
US010698827B2

United States Patent
Reed

(10) Patent No .: US 10,698,827 B2
(45) Date of Patent : Jun . 30 , 2020

(54) (56) References Cited DYNAMIC CACHE REPLACEMENT WAY
SELECTION BASED ON ADDRESS TAG BITS

U.S. PATENT DOCUMENTS
(71) Applicant : VIA Alliance Semiconductor Co. ,

Ltd. , Shanghai (CN) 5,301,296 A * 4/1994 Mohri GO6F 12/0886
711/128

GO6F 12/0831
711/128 (72) Inventor : Douglas R. Reed , Austin , TX (US) 5,325,504 A * 6/1994 Tipley

(Continued) (73) Assignee : VIA ALLIANCE
SEMICONDUCTOR CO . , LTD . ,
Shanghai (CN) FOREIGN PATENT DOCUMENTS

(*) Notice : CN
CN Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U.S.C. 154 (b) by 348 days .

1632877 A 6/2005
1685320 A 10/2005

(Continued)

(21) Appl . No .: 14 / 891,336 OTHER PUBLICATIONS

(22) PCT Filed : Dec. 14 , 2014 Wilkerson et al . “ Trading off cache capacity for low - voltage opera
tion ” . Jan. 2009. p . 96-103 . IEEE Computer Society . Intel . *

(Continued) (86) PCT NO .: PCT / IB2014 / 003225

$ 371 (c) (1) ,
(2) Date : Nov. 14 , 2015 Primary Examiner Tracy A Warren

(74) Attorney , Agent , or Firm — McClure , Qualey &
Rodack , LLP (87) PCT Pub . No .: WO2016 / 097808

PCT Pub . Date : Jun . 23 , 2016

(65) Prior Publication Data

US 2016/0350229 A1 Dec. 1 , 2016

(51) Int . Ci .
GOOF 12/0864 (2016.01)
G06F 12/0893 (2016.01)

(Continued)
(52) U.S. CI .

CPC G06F 12/0864 (2013.01) ; G06F 12/0893
(2013.01) ; G06F 12/126 (2013.01) ;
(Continued)

(58) Field of Classification Search
CPC . YO2D 10/13 ; GO6F 12/0864 ; G06F 12/0893 ;

G06F 12/128 ; G06F 2212/604
See application file for complete search history .

(57) ABSTRACT

A cache memory comprising : a mode input indicates in
which of a plurality of allocation modes the cache memory
is to operate ; a set - associative array of entries having a
plurality of sets by W ways ; an input receives a memory
address comprising : an index used to select a set from the
plurality of sets ; and a tag used to compare with tags stored
in the entries of the W ways of the selected set to determine
whether the memory address hits or misses ; and allocation
logic , when the memory address misses in the array : selects
one or more bits of the tag based on the allocation mode ;
performs a function , based on the allocation mode , on the
selected bits of the tag to generate a subset of the W ways
of the array ; and allocates into one way of the subset of the
ways of the selected set .

13 Claims , 17 Drawing Sheets

0 1 2 15
102 0

1

2 SKINNY MODE
(DIRECT - MAPPED)

104 MEMORY ADDRESS (MA)
2048 SETS

?
16 WAYS

108 MODE = SKINNY - DM

SELECT 1 SET ,
COMPARE TAGS IN SELECTED SET ,
ALLOCATE INTO WAY SPECIFIED BY MA [20:17]
EFFECTIVELY CREATING A DIRECT - MAPPED
CACHE 2047

US 10,698,827 B2
Page 2

2016/0170884 Al
2016/0293273 A1
2016/0357664 A1
2016/0357681 A1

6/2016 Eddy et al .
10/2016 Hooker et al .
12/2016 Reed
12/2016 Reed

(51) Int . Ci .
G06F 12/126 (2016.01)
G06F 12/128 (2016.01)

(52) U.S. Ci .
CPC G06F 12/128 (2013.01) ; G06F 2212/604

(2013.01) ; YO2D 10/13 (2018.01)
(56) References Cited

FOREIGN PATENT DOCUMENTS

U.S. PATENT DOCUMENTS

G06F 11/1064 5,754,820 A
5,809,562 A
5,974,507 A
6,138,209 A
6,192,458 B1
6,223,255 B1 *

CN
CN
CN
EP
EP
EP
JP
JP
JP
JP
JP
JP
JP
JP
TW
TW
TW
TW
TW
WO

101097547 A 1/2008
103597545 A 2/2014
104011692 A 8/2014
0549508 6/1993
0950223 10/1999
1988466 A1 * 11/2008

1993020193 1/1993
06231044 8/1994

1997062582 3/1997
2000020396 1/2000
2002236616 8/2002
2003131945 5/2003
2005293300 10/2005
2010170292 8/2010
200627148 A 8/2006
200910100 A 3/2009
201140319 A 11/2011
201346557 A 11/2013
201443640 A 11/2014

WO2013098919 4/2013

6,405,287 B1 *

6,446,168 B1 *

6,516,387 B1 *

6,643,737 B1
6,681,295 B1
7,406,579 B2 *

OTHER PUBLICATIONS 7,543,113 B2
9,495,299 B2

2003/0070045 Al
2003/0179605 A1 *

2004/0098540 A1 *

5/1998 Yamagami
9/1998 Gaskins et al .
10/1999 Arimilli et al .
10/2000 Krolak et al .
2/2001 Arimilli et al .
4/2001 Argade G06F 9/3001

711/120
6/2002 Lesartre G06F 12/128

711/128
9/2002 Normoyle GOOF 12/0864

711/118
2/2003 Auracher G06F 12/0848

711/123
11/2003 Ono
1/2004 Root et al .
7/2008 Blanco GO6F 12/0886

711/172
6/2009 Walker et al .
11/2016 Yu et al .
4/2003 Dwyer et al .
9/2003 Riesenman GO6F 12/04

365 / 189.15
5/2004 Itoh G06F 12/0855

711/118
2/2005 Royer G06F 12/126

711/133
2/2006 Okawa G06F 12/0864

711/128
4/2006 Golden et al .
7/2007 Sabol
11/2007 Damaraju et al .
2/2008 Kang et al .
1/2009 Donley
3/2010 Archambault et al .
4/2010 Goodrich et al .
7/2010 Lee et al .

12/2010 Plondke et al .
5/2011 Yonezu G06F 8/4442

717/153
4/2012 Thompson G06F 12/121

711/136
11/2013 Koob et al .
2/2014 Abali et al .
5/2014 Olson GOOF 12/0802

711/132
12/2014 Yu et al .
5/2016 Huang G06F 12/0864

711/128

2005/0038963 A1 *

2006/0026356 A1 *

2006/0075192 Al
2007/0153014 A1
2007/0260818 A1
2008/0040730 A1
2009/0006756 Al
2010/0077153 A1
2010/0088457 A1
2010/0180083 A1
2010/0318742 Al
2011/0113411 A1 *

Roth . “ Shift operations ” . Oct. 1996. pp . 1-3 . Website : < https : // www .
cs.uaf.edu/2000/fall/cs301/notes/node53.html > . (Year : 1996) . *
Ravindran , Rajiv et al . “ Compiler - Managed Partitioned Data Caches
for Low Power . ” Proceedings of the 2007 ACM SIGPLAN /
SIGBED Conference on Languages , Compiler , and Tools for Embed
ded Systems . LCTES'07 . Jun . 13-15 , 2007. pp . 237-247 San Diego ,
?? .
Yang , Se - Hyun et al . “ Dynamically Resizeable Instruction Cache :
An Energy - Efficient and High - Performance Deep - Submicron Instruc
tion Cache . ” Purdue e - Pubs . ECE Technical Reports . Electrical and
Computer Engineering . May 1 , 2000 pp . 1-32 .
Zhang , Chenxi et al . “ Two Fast and High - Associativity Cache
Schemes . ” IEEE Micro . Sep./Oct . 1997 , pp . 40-49 .
PCT / IB2014 / 003231 . International Search Report (ISR) and Writ
ten Opinion (WO) . Provided by State Intellectual Property Office of
the P.R. China , dated Sep. 9 , 2015. pp . 1-8 .
PCT / IB2014 / 003176 . International Search Report (ISR) and Writ
ten Opinion (WO) . Provided by State Intellectual Property Office of
the P.R. China , dated Aug. 28 , 2015. pp . 1-8 .
PCT / IB2014 / 003225 . International Search Report (ISR) and Writ
ten Opinion (WO) . Provided by State Intellectual Property Office of
the P.R. China , dated Sep. 9 , 2015. pp . 1-8 .
Agarwal , Anant et al . “ Column - Associative Caches : A Technique
for Reducing the Miss Rate of Direct - Mapped Caches . ” 1993. pp .
179-190 . IEEE .

2012/0096226 A1 *

2013/0304994 Al
2014/0047175 A1
2014/0143499 A1 *

2014/0359223 A1
2016/0147669 A1 *

* cited by examiner

U.S. Patent Jun . 30 , 2020 Sheet 1 of 17 US 10,698,827 B2

FIG . 1
0 1 2 15

102 0
1

2

104 MEMORY ADDRESS (MA)
2048 SETS

X
16 WAYS

108 MODE

2047

106 TAG

(EACH TAG IS 20 BITS)

35 16 15 6 5 0

TAG = MA [35:16] 112 INDEX = MA [15 : 6] 114 OFFSET = MA [5 : 0] 116

U.S. Patent Jun . 30 , 2020 Sheet 2 of 17 US 10,698,827 B2

FIG . 2 .
0 1 2 15

102 0
mm

2

NORMAL MODE

104 MEMORY ADDRESS (MA)
2048 SETS

X
16 WAYS

108 MODE - NORMAL

SELECT 1 SET .
COMPARE TAGS IN SELECTED SET ,
ALLOCATE INTO SELECTED SET

2047

FIG . 3

RECEIVE LOAD REQUEST FROM CORE IN NORMAL MODE 302

SELECT SET JUSING LSB OF TAG 112 CONCATENATED WITH INDEX
114 (I.E. , MA [16 : 6]) 304

COMPARE ALL BUT LSB OF MA TAG 112 WITH ALL BUT LSB OF TAG
106 OF WAYS [O - 15] IN SELECTED SET J 306

YES
MATCH ? 308

HIT
312

NO

ALLOCATE INTO ANY ONE WAY (E.G. , LRU) OF SET J 314

U.S. Patent Jun . 30 , 2020 Sheet 3 of 17 US 10,698,827 B2

FIG . 4
0 1 2 15

102 0

1

2

FAT MODE

104 MEMORY ADDRESS (MA)
2048 SETS

X
16 WAYS

108 MODE = FAT

SELECT 2 SETS ,
COMPARE TAGS IN BOTH SELECTED SETS ,
ALLOCATE INTO LRU SET OF SELECTED SETS

EFFECTIVELY HALVES NUMBER OF SETS AND
DOUBLES NUMBER OF WAYS 2047

FIG . 5

RECEIVE LOAD REQUEST FROM CORE IN FAT MODE 502 FIG . 6
SELECT SET JUSING { O : INDEX 114 } (1.E. , O : MA [15 : 6]) AND
SELECT SET KUSING { 1 : INDEX 114) (1.E. , 1 : MA [15 : 6]) 504 REQUEST TO

TRANSITION OUT
OF FAT MODE

602
COMPARE MA TAG 112 WITH TAG 106 OF WAYS [0-15] IN

SELECTED SETS J AND K 506

YES
MATCH ? 508 HIT

512

NO

WRITE BACK (IF
DIRTY) AND
INVALIDATE
EACH CACHE

LINE WHOSE LSB
OF ITS TAG 106
DOES NOT

MATCH THE MSB
OF ITS SET 604

REPLACEMENT SET = LRU OF SET JOR SET K 514

ALLOCATE INTO ANY ONE WAY (E.G. , LRU) OF
REPLACEMENT SET 516

U.S. Patent Jun . 30 , 2020 Sheet 4 of 17 US 10,698,827 B2

FIG . 7
0 1 2 15

102 0
mm

2 SKINNY MODE
(DIRECT - MAPPED)

104 MEMORY ADDRESS (MA)
2048 SETS

X
16 WAYS

108 MODE - SKINNY - DM

SELECT 1 SET ,
COMPARE TAGS IN SELECTED SET ,
ALLOCATE INTO WAY SPECIFIED BY MA [20:17]
EFFECTIVELY CREATING A DIRECT - MAPPED
CACHE 2047

FIG . 8

RECEIVE LOAD REQUEST FROM CORE IN SKINNY - DM MODE 802

SELECT SET JUSING LSB OF TAG 112 CONCATENATED WITH INDEX
114 (I.E. , MA [16 : 6]) 804

COMPARE ALL BUT LSB OF MA TAG 112 WITH ALL BUT LSB OF TAG
106 OF WAYS [0-15] IN SELECTED SET J 806

YES
MATCH ? 808 HIT

812

NO

ALLOCATE INTO WAY MA [20:17] OF SET J 814

U.S. Patent Jun . 30 , 2020 Sheet 5 of 17 US 10,698,827 B2

FIG.9
0 1 2 15

102 0

1
2 SKINNY MODE

(8 - WAY)

104 MEMORY ADDRESS (MA)
2048 SETS

X
16 WAYS

108 MODE = SKINNY - 8WAY

SELECT 1 SET ,
COMPARE TAGS IN SELECTED SET ,
ALLOCATE INTO EVEN OR ODD WAY BASED
ON MA [17]
EFFECTIVELY CREATING AN 8 - WAY
ASSOCIATIVE CACHE 2047

FIG . 10

RECEIVE LOAD REQUEST FROM CORE IN SKINNY - 8WAY MODE 1002

SELECT SET J USING INDEX 114 1004

COMPARE ALL BUT LSB OF MA TAG 112 WITH ALL BUT LSB OF TAG
106 OF WAYS (0-15] IN SELECTED SETJ 1006

YES
MATCH ? 1008

HIT
1012

NO

YES
MA [17] == 1 ? 1013 ALLOCATE INTO ANY ODD WAY

(E.G. , LRU) OF SET J 1016
NO

ALLOCATE INTO ANY EVEN WAY (E.G. , LRU) OF SETJ 1014

U.S. Patent Jun . 30 , 2020 Sheet 6 of 17 US 10,698,827 B2

FIG . 11
102

0
108 MODE

4

8

BANKO 1106-0

2044

1
TAG PIPELINE

A 1102A

PORT
?

1104A
5

9

BANK 1 1106-1

2045

2

6

10

BANK 2 1106-2

TAG PIPELINE
B 1102B

PORT
B

1104B 2046

3
7

11
BANK 3 1106-3

2047

U.S. Patent Jun . 30 , 2020 Sheet 7 of 17 US 10,698,827 B2

FIG . 12A
1200

PORT A BANK ENABLE LOGIC 1200A

1209 FAT MODE

104 - A MA [7] NOT 1204-0 OR 1202-0 1212-0A ENOA AND
1206-0 104 - A MA [6]

NOT 1208-0

1209 FAT MODE
+

104 - A MA [7] NOT 1204-1 OR 1202-1 1212-1A EN1A AND
1206-1 104 - A MA [6]

1209 FAT MODE

104 - A MA [7] OR 1202-2 1212-2A EN2A AND
1206-2 104 - A MA [6] NOT 1208-2

1209 FAT MODE

104 - A MA [7] OR 1202-3 1212-3A EN3A AND
1206-3 104 - A MA [6]

1212 - OB ENOB
1209 FAT MODE

1212-1B EN1B PORT B BANK ENABLE LOGIC
1200B 104 - B MA [7] 1212-2B EN2B

(SAME AS PORT A LOGIC ABOVE)
104 - B MA [6] 1212-3B EN3B

U.S. Patent Jun . 30 , 2020 Sheet 8 of 17 US 10,698,827 B2

FIG . 12B
1200

1212-0A ENOA

OR 1216-0 ENO ? TO BANK O 1214-0
1212 - OB ENOB

1212-1A EN1A

1216-1 EN1 OR
1214-1 ? TO BANK 1

1212-1B EN1B

1212-2A EN2A

1216-2 EN2 OR
1214-2 ? TO BANK 2

1212-2B EN2B

1212-3A EN3A

1216-3 EN3 OR
1214-3 ? TO BANK 3

1212-3B EN3B

U.S. Patent Jun . 30 , 2020 Sheet 9 of 17 US 10,698,827 B2

FIG . 13
1300

1209 FAT MODE

104 MA [35:16]

1301 SET J WAY O ALLOCATE TAG
106

COMP
1304

1303 SET J WAY ODEALLOCATE
VALID
1302

AND
1306

1308 - JO SET J WAY O HIT

1308 - JO SET J WAY O HIT
1308 - J1 SET J WAY 1 HIT

1314 - J SET J HIT OR
1312-1 1 1 1

1308 - J15 SET J WAY 15 HIT

1308 - KO SET KWAYO HIT
1308 - K1 SET KWAY 1 HIT

1314 - K SET K HIT OR
1312 - K ?

1308 - K15 SET KWAY 15 HIT

OR
1316

1318 FAT MODE HIT

1

MUX
1322

1324 HIT

U.S. Patent Jun . 30 , 2020 Sheet 10 of 17 US 10,698,827 B2

FIG . 14A
DETECT THAT NEW PROCESS IS RUNNING 1402

TRANSITION CACHE TO BEST - PERFORMING MODE AS INDICATED BY OFFLINE
ANALYSIS (AND PERFORM FIG . 6 IF TRANSITIONING OUT OF FAT MODE) 1404

FIG . 14B

PHASE IDENTIFIERS 1412 NEW MODE INFORMATION FROM
DEVICE DRIVER 1418

PHASE DETECTOR 1414 MODE UPDATE UNIT 1416 MODE
108

FIG . 14C

PHASE DETECTOR DETECTS NEW PROGRAM PHASE 1422

MODE UPDATE UNIT UPDATES MODE OF CACHE MEMORY WITH MODE ASSOCIATED
WITH THE NEW PROGRAM PHASE AND UPDATES PHASE DETECTORS WITH NEW PHASE

IDENTIFIERS 1424

CACHE MEMORY OPERATES ACCORDING TO UPDATED MODE 1426

FIG . 15

DETECT CACHE IS PERFORMING INEFFECTIVELY IN CURRENT MODE 1502

TRANSITION CACHE TO DIFFERENT MODE (AND PERFORM FIG . 6 IF
TRANSITIONING OUT OF FAT MODE) 1504

U.S. Patent Jun . 30 , 2020 Sheet 11 of 17 US 10,698,827 B2

FIG . 16
0 1 2 15

1602 0
1

2

104 MEMORY ADDRESS (MA)
2048 SETS

X
16 WAYS

1608 ALLOCATION MODE

2047

1606 TAG

(EACH TAG IS 19 BITS)

35 17 16 6 5 0

TAG = MA [35:17] 1612 INDEX = MA [16 : 6) 1614 OFFSET = MA [5 : 0] 1616

U.S. Patent Jun . 30 , 2020 Sheet 12 of 17 US 10,698,827 B2

FIG . 17 1702

19 N 1612 TAG ? MUX
1736

1738

1608 ALLOCATION MODE FUNCTIONS
1732

1734 SUBSET OF WAYS

U.S. Patent Jun . 30 , 2020 Sheet 13 of 17 US 10,698,827 B2

FIG . 18

RECEIVE LOAD REQUEST FROM CORE IN CURRENT ALLOCATION MODE 1802

SELECT SET JUSING INDEX 1614 1804

COMPARE TAG 1612 WITH TAG 106 OF WAYS [0-15] IN SELECTED SET J 1806

YES
MATCH ? 1808 HIT

1812

NO

DETERMINE SUBSET OF WAYS (0-15] IN SELECTED SET J BASED ON FUNCTION
SPECIFIED BY THE CURRENT ALLOCATION MODE OF ONE OR MORE BITS OF TAG 1612 ;

THE FUNCTION IS DIFFERENT FOR EACH OF THE ALLOCATION MODES 1814

ALLOCATE INTO ANY ONE WAY (E.G. , LRU) OF THE SUBSET 1816

FIG . 19

MONITOR EFFECTIVENESS OF CACHE MEMORY (E.G. , HIT RATE) WHILE
OPERATING IN CURRENT ALLOCATION MODE 1902

NO
EFFECTIVENESS BELOW THRESHOLD ? 1904 DONE

YES

UPDATE ALLOCATION MODE INPUT TO A DIFFERENT ALLOCATION MODE 1906

U.S. Patent Jun . 30 , 2020 Sheet 14 of 17 US 10,698,827 B2

FIG . 20

RUN PROGRAM AND RECORD MEMORY ACCESSES , INCLUDING CACHE LINE
ALLOCATIONS AND EVICTIONS (ADDRESS , TIME) 3402

ANALYZE RECORDED INFORMATION AT REGULAR TIME INTERVALS AND RECOGNIZE
CLEAR TRENDS TO SEPARATE PROGRAM INTO PHASES , E.G. , BASED ON TRENDS IN
WORKING SET SIZE , AVERAGE CACHE LINE LIFETIME , AVERAGE HIT RATE 3404

CREATE CACHE MODE CONFIGURATION FOR PROGRAM PHASES BASED ON ANALYSIS
3406

FIG . 21

MEMORY
ADDRESS

TIME

TOTAL 3 6 6 5 5 6 2 1 4

WORKING SET SIZE AVG . CACHE LINE
LIFETIME

U.S. Patent Jun . 30 , 2020 Sheet 15 of 17 US 10,698,827 B2

FIG . 22

ANALYZE PROGRAM AND GENERATE STATE DIAGRAM IN WHICH NODES ARE BASIC
BLOCKS , AND EACH EDGE IS A POTENTIAL PHASE IDENTIFIER AND A TARGET BASIC

BLOCK 3602

INSTRUMENT THE PROGRAM TO ANALYZE CHARACTERISTICS RELATED TO
CONFIGURABLE ASPECTS OF THE PROCESSOR 3604

IDENTIFY PHASES BASED ON CHANGES TO STEADY STATE BEHAVIOR OBSERVED FROM
THE ANALYZED CHARACTERISTICS 3606

DETERMINE GOOD CONFIGURATION VALUES FOR EACH PHASE 3608

CORRELATE PHASE CHANGES TO PHASE IDENTIFIERS 3612

CONFIGURE PHASE DETECTORS WITH THE PHASE IDENTIFIERS 3614

U.S. Patent Jun . 30 , 2020 Sheet 16 of 17 US 10,698,827 B2

FIG . 23

IDENTIFY LIST OF PROGRAMS FOR WHICH IT IS DESIRABLE TO IMPROVE
PERFORMANCE OF THE PROCESSOR , AND FOR EACH PROGRAM ITERATE ON THE
FOLLOWING UNTIL THE CURRENT BEST CONFIGURATION HAS NOT CHANGED FOR
LONG TIME OR YOU HAVE EXHAUSTED YOUR RESOURCES (TIME , COMPUTING) 3702

CURRENT BEST CONFIGURATION = DEFAULT CONFIGURATION 3704

FOR EACH CONFIGURATION PARAMETER , DO THE FOLLOWING : 3706

FOR EACH VALUE OF A REASONABLE SET OF VALUES OF THE
CONFIGURATION PARAMETER , DO THE FOLLOWING : 3708

RUN THE PROGRAM WITH THE CURRENT BEST
CONFIGURATION MODIFIED BY THE VALUE , AND

MEASURE PERFORMANCE 3712

NO
BETTER ? 3714

YES

UPDATE CURRENT BEST CONFIGURATION WITH
THIS CONFIGURATION 3716

U.S. Patent Jun . 30 , 2020 Sheet 17 of 17 US 10,698,827 B2

FIG . 24
3900

INSTRUCTION CACHE 3922

INSTRUCTION DECODER 3923

INSTRUCTION SCHEDULER AND DISPATCHER 3924

EXECUTION UNITS 3926

108 MODE MEMORY
SUBSYSTEM

3928

CACHE
MEMORY

102

104 MEMORY ADDRESS

1

5

10

15

PCT / IB2014 / 003231
PCT / IB2014 / 003176

20

US 10,698,827 B2
2

DYNAMIC CACHE REPLACEMENT WAY effectiveness of the cache memory while operating in the
SELECTION BASED ON ADDRESS TAG BITS current allocation mode and changing the current allocation

mode to a different one of the plurality of allocation modes
CROSS - REFERENCE TO RELATED when the effectiveness is below a threshold .

APPLICATIONS
BRIEF DESCRIPTION OF THE DRAWINGS

This application is related to the following U.S. Non
Provisional Applications filed concurrently herewith , each FIG . 1 is a block diagram that illustrates a cache memory .
of which is a national stage application under 35 U.S.C. 371 FIG . 2 is a block diagram illustrating the cache memory
of the correspondingly indicated International Application of FIG . 1 when configured to operate in normal mode .
filed Dec. 14 , 2014 , each of which is hereby incorporated by FIG . 3 is a flowchart illustrating operation of the cache
reference in its entirety . memory of FIG . 1 when configured to operate in normal

mode .
FIG . 4 is a block diagram illustrating the cache memory

U.S. Non - Provisional Ser . No. International Application No. of FIG . 1 when configured to operate in fat mode .
FIG . 5 is a flowchart illustrating operation of the cache 14,891,333

14,891,335 memory 102 of FIG . 1 when configured to operate in fat
14,891,336 PCT / IB2014 / 003225 mode .

FIG . 6 is a flowchart illustrating operation of the cache
memory 102 of FIG . 1 when instructed to transition out of

BRIEF SUMMARY fat mode .
FIG . 7 is a block diagram illustrating the cache memory

In one aspect the present invention provides a cache 102 of FIG . 1 when configured to operate in a skinny mode
memory , comprising : a mode input that indicates in which of 25 as a direct - mapped cache .
a plurality of allocation modes the cache memory is to FIG . 8 is a flowchart illustrating operation of the cache
operate ; a set - associative array of entries having a plurality memory 102 of FIG . 1 when configured to operate in
of sets by W ways , wherein W is an integer greater than one ; skinny - DM mode .
an input that receives a memory address comprising : an FIG . 9 is a block diagram illustrating the cache memory
index used to select a set from the plurality of sets ; and a tag 30 102 of FIG . 1 when configured to operate in a skinny mode
used to compare with tags stored in the entries of the W ways as an 8 - way set associative cache .
of the selected set to determine whether the memory address FIG . 10 is a flowchart illustrating operation of the cache
hits or misses in the array ; and allocation logic that , when the memory 102 of FIG . 1 when configured to operate in
memory address misses in the array : selects one or more bits skinny - 8WAY mode .
of the tag based on the allocation mode ; performs a function , 35 FIG . 11 is a block diagram illustrating in more detail an
based on the allocation mode , on the selected one or more embodiment of the cache memory 102 of FIG . 1 .
bits of the tag to generate a subset of the W ways of the FIGS . 12A and 12B , referred to collectively as FIG . 12 ,
array ; and allocates into one way of the subset of the ways are a block diagram illustrating bank enable logic of the
of the selected set . cache memory 102 of FIG . 11 .

In another aspect , the present invention provides a method 40 FIG . 13 is a block diagram illustrating hit generation logic
for operating a cache memory having a set - associative array of the cache memory 102 of FIG . 11 .
of entries having a plurality of sets by W ways , wherein W FIG . 14A is a flowchart illustrating operation of a system
is an integer greater than one , the method comprising : that includes a processor that comprises the cache memory
receiving a mode input that indicates in which of a plurality 102 of FIG . 1 .
of allocation modes the cache memory is to operate ; receiv- 45 FIG . 14B is a block diagram illustrating elements of the
ing a memory address comprising : an index used to select a processor that includes the cache memory 102 of FIG . 1 .
set from the plurality of sets ; and a tag used to compare with FIG . 14C is a flowchart illustrating operation of the
tags stored in the entries of the W ways of the selected set processor of FIG . 14B that includes the cache memory 102
to determine whether the memory address hits or misses in of FIG . 1 .
the array ; and when the memory address misses in the array : 50 FIG . 15 is a flowchart illustrating operation of a system
selecting one or more bits of the tag based on the allocation that includes a processor that comprises the cache memory
mode ; performing a function , based on the allocation mode , 102 of FIG . 1 .
on the selected one or more bits of the tag to generate a FIG . 16 is a block diagram that illustrates a cache
subset of the W ways of the array ; and allocating into one memory .
way of the subset of the ways of the selected set . FIG . 17 is a block diagram illustrating logic that selects

In yet another aspect , the present invention provides a the subset of ways into which the cache memory 102
method for operating a set associative cache memory , the allocates based on the tag and allocation mode of FIG . 16 .
method comprising : operating the cache memory in a cur FIG . 18 is a flowchart illustrating operation of the cache
rent allocation mode of a plurality of allocation modes ; memory of FIG . 16 .
wherein in each allocation mode of the plurality of alloca- 60 FIG . 19 is a flowchart illustrating operation of a system
tion modes , upon a miss of a memory address in the cache that includes a processor that comprises the cache memory
memory , the cache memory allocates into one way of any of of FIG . 16 .
a subset of the ways of a set of the cache memory selected FIG . 20 is a flowchart illustrating generation of cache
using an index portion of the memory address ; wherein in memory mode configurations for programs and program
each allocation mode of the plurality of allocation modes the 65 phases .
subset is determined by a different function of one or more FIG . 21 is a memory access graph and extracted data from
bits of a tag portion of the memory address , and monitoring the graph .

55

5

10

US 10,698,827 B2
3 4

FIG . 22 is a flowchart illustrating phase analysis of a tag 106 , in combination with the set number in which the
program . cache line resides , specifies the memory address of the cache

FIG . 23 is a flowchart illustrating a brute force method of line . In the embodiment of FIG . 1 , the tag 106 is 20 bits
determining a good configuration for configurable aspects of corresponding to the size of the tag 112 portion of the
the processor . memory address 104. Preferably , the cache memory 102

FIG . 24 is a block diagram illustrating a processor . comprises separate storage arrays for storing the cache line
data , the tags 106 and the replacement information .

DETAILED DESCRIPTION OF THE As described in more detail below , on a lookup in fat EMBODIMENTS mode the index 114 is used to select two different sets of the
cache memory 102 and the full tag 112 of the memory Modern processors are called upon to execute programs

that process data sets having widely varying characteristics address 104 is compared against the full tag 106 of each way
of the two selected sets to detect a hit ; whereas , in normal and that access the data in widely different manners . The

data set characteristics and access patterns impact the effec mode and skinny mode the index 114 and the least signifi
tiveness of cache memories of the processor . The effective- 15 cant bit (LSB) of the tag 112 are used to select one set of the
ness is primarily measured in terms of hit ratio . cache memory 102 and the all but the LSB of the tag 112 of

In addition to its size , the associativity of a cache memory the memory address 104 are compared against all but the
can greatly affect its effectiveness . The associativity of a LSB of the tag 106 of each way of the selected one set to
cache memory refers to the possible locations , or entries , of detect a hit . This doubles the effective associativity and
the cache into which a cache line may be placed based on its 20 halves the number of ways of the cache memory 102 when
memory address . The greater the number of possible loca configured to operate in fat mode . Conversely , when oper
tions a cache line may be placed into , or allocated into , the ating in skinny mode , the cache memory 102 limits the ways
greater the associativity of the cache . Some programs benefit into which a cache line may be allocated to a subset of the
from cache memories with greater associativity and some total ways (e.g. , from 16 to 8 , to 4 , to 2 , or to 1) based on
programs benefit from cache memories with lesser associa- 25 one or more of the lower bits of the tag 112 , which reduces
tivity . the effective associativity by two the number of bits of the

Embodiments are described in which a cache memory can tag 112 used to limit the subset of ways . In order to transition
be dynamically configured during operation of the processor out of fat mode , a writeback and invalidate operation must
to vary its associativity to be greater than its normal mode be performed on certain cache lines , as described herein .
associativity and / or to be less than its normal associativity . 30 However , the benefit of operating in fat mode for some code

Referring now to FIG . 1 , a block diagram that illustrates streams may be worth the penalty associated with the
a cache memory 102 is shown . The cache memory 102 writeback and invalidate operation . Transitions to or from
receives a memory address (MA) 104 on an input and a skinny mode do not require the writeback and invalidate
mode 108 on another input . The mode 108 specifies whether operation .
the cache memory 102 is to be configured to operate in a 35 Referring now to FIG . 2 , a block diagram illustrating the
“ normal ” mode , a “ fat ” mode , or a " skinny ” mode . Each of cache memory 102 of FIG . 1 when configured to operate in
these modes is described in more detail below . normal mode is shown . More specifically , the mode input

The memory address 104 is decomposed into three por 108 specifies a value that indicates the normal mode . In
tions , each having a plurality of bits : a tag portion 112 , an normal mode , the cache memory 102 selects a single set ,
index portion 114 and an offset portion 116. The offset 116 40 compares all but the LSB of the entry tag 106 of each way
specifies a byte offset into the selected cache line . The use in the set selected by the index 114 with all but the LSB of
of the tag 112 and index 114 are described in more detail the memory address 104 tag 112 , and on a miss allocates into
below . For ease of illustration , an example memory address any one of the ways of the selected set , as described in more
104 is shown in FIG . 1 that is 36 bits in size and the 36 bits detail below with respect to FIG . 3. In the example of FIG .
are decomposed as tag 112 = MA [35:16] , index 114 = MA [15 : 45 2 , in normal mode the cache memory 102 operates as a 2048
6] and offset 116 = MA [5 : 0] . However , it should be under setx16 - way set associative cache .
stood that the dynamic variability of the associativity of the Referring now to FIG . 3 , a flowchart illustrating operation
cache memory 102 , namely transitions between normal , fat of the cache memory 102 of FIG . 1 when configured to
and skinny modes , may be performed on cache memories operate in normal mode is shown . Flow begins at block 302 .
that receive a memory address 104 having different numbers 50 At block 302 , the cache memory 102 receives a load
of bits and which is decomposed into different numbers of request from a processing core while the mode 108 input
bits in its tag 112 , index 114 and offset 116 portions . The indicates normal mode . The load request includes a memory
number of bits in the offset 116 specifies the cache line size address 104. Flow proceeds to block 304 .
(e.g. , 64 bytes) , and the index 114 selects one or two sets of At block 304 , the cache memory 102 selects a single set ,
the cache memory 102 , depending upon the mode 108 , as 55 referred to in FIG . 3 as set J , using the LSB of the tag 112
described below . concatenated with the index 114 , which in the example of

The cache memory 102 is designed as a plurality of sets FIG . 1 results in MA [16 : 6] . Flow proceeds to block 306 .
by a plurality of ways . For ease of illustration , an example At block 306 , the cache memory 102 , for each entry in all
cache memory 102 is shown in FIG . 1 that has 2048 sets and 16 ways of the selected set J , compares all bits of the
16 ways . However , it should be understood that the dynamic 60 memory address 104 tag 112 except the LSB with all bits of
associativity variability described herein may be performed the entry tag 106 except the LSB . The compare also checks
on cache memories having different numbers of sets and to see if the entry is valid . Flow proceeds to decision block
different numbers of ways . Each set / way combination iden 308 .
tifies an entry in the cache memory 102 that stores a cache At decision block 308 , the cache memory 102 determines
line . Each entry includes storage for storing the data of the 65 whether the compare performed at block 306 resulted in a
cache line , as well as storage for storing status of the cache valid match . If so , flow proceeds to block 312 ; otherwise ,
line (e.g. , MESI state) and a tag 106 of the cache line . The flow proceeds to block 314 .

US 10,698,827 B2
5 6

At block 312 , the cache memory 102 indicates a hit . Flow Referring now to FIG . 6 , a flowchart illustrating operation
ends at block 312 . of the cache memory 102 of FIG . 1 when instructed to
At block 314 , the cache memory 102 allocates an entry in transition out of fat mode is shown . Flow begins at block

the selected set J. Preferably , the cache memory 102 allo 602 .
cates an entry from a way in set J that was least - recently- 5 At block 602 , the cache memory 102 is instructed to
used (LRU) or pseudo - LRU , although other replacement transition out of fat mode , i.e. , the mode 108 transitions from
algorithms may be employed , such as random or round fat mode to either normal mode or skinny mode . Flow robin . Flow ends at block 314 . proceeds to block 604 . Referring now to FIG . 4 , a block diagram illustrating the
cache memory 102 of FIG . 1 when configured to operate in 10 each set of the cache memory 102 (i.e. , for each set number) , At block 604 , the cache memory 102 searches through
fat mode is shown . More specifically , the mode input 108
specifies a value that indicates the fat mode . In fat mode , the and for each entry in the set , compares the LSB of the tag

106 with the MSB of the set number . If there is a mismatch , cache memory 102 selects two sets , compares the entry tag
106 of each way in the set selected by the index 114 with the the cache memory 102 invalidates the entry . However ,
memory address 104 tag 112 , and on a miss allocates into 15 before invalidating the entry , if the status indicates the cache
any one of the ways of any one of the two selected sets , as line is dirty , or modified , the cache memory 102 writes back
described in more detail below with respect to FIG . 5. This the cache line data to memory . This operation serves to
effectively doubles the number of ways and halves the maintain coherency of the cache memory 102. Flow ends at
number of sets of the cache memory 102. In the example of block 604 .
FIG . 4 , in fat mode the cache memory 102 operates as a 1024 20 A potential disadvantage of running the fat mode is that it
setx32 - way set associative cache . potentially consumes greater power than non - fat modes

Referring now to FIG . 5 , a flowchart illustrating operation since two sets worth of tags must be compared . However , the
of the cache memory 102 of FIG . 1 when configured to tradeoff of power consumption for additional cache effec
operate in fat mode is shown . Flow begins at block 502 . tiveness may be desirable for some users in some systems .

At block 502 , the cache memory 102 receives a load 25 Additionally , in a multi - core processor , if fewer than all the request from a processing core while the mode 108 input cores are running , the additional tag array accesses (e.g. , in
indicates fat mode . The load request includes a memory the embodiment of FIG . 11 , the additional bank access) may
address 104. Flow proceeds to block 504 . be tolerable since the cache memory 102 may be designed
At block 504 , the cache memory 102 selects two sets , to support the requirements of all the cores accessing the referred to in FIG . 5 as set J and set K. Set J is selected using 30 cache memory 102 . a binary zero concatenated with the tag 112 , which in the Referring now to FIG . 7 , a block diagram illustrating the example of FIG . 1 results in a binary zero concatenated with cache memory 102 of FIG . 1 when configured to operate in MA [15 : 6] . Set K is selected using a binary one concatenated

with the tag 112 , which in the example of FIG . 1 results in a skinny mode as a direct - mapped cache is shown . More
a binary one concatenated with MA [15 : 6] . Flow proceeds to 35 specifically , the mode input 108 specifies a value that
block 506 . indicates the skinny direct - mapped mode , referred to as
At block 506 , the cache memory 102 , for each entry in all skinny - DM . In skinny mode , the cache memory 102 selects

32 ways of the selected sets J and K , compares the memory a single set , compares all but the LSB of the entry tag 106
address 104 tag 112 with the entry tag 106. The compare also of each way in the set selected by the index 114 with all but
checks to see if the entry is valid . Flow proceeds to decision 40 the LSB of the memory address 104 tag 112 , similar to
block 508 . normal mode ; however , in skinny - DM mode , on a miss the

At decision block 508 , the cache memory 102 determines cache memory 102 allocates into only one way of the
whether the compare performed at block 506 resulted in a selected set . The one way is specified by predetermined bits
valid match . If so , flow proceeds to block 512 ; otherwise , of the memory address 104. Preferably , the predetermined
flow proceeds to block 514 . 45 bits are the next most least significant log2N bits of the tag
At block 512 , the cache memory 102 indicates a hit . Flow 112 , where N is the number of ways of the cache memory

ends at block 512 . 102. Stated alternatively , the predetermined bits are the least
At block 514 , the cache memory 102 selects one of sets significant , excluding the LSB , log N bits of the tag 112 ,

J and K to be a replacement set . In one embodiment , the which in the embodiment of FIG . 1 corresponds to MA [20 :
cache memory 102 selects the replacement set based on a 50 17] , as described in more detail below with respect to FIG .
hash of selected bits of the memory address 104 to a single 8. In the example of FIG . 7 , in skinny - DM mode the cache
bit such that if the hash yields a binary zero set J is selected memory 102 operates as a 32768 set direct - mapped cache .
and if the hash yields a binary one set K is selected , which Referring now to FIG . 8 , a flowchart illustrating operation
generally serves to select the replacement set in a pseudo of the cache memory 102 of FIG . 1 when configured to
random fashion . In another embodiment , the cache memory 55 operate in skinny - DM mode is shown . Flow begins at block
102 selects the replacement set using an extra one or more 802 .
bits of the replacement information stored for each set in At block 802 , the cache memory 102 receives a load
addition to the information stored to select , for example , the request from a processing core while the mode 108 input
LRU way of the set . For example , one extra bit may indicate indicates skinny - DM mode . The load request includes a
whether set J or K was LRU . Flow proceeds to block 516. 60 memory address 104. Flow proceeds to block 804 .

At block 516 , the cache memory 102 allocates an entry in At block 804 , the cache memory 102 selects a single set ,
the replacement set . Preferably , the cache memory 102 referred to in FIG . 8 as set J , using the LSB of the tag 112
allocates an entry in the replacement set according to a concatenated with the index 114 , which in the example of
least - recently - used (LRU) or a pseudo - LRU replacement FIG . 1 results in MA [16 : 6] . Flow proceeds to block 806 .
scheme , although other replacement algorithms may be 65 At block 806 , the cache memory 102 , for each entry in all
employed , such as random or round - robin . Flow ends at 16 ways of the selected set J , compares all bits of the
block 516 . memory address 104 tag 112 except the LSB with all bits of

US 10,698,827 B2
7 8

the entry tag 106 except the LSB . The compare also checks memory address 104 tag 112 except the LSB with all bits of
to see if the entry is valid . Flow proceeds to decision block the entry tag 106 except the LSB . The compare also checks
808 . to see if the entry is valid . Flow proceeds to decision block

At decision block 808 , the cache memory 102 determines 1008 .
whether the compare performed at block 806 resulted in a 5 At decision block 1008 , the cache memory 102 deter
valid match . If so , flow proceeds to block 812 ; otherwise , mines whether the compare performed at block 1006
flow proceeds to block 814 . resulted in a valid match . If so , flow proceeds to block 1012 ;
At block 812 , the cache memory 102 indicates a hit . Flow otherwise , flow proceeds to decision block 1013 .

ends at block 812 . At block 1012 , the cache memory 102 indicates a hit .
At block 814 , the cache memory 102 allocates the entry 10 Flow ends at block 1012 .

in the way specified by MA [20:17] of the selected set J. In At decision block 1013 , the cache memory 102 examines
this manner , the cache memory 102 operates as a direct bit MA [17] . If bit MA [17] is a binary one , flow proceeds to
mapped cache when configured in skinny - DM mode . Flow block 1016 ; otherwise , if MA [17] is a binary zero , flow
ends at block 814 . proceeds to block 1014. As described above with respect to
As mentioned above , advantageously , transitions to or 15 FIG.9 , other embodiments are contemplated in which the bit

from skinny mode do not require the writeback and invali examined at decision block 1013 is a different bit of the tag
date operation . However , it should be noted that there may 112 than MA [17] (i.e. , the next to LSB of the tag 112) , or
be a slight penalty in terms of the replacement bit values which is generated by a function of multiple bits of the tag
(e.g. , LRU or pseudo - LRU bits) for a short time after the 112 .
transition . For example , when transitioning from skinny 20 At block 1014 , the cache memory 102 allocates an entry
mode to normal mode , the replacements bits may not have in any of the even - numbered ways in the selected set .
the expected normal mode LRU values , for example . Preferably , the cache memory 102 allocates an entry in the
Referring now to FIG . 9 , a block diagram illustrating the selected even - numbered way according to a least - recently

cache memory 102 of FIG . 1 when configured to operate in used (LRU) or a pseudo - LRU replacement scheme , although
a skinny mode as an 8 - way set associative cache is shown . 25 other replacement algorithms may be employed , such as
More specifically , the mode input 108 specifies a value that random or round - robin . Flow ends at block 1014 .
indicates the skinny 8 - way mode , referred to as skinny At block 1016 , the cache memory 102 allocates an entry
8WAY . In skinny - 8WAY mode , the cache memory 102 in any of the odd - numbered ways in the selected set .
selects a single set , compares all but the LSB of the entry tag Preferably , the cache memory 102 allocates an entry in the
106 of each way in the set selected by the index 114 with all 30 selected odd - numbered way according to a least - recently
but the LSB of the memory address 104 tag 112 , similar to used (LRU) or a pseudo - LRU replacement scheme , although
normal mode ; however , in skinny - 8WAY mode , on a miss other replacement algorithms may be employed , such as
the cache memory 102 allocates into any one of a subset of random or round - robin . Flow ends at block 1016 .
the 16 ways of the selected set . The subset is specified by a It should be understood that although two skinny mode
predetermined bit of the memory address 104 to be either the 35 embodiments have been described , i.e. , skinny direct
8 odd - numbered ways of the selected set , or the 8 even mapped mode and skinny 8 - way mode , these are described
numbered ways of the selected set . In one embodiment , the to illustrate skinny mode , which is not limited to these
predetermined bit is the next most least significant bit of the embodiments . With respect to the illustrative embodiment of
tag 112. Stated alternatively , the predetermined bit is the FIG . 1 , for example , a skinny 4 - way mode may also be
least significant , excluding the LSB , bit of the tag 112 , which 40 configured in which MA [18:17] is used to select four subsets
in the embodiment of FIG . 1 corresponds to MA [17] , as of four ways each for replacement ; and a skinny 2 - way mode
described in more detail below with respect to FIG . 10. In may be configured in which MA [19:17] is used to select
other embodiments , the predetermined bit is generated using eight subsets of two ways each for replacement . In other
other methods . For example , the predetermined bit may be embodiments , as mentioned above , other bits of the tag 112
generated as a Boolean exclusive - OR (XOR) of multiple bits 45 may be used to select the subsets of ways for replacement ,
of the tag 112 (preferably excluding the bit of the tag 112 and the bits may be inputs to a function (e.g. , XOR) to
used to select the set , e.g. , MA [16]) . This may be particu generate bits used to select the subsets of ways for replace
larly advantageous where cache lines are pathologically ment .
aliasing into the same set , such as discussed below . Other Skinny mode may be beneficial for certain pathological
functions than XOR may also be used to condense multiple 50 programs that make very poor use of a LRU or pseudo - LRU
bits of the tag 112 into a single bit . In the example of FIG . replacement policy . For example , assume the program is
9 , in skinny - 8WAY mode the cache memory 102 operates as marching through memory and has a pathological aliasing
a 4096 setx8 - way set associative cache . effect such that frequently when a load is requested it misses

Referring now to FIG . 10 , a flowchart illustrating opera in the cache memory 102 and kicks out the very next line the
tion of the cache memory 102 of FIG . 1 when configured to 55 program is going to need . However , when the effective
operate in skinny - 8WAY mode is shown . Flow begins at associativity of the cache memory 102 is reduced by a
block 1002 . transition to skinny mode , the problem is avoided .

At block 1002 , the cache memory 102 receives a load For example , the program may be accessing a very large
request from a processing core while the mode 108 input data structure in memory in which the lower half aliases into
indicates skinny - 8WAY mode . The load request includes a 60 the upper half in the sets of the cache memory 102. How
memory address 104. Flow proceeds to block 1004 . ever , the lower half and the upper half have different usage

At block 1004 , the cache memory 102 selects a single set , patterns that makes LRU replacement ineffective . By reduc
referred to in FIG . 10 as set J , using the LSB of the tag 112 ing the effective associativity of the cache memory 102 via
concatenated with the index 114 , which in the example of skinny mode - 8WAY , half the data structure is effectively
FIG . 1 results in MA [16 : 6] . Flow proceeds to block 1006. 65 insulated from the other half within the cache memory 102 .

At block 1006 , the cache memory 102 , for each entry in This type of pathological case may be determined using
all 16 ways of the selected set J , compares all bits of the offline analysis of the program , which may be used to

US 10,698,827 B2
9 10

reconfigure the cache memory 102 , such as described below access non - conflicting banks 1106 , particularly when the
with respect to FIGS . 14A - 14C . cache memory 102 is in fat mode .

For another example , assume the program is accessing Referring now to FIGS . 12A and 12B , referred to collec
two data sets that alias into the same set of the cache memory tively as FIG . 12 , a block diagram illustrating bank enable
102 because their addresses are identical except for differ- 5 logic 1200 of the cache memory 102 of FIG . 11 is shown .
ences in higher order bits of the tag 112. In this case , it may Referring to FIG . 12A , the bank enable logic 1200 includes
be beneficial to insulate the replacement policy of one of the bank enable logic 1200A that receives a fat mode indicator
data sets from the other . This may be achieved by using bits 1209 and a memory address MA 104 - A from tag pipeline A
of the tag 112 that correspond to the higher order bits of the 1102A and in response generates bank enables (ENXA ,
tag 112 that differ among the two data sets to generate the 10 where x is the bank number) 1212 - XA for port A 1104A . The fat mode indicator 1209 is true of the cache memory 102 is bits used to limit the subset of ways to be selected for operating in fat mode and is false otherwise , and is generated replacement . This may be achieved , for example , using the by logic (not shown) that receives the mode indicator 108 . methods described below with respect to FIG . 15 by iterat The bank enable logic 1200 also includes bank enable logic ing through different tag 112 address bit choices until 15 1200B that receives the fat mode indicator 1209 and a
increased cache memory 102 effectiveness is achieved , or memory address MA 104 - B from tag pipeline B 1102B and
with respect to FIGS . 14A - 14C via offline analysis of the in response generates bank enables (ENxB , where x is the
program . bank number) 1212 - B for port B 1104B . The port A bank

Referring now to FIG . 11 , a block diagram illustrating in enable logic 1200A is described in detail , and the port B
more detail an embodiment of the cache memory 102 of 20 bank enable logic 1200B is the same , except for its inputs
FIG . 1 is shown . In particular , the embodiment of FIG . 11 is and output , as described above .
a dual - ported banked cache memory 102. The cache The bank enable logic 1200A includes a first inverter
memory 102 includes four banks 1106 , denoted bank 0 1204-0 that receives MA [7] 104 - A , a second inverter 1208-0
1106-0 , bank 1 1106-1 , bank 2 1106-2 , and bank 3 1106-3 . that receives MA [6] 104 - A , a first OR gate 1202-0 that
Each bank 1106 has capacity to store one - fourth the sets of 25 receives the output of the first inverter 1204-0 and a fat mode
the cache memory 102 , namely 512 sets . In the embodiment indicator 1209 , and a first AND gate 1206-0 that receives the
of FIG . 11 , bank 0 1106-0 holds the sets whose value modulo output of the first OR gate 1202-0 and the output of the
4 = 0 , bank 1 1106-1 holds the sets whose value modulo 4 = 1 , second inverter 1208-0 to generate ENOA 1212-0A , which is
bank 2 1106-2 holds the sets whose value modulo 4 = 2 , and the bank 0 1106-0 enable for port A 1104A .
bank 3 1106-3 holds the sets whose value modulo 4 = 3 , as 30 The bank enable logic 1200A also includes a third inverter
shown . 1204-1 that receives MA [7] 104 - A , a second OR gate

The cache memory 102 also includes two ports 1104 , 1202-1 that receives the output of the third inverter 1204-0
denoted port A 1104A and port B 1104B . Each port 1104 is and the fat mode indicator 1209 , and a second AND gate
coupled to each bank 1106. Each port 1106 receives the 1206-1 that receives the output of the second OR gate
mode 108 as an input . 35 1202-1 and MA [6] 104 - A to generate EN1A 1212-1A ,

The cache memory 102 also includes two tag pipelines which is the bank 1 1106-1 enable for port A 1104A .
1102 , denoted tag pipeline A 1102A and tag pipeline B The bank enable logic 1200A also includes a fourth
1102B . Tag pipeline A 1102A accesses the banks 1106 inverter 1208-2 that receives MA [6] 104 - A , a third OR gate
through port A 1104A , and tag pipeline B 1102B accesses 1202-2 that receives MA [7] 104 - A and the fat mode indi
the banks 1106 through port B 1104B . Each tag pipeline 40 cator 1209 , and a third AND gate 1206-2 that receives the
1102 receives the mode 108 as an input . The selection , or output of the third OR gate 1202-2 and the output of the
enablement , of the banks 1106 for set selection in the various fourth inverter 1208-2 to generate EN2A 1212-2A , which is
modes is described in more detail below with respect to FIG . the bank 2 1106-2 enable for port A 1104A .
12 , and the generation of a hit by the cache memory 102 in The bank enable logic 1200A also includes a fourth OR
the various modes is described in more detail below with 45 gate 1202-3 that receives MA [7] 104 - A and the fat mode
respect to FIG . 13. Preferably , the tag pipelines 1102 include indicator 1209 , and a fourth AND gate 1206-3 that receives
selection logic (not shown) that performs the selection of a the output of the fourth OR gate 1202-3 and MA [6] 104 - A
set (or two sets in the case of fat mode) as described in the to generate EN3A 1212-3A , which is the bank 3 1106-3
various embodiments herein ; comparison logic (not shown) enable for port A 1104A .
that compares the specified bits of the memory address with 50 Referring to FIG . 12B , the bank enable logic 1200
the specified bits of the tag stored in the array as described includes a first OR gate 1214-0 that receives ENOA 1212-0A
in the various embodiments herein ; and allocation logic (not from the port A bank enable logic 1200A and ENOB 1212
shown) that allocates into the array as described in the OB from the port B bank enable logic 1200B to generate
various embodiments herein . Additionally , preferably the ENO 1216-0 , which is provided as the bank enable to bank
tag pipelines 1102 include the logic that performs the 55 0 1106-0 . The bank enable logic 1200 also includes a second
function on the tag bits specified by the allocation mode OR gate 1214-1 that receives EN1A 1212-1A from the port
input of the embodiments of FIGS . 16-19 . Preferably , the tag A bank enable logic 1200A and EN1B 1212-1B from the
pipelines 1102 comprise a plurality of stages , each of which port B bank enable logic 1200B to generate EN1 1216-1 ,
performs a different operation to accomplish the set selec which is provided as the bank enable to bank 1 1106-1 . The
tion , tag comparison , way allocation and way subset deter- 60 bank enable logic 1200 also includes a third OR gate 1214-2
mination of the various embodiments described herein . that receives EN2A 1212-2A from the port A bank enable

Port A 1104A and port B 1104B can both be active at the logic 1200A and EN2B 1212-2B from the port B bank
same time as long as they are not both selecting the same enable logic 1200B to generate EN2 1216-2 , which is
bank 1106. This effectively provides a dual - ported cache provided as the bank enable to bank 2 1106-2 . The bank
memory 102 from four single - ported banks 1106. Preferably , 65 enable logic 1200 also includes a fourth OR gate 1214-3 that
arbitration logic of the cache memory 102 attempts to select receives EN3A 1212-3A from the port A bank enable logic
arbitrating requests from the two tag pipelines 1102 that 1200A and EN3B 1212-3B from the port B bank enable

US 10,698,827 B2
11 12

logic 1200B to generate EN3 1216-3 , which is provided as The system software may provide information to the pro
the bank enable to bank 3 1106-3 . cessor that may be used by the processor to detect that the

Referring now to FIG . 13 , a block diagram illustrating hit program has entered each of different phases , such as
generation logic 1300 of the cache memory 102 of FIG . 11 described below with respect to FIG . 14B , and the system
is shown . A storage element is shown that holds the tag 106 5 software may specify a different mode for each of the
of an entry of the cache memory 102 of FIG . 1. In the phases . In response to the instruction , the processor updates
embodiment of FIG . 13 , the storage element holds a 20 - bit the mode 108 and , if provided , loads the phase detectors
tag 106. Another storage element is shown that holds a valid (1414 of FIG . 14B) with the initial phase identifiers (1412 of
indicator 1302 of the entry . The tag 106 storage element FIG . 14B) . In one embodiment , the processor itself detects
receives MA [35:16] 104 , and when an allocate signal 1301 10 the new process , e.g. , the processor detects a change in a
is true , the MA [35:16] 104 value is written into the tag 106 process context identifier (PCID) , e.g. , that a new value has
and the valid indicator 1302 is updated to indicate the entry been loaded into the PCID portion of the x86 instruction set
is valid . Conversely , when a deallocate signal 1303 is true , architecture CR3 register . In one embodiment , the processor
the valid indicator 1302 is updated to indicate the entry is detects a transition to a new phase of the currently running
invalid . As shown in FIG . 13 , the allocate signal 1301 and 15 program , rather than a program change . Flow proceeds to
the deallocate signal 1303 are specific to a particular set and block 1404 .
way , indicated in FIG . 13 as set J and way 0. However , it At block 1404 , the cache memory 102 is transitioned , e.g. ,
should be understood there exists an allocate signal 1301 via the mode indicator 108 , to a new mode previously
and deallocate signal 1303 for each set and way of the cache determined to be a best - performing mode for the program or
memory 102 . 20 phase based on offline analysis of the process that was

The hit generation logic 1300 includes a comparator 1304 detected at block 1402. In one embodiment , microcode of
that receives the tag 106 and MA [35:16] 104. The compara the processor changes the mode 108 of the cache memory
tor 1304 also receives the fat mode indicator 1209 of FIG . 102. If the cache memory 102 is transitioning out of fat
12. When the fat mode indicator 1209 is true , the comparator mode , all memory operations are stopped , the operation
1304 compares all 20 bits of the tag 106 with MA [35:16] to 25 described with respect to FIG . 6 is performed , and then
generate its output that indicates whether a match has memory operations are resumed . In one embodiment , the
occurred , such as at block 506 of FIG . 5. However , when the system software provides the new mode when it detects the
fat mode indicator 1209 is false , the comparator 1304 new process is running at block 1402. In one embodiment ,
compares only the upper 19 bits of the tag 106 with the processor 100 fetches the new mode from a memory
MA [35:17] to generate its output , such as at block 306 , 806 30 (e.g. , local private memory of the processor 100 or system
and 1006 of FIGS . 3 , 8 and 10 , respectively . An AND gate memory) in response to detecting the PCID change or
1306 receives the output of the comparator 1304 and the program phase transition ; preferably , the processor 100
valid bit 1302 to generate a set J way 0 hit signal 1308 - JO identifies the new mode from a list using the PCID or phase
that indicates whether a hit occurred for set J way 0. As identifier . The mode information may include different
shown in FIG . 13 , the set J way O hit signal 1308 - JO is 35 modes for different phases of the program also determined
specific to a particular set and way , however , it should be by offline analysis . Flow ends at block 1404 .
understood there exists a set way hit signal 1308 for each set Referring now to FIG . 14B , a block diagram illustrating
and way of the cache memory 102 . elements of the processor that includes the cache memory

The hit generation logic 1300 also includes a first OR gate 102 of FIG . 1 is shown . The processor includes a phase
13124 that receives the set J way x hit signal 1308 - Jx for 40 detector 1414 that detects the running program has entered
each way of set J , where x is the way number , namely for 16 a new phase . The phase detector 1414 makes the determi
different ways , denoted 0 through 15 in FIG . 13. The OR nation based on phase identifiers 1412 provided to it , such
gate 13124 generates a set J hit signal 1314 - J . as by a device driver as described above with respect to FIG .

The hit generation logic 1300 also includes a second OR 14A . The phase identifiers 1412 may include an instruction
gate 1312 - K that receives the set K way x hit signal 1308 - Kx 45 pointer (or program counter) value of an instruction of the
for each of the 16 ways of set K. Set K is the second set program . The instruction may be a subroutine call instruc
selected when in fat mode , e.g. , the set selected by 1 : MA tion , in which case the phase identifiers 1412 may also
[15 : 6) , according to block 504 of FIG . 5. The OR gate include an instruction pointer (or program counter) value of
1312 - K generates a set K hit signal 1314 - K . the target instruction of the call instruction . Furthermore , the

The hit generation logic 1300 also includes an OR gate 50 phase identifiers 1412 may also include one or more param
1316 that receives the set J hit signal 13144 and the set K hit eter values of the call instruction , e.g. , return address ,
signal 1314 - K to generate a fat mode hit signal 1318. The hit register values and / or stack values . One example of a phase
generation logic 1300 also includes a mux 1322 that receives detector , which is referred to therein as a fingerprint unit , is
the set J hit signal 13144 and the fat mode hit signal 1318 described in more detail in U.S. patent application Ser . Nos .
and selects the former if the fat mode signal 1209 is false and 55 14 / 050,687 and 14 / 050,757 , both filed on Oct. 10 , 2013 ,
the latter otherwise for provision on its output hit signal both of which claim priority to U.S. Provisional Application
1324 that indicates whether a hit in the cache memory 102 No. 61 / 880,620 , filed on Sep. 20 , 2013 , each of which is
has occurred , such as a block 312 , 512 , 812 and 1012 of hereby incorporated by reference in its entirety for all
FIGS . 3 , 5 , 8 and 10 , respectively . purposes . The processor also includes a mode update unit

Referring now to FIG . 14A , a flowchart illustrating opera- 60 1416 that is notified by the phase detector 1414 that a new
tion of a system that includes a processor that comprises the phase has been detected and receives an identifier of the new
cache memory 102 of FIG . 1 is shown . Flow begins at block phase . The mode update unit 1416 also receives the mode
1402 . information , e.g. , from the device driver as described above
At block 1402 , the system detects that a new process , or with respect to FIG . 14A . The mode update unit 1416

program , is running . In one embodiment , system software 65 updates the mode 108 in the cache memory 102 , as
running on the processor 100 detects the new process , e.g. , described below with respect to FIG . 14C . In one embodi
a device driver monitors the operating system process table . ment , the mode update unit 1416 comprises microcode of

US 10,698,827 B2
13 14

the processor that is invoked by the phase detector 1414. In MA [17] , XOR (MA [26] , MA [23] , or MA [22] all in skinny
an alternate embodiment , the mode update unit 1416 com SWAY mode . Flow ends at block 1504 .
prises a state machine that receives an indicator from the Referring now to FIG . 16 , a block diagram that illustrates
phase detector 1414 that a new phase has been detected and a cache memory 1602 is shown . The cache memory 1602 is
the identifier of the new phase . Phase analysis is described 5 similar in many respects to the cache memory 102 of FIG .
in more detail with respect to FIG . 22 below . 1. The cache memory 1602 of FIG . 16 advantageously may
Referring now to FIG . 14C , a flowchart illustrating opera be dynamically configured during its operation into different

tion of the processor of FIG . 14B that includes the cache allocation modes , specified by an allocation mode input
1608. The allocation mode 1608 selects different functions memory 102 of FIG . 1 is shown . Flow begins at block 1422 . At block 1422 , the phase detector 1414 of FIG . 14B 10 of one or more bits of the tag of the memory address 104 that

detects the running program has entered a new phase . In determines a subset of ways of the set selected by the index
of the memory address 104 into which the cache memory response to detecting the new phase , the phase detector 1414 1602 will allocate into , as described in more detail below . notifies the mode update unit 1416 of FIG . 14B . Flow Similar to the embodiment of FIG . 1 , in the embodiment proceeds to block 1424 . 15 of FIG . 16 , the memory address 104 is decomposed into the At block 1424 , the mode update unit 1416 looks up the three portions , a tag portion 1612 , an index portion 1614 and

identifier of the new phase received from the phase detector an offset portion 1616 , however using slightly different bits .
1414 in the mode information 1418 (e.g. , received from the For ease of illustration , an example memory address 104 is
device driver at block 1404 of FIG . 14A) and updates the shown in FIG . 16 that is 36 bits in size and the 36 bits are
mode 108 of the cache memory 102 with the mode found in 20 decomposed as tag 1612 = MA [35:17] , index 1614 = MA [16 :
the lookup . Additionally , the mode update unit 1416 updates 6] and offset 1616 = MA [5 : 0] . However , it should be under
the phase detectors 1414 with new phase identifiers 1412 , as stood that embodiments of the dynamic way selection based
necessary . In one embodiment , the phases to be looked for on the address tag bits may be performed on cache memories
next depend upon the current phase ; hence , the phase that receive a memory address 104 having different numbers
identifiers 1412 to be loaded into the phase detector 1414 25 of bits and which is decomposed into different numbers of
may be different depending upon the current phase . Flow bits in its tag 1612 , index 1614 and offset 1616 portions .
proceeds to block 1426 . Another difference between the illustrative examples of

At block 1426 , the processor executes the running pro FIGS . 1 and 16 is that the tags 1606 stored in the entries of
gram and generates memory accesses to the cache memory the cache memory 1602 of FIG . 16 are 19 bits .
102 , in response to which the cache memory 102 operates 30 Referring now to FIG . 17 , a block diagram illustrating
according to the updated mode 108 as performed at block logic 1702 that selects the subset of ways into which the
1424. Flow ends at block 1426 . cache memory 102 allocates based on the tag 1612 and

Referring now to FIG . 15 , a flowchart illustrating opera allocation mode 1608 of FIG . 16 is shown . The logic 1702
tion of a system that includes a processor that comprises the includes a mux 1736 that receives the bit (e.g. , 19) of the tag
cache memory 102 of FIG . 1 is shown . Flow begins at block 35 1612 and selects one or more of the tag 1612 bits , denoted
1502 . N bits 1738 in FIG . 17 , wherein N is one or more , based on
At block 1502 , the processor detects that the cache the allocation mode 1608. The logic 1702 also includes

memory 102 is performing ineffectively in its current mode . combinatorial logic 1732 that selects a function of a plurality
For example , performance counters may indicate that the of functions based on the allocation mode 1608 , and then
cache memory 102 is experiencing a miss rate that exceeds 40 performs the selected function on the N bits 1738 output by
a threshold . Flow proceeds to block 1504 . the mux 1736 to generate a vector that indicates the subset
At block 1504 , the cache memory 102 is transitioned to a of ways 1734 into which the allocation logic of the cache

new mode different than its current mode . In one embodi - memory 102 allocates into , as described below with respect
ment , microcode of the processor changes the mode 108 of to FIG . 18 .
the cache memory 102. If the cache memory 102 is transi- 45 Examples of the tag 1612 bits selected and the function
tioning out of fat mode , all memory operations are stopped , performed on the selected N bits 1738 are as follows . For
the operation described with respect to FIG . 6 is performed , one example , the subset is specified by a predetermined bit
and then memory operations are resumed . Preferably , the of the memory address 104 to be either the 8 odd - numbered
processor (e.g. , microcode) keeps track of automatic ways of the selected set , or the 8 even - numbered ways of the
changes to the cache memory 102 mode that are made in this 50 selected set . In one example , the predetermined bit is the
fashion in order to avoid thrashing among the modes , such least significant bit of the tag 1612. In other examples , the
as in the case of a program and / or data set that lends itself predetermined bit is generated using other methods . For
to a high miss rate regardless of the mode . In one embodi example , the predetermined bit may be generated as a
ment , all of the modes (normal , fat , skinny of the different Boolean exclusive - OR (XOR) of multiple bits of the tag
possible skinny modes) are attempted as necessary . In other 55 1612. This may be particularly advantageous where cache
embodiments , a subset of the modes is attempted . For lines are pathologically aliasing into the same set , such as
example , since there is no writeback - invalidate penalty discussed above . Other functions than XOR may also be
associated with transitions between normal mode and any of used to condense multiple bits of the tag 112 into a single bit ,
the skinny modes or between one skinny mode and another such as Boolean OR , Boolean AND , Boolean NOT , or
skinny mode , the subset may be limited to these modes and 60 various permutations thereof . For a second example , two or
exclude fat mode . The different skinny modes should be more bits of the tag 1612 are rotated a number of bits
understood to include not only different skinny modes with specified by the allocation mode 1608 with the result lim
respect to how the subset of ways into which the cache line iting the ways into which a cache line may be allocated to
may be allocated is limited , but also to include different a subset of the total ways , e.g. , from 16 to 4 , 16 to 2 , or 16
skinny modes that vary the bit or bits of the tag that are 65 to 1 in the cases in which the N bits 1738 are 2 , 3 , or 4 ,
chosen upon which to base the limiting of the subset as respectively . Additionally , in the case where the N bits 1738
described above , such as with respect to FIG . 9 , e.g. , are 2 , 3 or 4 , each of the N bits 1738 may be separately

ways 1734 .

US 10,698,827 B2
15 16

generated by a Boolean function of the same or different bits other embodiments , a subset of the allocation modes is
of the tag 1612. Although specific embodiments are attempted . Advantageously , there is no writeback - invalidate
described , it should be understood that other embodiments penalty associated with transitions between the different
are contemplated for the number and particular bits of the allocation modes 1608. Flow returns from block 1906 to
tag 1612 selected by the mux 1736 , and other embodiments 5 block 1902 .
are contemplated for the particular functions 1732 per The configuration of a cache memory mode in the various
formed on the selected N bits 1738 to select the subset of manners described herein , such as cache memory fat mode ,

skinny mode , allocation by function of tag replacement bits ,
Referring now to FIG . 18 , a flowchart illustrating opera may be either by static configuration , by dynamic configu

tion of the cache memory 1602 of FIG . 16 is shown . Flow 10 ration or both . Generally speaking , the static configuration is
begins at block 1802 . pre - silicon . That is , the designers employ intuition , prefer

At block 1802 , the cache memory 1602 receives a load ably aided by software simulation of the processor design , to
request from a processing core while the allocation mode determine good configurations , that is , configurations that
1608 indicates a current allocation mode . The load request potentially improve the performance of the processor in
includes the memory address 104 of FIG . 16. Flow proceeds 15 general , and of the cache memory in particular . Improving
to block 1804 . performance of the processor is improving the speed at
At block 1804 , the cache memory 1602 selects a single which the processor executes the program (e.g. , reduces the

set , referred to in FIG . 18 as set J , using the index 1614 . clocks per instruction rate or increases the instructions per
Flow proceeds to block 1806 . clock rate) and / or reduces the power consumption . The

At block 1806 , the cache memory 1602 , for each entry in 20 programs may be operating systems , executable programs
all 16 ways of the selected set J , compares the memory (e.g. , applications , utilities , benchmarks) , dynamic link
address 104 tag 1612 with the entry tag 1606. The compare libraries , and the like . The software simulation may be
also checks to see if the entry is valid . Flow proceeds to employed to perform offline analysis of the execution of
decision block 1808 . programs for which it is desirable to improve performance
At decision block 1808 , the cache memory 1602 deter- 25 of the processor , as described below with respect to FIGS . 20

mines whether the compare performed at block 1806 through 22 for example , particularly with respect to cache
resulted in a valid match . If so , flow proceeds to block 1812 ; memory mode configuration . Preferably , the designers deter
otherwise , flow proceeds to block 1814 . mine a static configuration that tends to be good over the set
At block 1812 , the cache memory 1602 indicates a hit . of programs at large . The designers then include the good

Flow ends at block 1812 . 30 static configuration into the design that is manufactured into
At block 1814 , the logic 1702 of FIG . 17 determines a silicon .

subset of ways 1734 of the set selected at block 1804 based In contrast , the analysis to determine dynamic configu
on the function 1732 specified by the allocation mode 1608 ration is performed post - silicon , generally speaking That is ,
and one or more bits of the tag 1612 specified by the after the processor is manufactured , the designers perform
allocation mode 1608. Flow proceeds to block 1816 . 35 offline analysis of a different kind to determine how the

At block 1816 , the cache memory 1602 allocates into any processor performs when executing the programs with con
one way in the selected set J that is in the subset of ways figurations different than the static , or default , configuration
determined at block 1814. Preferably , the cache memory manufactured into silicon . The post - silicon testing may
1602 allocates into a way in the subset that was least involve a more rigorous , perhaps more brute force , tech
recently - used (LRU) or pseudo - LRU , although other 40 nique in which automated performance regression against a
replacement algorithms may be employed , such as random configuration matrix is performed , and then the regression
or round - robin . Flow ends at block 1816 . performance data is analyzed , as described below with

Referring now to FIG . 19 , a flowchart illustrating opera respect to FIG . 23 , for example . The designer may employ
tion of a system that includes a processor that comprises the the results of the pre - silicon testing for the population of
cache memory 1602 of FIG . 16 is shown . Flow begins at 45 programs as initial seeds to the post - silicon testing , e.g. , to
block 1902 . attempt to avoid local maxima that are not the global

At block 1902 , the processor monitors the effectiveness of maxima .
the cache memory 102 (e.g. , the hit rate of the cache memory Regardless of whether the testing is pre - silicon or post
102 over a most recent predetermined period) while oper silicon , with the dynamic configuration testing , good con
ating in a current allocation mode 1608. Flow proceeds to 50 figurations are determined on a per - program basis , or even
decision block 1904 . on a per - program phase basis . Then , when the system , e.g. ,
At decision block 1904 , the processor determines whether a device driver , detects a known program is running on the

the effectiveness of the cache memory 102 is below a processor (i.e. , a program for which the analysis has been
threshold . If so , flow proceeds to block 1906 ; otherwise , performed and a good configuration is known) , the system
flow ends . Preferably , the threshold is programmable , e.g. , 55 provides the good program - specific configuration to the
by system software . processor , and the processor updates the cache memory

At block 1906 , the processor updates the allocation mode mode with the program - specific configuration in a dynamic
1608 of the cache memory 102 to a new allocation mode fashion while the processor is running . Preferably , the
different than its current allocation mode . In one embodi program - specific configuration includes different configura
ment , microcode of the processor updates the allocation 60 tions for different phases of the program , and the processor
mode 1608 of the cache memory 102. Preferably , the pro detects the phase changes and dynamically updates the
cessor (e.g. , microcode) keeps track of the updates to the configuration in response with the phase - specific configu
allocation mode 1608 that are made in this fashion in order ration , as described with respect to FIG . 22 , for example .
to avoid thrashing among the allocation modes , such as in A program phase , with respect to a given set of charac
the case of a program and / or data set that lends itself to a 65 teristics , is a subset of a computer program characterized by
high miss rate regardless of the mode . In one embodiment , a consistent behavior among those characteristics . For
all of the allocation modes are attempted as necessary . In example , assume the relevant characteristics are branch

US 10,698,827 B2
17 18

prediction rate and cache hit rate , a phase of a program is a they are susceptible to being broken down into distinct
subset of the runtime behavior of the program in which the phases , in which case a single configuration may suffice for
branch prediction rate and cache hit rate are consistent . For the entire program . Flow ends at block 3406 .
instance , offline analysis may determine that a particular Referring now to FIG . 21 , a memory access graph and
data compression program has two phases : a dictionary 5 extracted data from the graph is shown . The graph plots
construction phase and a dictionary lookup phase . The memory accesses , indicated by dots , in which time is the
dictionary construction phase has a relatively low branch independent variable shown on the horizontal axis , and
prediction rate and a relatively high cache hit rate , consistent memory address is the dependent variable shown on the
with building a set of substrings common to a larger set of vertical axis . Horizontal lines correspond to individual cache
strings ; whereas , the dictionary lookup phase has a relatively 10 line at the specified memory address . The left edge of the
high branch prediction rate and a relatively low cache hit line signifies the allocation of the cache line , and the right
rate , consistent with looking up substrings in a dictionary edge of the line signifies the eviction of the cache line from
larger than the size of the cache . the cache memory .

In one embodiment , offline analysis is performed using Below the graph is shown , at each of eight different
the notion of an “ oracle cache , ” which , as its name implies , 15 regular time intervals , the total working set size . The time
knows the future . Given the limited amount of space in the intervals may be correlated to basic block transfers as
cache memory , the oracle cache knows the most useful data described below with respect to FIG . 22 , for example , and
that should be in the cache at any point in time . It may be used to determine program phases and configurations for
conceptualized as a cycle - by - cycle or instruction - by - instruc each of the program phases .
tion snapshot of the contents of the cache that would produce 20 Additionally , observations may be made about how long
the highest hit ratio . cache lines tend to be useful , such as average cache line

First , one generates the sequence of oracle cache snap lifetime . The average cache line lifetime is calculated as the
shots for a program execution and keeps track of the sum of the lifetime (from allocation to eviction) of all the
memory access that produced the allocation of each cache cache lines over the phase divided by the number of cache
line in the snapshots . Then , on a subsequent execution 25 lines . This information can be used to influence the operat
instance of the program , the processor continually updates ing mode of the cache memory .
the cache mode using the information from the snapshots . If the oracle cache constrains the number of cached lines
When it is impractical to update the cache mode on the to correspond to the intended number of sets and ways that

granularity of a clock cycle or instruction , one examines the are included in the cache memory , the accuracy of the cache
tendencies over much longer time durations , e.g. , an entire 30 mode and average lifetime observations may increase . Other
program or program phase , e.g. , by taking averages from the indicators may also be gathered , such as cache line hits .
sequence of the program or phase . Referring now to FIG . 22 , a flowchart illustrating phase

Broadly speaking , the idea of the oracle cache is that analysis of a program is shown . The phase analysis is a form
because it knows all of the memory accesses in advance , it of offline analysis that may be used to determine good
can pre - execute all of the memory accesses . Then as the 35 configurations of configurable aspects of the processor , such
program executes , the oracle cache predicts the best set of as its cache memory or prefetchers . Flow begins at block
cache lines to be in the cache at any given point in time . For 3602 .
instance , in the graph of FIG . 21 , the oracle cache would At block 3602 , a program for which it is desirable to
predict that the short duration cache line (the line second improve performance by the processor when executing the
from the top depicted with a solid line) should not be cached 40 program is analyzed and broken down to generate state
after its last access . Using such analysis , one derives obser diagrams . The nodes of the state diagram are basic blocks of
vations about cache modes . the program . Basic blocks are sequences of instructions

Referring now to FIG . 20 , a flowchart illustrating gen between program control instructions (e.g. , branches , jumps ,
eration of cache memory mode configurations for programs calls , returns , etc.) . Each edge in the stage diagram is a target
and program phases is shown . Flow begins at block 3402. 45 basic block to which the edge leads and state change

At block 3402 , the designer , preferably in an automated information , which may become a phase identifier , as
fashion , runs a program and records memory accesses to the described more below . A phase identifier may include the
cache memory , e.g. , 102 , 1602 , made by the program . instruction pointer (IP) , or program counter (PC) , of a
Preferably , the allocations , hits and evictions of cache lines control transfer instruction , a target address of the control
are recoded . The memory address and time (e.g. , relative 50 transfer instruction , and / or the call stack of a control transfer
clock cycle) of the memory accesses are recorded . Flow instruction . The call stack may include the return address
proceeds to block 3404 . and parameters of the call . The program phases are portions
At block 3404 , the designer , preferably in an automated of the programs that comprise one or more basic blocks .

fashion , analyzes the information recorded at block 3402 at Flow proceeds to block 3604 .
regular time intervals and recognizes clear trends to separate 55 At block 3604 , the program is instrumented to analyze
the program into phases , e.g. , as described below with characteristics related to configurable aspects of the proces
respect to FIG . 22. For example , clear trends in working set sor such as cache memory configuration modes . Examples
size , average cache line lifetime , average hit rate may be of the characteristics include cache hit rate , branch predic
recognized . Flow proceeds to block 3406 . tion accuracy , working set size , average cache line lifetime ,
At block 3406 , the designer , preferably in an automated 60 and cache pollution (e.g. , the number of cache lines

fashion , creates configurations for the different program prefetched but never used) . Flow proceeds to block 3606 .
phases based on the analysis performed at block 3404. For At block 3606 , the program is executed with a given
example , the configurations may be a cache memory mode . configuration , e.g. , of cache memory and / or prefetcher , and
In one embodiment , the analysis to determine the configu phases of the program are identified by observing steady
rations may include analysis similar that described below 65 state behavior in the analyzed characteristics of block 3604 .
with respect to FIGS . 21 through 23. It should be understood For example , assume cache hit rate is the analyzed charac
that some programs might not exhibit clear trends such that teristic of interest , and assume the cache hit rate changes

5

US 10,698,827 B2
19 20

from 97 % to 40 % . The cache hit rate change tends to possible values . In this case , the designer may provide a
indicate that the cache memory configuration was good for reasonable set of values to the method . If the designer does
the program prior to the change and not good for the not supply values and the number of possibilities is large , the
program after the change . Thus , the sequence of basic blocks method may iterate through blocks 3712 through 3716 with
prior to the cache hit rate change may be identified as one a reasonable number of random values of the parameter .
phase and the sequence of basic blocks after the cache hit Flow proceeds to block 3712 .
rate change may be identified as a second phase . For another At block 3712 , the program , or program phase , is run with
example , assume working set size is the analyzed charac the current best configuration but modified by the next value
teristic of interest , then significantly large shifts in working of the parameter per block 3708 , and the performance is
set sizes may signal a desirable location in the program to 10 measured . Flow proceeds to decision block 3714 .
identify a phase change . Flow proceeds to block 3608 . At decision block 3714 , the method compares the perfor
At block 3608 , once the phases are identified , good mance measured at block 3712 with the current best per

configurations or configuration values , are determined for formance and if the former is better , flow proceeds to block
each phase . For example , various offline analysis techniques 3716 ; otherwise , flow returns to block 3712 to try the next
may be used , such as the method described above with 15 value of the current parameter until all the reasonable values
respect to FIGS . 20 and 21 or below with respect to FIG . 23 . are tried , in which case flow returns to block 3708 to iterate
Flow proceeds to block 3612 . on the next configuration parameter until all the configura

At block 3612 , phase identifiers are correlated to the tion parameters are tried , in which case the method ends ,
phase changes . The state change information , or potential yielding the current best configuration for the program , or
phase identifiers , of the basic block transition described 20 program phase .
above at which a change in the analyzed characteristic At block 3716 , the method updates the current best
occurred are recorded along with the good configuration configuration with the configuration tried at block 3712 .
values determined at block 3608 for the program so the Flow returns to block 3712 to try the next value of the
information may be provided to the processor when it is current parameter until all the reasonable values are tried , in
detected , e.g. , by a device driver , that the analyzed program 25 which case flow returns to block 3708 to iterate on the next
is about to run . Flow proceeds to block 3614 . configuration parameter until all the configuration param

At block 3614 , after receiving the information associated eters are tried , in which case the method ends , yielding the
with the analyzed program , the processor loads the phase current best configuration for the program , or program
detectors 1414 with the phase identifiers 1412 of FIG . 14B phase .
as described above with respect to FIGS . 14A through 14C . 30 It should be noted that a good configuration found using
Flow ends at block 3614 . methods similar to those of FIG . 23 may not be , and need not

Referring now to FIG . 23 , a flowchart illustrating a brute be , understood by the designer why the particular configu
force method of determining a good configuration for con ration yields the good result .
figurable aspects of the processor , e.g. , cache memory , Referring now to FIG . 24 , a block diagram illustrating a
prefetcher , is shown . The method described employs aspects 35 processor 3900 is shown . The processor 3900 includes an
of the " coordinate descent ” optimization algorithm . Flow instruction cache 3922 that provides instructions to an
begins at block 3702 . instruction decoder 3923 that decodes the instructions and

At block 3702 , for each program , or program phases , in provides the decoded instructions to an instruction dis
a list of programs identified for which it is desirable to patcher 3924 that dispatches the instructions to execution
improve performance of the processor , the method iterates 40 units 3926 for execution . Preferably , the microarchitecture
through blocks 3704 through 3716 until a good configura of the processor 3900 is superscalar and out - of - order execu
tion is determined (e.g. , the best current configuration — see tion , although other embodiments are contemplated , such
below — has not changed for a relatively long time) or that the instruction dispatcher 3924 also includes an instruc
resources have expired (e.g. , time and / or computing tion scheduler for scheduling the dispatch of instructions to
resources) . Flow proceeds to block 3704 . 45 multiple execution units 3926 in a superscalar out - of - order
At block 3704 , the current best configuration is set to a fashion . Preferably , the processor 3900 also includes archi

default configuration , e.g. , a default mode of the cache tectural registers (not shown) that hold architectural state of
memory , which in one embodiment is simply the configu the processor 3900 as well as non - architectural registers (not
ration with which the processor is manufactured . Flow shown) . Preferably , the processor 3900 also includes a
proceeds to block 3706 . 50 register alias table (RAT) (not shown) used to perform

At block 3706 , for each configuration parameter , blocks register renaming and a reorder buffer (ROB) (not shown)
3708 through 3712 are performed . An example of a con used to retire instructions in program order . Preferably , the
figuration parameter is a single configuration bit , e.g. , that instruction dispatcher includes an instruction translator (not
turns a feature on or off . Another example of a configuration shown) that translates architectural instructions into micro
parameter is a configuration field , e.g. , mode 108. Flow 55 instructions of the microinstruction set architecture of the
proceeds to block 3708 . processor 3900 executable by the execution units 3926 .
At block 3708 , for each value of a reasonable set of values The processor 3900 also includes a memory subsystem

of the configuration parameter of block 3706 , perform 3928 that provides memory operands to the execution units
blocks 3712 through 3716. A reasonable set of values of the 3926 and receives memory operands from the execution
configuration parameter depends upon the size of the con- 60 units 3926. The memory subsystem 3928 preferably
figuration parameter , the deemed importance of the param includes one or more load units , one or more store units , load
eter , and the amount of resources required to iterate through queues , store queues , a fill queue for requesting cache lines
its values . For example , in the case of a single configuration from memory , a snoop queue related to snooping of a
bit , both values are within a reasonable set . For example , the memory bus to which the processor 3900 is in communica
method may try all possible values for any parameter having 65 tion , a tablewalk engine , and other related functional units .
sixteen or fewer values . However , for relatively large fields , The processor 3900 also includes a cache memory 102 in
e.g. , a 32 - bit field , it may be infeasible to try all 2 ̂ 32 communication with the memory subsystem 3928. Prefer

the array :

US 10,698,827 B2
21 22

ably , the cache memory 102 is similar to the cache memories a set - associative array of entries having a plurality of sets
described with respect to FIGS . 1 (and 1602 of FIG . 16) . by W ways , wherein W is an integer greater than one ;
Although a single cache memory 102 is shown , the cache an input that receives a memory address , wherein the
memory 102 may be one of a larger cache memory subsys memory address comprises :
tem that includes a hierarchy of cache memories , such as the 5 an index used to select a set from the plurality of sets ; and
level - 1 (L1) instruction cache , a L1 data cache , and a unified a tag used to compare with tags stored in the entries of the
level - 2 (L2) cache that backs the L1 caches . In one embodi W ways of the selected set to determine whether the ment , the cache subsystem also includes a level - 3 (L3) memory address hits or misses in the array ; and cache . The processor 3900 may also include one or more allocation logic that , when the memory address misses in prefetchers that prefetch data from memory into the cache 10
memory 102. In one embodiment , the processor 3900 is a when the cache memory is operating in the normal mode , multi - core processor , each of the cores having the functional
units described above , and in which the cache memory 102 allocates into any one of the ways of the selected set ;
shared by the cores . when the cache memory is operating in the skinny mode ;

The memory subsystem 3928 makes memory accesses of 15 selects two or more bits of the tag to be selected bits ;
the cache memory 102 as described in the embodiments of performs a function , selected from a plurality of functions
FIGS . 1 through 23. The memory accesses include the based on the allocation mode , on the selected bits of the
memory address 104 of the memory location to be accessed . tag to generate a subset of the W ways of the array ; and

Although embodiments have been described with a par allocates into one way of the subset of the ways of the
ticular configuration of number of ports and banks of the 20 selected set according to an output of the function ;
cache memory , it should be understood that other embodi wherein the cache memory is transitioned from one of the
ments are contemplated in which different numbers of ports normal mode and the skinny mode to the other in
are included in the cache memory , and in which different response to detection that a new process is running on
numbers of banks are included , as well a non - banked a processor that comprises the cache memory .
configurations . In the present disclosure , including the 25 2. The cache memory of claim 1 , wherein the plurality of
claims , the notation 2 N means 2 to the exponent N. functions performed on the selected bits of the tag comprises
While various embodiments of the present invention have a Boolean exclusive - OR (XOR) of the two or more of the

been described herein , it should be understood that they have selected bits of the tag .
been presented by way of example , and not limitation . It will 3. The cache memory of claim 2 , wherein the output of the
be apparent to persons skilled in the relevant computer arts 30 function performed on the selected bits of the tag generates
that various changes in form and detail can be made therein a single bit , wherein when the bit is one the subset comprises
without departing from the scope of the invention . For odd - numbered ways of the W ways of the selected set ,
example , software can enable , for example , the function , wherein when the bit is zero the subset comprises even
fabrication , modeling , simulation , description and / or testing numbered ways of the W ways of the selected set .
of the apparatus and methods described herein . This can be 35 4. The cache memory of claim 1 , wherein for one or more
accomplished through the use of general programming lan of the plurality of allocation modes , the subset is one way of
guages (e.g. , C , C ++) , hardware description languages the W ways of the selected set .
(HDL) including Verilog HDL , VHDL , and so on , or other 5. The cache memory of claim 4 , wherein W is 2Q ,
available programs . Such software can be disposed in any wherein the one way is specified by Qbits of the tag ,
known computer usable medium such as magnetic tape , 40 wherein Q is an integer greater than zero .
semiconductor , magnetic disk , or optical disc (e.g. , CD 6. The cache memory of claim 5 , wherein the Q bits of the
ROM , DVD - ROM , etc.) , a network , wire line , wireless or tag are the Q least significant bits of the tag .
other communications medium . Embodiments of the appa 7. A method for operating a cache memory having a
ratus and method described herein may be included in a set - associative array of entries having a plurality of sets by
semiconductor intellectual property core , such as a proces- 45 W ways , wherein W is an integer greater than one , the
sor core (e.g. , embodied , or specified , in a HDL) and method comprising :
transformed to hardware in the production of integrated receiving a mode input that indicates in which of a
circuits . Additionally , the apparatus and methods described plurality of allocation modes the cache memory is to
herein may be embodied as a combination of hardware and operate , wherein the plurality of allocation modes com
software . Thus , the present invention should not be limited 50 prises a normal mode and a skinny mode ;
by any of the exemplary embodiments described herein , but receiving a memory address comprising :
should be defined only in accordance with the following an index used to select a set from the plurality of sets ; and
claims and their equivalents . Specifically , the present inven a tag used to compare with tags stored in the entries of the
tion may be implemented within a processor device that may W ways of the selected set to determine whether the
be used in a general - purpose computer . Finally , those skilled 55 memory address hits or misses in the array ; and
in the art should appreciate that they can readily use the when the memory address misses in the array :
disclosed conception and specific embodiments as a basis when the cache memory is operating in the normal mode ,
for designing or modifying other structures for carrying out allocating into any one of the ways of the selected set
the purposes of the present invention without departing when the cache memory is operating in the skinny
from the scope of the invention as defined by the appended 60 mode ;
claims . selecting two or more bits of the tag to be selected bits ;

The invention claimed is : performing a function , selected from a plurality of func
1. A cache memory , comprising : tions based on the allocation mode , on the selected bits
a mode input that indicates in which of a plurality of of the tag to generate a subset of the W ways of the

allocation modes the cache memory is to operate , 65
wherein the plurality of allocation modes comprises a allocating into one way of the subset of the ways of the
normal mode and a skinny mode ; selected set according to an output of the function ;

same

array ; and

10

US 10,698,827 B2
23 24

wherein the cache memory is transitioned from one of the operating the cache memory in a current allocation mode
normal mode and the skinny mode to the other in of a plurality of allocation modes , wherein the plurality
response to detection that a new process is running on of allocation modes comprises a normal mode and a
a processor that comprises the cache memory . skinny mode ;

8. The method of claim 7 , wherein the plurality of 5 wherein upon a miss of a memory address in the cache
memory ; functions performed on the selected bits of the tag comprises in the normal mode , allocating into any one of the ways a Boolean exclusive - OR (XOR) of the two or more of the of the selected set ; selected bits of the tag . in the skinny mode , the cache memory allocates into one

9. The method of claim 8 , wherein the output of the way of any of a subset of the ways of a set of the cache
function performed on the selected bits of the tag generates memory selected using an index portion of the memory
a single bit , wherein when the bit is one the subset comprises address ;
odd - numbered ways of the W ways of the selected set , wherein in the skinny mode , the subset is determined by
wherein when the bit is zero the subset comprises even a function , selected from a plurality of functions based
numbered ways of the W ways of the selected set . on the allocation mode , of two or more bits , which are

10. The method of claim 7 , wherein for one or more of the selected bits , of a tag portion of the memory address ;
and plurality of allocation modes , the subset is one way of the W monitoring a hit rate of the cache memory while operating ways of the selected set . in the current allocation mode and changing the current

11. The method of claim 10 , wherein W is 2Q , wherein allocation mode to a different one of the plurality of
the one way is specified by Q bits of the tag , wherein Q is 20 allocation modes when the hit rate is below a threshold ;
an integer greater than zero . wherein the cache memory is transitioned from one of the

12. The method of claim 11 , wherein the Q bits of the tag normal mode and the skinny mode to the other in
are the Q least significant response to detection that a new process is running on

13. A method for operating a set associative cache a processor that comprises the cache memory .
memory , the method comprising :

15

of the tag .

