
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0252401 A1

Charisius et al. (43) Pub. Date:

US 20110252401A1

Oct. 13, 2011

(54)

(75)

(73)

(21)

(22)

(60)

SUPPORTING AND DEPLOYING
DISTRIBUTED COMPUTING COMPONENTS

Inventors: Dietrich Charisius, Stuttgart (DE);
Alexander Aptus, Esslingen (DE)

Assignee: Borland Software Corporation,
Rockville, MD (US)

Appl. No.: 13/087,245

Filed: Apr. 14, 2011

Related U.S. Application Data

Continuation of application No. 12/876,108, filed on
Sep. 4, 2010, which is a continuation of application
No. 1 1/257,724, filed on Oct. 25, 2005, now Pat. No.
7.793.256, which is a division of application No.
09/839,646, filed on Apr. 20, 2001, now Pat. No. 7,051,
316, which is a continuation-in-part of application No.
09/680,063, filed on Oct. 4, 2000, now Pat. No. 6,851,
107.

1

Y n

(60)

(51)

(52)

(57)

Provisional application No. 60/199,046, filed on Apr.
21, 2000, provisional application No. 60/157,826,
filed on Oct. 5, 1999.

Publication Classification

Int. C.
G06F 9/44 (2006.01)

U.S. Cl. .. 717/110

ABSTRACT

Methods and systems consistent with the present invention
provide an improved software development tool that gener
ates code corresponding to a distributed computing compo
nent, and Verifies and corrects compliance of the code. In
some embodiments, the improved software development tool
verifies compliance of the code with a specification for the
distributed computing component, and corrects any non
compliant portions of the code, using methods and systems
consistent with the present invention.

raisiest
Meta Modei

- - - - - - - - - - - -

- incremental

w is . . . we w

--

Code Editor

-28

wr-are - - - - - - -

V

Patent Application Publication Oct. 13, 2011 Sheet 1 of 56 US 2011/0252401 A1

Reverse --

Engineering Code /
Module

F.G. 1

(Prior Art)

Patent Application Publication Oct. 13, 2011 Sheet 2 of 56 US 2011/0252401 A1

-- incremental -1
Code Editor

-28

FG. 2

Patent Application Publication Oct. 13, 2011 Sheet 3 of 56 US 2011/0252401 A1

4.

404--.
public class Bank-1

408---. 1 y
public string Name;-- public string Assets;-1

44 - ---.

language
Java

Patent Application Publication Oct. 13, 2011 Sheet 4 of 56 US 2011/0252401 A1

602
-4- - - - 694

61 Memory Secondary -
~~...ca.g. Storage or

Software 512
levelopert ---

200 co
X Transient Y MetaModel

i

F.G. 6

Patent Application Publication Oct. 13, 2011 Sheet 5 of 56 US 2011/0252401 A1

US 2011/0252401 A1 Oct. 13, 2011 Sheet 6 of 56 Patent Application Publication

US 2011/0252401 A1

8

r

8
ip

s X s s S.

s
& SS s

%%****

Oct. 13, 2011 Sheet 7 of 56 Patent Application Publication

US 2011/0252401 A1

w

r

as

N

t
'a'

r

r

s

Oct. 13, 2011 Sheet 8 of 56

\8

(pav vo […]

Patent Application Publication

Patent Application Publication

- ^ Begin

Si -
N - - Existing Y.
S.

language.

of current
larguage

906.

code
Parse SQirce

908--- N
Create daia
Strict:e

9Q ---
> \ Receive

ewest
\

Obtain testspiate
8

s

N
E. Y.

Oct. 13, 2011 Sheet 9 of 56 US 2011/0252401 A1

- \
- Event Y. Y m
N close file - N

'

38 A
w

pdate views

Ciose fie

-- \ wo
t

--

FG. 9

Patent Application Publication Oct. 13, 2011 Sheet 10 of 56 US 2011/0252401 A1

Select fie

- Y. /
/
N. Y. ^ < is fite new?

N (8
Y. ^ N X. -

\
N

O)4
- - N

- Has file N.
N. been ^
Nes 1010 g /

-- 006 brim-www.wormwww.row a wriww.www.wl
- N /

N
/ Has file been NY
& deleted? -
\ ^ 2
\ ^
Y. - - -

N Delete
symbol -->

i from TMM

F.G. 1 OA

Patent Application Publication Oct. 13, 2011 Sheet 11 of 56 US 2011/0252401 A1

O4.

- N f
/ N /

/ More fles? > -
/

N.

N

obsolete Y
symbols in -

N TMM? /
NU

elete
obsolete
symbols
from TMM

' FIG. 10B

Patent Application Publication Oct. 13, 2011 Sheet 12 of 56

1100
--- ^ ---

identify current
ianguage

1102

Y --- Y an Y Y

--avala
~

ar

Obtain template
for current
language

4

s
s

s

file in project
directory

1106

mim -/
Paste empiate

rsrs - is a surr-eers re-s-s-s-a-

US 2011/0252401 A1

US 2011/0252401 A1 Oct. 13, 2011 Sheet 13 of 56 Patent Application Publication

US 2011/0252401 A1 Oct. 13, 2011 Sheet 14 of 56 Patent Application Publication

is a S R is \,. N $$$$.

US 2011/0252401 A1 Oct. 13, 2011 Sheet 15 of 56 Patent Application Publication

v. a C- a * : >

ar
&

&

>

US 2011/0252401 A1 Oct. 13, 2011 Sheet 16 of 56 Patent Application Publication

vosi

~~~~). 

    

  

  

  

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 17 of 56 Patent Application Publication 

y, z091 

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 18 of 56 Patent Application Publication 

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 19 of 56 Patent Application Publication 

}}}}}}} {}{}}} { 

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 20 of 56 Patent Application Publication 

0061 

a ga O M M \, . R G \ 

    

    

    

  

  

  

  

  

  

    

  

  

  

  

  



Patent Application Publication Oct. 13, 2011 Sheet 21 of 56 US 2011/0252401 A1 

F.G. 20 

2000 
24. -a-ra- 11 

Cient Application 
(1st Tier 2012 - 

2O4. EJB object stub 

Software 
development tool 

23 EJB Application Serve 
(2nd fier) 2018 
- 

21 

28 

atabase 
Management System (BMS) 

(3rd Tier) 
2O 

- 

  

  

  

    

  

  

    

  

  

  

    

  



Patent Application Publication Oct. 13, 2011 Sheet 22 of 56 

FG, 2. 

US 2011/0252401 A1 

client Computer 

Client 
Application 

Processor 

Application Server Computer 
222 2 it 8 

Secondary 
E8 Storage 

Application 

EJB 
Cantainer 

aiatase 
Management 

Systern 

2124 
Secondary 
Storage 
fevice 

Processor 

Database Server Coipter 
226 

secondary 
Storage 
8wice 

258 

Processor 

242./ 

  



Patent Application Publication Oct. 13, 2011 Sheet 23 of 56 US 2011/0252401 A1 

Begin FIG. 22A 
- 22O2 

Receive a request to 
generate a type of EJB 

- 224 - 
Generate sorce code for 
the type of EJB requested 

226 

Display graphical representation of the source code for the 
EJB with a separately delineated display area for each 
method type and a separately delineated display area for 

reference types 

- 2208 
Display a symbol with a display area to 

identify the corresponding method type or 
references type 

rural starrerrassurerrarisserrarresursarrarrestra 

Receive a request to add a code element to 
code corresponding to the E.B. 

Add requested code element to as 
EJB implementation class 

Modify graphical representation of source 
code corresponding to E.B implementation 

class 

    

  

  



Patent Application Publication 

N 

Add business 

2228 

Modify graphical 
representation of 

code corresponding 
to EJB rerote 

interface 

1 Requested Y N 
Y code eiere it )- 

hod Y Ny 

Add method signature 
method signature to corresponding to code 

EJB remote element to EB hote 
interface interface 

Modify graphical 
representation of code 
corresponding to EB 

frare interface 

Oct. 13, 2011 Sheet 24 of 56 

228 
- 

- 

2226 

is key class 

US 2011/0252401A1 

F.G. 22B 

- s(2224 Requested coden Y 
lement is prima 8 

ey field 
t 

- 
Add primary key 

fied to E8 

- - - -(1 ...a Modify graphical 
tepfeSentation of code 
corresponding to 38 

primary class 
--wannawarrrrrrrrra------------a 

  

  

    

  

  

    

  

  

  



Patent Application Publication Oct. 13, 2011 Sheet 25 of 56 US 2011/0252401 A1 

s 

8 

& 
8. : 

S 

8 
: : 

s 8 
s 

s 8 S. 
S E. 
8 8 s 

E. 

s 

f 

  

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 26 of 56 

?.--~~~~ ~~~~ ~~~~ 

Patent Application Publication 

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 27 of 56 Patent Application Publication 

#:;&############## 
  

  

  

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 28 of 56 Patent Application Publication 

it is is a Es K. N. & R, , , , , , 

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 29 of 56 Patent Application Publication 

i8 K. N. & B, E is “ . . 

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 30 of 56 

syster 

&#########4 

- d. E. E. S. S. N. S. R. E. is it 

Patent Application Publication 

  

  

  

  

    

  

  

  

  

  

  

  

  

    

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 31 of 56 Patent Application Publication 

?? 

  

    

    

  

  

  

  

  

  

    

  

  

          

    

    

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 32 of 56 Patent Application Publication 

a ti, E. E. F. K. N. & R. E. g. v. 

000€, 

  

    

  

  

  

  

  

  

  

  

      

  

  

  

  

  

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 33 of 56 Patent Application Publication 

?ezºnas - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -†01?, 

<~~~~ 
¿????? 

      

    

    

  

  

  

  

  

  

  

  

  





Patent Application Publication 

3400 
"Societier 3, ... is tied tortists: 
is 

i.e.-- 
eiaiw:3iejoic: 

icisyrianaysayisis. Entity tiki. +sit:Passwafervoic 
weiser igwe wo: 
+j:Sassy.gi 
detacticist 

3. 

s 

interface 
- - - -s taigieae: Entity K 

.................... +étis (ie:stei):stic: 
teb&eate pararr; 
te:t Post&reate(ssfs 

Rigi's 
testivity in 3rykeyskitty P} 
+exfissiethoct):Sessity PK 

s 
iris W. 

estig. 
See risis refStrin 

Oct. 13, 2011 Sheet 35 of 56 

it...iisi SSSESh.x:38. Scissi.gists.:8...iisg. S 
is is x , is as Siasis is Kr Y S is: 

- at 

US 2011/0252401 A1 

siniypics 
+hasticodes: 
seas theftistics:ea?: 

Ex: 

reactivate } joid isitassivatist:ysis 
is: 

teStofavois exact: i: 

i8yfinaykeyssiniyi RK: 
it: Siyi 

*:::: eatg(Estyl: 
+esiastCreate cysic tstreaissaraiyirit 
*:::Rexstrisasiilaia: 

+ersy:Y3yksys.p:Etity: { 
ts; Ritch&stodifiysk 

S. +Eriy RK 
8:3siodsii 
$833ista:8..&ties: bogiea. 

FG. 35 

  

    

  

  

  

  

  

  

  

  

  

  



US 2011/0252401 A1 

:::::: 

Oct. 13, 2011 Sheet 36 of 56 

s y 
S s 

& v. 

S. y 
S 

SS 
S 

8 

Patent Application Publication 

  

  

  

  

  

  

  

  

  

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 37 of 56 Patent Application Publication 

s s s s s s & 
SS &E 

S. 
s 

SS SS SS 
s 

8 

& 
SS s s 

8. 

413 

at E. E. E. E. K. N. & K L E * : : | 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
    

  

  

  

    

  

  

  

  



Patent Application Publication Oct. 13, 2011 Sheet 38 of 56 US 2011/0252401 A1 

FIG. 38A 

38) 

Receive indication of JB 
----------------------------------------- 3804 

Receive a request to deploy 
the EB 

386 
Receive indication of EJB 
target application server 

-380 
Receive operation node 

38.2 
Receive access information to start 
EB target application server 

Start target application 
Seyer 

3816 

Receive port to listen 

  



Patent Application Publication Oct. 13, 2011 Sheet 39 of 56 US 2011/0252401A1 

F.G. 38B 

Receive deployment 
options 

- 3820 

Verify and correct 
EB option checked 

i}oes EB source cade 
comply with EJB 
specification? 

Correct EB source code to 
comply with EJB 

specification 

Refactor EB source code 

3828 

Compile option 
electiced 

  

    

  

  

  

  

    

  

    

  

  

  

  

  



Patent Application Publication Oct. 13, 2011 Sheet 40 of 56 US 2011/0252401 A1 

F.G. 38C 

3832 

Receive access information 
for platform EJB target 

application server 
3834. 

JSP test client 
option checked 

3836 N 
Receive location to 

store SP files 

3838 

Receive aetwork address 
for browsing files 3S 

3838 

Receive option to start 
browser on the elieat 
application serves. 

3842 

  

    

  

  

  

    

  



Patent Application Publication Oct. 13, 2011 Sheet 41 of 56 US 2011/0252401 A1 

F.G. 38D 

Generate a 
Deployment 

Descriptor Option: 
N. Checkei 

Retrieve deployment -3845 
infortration for E3 

Generate deployment T 
descriptor file 

Receive 
changes to EJB 

depicyinkert descripts 
fe 

  

  

  

  

  

  

  

  

  

  

  

  



Patent Application Publication Oct. 13, 2011 Sheet 42 of 56 US 2011/0252401 A1 

FIG. 38E 

386) 

Deploy EJB in deployment archive to 
EJB target application server 

3864 
Provide the browser on client with O 

hyperlink to test create method in EJB 

866 

hyperlink to test business method in 
EB 

3888 Provide the browser with an operation 
cal result page to receive a response 
from the invoked business method 

  

  



Patent Application Publication Oct. 13, 2011 Sheet 43 of 56 US 2011/0252401 A1 

FIG.38F 

387) 

3872 
Attach debugger to command port of EB 

target application server 

W . . . . . . . . . . . . . . . . . . . 3874 

Receive identification of main client ciass 

388 
Rian naia client ciass in a debagger 

session 

Run EB in another debugger session 

Ei 

38.78 

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 44 of 56 

a 

Patent Application Publication 

  



Patent Application Publication Oct. 13, 2011 Sheet 45 of 56 US 2011/0252401 A1 

... if f() 
r &rtesis: jawa Sears laxy. 2; xxset 

See:Ete 3:3: Seices SER x 38-ygyf SS is S. & Sisted SE: S: 

Six-assessessessex-axis & SSESSESSESSESSES 8 : 

8 S & 
“38: Sessissie & E32 
"Sists EReferen: Britisfiressor' 
EEsrat AS & 3 E&SyA&sess." 

388x8te Septcymers: Escript: 

& Opéis X88. Es:$rsy seterate:SE 

S: 383 CESS 

e Sisy 

8 fies isn's icides bese sast 

Cié3rters initief atterisists 

Riis 

scritis S.F. Si 

Yi is 88s: cit is ess is is isfy Siès after Sekiye Cies: the ski Sys: 

FG. 4 

  

  



Patent Application Publication Oct. 13, 2011 Sheet 46 of 56 US 2011/0252401 A1 

- 4200 

R&is piecess Jit is .8FS 

FG. 43 

-4400 4402 
p" so st" go. - Ro deployed, faied to depicy 

gig. 4. S. & 8 3: Ki> <AC. At ACis initicizei. 
set a 4: 8 2000; Ki > (ZACX 2AC packages stored in local directory ex 

cits 
3 - S 4Q 28 2000: <i> <ister read> listening or port: 7031 

KRT Performance acks NAFIVE: created toCornpietion Port successfuiy, of ort: Ox{C} 
CEO. i. 
It tec 14 15:48:28 EST 2000: <i> <Web.ogicServer Web.cgic Server starter: 

4404 
FG. 44 

    



Patent Application Publication Oct. 13, 2011 Sheet 47 of 56 US 2011/0252401 A1 

... (5{}} 

Eisferrissawa Beats cispicy seri exper, 

Select the application server platory of depicying yo: E38 for the is: of sigported serves 

Wettogic Application Server S.: 

& You car agtienaty extrips EiStasses aix gsteais a depicying 8i descripta dying this process. 
Car serie servers, year opticay "hot deptoy, 
You can also opt to delets tenpoisy fies afief spicyment. Check tie options you wait below 

irocess opiers 
Acid iiifari&s, tecstairs:ii is ties?aynter. to the preject SearchiCasspath 

- 450: 
& Werify Cossag; .38 soices to complia:ce with Wi.S.S. faxies&rts--- y 

... r &ist6 {Q:rgie casses for $8 Seixiest; iiagra:- 
-- SOS & Gerstate epigynett escripto. v.- 
-x 45) 

& Op&n X\8. Esitor iof the geneater SE 
350 4S2 

rocess S&E wistis 

a tot epicy use Star Wetasic Apiatio Servár 3, " or start the server :3:nasty 

Generate sirispie Siert --- ss. & & 
& Cisa tsing joicies eige statt 

Eear teang aide afte: finish 

FG. 45 
- 4600 

as: 

Step depicyrrent if verification fails 
carrist stres to refly wi: S5. 

SS &ackup directery (if correct sources" is selected terrack 

strewiats 

F.G. 46 

  

  

  



Patent Application Publication 

470) 

Wisticagic Alpitigation Servis is, - Page "go frce: Fropsties" 

Fider $or his tastriciary iss 

Oct. 13, 2011 Sheet 48 of 56 US 2011/0252401 A1 

tefix 
airier Šar the generatesi is is cytes 

...Ek .3 rost cirectify 
Rect kirsciary Eastogi: Sisfy:..., 
S3; sif 8 AR is 

dk,3.3 

sitectory tra tigris: Serviet wisitary serverse wistesssss 

site:vicus -Previous 

- 4800 
Wet:8ogic Appication Server 

Systs: asswo: 

Next - Finish cance help 

FEG 47 

S. Fage "Rustine (Eepsy" 

- X: S-3 

Axis S&ves per 480. 
3888 as: 4808. 

- 4900 
webiogic Appication server 

8:3 

FG, 2.8 

S. t . Rags "Siris Sri cist generatior" 
s 

egg:Exicietary 
St.cirectory for arris Sfies 
88sse J&, Sorrowsing JSF 
Scw rest: atter geyeratio: 

kissyseiser tallic: tri 
ny. Si 

KErevies .Next Y is: Case: 

FG, 49 

  

  

  

  

  



Patent Application Publication Oct. 13, 2011 Sheet 49 of 56 US 2011/0252401 A1 

slidequois 
X:8w aigre'sf'- Sifties : 

sittge:38t&Y 
silockquote:- 

4:iochgrass 
23iv 3:gnis's 8's Creato's sidiya 
stackstates 

ete Nast Faasiete 

s: Eies as 

Sess K:3& Eis: 

FG. 50 

  



Patent Application Publication Oct. 13, 2011 Sheet 50 of 56 US 2011/0252401 A1 

F.G. S. 

508) 
SO 

xx yesises 

< &CTYPE & bar 18.IC - Sur, Microsystems Eric, A/FE Enterpriss 
JavaSears ... if #Ety' 'http:f fiava. Sun rom fi2ee faiteis fait-iari citri' X 

sei triar......... 508 
<eriterprise-beans ~ 52 Sis 5 i (4 
KS&ssia: ------------ S6 
<eit-Rate-8a, iaRear-faik-raise) - 523 
shotte she ilia iiellatioRex thoses. 522 
as exteetect field-K retrote ------------- S. 
sex-ass-tie 3.cx. $88.883 g/ex-c3 assX------------------- S6 
<sessior-type XStatefs.</session-type) 
Kt?ar 33 &tier-typeakotairs&r 4 ft. at Satier---------- 5:28 

types sessions enterprise-heans - S4 
assembly-descriptorx 
Keccritairer-traits acticra 

art attisgar 
<ex-xat:Yielics: eas ?et-tasex 
site tick-Eates a texti-Is& Rex Kaeti (it 

sciety sy 

<eb-narce> Relioisear-fab-anese 
Kaiti:ox-intf-iiotass faethod-rift. x 
<tasetisociratases Kristic-rankees. Big Shoka 

<t esca 
sers site-seilossaic fest-name> 3. 
<rethod-itat f>Recotex fraethod-int f X 
Kite tod-raise-Kyretto-ratex Retinod) 

xtrans-attritoite-NotSupported.<f trans-attributex Kosta is ex 
transaction Y&f assetaisiy-tie scriptor Y-8 six-31 & S{ 

83. 

  

  

  

  

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 51 of 56 

{}{}Z$ ~~~~ 

Patent Application Publication 

  

    

  



Patent Application Publication Oct. 13, 2011 Sheet 52 of 56 US 2011/0252401 A1 

5300 
s: 'teng.: 383 yESS: E. Fath:8;8&r.xx" X Exits e. 

&sji-83 

Eescription { 

&nterprise-beans 
S session 

rescription (r. 
reit-rane () 

Eerste Was 

i&scritier {} is is seasessistics 

5 ife 
Erie 

Firass 
T session-type () 

s as: 

assembly-tiescriptor 

sits ERR's 

sts feate 

& 

setragety 

FG. 54 

  

  

  

    

    

    

    

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  



Patent Application Publication Oct. 13, 2011 Sheet 53 of 56 US 2011/0252401 A1 

yiew favorites acts sis 

c) - (3) f 
FF. Steig risies re S&E 

fix . & As & 
8:33, Sto Refresh Sease: 3 oftes 

Session bean page 
E.B. Class are: Sean heiloSean one; Heiohone Renote: 
eio 

Remote accessibie operations: 
-5604 

Sting retic. - 
Back to Navigation page 

locatiafet 

F.G. S6 

  



Patent Application Publication Oct. 13, 2011 Sheet 54 of 56 US 2011/0252401 A1 

5700 
Resuit helio. Helio.helio() - Microsoft internet Expiorer 

yiew aworites cois eig 

C) (x) (S. & 
"Waid Stop Sefesh $oine Search avoites 

Operation call result page 
.5702 

F.G. S8 

  



Patent Application Publication Oct. 13, 2011 Sheet 55 of 56 US 2011/0252401 A1 

- 5900 
Arguments and parameters X 

Aicais: appet 

ass wi'an, siafiagicieties: 

fogias a guests, 

Wis options' 

Cos' show this iaig again 

F.G. 59 

-6000 
Essies - Eggs 
e Sis: $88: Searc: Seis Seisei gi:S 3s Se: 

& Silastie is {-, }. it sat is Riga 
i 

- 6004 

33: &tississ 
S. . . . is ...W. S., ... ' c SigEssssssssssssssssssssssssssssss: Si set ti: 3S E: 

FG, 60 

  

  

  

  



US 2011/0252401 A1 Oct. 13, 2011 Sheet 56 of 56 Patent Application Publication 

| 9 

%, 

  

  

  

  

  

  

  

  



US 2011/0252401 A1 

SUPPORTING AND DEPLOYING 
DISTRIBUTED COMPUTING COMPONENTS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation of U.S. patent 
application Ser. No. 12/876,108, filed Sep. 4, 2010 (Attorney 
Docket No. BOR-094A1CIPDIVCON1) entitled “Methods 
and Systems for Supporting and Deploying Distributed Com 
puting Components.” which is a continuation of U.S. patent 
application Ser. No. 1 1/257,724, filed Oct. 25, 2005 (Attor 
ney Docket No. BOR-094A1CIPDIV) entitled “Methods and 
Systems for Supporting and Deploying Distributed Comput 
ing Components, now U.S. Pat. No. 7,793.256, which is a 
division of U.S. patent application Ser. No. 09/839,646, filed 
Apr. 20, 2001 (Attorney Docket No. BOR-094A1CIP) 
entitled “Distributed Computing Component System with 
Diagrammatic Graphical Representation of Code with Sepa 
rate Delineated Display Area by Type.” now U.S. Pat. No. 
7,051,316, which is a continuation-in-part of U.S. patent 
application Ser. No. 09/680,063, filed Oct. 4, 2000 (Attorney 
Docket No. BOR-094A1) entitled “Method and System for 
Developing Software now U.S. Pat. No. 6,851,107, which 
claims priority to U.S. Patent Application No. 60/199,046, 
filed Apr. 21, 2000 (Attorney Docket No. BOR-052P) entitled 
“Software Development Tool.” and U.S. Patent Application 
No. 60/157,826, filed Oct. 5, 1999 (Attorney Docket No. 
BOR-094P) entitled “Visual Unified Modeling Language 
Development Tool” all of which are herein incorporated by 
reference for all purposes. This application is related to U.S. 
Pat. No. 6,993,710 (Attorney Docket No. BOR-052), entitled 
“Method and System for Displaying Changes of Source 
Code.” filed on Oct. 4, 2000; U.S. Pat. No. 6,851,105 (Attor 
ney Docket No. BOR-094), entitled “Method and System for 
Generating, Applying, and Defining a Pattern filed on Oct. 
4, 2000; U.S. Pat. No. 6,931,625 (Attorney Docket No. BOR 
015), entitled “Method and System for Collapsing a Graphi 
cal Representation of Related Elements.” filed on Oct. 4, 
2000; U.S. Pat. No. 7,171,646 (Attorney Docket No. BOR 
051CIP2), entitled “Methods and Systems for Generating 
Source Code for Object Oriented Elements.” filed on Apr. 20. 
2001; U.S. Pat. No. 7,810,069 (Attorney Docket No. BOR 
006), entitled “Methods and Systems for Relating Data Struc 
tures and Object Oriented Elements for Distributed Comput 
ing, filed on Apr. 20, 2001; U.S. Pat. No. 6,983,446 
(Attorney Docket No. BOR-049), entitled “Methods and Sys 
tems for Finding Specific Line of Source Code.” filed on Apr. 
20, 2001; U.S. Pat. No. 6,976.243 (Attorney Docket No. 
BOR-057), entitled “Method and System for Developing 
Source Code and Displaying Linked Elements Found Within 
the Source Code.” filed on Apr. 20, 2001; U.S. Pat. No. 7,055, 
131 (Attorney Docket No. BOR-053), entitled “Methods and 
Systems for Animating the Interaction of Objects in an Object 
Oriented Program.” filed on Apr. 20, 2001; U.S. Pat. No. 
6,993,759 (Attorney Docket No. BOR-046), entitled “Dia 
grammatic Control of a Software in a Version Control Sys 
tem.” filed on Apr. 20, 2001; U.S. Pat. No. 7,114,149 (Attor 
ney Docket No. BOR-051CIP1), entitled “Navigation Links 
in Generated Documentation filed on Apr. 20, 2001; U.S. 
Pat. No. 7,055,130 (Attorney Docket No. BOR-047), entitled 
“Methods and Systems for Identifying Dependencies 
Between Object-Oriented Elements.” filed on Apr. 20, 2001; 
and U.S. Pat. No. 7,188.332 (Attorney Docket No. BOR 
051CIP3), entitled “Methods and Systems for Relating a Data 

Oct. 13, 2011 

Definition File and a DataModel for Distributed Computing.” 
filed on Apr. 20, 2001, all of which are incorporated herein by 
reference for all purposes. 

FIELD OF THE INVENTION 

0002 The present invention relates generally to data pro 
cessing systems and, more particularly, to methods and sys 
tems for Supporting and deploying a distributed computing 
component. 

BACKGROUND OF THE INVENTION 

0003 Computer instructions are written in source code. 
Although a skilled programmer can understand Source code 
to determine what the code is designed to accomplish, with 
highly complex Software systems, a graphical representation 
or model of the source code is helpful to organize and visu 
alize the structure and components of the system. Using mod 
els, the complex systems are easily identified, and the struc 
tural and behavioral patterns can be visualized and 
documented. 
0004. The well-known Unified Modeling Language 
(UML) is a general-purpose notational language for visual 
izing, specifying, constructing, and documenting complex 
Software systems. UML is used to model systems ranging 
from business information systems to Web-based distributed 
systems, to real-time embedded systems. UML formalizes 
the notion that real-world objects are best modeled as self 
contained entities that contain both data and functionality. 
UML is more clearly described in the following references, 
which are incorporated herein by reference: (1) Martin 
Fowler, UML Distilled Second Edition Applying the Standard 
Object Modeling Language. Addison-Wesley (1999); (2) 
Booch, Rumbaugh, and Jacobson, The Unified Modeling 
Language User Guide. Addison-Wesley (1998); (3) Peter 
Coad, Jeff DeLuca, and Eric Lefebvre, Java Modeling in 
Color with UML. Enterprise Components and Process, Pren 
tice Hall (1999); and (4) Peter Coad, Mark Mayfield, and 
Jonathan Kern, Java Design. Building Better Apps & Applets 
(2nd Ed.), Prentice Hall (1998). 
0005. As shown in FIG. 1, conventional software devel 
opment tools 100 allow a programmer to view UML 102 
while viewing source code 104. The source code 104 is stored 
in a file, and a reverse engineering module 106 converts the 
source code 104 into a representation of the software project 
in a database or repository 108. The software project com 
prises source code 104 in at least one file which, when com 
piled, forms a sequence of instructions to be run by the data 
processing system. The repository 108 generates the UML 
102. If any changes are made to the UML 102, they are 
automatically reflected in the repository 108, and a code 
generator 110 converts the representation in the repository 
108 into source code 104. Such software development tools 
100, however, do not synchronize the displays of the UML 
102 and the source code 104. Rather, the repository 108 stores 
the representation of the software project while the file stores 
the source code 104. A modification in the UML 102 does not 
appear in the source code 104 unless the code generator 110 
re-generates the source code 104 from the data in the reposi 
tory 108. When this occurs, the portion of the source code 104 
that is not protected from being overwritten is rewritten. 
Similarly, any modifications made to the source code 104 do 
not appear in the UML 102 unless the reverse engineering 
module 106 updates the repository 108. As a result, redundant 



US 2011/0252401 A1 

information is stored in the repository 108 and the source 
code 104. In addition, rather than making incremental 
changes to the source code 104, conventional software devel 
opment tools 100 rewrite the overall source code 104 when 
modifications are made to the UML 102, resulting in wasted 
processing time. This type of manual, large-grained synchro 
nization requires either human intervention, or a “batch' style 
process to try to keep the two views (the UML 102 and the 
Source code 104) in Sync. Unfortunately, this approach, 
adopted by many tools, leads to many undesirable side 
effects; such as desired changes to the source code being 
overwritten by the tool. A further disadvantage with conven 
tional software development tools 100 is that they are 
designed to only work in a single programming language. 
Thus, a tool 100 that is designed for JavaTM programs cannot 
be utilized to develop a program in C++. There is a need in the 
art for a tool that avoids the limitations of these conventional 
software development tools. 
0006 Additionally, conventional software development 
tools have further limitations that increase the time and cost 
for developing and deploying Software to Support distributed 
computing. Distributed computing allows a business system 
to be more accessible to enterprise affiliates Such as Suppliers, 
customers, business partners, or financial lending institu 
tions. A distributed computing component, Such as an Enter 
prise JavaBeanTM (EJB), defines the architecture for develop 
ing distributed business objects so that a remote client 
application run by an enterprise affiliate can access business 
logic managed by an enterprise application server. Business 
logic represents the specific details and information flow of a 
particular industry, such as a reservation system for an airline, 
a just-in-time parts inventory system for a car manufacturer, 
or an online stock trading system for a financial services 
vendor. In general, a conventional three-tier distributed busi 
ness object architecture typically has a presentation first tier, 
a business object middle tier, and a relational database third 
tier. The presentation first tier resides on a remote client 
application and may include a graphical user interface 
defined to communicate with an EJB.. The EJB (or business 
object) resides on and is managed by the enterprise applica 
tion server on the second tier. The business data resides in the 
database (the third tier). 
0007 An EJB, which is typically written in an object 
oriented programming language, has a generic set of 
attributes and methods through which the EJB can commu 
nicate the functionality it Supports to the enterprise applica 
tion server after the EJB is deployed. Thus, an EJB enables 
completely dynamic deployment and loading of an EJB 
object. The attributes of an EJB allow the runtime behavior of 
the EJB to be modified when the EJB is deployed to an 
enterprise application server, without having to change the 
programming code in the EJB. For example, an administrator 
of the enterprise application server is able to change the 
behavior of an EJB by modifying a particular attribute, such 
as a security behavior attribute, to have another value. 
0008 To create and deploy an EJB, a programmer follows 
the conventional development process for an EJB that 
includes: 

0009 (1) using a graphical modeling tool, such as a 
computer-aided software engineering (CASE) tool, to 
model an EJB to be generated: 

0010 (2) using the CASE tool to generate a source code 
framework for the EJB, such as constructs for an EJB 
class; 

Oct. 13, 2011 

0.011 (3) using a text editor to develop the code for the 
EJB, such as attributes and business methods that define 
the behavior of the EJB; 

0012 (4) using an integrated development environment 
tool or software design kit, such as JDKTM, to compile 
the EJB code: 

0013 (5) using a debugger tool suitable for evaluating 
errors in the EJB code: 

0.014 (6) using a text editor or comparable tool to write 
a deployment descriptor, usually in XML, that describes 
the serialization and other properties of the EJB in the 
context of a client application; 

0.015 (7) using a tool provided by an application server 
Vendor to generate a collection or container class. A 
container object or class instance logically, rather than 
physically, encapsulates, tracks, and manages Zero or 
more EJBs that have been deployed to the application 
server. For each EJB that is deployed to or added to a 
container, the container creates a site that it uses to 
manage the component; 

0016 (8) using a deployment packaging tool to package 
the deployment descriptor, and the compiled code for 
the EJB into a deployment package. Such as a specific 
directory or file on the application server; 

0017 (9) using another tool provided by the application 
server vendor to read the deployment package and prop 
erly deploy the EJB on the application server; and 

0.018 (10) repeating the process when runtime errors 
are discovered with the EJB. 

0019. Thus, the conventional development process pre 
sents several problems for a programmer. First, to develop 
and deploy an EJB, the programmer typically performs many 
of the steps manually, such as writing the deployment 
descriptor and porting the EJB between tools. Furthermore, 
the conventional development process dictates that the pro 
grammer learn to use an array of different tools which con 
tributes to a longer learning curve for each programmer that 
slows down the EJB development process. In addition, the 
array of different tools increases the costs to produce the EJB. 
Conventional software development tools do not address 
these problems. 
0020. In addition, when runtime errors are discovered with 
the EJB, the programmer makes manual corrections to the 
EJB code mad deployment descriptor file while repeating the 
entire conventional development process. Thus, by following 
the conventional deployment process, a programmer spends 
additional time debugging, correcting code, and re-deploying 
an EJB to produce an EJB that runs as desired or error free. 
Conventional software development tools lack the capability 
to address these problems. Thus, there is a need in the art for 
a tool that avoids the foregoing limitations of conventional 
software development tools. 

SUMMARY OF THE INVENTION 

0021 Methods and systems consistent with the present 
invention provide an improved software development tool 
that overcomes the limitations of conventional software 
development tools. The improved software development tool 
of the present invention allows a developer to simultaneously 
view a graphical and a textual display of Source code. The 
graphical and textual views are synchronized so that a modi 
fication in one view is automatically reflected in the other 
view. The software development tool is designed for use with 
more than one programming language. 



US 2011/0252401 A1 

0022. The software development tool also saves signifi 
cant programming development time as well as costs for 
conventional tools by allowing a developer to generate, com 
pile, assemble, deploy, and debug a distributed computing 
component, such as an Enterprise JavaBeanTM, without hav 
ing to use multiple conventional tools. By using the Software 
development tool to support and deploy an EJB, a developer 
produces error-free code in a shorter amount of time as the 
risk of error is reduced by alleviating the need to switch from 
tool to tool during the development and deployment process 
of the EJB. In addition, the software development tool pro 
vides the programmer with a segregated grouping and view of 
methods that define the behavior of an EJB, where the pro 
grammer is able to easily identify a method in an EJB imple 
mentation class to a respective method signature in either an 
EJB Home Interface or an EJB Remote Interface that corre 
sponds to the EJB implementation class as explained below. 
0023. In accordance with methods and systems consistent 
with the present invention, a method is provided in a data 
processing system. The method receives a request to generate 
a distributed computing component, generates code corre 
sponding to the distributed computing component, where the 
code contains a function that is one of a plurality of function 
types, and displays a graphical representation of the code that 
includes a separately delineated display area for each of the 
plurality of function types. The method also displays a sym 
bol in each separately delineated display area, wherein the 
symbol indicates the type of method displayed in the display 
aca. 

0024. In accordance with methods and systems consistent 
with the present invention, a method is provided in a data 
processing system. The data processing system includes a 
software development tool. The method initiates execution of 
the software development tool, and while the software devel 
opment tool is executing, the Software development tool 
receives an indication to deploy a distributed computing com 
ponent, deploys the distributed computing component to a 
deployment environment on a computer, and initiates execu 
tion of the distributed computing component in debug mode. 
0025. In accordance with methods and systems consistent 
with the present invention, a method is provided in a data 
processing system. The data processing system includes a 
software development tool with access to a distributed com 
puting component. The method initiates execution of the 
software development tool, and while the software develop 
ment tool is executing, the Software development tool 
receives an indication to deploy the distributed computing 
component, and generates a web page to facilitate testing the 
distributed computing component. 
0026. In accordance with methods and systems consistent 
with the present invention, a method is provided in a data 
processing system. The data processing system has a distrib 
uted computing component with Source code. The method 
determines whether the code of the distributed computing 
component has a non-compliant portion that does not comply 
with a specification for the type of distributed computing 
component, and when it is determined that the code corre 
sponding to the distributed computing component has a non 
compliant portion, replaces the non-compliant portion with 
new code that complies with the specification. 
0027. In accordance with methods and systems consistent 
with the present invention, a method is provided in a data 
processing system. The data processing system has a distrib 
uted computing component with Source code. The method 

Oct. 13, 2011 

receives an indication to deploy the distributed computing 
component, retrieves deployment information from a com 
ment of the source code corresponding to the distributed 
computing component, where the deployment information 
comprises a plurality of properties to control deployment of 
the distributed computing component on a computer and to 
control a relationship between the distributed computing 
component and a deployment environment on the computer, 
generates a deployment descriptor file that includes the 
deployment information, receives a change to die deployment 
information associated with the distributed computing com 
ponent contained in the deployment descriptor file, and modi 
fies the deployment information in the comment of the Source 
code for the distributed computing component to reflect the 
change. 
0028. In accordance with articles of manufacture consis 
tent with the present invention, a computer-readable medium 
is provided. The computer-readable medium contains 
instructions for controlling a data processing system to per 
form a method. The method comprising the steps of receiving 
a request to generate a distributed computing component, 
generating code corresponding to the distributed computing 
component, the code containing a method having one of a 
plurality of types, and displaying a graphical representation 
of the code that includes a separately delineated display area 
for each of the plurality of types. 
0029. In accordance with articles of manufacture consis 
tent with the present invention, a computer-readable medium 
is provided. The computer-readable medium contains 
instructions for controlling a data processing system to per 
form a method. The data processing system includes a soft 
ware development tool. The method comprising the steps of 
initiating execution of the Software development tool, and 
while the Software development tool is executing, receiving 
an indication to deploy a distributed computing component, 
deploying the distributed computing component to a deploy 
ment environment on a computer, and initiating execution of 
the distributed computing component in debug mode. 
0030. In accordance with articles of manufacture consis 
tent with the present invention, a computer-readable medium 
is provided. The computer-readable medium contains 
instructions for controlling a data processing system to per 
form a method. The data processing system includes a soft 
ware development tool with access to a distributed computing 
component. The method comprising initiating execution of 
the software development tool, and while the software devel 
opment tool is executing, receiving an indication to deploy 
the distributed computing component, and generating a web 
page to facilitate testing the distributed computing compo 
nent. 

0031. In accordance with articles of manufacture consis 
tent with the present invention, a computer-readable medium 
is provided. The computer-readable medium contains 
instructions for controlling a data processing system to per 
form a method. The data processing system includes a dis 
tributed computing component with Source code. The method 
comprising the steps of determining whether the code of the 
distributed computing component has a non-compliant por 
tion that does not comply with a specification for the type of 
distributed computing component, and when it is determined 
that the code corresponding to the distributed computing 
component has a non-compliant portion, replacing the non 
compliant portion with new code that complies with the 
specification. 



US 2011/0252401 A1 

0032. In accordance with articles of manufacture consis 
tent with the present invention, a computer-readable medium 
is provided. The computer-readable medium contains 
instructions for controlling a data processing system to per 
form a method. The data processing system includes a dis 
tributed computing component with Source code. The method 
comprising the steps of receiving an indication to deploy the 
distributed computing component, retrieving deployment 
information from a comment of the source code correspond 
ing to the distributed computing component, where the 
deployment information comprises a plurality of properties to 
control deployment of the distributed computing component 
on a computer and to control a relationship between the 
distributed computing component and a deployment environ 
ment on the computer, generating a deployment descriptor 
file that includes the deployment information, receiving a 
change to the deployment information associated with the 
distributed computing component contained in the deploy 
ment descriptor file, and modifying the deployment informa 
tion in the comment of the source code for the distributed 
computing component to reflect the change. 
0033. Additional implementations are directed to systems 
and computer devices incorporating the methods described 
above. It is also to be understood that both the foregoing 
general description and the detailed description to follow are 
exemplary and explanatory only and are not restrictive of the 
invention, as claimed. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0034. The accompanying drawings, which are incorpo 
rated in and constitute a part of this specification, illustrate an 
implementation of the invention and, together with the 
description, serve to explain the advantages and principles of 
the invention. In the drawings, 
0035 FIG.1 depicts a conventional software development 

tool; 
0036 FIG. 2 depicts an overview of a software develop 
ment tool inaccordance with methods and systems consistent 
with the present invention; 
0037 FIG. 3 depicts a data structure of the language 
neutral representation created by the software development 
tool of FIG. 2; 
0038 FIG. 4 depicts representative source code: 
0039 FIG. 5 depicts the data structure of the language 
neutral representation of the source code of FIG. 4; 
0040 FIG. 6 depicts a data processing system suitable for 
practicing the present invention; 
0041 FIG. 7 depicts an architectural overview of the soft 
ware development tool of FIG. 2; 
0042 FIG. 8A depicts a user interface displayed by the 
software development tool depicted in FIG. 2, where the user 
interface displays a list of pre-defined criteria which the soft 
ware development tool checks in the source code; 
0043 FIG. 8B depicts a user interface displayed by the 
software development tool depicted in FIG. 2, where the user 
interface displays the definition of the criteria which the soft 
ware development tool checks in the source code, and an 
example of source code which does not conform to the crite 
r1a, 
0044 FIG. 8C depicts a user interface displayed by the 
software development tool depicted in FIG. 2, where the user 
interface displays an example of source code which conforms 
to the criteria which the software development tool checks in 
the source code; 

Oct. 13, 2011 

0045 FIG.9 depicts a flow diagram of the steps performed 
by the software development tool depicted in FIG. 2; 
0046 FIGS. 10A and 10B depict a flow diagram illustrat 
ing the update model step of FIG.9; 
0047 FIG. 11 depicts a flow diagram of the steps per 
formed by the software development tool in FIG. 2 when 
creating a class; 
0048 FIG. 12 depicts a user interface displayed by the 
software development tool depicted in FIG. 2, where the user 
interface displays a use case diagram of Source code: 
0049 FIG. 13 depicts a user interface displayed by the 
software development tool depicted in FIG. 2, where the user 
interface displays both a class diagram and a textual view of 
Source code: 
0050 FIG. 14 depicts a user interface displayed by the 
software development tool depicted in FIG. 2, where the user 
interface displays a sequence diagram of Source code; 
0051 FIG. 15 depicts a user interface displayed by the 
software development tool depicted in FIG. 2, where the user 
interface displays a collaboration diagram of Source code; 
0.052 FIG. 16 depicts a user interface displayed by the 
software development tool depicted in FIG. 2, where the user 
interface displays a statechart diagram of Source code; 
0053 FIG. 17 depicts a user interface displayed by the 
software development tool depicted in FIG. 2, where the user 
interface displays an activity diagram of Source code; 
0054 FIG. 18 depicts a user interface displayed by the 
software development tool depicted in FIG. 2, where the user 
interface displays a component diagram of source code; 
0055 FIG. 19 depicts a user interface displayed by the 
software development tool depicted in FIG. 2, where the user 
interface displays a deployment diagram of Source code: 
0056 FIG. 20 depicts an overview of a three-tiered client/ 
server system that illustrates the architecture and operation of 
an Enterprise JavaBeanTM deployed by the software develop 
ment tool in FIG. 2; 
0057 FIG. 21 depicts a block diagram of a data processing 
system suitable for practicing methods and systems consis 
tent with the present invention; 
0058 FIGS. 22A and 22B depict flowcharts illustrating an 
exemplary process performed by the software development 
tool in FIG. 2 to develop and deploy an Enterprise Java 
BeanTM; 
0059 FIG. 23 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface shows a request received by the software devel 
opment tool to generate a type of Enterprise JavaBeanTM: 
0060 FIG. 24 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a related group of elements that com 
prise the EntityBeanTM and another group of elements that 
comprise the Session BeanTM: 
0061 FIG. 25 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a list of code element types that the 
software development tool in FIG. 2 may generate for a 
selected EntityBeanTM: 
0062 FIG. 26 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a list of code element types that the 
software development tool in FIG. 2 may generate for a 
selected Session BeanTM: 
0063 FIG. 27 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 



US 2011/0252401 A1 

exemplary user interface displays a code element for a busi 
ness method added to the EntityBeanTM and displays another 
code element for another business method added to the Ses 
sionBeanTM by the software development tool; 
0064 FIG. 28 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a code element for a create method and 
a postcreate method added to the EntityBeanTM by the soft 
ware development tool; 
0065 FIG. 29 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a code element for a find method added 
to the EntityBeanTM by the software development tool; 
0066 FIG. 30 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a code element for a persistent field 
added to the EntityBeanTM by the software development tool; 
0067 FIG. 31 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a code element for a primary key field 
added to the EntityBeanTM by the software development tool; 
0068 FIG. 32 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a code element for an EJB Environ 
ment Reference added to the EntityBeanTM by the software 
development tool; 
0069 FIG. 33 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a code element for an EJB Reference 
added to the EntityBeanTM by the software development tool; 
0070 FIG. 34 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays an EJB Security Role Reference added 
to the EntityBeanTM by the software development tool; 
0071 FIG. 35 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a code element for an EJB Resource 
Reference added to the EntityBeanTM by the software devel 
opment tool; 
0072 FIG. 36 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a find method signature for the code 
element added to the EJB Home Interface by the software 
development tool; 
0073 FIG. 37 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays the code element for the primary key 
field added to the Primary Key class by the software devel 
opment tool; 
0074 FIGS. 38A-F depict a flowchart illustrating an 
exemplary process performed by the software development 
tool in FIG. 2 to compile, deploy, and debug an Enterprise 
JavaBeanTM: 
0075 FIG. 39 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, for 
requesting the deployment of an EJB; 
0076 FIG. 40 depicts an exemplary user interface dis 
played by the software development tool for receiving an 
indication of an EJB target application server, 
0077 FIG. 41 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a hot deployment request received by 
the software development tool; 

Oct. 13, 2011 

0078 FIG. 42 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays access information for the EJB target 
application server, 
007.9 FIG. 43 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a port address received by the software 
development tool for communicating to the target application 
server; 
0080 FIG. 44 depicts an exemplary response received by 
the software development tool from the EJB target applica 
tion server following a command to start: 
I0081 FIG. 45 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a list of deployment options; 
I0082 FIG. 46 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
Software user interface displays an option to verify and cor 
rect EJB source code to comply with a specification; 
I0083 FIG. 47 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays the access information for a compiler; 
I0084 FIG. 48 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, for receiv 
ing access privileges for the EJB target application server 
computer; 
I0085 FIG. 49 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays access information for JAVATM Server 
Pages generated by the software development tool; 
I0086 FIG. 50 depicts an exemplary JSP template used by 
the software development tool in FIG. 2 to generate a JSP file 
for testing the EJB; 
I0087 FIG. 51 depicts an exemplary deployment descrip 
tor file generated by the software development tool for 
deploying the EJB; 
I0088 FIG. 52 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays the deployment descriptor archive file 
for the EJB in an XML editor provided by the software 
development tool; 
I0089 FIG. 53 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a modification to the deployment 
descriptor archive file received by the software development 
tool; 
0090 FIG. 54 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays the modification to the deployment 
descriptor archive file as an addition generated by die Soft 
ware development tool to the source code of the EJB; 
(0091 FIG.55 depicts an exemplary JAVATM Server Page 
generated by the software development tool for interfacing to 
the EJB from a Client Application; 
0092 FIG. 56 depicts an exemplary JAVATM Server Page 
generated by the software development tool for invoking the 
EJB to perform a business method from a client server appli 
cation; 
(0093 FIG. 57 depicts an exemplary JAVATM Server Page 
generated by the software development tool to reflect a result 
from the EJB performing the business method; 
0094 FIG. 58 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2, where the 
user interface displays a communication protocol and net 



US 2011/0252401 A1 

work address for a debugger controlled by the software devel 
opment tool to communicate with the EJB target application 
server; 
0095 FIG. 59 depicts an exemplary user interface dis 
played by the software development where the user interface 
displays a client application to be run by the software devel 
opment tool in debug mode; 
0096 FIG. 60 depicts an exemplary user interface dis 
played by the Software development tool for debugging the 
client application; and 
0097 FIG. 61 depicts an exemplary user interface dis 
played by the software development tool in FIG. 2 for debug 
ging the EJB on the target application server. 
0098 Reference will now be made in detail to the descrip 
tion of the invention as illustrated in the drawings. While the 
invention will be described in connection with these draw 
ings, there is no intent to limit it to the embodiment or 
embodiments disclosed therein. On the contrary, the intent is 
to cover all alternatives, modifications, and equivalents 
included within the spirit and scope of the invention as 
defined by the appended claims. 

DETAILED DESCRIPTION 

0099 Methods and systems consistent with the present 
invention provide an improved software development tool 
that creates a graphical representation of source code regard 
less of the programming language in which the code is writ 
ten. In addition, the software development tool simulta 
neously reflects any modifications to the source code to both 
the display of the graphical representation as well as the 
textual display of the Source code. 
0100. As depicted in FIG. 2, source code 202 is being 
displayed in both a graphical form 204 and a textual form 206. 
In accordance with methods and systems consistent with the 
present invention, the improved software development tool 
generates a transient meta model (TMM) 200 which stores a 
language-neutral representation of the source code 202. The 
graphical 204 and textual 206 representations of the source 
code 202 are generated from the language-neutral represen 
tation in the TMM200. Alternatively, the textual view 206 of 
the source code may be obtained directly from the source 
code file. Although modifications made on the displays 204 
and 206 may appear to modify the displays 204 and 206, in 
actuality all modifications are made directly to the Source 
code 202 via an incremental code editor (ICE) 208, and the 
TMM 200 is used to generate the modifications in both the 
graphical 204 and the textual 206 views from the modifica 
tions to the source code 202. 
0101 The improved software development tool provides 
simultaneous round-trip engineering, i.e., the graphical rep 
resentation 204 is synchronized with the textual representa 
tion 206. Thus, if a change is made to the source code 202 via 
the graphical representation 204, the textual representation 
206 is updated automatically. Similarly, ifa change is made to 
the source code 202 via the textual representation 206, the 
graphical representation 204 is updated to remain synchro 
nized. There is no repository, no batch code generation, and 
no risk of losing code. 
0102 The data structure 300 of the language-neutral rep 
resentation is depicted in FIG. 3. The data structure 300 
comprises a Source Code Interface (SCI) model 302, an SCI 
package 304, an SCI class 306, and an SCI member 308. The 
SCI model 302 is the source code organized into packages. 
The SCI model 302 corresponds to a directory for a software 

Oct. 13, 2011 

project being developed by the user, and the SCI package 304 
corresponds to a Subdirectory. The Software project com 
prises the source code in at least one file that is compiled to 
form a sequence of instructions to be run by a data processing 
system. The data processing system is discussed in detail 
below. AS is well known in object-oriented programming, the 
class 306 is a category of objects which describes a group of 
objects with similar properties (attributes), common behavior 
(operations or methods), common relationships to other 
objects, and common semantics. The members 308 comprise 
attributes and/or operations. 
(0103) For example, the data structure 500 for the source 
code 400 depicted in FIG. 4 is depicted in FIG. 5. UserInter 
face 402 is defined as a package 404. Accordingly. UserInter 
face 402 is contained in SCI package 502. Similarly, Bank 
406, which is defined as a class 408, is contained in SCI class 
504, and Name 410 and Assets 412, which are defined as 
attributes (strings 414), are contained in SCI members 506. 
Since these elements are in the same project, all are linked. 
The data structure 500 also identifies the language in which 
the source code is written 508, e.g., the JavaTM language. 
0104 FIG. 6 depicts a data processing system 600 suitable 
for practicing methods and systems consistent with the 
present invention. Data processing system 600 comprises a 
memory 602, a secondary storage device 604, an I/O device 
606, and a processor 608. Memory 602 includes the improved 
software development tool 610. The software development 
tool 610 is used to develop a software project 612, and create 
the TMM 200 in the memory 602. The project 612 is stored in 
the secondary storage device 604 of the data processing sys 
tem 600. One skilled in the art will recognize that data pro 
cessing system 600 may contain additional or different com 
ponents. 
0105. Although aspects of the present invention are 
described as being stored in memory, one skilled in the art will 
appreciate that these aspects can also be stored on or read 
from other types of computer-readable media, Such as sec 
ondary storage devices, like hard disks, floppy disks or CD 
ROM; a carrier wave from a network, such as Internet; or 
other forms of RAM or ROM either currently known or later 
developed. 
01.06 FIG. 7 illustrates an architectural overview of the 
improved software development tool 610. The tool 610 com 
prises a core 700, an open application program interface 
(API) 702, and modules 704. The core 700 includes a parser 
706 and an ICE 208. The parser 706 converts the source code 
into the language-neutral representation in the TMM, and the 
ICE 208 converts the text from the displays into source code. 
There are three main packages composing the API 702: Inte 
grated Development Environment (IDE) 708; Read-Write 
Interface (RWI) 710; and Source Code Interface (SCI) 712. 
Each package includes corresponding Subpackages. As is 
well known in the art, a package is a collection of classes, 
interfaces, attributes, notifications, operations, or behaviors 
that are treated as a single module or program unit. 
0107 IDE 708 is the API 702 needed to generate custom 
outputs based on information contained in a model. It is a 
read-only interface, i.e., the user can extract information from 
the model, but not change the model. IDE 708 provides the 
functionality related to the model's representation in IDE 708 
and interaction with the user. Each package composing the 
IDE group has a description highlighting the areas of appli 
cability of this concrete package. 



US 2011/0252401 A1 

0108 RWI 710 enables the user to go deeper into the 
architecture. Using RWI 710, information can be extracted 
from and written to the models. RWI not only represents 
packages, classes and members, but it may also represent 
different diagrams (class diagrams, use case diagrams, 
sequence diagrams and others), links, notes, use cases, actors, 
States, etc. 
0109 SCI 712 is at the source code level, and allows the 
user to work with the source code almost independently of the 
language being used. 
0110. There are a variety of modules 704 in the software 
development tool 610 of the present invention. Some of the 
modules 704 access information to generate graphical and 
code documentation in custom formats, export to different 
file formats, or develop patterns. The software development 
tool also includes a quality assurance (QA) module which 
monitors the modifications to the Source code and calculates 
various complexity metrics, i.e., various measurements of the 
program's performance or efficiency, to Support quality assur 
ance. The types of metrics calculated by the software devel 
opment tool include basic metrics, cohesion metrics, com 
plexity metrics, coupling metrics, Halstead metrics, 
inheritance metrics, maximum metrics, polymorphism met 
rics, and ratio metrics. Examples of these metrics with their 
respective definitions are identified in Tables 1-9 below. 

TABLE 1. 

Basic Metrics 

Basic Metrics Description 

Lines Of Code 
Number Of 
Attributes 

Counts the number of code lines. 
Counts the number of attributes. If a class has a high 
number of attributes, it may be appropriate to divide 
it into Subclasses. 

Oct. 13, 2011 

TABLE 1-continued 

Basic Metrics 

Basic Metrics Description 

Number Of Classes Counts the number of classes. 
Number Of Import Counts the number of imported packages/classes. 
Statements This measure can highlight excessive importing, 

and also can be used as a measure of coupling. 
Number Of Counts the number of members, i.e., attributes 
Members and operations. If a class has a high number of 

members, it may be appropriate to divide it into 
Subclasses. 

Number Of Counts the number of operations. If a 
Operations class has a high number of operations, it may be 

appropriate to divide it into Subclasses. 

TABLE 2 

Cohesion Metrics 

Cohesion Metrics Description 

Lack Of Cohesion Takes each pair of methods in the class and 
Of Methods 1 determines the set of fields they each access. 

A low value indicates high coupling between methods, 
which indicates potentially low reusability and 
increased testing because many methods can 
affect the same attributes. 

Lack Of Cohesion Counts the percentage of methods that do not 
Of Methods 2 access a specific attribute averaged over all attributes 

in the class. A high value of cohesion (a low lack 
of cohesion) implies that the class is well designed. 

Lack Of Cohesion Measures the dissimilarity of methods in a class by 
Of Methods 3 attributes. A low value indicates good class 

Subdivision, implying simplicity and high reusability. 
A high lack of cohesion increases complexity, thereby 
increasing the likelihood of errors during the 
development process. 

TABLE 3 

Complexity Metrics 

Complexity Metrics Description 

Attribute Complexity Defined as the sum of each attribute’s value in the class. 
Cyclomatic Represents the cognitive complexity of the class. It counts the 
Complexity number of possible paths through an algorithm by counting the 

number of distinct regions on a flowgraph, i.e., the number of 'if. 
for and while statements in the operation's body. 

Number Of Remote Processes all of the methods and constructors, and counts the 
Methods number of different remote methods called. A remote method is 

Response For Class 

defined as a method which is not declared in either the class itself 
or its ancestors. 
Calculated as Number of Local Method + Number or Remote 
Methods. A class which provides a larger response set is 
considered to be more complex and requires more testing than 
one with a Smaller overall design complexity. 

Weighted Methods Per The sum of the complexity of all methods for a class, where each 
Class 1 method is weighted by its cyclomatic complexity. The number of 

methods and the complexity of the methods involved is a 
predictor of how much time and effort is required to develop and 
maintain the class. 

Weighted Methods Per Measures the complexity of a Class, assuming that a class with 
Class 2 more methods than another is more complex, and that a method 

with more parameters than another is also likely to be more 
complex. 



US 2011/0252401 A1 Oct. 13, 2011 

TABLE 4 

Coupling Metrics 

Coupling Metrics Description 

Coupling Between Represents the number of other classes to which a class is 
Objects coupled. Counts the number of reference types that are used in 

attribute declarations, formal parameters, return types, throws 
declarations and local variables, and types from winch attribute 
and method selections are made. 
Excessive coupling between objects is detrimental to modular 
design and prevents reuse. The more independent a class is, the 
easier it is to reuse it in another application. In order to improve 
modularity and promote encapsulation, inter-object class couples 
should be kept to a minimum. The larger the number of couples, 
the higher the sensitivity to changes in other parts of the design, 
and therefore maintenance is more difficult. A measure of 
coupling is useful to determine how complex the testing of 
various parts of a design is likely to be. The higher the inter 
object class coupling, the more rigorous the testing needs to be. 

Data Abstraction Counts the number of reference types used in the attribute 
Coupling declarations. 
FanOut Counts the number of reference types that are used in attribute 

declarations, formal parameters, return types, throws declarations 
and local variables. 

TABLE 5 

Halstead Metrics 

Halstead Metrics Description 

Halstead Difficulty This measure is one of the Halstead Software Science metrics. It 
is calculated as (Number of Unique Operators' Number of 
Unique Operands) * (Number of Operands' Number of 
Unique Operands). 

Halstead Effort This measure is one of the Halstead Software Science metrics. It 
is calculated as Halstead Difficulty * Halstead Program 
Volume. 

Halstead Program This measure is one of the Halstead Software Science metrics. It 
Length is calculated as Number of Operators + Number of Operands. 
Halstead Program This measure is one of the Halstead Software Science metrics. It 
Vocabulary is calculated as Number of Unique Operators + Number of 

Unique Operands. 
Halstead Program This measure is one of the Halstead Software Science metrics. It 
Volume is calculated as Halstead Program Length * Log2 (Halstead 

Program Vocabulary). 
Number Of Operands This measure is used as an input to the Halstead Software Science 

metrics. It counts the number of operands used in a class. 
Number Of Operators. This measure is used as an input to the Halstead Software Science 

metrics. It counts the number of operators used in a class. 
Number Of Unique This measure is used as an input to the Halstead Software Science 
Operands metrics. It counts the number of unique operands used in a class. 
Number Of Unique This measure is used as an input to the Halstead Software Science 
Operators metrics. It counts the number of unique operators used in a class. 

TABLE 6 TABLE 6-continued 

Inheritance Metrics Inheritance Metrics 

Inheritance Metrics Description Inheritance Metrics Description 

Depth Of Counts how far down the inheritance hierarchy a 
Inheritance class or interface is declared. High values imply The abstraction of the class may be poor if there are 
Hierarchy that a class is quite specialized. too many child classes. It should also be stated that 
Number Of Child Counts the number of classes which inherit from a a high value of this measure points to the definite 
Classes particular class, i.e., the number of classes in the amount of testing required for each child class. 

inheritance tree down from a class. Non-zero value 

indicates re-used. that the particular class is being 



US 2011/0252401 A1 

TABLE 7 

Maximum Metrics 

Maximum 
Metrics Description 

Maximum Counts the maximum depth of 'if, for and while 
Number branches in the bodies of methods. Logical units with a 
Of large number of nested levels may need implementation 
Levels simplification and process improvement because groups that 

contain more than seven pieces of information are 
increasingly harder for people to understand in 
problem solving. 

Maximum Displays the maximum number of parameters among all 
Number Of class operations. Methods with many parameters tend to be 
Parameters more specialized and, thus, are less likely to be reusable. 
Maximum Counts the maximum sire of the operations for a class. 
Size Of Method size is determined in terms of cyclomatic 
Operation complexity, i.e., the number of 'if, for and while 

statements in the operation's body. 

TABLE 8 

Polymorphism Metrics 

Polymorphism 
Metrics Description 

Number Counts the number of operations added by a class. A 
Of Added large value of this measure indicates that the functionality 
Methods of the given class becomes increasingly distinct from that 

of the parent classes. In this case, it should be considered 
whether this class genuinely should be inheriting from 
the parent, or if it could be broken down into several 
Smaller classes. 

Number Of Counts the number of inherited operations which a class 
Overridden overrides. Classes without parents are not processed. 
Methods High values tend to indicate design problems, i.e., 

Subclasses should generally add to and extend the 

Oct. 13, 2011 

TABLE 8-continued 

Polymorphism Metrics 

Polymorphism 
Metrics Description 

functionality of the parent classes rather than 
overriding them. 

TABLE 9 

Ratio Metrics 

Ratio Metrics Description 

Comment Ratio Counts the ratio of comments to total lines of code 
including comments. 

Percentage Of Counts the percentage of package members in a class. 
Package 
Members 
Percentage Of Counts the percentage of private members in a class. 
Private 
Members 
Percentage Of Counts the percentage of protected members in a class. 
Protected 
Members 
Percentage Of Counts the proportion of vulnerable members in a class. 
Public A large proportion of Such members means that the 
Members class has high potential to be affected by external 

classes and means that increased efforts will be needed 
to test such a class thoroughly. 

True Comment Counts the ratio of comments to total lines 
Ratio of code excluding comments. 

0111. The QA module also provides audits, i.e., the mod 
ule checks for conformance to pre-defined or user-defined 
styles. The types of audits provided by the module include 
coding style, critical errors, declaration style, documentation, 
naming style, performance, possible errors and Superfluous 
content. Examples of these audits with their respective defi 
nitions are identified in Tables 10-17 below. 

TABLE 10 

Coding Style Audits 

Coding Style Audits 

Access OfStatic 

Description 

Static members should be referenced through class names rather 
Members Through than through objects. 
Objects 
Assignment To Formal Formal parameters should not be assigned. 
Parameters 
Complex Assignment Checks for the occurrence of multiple assignments and 

assignments to variables within the same expression. Complex 
assignments should be avoided since they decrease program 
readability. 

Don't Use The The negation operator slows down the readability of the program. 
Negation Operator Thus, it is recommended that it not be used frequently. 
Frequently 

Be Used 

Ose Abbreviated 
Assignment Operator 

Operator 2: May Not The operator 2: makes the code harder to read than the 
alternative form with an if-statement. 

Provide Incremental In Checks if the third argument of the for-statement is missing. 
For-Statement Or Use 
While-Statement 
Replacement For 
Demand Imports 

Demand import-declarations must be replaced by a list of single 
import-declarations that are actually imported into the 
compilation unit. In other words, import-statements may not end 
with an asterisk. 
Use the abbreviated assignment operator in order to write 
programs more rapidly. Also, some compilers run faster with the 
abbreviated assignment operator. 



US 2011/0252401 A1 

Coding Style Audits 

10 

TABLE 10-continued 

Coding Style Audits 

Description 

Use this Explicitly 
To Access Class 
Members 

Tries to make the developer use this explicitly when trying to 
access class members. Using the same class member names with 
parameter names often makes what the developer is referring to 
unclear. 

TABLE 11 

Critical Errors Audits 

Critical Errors 
Audits Description 

Avoid Hiding Detects when attributes declared in child classes hide inherited 
Inherited Attributes attributes. 
Avoid Hiding Detects when inherited static operations are hidden by child 
Inherited Static classes. 
Methods 
Command Query Prevents methods that return a value from a modifying state. The 
Separation methods used to query the state of an object must be different 

from the methods used to perform commands (change the state of 
the object). 

Hiding Of Names Declarations of names should nothide other declarations of the 
S8ile l8le. 

Inaccessible Overload resolution only considers constructors and methods that 
Constructor Or are visible at the point of the call. If, however, all the 
Method Matches constructors and methods were considered, there may be more 

matches. This rule is violated in this case. 
Imagine that ClassB is in a different package than Class A. Then 
the allocation of ClassB violates this rule since the second 
constructor is not visible at the point of the allocation, but it still 
matches the allocation (based on signature). Also, the call to 
open in ClassB violates this rule since the second and the third 
declarations of open are not visible at the point of the call, but it 
still matches the call (based on signature). 

Multiple Visible Multiple declarations with the same name must not be 
Declarations With simultaneously visible except for overloaded methods. 
Same Name 
Overriding A Non- Checks for abstract methods overriding non-abstract methods in a 
Abstract Method With subclass. 
An Abstract Method 
Overriding Aprivate A Subclass should not contain a method with the same name and 
Method signature as in a Superclass if these methods are declared to be 

private. 
Overloading Within A A Superclass method may not be overloaded within a subclass 
Subclass unless all overloading in the Superclass are also overridden in the 

Use OfStatic Attribute 
For Initialization 

Subclass. It is very unusual for a subclass to be overloading 
methods in its Superclass without also overriding the methods it is 
overloading. More frequently this happens due to inconsistent 
changes between the Superclass and Subclass - i.e., the intention 
of the user is to override the method in the Superclass, but, due to 
the error, the Subclass method ends up overloading the Superclass 
method. 
Non-final static attributes should not be used in initializations of 
attributes. 

TABLE 12 

Declaration Style Audits 

Declaration Style 
Audits 

Badly Located Array 
Declarators 
Constant Private 
Attributes Must Be 

Description 

Array declarators must be placed next to the type descriptor of 
their component type. 
Private attributes that never get their values changed must be 
declared final. By explicitly declaring them in Such a way, a 

Oct. 13, 2011 



US 2011/0252401 A1 Oct. 13, 2011 
11 

TABLE 12-continued 

Declaration Style Audits 

Declaration Style 
Audits Description 

Final reader of the source code get some information of how the 
attribute is supposed to be used. 

Constant Variables Local variables that never get their values changed must be 
Must Be Final declared final. By explicitly declaring them in Such a way, a 

reader of the source code obtains information about how the 
variable is Supposed to be used. 

Declare Variables In Several variables (attributes and local variables) should not be 
One Statement Each declared in the same statement. 
Instantiated Classes This rule recommends making all instantiated classes final. It 
Should Be Final checks classes which are present in the object model. Classes 

from search classpath are ignored. 
List All Public And Enforces a standard to improve readability. Methods/data in your 
Package Members class should be ordered properly. 
First 
Order Of Appearance Checks for correct ordering of modifiers. For classes, this 
Of Modifiers includes visibility (public, protected or private), abstract, static, 

final. For attributes, this includes visibility (public, protected or 
private), static, final, transient, volatile. For operations, this 
includes visibility (public, protected or private), abstract, static, 
final, synchronized, native. 

Put The Main Tries to make the program comply with various coding standards 
Function Last regarding the form of the class definitions. 

TABLE 13 TABLE 14-continued 

Documentation Audits Naming Style Audits 

Documentation Naming Style Audits Description 

Audits Description Names Of Exception Names of classes which inherit from Exception 
Classes should end with Exception. 

Bad Tag In JavaDoc This rule verifies code against accidental use of Use Conventional One-character local variable or parameter names 
Comments improper JavaDoc tags. Variable Names should be avoided, except for temporary and 
Distinguish Between Checks whether the JavaDoc comments in your looping variables, or where a variable holds an 
JavaDoc And Ordinary program ends with undistinguished value of a type. 
Comments **/ and ordinary C-style ones with */. 

TABLE 1.5 
TABLE 1.4 

Performance Audits 
Naning Style Audits 

Performance Audits Description 
Naming Style Audits Description 

Avoid Declaring This rule recommends declaring local variables 
Class Name Must Checks whether top level classes or interfaces Variables Inside Loops outside the loops since declaring variables inside 
Match. Its FileName have the same name as the file in which they the loop is less efficient. 

reside. Append To String Performance enhancements can be obtained by 
Group Operations Enforces standard to improve readability. Within A Loop replacing string operations with stringbuffer 
With Same Name operations if a string object is appended within 
Together a loop. 
Naming Conventions Takes a regular expression and item name and Complex Loop Avoid using complex expressions as repeat 

reports all occurrences where the pattern does Expressions conditions within loops. 
not match the declaration. 

TABLE 16 

Possible Error Audits 

Possible Error Audits Description 

Avoid Public And Declare the attributes either private or protected, and provide 
Package Attributes operations to access or change them. 
Avoid Statements Avoid statements with empty body. 
With Empty Body 



US 2011/0252401 A1 

Possible Error Audits 

Assignment To For 
Loop Variables 
Don't Compare 
Floating Point Types 

Enclosing Body 
Within A Block 

Explicitly Initialize All 
Variables 

Method finalize() 
Doesn't Call 
Super-finalize() 

Mixing Logical 
Operators Without 
Parentheses 
No Assignments. In 
Conditional 
Expressions 
Use 'equals Instead 
Of== 

Use L Instead Of 
At The End Of Integer 
Constant 
Use Of The 
synchronized 
Modifier 

Superfluous Content Audits 

Superfluous Content 
Audits 

Duplicates Import 
Declarations 

12 

TABLE 16-continued 

Possible Error Audits 

Description 

For-loop variables should not be assigned. 

Avoid testing for equality of floating point numbers since 
floating-point numbers that should be equal are not always equal 
due to rounding problems. 
The statement of a loop must always be a block. The then and 
else parts of if-statements must always be blocks. This makes 

it easier to add statements without accidentally introducing bugs 
in case the developer forgets to add braces. 
Explicitly initialize all variables. The only reason not to initialize 
a variable is where it's declared is if the initial value depends on 
Some computation occurring first. 
Calling of Superfinalize() from finalize() is good practice of 
programming, even if the base class doesn't define the finalize() 
method, This makes class implementations less dependent on 
each other. 
An expression containing multiple logical operators should be 
parenthesized properly. 

Use of assignment within conditions makes the source code hard 
o understand. 

The "== operator used or strings checks if two string objects are 
two identical objects. In most situations, however, one likes to 
simply check if two strings have the same value. In these cases, 
he equals method should be used. 
t is better to use uppercase L to distinguish the letter I from 
he number 1. 

The synchronized modifier on methods can sometimes cause 
confusion during maintenance as well as during debugging. This 
rule therefore recommends against using this modifier, and 
instead recommends using synchronized statements as 
replacements. 

TABLE 17 

Description 

There should be at most one import declaration that imports a particular 
class/package. 

Don't Import the Package No classes or interfaces need to be imported from the package to which 
The Source File Belongs 
To 
Explicit Import Of The 
java.lang Classes 
Equality Operations On 
Boolean Arguments 
Imported Items Must Be 
Used 

Unnecessary Casts 

the source code file belongs. Everything in that package is available 
without explicit import statements. 
Explicit import of classes from the package java.lang should not be 
performed. 
Avoid performing equality operations on Boolean operands. True and 
false literals should not be used in conditional clauses. 
It is not legal to import a class or an interface and never use it. This rule 
checks classes and interfaces that are explicitly imported with their 
names - that is, not with import of a complete package, using an 
asterisk. If unused class and interface imports are omitted, the amount 
of meaningless source code is reduced - thus the amount of code to be 
understood by a reader is minimized 
Checks for the use of type casts that are not necessary. 

Unnecessary instance of 
Evaluations 
Unused Local Variables 
And Formal Parameters 
Use Of Obsolete Interface 
Modifier 
Use Of Unnecessary 
Interface Member 
Modifiers 

Verifies that the runtime type of the left-hand side expression is the 
same as the one specified on the right-hand side. 
Local variables and formal parameter declarations must be used. 

The modifier abstract is considered obsolete and should not be used. 

All interface operations are implicitly public and abstract. All interface 
attributes are implicitly public, final and static. 

Oct. 13, 2011 



US 2011/0252401 A1 

TABLE 17-continued 

Oct. 13, 2011 

Superfluous Content Audits 

Superfluous Content 
Audits Description 

Unused Private Class An unused class member might indicate a logical flaw in the program. 
Member The class declaration has to be reconsidered in order to determine the 

need of the unused member(s). 

0112) If the QA module determines that the source code 
does not conform, an error message is provided to the devel 
oper. For example, as depicted in FIG.8A, the software devel 
opment tool checks for a variety of coding styles 800. If the 
software development tool were to check for “Access Of 
Static Members Through Objects” 802, it would verify 
whether static members are referenced through class names 
rather than through objects 804. Further, as depicted in FIG. 
8B, if the software development tool were to check for “Com 
plex Assignment 806, the software development tool would 
check for the occurrence of multiple assignments and assign 
ments to variables within the same expression to avoid com 
plex assignments since these decrease program readability 
808. An example of Source code having a complex assign 
ment 810 and source code having a non-complex assignment 
812 are depicted in FIGS. 8B and 8C, respectively. The QA 
module of the software development tool scans the source 
code for other syntax errors and/or other deviations from well 
known rules, as described above, and provides an error mes 
sage if any such errors are detected. 
0113. The improved software development tool of the 
present invention is used to develop source code in a project. 
The project comprises a plurality of files and the source code 
of a chosen one of the plurality of files is written in a given 
language. The software development tool determines the lan 
guage of the Source code of the chosen file, converts the 
Source code from the language into a language-neutral rep 
resentation, uses the language-neutral representation to tex 
tually display the source code of the chosen file in the lan 
guage, and uses the language-neutral representation to 
display a graphical representation of at least a portion of the 
project. As discussed above, in an alternative embodiment, 
the textual display may be obtained directly from the source 
code file. The Source code and the graphical representation 
are displayed simultaneously. 
0114. The improved software development tool of the 
present invention is also used to develop source code. The 
software development tool receives an indication of a selected 
language for the source code, creates a file to store the Source 
code in the selected language, converts the source code from 
the selected language into a language-neutral representation, 
uses the language-neutral representation to display the Source 
code of the file, and uses the language-neutral representation 
to display a graphical representation of the file. Again, the 
Source code and the graphical representation are displayed 
simultaneously. 
0115 Moreover, if the source code in the file is modified, 
the modified source code and a graphical representation of at 
least a portion of the modified source code are displayed 
simultaneously. The QA module of the software development 
tool provides an error message if the modification does not 
conform to pre-defined or user-defined styles, as described 
above. The modification to the source code may be received 

by the Software development tool via the programmer editing 
the Source code in the textual pane or the graphical pane, or 
via Some other independent software tool that the program 
meruses to modify the code. The graphical representation of 
the project may be in Unified Modeling Language; however, 
one skilled in the art will recognize that other graphical rep 
resentations of the source code may be displayed. Further, 
although the present invention is described and shown using 
the various views of the UML, one of ordinary skill in the art 
will recognize that other views may be displayed. 
0116 FIG.9 depicts a flow diagram of the steps performed 
by the software development tool to develop a project in 
accordance with methods consistent with the present inven 
tion. As previously stated, the project comprises a plurality of 
files. The developer either uses the software development tool 
to open a file that contains existing source code, or to create a 
file in which the source code will be developed. If the soft 
ware development tool is used to open the file, determined in 
step 900, the software development tool initially determines 
the programming language in which the code is written (step 
902). The language is identified by the extension of the file, 
e.g., “..java' identifies source code written in the JavaTM lan 
guage, while ".cpp' identifies source code written in C++. 
The software development tool then obtains a template for the 
current programming language, i.e., a collection of general 
ized definitions for the particular language that can be used to 
build the data structure (step 904). For example, the templates 
used to define a new JavaTM class contains a default name, 
e.g., "Class1” and the default code, “public class Class1 { }.” 
Such templates are well known in the art. For example, the 
“Microsoft Foundation Class Library” and the “Microsoft 
Word Template For Business Use Case Modeling are 
examples of standard template libraries from which program 
mers can choose individual template classes. The Software 
development tool uses the template to parse the source code 
(step 906), and create the data structure (step 908). After 
creating the data structure or if there is no existing code, the 
Software development tool awaits an event, i.e., a modifica 
tion or addition to the source code by the developer (step 910). 
If an event is received and the event is to close the file (step 
912), the file is saved (step 914) and closed (step 916). Oth 
erwise, the software development tool performs the event 
(step 918), i.e., the tool makes the modification. The software 
development tool then updates the TMM or model (step 920), 
as discussed in detail below, and updates both the graphical 
and the textual views (step 922). 
0117 FIGS. 10A and 10B depict a flow diagram illustrat 
ing the update model step of FIG. 9. The software develop 
ment tool selects a file from the project (step 1000), and 
determines whether the file is new (step 1002), whether the 
file has been updated (step 1004), or whether the file has been 
deleted (step 1006). If the file is new, the software develop 
ment tool adds the additional symbols from the file to the 



US 2011/0252401 A1 

TMM (step 1008). To add the symbol to the TMM, the soft 
ware development tool uses the template to parse the symbol 
to the TMM. If the file has been updated, the software devel 
opment tool updates the symbols in the TMM (step 1010). 
Similar to the addition of a symbol to the TMM, the software 
development tool uses the template to parse the symbol to the 
TMM. If the file has been deleted, the software development 
tool deletes the symbols in the TMM (step 1012). The soft 
ware development tool continues this analysis for all files in 
the project. After all files are analyzed (step 1014), any obso 
lete symbols in the TMM (step 1016) are deleted (step 1018). 
0118 FIG. 11 depicts a flow diagram illustrating the per 
formance of an event, specifically the creation of a class, in 
accordance with methods consistent with the present inven 
tion. After identifying the programming language (step 
1100), the software development tool obtains a template for 
the language (step 1102), creates a source code file in the 
project directory (step 1104), and pastes the template into the 
file (step 1106). The project directory corresponds to the SCI 
model 302 of FIG. 3. Additional events which a developer 
may perform using the Software development tool include the 
creation, modification or deletion of packages, projects, 
attributes, interfaces, links, operations, and the closing of a 
file. 
0119 Applications to be developed using the software 
development tool are collectively broken into three views of 
the application: the static view, the dynamic view, and the 
functional view. The static view is modeled using the use-case 
and class diagrams. A use case diagram 1200, depicted in 
FIG. 12, shows the relationship among actors 1202 and use 
cases 1204 within the system 1206. A class diagram 1300. 
depicted in FIG. 13 with its associated source code 1302, on 
the other hand, includes classes 1304, interfaces, packages 
and their relationships connected as a graph to each other and 
to their contents. 
0120. The dynamic view is modeled using the sequence, 
collaboration and statechart diagrams. As depicted in FIG. 14. 
a sequence diagram 1400 represents an interaction, which is 
a set of messages 1402 exchanged among objects 1404 within 
a collaboration to effect a desired operation or result. In a 
sequence diagram 1400, the vertical dimension represents 
time and the horizontal dimension represents different 
objects. A collaboration diagram 1500, depicted in FIG. 15, is 
also an interaction with messages 1502 exchanged among 
objects 1504, but it is also a collaboration, which is a set of 
objects 1504 related in a particular context. Contrary to 
sequence diagrams 1400 (FIG. 14), which emphasize the time 
ordering of messages along the vertical axis, collaboration 
diagrams 1500 (FIG. 15) emphasize the structural organiza 
tion of objects. 
0121. A statechart diagram 1600 is depicted in FIG. 16. 
The statechart diagram 1600 includes the sequences of states 
1602 that an object or interaction goes through during its life 
in response to stimuli, together with its responses and actions. 
It uses a graphic notation that shows states of an object, the 
events that cause a transition from one state to another, and the 
actions that result from the transition. 
0122) The functional view can be represented by activity 
diagrams 1700 and more traditional descriptive narratives 
Such as pseudocode and minispecifications. An activity dia 
gram 1700 is depicted in FIG. 17, and is a special case of a 
state diagram where most, if not all, of the States are action 
states 1702 and where most, if not all, of the transitions are 
triggered by completion of the actions in the source states. 

Oct. 13, 2011 

Activity diagrams 1700 are used in situations where all or 
most of the events represent the completion of internally 
generated actions. 
I0123. There is also a fourth view mingled with the static 
view called the architectural view. This view is modeled using 
package, component and deployment diagrams. Package dia 
grams show packages of classes and the dependencies among 
them. Component diagrams 1800, depicted in FIG. 18, are 
graphical representations of a system or its component parts. 
Component diagrams 1800 show the dependencies among 
Software components, including source code components, 
binary code components and executable components. As 
depicted in FIG. 19, deployment diagrams 1900 are used to 
show the distribution strategy for a distributed object system. 
Deployment diagrams 1900 show the configuration of run 
time processing elements and the Software components, pro 
cesses and objects that live on them. 
0.124. Although discussed in terms of class diagrams, one 
skilled in the art will recognize that the software development 
tool of the present invention may support these and other 
graphical views. 
0.125 Supporting and Deploying a Distributed Computing 
Component 
I0126. In addition to the functionality described above, the 
Software development tool saves significant programming 
development time as well as costs for conventional tools by 
allowing a developer to generate, compile, assemble, deploy, 
and debug a distributed computing component, such as an 
EJB, without having to use multiple conventional tools. A 
distributed computing component is a Software component 
that runs on a computer and is designed to perform business 
logic for client application(s) requiring a solution to a busi 
ness problem (e.g., process a customer order or determine a 
senior citizen discount for a customer). The Solution to the 
business problem typically requires access to corresponding 
business data contained in an enterprise database. By using 
the software development tool to support and deploy an EJB, 
a developer produces error-free code in a shorter amount of 
time as the risk of error is reduced by alleviating the need to 
switch from tool to tool during the development and deploy 
ment process of the EJB. In general, a deployed EJB is hosted 
in a special environment called an EJB container that resides 
on an application server of an organization. The deployed 
EJB provides remote services, such as access to business 
logic data, to clients distributed throughout a network in 
which the application server is connected. Business logic data 
represents the specific details and information flow of the 
organization or a particular industry. The Software develop 
ment tool allows a developer to focus on developing code for 
the EJB that utilizes the business logic data stored in the 
database of the organization, rather than worrying about end 
less amounts of programming and coding needed to connect 
all the working parts for accessing the database of the orga 
nization. 

(O127 FIG. 20 depicts an overview of a three-tiered client/ 
server system 2000 that illustrates the architecture and opera 
tion of an EJB 2002 deployed by the software development 
tool 610 in accordance with methods and systems consistent 
with the present invention. The EJB 2002 that is deployed by 
the software development tool may bean EJB EntityBean, an 
EJB SessionBean, or other similar deployable entity, such as 
a message Bean. An EJB EntityBean represents a real-world 
object, Such as a customer, a bank account, or a cruise ship, 
which has persistent records (i.e., data structures) in a data 



US 2011/0252401 A1 

base. An EJB SessionBean represents a set of processes or 
tasks, which are performed on behalf of a client application, 
such as 1st Tier Client Application 2004 described below. The 
EJB Session Bean may use other beans to perform a task or 
access a database directly. The EJB EntityBean and the EJB 
SessionBean each include a bean implementation class, a 
remote interface, and a home interface. The EJB EntityBean 
also includes a Primary Key class that provides a pointer to a 
data structure in a database for identifying the EJB Entity 
Bean with the data structure. The home interface of the EJB 
EntityBean and the home interface of the EJB SessionBean 
each include a group of life-cycle methods signatures con 
tained in the respective bean implementation class of the EJB 
EntityBean and the EJB SessionBean. The life-cycle methods 
contained in the EJB EntityBeanor the EJB Session Bean may 
include a method to create and initialize an instance of the 
respective bean implementation class, a method to destroy an 
instance of the respective bean implementation class when it 
is no longer needed, and a method to find and identify the 
respective bean implementation class an example of which is 
an EJB. The remote interface of the EJB EntityBean and the 
remote interface of the EJB Session Bean may each include a 
signature of a business method of the respective bean imple 
mentation class. The methods associated with the home and 
remote interface of the respective bean implementation class 
are further discussed below. 

0128 Continuing with FIG. 20, the three-tiered client/ 
server system 2000 is comprised of the 1st tier Client Appli 
cation 2004, a 2nd tier EJB Application Server 2006, and a 
3rd tier Database Management System (DBMS) Server 2008. 
The Client Application 2004 may be any standalone applica 
tion, servlet, applet, or even other EJBs. As shown in FIG. 20. 
the Client Application 2004 includes a browser 2012 that 
invokes methods through a home interface 2014 that contains 
signatures for the life cycle methods of the EJB 2002. The 
browser 2012 also invokes methods through a remote inter 
face 2016 that includes signatures for the business methods of 
the EJB 2002. 

0129. The EJB Application Server 2006 may be any 
known application server, such as BEA Weblogic Server or 
IBM Websphere Server that complies with Sun's JavaTM 2 
Enterprise Edition (J2EE) specification which ensures a con 
sistent platform for deploying an EJB by requiring that a 
specific set of communication protocols and standard ser 
vices be provided by the EJB Application Server 2006. The 
EJBApplication Server 2006 includes an EJB container 2018 
that hosts and manages the deployed EJB 2002. The EJB 
container 2018 implements the home interface 2014 and the 
remote interface 2016 that contain the method signatures of 
the EJB 2002. The EJB container 2018 isolates the EJB 2002 
from direct access by the Client Application 2004. When the 
Client Application 2004 invokes a life cycle method (i.e., a 
create method) or a business method on the EJB 2002, home 
interface 2014 or remote interface 2016, respectively, com 
municates the invocation to the EJB container 2018 through 
known protocols on network 2010. When the Client Applica 
tion 2004 invokes a create method (i.e., a life cycle method), 
the EJB container 2018 intercepts the invocation and instan 
tiates the EJB 2002 to form a distributed object of the EJB 
2002 that is responsive to business method invocations via 
remote interface 2016. When the Client Application 2004 
invokes a business method, the EJB container 2018 intercepts 
the invocation before passing it to the object of the EJB 2002 
to ensure persistence, transactions, and security are applied 

Oct. 13, 2011 

properly to every operation the Client Application performs 
on the object of the EJB 2002. The EJB container 2018 
manages security, transactions, and persistence automatically 
for EJB 2002, so a developer doesn’t have to use the software 
development tool to write this type of logic into the code 
corresponding to EJB 2002. 
I0130. The Database Management System (DBMS) Server 
2008 may be any known DBMS, such as Oracle 7.3.times./ 
8.times. DBMS, ODBC/Access 97, Cloudscape, ODBC/MS 
SQL Server, or IBM DB2 6.1. The DBMS Server 2008 man 
ages a known relational database 2020 that contains the busi 
ness data structures of the organization that an EJB Entity 
Bean represents (e.g., customers, bank accounts, or hotel 
rooms) or that an EJB SessionBean may access to complete a 
transaction (e.g., BankTeller Session Bean may perform Pro 
cessloan() method or HotelClerk SessionBean may perform 
Reserveroom() method). Thus, the Client Application 2004 
can invoke business methods remotely to access desired busi 
ness logic data in the database 2020 or perform a desired task 
that uses business logic data in the database 2020 via EJB 
2002. Enterprise JavaBeansTM are more clearly described in 
the following references, which are incorporated herein by 
reference: 
I0131 (1) Richard Monson-Haefel, Enterprise Java 
Beans TM 2nd Edition, O'Reilly & Associates (2000); 

I0132 (2) David Flanagan, et al., Java Enterprise in a 
Nutshell 2nd Edition, O'Reilly & Associates (1999); 

0.133 (3) Ed Rowan, Mastering Enterprise JavaBeans 
and the Java 2 Platform, Enterprise Edition, John Wiley & 
Sons (1999); and 

I0134) (4) Sun Microsystems Enterprise JavaBeansTM 
Specifications v 1.0, V1.1, and v2.0, available at http://java. 
Sun.com/products/eb/docs.html. 

0.135 FIG.21 depicts a data processing system suitable for 
practicing methods and systems consistent with the present 
invention, including Supporting and deploying an EJB. Data 
processing system 2100 includes a group of computers 2102. 
2104, 2106, and 2108 that are connected via network 2110. 
The network 2110 may be any known physical or wireless 
network capable of Supporting a data transmission between 
two computer systems, such as a Local Area Network (LAN), 
a Wide Area Network (WAN). Internet, or leased phone lines. 
(0.136 Each computer 2102, 2104, 2106, and 2108 
includes a memory (2112, 2114, 2116 and 2118, respec 
tively), a secondary storage device (2120, 2122, 2124 and 
2126, respectively), an I/O device (2128, 2130, 2132 and 
2134, respectively), and a processor (2136, 2138, 2140 and 
2142, respectively). Memory 2112 in computer 2102 
includes 610 improved software development tool (SDT) that 
is capable of supporting and deploying an EJB.. Memory 2112 
in computer 2102 also includes a compiler 2144. Such as Java 
Development Kit (JDK) v1.2 or later, which the software 
development tool uses to compile an EJB in the development 
and deployment processing described below. The Compiler 
2144 may reside in secondary storage device 2120 in com 
puter 2102 until prompted by the software development tool 
to compile the EJB as described below. In another implemen 
tation, the compiler 2144 may reside in secondary storage of 
another computer, Such as secondary storage device 2122, 
2124, or 2126 on computers 2104, 2106, or 2108, respec 
tively. In this implementation, the software development tool 
may access the compiler via network 2110. 
I0137 Memory 2114 in computer 2104 includes an EJB 
Application Server 2148 that generates the EJB container 



US 2011/0252401 A1 

2150 in memory 2114 when started by the software develop 
ment tool or when manually started by a developer. Memory 
2116 in computer 2106 includes a Client Application 2152 
and a browser 2154 that are used to test an EJB deployed by 
the software development tool. Memory 2118 in computer 
2108 includes a Database Management System 2156. Sec 
ondary storage device 2126 includes a database 2158 that is 
managed by the Database Management System Server 2156. 
Database 2158 stores business logic data that is accessible by 
an EJB deployed by the software development tool. As known 
to one skilled in the art, EJB Application Server 2148, Client 
Application 2152, and Database Management System Server 
2156 may be hosted locally with the software development 
tool on memory 2112 in computer 2102 so that the software 
development tool may deploy and test an EJB from the same 
computer. When the software development tool deploys and 
tests an EJB, the data processing system 2100 may function as 
described above for a three-tiered client/server system 2000. 
0138 
0.139. The software development tool provides the pro 
grammer with a segregated grouping and view of methods 
that define the behavior of an EJB, where the programmer is 
able to easily identify a method in an EJB implementation 
class to a respective method signature in either an EJB Home 
Interface or an EJB Remote Interface that corresponds to the 
EJB implementation class as explained below. FIGS. 22A and 
22B depict a flowchart illustrating an exemplary process per 
formed by the software development tool 610 for generating 
an EJB.. The software development tool initially receives a 
request to generate a type of EJB (step 2202). The type of EJB 
may be an EntityBean, a SessionBean, or any other similar 
distributed computing component. As shown in FIG. 23, the 
request is received by the software development tool via the 
actuation of a button 2302 that corresponds to the type of EJB. 
In the implementation shown in FIG. 23, the actuation of 
button 2302 indicates the request to generate a Session Bean, 
and the actuation of button 2304 indicates the request to 
generate an EntityBean. A developer, however, may use any 
known data input technique. Such as a pull-down menu selec 
tion or a keyboardinput, to indicate the request to the Software 
development tool. 
0140 Next, the software development tool generates 
source code for the requested type of EJB (step 2204). To 
generate source code for the requested type of EJB, the soft 
ware development tool performs the process in FIG. 9 to 
create a group of EJB source code files in the project for the 
requested type of EJB. If the requested type of EJB is an EJB 
EntityBean, the software development tool generates an EJB 
EntityBean Implementation Class 2401 like the one graphi 
cally depicted in FIG. 24 as 2402 by parsing an EntityBean 
Implementation Class template to add EJB EntityBean code 
to an EJB source code file. The EJB EntityBean code added 
by the Software development tool includes state-management 
callback methods (depicted graphically as 2404) that are 
invoked by the container 2150 to notify the EJB EntityBean 
when certain events are to occur on the EJB Application 
Server 2148. For example, setEntityContext( ) (depicted 
graphically as 2406) provides the EJB EntityBean with an 
interface to the EJB Application Server 2148 so the EJB 
EntityBean is able to get information about itself or its sur 
rounding environment. State-management callback methods 
are described in the Sun Microsystems EJB Specification 
previously incorporated herein by reference. 

Generating an Enterprise JavaBeanTM 

Oct. 13, 2011 

0.141. If the requested type of EJB is an EJB EntityBean, 
the software development tool also generates an EJB Entity 
Bean Primary Key class (graphically depicted as 2408) by 
parsing an EntityBean Primary Key Class template to add 
EJB Primary Key code to another EJB source code file. The 
EJB Primary Key code contains method constructs, such as 
“Entity 1 PK() “equal( ) and “hashcode() (graphically 
depicted as 2410,2414, and 2412, respectively) to identify the 
EJB EntityBean with a pointer to a table in the database 2158. 
The software development tool also adds a Primary Key 
attribute, “field 1’ (graphically depicted as 2416), to both the 
EJB EntityBean Implementation class 2602 and the EJB Enti 
tyBean Primary Key class 2408 to be used as a primary key 
index into the table in the database 2158. 

0142. In addition, if the requested type of EJB is an EJB 
EntityBean, the Software development tool also generates an 
EJB Home Interface (graphically depicted as 2418) and an 
EJB Remote Interface (graphically depicted as 2420) for the 
EJB EntityBean Implementation Class 2402. To generate the 
EJB Home Interface and the EJB Remote Interface, the soft 
ware development tool parses a Home Interface template to 
add Home Interface code to another source code file, and 
parses a Remote Interface template to add Remote Interface 
code to another source code file. The software development 
tool also adds signatures for life cycle methods contained in 
the EJB EntityBean Implementation Class 2402 to the code 
corresponding to the EJB Home Interface 2418, such as sig 
natures for create or find methods. The software development 
tool also adds signatures for business methods contained in 
the EJB EntityBean Implementation Class 2402 to the code 
corresponding to the EJB Remote Interface 2420. 
0.143 If the requested type of EJB is an EJB SessionBean, 
the software development tool generates an EJB SessionBean 
Implementation Class (graphically depicted as 2430), a cor 
responding EJB Home Interface (graphically depicted as 
2432), and a corresponding EJB Remote Interface (2434) by 
parsing one of a group of associated templates in the same 
manner as described for the EJB EntityBean Implementation 
Class 2402 above. The software development tool also adds 
signatures for life cycle methods contained in the EJB Ses 
sionBean Implementation Class 2430 to the code correspond 
ing to the EJB Home Interface 2432, such as a signature for 
create method. The Software development tool also adds sig 
natures for business methods contained in the EJB Session 
Bean Implementation Class 2430 to the code corresponding 
to the EJB Remote Interface 2434. 

0144. As shown in FIG. 22A, the software development 
tool then displays a graphical representation of the Source 
code for the EJB with a separately delineated display area for 
a method type and a separately delineated display area for 
reference types (step 2206). In one implementation shown in 
FIG. 24, to display a graphical representation of the Source 
code for the EJB, the software development tool displays a 
graphical representation of code corresponding to EJB Enti 
tyBean 2401 (depicted in diagram 2402), a graphical repre 
sentation of code corresponding to EJB Primary Key Class 
(depicted in diagram 2408), a graphical representation of 
code corresponding to EJB Home Interface (depicted in dia 
gram 2418), and a graphical representation of code corre 
sponding to EJB Remote Interface (depicted in diagram 
2420). The EntityBean diagram 2402 has a first display area 
2405 for create method types, a second display 2407 for 
finder method types, and a third display area 2409 for busi 
ness method types. Because there are no business methods in 



US 2011/0252401 A1 

the code corresponding to EJB EntityBean 2401, the software 
development tool displays nothing in the third display area 
2409 in this example. In addition, the software development 
tool displays a separately delineated area 2411 for reference 
types, such as an EJB Environment Reference, an EJB Ref 
erence, an EJB Security Role Reference, or an EJB Resource 
Reference, which are described below. The Home Interface 
diagram 2418 has a create method display area 2419 for 
signatures of the create method types displayed in the first 
display area. The Home Interface diagram 2418 also has a 
finder method display area 2421 for signatures of the finder 
method types displayed in the second display area. Remote 
Interface diagram 2420 has a business method display area 
2423 for signatures of the business method types displayed in 
the third display area. In another implementation, the Soft 
ware development tool receives an EJB display filter indica 
tion (e.g., a system display filter previously defined by a 
developer) and in response displays the graphical represen 
tation of code corresponding to EJB EntityBean 2402 without 
displaying the second, third, or graphical representations of 
code corresponding to EJB Primary Key class, EJB Home 
Interface, and EJB Remote Interface, respectively. 
0145. In another implementation shown in FIG. 24, to 
display a graphical representation of the source code for the 
EJB, the software development tool displays a graphical rep 
resentation of code corresponding to EJB SessionBean (de 
picted in diagram 2430), and a graphical representation of 
code corresponding to EJB Home Interface (depicted in dia 
gram 2432), and a graphical representation of code corre 
sponding to EJB Remote Interface (depicted in diagram 
2434). The SessionBean diagram 2430 that has a first display 
area for create method types 2435, a second display area 2437 
for business method types, and a separately delineated dis 
play area for reference types 2439. The Home Interface dia 
gram 2432 has a create method display area 2441 for signa 
tures of the create method types displayed in the first display 
area 2435, and has a finder method display area 2443 for 
signatures of the finder method types displayed in the second 
display area 2437. Remote Interface diagram 2434 has a 
business method display area 2445 for signatures of the busi 
ness method types displayed in the third display area 2439. 
0146 The software development tool displays a symbol 
with a display area to identify the corresponding method type 
or reference type displayed therein (step 2208). For example, 
as shown in FIG. 24, the software development tool displays 
a create method symbol 2446 as one of the group of symbols 
to identify that create method types are displayed in the 
respective display area, such as the first display area 2405 of 
the EJB EntityBean 2402 and the create method display area 
2419 of the EJB Home Interface 2418. The Software devel 
opment tool also displays a finder method symbol 2448 as a 
second of the group of symbols to identify that finder method 
types are displayed in the respective display area, Such as the 
second display area 2407 of the EJB EntityBean 2402 and the 
finder method display area 2421 of the EJB Home Interface 
2418. The software development tool also displays a business 
method symbol 2448 as a third of the group of symbols to 
identify that business method types are displayed in the 
respective display area, such as the third display area 2409 of 
the EJB EntityBean 2402 and the business method display 
area 2423 of the EJB Remote Interface 2420. Finally, the 
Software development tool also displays a references symbol 
2452 to identify that reference types needed by the EJB are 

Oct. 13, 2011 

displayed in the respective display area, Such as the fourth 
display area 2411 of the EJB EntityBean 2402. 
0.147. After software development displays the symbol 
with the display area, the software development tool receives 
a request to add a code element to code then next correspond 
ing to the EJB (step 2210). The programmer may request to 
add a business method to the EJB so that other business logic 
code can be written by the programmer for the newly added 
business method. FIG. 25 depicts an exemplary user interface 
2500 displayed by the software development tool, where the 
user interface 2500 displays a list of code element types 2502 
that the software development tool may generate for the 
selected EJB EntityBean 2402. Similarly, FIG. 26 depicts an 
exemplary user interface 2600 displayed by the software 
development tool, where the user interface 2600 displays a 
list of code element types 2602 that the software development 
tool may generate for die selected EJB Session Bean 2430. As 
shown in FIGS. 25 & 26, the software development tool may 
receive the request to add a code element to either the EJB 
EntityBean 2402 or the EJB Session Bean 2430 via a pro 
grammer selecting an option from the list of code element 
types displayed by the software development tool in a speed 
menu or pull down menu on user interface 2500 or 2600, 
respectively. As known to one skilled in the art, the program 
mer may indicate the request to the Software development 
tool using any known data input technique associated with the 
I/O device 606. 

0148 When either the EJB EntityBean 2402 or the EJB 
SessionBean 2430 is selected, the list of code element types 
includes a business method type (e.g., 2508 or 2604), an EJB 
Environment Reference type (e.g., 2514 or 2606), an EJB 
Reference type (e.g., 2516 or 2608), an EJB Security Role 
Reference type (e.g., 2518 or 2610), or an EJB Resource 
Reference type (e.g., 2520 or 2612), which are described 
below. In addition, when the EJB EntityBean 2402 is 
selected, the list of code element types also includes a create 
method type 2504, a find method type 2506, a persistent field 
type 2510 that is to be mapped to a database table correspond 
ing to the EJB EntityBean 2402, and another primary key field 
type 2512 that is to be used in combination with the primary 
key field (e.g., 2416) already in the code of the EJB Entity 
Bean to uniquely identify the EJB EntityBean to a database 
table. For example, assuming that the EJB EntityBean repre 
sents a senior citizen, the name of the citizen and the age of the 
citizen may be two primary fields needed in combination to 
identify the EJB EntityBean to a corresponding table in the 
database. 

0149. After receiving the request, the software develop 
ment tool adds the requested code element to the implemen 
tation class of the EJB (step 2212). For example, as shown in 
FIG. 27, when the software development tool receives the 
request to add a code element corresponding to business 
method type 2508 in step 2210, the software development 
tool adds a business method construct (graphically depicted 
as 2702) as the requested code element to code corresponding 
to EJB EntityBean 2402 in the first of the group of source 
code files of the EJB.. As explained below, the software devel 
opment tool saves development time by automatically adding 
a signature of the business method construct 2702 to the EJB 
Remote Interface 2420. FIG. 28 depicts an exemplary user 
interface 2800 displayed by the software development tool in 
response to receiving the request to add a code element cor 
responding to a create method type 2504 to the EJB Entity 
Bean 2402. In this instance, the software development tool 



US 2011/0252401 A1 

adds an ebCreate method construct 2804 and an ebPostCre 
ate method construct 2806 to the code corresponding to EJB 
EntityBean 2402 in the first of the group of source code files 
of the EJB.. As explained below, the software development 
tool also automatically adds signatures of the ebCreate 
method construct 2804 and ebPostCreate method construct 
2806 to the EJB Home Interface 2418 to save a developer 
programming time. By invoking the added ebCreate method 
construct 2804 or the added ebPostCreate method construct 
2806 via the EJB Home Interface 2418, a client may indicate 
to the EJB EntityBean 2402 to add a new record to an asso 
ciated database table and initialize the new record. FIG. 29 
depicts an exemplary user interface 2900 displayed by the 
Software development tool in response to receiving the 
request to add a code element corresponding to a find method 
type 2506 to the EJB EntityBean 2402. In this instance, the 
software development tool adds an ebFindMethod construct 
2902 to the code corresponding to EJB EntityBean 2402 in 
the first of the group of source code files of the EJB.. The 
Software development tool, as explained below, also auto 
matically adds a signature of the ebFindMethod construct 
2902 to the EJB Home Interface 2418 to save a developer 
programming time. By invoking die added ebFindMethod 
construct 2902 via the EJB Home Interface 2418, a client may 
indicate to the EJB EntityBean 2402 to Find record(s) in the 
database that match the ebFindMethod request. 
0150 FIG. 30 depicts an exemplary user interface 3000 
displayed by the software development tool in response to 
receiving the request to add a code element corresponding to 
a persistent field type 2510 to the EJB EntityBean 2402. In 
this instance, the software development tool adds a persistent 
field attribute 3002 to the code corresponding to EJB Entity 
Bean 2402 in the first of the group of source code files of the 
EJB.. A developer may use the persistent field attribute within 
business logic code of the added business method construct 
2702 in order to refer to a business data value stored in a 
corresponding field in a table of the database. 
0151 FIG. 31 depicts an exemplary user interface 3100 
displayed by the software development tool in response to 
receiving the request to add a code element corresponding to 
a primary key field type 2512 to the EJB EntityBean 2402. In 
this instance, the Software development tool adds a primary 
key field attribute 3102 to the code corresponding to EJB 
EntityBean 2402 in the first of the group of source code files 
of the EJB.. As further explained below, the software devel 
opment tool also automatically adds the same primary key 
field attribute 3102 as a primary key field attribute in code 
corresponding to the EJB Primary Key Class 2408 to save a 
developer programming time and prevent a mistake in mis 
matching the two attributes. As discussed above, the primary 
key field (e.g., 2416) and the additional primary key field 
3102 may be used in combination to uniquely identify the 
EJB EntityBean to a database table. 
0152 FIGS. 32, 33, 34, and 35 depict exemplary user 
interfaces displayed by the software development tool in 
response to receiving the request to add a code element cor 
responding to an EJB Environment Reference type 2514 in 
FIG. 25, an EJB Reference type 2516 in FIG. 25, an EJB 
Security Role Reference type 2518 in FIG. 25, and an EJB 
Resource Reference type 2520 in FIG. 25 to the EJB Entity 
Bean 2402, respectively. In each instance, the software devel 
opment tool adds a persistent resource attribute correspond 
ing to the respective type (i.e., 3202, 3302, 3402, and 3502 
shown in FIGS. 32,33, 34, and 35) to the code corresponding 

Oct. 13, 2011 

to EJB EntityBean 2402 in the first of the group of source 
code files of the EJB.. These references may be correlated to 
references specified in a deployment descriptor file that is sent 
to the container 2150 via the EJB Application Server 2148 
when the EJB EntityBean 2402 is deployed to the EJB Appli 
cation Server 2148. The container 2150 identifies these ref 
erences to the EJB EntityBean 2402 upon request from the 
EJB EntityBean 2402.The EJB Environment Reference3202 
is a property that the EJB EntityBean 2402 may reference 
when it is running (i.e., an instance of the EJB EntityBean 
2402 has been created) to ascertain where the EJB EntityBean 
2402 is deployed so that the EJB EntityBean 2402 is able to 
customize its behavior accordingly. The EJB Reference 3302 
is a property that the EJB EntityBean 2402 may reference 
when running in order to call another EJB for information to 
complete processing of business logic within the EJB Entity 
Bean 2402. The EJB Security Role Reference 3402 is a prop 
erty that the EJB EntityBean 2402 may reference when 
executing in order to identify a security role (e.g., a user or 
group) with access to the EJB EntityBean 2402. The EJB 
Resource 3502 is a property that the EJB EntityBean 2402 
may reference when executing to identity an external 
resource, such as avax.sql. DataSource' which is used to 
obtain a connection to a database. In addition to saving the 
developer programming time, the Software development tool 
correlates these resources to a deployment descriptor file 
when the EJB EntityBean 2402 is deployed as further dis 
cussed below. After adding the requested code element to the 
first of the group of source code files of the EJB, the software 
development tool also updates the TMM 200 to the first of the 
group of source code files of the EJB so that the TMM 200 has 
a language neutral representation of the EJB EntityBean 2402 
that includes the requested code element. 
0153. Returning to FIG. 22A, the software development 
tool modifies the graphical representation of code corre 
sponding to the EJB (step 2214). As shown in FIGS. 27 
through 35, the software development tool modifies the 
graphical representation of code corresponding to the EJB by 
modifying the graphical representation of code correspond 
ing to the EJB EntityBean 2402 to reflect the addition of the 
requested code element. In addition, the Software develop 
ment tool displays the addition of the requested code element 
in the display area that corresponds to the type of the 
requested code element. For example, as shown in FIG. 28, 
the software development tool displays the addition of eb 
Create and ebPostCreate methods within the first display 
area 2405 of the EJB EntityBean 2402 that corresponds to 
create method types. 
0154 Next, the software development tool determines 
whether the requested code element is a method to be added 
to the EJB (step 2216 in FIG. 22B). If the requested code 
element is a method, the software development tool deter 
mines whether the requested code element is a business 
method (step 2218). If the requested code element is a busi 
ness method, the Software development tool adds a business 
method signature to the EJB Remote Interface that corre 
sponds to the business method added to the EJB implemen 
tation class (step 2220). The software development tool then 
modifies the graphical representation of code corresponding 
to the EJB Remote Interface (step 2228). As shown in FIG. 
27, the software development tool adds a business method 
signature (graphically depicted as 2704) to the EJB Remote 
Interface that corresponds to the business method 2702 added 
to the EJB EntityBean 2402. As previously discussed, by 



US 2011/0252401 A1 

adding the business method signature to the EJB Remote 
Interface, the software development tool saves the developer 
programming time and ensures that the method signature in 
the EJB Remote Interface matches the method added to the 
related EJB EntityBean Implementation Class 2402. 
0155 If the requested code element is a not a business 
method as previously determined in step 2218, the software 
development tool adds a method signature corresponding to 
code element to the EJB Home Interface (step 2222). If the 
requested code element is not abusiness method, the Software 
development tool recognizes that the method to be added is a 
create or finder method whose signature is to be added to code 
corresponding to the EJB Home Interface 2418. The software 
development tool then modifies the graphical representation 
of the code corresponding to the EJB Home Interface (step 
2230). Depending on the requested code element, the soft 
ware development tool modifies the graphical representation 
of the code corresponding to the EJB Home Interface by 
displaying the signature of a create method or a finder element 
(e.g., signature 3604 for the finder element) in the create 
method display area 2419, in FIG. 24, or in the finder method 
display area 2421, in FIG. 24. FIG. 36 depicts an exemplary 
user interface displayed by the software development tool in 
FIG. 2, where the user interface displays a find method sig 
nature for the code element added to the EJB Home Interface 
by the software development tool. As shown, user interface 
3600 displays a find method signature 3604 for the code 
element added to the EJB Home Interface 2418. The software 
development tool automatically adds a signature 3604 of the 
ebFindMethod construct 3602 to the EJB Home Interface 
2418 to save a developer programming time. By invoking the 
added eibFindMethod construct 3602 via the EJB Home 
Interface 2418, a client may indicate to the EJB EntityBean 
2402 to Find record(s) in the database that match the ebFind 
Method request 2904. 
0156 If the requested code element is not a method as 
previously determined in step 2216, the software develop 
ment tool determines whether the requested code element is a 
primary key field (step 2224). If the requested code element is 
the primary key field, the software development tool adds a 
primary key field to the EJB Primary Key Class (step 2226). 
The software development tool then modifies the graphical 
representation of code corresponding to the EJB primary 
class (step 2232). FIG.37 depicts an exemplary user interface 
3700 displayed by the software development tool, where the 
user interface 3700 displays the primary key field 3702 added 
to the Primary Key Class 2408 by the software development 
tool. The primary key field 3702 corresponds to the primary 
key field 3702 added by the software development tool to the 
code corresponding to the EJB EntityBean 2402. If the 
requested code element is not a primary key field as previ 
ously described in step 2216, the software development tool 
has no further steps to perform and ends processing for the 
generation of the EJB. 
0157 Compiling, Deploying and Debugging an Enter 
prise JavaBeanTM 
0158. As previously described, the project comprises a 
group of object-oriented elements. An object-oriented ele 
ment may be a class or an interface. The project may also 
include a group of packages. Each package corresponds to a 
directory in the project where a respective portion of the 
object-oriented elements is stored. An EJB in the project may 
be an EntityBean that is comprised of four object-oriented 
elements: two classes (i.e., an implementation class and a 

Oct. 13, 2011 

primary key class) and two interfaces (i.e., a home interface 
and a remote interface). An EJB may also be a SessionBean 
that is comprised of three object-oriented elements: one class 
(i.e., an implementation class) and two interfaces (i.e., a home 
interface and a remote interface). 
0159. After generating an EJB or after an EJB developed 
using another tool is provided to the software development 
tool by a programmer, the Software development tool allows 
the programmer to deploy and test the EJB. FIGS. 38A 
through 38F depict a flowchart illustrating an exemplary pro 
cess performed by the software development tool to compile, 
deploy, and debug an EJB. In general, an EJB deployed by the 
Software development tool accesses business logic data 
stored in a database (i.e., database 2158 on computer 2108) in 
response to a Client Application 2152 invoking a business 
method associated with the EJB. Initially, the software devel 
opment tool receives an indication of an EJB that is to be 
deployed (step 3802). As shown in FIG. 39, the software 
development tool receives the indication of the EJB (i.e., 
depicted as diagram 3902) via amouse click by a programmer 
while the mouse cursor is over the diagram 3902 that graphi 
cally represents code corresponding to the EJB.. As known to 
one skilled in the art, the programmer may indicate the EJB to 
the Software development tool using any known data input 
technique associated with the I/O device 606. Note for clarity, 
the identified EJB is referenced as EJB3902 in the following 
discussion. 
0160. In another implementation, the software develop 
ment tool may receive die indication of an EJB to be deployed 
as all EJBs in the project. In still another implementation, the 
software development tool may receive the indication of an 
EJB to be deployed as a portion of EJBs in the project that are 
displayed graphically on pane 3904. The portion of EJBs in 
the project that is displayed graphically on pane 3904 may be 
among the respective portions of object-oriented elements 
stored in a package of the project. In this implementation, the 
software development tool may invoke TMM 200 for the 
portion of EJBs in the project that are displayed graphically 
on pane 3904, as TMM 200 tracks a display status for each 
object-oriented element in the project. Note that the software 
development tool stores in a graphical view file in the project, 
the name and display coordinates of each symbol or diagram 
that may be displayed in the graphical pane 3904. When the 
project is opened, the software development tool parses the 
graphical view file into TMM 200, which then correlates the 
name and display coordinates of each symbol to a respective 
file corresponding to each object-oriented element in the 
project as discussed in reference to FIGS. 10A and 10B 
above. Thus. TMM 200 may subsequently track the display 
status for each object-oriented element in the project. 
0.161 Next, the software development tool also receives a 
request to deploy the EJB (step 3804). As shown in FIG. 39, 
the software development tool may receive the request to 
deploy the EJB via a programmer selecting a deployment 
option 3906 from a pull-down menu on user interface 3900. 
The software development tool, however, may receive the 
request to deploy the EJB via any known data input technique, 
such as an actuation button on the user interface 3900 or via a 
keyboard input. 
0162. After receiving the request to deploy the EJB, the 
software development tool receives an indication of an EJB 
target application server(step 3806). As illustrated in FIG. 40. 
the programmer may indicate the EJB target application 
server 4002 to the software development tool from a list of 



US 2011/0252401 A1 

application servers 4004 that are retrieved from a configura 
tion file and displayed by the software development tool in 
response to the request to deploy the EJB or in response to the 
programmer selecting a pull-down menu on a user interface 
4000. The identified EJB target application server may be any 
known application server that complies with JAVA 2 Enter 
prise Edition (J2EE) specification, such as generic 1.1 or 1.0, 
Weblogic Server, or IBM WebSphere Server. For the discus 
sion to follow, it is assumed that the EJB target application 
server 4002 corresponds to EJB Application Server 2148 that 
resides on computer 2104. 
0163 The software development tool then determines 
whether to hot deploy the EJB (step 3808). The software 
development tool may hot deploy EJB 3902 by starting the 
EJB target application server 4002 on the computer 2104 
before deploying EJB 3902. By hot deploying EJB3902, the 
software development tool saves development time as the 
programmer no longer has to manually start the EJB target 
application server 4002 to test or debug the EJB 3902. In 
addition, by hot deploying the software development tool is 
able to re-deploy the EJB without having to re-start the EJB 
target application server 4002, saving the programmer Sig 
nificant time and effort. The manual effort to start the EJB 
target application server 4002 on computer 2104 is significant 
where computer 2104 is remotely located. As discussed 
below, the software development tool is able to “cold deploy” 
to facilitate testing of the EJB. In this situation, the software 
development tool deploys the EJB to the EJB target applica 
tion server and then starts restarts the EJB target application 
server so that the EJB target application server will recognize 
and support the deployed EJB. Each time the software devel 
opment tool “cold deploys’ the EJB (e.g., re-deploys the EJB 
after a modification of the EJB is made and the EJB is recom 
piled), the software development tool restarts the EJB target 
application server. 
0164. In one implementation, the software development 
tool may hot deploy by first sending a known ping message 
via network 2110 to the EJB target application server 4002 on 
computer 2104 to identify if the EJB target application server 
4002 is already started. Thus, even if the EJB target applica 
tion server 4002 is an application server that cannot be 
remotely started by the software development tool, the soft 
ware development tool still may save the programmer devel 
opment time by pinging the EJB target application server 
4002 to determine ifa hot deployment is possible. A program 
mer may indicate to hot deploy EJB 3902 via actuation of a 
button on user interface 4000 or any other known program 
ming data input technique. In one implementation shown in 
FIG. 41, a programmer may indicate to the software devel 
opment tool to hot deploy EJB 3902 by selecting an applica 
tion server from the list of application servers 4004 that is 
pre-defined to be started by the software development tool. 
For example, the selection for EJB target application server 
4102 has a prefix of “Start” to visually indicate that this server 
is to be started by the software development tool in prepara 
tion for a hot deployment of EJB 3902. 
(0165 If the EJB 3902 is to be hot deployed, the software 
development tool receives an operation mode for starting the 
EJB target application server (step 3810). The operation 
mode may be normal mode 4104 for testing EJB 3902 after 
deployment with the Client Application 2152, or the opera 
tion mode may be debug mode 4106 for debugging EJB 3902 
after deployment to the EJB target application server 4002. In 
addition, the software development tool receives access infor 

20 
Oct. 13, 2011 

mation to start EJB target application server (step 3812). FIG. 
42 depicts an exemplary user interface 4200 showing access 
information 4202 received by the software development tool 
for the EJB target application server 4002. The access infor 
mation 4202 may be default access information the software 
development tool retrieves from a configuration file (not 
shown) associated with identified EJB target application 
server 4002, or may be entered by the programmer. As illus 
trated in FIG. 42, in one implementation in which the EJB 
Application Server 2148 (which corresponds to EJB target 
application server 4002 as previously indicated) is stored 
locally with the software development tool on computer 
2102, access information may include a location 4202 that 
identifies the local directory on computer 2102 where the EJB 
target application server 4002 is stored. In another implemen 
tation (not shown in figures) in which the EJB Application 
Server 2148 is located remotely on computer 2104, access 
information may include: the identification of the computer 
2104; the location of the EJB Application Server 2148 on the 
computer 2104; and access privileges, such as a username and 
password for the programmer, which are authorized by the 
computer 2104 before the software development tool is able 
to proceed with the hot deployment of EJB3902. As shown in 
FIG. 43, the access information received by the software 
development tool may also include a port address 4302 that is 
assigned to the EJB Application Server 2148 via any known 
network protocol application, such as WinSockTM, for com 
municating with the Software development tool on computer 
2102 via network 2110. The port address 4302 of the EJB 
Application Server 2148 allows the software development 
tool to transmit a communication, Such as a start command, 
via a message packet (i.e., TCP/IP message) to the EJB Appli 
cation Server 2148 on network 2110. 

0166 Having received the access information for the EJB 
target application server 4002, the software development tool 
starts target application server (step 3814). To start the EJB 
target application server 4002, the software development tool 
sends a start command created from a known application 
program interface (API) for the EJB target application server 
4002. In another implementation, the software development 
tool sends a pre-defined batch file that contains instructions 
recognizable by the EJB target application server 4002 for 
starting the EJB target application server 4002. The pre 
defined batch file (not shown in figures) may be stored in 
secondary storage device 2120. 
0167. The software development tool also receives an 
address port to listen for communications between the EJB 
target application server and the Client Application (step 
3816). FIG. 44 depicts an exemplary response 4400 received 
by the software development tool from the EJB target appli 
cation server 4002 in response to the software development 
tool sending a command to start EJB target application server 
4002. As part of the response 4400, the software development 
tool receives a listening port address 4402 assigned to the EJB 
Application Server 2148 via any known network protocol 
application, such as WinSockTM, for communicating with the 
Client Application 2152 via network 2110. As described 
below, the software development tool uses the listening port 
address 4402 to listen for communications between the Client 
Application 2152 and the EJB Application Server 2148 (i.e., 
the EJB target application server 4002). By listening for com 
munications between these two servers 2152 and 2148, the 
software development tool is able to test and debug the opera 
tion of EJB 3902 after it is deployed as further explained 



US 2011/0252401 A1 

below. In addition, as shown in FIG. 44, the software devel 
opment tool receives a confirmation 4404 that the EJB target 
application server 4002 has been started. As discussed above, 
in one implementation, the Software development tool may 
receive the confirmation 4404 that the EJB target application 
server 4002 has been started in response to the software 
development tool sending a known ping message to the EJB 
target application server 4002 on port address 4302, in FIG. 
43. Thus, the software development tool has readied the EJB 
target application server 4002 for a hot deployment of EJB 
3902. 

(0168 If the EJB 3902 is not to be hot deployed or if the 
software development tool has readied the EJB target appli 
cation server 4002 for a hot deployment of the EJB 3902, the 
Software development tool receives deployment options (step 
3818 in FIG.38B). FIG. 45 depicts an exemplary user inter 
face 4500 displayed by the software development tool, where 
the user interface 4500 displays a list of deployment options 
4502 that a programmer may select to be performed by the 
Software development tool in conjunction with deploying the 
EJB3902. The list of deployment options is discussed below 
in reference to further processing performed by the software 
development tool. 
0169. The software development tool also determines 
whether a verify and correct compliance option from among 
the list of deployment options is selected (step 3820). If the 
verify and correct compliance option 4504 in FIG. 45 is 
selected, the software development tool determines whether 
code corresponding to the EJB complies with an EJB speci 
fication (step 3822). To determine or verify that code corre 
sponding to the EJB is compliant, the software development 
tool parses a configuration file (not shown in figures) associ 
ated with the EJB target application server 4002 for an iden 
tification of the EJB specification that the EJB target appli 
cation server 4002 supports. For example, a configuration file 
associated with Weblogic Server V5.1 may include a compli 
ance specification identification that identifies EJB specifica 
tion v1.1 as the latest specification that the Weblogic Server 
V5.1 supports. In one implementation, the software develop 
ment tool may use the identification to parse a file containing 
a corresponding known EJB Specification v1.1 to obtain a 
group of compliant method constructs and compliant trans 
action attributes that the software development tool may com 
pare to the code corresponding to EJB 3902. For example, the 
software development tool may use Sun Microsystems EJB 
specification v1.1 previously incorporated by reference to 
search for and identify that the compliant method construct 
for an “ebCreate() method has a return type of “primary 
key' as opposed to having a “void return type as specified in 
the Sun Microsystems’ EJB specification v1.0. Thus, if code 
corresponding to EJB 3902 has a “ebCreate() construct 
defined according to EJB specification v1.0, the software 
development tool may isolate this portion of the code corre 
sponding to EJB 3902 as being non-compliant. In another 
implementation, the configuration file associated with the 
EJB target application server 4002 may identify a group of 
compliant verification/correction steps that the software 
development tool may take to verify and correct code corre 
sponding to EJB3902 rather than parsing a known EJB speci 
fication. The compliant verification/correction steps may be 
written in a script language that the Software development 
tool can read to identify the group of compliant constructs 
(i.e., “ebCreate()' with return type of primary key) to search 
for in the code corresponding to EJB 3902. 

Oct. 13, 2011 

0170 As shown in FIG. 46, the software development tool 
in performing step 3826 may display verify/correct compli 
ance options 4602 and 4604 that a programmer may select for 
the software development tool to perform. Verify/correct 
compliance option 4602 may indicate to the software devel 
opment tool to stop if verification fails. Verify/correct com 
pliance option 4604 may indicate to proceed to correct code 
corresponding to EJB 3902 if the code does not comply with 
the identified specification. 
0171 If the software development tool determines that 
code corresponding to the EJB is not compliant with the EJB 
specification, the software development tool corrects the code 
corresponding to the EJB to comply with the EJB specifica 
tion (step 3824). To correct the code, the software develop 
ment tool replaces a non-compliant portion of the code cor 
responding to EJB 3902 in a respective file in the project with 
a compliant portion identified by the EJB specification. For 
example, if the software development tool found that a por 
tion of code corresponding to EJB 3902 contained an “eb 
Create()' with a “void return type, the software develop 
ment tool would identify, that portion as non-compliant and 
will replace the non-compliant portion with the compliant 
portion. In this example, the software development tool 
replaces the non-compliant “void’ with the compliant return 
type of primary key. Note that the software development tool 
may identify the primary key type as an attribute in the imple 
mentation class of EJB3902 based on “PK’ being in the name 
of the primary key type. 
0172. After correcting the non-compliant portion, the soft 
ware development tool also refactors code corresponding to 
the EJB (step 3826). The software development tool may 
refactor code corresponding to EJB 3902 by searching for 
code corresponding to each object-oriented element in the 
project for a reference to the non-compliant portion of EJB 
3902. For example, when the non-compliant portion is “void 
ebCreate()” for EJB 3902, then the software development 
tool searches for any other class in the project that implements 
the home interface of EJB 3902 and references the method 
“voidebCreate” for EJB 3902. The class may be a client test 
class for debugging EJB 3902. Assuming another class in the 
project that references the method “void ebCreate” for EJB 
3902 is identified, the software development tool replaces the 
identified reference with a reference that matches the com 
pliant portion, such as replacing “void’ with “a return type of 
primary key. As one skilled in the art may appreciate, the 
Software development tool continues refactoring code corre 
sponding to each object-oriented element in the project until 
the software development tool does not identify a reference to 
the non-compliant portion or any other reference to code 
corrected in the process of refactoring for the non-compliant 
portion. 
(0173 As shown in FIG. 38B, the software development 
tool determines whethera compile option from among the list 
of deployment options is selected (step 3828). If the compile 
option is selected, the software development tool receives 
compiler access information (step 3829). As illustrated in 
FIG. 47, the compiler access information 4702 includes a 
location where the compiler resides on the network 2110 and 
a name of the compiler. As described above, the compiler may 
be located in secondary storage device 2120, 2122, 2124, or 
2126 of computers 2102, 2104, 2106, or 2108, respectively. 
For example, as shown in FIG. 47, compiler access informa 
tion 4702 identifies the location as secondary storage 2120 
(e.g., a local drive “e:\') on the local computer 2102, and 



US 2011/0252401 A1 

identifies the name of the compiler as "jdk1.2.2. In another 
implementation, when the software development tool 
accesses the compiler remotely via the network 2110, the 
compiler access information 4702 may include an identifica 
tion of a remote computer (i.e., 2122, 2121, 2126, 2104, 2106 
or 2108) where the compiler is located. In this implementa 
tion, the compiler access information 4702 may also include 
access privileges for communicating with the compiler on the 
identified computer. In performing the step of receiving com 
piler access information, the software development tool may 
determine whether the named compiler is compatible with the 
EJB target application server 4002 where the compiled EJB is 
to be deployed and run. If the software development tool 
determines that the named compiler is not compatible, the 
Software development tool may display a compiler incompat 
ibility error (not shown in figures), rather than attempt to use 
the named compiler to compile EJB 3902. 
0.174 Next, the software development tool sends a com 
mand to the compiler to compile the EJB (step 3830). In one 
implementation, the Software development tool may use a 
known scriptor batch file command that is recognizable to the 
compiler identified in compiler access information 4702. The 
script or batch file command sent by the software develop 
ment tool also identifies the location of code corresponding to 
the EJB to be compiled. The software development tool then 
receives the compiled EJB (step 3831). Using the compiler 
access information 4702, the software development may 
receive the compiled EJB by monitoring for a compilation 
complete response from the compiler or by monitoring a 
directory that the compiler is to store the compiled EJB when 
compilation is complete. Such as the directory that contains 
the source code corresponding to the EJB. 
0.175. The software development tool also receives access 
information for a platform hosting the EJB target application 
server (step 3832 in FIG. 38C). In one implementation, the 
platform hosting the EJB target application server 4002 may 
be the local computer 2102 where the software development 
tool also resides. In another implementation, the platform 
hosting the EJB target application server 4002 may be the 
remote computer 2104. As shown in FIG. 48, the access 
information 4802 for the platform hosting the EJB target 
application server 4002 may include a system password 4804, 
a server port 4806, and a server host identification 4808. The 
system password 4804 may be provided to the software devel 
opment tool to authorize the deployment of EJB 3902 to the 
EJB target application server 4002 hosted on the platform. 
The server port 4806 may correspond to the listening address 
port 4402, in FIG. 44, obtained in response to starting the EJB 
target application server 4002 for a hot deployment of the EJB 
3902. The server host identification 4808 may correspond to 
the local computer 2102 or the remote computer 2104. Note 
that the system password 4804 may not be needed by the 
software development tool to start the EJB target application 
server 4002, but may be needed to deploy EJB 3902 to the 
EJB target application server 4002. 
0176 The software development tool also determines 
whether a Java Server Page (JSP) test client option from 
among the list of deployment options is selected (step 3834). 
AJSP is an extension of Sun Microsystems Java servlet (i.e., 
an applet executed on a server) technology. A JSP allows the 
Software development tool to incorporate code corresponding 
to method calls or signatures associated with the home and 
remote interfaces of EJB 3902 directly into an HTML page as 
a scripting language. JSPs are defined in Sun MicroSystems 

22 
Oct. 13, 2011 

J2EE specification and are more clearly described in the 
following references, which are incorporated herein by ref 
erence: (1) Marty Hall, Core Servlets and Java Server Pages 
(JSP), Prentice Hall PTR/Sun Microsystems Press (2000), 
and (2) Duane K. Fields and Mark A. Kolb, Web Development 
With Java Server Pages, Manning Publication Company 
(2000). 
(0177. As illustrated in FIG. 49, if the JSP test client option 
is selected, the software development tool receives a public 
location 4902 for storing a JSP document definition file, such 
as an HTML file. The JSP document definition file to be 
stored at the public location 4902 identifies the data structure 
for a group of JSP files generated by the software develop 
ment tool for use intesting EJB 3902 once it is deployed. Any 
application, such as the browser 2154 on the Client Applica 
tion 2152, may access the JSP document definition file to 
interpret the group of JSP files. The public location 4902 may 
be any location on computer 2104 that is accessible to any 
application server remotely located to EJB Application 
Server 2148. The software development tool may also receive 
a private location 4904 to store the JSP files generated by the 
software development tool (step 3836). To avoid-disorder in 
public location 4902, the software development tool gener 
ates a subdirectory of the public location 4902 that corre 
sponds to the private location 4904. The private location 4904 
may not be accessible to the public without access privileges 
such as system password 4804 for computer 2104. The soft 
ware development tool also receives a network address for 
browsing the JSP files (step 3838). As shown in FIG. 49, the 
network address 4906 includes the server port 4806, in FIG. 
48. The server port 4806 corresponds to the listening address 
port 4402, in FIG. 44, which the software development tool 
uses to listen to communication between the Client Applica 
tion 2152 and the EJB Application Server 2148. As discussed 
below, the software development tool provides the network 
address 4906 to the browser 2154 on the Client Application 
2152 to facilitate testing EJB 3902. 
0.178 Next, the software development tool generates the 
JSP files that may be used to test the EJB (step 3842). To 
generate the JSP files for testing the EJB, the software devel 
opment parses a group of JSP templates Stored on secondary 
storage device 2120 of computer 2102. Each group of JSP 
templates may contain HTML type tags that the software 
development tool parses to identify instructions for generat 
ing the group of JSP files. As shown in FIG. 50, one of the 
group of JSP templates includes a Navigation Page template 
5002 that indicates to the software development tool that each 
EJB EntityBean and each EJB SessionBean in the project is to 
be identified and that the name of each EJB EntityBean and 
the name of each EJB SessionBean is to be shown in a JSP 
Navigation Page that is a first of the group of JSP files gen 
erated by the software development tool. The JSPNavigation 
Page is also the first of the group of JSP files that the Client 
Application 2152 may browse via browser 2154 when access 
ing the network address 4906 (i.e., the URL for browsing the 
JSP files). To identify each EJB EntityBean and each EJB 
SessionBean, the software development tool invokes TMM 
200 for the respective name of each EJB EntityBean and each 
EJB SessionBean that is currently in TMM 200, and adds the 
respective names as indicated by the Navigation Page tem 
plate to the JSPNavigation Page. The Navigation Page tem 
plate 5002 also indicates to the software development tool to 
identify each ebCreate () method associated with each EJB 
EntityBean and each EJB Session Bean in the project and 



US 2011/0252401 A1 

provide an ebCreate hyperlink in the JSPNavigation Page to 
allow a programmer to invoke each ebCreate() method. As 
discussed below, when testing an EJB (i.e., EJB 3902) 
deployed by the software development tool, the programmer 
may actuate each ebCreate hyperlink to invoke each ebCre 
ate() method to verify that an instance of the respective EJB 
is created. 
0179. In one implementation where the software develop 
ment tool identifies a parameter for the ebCreate() method 
(e.g., ebCreate(String CustomerName)) in code correspond 
ing to the EJB, the software development tool provides a 
default value in the respective JSP file to initialize the param 
eter when it is invoked via the JSP Navigation Page. The 
parameter (e.g., "CustomerName') corresponds to a field in 
the respective EJB EntityBean or EJB Session Bean that is 
mapped to an attribute field in a database (i.e., 2158 in FIG. 
21). The field in the respective EJB (and thus the attribute field 
in the database table) is initialized to the default value when 
the instance of the EJB is created. 
0180. In another implementation, if the software develop 
ment tool identifies that the ebCreate() method has a param 
eter, the software development tool provides in the respective 
JSP file that the hyperlink for each ebCreate() method in the 
JSPNavigation Page launch a JSPCreator Run Page. The JSP 
Creator Run Page is a second of the JSP files generated by the 
software development tool. The JSP Creator Run Page pro 
vides the programmer with the capability to provide an initial 
value for the parameter before the respective ebCreate() 
method is invoked and run. To generate the JSPCreator Run 
Page, the software development tool parses a Creator Page 
template (not shown) that is a second of the group of JSP 
templates. The Creator Page template indicates to the soft 
ware development tool to provide an entry box on the JSP 
Creator Page for accepting an initial value for the parameter, 
and to provide anotherhyperlink to invoke and run the respec 
tive ebCreate() method with the parameter set to the initial 
value. In one implementation in which the Client Application 
2152 is hosted with the software development tool on the 
local computer 2102, the software development tool may 
verify that an instance of the respective EJB was created and 
that the field of the respective EJB was initialized to the 
parameter by accessing and displaying the attribute field in 
the database (i.e., 2158). 
0181. The Navigation Page template 5002 also indicates 

to the software development tool to identify each finder 
method (e.g., a findByPrimaryKey() and eibfind() methods) 
associated with each EJB EntityBean in the project. If the 
software development tool identifies a finder method, the 
software development tool provides a hyperlink in the JSP 
Navigation Page to launch a JSP Run Finder Page. The JSP 
Run Finder Page is a third of the group of JSP files generated 
by the software development tool. To generate the JSP Run 
Finder Page, the software development tool parses a Run 
Finder template (not shown) that is the third of the group of 
JSP templates. The software development tool provides a 
finder hyperlink in the JSP Run Finder Page for each finder 
method that is identified so that a programmer may invoke 
each finder method. The software development tool provides 
a finder entry box next to a respective finder hyperlink in the 
JSP Run Finder Page so that the programmer may enter a 
known value to pass as a parameter when the respective finder 
method is invoked. 

0182. In addition, the software development tool launches 
a JSP Bean Page, a fourth of the JSP files, when a return is 

Oct. 13, 2011 

received in response to completing the respective ebCreate( 
) method or in response to completing the respective finder 
method on the EJB deployed by the software development 
tool. Thus, the return from the respective method and the 
resulting launch of the JSP may confirm that an instance of the 
respective EJB was created by the ebCreate() method or that 
the correct field was found for the finder method. The soft 
ware development tool creates the JSP BeanPage in response 
to parsing a Bean Page template (not shown) that is the fourth 
of the JSP templates. The Bean Page template indicates to the 
software development tool to provide a business method 
hyperlink on the JSP Bean Page for invoking each business 
method that is identified in each EJB EntityBean or EJB 
SessionBean in the project. The programmer may invoke 
each business method hyperlink to test the operation of the 
respective business method. The software development tool 
also generates a JSP Operation Call Result Page that is the 
fifth of the JSP files. The software development tool provides 
a window on the JSP Operation Result Page for displaying an 
operation call result that corresponds to the return type of the 
respective business method that is invoked. Thus, the pro 
grammer is able to visually confirm the operation of the 
respective business method as further described below. 
0183 Turning to FIG.38D, after generating the JSP files 
that may be used to test the EJB, the software development 
tool determines whether a generate deployment descriptor 
option from among the list of deployment options is selected 
(step 3844). If the deployment descriptor option is selected, 
the software development tool retrieves deployment informa 
tion for the EJB (step 3845). As discussed below, deployment 
information may include a group of EJB properties needed to 
describe the EJB to the EJB Application Server 2148 where 
the EJB is to be deployed and run. The group of EJB proper 
ties may include a group of EJB Specific properties and an 
EJB global assembly property. The group of EJB specific 
properties is associated with the respective EJB. The EJB 
global assembly property may apply to multiple elements 
(i.e., multiple methods for a respective EJB or multiple meth 
ods for multiple EJBs) that are described by the software 
development tool in a deployment descriptor file. As previ 
ously explained, a deployment descriptor file is a known file 
type for describing an EJB (i.e., the remote interface, the 
home interface, and the implementation class for EJB 3902) 
and any runtime properties for the EJB to the EJB Application 
Server 2148 where the EJB is to be deployed and run. The EJB 
group of properties is described below. 
0184. In one implementation, the software development 
tool may retrieve the EJB group of properties from a comment 
in code corresponding to the EJB. In this implementation, the 
group of EJB properties contained in the comment may ini 
tially have been received by the software development tool 
via an EJB property configuration file (not shown in figures) 
or via a programmer during the generation of the respective 
EJB. For instance, as shown in FIG. 39, when EJB 3902 is 
selected on the graphical pane 3904, the programmer may use 
a pull-down menu (not shown in FIG. 41) to request that the 
software development tool display the group of EJB proper 
ties for the implementation class of EJB 3902. Upon receiv 
ing the request, the Software development tool recognizes that 
the implementation class of EJB 3902 is an EJB SessionBean 
and then displays a session-type as one of the group of EJB 
properties for EJB 3902. The software development tool may 
allow the programmer to specify that the session-type have 
one of two values, stateful or stateless. An EJB SessionBean 



US 2011/0252401 A1 

implementation class that has a stateful property maintains a 
conversational state. The conversational state is kept as long 
as a client is using the respective EJB SessionBean, allowing 
the client to carry on a “conversation' or continuing transac 
tion with the respective EJB SessionBean. An EJB Session 
Bean implementation class that has a stateless property does 
not maintain any conversational State, but uses data passed in 
parameters of an associated method call from a client to 
conduct a transaction for the client. Assuming the program 
mer has selected that EJB 3902 have a stateful property, the 
Software development tool may store the following group of 
EJB properties as exemplary deployment information in a 
comment of code JAVAO corresponding to the implementa 
tion class of EJB 3902 (shown here as JavaTM code): 

f: 
* (aebHome <{hello. HelloHome}> 
* (aebRemote <{hello. Hello}> 
* (aebStateful Stateful 
*/ 

public class HelloBean implements avax.eb. SessionBean 

0185. By storing the group of EJB properties in a comment 
of code corresponding to the EJB, the software development 
tool may later retrieve the group of EJB properties as deploy 
ment information for the respective EJB in step 3845. Thus, 
by storing deployment information for the respective EJB 
within a comment of code corresponding to the EJB, the 
Software development tool allows one programmer to 
develop one EJB while a second programmer independently 
develops another EJB. Later, using the software development 
tool, the deployment information for the respective one EJB 
may be combined with the deployment information for the 
respective other EJB to generate a deployment descriptor file 
that jointly describes both EJBs for deployment to an EJB 
Application Server (e.g., 2148). In a traditional approach to 
development and deployment of EJBs, a respective EJB does 
not contain its own deployment information so all program 
mers must coordinate their development to produce EJBs 
using a single deployment descriptor file. Typically, just a 
single programmer at a time may access the single deploy 
ment descriptor file produced under the traditional approach. 
0186. After deployment information for the EJB is 
retrieved, the Software development tool generates a deploy 
ment descriptor file (step 3846). FIG.51 depicts an exemplary 
deployment descriptor file 5100 generated by the software 
development tool for deploying EJB 3902. As shown in FIG. 
51, the Software development tool specifies a language type 
5102 as “xml version= 1.0 for the deployment descriptor 
file 5100 so that the EJB Application Server 2148 is able to 
recognize the language type in which the deployment 
descriptor is written. In one implementation, the Software 
development tool parses a deployment descriptor configura 
tion file (not shown) associated with the EJB target applica 
tion server 4002 to identify the language type 5102 for gen 
erating the deployment descriptor file 5100. 
0187. The software development tool also specifies within 
the deployment descriptor file 5100 a Document Type Defi 
nition (DTD) file 5104 and a URL5106 for locating the DTD 
5104. The DTD 5104 is used by the EJB target application 
server 4002 to ensure that the deployment descriptor file 5100 
adheres to the correct convention for describing EJB3902. To 
adhere to the correct convention implies that a deployment 

24 
Oct. 13, 2011 

descriptor file is organized with the right tags defined in the 
DTD5104 for identifying a SessionBean or an EntityBean. In 
one implementation, as shown in FIG. 51, the software devel 
opment tool may parse the deployment descriptor configura 
tion file to identify DTD 5104 and URL 5106 for the EJB 
target application server 4002. 
0188 Adhering to the convention identified in DTD 5104 
to describe EJB 3902, the software development tool inserts a 
beginning and ending root element tag (e.g., <eb-jars 5108 
and </eb-jars 5110) within the deployment descriptor file 
5100 so that the EJB target application server 4002 is able to 
find the respective data that describes EJB3902. The software 
development tool also inserts a beginning and ending enter 
prise-beans tag (e.g., 5112 and 5114) within the deployment 
descriptor file 5100 so that the EJB target application server 
4002 is able to find the description of EJB3902 from amongst 
all EJBs that are to be deployed to the EJB target application 
server. In addition, to describe EJB 3902, the software devel 
opment tool inserts a beginning and ending session tag (e.g., 
5116 and 5118) within the deployment descriptor file 5100. If 
EJB 3902 were an EntityBean, then the software develop 
ment tool would instead insert a beginning and ending entity 
tag. In one implementation, the Software development tool 
may recognize that EJB 3902 is to be described as a Session 
Beanby invoking TMM 200 for an indication that EJB 3902 
is a SessionBean as opposed to an EntityBean. In another 
implementation, the Software development tool may recog 
nize that EJB 3902 is a SessionBeanby determining that EJB 
3902 does not have an associated EJB Primary Key Class, 
which is required for an EntityBean to be deployed. In yet 
another implementation, the Software development tool may 
recognize that EJB3902 is a SessionBean via the deployment 
information written in the comment of the remote interface, 
home interface, or implementation class for EJB 3902. To 
describe EJB 3902, the software development tool also iden 
tifies specific properties from the retrieved group of EJB 
properties for EJB 3902 and then inserts the specific proper 
ties between respective beginning and ending tags as defined 
in DTD 5104. For example, EJB name 5120, a home interface 
name 5122, a remote interface name 5124, and an implemen 
tation class name 5126 are each a specific property within the 
group of EJB properties for EJB3902 that the software devel 
opment tool has retrieved from a respective comment of code 
corresponding to the home interface, the remote interface, or 
the implementation class for EJB 3902. To fully describe an 
EntityBean, the software development tool may also insert a 
primary key class name (not shown) as one of the specific 
properties for the respective EJB.. As shown in FIG. 51, the 
Software development tool may also identify and insert a 
session-type 5126 and transaction-type 5128 as specific prop 
erties of the EJB 3902. 

(0189 To identify an EJB global property from the 
retrieved group of EJB properties, the software development 
tool may also insert an assembly-descriptor identification 
5130 that identifies to the EJB Application Server the EJB 
global property, such as a security role required by a client in 
order to access a method(s) of EJB 3902 (no security role 
shown in FIG. 51). In addition, the assembly-descriptor iden 
tification 5130 generated by the software development tool 
within the deployment descriptor file 5100 may also specify a 
business system transaction attribute 5132 as an EJB global 
property to be associated with a group of methods at runtime. 
For example, a programmer may use the Software develop 
ment tool to develop and deploy an EJB with business logic to 



US 2011/0252401 A1 

represent data within the database 2158 as an automatic teller 
machine (ATM) to a client application. This ATM EJB (not 
shown in figures) may have a withdrawal method allowing the 
client to make a withdrawal from a client's account on the 
database 2158. The ATM EJB may also have an overdrawn 
method that is run with the withdrawal method to ensure that 
the client's account has sufficient funds for the withdrawal 
transaction. Thus, the programmer may indicate to the Soft 
ware development tool that the withdrawal method and the 
overdrawn method are to have a business system transaction 
attribute that indicates that these transactions are to be moni 
tored so that they are completed together. 
(0190. While the example shown in FIG. 51 indicates that 
EJB 3902 is not being deployed with any other EJBs, one 
skilled in the art will appreciate that the software develop 
ment tool is able to describe multiple EJBs in a deployment 
descriptor file when multiple EJBs are to be deployed. Simi 
larly, one skilled in the art will also appreciate that the soft 
ware development tool is capable of identifying other EJB 
specific property tags of the group of EJB Specific property 
tags to insert within a beginning and ending session (i.e., 
between session tags 5116 and 5118 for EJB 3902) or entity 
tags to fully describe a respective EJB. Finally, one skilled in 
the art will also appreciate that the software development tool 
is capable of identifying other EJB global properties within 
an assembly-descriptor identification to fully describe a 
respective EJB. 
(0191). As depicted in FIG.38D, the software development 
tool also generates a deployment archive (step 3848). In one 
implementation, the deploymentarchive includes a directory 
structure that is used by the software development tool to 
store a deployment descriptor file as well as compiled code 
(e.g., java executable code with "...class' extension) for all 
EJBs identified within the deployment descriptor file that are 
to be deployed to the EJB Application Server 2148. In this 
implementation, the deploymentarchive may be compressed 
by the Software development tool, using a known compres 
sion tool such as the “JavaTM Archive (JAR)' tool or the 
“WinZip' tool, to form a compressed archive file (e.g., JavaTM 
archive (JAR) file). In this implementation, the software 
development tool, as described below, deploys or transfers the 
compressed archive file to EJB Application Server 2148. In 
another implementation, the Software development tool may 
transfer a path to the deployment archive so that the EJB 
Application Server 2148 is able to retrieve the files with the 
directory archive after creating a corresponding directory 
structure in memory or secondary storage of the EJB Appli 
cation Server 2148. Thus, the deploymentarchive for deploy 
ing EJB 3902 includes the deployment descriptor 5100 and 
code compiled for file EJB 3902. 
0.192 Next, the software development tool provides an 
XML editor for viewing and modifying the generated deploy 
ment descriptor (step 3850). As shown in FIG. 52, the soft 
ware development tool provides an XML editor 5200 that the 
programmer may use to indicate a deployment descriptor 
modification to the software development tool. When provid 
ing the XML editor in step 3850, the software development 
tool also automatically displays the structure of the deploy 
ment descriptor file 5100 as stored in the directory archive 
(graphically depicted as 5202). The software development 
tool provides an edit cue 5204, such as an asterisk (i.e., “*”), 
next to an element within the deployment descriptor file 5100 
that the programmer may modify and have a change stored 
back in the source code of EJB 3902 as discussed below. For 

Oct. 13, 2011 

example, as shown in FIG. 52, the programmer may select 
eib-name 5206, session-type 5208, or transaction-type 5210 
to indicate a change to the respective value that the Software 
development tool is to store in the deployment descriptor file 
5100. As shown in FIG.52, after selecting eib-name 5206, the 
software development tool allows the programmer to view 
and change EJB name 5120, one of the specific properties of 
EJB 3902. Thus, the software development tool provides the 
programmer with an opportunity to inspect and modify ele 
ments of the deployment descriptor file 5100 before the 
deployment archive is transferred to the EJB Application 
Server 2148 and before EJB 3902 is subsequently deployed 
and run. 

0193 Having provided the XML editor for modifying the 
generated deployment descriptor, the software development 
tool determines whether a change to the EJB deployment 
descriptor file 5100 has been received (step 3852). If the 
Software development tool has received a change, the Soft 
ware development tool modifies the EJB deployment descrip 
tor file 5100 to reflect the change (step 3854). Assuming that 
the software development tool identifies a description prop 
erty as one of the retrieved group of EJB properties retrieved 
in step 3845, the software development tool displays, in FIG. 
53, the description property 5304 as one of the elements in the 
deployment descriptor file (graphically depicted as 5302) that 
may be modified by the programmer. The description prop 
erty 5304 may be used to convey the description and behavior 
of the respective EJB to a programmer or administrator that 
may be using a tool other than the Software development tool 
to view the deployment descriptor. As shown in FIG. 53, the 
Software development tool allows the programmer to indicate 
that the description property 5304 be changed to the value 
5306. “This is a bean description.” In one implementation, the 
Software development tool searches the deployment descrip 
tor file after the beginning session tag 5116 for defined 
description tags, such as <description> . . . </description>, 
and replaces the description property between those tags with 
the changed value 5306, “This is a bean description.” 
0194 The software development tool also stores the 
change to the deployment descriptor file as deployment infor 
mation in a comment of code corresponding to the EJB (step 
3856). Thus, the software development tool is able to associ 
ate a change to a deployment descriptor file with a change to 
the deployment information for a respective EJB. For 
example, as shown in FIG. 53, die software development tool 
allows the programmer to change the description property 
5304 in the deployment descriptor file (graphically depicted 
as 5302) to reflect the value 5306, “This is a bean description.” 
As shown in FIG. 54, the software development that recog 
nizes that the description property 5304 is also one of the 
group of EJB properties (graphically depicted as 5308) for 
EJB 3902, and stores the change to the description property 
5304 as deployment information 5402 in a comment of code 
corresponding to the implementation class 5404 of EJB3902. 
Thus, the software development tool is able to reflect a change 
to the deployment descriptor file as a change to the deploy 
ment information for a respective EJB to maintain accurate 
deployment information in the likely event that the software 
development tool is used to re-deploy the EJB. 
0.195. If the software development tool does not receive a 
change to the EJB deployment descriptor file (step 3858), the 
software development tool determines whether to exit the 
XML editor. As shown in FIG. 53, the programmer may 



US 2011/0252401 A1 

indicate to the software development tool to exit the XML 
editor by actuating a button 5310 on the XML editor screen 
S3OO. 

(0196. The software development tool deploys the EJB in 
the deployment archive to the EJB target application server 
(step 3860 in FIG.38E). In one implementation for deploying 
the EJB in the deployment archive, the software development 
tool transfers the deployment archive to the EJB Application 
Server 2148 via a pre-defined message on network 2110. If 
the EJB is to be hot deployed, the pre-defined message may be 
transferred by the software development tool to the address 
port 4302 of the EJB Application Server 2148. If the EJB is 
not to be hot deployed or the server host identification 4808 
indicates that the EJB Application Server 2148 is on a remote 
computer requiring access authorization, the Software devel 
opment tool may use access information 4802, in FIG. 48, to 
transfer a system password 4804 with the pre-defined mes 
sage to a pre-authorized address port (not shown in figures) 
that the programmer has identified to the software develop 
ment tool. The pre-authorized port is one where a privilege 
has been granted by the remote computer for the software 
development to write and store the deployment archive. In 
this implementation, the EJB Application Server 2148 or 
another application is attached to the pre-authorized port and 
is configured to respond to the pre-defined message. Once the 
pre-defined message is received, the EJB Application Server 
2148 may decompress the deploymentarchive and access the 
deployment descriptor file 5100 packaged within the deploy 
ment archive. 

0197) In another implementation where the server host 
identification 4808 indicates that the EJB Application Server 
2148 is hosted locally with the software development tool, the 
software development tool may indicate to the EJB Applica 
tion Server 2148 where the deployment archive is located on 
the local computer without using a system password 4804. In 
this implementation, the EJB Application Server 2148 may 
then access the deployment descriptor file 5100 contained 
within the deployment archive. 
0198 The EJB Application Server 2148, when accessing 
the deployment descriptor file 5100, identifies that the DTD 
5104 located at the URL 5106 is to be used to interpret the 
deployment descriptor file 5100. By using the DTD 5104 to 
interpret the deployment descriptor file 5100, the EJB Appli 
cation Server 2148 learns about EJB 3902 (e.g., EJB 3902 is 
a Session Bean with properties as shown in FIG. 51) and how 
it is to be managed at runtime (e.g., session-type indicates 
EJB3902 has stateful transaction state). The EJB Application 
Server 2148 finds within the deployment archive compiled 
code that correlates to the home interface, the remote inter 
face, and the implementation class of the EJB 3902 identified 
in the deployment descriptor file 5100. In addition, the EJB 
Application Server 2148 has the container 2150 implement 
the home interface and the remote interface for EJB 3902 so 
that the container 2150 may respond to invocation of a 
method from the Client Application 2152. Next, the software 
development tool provides the browser on the Client Appli 
cation with a hyperlink to test a create method for the EJB 
3902 (step 3864). In one implementation where the browser 
resides locally with the software development tool on com 
puter 2102, the software development tool provides the 
browser (i.e., browser 2154 in FIG. 21) with the hyperlink to 
test the create method by informing the browser of the net 
work address 4906 (or URL) for browsing the JSP files gen 
erated by the software development tool in performing step 

26 
Oct. 13, 2011 

3842 of the process shown in FIG.38C. In this implementa 
tion, the software development tool may inform the browser 
2154 of the network address 4906 by writing the network 
address 4906 in a script within a browser startup configura 
tion file. The script is written by the software development 
tool in a form that is consistent with the application program 
interface (API) of the browser, such as the known API for 
Netscape NavigatorTM browser. 
(0199. In another implementation where browser 2154 
resides on remote computer 2106, the software development 
tool may inform the browser 2154 of the network address 
4906 for browsing the JSP files by sending a pre-defined 
message containing the network address 4906 to a pre-de 
fined e-mail address on remote computer 2106. Adhering to 
standard e-mail protocols, another programmer or a customer 
using the remote computer 2106 may then be informed of the 
network address 4906 in response to the pre-defined message 
being delivered to the pre-defined e-mail address on remote 
computer 2106. Thus, the other programmer or the customer 
is then able to manually enter the network address 4906 into 
the browser 2154 in order to remotely test EJB 3902 or click 
on the address in typical e-mail clients to automatically 
invoke the JSP page. 
(0200 For example, as shown in FIG.55, when the browser 
2154 accesses the network address 4906, the browser 2154 is 
provided with the JSP Navigation Page 5502 as identified in 
the first of the group of JSP files (“the JSP Navigation file') 
generated by the software development tool to test EJB 3902. 
The JSP Navigation Page 5502 has a hyperlink 5504 that 
invokes the create method for the EJB 3902. In response to a 
programmer selecting the create method hyperlink 5S04, the 
browser sends a message via network 2110 to the network 
address 4906 to invoke the respective create method for EJB 
3902. In this situation, code within the JSP Navigation file 
that corresponds to the create method is executed, causing the 
EJB Application Server 2148 to create an instance of EJB 
3902 in container 2150. In one implementation, the software 
development tool may provide that the browser 2154 is to be 
linked to the next file in the group of JSP files if a response is 
received by the JSPNavigation file that indicates that the EJB 
Application Server 2148 has completed the create method. In 
this implementation, the programmer is able to confirm that 
the instance of EJB 3902 has been created in container 2150. 

0201 As shown in FIG. 38E. software development tool 
provides the browser on the Client Application 2152 with a 
hyperlink to test a business method in the EJB (step 38.66). 
FIG. 56 depicts a JSP bean page (i.e., Session bean page 
5602) that is displayed on screen 5600 by the browser 2154 in 
response to a programmer invoking the create method hyper 
link 5504 in FIG.55. The Session bean page 5602 is associ 
ated with another of the group of JSP files (“the JSP Session 
bean file') generated by the software development tool to test 
EJB 3902. The Session bean page 5602 has a hyperlink 5604 
that invokes the business method “String hello ()' in EJB 
3902. In response to a programmer selecting the business 
method hyperlink 5604, the browser 2154 sends a message 
via network 2110 to the network address 4906 to invoke the 
respective business method for EJB 3902. In this situation, 
code within the JSP Session bean file that corresponds to the 
business method is executed, causing the EJB Application 
Server 2148 via container 2150 to invoke the respective busi 
ness method in the EJB 3902. 

0202 As shown in FIG. 38E. software development tool 
provides the browser 2154 on the Client Application 2152 



US 2011/0252401 A1 

with an Operation call result page to receive a response from 
the invoked business method (step 3868). FIG. 57 depicts an 
Operation call result page 5702 that is displayed on screen 
5700 by the browser 2154 in response to a programmer invok 
ing the business method hyperlink 5604 in FIG. 56. The 
Operation call result page 5902 is associated with another of 
the group of JSP files (“the JSP result File”) generated by the 
software development tool to test EJB 3902. The Operation 
call result page 5702 has a window 6004 where the response 
from the invoked business method hyperlink 5604 (i.e., 
“String hello ()) in EJB 3902 may be displayed. In the 
example depicted in FIG. 57, the programmer is able to con 
firm that the instance of EJB3902 has correctly performed the 
invoked business method hyperlink 5604 as the response 
“Hello World' 5706 is displayed in the window 5704 as 
expected. 
0203 Turning to FIG.38F, the software development tool 
also determines whether to run the EJB in debug mode (step 
3870). In one implementation, the software development tool 
determines that the EJB is to be run in debug mode when the 
EJB has been hot deployed and when the EJB Application 
Server 2148 operational mode is set to debug mode 4106 as 
illustrated in FIG. 41. In another implementation, the soft 
ware development tool may determine that the EJB is to be 
run in debug mode in response to receiving a debug request 
(not shown in figures). For example, once EJB 3902 is 
deployed by the software development tool, the programmer 
may indicate the debug request to the Software development 
tool by making a respective selection from a pull-down menu, 
actuating a pre-defined button on a user interface displayed by 
the software development tool, or by any other known data 
input technique. 
0204 If the EJB is to be run in debug mode, the software 
development tool attaches a debugger module to the com 
mand port of EJB target application server (step 3872). The 
debugger module (“debugger') is one of the modules 704 in 
FIG. 7that are included in the software development tool. The 
debugger of the Software development tool allows a program 
mer to set breakpoints in Source code corresponding to the 
deployed EJB as well as set breakpoints in a client test pro 
gram that resides with the software development tool in 
memory 2112 of computer 2102. By setting breakpoints, the 
Software development tool enables the programmer to stop 
the execution of the deployed EJB or the client program at any 
line of source code corresponding to the deployed EJB or the 
client program, respectively. In addition, the programmer, by 
using the debugger of the Software development tool, may 
execute one of a group of commands that control the execu 
tion of the deployed EJB or the client program. The group of 
execution control commands includes “Run,” “Pause.” “Con 
tinue.” or “Stop. The debugger may automatically complete 
an execution control command (e.g., “Stop”) to Support trap 
ping on a breakpoint specified by the programmer. In one 
implementation, the debugger of the Software development 
tool may implement the JavaTM Platform Debugger Architec 
ture (JPDA) to enable the debugger to support the function 
ality described above and to run portably across platforms and 
across different implementations of the JAVATM Virtual 
Machine. The software development tool attaches the debug 
ger to the command port of the EJB target application server 
4002 to enable the debugger to complete an execution control 
command to “Run.” “Pause.” “Continue,” or “Stop” the 
deployed EJB.. As shown in FIG. 58, to attach the debugger to 
the command port of the EJB Application Server 2148, the 

27 
Oct. 13, 2011 

software development tool receives attachment information 
5802 that includes a host identification 5804, a transport 
protocol 5806, and a remote process port address 5808. The 
host identification 5804 indicates to the software develop 
ment tool if the process that is to be attached to the debugger 
(e.g., the EJB Application Server 2148) resides locally with 
the software development tool on computer 2102 or remotely 
oil computer 2104, 2106, or 2108. The transport protocol 
5806 identifies to the software development tool which stan 
dard communication transport protocol the debugger is to use 
to format and send an execution control command to the EJB 
Application Server 2148. The remote process address port 
5808 indicates to the software development tool the com 
mand port address to send an execution control command. In 
one implementation in which EJB 3902 is hot deployed, the 
software development tool receives the address port 4302, in 
FIG. 45, as a default for the remote process address port 5808. 
As previously described, the address port 4302 is the com 
mand port for the EJB Application Server 2148 specified by 
the programmer. 
(0205 Returning to FIG. 38F, the software development 
tool receives an identification of a main client class (step 
3874). FIG. 59 depicts an exemplary user interface 5900 
displayed by the software development tool for receiving the 
identification of the main client class 5902. As shown in FIG. 
59, the software development tool may also receive via user 
interface 5900 a client test program argument 5904 and a 
JAVATM Virtual Machine option 5906. The identification of 
the main client class indicates to the software development 
tool the starting point for a client test program to be used by 
the debugger for testing the deployed EJB (i.e., EJB 3902). 
The client test program argument 5904 indicates to the soft 
ware development tool a parameter, such as “username that 
is required to run the main client class 5902. The JAVATM 
Virtual Machine option 5906 indicates to the software devel 
opment tool a configuration parameter to be passed to the 
JAVATM Virtual Machine to support executing the client test 
program. For example, the configuration parameter may indi 
cate a size of memory that the JAVATM Virtual Machine 
should allocate to Support executing the client test program. 
0206. In one implementation, the main client class 5902 is 
identified to the software development tool via a client test 
program default. The software development tool may receive 
the client test program default by searching each source code 
file in the project for a class that implements the home inter 
face and the remote interface for the deployed EJB (i.e., EJB 
3902). In addition, if a class is found that implements the 
home interface and the remote interface for the deployed EJB 
(i.e., EJB 3902), the software development tool searches the 
class for a method called “main.” In another implementation, 
the programmer may indicate to the software development 
tool the identification of the main test class 5902. 
0207. In one implementation, the client test program cor 
responding to the main test class 5902, "client.weblogic. 
HelloClient implements the home interface and the remote 
interface for EJB 3902 so that the client test program may test 
a method in EJB3902 by invoking the respective signature for 
the method. 

0208 Next, the software development tool runs the main 
client class in a debugger session (step 3876). The debugger 
of the software development tool may support multiple 
debugger sessions. In general, a debugger session corre 
sponds to the debugger controlling the execution of one pro 
gram independently from another program that may be 



US 2011/0252401 A1 

executing under the control of the debugger in another ses 
Sion. As explained below, one program executing in one 
debugger session may impact another program executing in 
another debugger session. The impact may or may not be 
expected by the programmer. Thus, to assess the impact of the 
one program on the other program, the Software development 
tool allows the programmer to set one or more breakpoints in 
the one program associated with the one debugger session and 
to set one or more different breakpoints in the other program 
associated with the other debugger session. By providing 
simultaneous debugging of program logic that spans from the 
Client Application code (1st tier) to the EJB code on the EJB 
Application Server, the software development tool saves the 
programmer the time and effort of testing the same code using 
conventional, manual techniques. For example, FIG. 60 
depicts an exemplary user interface 6000 displayed by the 
Software development tool in response to receiving the iden 
tification of the main client class 5902, where the user inter 
face 6000 displays the client test program under the control of 
the debugger in one debugger session. As shown in FIG. 60, 
the software development tool identifies that the one debug 
ger session displayed is associated with the main client class 
via a first debugger session indicator 6002. In this example, 
the client test program contains just the main client class 
(graphically depicted as 6004). Source code corresponding to 
the main client class 6004 is displayed by the software devel 
opment tool in the textual pane 6006. Using any known data 
input technique, the programmer may indicate to the debug 
ger that a breakpoint (e.g., 6008) be set on a respective line of 
Source code (e.g., 6010) corresponding to the main client 
class 6004. In the example shown in FIG. 60, the line of 
source code 6010 corresponds to a create method invocation 
for the EJB 3902 that the software development tool has 
deployed to EJB Application Server 2148. The programmer 
may then indicate to the debugger to execute a command to 
run the main client class in the one debugger session to test the 
operation of the client application program. 
0209. After initiating execution of the client test program 
in one debugger session, the Software development tool also 
runs the EJB in another debugger session (step 3878). FIG. 61 
depicts an exemplary user interface 6100 displayed by the 
software development tool, where the user interface 6100 
displays source code 6102 corresponding to EJB 3902 in the 
textual pane 6104. As shown in FIG. 61, the software devel 
opment tool identifies that the other debugger session dis 
played in user interface 6100 is associated with EJB3902 via 
a second debugger session indicator 6106. In this example, 
the programmer may indicate to the debugger that a break 
point (e.g., 6108) be set on a respective line of source code 
(e.g., 6110) corresponding to EJB 3902. In the example 
shown in FIG. 61, the line of source code 6110 corresponds to 
a business method “String hello ()'. 6112 in EJB 3902. The 
programmer may then indicate to the debugger to execute a 
command to run EJB 3902 in the other debugger session to 
test the operation of EJB 3902. The software development 
tool via the debugger allows the programmer to transfer 
between the one debugger session associated with the main 
client class and the other debugger session associated with 
EJB 2104. Thus, the software development tool allows the 
programmer to independently control the operation of the 
main test client and EJB 3902 in order to assess the impact of 
one on the operation of the other and, ultimately, to confirm 
the operation of both programs. 

28 
Oct. 13, 2011 

0210. If the EJB is not to run in debug mode, the software 
development tool initiates execution of the EJB in normal 
mode (step 3880). The software development tool may ini 
tiate execution of the EJB in normal mode by sending a start 
command to the EJB Target Application Server at a pre 
defined network address, such as network address 4302 in 
FIG. 43. As one skilled in the art will appreciate, the software 
development tool is able to store, retrieve, and send a start 
command that is recognizable by the EJB Target Application 
Server specified by the programmer. Thus, in this situation, 
the programmer is able to test code for a client application 
against one or more deployed EJBs without running the EJB 
TargetApplication Server in debug mode. The EJBs may have 
previously been developed and tested by the programmer 
using the Software development tool or may have been pro 
vided by a known vendorso additional debugging of the EJBs 
may not be required. 
0211 While various embodiments of the present invention 
have been described, it will be apparent to those of ordinary 
skill in the art that many more embodiments and implemen 
tations are possible that are within the scope of this invention. 
Accordingly, the invention is not to be restricted except in 
light of the attached claims and their equivalents. 
What is claimed: 
1. A method, comprising: 
receiving an indication to determine whether source code 

associated with a distributed computing component 
complies with a specification associated with the distrib 
uted computing component; 

parsing a configuration file, the configuration file compris 
ing an identification of the specification; 

identifying a non-compliant portion of Source code, 
wherein the non-compliant portion does not comply 
with the specification; 

modifying the non-compliant portion after determining 
that the source code has the non-compliant portion. 

2. The method of claim 1, wherein the configuration file is 
further associated with a target application server. 

3. The method of claim 1, wherein the distributed comput 
ing component is an Enterprise JavaBeanTM. 

4. The method of claim 1, wherein the specification is an 
Enterprise JavaBeanTM specification. 

5. The method of claim 1, wherein the configuration file 
includes a verification instruction and a correction instruc 
tion. 

6. A method, comprising: 
receiving an indication to determine whether source code 

associated with a distributed computing component 
complies with a specification associated with the distrib 
uted computing component; 

identifying a non-compliant portion of Source code, 
wherein the non-compliant portion does not comply 
with the specification; 

modifying the non-compliant portion after determining 
that the source code has the non-compliant portion. 

7. The method of claim 6, wherein the specification 
includes one or more method constructs and one or more 
transaction attributes. 

8. The method of claim 7, wherein the identifying the 
non-compliant portion of Source code comprises comparing 
the source code to the one or more method constructs. 

9. The method of claim 7, wherein the identifying the 
non-compliant portion of Source code comprises comparing 
the source code to the one or more transaction attributes. 



US 2011/0252401 A1 

10. The method of claim 6, wherein the modifying the 
non-compliant portion comprises replacing the non-compli 
ant portion with a compliant portion in the source code. 

11. The method of claim 6, wherein the distributed com 
puting component is an Enterprise JavaBeanTM. 

12. The method of claim 11, wherein the specification is an 
Enterprise JavaBeanTM specification. 

13. The method of claim 6, wherein the source code com 
plies with another specification. 

14. The method of claim 6, further comprising refactoring 
the source code after modifying the non-compliant portion. 

15. The method of claim 14, wherein the refactoring the 
Source code comprises: 

locating a reference associated with the non-compliant 
portion; and 

29 
Oct. 13, 2011 

replacing the reference with another reference associated 
with the compliant portion. 

16. A computer-readable medium including instructions 
for a software development tool to perform a method, the 
method comprising: 

receiving an indication to determine whether source code 
associated with a distributed computing component 
complies with a specification associated with the distrib 
uted computing component; 

identifying a non-compliant portion of Source code, 
wherein the non-compliant portion does not comply 
with the specification; 

modifying the non-compliant portion after determining 
that the source code has the non-compliant portion. 

c c c c c 


