.

Brief Description of the Drawings
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Figure 1 is a schematic illustration of an embodiment of the disclosed Al
platform for embryo assessment and live-birth occurrence prediction during the whole
IVF circle.

Figure 2 shows performance in the evaluation of embryos” morphokinetic
features according to embodiments of the disclosed subject matter.

Figure 3 shows performance in predicting the development to the blastocyst
stage according to embodiments of the disclosed subject matter.

Figure 4 shows performance of certain embodiments of the disclosed subject
matter.in identifying blastocyst ploidy (euploid/aneuploid).

Figure 5 shows performance of certain embodiments of the disclosed subject
matter in predicting live-birth occurrence of disclosed Al models.

Figure 6 shows visualization of evidence for embryo morphological
assessment according to embodiments of the disclosed subject matter.

Figure 7 is a flowchart of an embodiment of the disclosed Al platform with an
ensemble of model instances.

Figure 8 is a flow diagram describing the datasets of embodiments of the
disclosed subject matter.

Figure 9 shows performance in the measurement of embryos” morphokinetic
features according to embodiments of the disclosed subject matter.

Figure 10 shows performance in predicting the development to the blastocyst
stage according to embodiments of the disclosed subject matter.

Figure 11 shows performance study of the live-birth occurrence of certain
embodiments of the disclosed subject matter.

Figure 12 schematically illustrates a computer control system or platform that

1s programmed or otherwise configured to implement methods provided herein.

Description of Certain Embodiments of the Invention

According to some aspects, disclosed herein are diagnostic systems,
computing devices, and computer-implemented methods to evaluate embryos
generated by TVF procedures, such as embryo ploidy and live birth occurrence
probability, by using a machine learning framnework and without using biopsy. In
some embodiments, the machine learning framework utilizes deep learning models

such as neural networks.
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In one aspect, the present disclosure provides a method of selecting euploidy
embryos based on a deep learning method using spatial and temporal information
stored in time-lapse images. These images with corresponding parameters may store
information corresponding genetic information underlying proper embryo
development, therefore amendable to an Al based prediction on embryo ploidy
(euploid vs. aneuploid) without a biopsy.

Embodiments of the present invention provide a method for estimating
embryo viability. The viability indicator is or can include a probability, providing a
prediction of the likelihood of an embryo leading to a successful pregnancy after
implantation in the uterus. The embryo with a higher value of viability indicator has a
higher probability of pregnancy and live-birth. If multiple embryos are to be
transferred, the viability score may be used to decide the order in which embryos will
be transferred into the uterus.

In one aspect, the present disclosure provides a computer-implemented
method comprising the steps of: receiving image data of one or more human embryos,
the image data including a plurality of images of the one or more human embryo at
different time points within the first 6 days of the formation of the one or more
embryos; determining a viability indicator for the one or more human embryos,
wherein the viability indicator represents a likelihood that selection for implantation
of the one or more embryos will result in a viable embryo, based on one or more the
following: determining embryo morphological grading of the one or more embryos
using a first neural network based on the image data; determining aneuploidy of the
one or more embryos using a second deep learning model at least partly based on the
image data; predicting live-birth occurrence of a transfer of the one or more embryos
for implantation using a third deep learning model at least partly based on the image
data; and outputting the viability indicator.

In some embodiments, determining the embryo morphological grading
comprises using a multitask machine learning model based on the following three
tasks: (1) aregression task for the cytoplasmic fragmentation rate of the embryo, (2) a
binary classification task for the number of cells of the embryo, and (3) a binary
classification task for the blastomere asymmetry of the embryo determined, based on

the image data.
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In some embodiments, the multitask machine learning model was trained
jointly through combining the loss functions of the three tasks by using a
homoscedastic uncertainty approach in minimizing the joint loss.

In some embodiments, output parameters for the embryo morphological
grading comprise pronucleus type on Day 1, the number of blastomeres, asymmetry,
and fragmentation of blastomeres on Day 3.

In some embodiments, determining a viability indicator for the human embryo
further comprises using clinical metadata of the donor of the egg from the embryo is
developed, the metadata includes at least one of maternal age, menstrual status,
uterine status, and cervical status, previous pregnancy, and fertility history.

In some embodiments, the second deep learning model in the aneuploidy
determination comprises a 3D CNN model trained by time-lapse image videos and
PGT-A based ploidy outcomes assessed by biopsy.

In some embodiments, the method further comprises: determining blastocyst
formation based on the embryo image data based on Day 1 and Day 3.

In some embodiments, the third deep learning model comprises a CNN model.
In some embodiments, the third deep learning model further comprises an RNN
model and a two-layer perceptron classifier.

In some embodiments, the method further includes: determining a ranking of a
plurality of human embryos based on their viability indicators.

In some embodiments, the method further includes: selecting, based on the
ranking, one of the plurality of human embryos for a single embryo transfer or the
order in which multiple embryos should be transferred.

In some embodiments, the method further comprises selecting the embryo for
transfer and implantation based on the determined viability indicator. The selection
for transfer and implantation can be on Day 3, Day 5/6.

In another aspect, the present disclosure provides a method of selecting a
human embryo in an IVF/ICSI cycle, which includes determining a viability indicator
of one or more IVF-derived embryos using a computer-implemented prediction
method described herein, and based on the predicted viability indicator, selecting a
human embryo for transfer and implantation.

In another aspect, the present disclosure provides a system or device including
at least one processor, a memory, and non-transitory computer readable storage media

encoded with a program including instructions executable by the at least one
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processor and cause the at least one processor to: receive image data of one or more
human embryos, the image data including a plurality of images of the one or more
human embryos with at different time points within the first 6 days after the formation
of the one or more embryos; apply at least one three-dimensional (3D) artificial neural
network to the image data to determine a viability indicator for the one or more
human embryos; and output the viability score.

In some embodiments, the systems, devices, media, methods and applications
described herein include a digital processing device. For example, in some
embodiments, the digital processing device 13 part of a point-of-care device
mtegrating the diagnostic software described herein. In some embodiments, the
medical diagnostic device comprises imaging equipment such as imaging hardware
{e.g. a camera) for capluring medical data {e.g. medical images). The equipment may
include optic lens and/or sensors to acquire images at hundreds or thousands of
magnification. In some embodiments, the medical imaging device comprises a digital
processing device configured {o perform the methods described herein. In further
embodiments, the digital processing device mcludes one or more processors or
hardware central processing units {CPU) that carty out the device's functions. In still
further embodiments, the digital processing device further comprises an operating
system configured {o perform execuiable instructions. In some embodiments, the
digital processing device is optionally connected a computer network. In further
embodiments, the digital processing device is optionally cormected to the Internet
such that it accesses the World Wide Web. In still further embodiments, the digital
processing device 13 optionally connected to a cloud computing infrastructure. In
other embodiments, the digital processing device is optionally connected to an
intranet. In other embodiments, the digital processing device is optionally connected
o a data storage device. In accordance with the description herein, suitable digital
processing devices include, by way of non-hnuting examples, server computers,
desktop computers, laptop computers, notebook computers, sub-notebook computers,
netbook compuiers, set-iop computers, handheld computers, Internet appliances,
mobile smartphones, tablet computers, personal digital assistants, video game
consoles, and vehicles. Those of skill in the art will recognize that many smartphones
are suitable for use in the system described herein.

In some embodiments, the system, media, methods and applications described

herein include one or more non-transitory computer readable storage media encoded
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with a program including instructions executable by the operating system of an
optionally networked digital processing device. In {urther embodiments, a compuier
readable storage medium is a tangible component of a digital processing device. In
still further embodiments, a computer readable storage medium is optionally
removable from a digital processing device. In some embodiments, a computer
readable storage mediurn includes, by way of non-limiting examples, CD-ROMs,
DVDs, flash memory devices, solid state memory, magnetic disk drives, magnetic
tape drives, optical disk drives, cloud computing systems and services, and the hike. In
some cases, the program and instructions are permanently, substantially permanently,
semi~-permanently, or non-transitorily encoded on the media.

In some embodiments, the system, media, methods and applications described
herein include at least one computer program, or use of the same. A computer
program includes a sequence of mstructions, executable in the digital processing
device's CPU, written to perform a specified task. Computer readable instructions
may be implemented as program moduies, such as functions, objects, Application
Programmung Interfaces {APIs), data structures, and the like, that perform particular
tasks or implerent particular abstract data types. In light of the disclosure provided
herein, those of skill in the art will recognize that a computer program may be written
in various versions of various languages.

The functionality of the computer readable mstructions may be combined or
distributed as desired in various environments. In some embodiments, a computer
program comprises one sequence of instructions. In some embodiments, a computer
program comprises a plurality of sequences of instructions. In some embodiments, a
computer program is provided from one location. In other embodiments, a computer
program is provided from a plurality of locations. In various embodiments, a
computer program includes one or more software moduldes. In various embodiments, a
computer program includes, in part or in whole, one or more web applhcations, one or
more mobile applications, one or more standalone applications, one or more web
browser plug-ins, extensions, add-ins, or add-ons, or combinations thereof.  In some
embodiments, a computer program includes a web application. In light of the
disclosure provided heremn, those of skill 1o the art will recognize that a web
application, in various embodiments, utilizes one or more soffware frameworks and

one or more database systems.

PCT/US2022/028553
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In some embodiments, the systems, devices, media, methods and applications
described herein include software, server, and/or database modules, or use of the
same. In view of the disclosure provided herein, software modules are created by
techniques known to those of skill in the art using machines, software, and languages
known to the art. The software modules disclosed herein are implemented in a
multitude of wavs. In varous embodiments, a software module comprises a file, a
section of code, a programming obiect, a programuming structure, or combinations
thereof. In further various embodiments, a software module comprises a plurality of
files, a phurahity of sections of code, a plurality of programming objects, a plurality of
programuning structures, or combinations thereof. In various embodiments, the one or
more software modules comprise, by way of non-limiting examples, a web
application, a mobile application, and a standalone application. In some embodiments,
software modules are in one computer program or application. In other embodiments,
software modules are in more than one computer program or application. In some
embodiments, software modules are hosted on one machine. In other embodiments,
software modules are hosted on more than one machine. In further embodiments,
software modules are hosted on cloud computing platforms. In some embodiments,
software modules are hosted on one or more machines in one location. In other
embodiments, software modules are hosted on one or more machines in more than

one location

Detailed Figure Descriptions

Figure 1. Schematic illustration of disclosed Al platform for embryo assessment
and live-birth occurrence prediction during the whole IVF circle.

The left panel: The Al models utilized images of human embryos captured at 17+1
hours post-insemination (the Day 1) or 68=1 hours post-insemination (the Day 3).
Clinical metadata (e.g., maternal age, BMI) are also included.

The middle and right panel: An illustration of the explainable deep-learning system
for embryo assessment during the whole IVF circle. The system consisted of four
modules. The middle panel: a module for grading embryo morphological features
using multitask learning; a module for blastocyst formation prediction using Day

1/Day 3 images with noisy-or inference.
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The right panel: a module for predicting embryo ploidy (euploid vs. aneuploid)
using embryo images or time-lapse videos; a final module for the live-birth
occurrence prediction using images and clinical metadata. The models were tested on
independent cohorts to ensure the generalizability. We also studied the Al versus
embryologist comparison performance.

Figure 2. Performance in the evaluation of embryos’ morphokinetic features
using disclosed Al system.

a, ROC curve showing performance of detecting abnormal pronucleus type of the
Day1 embryo. b-d, Morphological assessment of the D3 embryos. b, ROC curves
showing performance of detecting blastomere asymmetry. The orange line represents
detecting asymmetry (++ or +) from normal (-). The blue line represents detecting
severe asymmetry (++) from good one (-). ¢, Correlation analysis of the predicted
embryo fragmentation rate versus the actual embryo fragmentation rate. d, Correlation
analysis of the predicted blastomere cell number versus the actual blastomere cell
number. MAE, mean absolute error; R2, coefficient of determination; PCC, Pearson’s
correlation coefficient.

Figure 3. Performance in predicting the development to the blastocyst stage
using disclosed Al system.

a, ROC curves showing performance of selecting embryos that developed to the
blastocyst stage. The blue, orange, and green lines represent using images from Day 1,
Day 3 and combined Day1 & Day3, respectively.

b-d, The morphology of embryos is positively related to blastocyst development
including, b, embryo fragmentation rate, and ¢, blastomere asymmetry. Box plots
showed median, upper quartile and lower quartile (by the box) and the upper adjacent
and lower adjacent values (by the whiskers). d, Visualization for embryos’
morphokinetic characteristics that developed to the blastocyst stage or not.

Figure 4. Performance of disclosed Al system in identifying blastocyst ploidy
(euploid/aneuploid)

a, The ROC curves for a binary classification using the clinical metadata-only model,
the embryo image-only model and the combined model. PGT-A test results are
available.

b, The ROC curves for a binary classification using the clinical metadata-only model,
the embryo video-only model and the combined model. The videos of embryo

development is captured using time-lapse.
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¢, [llustration of features contributing to progression to euploid blastocysts by SHAP
values. Features on the right of the risk explanation bar pushed the risk higher and
features on the left pushed the risk lower.

d and e, Performance comparison between our Al model and eight practicing
embryologists in embryos’ euploid ranking. d, ROC curves for detecting aneuploidy.
Individual embryologist performance is indicated by the red crosses and averaged
embryologist performance is indicated by the green dot. e, The euploid rate of
blastocysts selected for PGT-A test by Al versus average embryologists on different
filtering rate senerios. The baseline euploid rate is 46.1%

Figure 5. Performance in predicting live-birth occurrence of disclosed AI models.
a and b, ROC curves showing performance of on live-birth occurrence prediction on,
a, internal test set; b, external validation cohort. The orange, green and blue ROC
curves represent using the metadata-only model, the embryo image-only model and
the combined model.

¢, [llustration of features contributing to progression to live-birth occurrence by SHAP
values.

d and e, Comparison of our Al system with the PGT-A assisted approach for live-
birth occurrence. d, The live birth rate by the Al system is associated with the
proportion of embryos be selected for transfer. The orange line represents transplant
on Day 3. The blue line represents transplant on Day 5/6. e, lllustration of the baseline
rate by Kamath et.al., baseline rate on our external validation set 2, the PGT-A
assisted live-birth rate and the Al-assisted live-birth rate. PGT-A is only performed
for Day 5/6 transplant.

Figure 6. Visualization of evidence for embryo morphological assessment using
integrated gradients method.

Left: the original embryo images; Right: Explanation method generated saliency
heatmaps. a, normal pronuclear type of Day1 (good one); b, blastomere symmetry of
Day3 (good one); ¢, fragmentation rate of Day3 embryo (normal); d, Day3 blastomere
cell number (normal); e, Day 1 embryo failed to develop to the blastocyst stage; f,
Day 3 embryo failed to develop to the blastocyst stage.

Figure 7. The flowchart of the Al platform with an ensemble of model instances.
We first developed image enhancement models using color normalization and
contrast-limited adaptive histogram equalization (CLAHE) techniques. Four types of

embryo images after the application of color normalization and CLAHE image
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enhancements: original image, image after applying the CLAHE transformation only,
image after applying the color normalization transformation only, and image after
applying both the CLAHE and color normalization transformations. Each image
instance separately makes a prediction, and these are combined by averaging the
results for producing a robust Al model.

Figure 8. Flow diagram describing the datasets used for disclosed Al system,
including 4 principal modules: morphology grading, blastocysts prediction,
PGT-A ranking, and live-birth occurrence prediction. Patient inclusion and
exclusion criteria were also considered.

Figure 9. Performance in the measurement of embryos’ morphokinetic features
using disclosed Al system. Relating to Figure 2.

a and b, ROC curves showing performance of detecting abnormal morphology of the
Day3 embryo. a, ROC curves showing performance of detecting fragmentation. b,
ROC curve showing performance of identification of abnormal cell number (we
defined the numbers 7-9 as normal, otherwise are abnormal)

Figure 10. Performance in predicting the development to the blastocyst stage
using the Al system.

ROC curves showing performance of selecting embryos that developed to the
blastocyst stage. The blue line represents using the morphological scores given by
physicians; the orange line represents using the morphological scores given by our Al
system.

Figure 11. Performance study of the live-birth occurrence of the Al models.
Comparison of our Al system with the PGT-A assisted approach for live-birth
occurrence. a and b, The live birth rate by the Al system is associated with the
proportion of embryos be selected for transfer. The orange line represents transplant
on Day 3. The blue line represents transplant on Day 5/6. a, maternal age (<32,
median age); b, maternal age (=32, median age); ¢, Illustration of the baseline rate by
Kamath et.al., baseline rate on our external validation set 2, the PGT-A assisted live-
birth rate and the Al-assisted live-birth rate. PGT-A is only performed for Day 5/6
transplant.

Figure 12 schematically illustrates a computer control system or platform that is
programmed or otherwise configured to implement methods provided herein. In some

embodiments, the system comprises a computer system 2101 that is programmed or

12
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otherwise configured to carry out executable instructions such as for carrying out
image analysis. The computer system includes at least one CPU or processor 2105.
The computer system includes at least one memory or memory location 2110 and/or
at least one electronic storage unit 2115. In some embodiments, the computer system
comprises a communication interface 2120 (e.g. network adaptor). In some
embodiments, the computer system 2101 can be operatively coupled to a computer
network ("network") 2130 with the aid of the communication interface 2120. In some
embodiments, an end user device 2135 is used for uploading image data such as
embryo images, general browsing of the database 2145, or performance of other tasks.
In some embodiments, the database 2145 is one or more databases separate from the

computer system 2101.

Example

An Al-based system was developed to cover the entire IVF/ICSI cycle, which
consisted of four main components: an embryo morphological grading module, a
blastocyst formation assessment module, an aneuploid detection module, and a final
live-birth occurrence prediction module. Based on multitask learning, Al models were
provided for embryo morphological assessment, including pronucleus type on day 1,
and number of blastomeres, asymmetry and fragmentation of blastomeres on day 3.
Several key issues in IVF were addressed, including embryo morphological grading,
blastocyst embryo selection, aneuploidy prediction, and final live birth outcome
prediction. Transfer learning were used to pre-train a CNN with 10 million ImageNet
images and applied this model to D1/D3 human embryo images for further Al system
development covering the whole IVF/ICSI cycle. The above two approaches enable
us to assess implantation potential. Prediction on a live-birth outcome also depend on
many factors including maternal age, factors involving in menstrual, uterine, and
cervical status, previous pregnancy and fertility histories, which factors are also
incorporated in the Al models herein. By combining with embryo and maternal
metrics in an ensemble Al model, we evaluated live-birth outcomes in a prospective

trial (See Fig. 1).

Methods
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Dataset characteristics

Data (embryo Images and medical records) were collected at Guangzhou
Women and Children’s Hospital and Jiangmen central hospital between 2010 and
2019.

This study was approved by the Reproductive Medical Ethics Committee of
Guangzhou Women and Children’s Hospital.

All procedures were performed as a part of a patients’ standard care.
Institutional Review Board (IRB)/Ethics Committee approvals were obtained in all

locations and all participating subjects signed a consent form.

Overview of IVF-ET Cycles

The oocytes were inseminated by conventional IVF or ICSI according to
sperm parameter after retrieved. Then, all the two-pronuclei embryos were cultured
individually after fertilization check, and they turned into cleavage stage embryo after
cell division. The embryos were observed daily up to day-5/6 with each embryo has at
least two photographs: at fertilization check (16-18h after insemination) and Day-3
embryo assessment (66h after insemination) (Extended Data Table 1 and 2).

Extended Data Table 1. Observation of fertilized oocytes, embryos, and expected
stage of development at each time point based on Istanbul consensus.

Timing
Type of observation (hours post- Expected stage of
. . . development
insemination)
Fertilization check 17+1 Pronuclear stage
Day-2 embryo 44+1 4-cell stage
assessment
Day-3 embryo 68+1 8-cell stage
assessment
Day-4 embryo 92+2 Morula
assessment
Day-5 embryo 116+2
assessment
Day-6 embryo 140+2 Blastocyst
assessment

Extended Data Table 2. Morphology assessment of embryos

Grade | Rating Description

1 Symmetrical

Fquivalent to Z1 and 722
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scoring system for 2 Nm- vical Other arrangements,
pronuclet Symmetrica including peripherally sited
pronucies

scoring svstem for ! Cells number A \B\G\TR\N O\compact

2 S . .
cleavage-stage emnbrvos = Symmetry of A/t

cell size

(D3 embryo) :

3 fragmentation | 0%~80%

4 muliinucleation | Yes orno
scoring Stage of ! Early blastocyst with a blastocoel! that is less
svstem tor | developroent than hatl of the volume of the embryao
blastocysts P 4 '

- 2 blastocvst with a blastocoe] that 13 half of or

greater than half of the volume of the embrvo

2

o 3 full blasiocyst with a blastocoel completaly

filling the embrvo

4 an expanded blastocyst with a blastocost

volume larger than that of the early embrya,
with a thinmng zong

- a hatching blastocyst with the trophectoderm

starting 1o hermate though the zona
a hatched blastocvst, in which the blasiocvst
has completelv escaped from the zona
ICM 1 Good. A (Good Promunent, easily
discernible, with many
cells that are compacted
and tightly adhered

o] a1 . . . .

“ Fair, B Easily discernible, with
many cells that are loosely
grouped together

~ .o . ) . .

2 Poor, € Difficult to discern, with
few cells

TE i Good, A Good Many cells forming a
cohesive epithelium

2 Fair, B Few cells forming a loose
eptthelium

3 Poor, € Very few cells
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For Day 1 (16-18 h later) embryo morphological evaluation, embryologist
scored the zygote according to the number, size and location of the pronucleus and
pronuclei. Scott et al.?8 lassified zygotes into four groups Z1-Z4 according to pronuclear
morphology labeled with grades corresponding to their quality, including nuclear size,
nuclear alignment, nucleoli alignment and distribution and the position of the nuclei
within the zy gote.

Cleavage-stage embryos were evaluated by cell number, relative degree of
fragmentation, and blastomere asymmetry, according to the Istanbul consensus
(consensus 2011)%°.

If the embryo was cultured to blastocyst, Day-5 or Day-6 photograph were
stored to analysis as well. Only available blastocysts (defined as stage>3, and at least
one score of inner cell mass or trophectoderm is > B) were selected for transferred or
frozen for future use.

If the embryo was scheduled to PGT, biopsy was performed on day 5 or day 6
according to the blastocyst grade, and NGS was enrolled for euploidy assessment. In
PGT cycles, all the embryos went on blastocyst culture, available blastocysts were
biopsied and NGS was carried out for euploidy assessment.

Most of the embryos were transferred according to morphological scores on day
3 or blastocyst stage, while in PGT cycles embryos were selected according to PGT
diagnosis reports.

All the patients were strictly followed up, and live birth was defined as the birth
of a live infant at >28 weeks of gestation.

Time-lapse videos were also carried out in parts of the patients and were also
used for analysis. We used images from the Primo Vision time lapse system, which

takes an image for the embryoes every 10 minutes at 9 focal planes, at 10 wm increments.

Embryo scoring

Nine senior embryologists from the two centers scored embryos according to
the internal scoring rules.

For embryos which have definitely results were included this study. Euploid
embryos in retrospective study were included single embryo transfer results one live

birth, or two embryos transfer results in twin babies.
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Viability blastocyst is defined as blastocyst stage >3, and at least one score of
inner cell mass or trophectoderm is > B, according to Gardener scoring.

Embryos which have frozen or embryos transferred results in no pregnancy
were excluded. PGT group were embryos which have CNV results by NGS. Medical
records were those features in IVF treatments.

Live birth was defined as the birth of a live infant at >28 weeks of gestation.
The live birth rate per embryo transfer was defined as the number of deliveries divided
by the number of embryo transfers.

According to these criteria, totally 3469 static images and 154 time-lapse videos
of embryos were collected from 543 patients and record features of these patients were

analysis as well.

Image quality control

During the image grading process, all images were first de-identified to remove
any patient-related information. About 9% of the study participants were excluded due
to poor photographic quality/unreadable images including: insufficient lighting such
that the structures are clearly visible; sharp focus of the zona pellucida and
trophectoderm; one embryo per micrograph with no visible instruments and little or no
debris in the visual field; the entire embryo shown within the limits of the image
(including the zona pellucida); and text or symbols in the images not hindering the
visibility of the embryos.

Missing clinical diagnosis were also excluded. After establishing the consensus
diagnoses, images were transferred to the Al team to develop a deep learning algorithm

for image-based classification.

Embryo image pre-processing

The pre-processing of embryo image includes two steps, image segmentation
and image enhancement.

Firstly, we cropped the embryo out of each image. We trained an embryo
segmentation UNet*® on embryo images to produce embryo segmentation masks, where
the pixels on the embryo were assigned by positive labels (foreground) and the others
were negative (background). These masks were used to locate the center of the embryo

bounding box in each image. All embryo images were aligned by cropping along the
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calculated embryo bounding box. This alignment and cropping approach can help
models to focus on the embryo in each image and reduce the bias introduced in the data
collection stage.

To capture the non-specific features on embryo images and improve the
performance of the Al models, two methods of image enhancement were utilized
including Contrast Limited Adaptive Histogram Equalization (CLAHE)*! and color
normalization®?. Instead of globally performing histogram equalization, CLAHE
enhancement was performed by dividing the image into local regions and applying
histogram equalization over all neighborhood pixels. Compared with the original
images, CLAHE enhanced the details of image. The image normalization method was
performed as follows: x’ = ax — aGauss(x,u, 2, s X s), where x is the input image,
x’ is the normalized image, u and S are parameters, and Gauss(x,u,2,s X s) is a
Gaussian filter with a Gaussian kemel (u,2) of size s Xs . We used @ =4 and
B =128, ¥ =1 and s = 10, following the literature®?. With image normalization, we
could reduce the brightness bias among images taken under different acquisition

conditions.

Deep learning and transfer learning methods

Convolutional neural networks (CNNs) were used to analyze the embryo
images in this study. The transfer learning technique was used, where the ResNet-50
model ¥ pre-trained with the ImageNet dataset’™* was initialized as the backbone and
fine-tuned for all deep learning models demonstrated. ResNet-50 is a five-stage
network with residual designed blocks, which utilizes residual connections to overcome
the degradation problem of deep learning models and enables very deep networks.

For the "regression" tasks, a fully connected layer with one scalar as output was
used as the final layer in the ResNet-50 model. The final output was rounded to an
integer for ordinal regression. For classification tasks, an additional softmax layer
besides a fully connected layer was attached to the model.

The Mean-Square Error (MSE) loss was used as an objective function for
"regression" tasks and the Cross Entropy loss was used for "classification" tasks.
Embryo images were resized to 224 X 224. Training of models by back-propagation
of errors was performed for 50 epochs with an Adam optimizer *, learning rate of

1073, weight decay of 107 and batch size of 32. Transformations of random
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horizontal flip, vertical flip, rotation and brightness were added to each batch during
training as data augmentation in order to improve the generalization ability of the
models. The models were implemented with PyTorch*® . We randomly divided the
developmental dataset into a training set (7/8 of the development set) and a tuning set
(1/8 of the development set) to develop our models. When training done, the models
with the best validation loss were selected for evaluation on validation sets.

We applied model ensemble to improve the overall performance of the Al. For
each task, we trained four model instances with different processed embryo images as
input, where each input image was pre-processed into four images by applying CLAHE
only, normalization only, both CLAHE and normalization, and identity transformation.
Then, for each task, we trained four models with the same architecture trained in
parallel on the same development set but with each using a differently pre-processed
image. Given an input image, a prediction was obtained by averaging the outputs of the

four models.

Overview of the Al system

The disclosed Al system is a general embryo assessment platform covering the
whole IVF/ICSI cycle, which include four main components: an embryo morphological
grading module, a blastocyst formation assessment module, an aneuploid detection
module, and a final live-birth occurrence prediction module.

Al models were first developed using multitask learning for embryo
morphological assessment, including pronucleus type on day 1, and number of

blastomeres, asymmetry and fragmentation of blastomeres on day 3.

Embryo morphological grading and multitask learning

We built the embryo morphological grading module for embryo of day 1 and
day 3, including evaluation of zona pellucida thickness variation, number of
blastomeres, degree of cell symmetry and cytoplasmic fragmentation. We applied
multitask learning for morphological grading of cleavage-stage embryos, since
correlations between the morphology grades of cleavage-stage embryo are presented.
For example, a cleavage-stage embryo shown with severe fragmentation is likely to
consist of several asymmetrical blastomeres. Thus, we applied multitask learning for
three tasks of morphology grading of cleavage-stage embryo to enhance the

performance of the Al. The fragmentation rate and the number of cells were formulated

19

PCT/US2022/028553



10

15

20

25

30

WO 2022/240851

to regression tasks and the identifying blastomere asymmetry was formulated to a
binary classification task, whose loss functions were denoted as Ly, Ly, and L,
respectively. A single model for these three different tasks was trained jointly through
combining their loss functions, which not only could make use of the correlations but
also performed regularization by sharing model parameters, resulting in more accurate
and robust performance. We performed a homoscedastic uncertainty approach?®’ to

combining these three losses and minimized the joint loss. With the assumption of

homoscedastic uncertainty, the loss of a task is weighted and factorized to G—lzL + logo

for a regression task or %L + logo for a classification task, where o is a trainable
parameter. Therefore, the combined loss function for the morphology grading multitask

learning model can be formulated as %Lf + %Ln + %La + logoy + logo, +
f n a

logo,.

Blastocyst formation assessment and noisy-or inference

On the fifth day, the embryo forms a “blastocyst,” consisting of an outer layer
of cells (the trophectoderm) enclosing a smaller mass (the inner-cell mass). In
blastocyst formation assessment module, we used the embryo images from Day 1/Day
3 to predict the blastocyst formation. We trained two models for blastocyst formation
assessment using embryos from Day 1 or Day 3, separately. We further combined the
predicted results from these two models by a noisy-or inference, assuming that the
development to blastocyst happening can be caused by two factors of embryo observed
on Day 1 or Day 3, and the happening of any one of these two factors can lead to the
happening of the blastocyst formation with independent probability. Thus, the
probability of blastocyst formation is composited by p = 1 — [[;eq1,33(1 — p;), where
p; is the predicted probability with the image on Day i.

We built an automatic evaluation system to detect embryo chromosomal ploidy
and live birth outcome based on embryo still images and time-lapse videos. The embryo
chromosomal ploidy (euploid vs. aneuploid) refers to the presence or absence of any
wrong duplication or deletion of chromosomes, and the live-birth outcome refers to
whether the embryo can be developed into a healthy fetus and delivered in a full term

normally.
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Prediction of chromosomal ploidy using time-lapse image and video

In the ploidy detection module, we adopied 3D neural networks to detect the
embryo ploidy {(euploid vs. aneuploid) based on the time-lapse video of the embrvo
development, which are tmages of embrvos taken consecutively with the same time
mterval. Specifically, we omiformly sampled 128 frames per hour to capture the
dvnarmic and static features of the embryos. And then we located the position of embryo
using another neural network to align and size each and every embrvo across all
sampled time-lapse frames so each embiyo image is uniform in size and pixels. We
used a prefraimed 3D ResNet o conduct the ploidy detection task based on the aligned
embryo frames and gave the final prediction.

In an example, three-dimensional CNNs were adopted to predict the ploidy
status (euploid vs aneuploid) of an embryo given an embryo time-lapse video, which
presented both morphological and temporal information of the embryo®® . For each
time-lapse video, firstly, we downsampled the frames of the video by uniformly
sampling per hour with truncating or padding, resulting in a total of 128 frames, in order
to capture morphological features and developmental kinetics of the embryo over the
whole process of embryonic development. Then, the sampled images were cropped
with the embryo segmentation model and resized to 128 X 128 for alignment. And
then, the pre-processed images were stacked along temporal axis to generate a
128 x 128 x 128 3D tensor for downstream prediction tasks. We used a three-
dimensional version of ResNet-18%° model pre-trained with the Kinetics-400 dataset*’
to initialize the backbone and fine-tuned the classification head with embryo time-lapse
videos for ploidy status prediction. The backbone consists of 3 X3 X3 and
3 x 7 x 7 convolutions, and the classification head consists of two fully connected

layers. We used a five-fold cross-validation scheme for aneuploidy prediction.

Live-birth Prediction

In the live-birth prediction module, we used embryo images to predict the live-
birth probability of a transfer with single or multiple embryos in a IVF transplantation.
To improve the success rate of a single transfer therefore a high probability of a full
term [pregnancy, multiple embryos are often transferred in a single transfer in practice.
To address the variable length of the input data we built the neural network with CNN-

RNN architecture. (CNN is the abbreviation of convolutional neural network, which is
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suitable for image feature extraction, and RNN is the abbreviation of recurrent neural
network, which is designed for input data with a variable length). Image features of the
embryos were extracted from each embryo in a single transfer by a shared CNN, and
then further fused in the RNN to generate transfer-level feature, and finally aggregated
to give an overall live-birth probability. Concretely, we used two views from day 1 and
day 3 for each embryo. The input sequence was stacked embryo by embryo with
ordered views along embryo developed time. We also integrate clinical metadata
including maternal age, endometrial thickness, etc., to further improve prediction using
methods such as logistic regression.

In an example, the live-birth occurrence prediction module mapped a transfer
T with single or multiple embryos to a probability of live-birth occurrence, where T
is asequence of n X m images from n embryos with m viewed images. To address
the input with variable numbers of embryo images in each transfer, we built the model
M based on a feasible CNN-RNN architecture*! , since CNNs were effective in
extracting morphological features from embryo images, and recurrent neural networks
(RNNs) were suitable for integrating information among embryo images. The model
M consists of three parts: a CNN model F,, an RNN model F;, and a two-layer
perceptron classifier F.. The CNN model F, extracts image-level feature e; = F,(x;)
for each image x;. We used the last flatten feature map produced by the backbone of
F, as the input to the following RNN model. Then, the RNN model F; with image
features T = [xq, Xy, "+, Xpm] and an additional max-pooling layer over time axis will
integrate the output of the RNN to a transfer-level feature f = F.(T) with a fixed
dimension for the following classification head. An additional max-pooling layer over
time axis will integrate the output of the RNN to a transfer-level feature with a fixed
dimension for the following classification head. The RNN model was implemented
using a single layer bidirectional LSTM structure*?. Finally, the two-layer perceptron
classifier F, map the transfer-level feature to the probability y = F.(f). We used two
views from day 1 and day 3 for each embryo. The input sequence was stacked embryo
by embryo with ordered views along embryo developed time. We also
combine/integrate clinical metadata to further improve prediction using methods such

as logistic regression.
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Interpretation of Al predictions

A SHAP method was used to display the impact of relevant risk factors on
prediction for aneuploid detection and live-birth prediction. SHAP is a value
explainable tool for tree-based models, which could efficiently and exactly compute
local explanations and global explanations. The performance of a local explanation of
SHAP for prediction with interpretability was also investigated.

In order to interpret the prediction that our models proposed, we used Integrated
Gradient # (IG), a gradient-based method, to generate visual explanations that highlight
areas contributing to the model’s prediction. Given a trained model f, an input image
x, and an output score y. = f(x) for class c, the basic gradient-based visualization

method** generates a saliency map where the importance weight for each pixel is
derived by %. The IG method improves the basic method by path integrated gradients,

which quantifies the importance of each pixel as follow: (x—x")X

1 Af(x"+a(x—x"))
fa:o

P da,where x' isabaseline image. This overcomes the disadvantage

of the basic method that lacks sensitivity to important features when the model output
to the correct class is saturated. In this study, the baseline image used a black image
with the same size of input images. The generated heatmap was filtered by a Gaussian

kemel with ¢ = 8 for smooth.

Performance study of the Al system

To assess the ploidy predictions, Al system was compared against chance
(randomly assigned ploidy predictions) and eight embryologists.

We conducted two experiments to study the Al system versus embryologist’s
performance in the ploidy evaluation. Given an embryo, we provided the images of
Day 1, Day 3 and corresponding clinical metadata to the embryologists. The group of
eight embryologists give a binary classification and a ranking evaluation of the data
respectively.

In the binary classification evaluation experiment, the embryologists are asked
to evaluate whether the embryo is euploid or not by looking at the picture and
considering information provided for maternal information. For the AI's performance,
we used the ROC evaluation and operating point-based binary classification, based on

the generated probability.
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For the ranking experiment, the embryologists assigned a score of 1 to 10, with
the higher score indicating greater likelihood of euploidy. Each embryo was scored
twice (two weeks after the initial reading) and the average was calculated as the final
score. Further, we used the generated Al probabilities to calculate the ranking score for
embryo evaluation and filtering for further PGT-A test. The euploidy rate of embryos
is calculated at different filtering ratios.

Statistical analysis

To evaluate the performance of regression models for continuous values
prediction in this study, we applied Mean Absolute Error (MAE), R-square (R2), and
Pearson Correlation Coefficient (PCC). We applied the Bland-Altman plot*
displaying the difference between the measured value and the predicted value of a
sample against the average of the two. And we evaluated the agreement of the predicted
value and actual value by 95% limits of agreement and Intraclass Correlation
Coefficient (ICC). The models for binary classification were evaluated by Receiver
Operating Characteristic (ROC) curves of sensitivity versus 1 — specificity. The Area
Under the Curve (AUC) of ROC curves were reported with 95% Confidence Intervals
(ClIs). The 95% ClIs of AUC were estimated with the non-parametric bootstrap method
(1,000 random resampling with replacement). The operating point of an Al system
could be set differently to balance the true positive rate (TPR) and the false-positive
rate (FPR). The embryo-level models were generated using the average outputs of
predictions of image-level. The AUCs were calculated using the Python package of

scikit-learn (version 0.22.1).

Results
Image datasets and patient characteristics

After oocytes were retrieved, they were inseminated by conventional IVF
according to sperm parameter. All the two-pronuclei embryos were cultured
individually after fertilization check and were observed daily up to day-6. Each embryo
had at least two photographs: one for fertilization check on Day-1 and one for Day-3
embryo morphological assessment. A total of 39,784 embryos from 7,167 patients were
enrolled in the study which cultured from IVF/ICSI cycle between March 2010 and
December 31, 2018. The demographics and clinical information of the cohort
participants are summarized in Table 1 and Figure 8. Of those, 36,013 embryos from

6,453 patients were used as developmental dataset. All subjects from the developmental
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set were split randomly into mutually exclusive sets for training, tuning and “internal
validation set” of the Al algorithm at a 70%:10%:20% ratio.

Table 1. Basic characteristics of patients in the developmental dataset and external
validation cohorts for diseases detection. The numbers of embryo images used for
identifying systemic conditions are shown in each cohort. AMH, Anti-Miillerian
hormone; FSH, Follicle-stimulating hormone.

Developmental
Dataset Internal | External | External
Cohorts . . Tuning | validatio | validation | validatio
Training
set n set 1 n set2
set
Number of 3272 1,071 1.125 393 2,410
patients
Number of | o141 3,130 3331 407 3,192
embryos
Number of images 19,006 6,638 6,940 843 6,351
?sgDe) ). mean| 5y ¢ia4 | 31,9543 | 32,0046 | 315544 | 3232438
2
BMI (ke/m®), | ) 5000 | 214229 | 215229 | 214229 | 21.8+3.1
mean (SD)
FSH (mIU/mL). | ¢ 07 | sox1 | 5923 | 57219 | 68229
mean (SD)
AMH (ng/mL). 51448 | 48439 | 48+43 | 52+42 | 39431
mean (SD)
Number of 127471 | 12.8472 | 12.8+6.9 | 13.1£6.5 | 14.2+8.7
oocytes retrieved
Endometrial
thickness (mm), 10.642.8 | 10.4+2.7 | 10.742.6 | 10.7+3.0 | 10.0+1.8
mean (SD)

In one embodiment of the present disclosure, the Al system provides a general
embryo assessment platform covering the entire IVF/ICSI cycle, and include four
modules: an embryo morphological grading module, a blastocyst formation assessment
module, an aneuploid detection module, and a final live-birth occurrence prediction
module.

Al models were first developed using multitask learning for embryo
morphological assessment, including pronucleus type on day 1, and number of
blastomeres, asymmetry and fragmentation rate of blastomeres on day 3. On the fifth
day, the embryo forms a “blastocyst,” consisting of an outer layer of cells (the

trophectoderm) enclosing a smaller mass (the inner-cell mass). We further used the
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embryo images from Day1/Day 3 to predict the blastocyst formation with noisy-or
inference (blastocyst formation assessment module).

The aneuploid detection module predicted the embryo ploidy (euploid vs.
aneuploid) using embryo images and clinical metadata. We also constructed an 3D
CNN model using time-lapse image videos and further tested on independent cohorts
using videos from 400 patients to ensure the generalizability.

For the live-birth occurrence prediction module, embryo images and clinical
metadata from 4,537 patients were used to train the Al model. To evaluate the Al
model’s performance, an independent prospective study was conducted. This
prospective cohort consisted of 2,410 patients from Jiangmen hospital, Guangdong

Province (Table 1, see more details in Methods).

Explainable Al system for embryo morphological assessment

In clinical practice, IVF embryos were selected for implantation according to a
morphological score system at three stages, including pronuclei stage, cleavage stage,
and blastocyst stage, according to the Istanbul consensus criteria.

Generally, the following parameters were used in the selection of the good
quality embryos: pronuclear morphology, number of blastomeres at a particular day of
culture; blastomere characteristics including size, symmetry and fragmentation .

At the pronuclei stage, the zygote (pronuclear) morphology has been related to
the growth ability advancing to the blastocyst stage and to outcomes of implantation
and pregnancy. The Z-score system was used to grade pronuclear of each embryo to
Z1-Z4, in which nuclear size and alignment, nucleoli number and distribution are taken
into account. The Al model was able to detect abnormal pronuclear morphology with
an Area under the Curve (AUC) of 0.800 (95% CI: 0.783-0.814) (Fig. 2a).

At the cleavage stage, we evaluated the Al model ability to determine the
asymmetry, fragmentation and number of blastomeres. Blastomere symmetry was
defined as previously reported by Prados?’: embryos with blastomeres with a diameter
difference of <25% were deemed symmetrical (-); embryos with >75% diameter
differences were deemed severely asymmetrical (++), and a value between 25% and
75% was considered mildly symmetrical (+). This was calculated by dividing the
diameter of the smallest blastomere with that of the largest blastomere (see more details
in Methods). The Al system delivered an AUC of 0.817 (95% CI: 0.785-0.842) for the

detection of the severe asymmetrical (++) from symmetrical blastomere, and an AUC
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of 0.870 (95% CI: 0.847-0.893) for the detection of asymmetrical (++ or +) from
symmetrical blastomere (-) on test set (Fig. 2b).

We further compared between an Al predicted fragmentation score system and
the actual fragmentation scoring system (Fig. 2¢ and Figure 9a). The predicted and
actual fragmentation of blastomeres had a strong linear relationship, with a Pearson
correlation coefficient (PCC) of 0.86, coefficient of determination (R2) of 0.73, and a
mean absolute error (MAE) of 3.335 percent (Fig. 2¢). We then trained Al models to
perform binary classification tasks (pattern of fragmentation versus normal). The AUC
for detecting fragmentation was 0.971 (95% CI: 0.968-0.975) (Figure 9a).

Lastly, we investigated the performance of the Al model to predict the cell
numbers. Fig. 2d showed that the predicted cell numbers by Al algorithm achieved an
excellent correlation with the actual number of blastomeres (PCC=0.863, R2=0.744,
MAE=0.627).

Prediction of blastocyst development using embryo images

We next tested the ability of our Al models to predict the fate of cleavage-stage
embryos. Accuracy of predicting stage of embryo development on D5 was established
for D1 and D3 time points.

First, we investigated the performance by incorporating information from
different time points including Day1/ Day3 embryo images, using end-to-end deep
learning methods (Fig. 3a). The Al model was able to predict whether or not an embryo
could develop to the blastocyst stage with an AUC of 0.847 (95% CI. 0.838-0.856)
using the Day 1 embryos alone. The AI model achieved an improved prediction
accuracy with an AUC of 0.900 (95% CI:0.894-0.906) using the Day 3 embryos. When
combined the Day1 and Day3 images, our model showed a better performance with an
AUC 0f 0.913 (95% CI: 0.908-0.918).

We next assessed the ability for evaluation of embryo viability by using an
embryo morphology scoring system from the previous study as input, which consisted
of pronuclear morphology, asymmetry, fragmentation and number of blastomeres.

These studies demonstrated an improved predictive ability for evaluation of
embryo viability when compared with embryologists’ traditional morphokinetic
grading methods (Figure 10). Furthermore, fragmentation rate of embryos significantly
increased with the failed blastocyst formation (Fig. 3b). Similarly, the asymmetry of
embryos significantly increases with the failed blastocyst formation (Fig. 3¢). Fig. 3d
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showed the examples that human blastocyst morphology including fragmentation and
asymmetry of embryos, are correlated with the blastocyst development outcomes and

were the main drivers of the overall Al assessment.

Detection of blastocyst ploidy using embryo image-based Al system

Most of the embryos were selected to transfer according to morphological
scores on day 3 or day 5, other embryos were transferred according to preimplantation
genetic testing for aneuploidy (PGT-A) diagnosis reports. According to previous
studies, embry o aneuploidies, which affect more than half of IVF embryos and increase
with advancing maternal age, is the main reason for implantation failure?!,

It is hypothesized that genome aneuploidy could affect cell morphology and
migration patterns during embryonic development therefore amendable to detection by
an Al algorithm. Three models were attempted for the aneuploidy detection: deep
learning model using Day 1/Day 3 embryo images; baseline random forest model using
clinical metadata; and a combined Al model using both input modalities. For all tasks,
the combined model and the embryo image-only model performed better than the
metadata-only model (Fig. 4a). The AUC for detecting embryo aneuploidies was 0.669
(95% CI: 0.641-0.702) for the metadata-only model, 0.719 (95% CI: 0.692-0.740) for
the embryo image-only model and 0.785 (95% CI: 0.762-0.805) for the combined
model (Fig. 4a).

Next, we first trained a 3D CNN model using time-lapse image video to predict
the ploidy status (euploid vs aneuploid) of an embryo, which presented morphological
and temporal information of the embryo development. The algorithm was further
validated on a series of time-lapse video from 145 embryos. When tested on the external
test set using still embryo images, the AUCs for predicting the presence of embryo
aneuploidies were 0.648 (95% CI: 0.593-0.703) using a clinical metadata model, 0.740
(95% CI: 0.690-0.785) for an embryo image model, and 0.806 (95% CI: 0.760-0.837)
for a combined model (Fig. 4b).

For interpreting the effects and relative contributions of the embryo features and
clinical parameters on embryo aneuploidy prediction, we implemented an explainer
SHAP (Shapley Additive exPlanation) 2. The results showed that the embryo image
features and clinical parameters including age, blastomere asymmetry, Day3
blastomere cell number are contributed to the prediction of aneuploid embryos (Fig.

4c¢).
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We compared the performance between our Al system and eight embryologists
from two different fertility clinics on aneuploidy prediction. In a euploidy screening
setting, the embryologists ranked all the embryos for probability of being euploid. The
top candidate embryos would be further selected to undergo a PGT-A testing. The
testing dataset consisted of 560 images from 110 patients, from which 46.1% were
euploid embryos. On this testing set, our Al system performance obtained an AUC of
0.724 which was superior overall to that of embryologists, including four junior
embryologists and four senior embryologists (Fig. 4d).

Then we investigate whether our Al system could help embryologists to
improve their performance for aneuploidy prediction. The embryologists were also
asked to rank the embryos by looking at the pictures from embryos and considering
information provided for maternal age and other clinical information (see more details
in Methods).

We calculated the euploid rate with different selecting rate for further PGT-A
testing and compare performance between our Al system and the embryologists (Fig.
4e). The baseline euploid rate of the population is 46.1%. By ordering the potential
aneuploidy, the euploid rate by embryologist improved, and the Al-based performance
was significantly improved compared to the embryologists. In addition, the euploid rate
of embryos selected by our Al models would improve with the removal of the embryos

increase.

Predicting live birth using embryo image and clinical metadata

To further extend the scope of our Al system in the prediction of live birth
occurrence, we developed three models: baseline random forest models using clinical
metadata; deep learning models using embryo images and a combined Al model using
both input modalities. The developmental dataset was divided into training, tuning and
internal validation sets (at a ratio of 7:1:2) to assess the models' performance (Data
Table 1).

Here, the embryos were transferred on day 3 or day 5/6, and the number of
embryos transferred to be limited to two or less embryos according to recent guidelines
published in September 2004 by the American Society for Reproductive Medicine
(ASRM)??. Tested on the internal validation set, the clinical metadata alone gave an
AUC of 0.722 (95% CI: 0.666-0.784), and the Al model trained using embryo images
alone produced an AUC of 0.700 (95% CI: 0.636-0.751). When trained using combined
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clinical metadata and embryo images, the combined Al model achieved superior
performance with an AUC of 0.803 (95% CI: 0.758-0.849) (Fig. 5a). We further
validated these AI models using another independent external cohort (external
validation set 1) to demonstrate their generalizability (Fig. 8). The AUC was 0.727 (95%
CI: 0.657-0.798) for the clinical metadata-only model, 0.692 (95% CI: 0.604-0.759) for
the embryo image model, and 0.762 (95% CI: 0.705-0.838) for the combined model
(Fig. 5b).

Since the Al system measures many key embryo and key clinical features used
in IVF, we further demonstrated it has the potential to reduce the time to grade embryos
without sacrificing interpretability. Here, we used SHAP method to demonstrate the
value of the explained predictions made by Al system and gain insight into factors that
affect the live-birth occurrence. Our findings indicate that maternal age was identified
as the most significant contributor in the clinical prognosis estimation. The materal
age, endometrial thickness, FSH, BMI, AMH are significantly associated with the live
birth rate per transfer (Fig. 5c¢). Taken together, these findings demonstrated not only
the validity the Al model, but also the potential real-life feasibility and utility of an Al-
based platform.

Al assisted live-birth prediction performance study

The embryos were selected for implantation according to morphological
scores on day 3 or on day 5/6 based on a preimplantation genetic testing for
aneuploidy (PGT-A) diagnosis report. To validate the Al system’s clinical utility, we
further studied the AI’s performance on the external validation set 2 comprising 6,315
embryo images from 2,410 participants for scenario of single embryo transfer.

The performance of Al against embryologists in the live-birth rate on Day 3, or
against live-birth results assisted by PGT-A on Day 5/6 have been summarized in Fig.
5d and Fig. Se. For different clinical applications, the Al system’s operating point can
be set differently to compromise between the transfer rate and the live birth rate
outcomes (Fig. Sd). Our baseline live-birth rate was 30.8% on Day 3 or 40.9% on Day
5, similar to the 29.3% or 45.0% reported in previous reference’*. When evaluated on
the Day 3 transfer, our Al model achieved superior performance with live-birth of 46.0%
compared to the baseline. Further, for the Day 5 transplant, the success rate of
individual embryos by our Al model alone was 54.9% which was superior to that of

PGT-A assisted performance (Fig. Se). The results demonstrated that Al-assisted
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evaluation could help optimize embryo selection and maximizes likelihood of
pregnancy with an accuracy comparable to that of a PGT-A test.

As the live-birth occurrence is correlated with age, we further analyzed our Al’s
performance in live-birth occurrence stratified by the median age (age=32). As shown
in Fig. 11, the Al model had a significant 13.4% and 13.5% improvement compared to
baseline on the older group (age>32), which is superior to that on the younger group
(Age <32).

Visualization of evidence for Al prediction

Finally, to improve the interpretability of the Al model and shed light on its
prediction mechanism, Integrated Gradients (IG) was used to generate saliency maps
which help to highlight areas of the images that were important in determining the Al
model’s predictions. The saliency maps from the explanation techniques suggest that
the model tends to focus on the pronuclear for evaluating the D1 embryo morphology
of pronuclear type (Fig. 6a).

As for the prediction of number of blastomeres and degree of cell symmetry,
the model tends to focus on the spatial features around the center of D3 embryos (Fig.
6b and 6d).

The knowledge derived from saliency maps appears to suggest that the Al
model focuses on fragments around the cells of D3 embryos for cytoplasmic
fragmentation and the fate of cleavage-stage embryos (failed one).

In Fig. 6e, the highlighted ‘points of interest’ map appears more scattered over

the D1 embryo that failed to develop to the cleavage-stage.

Discussion

New progress in embryo selection aimed to maximize IVF success rates,
reduce the time to conceive, while minimizing the risks of multiple pregnancies.
Current morphological grading methods rely on descriptive parameters to rank
cleavage-stage embryos for transfer. Though, previous studies have been studied for
Al-assisted morphological grading? or identifying cleavage-stage embryos that will
develop into blastocysts?®. This study has several differences to consider in
comparison to previous studies.

In this study, we developed a general Al platform on the embryo evaluation

and live-birth occurrence prediction for the entire IVF cycle, including an embryo
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morphological grading module, a blastocyst formation assessment module, an
aneuploid detection module, and a final live-birth prediction module. The results raise
the possibility of Al-based selection of embryos with manifestations beyond
clinicians' observational power. These findings could potentially provide a non-
invasive, high throughput and low-cost screening tool to greatly facilitate embryo
selection and best outcome performance. It could also potentially assist in
standardization of embryo selection methods across multiple clinical environments.

Oocyte?” and embryo aneuploidies, affecting more than half of embryos
produced and increasing with advancing maternal age, is the main reason for
implantation failure and miscarriages in an IVF cycle, which was addressed by
successful application of an IVF PGT-A test. However, this procedure is invasive and
could cause embryo damages due to biopsy and vitrification; mis-diagnosis or
mosaicism in PGT-A may result in embryo wastage; euploid assessment by NGS or
SNP-array also means a higher cost in an IVF procedure.

Recently, the non-invasive strategy of time-lapse microscopy (TLM) was
applied to human embryos and a lot of data analyzing the possible prognostic effect of
morphokinetic were reported. Time-lapse microscopy evaluates the embryo quality by
precise occurrence and duration of cell divisions (cytokinesis), duration of cell cycles
(time interval between cleavages). Significant differences in morpho-kinetic pattern
between euploid and aneuploid embryos may exist, but the clinical significance was
absent to modest that are undetectable by human observers.

Here, our Al-based approach showed potential to extract morpho-kinetic
parameters and be used as a surrogate for PGS to determine chromosomal status of the
preimplantation embryos.

In addition, this study has assessed the role of automated Al algorithms in the
live-birth rate using a D1/D3 embryo images and clinical metadata. And the selection
accuracy was assessed for scenarios of single embryo transfers (SET) and double
embryo transfers (DET). Our Al model showed much significant improvement
compared to baseline live-birth rate. Though, the PGT-A achieved comparable
performance with our Al-assisted approach, it has limitations that can only be used for
blastocysts to transfer in Day 5. Further, our Al model can yield a continuous score that
represents the quality of the embryo and that objective orders of transfer can be
determined for a given set of embryos using such scores. For real-world clinical

applications, the operating point of an Al system could be set differently to balance the
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transfer rate of blastocysts and the live-birth rate, which is more flexible compared to

the PGT-A approach.
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CLAIMS

1. A computer-implemented method comprising the steps of:
receiving image data of one or more human embryos, the image data including
a plurality of images of the one or more human embryo at different time points within
the first 6 days after the formation of the one or more embryos;
determining a viability indicator for the one or more human embryos, wherein
the viability indicator represents a likelihood that selection for implantation of the one
or more embryos will result in a viable embryo, based on one or more the following:
determining embryo morphological grading of the one or more
embryos using a first neural network based on the image data;
determining aneuploidy of the one or more embryos using a second
deep learning model at least partly based on the image data;
predicting live-birth occurrence of a transfer of the one or more
embryos for implantation using a third deep learning model at least partly
based on the image data; and

outputting the viability indicator.

2. The method of claim 1, wherein determining the embryo morphological grading
comprises using a multitask machine learning model based on the following three
tasks: (1) aregression task for the cytoplasmic fragmentation rate of the embryo, (2) a
binary classification task for the number of cells of the embryo, and (3) a binary
classification task for the blastomere asymmetry of the embryo determined, based on

the image data.

3. The method of claim 2, wherein the multitask machine learning model was trained
jointly through combining the loss functions of the three tasks by using a

homoscedastic uncertainty approach in minimizing the joint loss.
4. The method of claim 1, wherein output parameters for the embryo morphological

grading comprise pronucleus type on Day 1, the number of blastomeres, asymmetry,

and fragmentation of blastomeres on Day 3.

37



10

15

20

25

30

WO 2022/240851 PCT/US2022/028553

5. The method of claim 1, wherein determining a viability indicator for the human
embryo further comprises using clinical metadata of the donor of the egg from the
embryo is developed, the metadata includes at least one of maternal age, menstrual

status, uterine status, and cervical status, previous pregnancy, and fertility history.

6. The method of claim 1, wherein the second deep learning model in the aneuploidy
determination is a 3D CNN model trained by time-lapse image videos and PGT-A

based ploidy outcomes assessed by biopsy.

7. The method of claim 1, further comprising:
determining blastocyst formation based on the embryo image data based on

Day 1 and Day 3.

8. The method of claim 1, wherein the third deep learning model comprises a CNN

model.

9. The method of claim 1, further including: determining a ranking of a plurality of

human embryos based on their viability indicators.

10. The method of claim 9, further including: selecting, based on the ranking, one of
the plurality of human embryos for a single embryo transfer or the order in which

multiple embryos should be transferred.

11. The method of claim 1, further comprising: selecting the embryo for transfer and

implantation based on the determined viability indicator.

12. The method of claim 11, wherein the selection for transfer and implantation is on

Day 3, Day 5 or Day 6.
13. The method of claim 1, wherein determining the viability indicator comprises

determining aneuploidy of the one or more embryos using the second deep learning

model at least partly based on the image data.

38



10

15

20

25

30

WO 2022/240851 PCT/US2022/028553

14. The method of claim 13, wherein determining aneuploidy of the one or more

embryos comprises using 3D neural networks.

15. The method of claim 13, wherein determining aneuploidy of the one or more
embryos comprises using time-lapse video of embryo development and normalizing

all images in the time-lapse video with the same size and number of pixels.

16. The method of claim 1, wherein determining the viability indicator comprises
predicting live-birth occurrence of a transfer of the one or more embryos for
implantation using the third deep learning model at least partly based on the image

data.

17. The method of claim 16, wherein predicting live-birth occurrence of a transfer of
the one or more embryos for implantation comprises utilizing a CNN architecture to

produce an overall live-birth probability.

18. A method of selecting a human embryo in an IVF/ICSI cycle, comprising:
determining a viability indicator using a computer-implemented prediction
method of any of claims 1-17;
based on the predicted viability indicator, selecting the human embryo for

transfer and implantation.

19. A system, including at least one processor configured to:

receive image data of one or more human embryos, the image data including a
plurality of images of the one or more human embryos with at different time points
within the first 6 days after the formation of the one or more embryos;

apply at least one three-dimensional (3D) artificial neural network to the
image data to determine a viability indicator for the one or more human embryos; and

output the viability score;

wherein the viability indicator represents a likelihood that the one or more
embryos will result in at least one viable embryo;

wherein determining the viability indicator for the one or more human

embryos comprises at least one of:
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determining embryo morphological grading of the one or more embryos
using a first neural network based on the image data;
determining aneuploidy of the one or more embryos using a second
deep learning model at least partly based on the image data; and
predicting live-birth occurrence of a transfer of the one or more embryos for
implantation using a third deep learning model at least partly based on the

image data.

20. The system of claim 19, wherein determining the embryo morphological grading
comprises using a multitask machine learning model based on the following three
tasks: (1) aregression task for the cytoplasmic fragmentation rate of the embryo, (2) a
binary classification task for the number of cells of the embryo, and (3) a binary
classification task for the blastomere asymmetry of the embryo determined, based on

the image data.

21. The system of claim 19, wherein the machine learning model was trained jointly
through combining the loss functions of the three tasks by using a homoscedastic

uncertainty approach in minimizing the joint loss.

22. The system of claim 19, wherein output parameters for the embryo morphological
grading comprise pronucleus type on Day 1, the number of blastomeres, asymmetry,

and fragmentation of blastomeres on Day 3.

23. The system of claim 19, wherein determining a viability indicator for the human
embryo further comprises using clinical metadata of the donor of the egg from the
embryo is developed, the metadata includes at least one of maternal age, menstrual

status, uterine status, and cervical status, previous pregnancy, and fertility history.
24. The system of claim 19, wherein the second deep learning model in the

aneuploidy determination is a 3D CNN model trained by time-lapse image videos and

PGT-A based ploidy outcomes assessed by biopsy.
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Figure 6
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