UK Patent Application «GB 2 376 773 .. A

(43) Date of A Publication 24.12.2002

(21) Application No 0205775.0
(22) Date of Filing 12.03.2002
{30) Priority Data

(31) 60275323
(31) 60275324

(32) 12.03.2001 (33)
(32) 12.03.2001

us

(71) Applicant(s)
Touch Technologies Inc
(Incorporated in USA - California)
Suite 310, 9988 Hibert Street, San Diego,
California 92131, United States of America

(72) Inventor(s)
Daniel Eshbensen

(74) Agent and/or Address for Service
Mewburn Elis
York House, 23 Kingsway, LONDON,
WC2B 6HP, United Kingdom

(51 INTCL?
GO6F 5/00

(52) UK CL (Edition T)
G4A ACC

(56) Documents Cited
JP 050289846 A
US 6396921 B1

JP 020034037 A

(68) Field of Search
UK CL (Edition T } G4A AAF AAU ACC ACX
INT CL7 GO6F 5/00 5/01 17/21 17/22, HO3M
Other: Online: WPI, EPODOC, PAJ, TXTE, INSPEC,
ELSEVIER, IBM TDB, IEEE Xplore, Internet

(54) Abstract Title

Display and/or precision operations of numerical values in binary systems

(57) A method and/or apparatus determining character codes such as ASCH and EBCDIC for a numerical
value retrieves two or more character codes for each iteration of the method and/or representing and
operating on numerical values in binary systems.

At

select a number N, where N> 1, that is the desired number
of display codes to decode at each repetition

{

A2

determine the lowest power (P) of a base*N such that
(base*N)"P < a numerical value to be decoded

A3

If P < 1 determine display codes for the numerical value
and goto END

A4

If P> 1, divide the numerical value by (base*N)*P and
determine two or more display codes for the whole result
and save the determined display codes

A5

set: numerical value = numerical value — whole result;
P =P —1; goto A3;

AB

END: concatenate saved display codes and return display
code results

FIG. 1

V €4L9.E£C 9D

1/6

A1l
select a number N, where N> 1, that is the desired number

of display codes to decode at each repetition

i a2

determine the lowest power (P) of a base”N such that
(base”N)*P < a numerical value to be decoded

4 As

If P < 1 determine display codes for the numerical value
and goto END

¢ ps

If P> 1, divide the numerical value by (base”N)*P and
determine two or more display codes for the whole result
and save the determined display codes

. As

set: numerical value = numerical value — whole result;
P =P —1; goto A3:

i 6

END: concatenate saved display codes and return display
code results

FIG. 1

2/6
B1
[set n = the number to be decoded I

{ 52

[BEGIN_LOOP: if n < (10°N) goto END_LOOP |

i o3

use (n modulo <10”N>) to decode the remaining rightmost
N character codes

i B4

[n=n/<10"N> |
~L B5
[goto BEGIN_LOOP |

J 86

END_LOOP: use n to decode the final left-most character
codes,
concatenate saved character codes,
and return character code results

FIG. 2

D1
[receive a numerical value N |

\L D2

determine integer portion of N and store as in a computer
storage area as Njp

\L D3

determine fractional portion of N and store as in a
computer storage area as N

{ o4

return a pointer to Njp ep to allow other operations to be
performed

FIG. 6

b2y

3/6

C1
determine an available memory size for character code
table, where the necessary memory size MS = N*base”N,
where N>1 and is the desired number of display codes to
decode at each repetition

J c2

fill table locations with display codes comresponding to.
index values of the table

J cs

establish a callable logic routine or function or modify
existing functions so that requests to convert numerical
data to display codes

J ca

use the table to look-up N character codes to decode a
numerical value

FIG. 3

/.720
8]

— 700

717

705

700 /N 719
Communication [i_—_l\
Medium £
0

71

4/6

i
// GET_ASCII_FRACTIONAL DIGITS EXAMPLE CODE

///

// Brief description: Get ascii fractional digits.

// Expected: .
/7 a = address of a character array for output ascii dlglts
/7 i = index into above character array @ﬂ,_
// n binary integer to convert -
/7 p = scale fractional digits NEVER USED? o
// digits = number of precision digits

// Result : i new index into a

// Other variables:

// TABLE SCALE = number of entries in loocked-up table; also 10°N

// index = index value used to access ntab

// ntab = indexed table of character codes

// TABLE DIGITS = number of digits in each table entry

/7 table digit = position of digit (1°® (0) through TABLE DIGITS™

/7 TABLE DIGITS -1)) read in a

// particular table entry; DAN, I AM A LITTLE CONFUSED BY THIS

///
inline int routine get_asc11~fractlonal_d1g1ts (char *a, int i, int n,
int fract_digits, int digits)
{
int table digit, index;
if (n < Q) /* calculate -1 */
n = -n; /* as 1 */
while (fract_digits > 0)
{
if (n < TABLE SCALE)
{ /* already less no need for a divide */

index = (int) n; /* use the number as the index */
n = 0; /* no more number */
}
else
{
index = n % TABLE SCALE; /* set index to remainder (using modulo)
*/
n /= TABLE_SCALE; /* new n = n/TABLE SCALE
}
for (table_digit = 0; table digit < TABLE DIGITS;
table digit++, -—-fract_digits)
if (fract_digits > 0 && fract digits <= digits)
a(i++] = ntab[index][table digit]; /* In this example, each character
is -
/* separately fetched from its
table

/* entry and the table is treated as a
/* 2-dimensional table.

return i;
} /* END get ascii fractional digits */

FIG. 4

5/6

///
// GET_ASCII_WHOLE DIGITS
///
// Brief description: Get ascii whole integer digits.

// Expected:

// a = address a character array for ascii digits
// i = index into above character array

// n = binary 64-bit integer to convert

//

// Result : i new index into a

/7

///
inline int routine get_ascii_whole digits (char *a, int i, real * _n)
{

int index, table digit, skip_leading;

int64 n = n->ip; /* integer portion */

do

{
if (n < TABLE SCALE)

{ /* already less, no need for a divide */
index = (int) n; /* use the number as the index */
n = 0; /* no more number */

}

else

{
index = (int) (n % TABLE SCALE); /* remainder */

n /= TABLE SCALE; /* divide by TABLE SCALE */
}
a[i++] = ntab{index][0]; /* always at least 1 character */
if (n) /* n does not equal zexo */
{ /* more to come */

for (table digit = 1; table digit < TABLE DIGITS;
table digit++)
afi++] = ntab[index][table_digit];/* convert all digits for this

entry*/

}

else

{ /* skip leading ‘0’s on last divide
*/

for (skip_leading = TABLE DIGITS - 1; skip leading;
~-skip leading)
if (ntab[index][skip_leading] 1= Q")
{
for (table digit = 1; table digit <= skip leading;
table digit++) a[i++] = ntab[index][table_digit];
break;
}
}
}
while (n);
return i;
} /* get ascii whole digits */

FIG. 5

6/6

*— 800

\4

Y

A

Input
Interfaces
840

Output
Interfaces
850

3D
FPU Graphics
802 804 <
A
‘ y
Processor
801
Registers
ALU 808 806
Working Memory (RAM)
820
Process 1 Process 2 Process N
822a 822b 822c
Data Data Data
Structure Structure Structure
824a 824b 824c
N
y 3
L — 812

\ 4

Data Storage Interface

830

\4

A

FIG. 7

Y

Communi-
cation
Interfaces
860

- 810

15

20

25

30

35

2376773

APPARATUS AND METHOD FOR DISPLAY AND/OR PRECISION
OPERATIONS OF NUMERICAL VALUES IN BINARY SYSTEMS

The present invention relates to information

processing systems and methods.

The discussion of any work, publications, sales, or
activity anywhere in this submission, including in any
documents submitted with this application and in any documents
incorporated herein by reference, shall not be taken as an
admission by the inventors that any such work constitutes
prior art. The discussion of any activity, work, or
publication herein is not an admission that such activity,
work, or publication existed or was known in any particular
jurisdiction.

A task that faced the early designers of computer
architecture was how to quickly and efficiently display
numerical data. Numerical data is typically stored in
computer systems as a base-2 representation of the number.
For example, the two byte integer 63119d (herein d indicates
decimal notation, h indicates hexadecimal, b indicates binary
notation) may be represented in a computer’s binary memory as
the binary number 1100000110001011b. Many variations are
known regarding representing numerical values in binary
Systems, such as 2's complement notation.

A difficulty arises when converting a binary number to
a form for display or operations in another base system, such
as decimal. In presentation applications, a routine must
convert the binary-stored number to a series of character
codes. Known and commonly used character codes include ASCII
and EBCDIC. The Baudot Code is another example code that was
used extensively in telegraph systems, with five bits coding
32 characters. While wvarious presentation codes present

different issues 1in converting between binary, the overall

15

20

25

30

35

138

problem is the same. For simplicity, the present discussion
will concentrate on conversion of binary encoded numbers to
ASCII, though the present invention can be used to convert
between other appropriate encoding schemes.

Such conversion in most computer systems 1is a
processor—intensive task. One method 1is to translate each
decimal digit separately from the left, dividing the original
number by the largest power of 10 less than 1it. The whole
number result (also referred to as the quotient) 1s then
looked up in a table or combined with a value to give an ASCII
code. The process 1s repeated in the remainders until
character codes for all the digits are determined.

An alternative method 1s tO translate each decimal
digit starting from the right, by dividing the original number
py 10, and using the modulo operator to look up in a table or
combine with a value to give an ASCII code and repeat. While
this form may be shorter TO express, the computer operations
necessary to perform the modulo are generally similar, if not
longer and more complex. The binary arithmetic calculaticns
necessary to perform these operations are very processor
intensive. In particular, divisions of binary numbers,
particularly floating point numbers, is often very slow and
processor intensive.

Decoding a signed and/or a floating-point number
requires additional steps. For signed numbers, in one example
prior art method, the sign of negative numbers is first
stored, then the number 1is converted to a positive value
(which may involve a 2's complement conversion) and the
general procedure described above is performed. For floating
point numbers, further steps may be needed to determine the
correct decimal point location and to convert the floating
point number to the correct integer value Dbefore converting
the binary integer value to character codes. These steps vary
depending on the particular floating point encoding scheme

used in a particular system.

10

20

25

30

35

Calculations of Decimal Numbers in Binary Systems
In order for non-binary numbers to be manipulated in binary

systems, the numbers must be converted or encoded in a form
compatible with the base-2 representation of binary systems.
For example, the two-byte integer 631194 may be represented in
a computer’s binary memory as the binary number
1100000110001011b. Many variations are known for representing
numbers in binary systems. Floating point numbers present
additional issues. A variety of binary floating-point formats
have been defined for computers; one of the most popular is
that defined by IEEE (Institute of Electrical & Electronic
Engineers) known as IEEE 754.

The IEEE 754 specification defines 64 bit floating-
point format with three parts:

(1) An 1l-bit binary exponent, using "excess-1023"
format. In this format, the exponent is represented
as an unsigned binary integer from 0 to 2047, and one
subtracts 1023 to get the signed value of the
exponent.

(2) A 52-bit mantissa, also an unsigned binary number,
defining a fractional value with a leading implied
",

(3) A sign bit, giving the sign of the mantissa.

A variation of this scheme uses 32-bits, such as a 23-
bit mantissa with a sign bit and an 8-bit exponent (in excess-
127 format), giving 7 valid decimal digits. Such floating-
point numbers are sometimes referred to as T"reals" or
"floats": a 32-bit float value is sometimes called a "real32"
or a "single" (indicating "single-precision floating-point
value") while a 64-bit float is sometimes called a "real64" or
a "double" (indicating "double-precision flecating~-point
value")

With these floating-point numbers, precision problems
can be encountered. As with integers, there is only a finite
range of values, though it is a larger range, allowing for

“overflow” or “underflow.” A maximum real value allowed in a

10

15

25

30

35

system is sometimes referred to as “machine infinity.” A
further problem 1is that there is limited precision to
computer—encoded real numbers. As a result, in many floating-
point computations, there can be a small error in the result
because some lower digits have peen dropped. This may be
unnoticeable in most cases, but in math analysis that requires
2 lot of computations, the errors tend to build up and can
affect the results. Another error that can arise in floating-
point numbers 1is due to the fact that the mantissa 1s
expressed as a binary fraction that may not perfectly match a
desired decimal fraction.

An alternative format used in some systems 1s to
create fixed decimal point representations for real values
(sometimes referred to as scaled values) . As an example, the
encoding scheme FOUR assumes for all encoded numbers that four

decimal digits are present after the decimal. All computations

are done on Dbinary whole numbers, without a loss of
significance. However, this means that on a system with 64-
bit integers (19 decimal digits of data), in the gilven

example, this would allow only the representation of 15 digits
left of the decimal point and four to the right of the decimal
point. Another format used to handle decimal numbers and
address some of these issues 1s Binary Coded Decimal (BCD) .
In this notation groups of 4 bits are used to represent each
decimal digit from O to 9.

In prior art systems, floating point processing of
floating point numbers that are defined by a known standard is
often handled by a Floating point Unit (FPU), typically an
integrated circuit module or area designed to handle fleoating-
point numbers. In systems without a “hardware” FPU, floating

point operations are generally handled by software.

SUMMARY OF THE INVENTION

The present invention in a first of its aspects may
provide a method and/or apparatus and/or digital logic circuit

for more quickly determining the character codes (such as

10

15

20

25

30

35

ASCII or EBSIDIC character codes) for a binary-represented
numerical value and that in specific embodiments, avoiding
many of the divisions that can be hecessary when converting to
character codes.

In further aspects, the invention may provide a method
and/or apparatus and/or digital logic circuit for more
effectively handling numerical values in a binary information
handling system, such as using two non-contiguous (or
“separated”) bit areas to store real numbers. These areas are
referred to as non-contiguous because preferably there is no
automatic binary carry in either direction with regard to the
bit areas and because preferably in a given number there is no
dependency on either part of the number to determine the value
of the other part. In other words, the integer portion of a
decimal is preferably dependent only on the integer portion of
the stored binary value. Likewise, the fractional portion of
a decimal 1is preferably dependent only on the fractional
portion of the stored binary value. 1In terms of their storage
in a computer’s memory, the different portions of the numbers
may be stored in memory locations next to each other. Thus,
preferably a real number as discussed herein is stored as an
integer part (IP) and a fractional part (FP).

Preferably, the “independence” of the IP and FP of a
number extend into the sign bits and both the IP and the FP
carry a sign bit. Preferably, the sign bits on the IP and the
FP are always identical for both portions. As used herein,
such a number may be designated as N.IP.FP.

The IP according to preferred embodiments of the
invention is represented as a conventional binary integer. 1In
preferred embodiments, a sign bit 1is included as the first
bit, with 2’s complement or other notation used to represent
negative numbers. The FP preferably is also represented as a
conventional binary integer. Preferably, a sign is also
included as the first bit, with 2’'s complement or other

notation used to represent negative numbers. However the

10

20

25

30

fractional portion of the decimal number may be multiplied by
{Qscale_factor ¢ insure all bits of precision of interest are
within the integer. For example, in a scale_factor=9 system,
the fractional part of a decimal number is multiplied by 10°
pefore it is stored in the FP, as indicated in the following

table:

Decimal Part | FP

.4 400 000 000
.03456 034 560 000
.1415926 141 592 600

Preferably, the scale factor is a selected power of 10
and indicates the number of fractional decimal digits
supported by the system. Scale is sometimes used to herein to

indicate 1Oscale*factor

In an example embodiment, 64-bits are
used for the integer portion and 32 bits for the decimal
portion, thus a single FP requires 96-bits of storage. As
used herein, such a number may be designated as an r9¢ (for
real-96 bit). Preferably, a numbering representation according
to the present invention uses 18 decimal digits in the whole
part of the number and 8 digits in the decimal portion, which
allows some implementations to use built-in math functions of
various CPUs.

Preferably, carries between the IP and FP portions of
a number are not handled automatically and different numerical
operators handle carries between the IP and FP explicitly and
with appropriate variations for each operation.

Preferably, the binary storage space for an FP will be
able to hold a number that 1is larger that the maximum FP
allowed. 1In a system with 8 decimal digits in the FP portion,
for example, the largest FP that can be represented 1is

.999999949d. To store this number requires 27 Dbits for the

10

15

20

25

30

binary wvalue (101111101011110000011111111), plus a sign bit,
for a total of 28 bits. However, the largest decimal number
that can be stored in 27 bits is 2.18103807. Thus, for many
mathematical operations, the resultant FP portion (S.FP) will
be compared to the MAX.FP (e.g. .99999999d) and if over will
cause a carry bit to be active and will be decremented by the
MAX.FP.

The invention and various specific aspects and
embodiments will be better understood with reference to the
following drawings and detailed descriptions. For purposes of
clarity, this discussion refers to devices, methods, and
concepts in terms of specific examples. However, the invention
and aspects thereof may have applications to a variety of
types of devices and systems. It is therefore intended that
the invention not be limited except as provided in the
attached claims. It is well known in the art that logic
systems and methods such as described herein can include a
variety of different components and different functions in a
modular fashion. Different embodiments of the invention can
include different mixtures of elements and functions and may
group various functions as parts of various elements.

The functional aspects of the invention that are
implemented on a computer, as will be understood from the
teachings herein, may be implemented or accomplished using any
appropriate implementation environment or programming
language, such as c, C++, Cobol, Pascal, Java, Java-script,
assembly or machine code programming, custom logic circuits,
etc. All references, publications, patents, and patent
applications cited herein are hereby incorporated by reference

in their entirety for all purposes.

20

25

30

35

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example method according to
specific embodiments of the invention.

r1G. 2 illustrates an alternative method in some
details according to specific embodiments of the invention.

FIG. 3 illustrates an example system deployment method
details according to specific embodiments of the invention.

FIG. 4 illustrates an example programn code fragment
implementation according to specific embodiments of the
present invention.

FIC. S illustrates an example program code fragment
implementation according to specific embodiments of the
present invention.

FIG. 6 illustrates an example method according to
specific embodiments of the invention.

FIG. 7 illustrates an example architecture oi an
example information handling system relevant to various
specific embodiments of the present invention.

FIG. 8 is a block diagram showing a representative
example logic device in which various aspects of the present

invention may be embodied.

In one embodiment, the invention can be understood as
a computer implemented method that converts binary integer
values into decimal values by using a divisor smaller than the
original value, but that satisfies the formula (10~N)~P, where
N is an integer greater than 1, and P is an integer greater
than or equal to 1. N, as further described below, according
to specific embodiments of the present invention, is a number
preselected or predetermined and represents the number of
decimal digits that will be determined during each iteration

of the routine. P is determined when a numerical value 1is

15

20

25

30

35

40

being decoded and is selected as the maximum number that
provides a (10”N)”P value less than the absolute wvalue of the
original number. While 10 is used as an example base value
throughout this discussion other embodiments can use a
different base value. The equation above can be understood as
(base”N) ~pP.

A specific example of a general method, determining
two digit character codes (N=2) after each division, using
63179 is provided below:

1. Determine the largest (10”N)“P less than the number
= 10000.

2. 63179 / 10000, has a whole number result 06 (lookup
this numerical value) ¢ 30h 36h.

3. Multiply the whole number result (06) and the divisor
(10000) = 6000.

4. Subtract that number from the original number (63179
- 60000) = 3179.

5. Repeat steps 1 through 4 until all digits are
decoded, as follows:

6. Determine the largest (10”N)“*P less than the number
(or set P=P-1) = 100.

7. 3179 / 100 has a whole number result 31 ¢ 33h 31h.

8. Subtract that number from the original number (3179 -

3100 = 79).

9. STOP when the subtraction result is less than (10”N)
(or when P=1) and lookup the final result: 790 37h
3%h.

10. Return the resulting character codes (deleting
leading zeros at some point if desired): 30h 36h 33h
31h 37h 39%h.
Alternatively, this method can be performed or

expressed as follows, with N=2:

1. Set n = 63179.

2 n modulo (10”N) = 79 0 37h 3%h.

3. set n=n/ 100 = 631.

4. Repeat steps 2 and 3 until n < (10~N) .
5

6

Lookup final result: 60 36h.
Concatenate the resulting character codes: 36h 33h
31h 37h 3%h.

FIG. 1 illustrates an example method according to

specific embodiments of the invention. FIG. 2 illustrates an
alternative method in some details according to specific
embodiments of the invention. As shown in the figures, the

invention can be embodied in a logical method suitable for

15

20

10

implementation by any appropriately configured information
handling system, including general purpose computing systems
and information handling displays and subsystems.

This aspect of the invention has described in terms of
general embodiments that are believed to be a full and
complete description sufficient to allow a practitioner in the
art to make and use the invention. What follows are
descriptions of example systems and methods that are involved
with or may embody various aspects of the present invention.
The following discussion may also include independent

innovative embodiments of the invention.

Look-up Tables

One method or mechanism for performing the above
described steps uses an appropriately sized look-up tabie
associating all numerical wvalues less than 10N with the

appropriate character codes (generally N codes in each table

entry). An example table can have the form:

Binary Encoded Character Codes (in
Number this example, ASCII
(Index Value) codes expressed in
Decimal | Binary hexadecimal)
Notatio | Notation

n

0 000000 30h 30h

1 000001 30h 31h
_g 000010 30n 32h]
*

16 010000 31h 36h

17 010001 31h 37h

18 010010 31h 38h

*

79 1001111 37h 3%h

80 1010000 38h 30h

81 1010001 38h 31lh

* *

98 1100010 39%h 38h

99 1100011 39h 35h

TABLE 1

Note that the uncompressed size of this table is 100
locations times two bytes or 200 bytes. More generally, the
uncompressed size of a base-10 table as discussed above is

N* (10°N) . Thus, using a similar method, three of five

10

15

20

25

30

11

character codes could be retrieved for each table lookup,
requiring tables of 3000 (approximately 3K) or 500000
(approximately . 5M) bytes respectively. A single

representative entry for an N=3 table is:

Binary Encoded Character Codes (in
Number this example, ASCII
(Index Value) codes expressed in
Decimal | Binary hexadecimal)
174 10101110 31lh 37h 34h

TABLE 2

Note that in each of these example tables, it is
indicated that the tables are one-dimensional tables the
numerical value being decoded used as the index for the table
entries. While this represents one embodiment of the present
invention, the invention can use other table formats, where
desired, including table formats wherein the index 1is not
simply the numerical value being decoded. When decoding
larger numbers for display, large tables dramatically reduce
the number of binary mathematical Steps required. It will be
understood from the teachings herein that such tables will
have a large amount of redundancy and thus may be compressed
in specific embodiments according to various compression
methods. However, in a common embodiment, the present
invention is used to speed up conversion of numerical values
to display codes and thus uses an uncompressed look-up table.

FIG. 3 illustrates an example system deployment method
details according to specific embodiments of the invention.
As shown in the figure, in this method a table is allocated in
memory according to available or desired memory size for the
table, and the table is then used to decode N character codes
of a numerical value.

Negative and Conventional Floating Point Numbers
According to specific embodiments, the present invention can

handle negative numbers in various ways according to the
underlying scheme for storing negative numbers. A most
straightforward method for handling negative numbers involves

remembering the sign of the number and converting the number

10

25

30

35

to a positive value before performing a table look-up using
the number. According to further specific embodiments of the
present invention, floating point numbers are decoded by first
converting the floating point number to an integer number
before converting to display codes.

Separately Stored Floating Point Numbers
According to further specific empodiments of the

present invention, display code conversion can be beneficially
used with the innovative floating point encoding scheme as
described below. In such a decoding scheme, conversion to
display codes 1is simplified Dbecause every stored floating
point number 1is stored separately, with separate storage areas
for the integer part and fractional part of the number. Wwith
this scheme, the integer portion and the fractional portion
can separately be converted to display codes as described
above.

As a very specific example of a method according to
specific embodiments of the present invention for converting
and IP and FP separately to character codes, example C++ code

listings are provided in FIG. 4 and FIG. 5.

MATHEMATICAL AND LOGICAL OPERATIONS

In one embodiment, the invention can be understood as

a computer-implemented method for storing and performing
operations on numerical values. FIG. 6 illustrates an example
method according to specific embodiments of the invention.

According to specific embodiments, the present
invention provides specific routines for various math
operators, including optional shortcuts according to specific
embodiments. As used herein, a notation for the portions of a
real number A is A.IP and A.FP. The results of a function
F(A,B) is noted as S.IP and S.FP or S.IP.FP

Addition Operations
pddition of two numbers, for example A and B, proceeds

generally as follows. First, if one number is negative, but

not another, then Jjump to a subtraction operation, as

10

20

25

30

35

13

described below. Then, if both of the numbers are negative,
store that fact, convert the numbers to positive (i.e. use the
absolute values of the numbers) and perform the addition as
follows:

s.fp = a.fp + b.fp;

carry = 0

if s.fp > max.fp then

carry = 1

s.fp = s.fp - max.fp - 1 jmax.fp is a scaled

number e.g. 99999999 and “1” is unscaled

endif

S.1p = a.ip + b.ip + carry

if both a and b were negative then

S.ip = - s.ip
s.fp = - s.fp
return

Subtraction Operations
Subtraction according to specific embodiments of the

invention is defined as combining two numbers having different
signs. With the positive number set to A and the negative
number set to B, the absolute value of B is subsequently used
for all compare operations and the procedure performs as
indicated below. According to further specific embodiments of
the invention, a number of shortcuts can be provided as
indicated.

; S=A~B

;shortcuts according to specific embodiments

if a = 0.0

s.fp = -b.fp

s.ip = -b.ip

return

if b = 0.0

s.fp = a.fp

s.ip = a.ip

return

10

20

25

30

14

;main procedure

if (b.ip < a.ip) and (a.fp < b.fp) then

a.ip = a.ip-1; reverse carry

a.fp = a.fp + max.fp + 1 ;max.fp is a scaled
number e.g. 99999999 and “1” is unscaled

endif

if (a.ip < b.ip) and (b.fp < a.fp) then

b.ip = b.1p-1; reverse carry

b.fp = b.fp + max.fp + 1;

endif
s.fp = a.fp - b.fp
s.ip = a.ip - b.ip

Multiplication And Division Operations
Multiplication and division, according to specific

embodiments of the present invention, are handled Dby
converting the operands 1nto scaled numbers, performing the
desired function F() on the scaled numbers using scaled
arithmetic, and then converting the scaled result back 1into
the N.ip.fp format. According to specific embodiments of the
present invention, the scale factor used for the scaled number
can be the same scale factor used for the FP portion of the
R.ip.fp number, which simplifies a number of conversion
operations. (According to alternate embodiments of the
invention, a different scale facter can be used, thus
requiring a scaling of both the IP and FP parts to compute an
Ascaled number.)

The procedure generally works as follows (with the
scale factor Of Sscaied, Ascaleq, and Bscaes 1S set as the same scale
factor used in the FP portions r.ip.fp number.

. Bucaleq = A.IP*10°21e-12€57 &+ A FP
. Bucateq = B.IP*10Q°1e-f3¢98 & BUFP

Oscale_factor)

1
2
3. Secatea = F(Bscales , Bscalea)
4. S.IP = integer (Sscaree/1
5

. S.FP =Sscaled ~ S‘Ip*loscale”factor‘

10

15

20

25

30

35

15

According to specific embodiments of the present
invention, a number of shortcuts can be used to improve speed.
These shortcuts in fact will significantly speed up many real-
world applications.

Rounding according to specific embodiments of the
invention 1is very easy. When performing rounding, if the
value of FP 1s greater than ¥ of 1Qsealefactor oot 1p = TD + 1.
Otherwise, do not change IP. Set FP to zero.

As discussed above, this aspect of the invention is
beneficially used with the method for converting numerical
data to display codes as described above because with IP and
FP stored separately, the integer portion and the fractional

portion can separately be converted to display codes.OQther
Implementation Details

It will be understood from the teachings provided
herein, that a method according to the present invention can
be variously implemented in computing systems. In one
implementation, computer-understandable logic instructions
related to the present invention can be included in an
application program and/or can be invoked by an application
program during initiation and/or execution. Note that
according to further specific embodiments of the present
invention, a numerical encoding scheme or display scheme as
described herein can be implemented in an operating system
(OS) of a computing device and thereby be made available to
any application programs running in the operating system.
Thus, according to specific implementations of the present
invention, an O0S can create a data template and operator
routines during OS initiation. It will further be understood
from the teachings herein, that logic routines according to
the present invention can be included in a logic instruction
compiler or logic instruction interpreter and/or include or
other files associated with such a programming environment.

Embodiments in an Information Processing Architecture
As discussed herein, according to specific embodiments, the

present invention can be embodied in various kinds of

10

15

20

25

30

35

16

information handling system which can include personal digital
assistants (PDAs), cellular telephones, television set top
systems or cable systems interfaces, toys, home appliances
with information handling abilities, scientific and diagnostic
systems, and machinery or industrial systems with information
handling abilities. Typically, information handling in such
systems is performed Dby binary logic circuits. According to
further specific embodiments, the present invention can be
embodied in either an information handling system oOr circuitry
or components of an information handling system performing
according to the description herein.

According to further specific embodiments, the
invention can be embodied as one or more sets of instructions
and/or data that are used to program or guide Or affect the
operation of an information handling system. As is known in
the art, these sets of instructions and/or data can be
distributed to users stored or recorded on a storage medium,
such as a disk, diskette, hard-drive, CD-ROM, tape, ROM,
EPROM, ASIC, PLD, etc., and according to specific embodiments,
the invention can be embodied as such a medium storing data
and/or instructions that when loaded into an appropriately
configured information system will cause the system to
pérforming according to the description herein.

As is further known in the art, sets of instructions
and/or data can be transmitted to an information handling
system over a communication medium (such as the internet, a
local area network, a wireless network, a telephone line, &
cable-television system, etc.) from a remote data holding
location (such as a server) and thereby when loaded into an
appropriately configured information system will cause the
system to performing according to the description herein.

FIG. 7 illustrates an example architecture of an
example information handling system relevant to various
specific embodiments of the present invention. As will be

understood to those of skill in the art and from the teachings

20

25

30

35

17

provided herein, the general organization of a system 800 as
shown in FIG. 7 1is representative of various information
systems ranging from computer-on-a-chip type c¢ircuits in a
household appliance or toy to super computer systems and
distributed systems. In some information handling systems,
the wvarious components shown in FIG. 7 may be separable
computer chips or separable circuit areas on a computer chip,
whereas in other information handling systems, some or all of
the functions shown in FIG. 7 will be performed by shared
circuitry or implemented in software. Some systems will not
have all of the components shown in FIG. 7, and other systems
will have additional core components. FIG. 7 does not
represent the only device architecture on which the present
invention can be performed and it will be understood that the
present invention 1is applicable to a variety of types of
information processing devices.

An information handling device typically includes one
Or more processors, such as 801. Processor 801 1is generally
characterized as being able to perform different logic
operations on data, where logic operations are selected or
specified by one or more instructions. In the example of a
personal computer system or workstation, processor 801 can
represent any of the number of well-known microprocessors
manufactured by companies such as 1Intel, AMD, Zilog, and
Motorola. Processor 801 can also represent a subset of
circuitry configured as a processor in an integrated circuit
such as an ASIC or PLD.

A processor 801 can at times work in cooperation with
other information handling circuits (which may or may not also
be processors) that may have special-purpose abilities. These
circuits may be external from the processor or internal with
the processor. As an example, FIG. 7 shows a floating point
unit (FPU) 802 and a 3D graphics module 804. A processor 801
may also have a number of structures to facilitate its

operation, such as, for example, a set of internal registers

10

15

20

25

30

35

18

806 and/or an arithmetic logic wunit (ALU) 808. In some
processors, these structures are internal to the processor
circuitry.

In most information handling systems, various modules
communicate with other modules over one or more communication
paths or buses. FIG. 7 shows a representative system bus 810
and a separate auxiliary bus 812. The illustrated buses can
represent signal channels on an integrated circuilt,
communication connections on a printed circuit board,
connection between two or more printed circuit board or a
back-plane, or any other channels used by the modules to
exchange data or control signals.

In various information processing systems, separable
modules can include such things as working memory 820, one or
more storage systems 830, one or more input interfaces 840,
one or more output interfaces 830. Some information systems
also include a communication interface (such as a network
interface or a modem) 860 for communicating with other
computer systems, such as over a network. These modules are
shown in FIG. 7 as broadly representative of aspects of a
computing system.

In typical information processing systems, working
memory 820 is some type of random access memory (RAM) that can
be quickly accessed by processor 801 and possibly by other
processors. In general purpose computers and other computer
systems, during operation, such a working memory contains the
data and instructions for one or more processes 822, including
operating system processes. Each process generally represents
an executing program or program thread. Working memory 820
can also include one or more data structures 824, which may be
associated with particular processes or may be shared or
system-wide. These data structures can include data tables or
any other data structures that can be represented in digital
memory. Therefore, in many general purpose information

processing systems (such as personal computers) working memory

10

15

20

25

30

35

19

820 will be understood in the art as containing resident parts
of an operating system and/or of various application systems
and/or data files and/or other logic modules or digital data.

As is familiar to those skilled in the art, an
information processing system that is a general purpose type
computer system further generally includes an operating system
and at least one application program. The operating system is
a set of logic instructions that control the computer .system's
operation and the allocation of fesources. The application
program 1is a set of logic instructions (possibly also
including data) to perform tasks desired by the user. During
operation, both may be resident in a memory system such as
820.

Storage 830 is illustrated to represent other, usually
more long-term (also called non-volatile) data storage. In
general purpose computers, this typically includes one or more
disk-type systems (such as hard-disk drives, floppy drives,
CD-ROMs, etc.) and can also include a variety of other storage
devices. Storage 830 can be used to supplement working memory
820 through a variety of known paging techniques. Storage 830

can also include remote storage systems available over a

network. In hand-held devices especially, storage 830 may
consist sole of read-only-memory (ROM) used to store
executable components of the system. Depending on particular

implementations, 830 can represent either storage systems that
are part of computer system 800 or an interface to external
storage systems.

Input interfaces 840 can represent circuits, devices,
and/logic or instructions that can provide for video, audio,
keyboard, pointer, other input to a computer system. Typical
input devices include such things as a keyboard or keypad,
touch-screen, mouse, microphone, camera, environmental sensors
(e.g. a thermostat or a motion detection), etc. Input
interfaces 840, along with possibly other modules in the

computer system, handle tasks involved in translating external

10

15

20

25

30

35

20

data (such as key strokes) to the appropriate encoded data
(typically binary data). These translation tasks can involve
multiple steps, performed 1in various parts of a computer
system. Depending on particular implementations, 840 can
represent input devices and associated interface logic or only
interface logic to particular input devices.

Output interfaces 850 represents circuits, devices,
and/or instructions that can provide for video, audio, print
or other output from a computer system and can also represent
actual output devices. Typical output devices include a
display screen, a printer, a speaker, etc. Output can also be
in the form of control signals to an external machine such as
an engine, manufacturing robot or other computer-controlled
device. Output interfaces 850, along with possibly other
modules in the computer system, handle tasks involved in
translating computer encoded data (typically binary data) to
the appropriate form for output. These translation tasks can
involve multiple steps, performed 1in various parts of a
computer system. A display of numerical data, for example,
typically requires a conversion from binary encoded numerical
values to a series of character codes. These character codes
are then further translated by display driver circuits to
produce the electrical signals needed to excite various pixels
on a CRT or LCD type display.

Communication interfaces 860 represents circuits,
devices, and/or instructions that allow a computer system to
communicate with other information handling systems, such as
over a telephone dial-up connection or over the world-wide
internet.

In accordance with the practices of persons skilled in
the art of computer programming, the invention according to
specific embodiments is described herein with reference to
symbolic representations of operations that are performed by
an information processing system. Such operations are

sometimes referred to as being computer-executed or pProcessor-

10

15

20

25

30

35

21

executed. It will be appreciated that the operations that are
symbolically represented include the manipulation by a CPU or
other logic circuitry of electrical signals representing data
bits and the maintenance of data bits at memory locations in a
memory system, as well as other processing of signals. The
memory locations where data bits are maintained are physical
locations that have particular electrical, magnetic, optical,
or organic properties corresponding to the data bits.

Thus, it will be understood from the teachings herein
that the present invention can, according to specific
embodiments, be embodied into an information handling system
and/or into different separable components of an information
handling system.

Embodiments in a Programmed System
FIG. 8 1s a block diagram showing a representative

example logic device in which various aspects of the present
invention may be embodied. The invention can be implemented in
hardware and/or software. The invention may be embodied in a
fixed media or transmissible program component containing
logic instructions and/or data that when loaded into an
appropriately configured computing device cause that device to
perform according to the invention. FIG. 8 shows digital
device 700 that may be understood as a logical apparatus that
can read instructions from media 717 and/or network port 719.
Apparatus 700 can thereafter use those instructions to direct
a server or client application as is known in the art and that
further includes the components of the invention. One type of
logical apparatus that may embody the invention is a computer
system as illustrated in 700, containing CPU 707, optional
input devices 709 and 711, disk drives 715 and optional
monitor 705. Fixed media 717 may be used to program such a
system and may represent a disk-type optical or magnetic media
or a memory. The invention may be embodies in whole or in
part as software recorded on this fixed media. Communication
port 719 may also be used to program such a system and may

represent any type of communication connection.

22

The invention also may be embodied in whole or in part
within the circuitry of an application specific integrated
circuit (ASIC) or a programmable logic device (PLD). In such
a case, the invention may be embodied 1in a computer
understandable descriptor language which may be used to create
an ASIC or PLD that operates as herein described.

The invention has now been explained with reference to
specific embodiments. Other embodiments will be apparent to
those of skill in the art. It is understood that the examples
and embodiments described herein are for illustrative purposes
only and that various modifications or changes in light
thereof will be suggested to persons skilled in the art and
are to be included within the spirit and purview of this
application and scope of the appended claims. All
publications, patents, and patent applications cited herein
are hereby incorporated by reference in their entirety for all

purposes.

15

20

25

30

23

WHAT IS CLAIMED IS:

1. A method of determining character codes for a binary
encoded numerical original wvalue wusing an information
processing apparatus comprising:
a. dividing said original value by a divisor that will
produce a two or more digit integer result;
b. using said two or more digit result to determine two or
more display codes;
determining a secondary original value;
repeating steps a through c¢ until said secondary original
value represents less than a predetermined number of
digits; and
e. using a final secondary original value to determine a

final two or more display codes.

2. A method according to claim 1 wherein said integer
result is an integer remainder and said determining comprises
dividing said original number by a base raised to a power

indicating the number of digits decoded.

3. A method according to claim 1 wherein said integer
result is an integer quotient and said determining comprises:

subtracting said integer result multiplied by said divisor

from said original value to get a secondary original

value.

4, A method according to claim 1 wherein said divisor is

an integer exponential power of 10 greater than 10.

5. A method according to claim 1 wherein said divisor is

an integer exponential power of 10 greater than 1000.

6. A method according to claim 1 wherein said using
comprises:
performing a table lookup using said two or more digit

result as an index to a table.

10

15

20

25

30

24

7. A method of determining character codes for a binary
encoded numerical original value using an information
processing apparatus compfising:

a. dividing said original value by a divisor to produce a
two or more digit remainder integer result;

b. using said two or more digit result to determine two or
more display codes;

c. subtracting said integer result multiplied by said
divisor from said original value to get a secondary
original wvalue;

d. repeating steps a through ¢ until said secondary original
value is less than a predetermined number of digits; and

e. using a final secondary original value to determine a

final two or more display codes.

8. A method according to claim 7 wherein said divisor is

an integer exponential power of 10 greater than 10.

9. A method according to claim 7 wherein said divisor 1s

an integer exponential power of 10 greater than 1000.

10. A method according to claim 7 wherein said wusing
comprises:
performing a table lookup using said two or more digit

result as an index to a table.

11. An apparatus in a computing system converting a binary
encoded number to a set of display codes comprising:
a table having a plurality of entries, each entry providing
two or more display codes for two or more digits; and
a processor able to divide a binary encoded number by a
divisor and use results therefrom to look-up twoc or more

display codes in said static table.

12. An apparatus according to claim 11 further wherein

said result is used as an index to said table.

10

15

20

25

30

25

13. An apparatus according to c¢laim 11 further wherein

said result is a remainder result of said division.

14. An apparatus according to claim 11 further wherein

said result is an integer quotient result of said division.

15, An apparatus according to claim 11 wherein each
indexed entry in said table has a number N of digit display
codes and wherein said table has 10°N indexed entries and

wherein N is an integer greater than one.

16. A method allowing an information handling system to
more quickly execute programs requiring conversion of binary
encoded numbers to character codes comprising:
constructing a lookup table in a memory of said information
handling system wherein said lookup table is indexed by a
value and wherein entries in said lookup table represent
two or more display codes corresponding to said value; and
establishing a logic routine that accepts a binary encoded
numerical value and uses said lookup table to determine

display codes for said binary encoded numerical value.

17. A method according to c¢laim 16 wherein said
constructing comprises:
constructing a static lookup table in an operating system

memory space of said information handling system.

18. A method according to claim 16 further comprising:
selecting an integer greater than one indicating the number

of digit display codes in each entry in a look-up table.

19. A method of speeding up operation of a computer system
comprising:
establishing a logic route for displaying binary encoded
numbers wherein said logic routine determines two or more
display code representations of a binary encoded number at

each iteration through a conversion routine.

15

20

25

30

26

20. A method of storing a numerical value in an
information processing apparatus comprising:

a. reserving a first storage area and storing an integer
portion of said numerical value in said first storage
area;

b. reserving a second storage area and storing a fractional
portion of said numerical value in said second storage
area;

c. wherein said first storage area and said second storage
area are non-contiguous in that there is not automatic
carry or bit shifting between said first and second
storage area and wherein an integer portion of a decimal
value can be fully determined by reference to an integer
portion of said stored value and wherein a fractional
portion of a decimal value can be fully determined by

reference to a fractional portion of said stored value.

21. A method according to claim 20 wherein said integer
portion is stored in said first storage area according to a

standard binary integer format.

22. A method according to claim 21 wherein said integer
portion is stored in said first storage area as a signed 2's

complement binary integer.

23. A method according to claim 20 wherein said fractional
portion is stored in said second storage area according to a

standard binary integer format.

24. A method according to claim 23 wherein said fractional
portion is multiplied by a scale value and then stored in said
second storage area according to a standard binary integer

format.

25. A method according to claim 24 wherein said scale

value is an integer power of 10.

20

25

27

26. A method according to claim 23 wherein said fractional
portion is stored in said first storage area as a signed 2's

complement binary integer.

27. A method according to claim 20 wherein said integer
portion and said fractional portion are each stored with a

separate sign bit.

28. A method according to claim 20 further comprising
determining character codes for a numerical stored as an
integer portion and an fractional portion comprising
separately for said integer portion and said fractional

portion determining said character codes.

29. An apparatus 1in a computing system for handling
floating point numbers comprising logic modules to perform the

method as recited in claim 20.

30. A method allowing an information handling system to
handle a range of floating-point numbers comprising:
establishing a IP.FP data template in a memory of said
information handling system wherein said data template
provides non-contiguous storage areas for the decimal part
and fractional part of numerical values;
establishing a plurality of logic routines for performing
numerical and logic operations on numerical values stored

in IP.FP format.

31. A method of speeding up operation of a computer system
comprising operating said system in accordance with claim 30

when handling floating point numbers.

S5 L 9,

3 "
&5 ¢ P
47_ 9 \ oy
Q«p C_e .@6 INVESTOR IN PEOPLE
/Olf T e 'y\lt\oﬁ'
Application No: GB 0205775.0 Examiner: Michael Powell
Waters
Claims searched: 1to010 Date of search: 16 October 2002

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.T): G4A (AAF, AAU, ACC, ACX)
Int C1 (Ed.7): GO6F (5/00, 5/01, 17/21, 17/22) HO3M

Other: ONLINE: WPI, EPODOC, PAJ, TXTE, INSPEC, ELSEVIER, IBM TDB, IEEE
Xplore, Internet

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims

US 6396921 B1 (LONGSTER) see figures 3 to 5
JP 050289846 A (MATSUSHITA) see WPI and PAJ abstracts
A JP 020034037 A (HITACHI) see WPI and PAJ abstracts

X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date but before the
with one or more other documents of same category. filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

