US 20110252401A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2011/0252401 A1

Charisius et al.

43) Pub. Date: Oct. 13, 2011

(54)

(735)

(73)

@
(22)

(60)

SUPPORTING AND DEPLOYING

DISTRIBUTED COMPUTING COMPONENTS

Inventors: Dietrich Charisius, Stuttgart (DE);
Alexander Aptus, Esslingen (DE)

Assignee: Borland Software Corporation,
Rockville, MD (US)

Appl. No.: 13/087,245

Filed: Apr. 14, 2011

Related U.S. Application Data

Continuation of application No. 12/876,108, filed on
Sep. 4, 2010, which is a continuation of application
No. 11/257,724, filed on Oct. 25, 2005, now Pat. No.
7,793,256, which is a division of application No.
09/839,646, filed on Apr. 20, 2001, now Pat. No. 7,051,
316, which is a continuation-in-part of application No.
09/680,063, filed on Oct. 4, 2000, now Pat. No. 6,851,
107.

(60) Provisional application No. 60/199,046, filed on Apr.
21, 2000, provisional application No. 60/157,826,
filed on Oct. 5, 1999.

Publication Classification

(51) Int.CL

GOGF 9/44 (2006.01)
(CZ R VR & R 717/110
(57) ABSTRACT

Methods and systems consistent with the present invention
provide an improved software development tool that gener-
ates code corresponding to a distributed computing compo-
nent, and verifies and corrects compliance of the code. In
some embodiments, the improved software development tool
verifies compliance of the code with a specification for the
distributed computing component, and corrects any non-
compliant portions of the code, using methods and systems
consistent with the present invention.

4

K
l N e g
4 Transient
/"’g | Meta Mode :
{

Rt

-~
A g P

i '
e Incremental} . —

f"/f(

| Code Editor{

]

H

~208

Patent Application Publication Oct. 13,2011 Sheet 1 of 56 US 2011/0252401 A1

102

-

UML

100

Repository

/ \
Y
f/ \
f
106 { !
, 1‘}0
Reverse 1 /’
Engineering Code
Module E Genearator
/ |

(Prior Art)

Patent Application Publication Oct. 13,2011 Sheet 2 of 56 US 2011/0252401 A1

—
M e anr e

{
4 Transient
//“”x | Meta Model

f
{
/ ‘x""‘-&- aA""J

Source Code

i

t i
i N o
\\\mw .| Incremental L_”My-—f’j
| Code Editor:

1
! 1

208

FIG. 2

Patent Application Publication

Oct. 13,2011 Sheet 3 of 56

US 2011/0252401 A1

sCt SCl SCi i sCl
Madel Package Class Member
J J/ \
302 304- FIG. 3 306 308
300
N
s <
kage Userint xf'é/f o
ckage Userinterface;
404 -l P2E8 406

public class Bank;h_,.»//
AOB e 4
public string Name;..—— 412

I

410

PR

i §(t_ring Assels e

R e Y

]

FIG. 4
/ﬁ{ 502 ! / 504
SCi Package SCI Class
| Userinterface CoBank N\
402" Lang;ige = 408 7
s00 FIG. 5

500

508
i
SCl Member

Assets
N

~412

Patent Application Publication Oct. 13,2011 Sheet 4 of 56 US 2011/0252401 A1

8600
!I
,//
Data Processing System
602
o 604
vl e ' e Storage P
N Software ‘ ‘9 £12
Development Project |
200 Taol
_ | Transient !
~ Meta Model |
806 -
N\ 608
S Ho : Processor "

FIG. 6

Patent Application Publication Oct. 13,2011 Sheet 5 of 56 US 2011/0252401 A1

610 —
X 708
/x‘“" 704 /
' ' | ' 710
Modules /,,/ _./f F 702
f
e Rwi 712
IDE - /
SCI —-"";/ e
Parser Incremental Code Editor
N,
L\ 706 \x 208 J
| ~y
700

FIG. 7

US 2011/0252401 A1

Oct. 13,2011 Sheet 6 of 56

Patent Application Publication

A4 L

_ Ty

: [Py mw nelg #

$100f0() YBROIY L SIPQUISHY STIRISE JO $9992Y - OILINSOV

- '8332{G0 YENORR 1R JONBY SHURG $SR[0 SR PIOUGIOINI & PROYS SIDIUNE JURIS

OB

HOYR T

RS POy

_ _ IS 2ARY _ w

AP 0% : TIE 300j0%NTY __ [0%

“

Pdi)

POYION DIBALL] 8 BIPLOAA)

AR QA PRUISHY PRI -UOKN € BOpILIA

SR QUG 1ILA SHOURIEIIOCT D051, My

SOUDBYY POIRY 1) JOIMIISUG D]issaadut]

STUIRK, 6 FUTPIH

unueEdsG Aind) PURBELO.

4
SPOUISIA SHRIS POWISAIGT BUIPILY DIOAY

ViV

i posy

SHOEE [BYENET)

WOV LN

SIDQILOWY S8R0 $3200Y 0f Muoudxs sup, 980y

oYV Joymmdey st Biss g pomIaniqgy 987
1G4 sundinyy pummiac 0 g mosandsy
SAlRd | O8I 30 FIOUWDIES -0, 0] [BIEI00I0HE OPIADL]

TIENNG PRsT] OF TOp SRRy 4, JOWIRGY)

sypuonbard Jopexad(y aonefon Ut asr) e

sy wdie

SIOIDUMINIRG [RUGO] O JUoWuSissy

OLNSOV S3001G¢3 UBNOMNLE SISqUIDIY J1IG 10 §8300Y
oA Bupey
jrecisiing} UDHEALGGY PHL],

wpny w0 [

US 2011/0252401 A1

Oct. 13,2011 Sheet 7 of 56

Patent Application Publication

8 'Old

o]

YRRy _ _ TS

| b

AnprgEpeas aresdosd asuaa00p Axg A0us papese ay preoys spsteuBige widiws 001 uwopsaadxs
JWER DY UHEHAL SHGULIBA 0] Sjoudssy puy Sypamudsse Spdgnu Jo 2UdIIRID0 Q) 48} 294

A

SIUG IAAAS DIUE JUoMISINIS Naaty 1diy

#
i

‘og + (g7 = L} ;
107 + w4l

juswmubrsse pajssu f/
‘61 =+ L

or =€ =

Ll m

zuenubizge punodwon //

f
il

i

A et

fueaan

o JEnoy

I

{ ywaadissy sopdaw) - vy

303 ’ "
_l 13 per] : Y 1 BARY _ _ SHUHEIR 20K ~ _ 152 18Uy _ _ iz MBBWQ

&, vl OVYH ASTEENICY JUALUTISSY PRPBADIGAY B40)

4] Wi4n sl pUzgag] 40 g Josneiday

] S Ild A BRTY 3O JUSIUNRIS-A0] U] [RIUDUIRAIUT apLAtag

/ SN0 Pas) 3¢ 10N AR 1Y, 301l

] SONTI Appionbad Jopady HOHESAN OBl 25T LUO(]

o TOMUUTIES Y SR
ANIBADE i K,l - — 29)) — Hssy XA
; BSOTY VOTRIAGI Y \ I

Ve

wpny wiy []

i
908

US 2011/0252401 A1

Oct. 13,2011 Sheet 8 of 56

Patent Application Publication

D8 "Dld

_ dpaff mw By : RIS

4

e 16t =4 [= 1 3o preysur S/

‘pg + L =1

‘gg = €

‘pg + {gz = £} = 1 30 pwesgsur f/
‘gz + £ = %

Lok

02 = ++L = T 30 pesisutr £/

PR w1

‘g1 =+ L

¥

0T =

0T = ¥

£ =y go pesgsut //
€ o=x %

38

f+4l=y T 30 peelsuy /f/

é;
hor
#
]
B

i |

SAUD PRIAMS DI Juamarls yeaxy di],

L FBULIOA

FIEIARS

—1‘ & PRy _j.,ﬁ.\. §o8 2ATE Z SPREP 1% : {18 19ap05uT] : HE MSSMJM

=] AL GSIE IO ALIMEIS -] Y [RIUBHEOE] aPDiani]
] TYANING €Y 00] SRIN o7, A0viadly
el JGMN
= < Y3
HASOY) HOTIZEARIGL Y

\ oy vo | |

Patent Application Publication

t/'_,- in] : ‘.\\
{ Begn)

S

2N

\‘).}/"a \\

N E‘xssts‘fzg .

A—— source "y
N code? /-/
.

.

902~ Y
™,

Identify current
language

900~

804 -~

~

%Ohtain {emplate
- for current
language

GOB

M.

Parse source
code

208~
.

Create data
structure

Oct. 13,2011 Sheet 9 of 56 US 2011/0252401 A1

.r‘/J
/,»-/ Event =
N close file?

~

e

Perform event

Close file

Updale modeal

Updats views

FIG. 9

Patent Application Publication Oct. 13,2011 Sheet 10 of 56 US 2011/0252401 A1

Salect file

1 GDE

/ /\

< s fite new?
. ,/
N S

. ¥4
AN
‘N
1004
A !

. /
e RN
7 Hasfile ™

4 been \} Y
. updated? .~
/,/

v
! N

p 1006

i

/ \ /

A«’

/ Has file besn LY

S deleted?
AN e
N
N

1008
4 _,_/"/j
Add symbol
fo TMM
‘20210
A4 _J‘,/j
LUpdate
symbaol >
in TMM
|
1012
|
¥ ij‘;
Delete
symbol
from TMM

FIG. 10A

Patent Application Publication Oct. 13,2011 Sheet 11 of 56

, *3814
u\ More files? \\Y

\/

\ S
!
B i

/},\ 10‘16
e
// AnN
- obsolete Y
symbols in 7
‘\\TMM? yd
o /
N i 1018
Delste ﬂ_,.f
obsolets
symbols
from TMM
Y RN
{ End
| .

US 2011/0252401 A1

FIG. 10B

Patent Application Publication

Oct. 13,2011 Sheet 12 of 56

:/ . N
1\ Begin J

1100
r,‘»’/!‘
Identify current
fanguage
1102
Obtain template u
for current
fanguage
1104
; ; w4
{ Create source
| file in project
i directory
1106
hd W

Paste {emplale E

¥
VU, AR

N
{ End
\"‘H------m---m-lf" /

FIG. 11

US 2011/0252401 A1

US 2011/0252401 A1

Oct. 13,2011 Sheet 13 of 56

Patent Application Publication

i)

Za0py - B
A COSEIREN
A S
e,
7 T
- l,f.\‘ll-\!l‘\«
3 " aac O S ﬂ\\\\l\l.l«l\iltl e 3
giral e Y

0071

e ONSEANDH

oo @] voe

iz :u@wvm_.&s: &m P @ POIN BB Raun J, |Hnese -
Y I CIER I e e

Hald SI0T SLONTH) ewmE

FOR Yl

Lpe

Ve b ol

BlE ey BEEASE) AeALd m'.

[zp

US 2011/0252401 A1

I3 e
lx E

20¢1

Oct. 13,2011 Sheet 14 of 56

4] e A P %
st sl BN e O)
T frieeE #
S MO AIDRURPEN B DR IO
(inuml aataudil op i pE et
AP BB IREBI) SEgItia m.w
PSR OGN IR0 AU BLND N wmﬁ
16000,) .,?\mbci;& . - ST
EH L0 GEAOQP I ~ AR %
UYL 30 G300y 7
g, v S TIUG SN
Hess(retprudsinngond . &
GUEEMAET USRI BB IBD P =’ - P mm
PUIRIIS T) s] i e
) . e SEBINPOL BSOS R ARBILQUER T pisAn sz § a E
DU} , OIS Yy ; { Elyicoprebited FIBLSIEOS m@ &
Ie r1 -
/ N 5 eIy B
y 4 @ hweswsbeseyee U @
. sepoysern b
P AT . .wvmwm ﬁ ﬁ,@ﬂ m *,
(0<T \ b

uies doyseeguseny 1 ponnun BB lovspoyuesrn P

w%gm@;z D B b @L@EW%M mgﬁ_@@mﬂ@ﬁam
df wmonl seonln wesl R S el wpd g
BHIECIERTY ~ y dfabin]

Patent Application Publication

US 2011/0252401 A1

Oct. 13,2011 Sheet 15 of 56

Patent Application Publication

PlLOId

25

TP

&%

BRRYSEYREEA
PR

&

RO

DRI

iryeres B2
g S 1
MR 450 B
rsseys U

&

Awssegyses

x,EEE.NmM B AR psEACEt JefiuLRI T ET OO 108 "y .

B
b
1
E
E
L

BULNSTH D ADIYST RusE AgYRl
) e

1

i

\ t EEiaT s

R,
soREuepEn rihial I e

e P

w&cmm_t.gc_{w n,.gmmu‘emww S B L neaps %m

Heff W WG e B) @medmg ol

g wou] Ui

¢1 "DId
{oon §[oyt 1 wesa]

ey
o

LENHA0

US 2011/0252401 A1

POS T

el s %

Jormnnie. 00

i E?.h& Bided @

LENPI R Pzt
‘Irdf.(S

f..r.fl-.f: .,@ %
f.r! r«ngc_mxmaom @
ey . BEILS e
L eeli) ffz/ oo B @
mmfﬁ&mmsmﬁw@ =]

RG] rwﬁ

(f!.

Oct. 13,2011 Sheet 16 of 56

sdptconaoys A alauEr ot SO Hos Ty
\,K\x\ WUENSG I 4 T g Tt _ffx ST
\\ !
i i
0% i

POSL

ST S T RS

PO ol W00} SHOUAROUE

20 TRENANRES

m;.u«ﬁ_ dibyrsaeguses »mv .um_;g \Tu. %?qu
T bﬁ@%ﬁmmﬁEL@E“%%@&@@ﬂ@@ﬁ@

WEll sl suonil el sed iomef welndl pod wd

SISO - § ISR L

Patent Application Publication
{4l

US 2011/0252401 A1

Oct. 13,2011 Sheet 17 of 56

Patent Application Publication

Lot | pent]

AR R

e
e

o

091

I
ot Sl
\\. \
0091
{pauun CHT Loeppun L vsmun |

NECEITENTER

) prun J [aireinge

‘%ﬁ@é%ﬁi@ﬁlgnﬁwgmmﬂ@xw@@mﬂﬁwmm

dpl wool sueptn pepd el ueesd e

US 2011/0252401 A1

Oct. 13,2011 Sheet 18 of 56

Patent Application Publication

R)

; ; ; R % AR
143 : 4 : : : X SR D |

R S R S %

sty

zhungs

0L

™
o,

O0L1
foamun T

ZOCUO0H oo FERRNES

511 mm.w pagman g §pefion B 1T denin 2401 GopEn LE conmen aeal pangun T | iy [)
din D iae 8l ¢ amoge B

Bl sl suonlly

&
x
v
a2

R

o, uwesd welyl wpd epd

T
2
K]

£

LoEpn -~ g gty |

Patent Application Publication Oct. 13,2011 Sheet 19 of 56 US 2011/0252401 A1

e

1800

Herd | B unfited | o, untiied s |

1

x

FIG. 18

Help

BIEEEE b & e D aF

Tools

s

-~
b

W datavi] W uniited {of untitind ﬁ}g Lt

et

3

NECRECIELE:

2 OFONKES

Migw

vl

hat

JE

US 2011/0252401 A1

Oct. 13,2011 Sheet 20 of 56

Patent Application Publication

ST

TR R X YT AT
SALEASE, e % 2 DR
L, R % e

iy "e\o;\ﬁ-‘oe\v\o\r‘ L t uu..\bf ! ¥t hat e.vbf v, u»fu}e e

LGRS

N
Z

popnm £k
pepin Bl
wwenmin T8
P i,
PR r\i..,Mw
L B
R e

0061

g

FISas

o
[
<RIBS
wefieed BE &

tpapun 2 &

@@@o%k%ﬂ&@a

v £ Toamma rmuﬂ vw%.,._zﬁw‘\m‘.‘fwf\ @f&é S% G ..\M
Fulgidlaed s

A pun umn\m v% zus u%&?z:&mu» E
|3 | 0801 I o m&x@%:&@@&

duff siwel suoglo woeE molt uteed welS T oY

Patent Application Publication Oct. 13,2011 Sheet 21 of 56 US 2011/0252401 A1

FI1G. 20

2000

2004 T ﬂ/

Client Application
{1st Tiey) .2012
{,ﬂ‘

2014

EJB Ohject Stub 7
{browser) | Home 810

Remote

o016 ‘ ‘ Software
‘ Development Touol

2010—

2008 ! ‘
0 EJB Application Serve 2010

{(2nd Tier) 2018
{‘f

2002 | EJB Container | 2014 |

Remote

2010

2008

Database ‘
Management System (DBMS)
{3rd Tien

2020

Database

Patent Application Publication

Oct. 13,2011 Sheet 22 of 56

US 2011/0252401 A1

Client Computer

2124

Secondary

Storage
{levice

2182

Processor

(2140

Database Server Computer

2126 \
Secondary

L2188

Storage
Devige

Database

’/122158

2102 3\ 2108 N
Data Processing Computer
2112 212(% 2116
Memory Secondary Memory
—— Storage
|
Compiler N\ Devics .
SDT | Client
[Code Application 1]
; 214? 12 Browser
8107 2154
HO v HO
Device Processor ri}avice
2128~ 2136 (5132
2“1{}4\ 2‘1‘”’3"J 2103\
‘ Application Server Compiter
2114 2492 2118
Memory £ - Memory
Secondary
i EJB Storage
Application . Device Database
Server Management
B System
Caontainer 2148 2138
7154 ,
7 21 5&? ‘ /- e
D HO Processar Device
e om0 21347
R

Processor

2142/

Patent Application Publication Oct. 13,2011 Sheet 23 of 56 US 2011/0252401 A1

Begin FI1G. 22A

~ 2202
/
Receive a request to
generale a type of EJB
- 2204
‘ -
- Generate source code for
- the type of EJB requested
¥ /**" 22@6

Display graphical representation of the source code for the
EJB with a separately delineated display area for each
method fype and a separately delineated display area for
reference types

, 2208

Bispiéy a symbol with a display area to
identify the corresponding method type or
references type ;

, 2210

Receive a request to add a code element to
code corresponding to the EJB

2212
1 '

Add requested code element to an
EJB implemantation class

2214

Maodify graphical representation of source
code coresponding o EJIB implementation
class

Patent Application Publication Oct. 13,2011 Sheet 24 of 56 US 2011/0252401 A1

' FIG. 22B
' \(/2218
Requested “\\\ N

code element =
method
7

\<" 2218 TN 2224
Y -~ Requested code . N_Fe Y
N _~"Requesied code ™
lement = a business glement = primary
: mathoy ~key field?~"
S S
2220 2222
v - |
Add business | Add method signature | 2226 :
method signature to, | ¢orresponding to code Add primary key
EJB remote element to EJB home . field fo £EJB
interface interface primary key class
L 7 2208 9930
Modify graphical 2230 ra
representation of « - e
code corresponding Modify graphical Modify graphical
to EJB remote representation of code representation of code
interface i corresponding to EJB carres‘p onding to £48
frame interface primary class

¥

Patent Application Publication Oct. 13,2011 Sheet 25 of 56 US 2011/0252401 A1

B R IE RS M

O NI IO XXX ‘:’:;;‘:* H-E
letetatelalets felelels oS!
Y ot el e A

LB X]

&
R RS RKS

73
A
S

X
R

24

3
P
R
%
o’
2
P
B
?Q
b
¥,
¥
&

£ X
g
S

.,
(KX
D

A A
I
A AKX

RS

TR
L
AN

Y

.
e

0
o

4
@ % B |G 10 0] e P

.
N
5

e
FI1G. 23

A
‘2

ety
753

sy
XA

189
e
S
{ imfittearid
Sension £4B

% <dafault>

P4 |
n
B
=]
%
%
e
%
7
=

313 <dataults

Edit Object Search View Select Qptions Tools

Together 4 ~ untitied1

BT |

IEIEEEIEEEEEIE
AR untitledt
2304

File

US 2011/0252401 A1

Oct. 13,2011 Sheet 26 of 56

Patent Application Publication

7 DId

Creo Jeao J wess

1.

E

4]

o HOPT

~1ve

65T

GG 55}

S 8N

G EEER

(" ERHTRAGH AT

Lo £TPT

A Q m.qu g
9142 N
0PT

AT e Lmﬁ(m.\ ERR S]
s

LR

& BB AR N

4

Y VT OV
e || 0] B | 8] 4 g-m&%m mgﬁ@wﬂ QE@:@@

-00FT

US 2011/0252401 A1

Oct. 13,2011 Sheet 27 of 56

Patent Application Publication

$¢ 'DId

TR iEsstagd |

{4l

12

ik]

ey o

A

2

R

RS

3

$8ENFG GER

o
<
Wy
N

3 1

G Ut

S A

G M mm SR G

gy Aoy

0t

e

s

o

s r

§

{34353

A

YT

B SR

e Pae

it JEB

oy M

DESBUNEEES

“ LB

-

R

¥

gt

R LB

w

2

70re

B

YA

P [

ZCBEBSNN AADE 2w

% | DRI GEe> Bl 4]

B

hopf

XET

@
2
38
[
&
o
"y
a
a
1
5‘@.
SR

RHOWT

00§z

NS NIRRT
Rt Rt o e

4 AN
w _ P

US 2011/0252401 A1

SR PRG0N g

Spopl 248l

<4 ROBIBEY FHBOT
E+3 SHE)

wessyy [}

AL A TR Gl Cr i
< B, s i i
B4 HU5 eyt Al Ao 3l
<t Gigis]
4

pron el

Oct. 13,2011 Sheet 28 of 56

pos{magyes

v SR SR LIS

SHPOISR
GPOUEE Y

I~ o
09T 7o
.w. Q@ N SeBpy

LR 4

TR YR AT

SSERSSE

L R

ey Apsieg BOOAMS Y AT KRR TIRE 4
HigS sy
ple hice e | RIE L5y

WA BT

BB, VBRI

i

TR AGS

fe2et i) usRisy
P s R BIHRIY ﬂu

Patent Application Publication

.“ LRALHASES f _ pRBoNra &U
£ o

FEBERAN N D0E 2R

&%ﬁmﬁ:%m@ﬁﬁ%wﬁ @mﬁ méx_@zﬂﬁﬂ_@

ool suoalny ey AeR wuned sl ped e

RIETT G

WIOT PEATHRARIE - 4 sgatiog

s 3p g o w@@

HEE TG

US 2011/0252401 A1

il

b L S

ladiztiagatory

2o
g
YR s]

Lty

Rt

Oct. 13,2011 Sheet 29 of 56

fakts, - m ﬁ

JEE AN AR

W

ioannnraaalis
R CT R O e

R R 2

HAN % 0HE v

s w

=1
{

B A S SRS

¥

133

TR0 IRESG Y ISR AT

i

G AU

%

SR

ey

E

éés.\@\«
AR DN B e 8|+ OBODIR ESNK]D G _@@@

e Y S

] £

Patent Application Publication

US 2011/0252401 A1

Oct. 13,2011 Sheet 30 of 56

Patent Application Publication

LYARIIE |

Lasup |

SR EREIY B0

)
B

Srvre

=3

105
3350

143

&b
AL NS S G
PR SRR IS U
U SAYIIE USROS

{pi

G NS 4

3

pLaE]
IR
RRngrs

25t

P2OBEESANNADNE 322

e % |

okl -

(087~

US 2011/0252401 A1

Oct. 13,2011 Sheet 31 of 56

Patent Application Publication

9o

VPO DU Mo g

T

ol wragsAimug
o

wossssssesr OO
R K T Kook

PR s
R R R

R P
T LR IRTE

b4
B L R I
4] S SRS S S S S S RS S S %4
£+

QALY PSS

PHOALFL DOy

i

I
OlgiAmuz

-

sAmu i podppu s
e En A gA g gGies

3

e

Hed £ A

"
%

T
B
i

2

[s R I RY A L o oY gy T2 e w2

Ui ieresan i
PR)Rt glo4+
Vieht AR Jaeanalee

LA
gheLal
WEIOErs

LAHIUE) | pOgiappy

LESIEOH{08I00):

gz | W..v

A PR gles
pront mag el
R JARNL fors
o NBASSR s
piohd jeennre e

(e AR AU AU

o3

LA I S a e
LA epes

ity

AZ06T

4]

£ L Dot

l

2O EBESAN MANE 5

LA TP B> B4 BBRBER® B

dfy s suonlo wdl

)

SR GIOEEH

JE: wa s yoaesE el wEH oo

SIET

TR) OIS — 7 JoLaio]

on6eg

v

e

US 2011/0252401 A1

Oct. 13,2011 Sheet 32 of 56

Patent Application Publication

0¢ 'DId

ugehnug sieusidul teag] Amug esern oand ME E

[

2

ydanKEs T

SRS

IR
ZRRN
R RRRR

o RN

%
S

s

SRS
RIS
S

%l

eaul-uEsg | AUy] |

«;..
5
e

ey

AR AR ISR AI,

AR RIS

D N R A A E, ST AT
e e e R A S D R S T h Y ot
GRS R ey

Ty PN SR]

S
SR

usmoog{osignuegoisEnhas

mE{japooysey+
2 (difamae |~
mLpRe | 7

HALARE
SIS

vz

R,

DI 1BPeR 1S DGR+
sdb AuzbupwenadEeageks
prow{Jamairgsogaes

Adtéeg arab

e

pros{foeaigios

pond Jaicrgdlas

monysaouwsygios
poa(lmeassEdofs
poa{iseanygies

pian NrawonAliuiesut
DDA X UOORBIUO ARG +
{ Lo Dot

W.@OM..\ 4 EE PR

pricibicgTshitiabels [N

GES TR

LA
angpaly

wagoara

ke’

Mot L Auaoidi ey

LA} poyreppi

LA (junwemed ieear
Loppsg (togear

SUILL AN
GUBLISL]

PO EBEBANN WS OG % o

R0y 29 |

[pizcing

sp0T suondo PEBS mef

yaesd pelad w3 eid

BLAndUiET PeIRgAsig — 7 Jsuana |

000¢—~

US 2011/0252401 A1

Oct. 13,2011 Sheet 33 of 56

Patent Application Publication

[tgon [eran 3 wesy

f.n#._.u.wq_.-nwnwuwnwnuumu-.uww"wonow.ﬁcwﬁ;n.n.,....wnwuuuunwnhunno.uwwvn"muwuwunmﬂwﬂwwuwuwnwuukuaﬂma
R B o R AN

NS R RN X R XXX
A S LI

HEMOGLekn Jauy et
{epRseg
(LA

BETDOY

WAL D

el AU

AL LA LR R B S0 0+
At A (urmsiedisgaeylss

IERDRIOM O+
ARSI
pon Aoyl
oo A e s

[Fialg AT pe A TCH Rl oy ech il e Rg PATHE A7 20

I - L PP |

SNSRI R KL S .M!lw..dv(0<0<0tﬁ‘ﬁi\t’t{b{'{éﬂ‘ﬁ.‘bﬁ..V(G(O.cbt_ﬂ‘"bahcI%v(t(‘('t&(la&.fi i)
s o Ak
2

e e e et s

ST IS,

>
gy e e e
h.m.@.cm
SoRRE
KEINOErg

SR o
U s A g opi e dieinAspn

ke

LA unsendiamo
LAl mnod

- 14

P OBERARANNMATNE DD

Bmw,..ﬁtwm el i 4%
ezeuns O1¢ R Dol -
v B papenAmug- B
- THrT peagLigug -
§ :
& @ PR NM¥
HeF N D P Qe |8+ 8RR W EHDIX 2 UER|E
P T T, e R A
XA] Bapnduiny panoigu - g aepeboy

QO1L

Patent Application Publication

3200

Oct. 13,2011 Sheet 34 of 56 US 2011/0252401 A1

T e A rerihuRed ot

IR

Lte Bdit Object Search View Select Uptions Ipols Help

-

BigRD sl xbanTadaltigieoil|Oinsl

(HE wdefaults]

nelffettien] Entinyt

EdBDuient
interface
Eoite !

tmethenéhvold

+ehRemave e veguabsiother Objectiboatean
+ajbBtora(yvoid

el oar{hwnid

giblreste! pEmtity 1FK
+gibPosiCregta)void
+aibreate(paramin Enlily 1PK
rgjiFosiCreata{param:iniyvoid

2402

0
+eibFindEyFrimangievipk Eatity{ FR)
ebFindiethnd 1 pEntity 19K

smathod vl

i

GLSBEONRANNAEBIT

{ EntitytBoan joval

] (B

It]

| Errasiil e N

-~
oy

FIG. 32

300

TRaeher 4 - DR IS S

Fite £dit Dblect Search Yiew Selest Qpt

ions Jools Help

£

HIEEDI P IXLE S TETRIE | H| 2000 BB

<dafaula|

ndfdethod 1) Eniityt
u

EJBObjpot
Interfane

......,....‘._:.5\

+miethod T vaid

idl

+ejeRemovel e % rgquatsiotherCbjectiboalean
rejoittorad ol
+ajbl.opd]rvoid

+eibCreatal} Entity]
+eghPostCrata]
+eihCresteinaram ¢
+ejbPostlraate{paranint):

240

+aibFindByPrimariReyipk Entit 10K
+gibFindMathod 1 Entib 1 PR

srnethodi{hvoid

Ay pefi

&
"

b el g :
o &

CEVEIYRNWYEEIRTZ

R GRS

R EnmviBean.'avaf

RO T

!
FIGL 32

Patent Application Publication

Oct. 13,2011 Sheet 35 of 56

3400

US 2011/0252401 A1

Tooaler 4 - autaied Commating

Eile Edit Object Search Visw Salect Options Yook Help

RN I IR I I

defauity

P
L
=
i
5
&
”
%
&
=1
s
rd
58
&F

f &)
WByPrimanyRey (o Ertily 1RKLE
nddathad 16.Eniity
01 EJBObject
interface
DO ;{2 SR RN

smthie 1 vaid

+eibloaddiovid

+efbCragbely Eriily
P ostlreats]

+gibUrestaiparam
+egbPostOraate{daes

2402

TeibF iy Priman ey ok Eritity 1PH
+epbtindMethod 1) Eatily 1PK

Seaeihed Hohvoid
~any ref Siring

“ajy refiSting
BeC_rol el ot

+enquaisinthen Utiect) boolearn

+~eibAntivate]void ~Enfity PR
+eihPassivaiel rvoid +hashGodediint
gibRemoves| hvoid

e S ingd

ity 1 Bean javs
@ SIRRC prvate SINHG Se6 Fole o1 s

3500

FI1G. 3

T D2 B R T AV

Zilg Edit Dbisct Search Misw Selest |

ptiong foois Heln

MB INED eI XLEIRITDERI+IE IS (M i0inSr

THeadetauit

P

) D o
mFE;sF’nmaspf{gy{;ok,‘&ww}fiPK#;
rcitdetiod i GoERe

LW BOYR\NYEEBRTFJ

+mathod tiveid

idi

FE R TR

e ACHVRIS Huoid %
' i MhashUnde

+gbPassivatel v
+efifemovel vold

i

spgualeinthenQhjacttbaciean

reipioe(Lyuid
weibtooadlvoid

+eibCreatatiEnfity 1PK
+efePastCreate] bvoid
el rasielparaing
“ghiPostlrraledpana

2402

s

+eibFindByPrivanKevipk Eatity 1 P
+*ebFinddehod i bmnyiPK
B

Feelnd Hpveid

(3]
LBttty i eansval

14

{ static privade Shing efb (ol

F1G.

US 2011/0252401 A1

Oct. 13,2011 Sheet 36 of 56

Patent Application Publication

s

TR T A TS
o AT AR o T P
R et

g e S AN S S R S N AL S S

R Rl S S S R R N
e

; AT
RS
il

BHEAD

E R A SIS
R

RIS

E

N
tal

2

s
s

2

2%

X

32
O

R

o

N

!
2

:

ey
O

&

",

5
2

=
0
!

X
G

UBe

Mgy

ERpLE SRR

pranii peigme

2 S

P

HDLRAY S

[ETRET ey 3
morruomsgey o

49

ey AR GG

fode2 g Asseisygedh

(HOAT BRGNS

PAE (O R a GER Ay

BB E BN NN %

g ey

Ed

<Ry os i

LA DI B B 4 EBER R EBR P> | 0HS| W

) P

~Z0YL

ger sl :svwm.m vy SEHT W 2
%& Tl AR v b o)

009§ -

US 2011/0252401 A1

Oct. 13,2011 Sheet 37 of 56

Patent Application Publication

epsey 1t opand 191

g TR TS ST
I, At et
R s o M S S S
M Am m e A S A L e L S il S
ra
A

& 2
R Ot

"
of’g

Ty
=

%S

0

SN,

2
s

7

0T

5

%
ekl

e

B

Y
i

6
S

—
w, &

«
YO

wveapmoa(1ainn e isEnbs
W BEponusEls

¥,
rredel
X

X
el

<

2!

BN
s
5
72

=

{3l daggug

#@hm o - ¥ ,mwmmn,vm [Wav

L LB

HIRIGRLIRE

M LAIRUT

l

|4

IR 3 B I3 e R 5
sd P ARUE (uiuesd)eien s

oo { e eas Tt o,
i A iaeeingis.

oot

picn{spae ey
proa ol
Bioa A MOD -
o iBpErsEE 400
pon (Bl
s RO AR TSN +

B A0S SIS B L e

p

s R Y3 T
#0167 BEZEE
UL Bl
PEARCOARMT B0

teag kg

B R AR IR TR AR .
B e e : fy
et SR, TR

N\S,a:m
PRI
waliOnra

LA (R PR apipi
A LA et AU

o

LA (e red e ad
ihgug liaead

- b

B AU
BB

A OEBHEAN URDE 25

SUNEZIBD mm

AN DN Sed Bl 4| o0 EuXioe UBE| El

digl mool suonddy osieg mEr gauses el wH

rihiainy) PEIGEERY ~ 1 seuptiog

Patent Application Publication

target application server

3808
/"'

Oct. 13,2011 Sheet380f56 US 2011/0252401 Al
FI1G. 38A
Begin
/ 3802
Receive indication of EIB
3804
Receive a request to deploy /
the EIB
3 38086
Receive indication of EIB /

Y Hot N
z Deploy?
3810
Receive operation mode o
h 3812

Receive access information to start
EJB target application server

S

l

SCrver

Start target application

3814

!

Receive port to listen

3816
/""

Patent Application Publication Oct. 13,2011 Sheet 39 of 56 US 2011/0252401 A1

F1G. 38B

Receive deployment
options

Does BIB source code
comply with EIB
specification?

3 3824

Correct EJB source codeto | "
comply with BJB 4
specification
$ 3826
P

Refactor BIR source code

Y

> 3828

v -
3829 m;m
¥

Receive compiler access information N
‘ 3830
Send conunand to compiler to compile
EIB
i 3831
Receive compiled BIR

Patent Application Publication Oct. 13,2011 Sheet 40 of 56 US 2011/0252401 A1

FIG. 38C

3832
- Recetve access information /
for platform EJB target
application server

Receive location to /

store ISP files
| 3838
Receive network address
for trowsing files ISP
3838
5
Receive option to start
browser on the client
application server
3842

Generate JSP

Patent Application Publication

3850\

Oct. 13,2011 Sheet 41 of 56

FI1G. 38D

Retrieve deployment (4-3 245
mformation for BJB
Generate deployment 3846
descriptor file
Generate a 3848

deployment archive

Provides an XML editor for modifying the

generated deployment desoriptor

< w

385&3‘“‘\

3852

Receive ,
changes to RIB
deployment descripio)
' file?
. 3R54 |

hiod.iﬂ deployment descriptor
Store modification as deployment
information in commment of the
source code of EJB

Generate a
Deployvment
Descriptor Option
. Checked?

¥

Jditor2

385G e -
N ¥

US 2011/0252401 A1

Patent Application Publication Oct. 13,2011 Sheet 42 of 56 US 2011/0252401 A1

FIG. 38E

3860
4

| Deploy EIB in deployment archive to
EJB target application server

Y 1864

Provide the browser on client with /
hyperlink to test create method in EJB

L 4

Provide the browser on client with /’3 866
hyperlink to test business method in
EiB

h J

Provide the browser with an operation /~3888

call result page to receive a response
from the invoked business method

Patent Application Publication Oct. 13, 2011

/3880

Run the EIB

Sheet 43 of 56

US 2011/0252401 A1

FIG. 38F

3872

Attach debuggertoc

ommand port of EJB

target application server

L

Receive identification of main client class

3874

3

3876

Run main client ¢

lass in a debugger

sesston

Run EIB in another debugger session

878

End

US 2011/0252401 A1

Oct. 13,2011 Sheet 44 of 56

Patent Application Publication

6¢ DId

[Ti6 i esa 1l T Wil

PO6L

~T06€

prosdlsanusydes

moa{ e Asse 0o

ol pseaydios

HEAE] BRI IGOUSRRE RS +

P Bngagtny

SRy Aeroun

yoslong pEngdY &

BANMARDOE N3

GAsHLG el sy 52
WIILNGSY KRiE ‘.
4 BIIRNSSY AEn) WSy
< Heelss o] Pt e
< O

& H

SHEVERD RUSDS M SZUDRIUAL

L&

. TR Sl saLaT
@@@N . egegEIeg o

“rrpaany W koEIB g ra

Helfi % O« OBy L

IEEEIERIREEEN
j SUolllo oty sk paesd elald apd e
(e FUAA oM — ¥ JOIOBGY,
006€

Patent Application Publication Oct. 13,2011 Sheet 45 of 56 US 2011/0252401 A1

4000

{:@ Emarpriss JavaBeans depliyment expern =1

W Galect the appiosting server platfonn for depinying vour BJB foom {he hist of suppoded servers

4002

: dpelicstion Barver 5177 w7

Vs

“Ganede 1,17 B Py
VR enesis 100 288 3
Siart Wablogin Application Server §1
“Wablogle Appialisn Server 8.1
“Weblogic Applization Server 4,517
IER Walbsphers KE 3527

"Burs BE Referancs implamsmiation”

£

“tPhanst A

JyAGLSeR)”

{ Generate Deplayment Descrigdne
I Opera Xl Editor for generatest 0

ety Defabsss Table for CMEB
53 Hot Ceploy {use “Biart Watdogic Appiication Server 3.1° o st seover manualy}
B3 Clzae sy folder bafore siant

B Ciear temp foider after finish

<fravious]] Patagt =] ! Firdsh] l [ai) I I Halp

FI1G. 40
4100

{j Enterpriss JavaBeans deployment expert

) Setect the appiics

W Server phatform for dey
-4102

[Shart Wablogin Application Saver 5.3 =

yaur BJ8 fom the sl of supported seress

Youroan optionally compils BB dassss and generste s depinyrent desoripne during this process.
Qo 20re sarvdds, yon tant sptionaly “hot” depioy.
Yo sen)iso opt e delete tempursry Bleg afer depioymant Check e Spiinns yon wans bsow

3

Froness uptions

{ Star Weblogic Server 5.1.0 inovral mode; |

0
54 Slon wWeblogie seever 8.1.0 idebug model 4 } 0{)

[~drpsdaus] l Nzt = l l Finizh I l Cancd [[e

FIG. 41

Patent Application Publication Oct. 13,2011 Sheet 46 of 56 US 2011/0252401 A1

~4200
Start Weblogic}\ppﬁcaﬁnn Sarver 3.1 « Page "Common Properties” ¥
Manwe ke
Fnot dirsctory of Weblogic Server... [sCudaf) 412 F
SRS l 1 Negt >] l Finish] ‘ Lancel l i Failp i
FI1G. 42
4300
D Start Wsehlogic: Application Server 5.1 - Page "Debug Connecti.. I}
o Vit
Remote process port ad.. 8787 4302
=Eireingsgs] I Next > t I Finish t | Cancel I l Hely
FIG. 43
4400 4402

Thu Dec 14 15:40:27 EST 2000: <> <EJR> O deployed, O failed to deploy.
Thu Dec 14 15:40:28 EST 2000 <> <ZAC»> ZAC ACLs initiclized.
Thy Dec 14 1544028 EST 2000:<i> (ZAC> ZAC packages stored in local dlrertcry @
orts
u Des 14 15:400 28 EST 2000 <> <listenThread> Listening on port: 7001

<NT Performance Pack> NATIVE created loCompletionPori successhuliy, | oﬁnrt*{}xf‘ﬂ
000204
Thu Dec 14 15:40: 29 EST 2000 <> <WeblogicServer> Weblogle Server storted .

g

44{:)4
FIG. 44

Patent Application Publication Oct. 13,2011 Sheet 47 of 56 US 2011/0252401 A1

4500

{:3 Enterprise JavaBeans deployment expert

Selent the application server platform for deploying youwr EJB from the higt of supported servers

Wablogic Application Server 6.1 e

R You can optionally compie BB olagess and generale 2 deployment descriptor during this process.
Chy sone sarvers, you can opticrally "hot” deploy.
You can also opt to delete temparary files after deployment. Check the options you want below

T Process opions

b3 Add Bbraries, required for deployment, {o the project SearchiClasspath

4504

i VerifeQorrest EJB sources for compliance with WLSS. 1 retuirementg--
¥ 8 {

4506

Compile classes from the selected diagram.—~

i} Generate Deployment Desoriptor ... “4508
; o 4510
~ 3 B2 Open XML Editor for the generatad DD
4502+ 4512
4 £ Process Servists) T

i Hot Deploy {use "Stan Weblogic Application Servér 5.1° or start the server nianuaily)

(] Senerate simple JSP slient }

4514

B Clagr temy folder bafore start

i 8 Clear temp {older after finish
A
<fravious I ‘ eyt > I } Fintgh I l Gancet] l Medp
|]weblogic Application Server 5.1 - “Verify/Correct sources”
Boosconec
Namae Value
Stop deploymant if veritication fails [} 46072
Corract suurses o cormpdy with WSS 4 {B 4{){)4
Backup originat sources befiye corvection
Backup direatary §f "omrect sources” is selected) etermpiackun @
=Erevious l l Mext @ i i Finish l [Canceai l ! teip l

FIG. 46

Patent Application Publication

A700

Oct. 13,2011 Sheet 48 of 56

US 2011/0252401 A1

D Weblogic Application Server 5.1 - Pags "Commoen Froperiss”

Narra Value
Fobder for the temmporary files ehbesg
Fotder for the genarated JAR fils aMemp
DK 1.2 voot directory ajdki.2.2 37072
Root direciory of Weblogio Seover., jelwisS §
Shor! name of BJB JAR fie tagetherBdBjar
Lhractory 1o compile Bendet 2lwiss _timyserveriservstclesses @
R i ey -
~Praviaus i Plaxt = E 1 Finigh l } Cancal l ; Halp
FIG. 47
Wablogic Application Server 5.1 ~ Page "Rurrtime deploy” 33
Name Value
Syatont password | HERRS LR 48{_}4
Serves port v 48{)2 7001 4806
Servar bost j ooathost 480K
<Previous i i eyt > ! ! Finish ! z Canocel 1 i Halp
Ty
FIG. 48
|| Weblogic Application Servar 5.1 - Page “Simple JSF olient genaration” X3
MNama Vatiee
WeblLagle public directary elwlsS 1imyserverpublic htmi 4907 =
Subdirectory for placing JS¥ files S [{}
Base URL for browsing JSP bidocathost 70017 4(}06
Show result after generation [3]
<Pravicus ’ l Mext > l E Finish l Canoel 1 I Help

FiG. 49

Patent Application Publication

Oct. 13,2011 Sheet 49 of 56

5000

T e A Desnat ~ T oo . T e T S e ST S L BT e T e e e han. 10N

Eile (blect Stock Help

US 2011/0252401 A1

<hls <long sizes"+ 3% abxMavigation page<ibe <fonbs <ht=

fd Bloment deration)

svatian Sy DRSS {pensrie)”

o] Header

b SEAUG Sechon

EGRTENE T e S By DRANS rorrmermn e >

! <oy aligrr="osnie > Ap aligres et S EAE <BTRONMG

hvokeFaNamsigeilGGptiond AdapterliP™), “geiBeaniamefivHommelnt®, gelGDDi

S TRONGS iy <idive l

Rt RErAla

ftaration by "Operation {geneticy”

beed Huader

<binchquote>)
<div align="jeft*> Findars

TR SEshon

<y Aol > <& href=" InvoksF arhemsigetDGOpIoN Atapte NPT, geﬂrmwl

Regumn typesh>] Namepsis { [F‘arametmt\‘ia‘/'ﬂ'ﬁiw

= Fonter

</hinvkquotes
<filockquotes>

feclemeant Recation

aration by "Opsration {genanic)”

e Heager

<piockguates o
<div align="tef"> Craators «idies
shiookguoles

fesfntatic Sechon

gy @igne el <A hrafs” nvgkeForiameigatDGOMIen AdamlerNE™), "getilrasior™

Paramater] <ia><idive

'

i | Namejie

et Foohar

hickguotes
=fitackaquote

(=t Elomeng fieralion

fteration by "Glsss {generic)”

=] Tigader

SEESION BRANS v i

ediv alignsleff e

tatic Section

sl

=

S
A AligR=Ttemers <g aign="left" RIS dSTRGNG”;iEnmk&Ft-sName;‘ger{)G 4SYRGNG?<‘>"::«“*<«J'EW1§

P Elemant Gerstion

feration by "Operalion {generig)

r:l Header

SHICKI RS l

]

FIG. 50

Patent Application Publication Oct. 13,2011 Sheet 50 of 56 US 2011/0252401 A1

F1G. 51

5100
$102

<?zml wersgion="1,0"7>

<1DOCTYPE aib-jar PUBLIC '-//Sun Microsystems, Ince.//DTD Enterprise
JavaBenns L.L1//EN' 'Efﬂmnffjava.sun.cnmfjZee!dtdsjajb—jarﬁlﬁl.étd’i}

CEIDI AL e STOR Y N
<enterprise-beans® ——e—— 5112 3106 whw~5104
<HRESLGAD e 5116
<ejb-name>HalloBean</sib-named e 5120
<homerhello. HelloHome< / ROMED mmmmmmm 5122
cremoterxhello, Hellod/ remoled s —————— 5124
<gjb-classrhello. HelloBaand/eib~alas s 51286
<gession~type>Stateful<d/session~typar
<transaction~typedContalner<d/transantion 5128
type></session></enterprise-heans> . 3114
¢ Lassembly-deacriptor>
<container-transaction>
<mathods
<gib-nams>HelloBean</eibh-name>
wethod-name>* </method-nare></method>
<method>
<gjb-nane>HelloBean</eib-nama>
5130 ~< <mwthod—intf}ﬁome<fmethod~intf>
<method-nams>* </nethod-name>< /method>
<methods
<eib~pname>Hello8ean<d/eib-name> 3132

<method~int f>Remotes/method-int £>
<mathod-name>*</method-name>< /method>
<trans-attributerfotIupported</trans-attributes<foontainer~
transaction>/assemply-descriptor>«</aib-jars>

N 5110

US 2011/0252401 A1

Oct. 13,2011 Sheet 51 of 56

Patent Application Publication

5 DId

_ j@ouEs)

I

woo |

acis
_ URBOHek {,) sweu-gla
anfeA DUIEN

BNEA IUSLLSIS

omnquIE-suBRg |

powyews [| B
powewt []
powaw [] B
uonesuR-Bweron] H
soydposep-Aiqussse [| [
\\?v sdA-uapoesuel G o175
{,) edAj-uoissos m_
/ ssep-gla . wamm
w&m_m SIOLIDI G
ooy mu
.

907 uoisses [| H
sueag-ssudisua] H

sef-gla]

i

e sel-glan 4NV LS Er A0/dendWws o - o3P TINK ||

2028

Patent Application Publication Oct. 13,2011 Sheet 52 of 56 US 2011/0252401 A1

~3300

[:] XL Editor - oitemp i eptoyEJEME TAINF i jarxmil

) Teivgar Elernent Value

D o i A Pdarsre Value
eseription {7) Description) This is s hean description
8 [Tlenterprise-beans ‘

8 7 smssion JES / .
e » 5304 5306

aibh-nants M

nore
restvioies

sfb~class

I

] session-type (9

N D ass

¥ [Joessembly-descriptor

fon-type)

i £ E E Laant

5310
FiG. 53
5400
{’% <‘<ie;aust» h’% falio If% wablogic

o pitRemove

siraate

helio

getFroperty

ARG b AT A TR KT R
TN (R R "‘»t.o‘t:gooo

ORI %0 2
R N R RS SR

FI1G. 54

Patent Application Publication

h
L9,

5500

Oct. 13,2011 Sheet 53 of 56

US 2011/0252401 A1

{] NavigationPage - Microsoft intemet Explorer

IO

ﬂ Fie Edit View Favortes Tools Help § 0
' S b3
E . . ® B O®
Back Foresan Stop Refresh Horoe Saarch
f| Ageress 8] miptocainost 700 1imySPindex i [v] @
ﬁuuka @ Oustomize Links @Wmdmﬁ SO Poriat >
o ot .
Navigation page
2
9““ wemeesee-Ga8sinn DEANRE seeeeses
EJB: Bean: HelloBean Home: HelloHome Remote: Hello
Creators:
~~~~~ 5504
create ({7 -

l@’} Dane

}{]}——[@ L.ocal intranst

0 FIGSS

D Bean_hello HelloBean ~ Microsoft Intemet Explorer

ﬂ File £t ew Favorites Tools  Help

@ Done

!mm@ Local intranet

. < f X
G oL B . ® o | Q
Back Forward Stap Hefrash Home Searsh Favorites
HA}‘}_&H&SS i@ nttpfccalbost TH0LMISPGent jsp liﬂ {? 3a
ﬂum{s@ Customize Links @W&namvs @ €0 Portal @ Together Community »
Session bean page
EJB: Class name: Bean: HelloBean Home: HelloHome Remote:
Hello ;
Remote accessible operations:
3604
String helio £} ;
Back to Navigation page |

FIG. 56



Patent Application Publication  Oct. 13,2011 Sheet 54 of 56

3700

US 2011/0252401 A1

DResuR hello. Hello helio{) - Microsoft intermnet Explorer

= 0X]

ﬂ File Edit Miew Favortes Tools Help “ i’_[}
D . @ N a &=
Back Forward Stop Refresh  Home Search  Favprites
ﬂAddress @ hitpflocathost 700 HmyJSPGens jsp vl @ Go
ﬂLmks@j Customize Lmks@'w;ndows @Z‘( CCM Pertai@ Together Community »
Operation call result page
3702
“ 5704
) Result
Hello World
- 5706 -
¢ ! L
{&) Done L 11 M9 Localintranet P
F1G. 57
- 3800
| ] Attach to remole process
Host: | JocalHost S804 |
Transport [ socket 3806 | \ 5802
Address: (5767 5308 I

Helo

K Caarrexel

FI1G. 58



Patent Application Publication  Oct. 13,2011 Sheet 55 of 56 US 2011/0252401 A1

= 5900

{1 Arguments and parameters Xl
Application t Applet l
Chass with ‘main’ iciiani,wabingic.HeilﬂC!ient 5902 ﬂ“m]
Program arguments: | 5964 !
Vi options: i 3906 §

{1 Dowt show this dislog again

FIG. 59
~6000
TR et

e Bt Oblect foarch ew Sebsei Oguone Jomks  RHedp

18| &ﬁ&!“@%@mﬁbﬁi% T TR & DRI D] s winP
R - FR A R |

L A0
Meliniianh .
B P HeicWond — 6“04
& [ cient pliy

B metio
sipfaws>
7R AsmemblyDHegram

W A YHAR S F

va &H {«(,’%iem‘jami
[ 1 Thigats r {ingsis f Muohiors ff'v‘c"satches {
- Bl comste rpats | [ oo
& 3 4 Jawa HotSpst{Thit Cland Wi wearming: Satiing of propesty Tjava.cumpder 1 igntres
Do & & 6002
O &
158 NMasagss | IS Geoymeni| gr Boson] W Detngge |
P Stopred-at breahpant i dlass alignbwablogis HalicGlient dine 201 {gg‘tmmvz.\lgggif I} et | LnoR20fE Cobd g

FIG. 60



19 "DId

{5w sUi] ueaguiBL 0gey SeR Ul Wit e padiing | ﬁ ﬁ

Liaen oz j{ wesw |

Tw..mmxawa w&/magﬁm m/m eSGAGHIS] | Y ;m safessapy qu

US 2011/0252401 A1

4

t o A d

myom g

BRI \w 53 GNG \M SHHadERig \_ FOSUET iy

W
_ wEnRag \M SHUTEM \M SACHUCHY \w BOREE \m SR

Eoi

L A NG o wﬁm

=3
=
&

o

9019~

2019

Oct. 13,2011 Sheet 56 of 56

wedimodpuassy

A RTITEA

S R R BB R e o e e DS e SRR vy
e st atetehas N NN A o g M) 5 e S D AR I A s X A NS MR N K oL, Ll pas
2 cdavs AR R AR I R R A S BN EG, T
D N N A By R Y B O O T O A S r e N s <HEZBIT.

oy HY
woys HE 8
PHOMOIEH B £

JUBETOHAM

O EESNSN #R

m i %mLQ 4 n@,«_ AR n@L

FulelFID NS B4 l8BEBD|wORRIie]

ph)

gl ool suodly wepd  meih gomed peigy wpd 8

PLCORGESK ~ & Jatneiing

0019

Patent Application Publication



US 2011/0252401 Al

SUPPORTING AND DEPLOYING
DISTRIBUTED COMPUTING COMPONENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 12/876,108, filed Sep. 4, 2010 (Attorney
Docket No. BOR-094A1CIPDIVCONT1) entitled “Methods
and Systems for Supporting and Deploying Distributed Com-
puting Components,” which is a continuation of U.S. patent
application Ser. No. 11/257,724, filed Oct. 25, 2005 (Attor-
ney Docket No. BOR-094A1CIPDIV) entitled “Methods and
Systems for Supporting and Deploying Distributed Comput-
ing Components,” now U.S. Pat. No. 7,793,256, which is a
division of U.S. patent application Ser. No. 09/839,646, filed
Apr. 20, 2001 (Attorney Docket No. BOR-094A1CIP)
entitled “Distributed Computing Component System with
Diagrammatic Graphical Representation of Code with Sepa-
rate Delineated Display Area by Type,” now U.S. Pat. No.
7,051,316, which is a continuation-in-part of U.S. patent
application Ser. No. 09/680,063, filed Oct. 4, 2000 (Attorney
Docket No. BOR-094A1) entitled “Method and System for
Developing Software,” now U.S. Pat. No. 6,851,107, which
claims priority to U.S. Patent Application No. 60/199,046,
filed Apr. 21, 2000 (Attorney Docket No. BOR-052P) entitled
“Software Development Tool,” and U.S. Patent Application
No. 60/157,826, filed Oct. 5, 1999 (Attorney Docket No.
BOR-094P) entitled “Visual Unified Modeling Language
Development Tool,” all of which are herein incorporated by
reference for all purposes. This application is related to U.S.
Pat. No. 6,993,710 (Attorney Docket No. BOR-052), entitled
“Method and System for Displaying Changes of Source
Code,” filed on Oct. 4, 2000; U.S. Pat. No. 6,851,105 (Attor-
ney Docket No. BOR-094), entitled “Method and System for
Generating, Applying, and Defining a Pattern,” filed on Oct.
4,2000; U.S. Pat. No. 6,931,625 (Attorney Docket No. BOR-
015), entitled “Method and System for Collapsing a Graphi-
cal Representation of Related Elements,” filed on Oct. 4,
2000; U.S. Pat. No. 7,171,646 (Attorney Docket No. BOR-
051CIP2), entitled “Methods and Systems for Generating
Source Code for Object Oriented Elements,” filed on Apr. 20,
2001; U.S. Pat. No. 7,810,069 (Attorney Docket No. BOR-
006), entitled “Methods and Systems for Relating Data Struc-
tures and Object Oriented Elements for Distributed Comput-
ing,” filed on Apr. 20, 2001; U.S. Pat. No. 6,983,446
(Attorney Docket No. BOR-049), entitled “Methods and Sys-
tems for Finding Specific Line of Source Code,” filed on Apr.
20, 2001; U.S. Pat. No. 6,976,243 (Attorney Docket No.
BOR-057), entitled “Method and System for Developing
Source Code and Displaying Linked Elements Found Within
the Source Code,” filed on Apr. 20, 2001; U.S. Pat. No. 7,055,
131 (Attorney Docket No. BOR-053), entitled “Methods and
Systems for Animating the Interaction of Objects in an Object
Oriented Program,” filed on Apr. 20, 2001; U.S. Pat. No.
6,993,759 (Attorney Docket No. BOR-046), entitled “Dia-
grammatic Control of a Software in a Version Control Sys-
tem,” filed on Apr. 20, 2001; U.S. Pat. No. 7,114,149 (Attor-
ney Docket No. BOR-051CIP1), entitled “Navigation Links
in Generated Documentation,” filed on Apr. 20, 2001; U.S.
Pat. No. 7,055,130 (Attorney Docket No. BOR-047), entitled
“Methods and Systems for Identifying Dependencies
Between Object-Oriented Elements,” filed on Apr. 20, 2001;
and U.S. Pat. No. 7,188,332 (Attorney Docket No. BOR-
051CIP3), entitled “Methods and Systems for Relating a Data

Oct. 13,2011

Definition File and a Data Model for Distributed Computing,”
filed on Apr. 20, 2001, all of which are incorporated herein by
reference for all purposes.

FIELD OF THE INVENTION

[0002] The present invention relates generally to data pro-
cessing systems and, more particularly, to methods and sys-
tems for supporting and deploying a distributed computing
component.

BACKGROUND OF THE INVENTION

[0003] Computer instructions are written in source code.
Although a skilled programmer can understand source code
to determine what the code is designed to accomplish, with
highly complex software systems, a graphical representation
or model of the source code is helptful to organize and visu-
alize the structure and components of the system. Using mod-
els, the complex systems are easily identified, and the struc-
tural and behavioral patterns can be visualized and
documented.

[0004] The well-known Unified Modeling Language
(UML) is a general-purpose notational language for visual-
izing, specifying, constructing, and documenting complex
software systems. UML is used to model systems ranging
from business information systems to Web-based distributed
systems, to real-time embedded systems. UML formalizes
the notion that real-world objects are best modeled as self-
contained entities that contain both data and functionality.
UML is more clearly described in the following references,
which are incorporated herein by reference: (1) Martin
Fowler, UML Distilled Second Edition Applying the Standard
Object Modeling Language, Addison-Wesley (1999); (2)
Booch, Rumbaugh, and Jacobson, The Unified Modeling
Language User Guide, Addison-Wesley (1998); (3) Peter
Coad, Jeff Delluca, and Eric Lefebvre, Java Modeling in
Color with UML: Enterprise Components and Process, Pren-
tice Hall (1999); and (4) Peter Coad, Mark Mayfield, and
Jonathan Kern, Java Design: Building Better Apps & Applets
(2nd Ed.), Prentice Hall (1998).

[0005] As shown in FIG. 1, conventional software devel-
opment tools 100 allow a programmer to view UML 102
while viewing source code 104. The source code 104 is stored
in a file, and a reverse engineering module 106 converts the
source code 104 into a representation of the software project
in a database or repository 108. The software project com-
prises source code 104 in at least one file which, when com-
piled, forms a sequence of instructions to be run by the data
processing system. The repository 108 generates the UML
102. If any changes are made to the UML 102, they are
automatically reflected in the repository 108, and a code
generator 110 converts the representation in the repository
108 into source code 104. Such software development tools
100, however, do not synchronize the displays of the UML
102 and the source code 104. Rather, the repository 108 stores
the representation of the software project while the file stores
the source code 104. A modification in the UML 102 does not
appear in the source code 104 unless the code generator 110
re-generates the source code 104 from the data in the reposi-
tory 108. When this occurs, the portion ofthe source code 104
that is not protected from being overwritten is rewritten.
Similarly, any modifications made to the source code 104 do
not appear in the UML 102 unless the reverse engineering
module 106 updates the repository 108. As a result, redundant



US 2011/0252401 Al

information is stored in the repository 108 and the source
code 104. In addition, rather than making incremental
changes to the source code 104, conventional software devel-
opment tools 100 rewrite the overall source code 104 when
modifications are made to the UML 102, resulting in wasted
processing time. This type of manual, large-grained synchro-
nization requires either human intervention, or a “batch” style
process to try to keep the two views (the UML 102 and the
source code 104) in sync. Unfortunately, this approach,
adopted by many tools, leads to many undesirable side
effects; such as desired changes to the source code being
overwritten by the tool. A further disadvantage with conven-
tional software development tools 100 is that they are
designed to only work in a single programming language.
Thus, a tool 100 that is designed for Java™ programs cannot
be utilized to develop a program in C++. There is a need in the
art for a tool that avoids the limitations of these conventional
software development tools.

[0006] Additionally, conventional software development
tools have further limitations that increase the time and cost
for developing and deploying software to support distributed
computing. Distributed computing allows a business system
to be more accessible to enterprise affiliates such as suppliers,
customers, business partners, or financial lending institu-
tions. A distributed computing component, such as an Enter-
prise JavaBean™ (EJB), defines the architecture for develop-
ing distributed business objects so that a remote client
application run by an enterprise affiliate can access business
logic managed by an enterprise application server. Business
logic represents the specific details and information flow of'a
particular industry, such as areservation system for an airline,
a just-in-time parts inventory system for a car manufacturer,
or an online stock trading system for a financial services
vendor. In general, a conventional three-tier distributed busi-
ness object architecture typically has a presentation first tier,
a business object middle tier, and a relational database third
tier. The presentation first tier resides on a remote client
application and may include a graphical user interface
defined to communicate with an EJB. The EJB (or business
object) resides on and is managed by the enterprise applica-
tion server on the second tier. The business data resides in the
database (the third tier).

[0007] An EJB, which is typically written in an object-
oriented programming language, has a generic set of
attributes and methods through which the EJB can commu-
nicate the functionality it supports to the enterprise applica-
tion server after the EJB is deployed. Thus, an EJB enables
completely dynamic deployment and loading of an EJB
object. The attributes of an EJB allow the runtime behavior of
the EJB to be modified when the EJB is deployed to an
enterprise application server, without having to change the
programming code in the EJB. For example, an administrator
of the enterprise application server is able to change the
behavior of an EJB by modifying a particular attribute, such
as a security behavior attribute, to have another value.
[0008] To create and deploy an EJB, a programmer follows
the conventional development process for an EJB that
includes:

[0009] (1) using a graphical modeling tool, such as a
computer-aided software engineering (CASE) tool, to
model an EJB to be generated;

[0010] (2)using the CASE tool to generate a source code
framework for the EJB, such as constructs for an EJB
class;

Oct. 13,2011

[0011] (3) using a text editor to develop the code for the
EJB, such as attributes and business methods that define
the behavior of the EJB;

[0012] (4)using an integrated development environment
tool or software design kit, such as JDK™, to compile
the EIB code;

[0013] (5) using a debugger tool suitable for evaluating
errors in the EJB code;

[0014] (6) using a text editor or comparable tool to write
adeployment descriptor, usually in XML, that describes
the serialization and other properties of the EJB in the
context of a client application;

[0015] (7) using atool provided by an application server
vendor to generate a collection or container class. A
container object or class instance logically, rather than
physically, encapsulates, tracks, and manages zero or
more EJBs that have been deployed to the application
server. For each EJB that is deployed to or added to a
container, the container creates a site that it uses to
manage the component;

[0016] (8)usingadeployment packaging toolto package
the deployment descriptor, and the compiled code for
the EJB into a deployment package, such as a specific
directory or file on the application server;

[0017] (9)using another tool provided by the application
server vendor to read the deployment package and prop-
erly deploy the EJB on the application server; and

[0018] (10) repeating the process when runtime errors
are discovered with the EJB.

[0019] Thus, the conventional development process pre-
sents several problems for a programmer. First, to develop
and deploy an EJB, the programmer typically performs many
of the steps manually, such as writing the deployment
descriptor and porting the EJB between tools. Furthermore,
the conventional development process dictates that the pro-
grammer learn to use an array of different tools which con-
tributes to a longer learning curve for each programmer that
slows down the EJB development process. In addition, the
array of different tools increases the costs to produce the EJB.
Conventional software development tools do not address
these problems.

[0020] Inaddition, when runtime errors are discovered with
the EJB, the programmer makes manual corrections to the
EJB code mad deployment descriptor file while repeating the
entire conventional development process. Thus, by following
the conventional deployment process, a programmer spends
additional time debugging, correcting code, and re-deploying
an EJB to produce an EJB that runs as desired or error free.
Conventional software development tools lack the capability
to address these problems. Thus, there is a need in the art for
a tool that avoids the foregoing limitations of conventional
software development tools.

SUMMARY OF THE INVENTION

[0021] Methods and systems consistent with the present
invention provide an improved software development tool
that overcomes the limitations of conventional software
development tools. The improved software development tool
of'the present invention allows a developer to simultaneously
view a graphical and a textual display of source code. The
graphical and textual views are synchronized so that a modi-
fication in one view is automatically reflected in the other
view. The software development tool is designed for use with
more than one programming language.



US 2011/0252401 Al

[0022] The software development tool also saves signifi-
cant programming development time as well as costs for
conventional tools by allowing a developer to generate, com-
pile, assemble, deploy, and debug a distributed computing
component, such as an Enterprise JavaBean™, without hav-
ing to use multiple conventional tools. By using the software
development tool to support and deploy an EJB, a developer
produces error-free code in a shorter amount of time as the
risk of error is reduced by alleviating the need to switch from
tool to tool during the development and deployment process
of the EJB. In addition, the software development tool pro-
vides the programmer with a segregated grouping and view of
methods that define the behavior of an EJB, where the pro-
grammer is able to easily identify a method in an EJB imple-
mentation class to a respective method signature in either an
EJB Home Interface or an EJB Remote Interface that corre-
sponds to the EJB implementation class as explained below.
[0023] Inaccordance with methods and systems consistent
with the present invention, a method is provided in a data
processing system. The method receives a request to generate
a distributed computing component, generates code corre-
sponding to the distributed computing component, where the
code contains a function that is one of a plurality of function
types, and displays a graphical representation of the code that
includes a separately delineated display area for each of the
plurality of function types. The method also displays a sym-
bol in each separately delineated display area, wherein the
symbol indicates the type of method displayed in the display
area.

[0024] Inaccordance with methods and systems consistent
with the present invention, a method is provided in a data
processing system. The data processing system includes a
software development tool. The method initiates execution of
the software development tool, and while the software devel-
opment tool is executing, the software development tool
receives an indication to deploy a distributed computing com-
ponent, deploys the distributed computing component to a
deployment environment on a computet, and initiates execu-
tion of the distributed computing component in debug mode.
[0025] Inaccordance with methods and systems consistent
with the present invention, a method is provided in a data
processing system. The data processing system includes a
software development tool with access to a distributed com-
puting component. The method initiates execution of the
software development tool, and while the software develop-
ment tool is executing, the software development tool
receives an indication to deploy the distributed computing
component, and generates a web page to facilitate testing the
distributed computing component.

[0026] Inaccordance with methods and systems consistent
with the present invention, a method is provided in a data
processing system. The data processing system has a distrib-
uted computing component with source code. The method
determines whether the code of the distributed computing
component has a non-compliant portion that does not comply
with a specification for the type of distributed computing
component, and when it is determined that the code corre-
sponding to the distributed computing component has a non-
compliant portion, replaces the non-compliant portion with
new code that complies with the specification.

[0027] Inaccordance with methods and systems consistent
with the present invention, a method is provided in a data
processing system. The data processing system has a distrib-
uted computing component with source code. The method

Oct. 13,2011

receives an indication to deploy the distributed computing
component, retrieves deployment information from a com-
ment of the source code corresponding to the distributed
computing component, where the deployment information
comprises a plurality of properties to control deployment of
the distributed computing component on a computer and to
control a relationship between the distributed computing
component and a deployment environment on the computer,
generates a deployment descriptor file that includes the
deployment information, receives a change to die deployment
information associated with the distributed computing com-
ponent contained in the deployment descriptor file, and modi-
fies the deployment information in the comment of the source
code for the distributed computing component to reflect the
change.

[0028] In accordance with articles of manufacture consis-
tent with the present invention, a computer-readable medium
is provided. The computer-readable medium contains
instructions for controlling a data processing system to per-
form a method. The method comprising the steps of receiving
a request to generate a distributed computing component,
generating code corresponding to the distributed computing
component, the code containing a method having one of a
plurality of types, and displaying a graphical representation
of'the code that includes a separately delineated display area
for each of the plurality of types.

[0029] In accordance with articles of manufacture consis-
tent with the present invention, a computer-readable medium
is provided. The computer-readable medium contains
instructions for controlling a data processing system to per-
form a method. The data processing system includes a soft-
ware development tool. The method comprising the steps of
initiating execution of the software development tool, and
while the software development tool is executing, receiving
an indication to deploy a distributed computing component,
deploying the distributed computing component to a deploy-
ment environment on a computer, and initiating execution of
the distributed computing component in debug mode.
[0030] In accordance with articles of manufacture consis-
tent with the present invention, a computer-readable medium
is provided. The computer-readable medium contains
instructions for controlling a data processing system to per-
form a method. The data processing system includes a soft-
ware development tool with access to a distributed computing
component. The method comprising initiating execution of
the software development tool, and while the software devel-
opment tool is executing, receiving an indication to deploy
the distributed computing component, and generating a web
page to facilitate testing the distributed computing compo-
nent.

[0031] In accordance with articles of manufacture consis-
tent with the present invention, a computer-readable medium
is provided. The computer-readable medium contains
instructions for controlling a data processing system to per-
form a method. The data processing system includes a dis-
tributed computing component with source code. The method
comprising the steps of determining whether the code of the
distributed computing component has a non-compliant por-
tion that does not comply with a specification for the type of
distributed computing component, and when it is determined
that the code corresponding to the distributed computing
component has a non-compliant portion, replacing the non-
compliant portion with new code that complies with the
specification.



US 2011/0252401 Al

[0032] In accordance with articles of manufacture consis-
tent with the present invention, a computer-readable medium
is provided. The computer-readable medium contains
instructions for controlling a data processing system to per-
form a method. The data processing system includes a dis-
tributed computing component with source code. The method
comprising the steps of receiving an indication to deploy the
distributed computing component, retrieving deployment
information from a comment of the source code correspond-
ing to the distributed computing component, where the
deployment information comprises a plurality of properties to
control deployment of the distributed computing component
on a computer and to control a relationship between the
distributed computing component and a deployment environ-
ment on the computer, generating a deployment descriptor
file that includes the deployment information, receiving a
change to the deployment information associated with the
distributed computing component contained in the deploy-
ment descriptor file, and modifying the deployment informa-
tion in the comment of the source code for the distributed
computing component to reflect the change.

[0033] Additional implementations are directed to systems
and computer devices incorporating the methods described
above. It is also to be understood that both the foregoing
general description and the detailed description to follow are
exemplary and explanatory only and are not restrictive of the
invention, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate an
implementation of the invention and, together with the
description, serve to explain the advantages and principles of
the invention. In the drawings,

[0035] FIG.1 depicts a conventional software development
tool;
[0036] FIG. 2 depicts an overview of a software develop-

menttool in accordance with methods and systems consistent
with the present invention;

[0037] FIG. 3 depicts a data structure of the language-
neutral representation created by the software development
tool of FIG. 2;

[0038] FIG. 4 depicts representative source code;

[0039] FIG. 5 depicts the data structure of the language-
neutral representation of the source code of FIG. 4;

[0040] FIG. 6 depicts a data processing system suitable for
practicing the present invention;

[0041] FIG. 7 depicts an architectural overview of the soft-
ware development tool of FIG. 2;

[0042] FIG. 8A depicts a user interface displayed by the
software development tool depicted in FIG. 2, where the user
interface displays a list of pre-defined criteria which the soft-
ware development tool checks in the source code;

[0043] FIG. 8B depicts a user interface displayed by the
software development tool depicted in FIG. 2, where the user
interface displays the definition of the criteria which the soft-
ware development tool checks in the source code, and an
example of source code which does not conform to the crite-
ria;

[0044] FIG. 8C depicts a user interface displayed by the
software development tool depicted in FIG. 2, where the user
interface displays an example of source code which conforms
to the criteria which the software development tool checks in
the source code;

Oct. 13,2011

[0045] FIG. 9 depicts a flow diagram of the steps performed
by the software development tool depicted in FIG. 2;

[0046] FIGS. 10A and 10B depict a flow diagram illustrat-
ing the update model step of FIG. 9;

[0047] FIG. 11 depicts a flow diagram of the steps per-
formed by the software development tool in FIG. 2 when
creating a class;

[0048] FIG. 12 depicts a user interface displayed by the
software development tool depicted in FIG. 2, where the user
interface displays a use case diagram of source code;

[0049] FIG. 13 depicts a user interface displayed by the
software development tool depicted in FIG. 2, where the user
interface displays both a class diagram and a textual view of
source code;

[0050] FIG. 14 depicts a user interface displayed by the
software development tool depicted in FIG. 2, where the user
interface displays a sequence diagram of source code;
[0051] FIG. 15 depicts a user interface displayed by the
software development tool depicted in FIG. 2, where the user
interface displays a collaboration diagram of source code;
[0052] FIG. 16 depicts a user interface displayed by the
software development tool depicted in FIG. 2, where the user
interface displays a statechart diagram of source code;
[0053] FIG. 17 depicts a user interface displayed by the
software development tool depicted in FIG. 2, where the user
interface displays an activity diagram of source code;

[0054] FIG. 18 depicts a user interface displayed by the
software development tool depicted in FIG. 2, where the user
interface displays a component diagram of source code;
[0055] FIG. 19 depicts a user interface displayed by the
software development tool depicted in FIG. 2, where the user
interface displays a deployment diagram of source code;
[0056] FIG. 20 depicts an overview of a three-tiered client/
server system that illustrates the architecture and operation of
an Enterprise JavaBean™ deployed by the software develop-
ment tool in FIG. 2;

[0057] FIG. 21 depicts ablock diagram of a data processing
system suitable for practicing methods and systems consis-
tent with the present invention;

[0058] FIGS. 22A and 22B depict flowcharts illustrating an
exemplary process performed by the software development
tool in FIG. 2 to develop and deploy an Enterprise Java-
Bean™,;

[0059] FIG. 23 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface shows a request received by the software devel-
opment tool to generate a type of Enterprise JavaBean™;
[0060] FIG. 24 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a related group of elements that com-
prise the EntityBean™ and another group of elements that
comprise the SessionBean™;

[0061] FIG. 25 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a list of code element types that the
software development tool in FIG. 2 may generate for a
selected EntityBean™;

[0062] FIG. 26 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a list of code element types that the
software development tool in FIG. 2 may generate for a
selected SessionBean™;

[0063] FIG. 27 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the



US 2011/0252401 Al

exemplary user interface displays a code element for a busi-
ness method added to the EntityBean™ and displays another
code element for another business method added to the Ses-
sionBean™ by the software development tool;

[0064] FIG. 28 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a code element for a create method and
a postcreate method added to the EntityBean™ by the soft-
ware development tool;

[0065] FIG. 29 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a code element for a find method added
to the EntityBean™ by the software development tool;
[0066] FIG. 30 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a code element for a persistent field
added to the EntityBean™ by the software development tool;
[0067] FIG. 31 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a code element for a primary key field
added to the EntityBean™ by the software development tool;
[0068] FIG. 32 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a code element for an EJB Environ-
ment Reference added to the EntityBean™ by the software
development tool;

[0069] FIG. 33 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a code element for an EJB Reference
added to the EntityBean™ by the software development tool;
[0070] FIG. 34 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays an EJB Security Role Reference added
to the EntityBean™ by the software development tool;
[0071] FIG. 35 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a code element for an EJB Resource
Reference added to the EntityBean™ by the software devel-
opment tool;

[0072] FIG. 36 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a find method signature for the code
element added to the EJB Home Interface by the software
development tool;

[0073] FIG. 37 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays the code element for the primary key
field added to the Primary Key class by the software devel-
opment tool;

[0074] FIGS. 38A-F depict a flowchart illustrating an
exemplary process performed by the software development
tool in FIG. 2 to compile, deploy, and debug an Enterprise
JavaBean™,;

[0075] FIG. 39 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, for
requesting the deployment of an EJB;

[0076] FIG. 40 depicts an exemplary user interface dis-
played by the software development tool for receiving an
indication of an EJB target application server;

[0077] FIG. 41 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a hot deployment request received by
the software development tool;

Oct. 13,2011

[0078] FIG. 42 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays access information for the EJB target
application server;

[0079] FIG. 43 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a port address received by the software
development tool for communicating to the target application
server;

[0080] FIG. 44 depicts an exemplary response received by
the software development tool from the EJB target applica-
tion server following a command to start;

[0081] FIG. 45 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a list of deployment options;

[0082] FIG. 46 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
software user interface displays an option to verify and cor-
rect EJB source code to comply with a specification;

[0083] FIG. 47 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays the access information for a compiler;
[0084] FIG. 48 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, for receiv-
ing access privileges for the EJB target application server
computer,

[0085] FIG. 49 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays access information for JAVA™ Server
Pages generated by the software development tool;

[0086] FIG. 50 depicts an exemplary JSP template used by
the software development tool in FIG. 2 to generate a JSP file
for testing the EIB;

[0087] FIG. 51 depicts an exemplary deployment descrip-
tor file generated by the software development tool for
deploying the EIB;

[0088] FIG. 52 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays the deployment descriptor archive file
for the EJB in an XML editor provided by the software
development tool;

[0089] FIG. 53 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a modification to the deployment
descriptor archive file received by the software development
tool;

[0090] FIG. 54 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays the modification to the deployment
descriptor archive file as an addition generated by die soft-
ware development tool to the source code of the EJB;
[0091] FIG. 55 depicts an exemplary JAVA™ Server Page
generated by the software development tool for interfacing to
the EJB from a Client Application;

[0092] FIG. 56 depicts an exemplary JAVA™ Server Page
generated by the software development tool for invoking the
EJB to perform a business method from a client server appli-
cation;

[0093] FIG. 57 depicts an exemplary JAVA™ Server Page
generated by the software development tool to reflect a result
from the EJB performing the business method;

[0094] FIG. 58 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2, where the
user interface displays a communication protocol and net-



US 2011/0252401 Al

work address for a debugger controlled by the software devel-
opment tool to communicate with the EJB target application
server;

[0095] FIG. 59 depicts an exemplary user interface dis-
played by the software development where the user interface
displays a client application to be run by the software devel-
opment tool in debug mode;

[0096] FIG. 60 depicts an exemplary user interface dis-
played by the software development tool for debugging the
client application; and

[0097] FIG. 61 depicts an exemplary user interface dis-
played by the software development tool in FIG. 2 for debug-
ging the EJB on the target application server.

[0098] Reference will now be made in detail to the descrip-
tion of the invention as illustrated in the drawings. While the
invention will be described in connection with these draw-
ings, there is no intent to limit it to the embodiment or
embodiments disclosed therein. On the contrary, the intent is
to cover all alternatives, modifications, and equivalents
included within the spirit and scope of the invention as
defined by the appended claims.

DETAILED DESCRIPTION

[0099] Methods and systems consistent with the present
invention provide an improved software development tool
that creates a graphical representation of source code regard-
less of the programming language in which the code is writ-
ten. In addition, the software development tool simulta-
neously reflects any modifications to the source code to both
the display of the graphical representation as well as the
textual display of the source code.

[0100] As depicted in FIG. 2, source code 202 is being
displayed in both a graphical form 204 and a textual form 206.
In accordance with methods and systems consistent with the
present invention, the improved software development tool
generates a transient meta model (TMM) 200 which stores a
language-neutral representation of the source code 202. The
graphical 204 and textual 206 representations of the source
code 202 are generated from the language-neutral represen-
tation in the TMM 200. Alternatively, the textual view 206 of
the source code may be obtained directly from the source
code file. Although modifications made on the displays 204
and 206 may appear to modify the displays 204 and 206, in
actuality all modifications are made directly to the source
code 202 via an incremental code editor (ICE) 208, and the
TMM 200 is used to generate the modifications in both the
graphical 204 and the textual 206 views from the modifica-
tions to the source code 202.

[0101] The improved software development tool provides
simultaneous round-trip engineering, i.e., the graphical rep-
resentation 204 is synchronized with the textual representa-
tion 206. Thus, if a change is made to the source code 202 via
the graphical representation 204, the textual representation
206 is updated automatically. Similarly, ifa change is made to
the source code 202 via the textual representation 206, the
graphical representation 204 is updated to remain synchro-
nized. There is no repository, no batch code generation, and
no risk of losing code.

[0102] The data structure 300 of the language-neutral rep-
resentation is depicted in FIG. 3. The data structure 300
comprises a Source Code Interface (SCI) model 302, an SCI
package 304, an SCI class 306, and an SCI member 308. The
SCI model 302 is the source code organized into packages.
The SCI model 302 corresponds to a directory for a software

Oct. 13,2011

project being developed by the user, and the SCI package 304
corresponds to a subdirectory. The software project com-
prises the source code in at least one file that is compiled to
form a sequence of instructions to be run by a data processing
system. The data processing system is discussed in detail
below. As is well known in object-oriented programming, the
class 306 is a category of objects which describes a group of
objects with similar properties (attributes), common behavior
(operations or methods), common relationships to other
objects, and common semantics. The members 308 comprise
attributes and/or operations.

[0103] For example, the data structure 500 for the source
code 400 depicted in FIG. 4 is depicted in FIG. 5. UserInter-
face 402 is defined as a package 404. Accordingly, UserInter-
face 402 is contained in SCI package 502. Similarly, Bank
406, which is defined as a class 408, is contained in SCI class
504, and Name 410 and Assets 412, which are defined as
attributes (strings 414), are contained in SCI members 506.
Since these elements are in the same project, all are linked.
The data structure 500 also identifies the language in which
the source code is written 508, e.g., the Java™ language.

[0104] FIG. 6 depicts a data processing system 600 suitable
for practicing methods and systems consistent with the
present invention. Data processing system 600 comprises a
memory 602, a secondary storage device 604, an /O device
606, and a processor 608. Memory 602 includes the improved
software development tool 610. The software development
tool 610 is used to develop a software project 612, and create
the TMM 200 in the memory 602. The project 612 is stored in
the secondary storage device 604 of the data processing sys-
tem 600. One skilled in the art will recognize that data pro-
cessing system 600 may contain additional or different com-
ponents.

[0105] Although aspects of the present invention are
described as being stored in memory, one skilled in the art will
appreciate that these aspects can also be stored on or read
from other types of computer-readable media, such as sec-
ondary storage devices, like hard disks, floppy disks or CD-
ROM; a carrier wave from a network, such as Internet; or
other forms of RAM or ROM either currently known or later
developed.

[0106] FIG. 7 illustrates an architectural overview of the
improved software development tool 610. The tool 610 com-
prises a core 700, an open application program interface
(API) 702, and modules 704. The core 700 includes a parser
706 and an ICE 208. The parser 706 converts the source code
into the language-neutral representation in the TMM, and the
ICE 208 converts the text from the displays into source code.
There are three main packages composing the API 702: Inte-
grated Development Environment (IDE) 708; Read-Write
Interface (RWI) 710; and Source Code Interface (SCI) 712.
Each package includes corresponding subpackages. As is
well known in the art, a package is a collection of classes,
interfaces, attributes, notifications, operations, or behaviors
that are treated as a single module or program unit.

[0107] IDE 708 is the API 702 needed to generate custom
outputs based on information contained in a model. It is a
read-only interface, i.e., the user can extract information from
the model, but not change the model. IDE 708 provides the
functionality related to the model’s representation in IDE 708
and interaction with the user. Each package composing the
IDE group has a description highlighting the areas of appli-
cability of this concrete package.



US 2011/0252401 Al

[0108] RWI 710 enables the user to go deeper into the
architecture. Using RWI 710, information can be extracted
from and written to the models. RWI not only represents
packages, classes and members, but it may also represent
different diagrams (class diagrams, use case diagrams,
sequence diagrams and others), links, notes, use cases, actors,
states, etc.

[0109] SCI 712 is at the source code level, and allows the
user to work with the source code almost independently of the
language being used.

[0110] There are a variety of modules 704 in the software
development tool 610 of the present invention. Some of the
modules 704 access information to generate graphical and
code documentation in custom formats, export to different
file formats, or develop patterns. The software development
tool also includes a quality assurance (QA) module which
monitors the modifications to the source code and calculates
various complexity metrics, i.e., various measurements of the
program’s performance or efficiency, to support quality assur-
ance. The types of metrics calculated by the software devel-
opment tool include basic metrics, cohesion metrics, com-
plexity metrics, coupling metrics, Halstead metrics,
inheritance metrics, maximum metrics, polymorphism met-
rics, and ratio metrics. Examples of these metrics with their
respective definitions are identified in Tables 1-9 below.

TABLE 1

Basic Metric:

Oct. 13,2011

TABLE 1-continued

Basic Metrics

Basic Metrics Description

Number Of Classes  Counts the number of classes.

Number Of Import ~ Counts the number of imported packages/classes.

Statements This measure can highlight excessive importing,
and also can be used as a measure of coupling.

Number Of Counts the number of members, i.e., attributes

Members and operations. If a class has a high number of
members, it may be appropriate to divide it into
subclasses.

Number Of Counts the number of operations. If a

Operations class has a high number of operations, it may be

appropriate to divide it into subclasses.

TABLE 2

Cohesion Metrics

Cohesion Metrics Description

Lack Of Cohesion Takes each pair of methods in the class and
Of Methods 1 determines the set of fields they each access.
A low value indicates high coupling between methods,
which indicates potentially low reusability and
increased testing because many methods can
affect the same attributes.
Lack Of Cohesion Counts the percentage of methods that do not
Of Methods 2 access a specific attribute averaged over all attributes
in the class. A high value of cohesion (a low lack
of cohesion) implies that the class is well designed.
Lack Of Cohesion Measures the dissimilarity of methods in a class by

Basic Metrics Description Of Methods 3 attributes. A low value indicates good class
subdivision, implying simplicity and high reusability.
Lines Of Code Counts the number of code lines. A high lack of cohesion increases complexity, thereby
Number Of Counts the number of attributes. If a class has a high increasing the likelihood of errors during the
Attributes number of attributes, it may be appropriate to divide development process.
it into subclasses.
TABLE 3
Complexity Metrics
Complexity Metrics Description
Attribute Complexity = Defined as the sum of each attribute’s value in the class.
Cyclomatic Represents the cognitive complexity of the class. It counts the
Complexity number of possible paths through an algorithm by counting the
number of distinct regions on a flowgraph, i.e., the number of ‘if;’
‘for’ and ‘while’ statements in the operation’s body.
Number Of Remote Processes all of the methods and constructors, and counts the
Methods number of different remote methods called. A remote method is

Response For Class

defined as a method which is not declared in either the class itself
or its ancestors.

Calculated as ‘Number of Local Method’ + ‘Number or Remote
Methods,” A class which provides a larger response set is
considered to be more complex and requires more testing than
one with a smaller overall design complexity.

Weighted Methods Per The sum of the complexity of all methods for a class, where each

Class 1

method is weighted by its cyclomatic complexity. The number of
methods and the complexity of the methods involved is a
predictor of how much time and effort is required to develop and
maintain the class.

Weighted Methods Per Measures the complexity of a Class, assuming that a class with

Class 2

more methods than another is more complex, and that a method
with more parameters than another is also likely to be more
complex.




US 2011/0252401 Al

TABLE 4

Coupling Metrics

Coupling Metrics

Description

Coupling Between
Objects

Data Abstraction
Coupling
FanOut

Represents the number of other classes to which a class is
coupled. Counts the number of reference types that are used in
attribute declarations, formal parameters, return types, throws
declarations and local variables, and types from winch attribute
and method selections are made.

Excessive coupling between objects is detrimental to modular
design and prevents reuse. The more independent a class is, the
easier it is to reuse it in another application. In order to improve
modularity and promote encapsulation, inter-object class couples
should be kept to a minimum. The larger the number of couples,
the higher the sensitivity to changes in other parts of the design,
and therefore maintenance is more difficult. A measure of
coupling is useful to determine how complex the testing of
various parts of a design is likely to be. The higher the inter-
object class coupling, the more rigorous the testing needs to be.
Counts the number of reference types used in the attribute
declarations.

Counts the number of reference types that are used in attribute
declarations, formal parameters, return types, throws declarations
and local variables.

TABLE 5

Halstead Metrics

Halstead Metrics

Description

Halstead Difficulty

Halstead Effort

Halstead Program
Length

Halstead Program
Vocabulary

Halstead Program
Volume

Number Of Operands
Number Of Operators
Number Of Unique
Operands

Number Of Unique
Operators

This measure is one of the Halstead Software Science metrics. It
is calculated as (‘Number of Unique Operators’/*Number of
Unique Operands’) * (‘Number of Operands’/‘Number of
Unique Operands’).

This measure is one of the Halstead Software Science metrics. It
is calculated as ‘Halstead Difficulty’ * ‘Halstead Program
Volume.’

This measure is one of the Halstead Software Science metrics. It
is calculated as “Number of Operators” + ‘Number of Operands.’
This measure is one of the Halstead Software Science metrics. It
is calculated as “Number of Unique Operators’ + ‘Number of
Unique Operands.’

This measure is one of the Halstead Software Science metrics. It
is calculated as ‘Halstead Program Length’ * Log2 (‘Halstead
Program Vocabulary”).

This measure is used as an input to the Halstead Software Science
metrics. It counts the number of operands used in a class.

This measure is used as an input to the Halstead Software Science
metrics. It counts the number of operators used in a class.

This measure is used as an input to the Halstead Software Science
metrics. It counts the number of unique operands used in a class.
This measure is used as an input to the Halstead Software Science
metrics. It counts the number of unique operators used in a class.

TABLE 6

Oct. 13,2011

TABLE 6-continued

Inheritance Metrics

Inheritance Metrics

Inheritance Metrics

Description . .
Inheritance Metrics

Depth Of
Inheritance
Hierarchy
Number Of Child
Classes

Description

Counts how far down the inheritance hierarchy a
class or interface is declared. High values imply
that a class is quite specialized.

Counts the number of classes which inherit from a
particular class, i.e., the number of classes in the

inheritance tree down from a class. Non-zero value

The abstraction of the class may be poor if there are
too many child classes. It should also be stated that
a high value of this measure points to the definite

amount of testing required for each child class.

indicates re-used. that the particular class is being



US 2011/0252401 Al

TABLE 7

Oct. 13,2011

TABLE 8-continued

Maximum Metrics

Polymorphism Metrics

Polymorphism
Metrics

Description

Maximum

Metrics Description

Maximum Counts the maximum depth of “if,” ‘for” and ‘while’
Number branches in the bodies of methods. Logical units with a

of large number of nested levels may need implementation

functionality of the parent classes rather than
overriding them.

TABLE 9

Ratio Metrics

Ratio Metrics

Description

Comment Ratio

Percentage Of

Counts the ratio of comments to total lines of code
including comments.
Counts the percentage of package members in a class.

Levels simplification and process improvement because groups that
contain more than seven pieces of information are
increasingly harder for people to understand in
problem solving.

Maximum Displays the maximum number of parameters among all

Number Of  class operations. Methods with many parameters tend to be

Parameters  more specialized and, thus, are less likely to be reusable.

Maximum Counts the maximum sire of the operations for a class.

Size Of Method size is determined in terms of cyclomatic

Operation complexity, i.e., the number of “if; *for’ and ‘while’
statements in the operation’s body.

TABLE 8
Polymorphism Metrics

Polymorphism

Metrics Description

Number Counts the number of operations added by a class. A

Of Added large value of this measure indicates that the functionality

Methods of the given class becomes increasingly distinct from that

of the parent classes. In this case, it should be considered
whether this class genuinely should be inheriting from
the parent, or if it could be broken down into several
smaller classes.

Number Of Counts the number of inherited operations which a class

Overridden overrides. Classes without parents are not processed.

Methods High values tend to indicate design problems, i.e.,

subclasses should generally add to and extend the

Package

Members

Percentage Of  Counts the percentage of private members in a class.
Private

Members

Percentage Of  Counts the percentage of protected members in a class.
Protected

Members

Percentage Of  Counts the proportion of vulnerable members in a class.
Public A large proportion of such members means that the
Members class has high potential to be affected by external

classes and means that increased efforts will be needed
to test such a class thoroughly.

Counts the ratio of comments to total lines

of code excluding comments.

True Comment
Ratio

[0111] The QA module also provides audits, i.e., the mod-
ule checks for conformance to pre-defined or user-defined
styles. The types of audits provided by the module include
coding style, critical errors, declaration style, documentation,
naming style, performance, possible errors and superfluous
content. Examples of these audits with their respective defi-
nitions are identified in Tables 10-17 below.

TABLE 10

Coding Style Audits

Coding Style Audits

Description

Access Of Static

Static members should be referenced through class names rather

Members Through than through objects.

Objects

Assignment To Formal Formal parameters should not be assigned.

Parameters

Complex Assignment  Checks for the occurrence of multiple assignments and
assignments to variables within the same expression. Complex
assignments should be avoided since they decrease program
readability.

Don’t Use The The negation operator slows down the readability of the program.

Negation Operator Thus, it is recommended that it not be used frequently.

Frequently

Operator “?:” May Not

Be Used

Provide Incremental In

The operator ‘?:” makes the code harder to read than the
alternative form with an if-statement.
Checks if the third argument of the ‘for’-statement is missing.

For-Statement Or Use

‘While-Statement
Replacement For
Demand Imports

Use Abbreviated

Assignment Operator

Demand import-declarations must be replaced by a list of single
import-declarations that are actually imported into the
compilation unit. In other words, import-statements may not end
with an asterisk.

Use the abbreviated assignment operator in order to write
programs more rapidly. Also, some compilers run faster with the
abbreviated assignment operator.



US 2011/0252401 Al

10

TABLE 10-continued

Coding Style Audits

Coding Style Audits

Description

Use ‘this” Explicitly
To Access Class

Tries to make the developer use ‘this’ explicitly when trying to
access class members. Using the same class member names with

Members parameter names often makes what the developer is referring to

unclear.
TABLE 11
Critical Errors Audits

Critical Errors

Audits Description

Avoid Hiding Detects when attributes declared in child classes hide inherited

Inherited Attributes attributes.

Avoid Hiding Detects when inherited static operations are hidden by child

Inherited Static classes.

Methods

Command Query Prevents methods that return a value from a modifying state. The

Separation methods used to query the state of an object must be different
from the methods used to perform commands (change the state of
the object).

Hiding Of Names Declarations of names should not hide other declarations of the
same name.

Inaccessible Overload resolution only considers constructors and methods that

Constructor Or are visible at the point of the call. If, however, all the

Method Matches constructors and methods were considered, there may be more
matches. This rule is violated in this case.
Imagine that ClassB is in a different package than ClassA. Then
the allocation of ClassB violates this rule since the second
constructor is not visible at the point of the allocation, but it still
matches the allocation (based on signature). Also, the call to
open in ClassB violates this rule since the second and the third
declarations of open are not visible at the point of the call, but it
still matches the call (based on signature).

Multiple Visible Multiple declarations with the same name must not be

Declarations With simultaneously visible except for overloaded methods.

Same Name

Overriding A Non- Checks for abstract methods overriding non-abstract methods in a

Abstract Method With  subclass.

An Abstract Method

Overriding A private A subclass should not contain a method with the same name and

Method signature as in a superclass if these methods are declared to be
private.

Overloading Within A A superclass method may not be overloaded within a subclass

Subclass unless all overloading in the superclass are also overridden in the

subclass. It is very unusual for a subclass to be overloading
methods in its superclass without also overriding the methods it is
overloading. More frequently this happens due to inconsistent
changes between the superclass and subclass - i.e., the intention
of the user is to override the method in the superclass, but, due to
the error, the subclass method ends up overloading the superclass

method.
Use Of Static Attribute Non-final static attributes should not be used in initializations of
For Initialization attributes.
TABLE 12
Declaration Style Audits
Declaration Style
Audits Description

Badly Located Array
Declarators
Constant Private
Attributes Must Be

Array declarators must be placed next to the type descriptor of
their component type.

Private attributes that never get their values changed must be
declared final. By explicitly declaring them in such a way, a

Oct. 13,2011



US 2011/0252401 Al

11

TABLE 12-continued

Declaration Style Audits

Declaration Style
Audits

Description

Final

Constant Variables
Must Be Final

Declare Variables In
One Statement Each
Instantiated Classes
Should Be Final

List All Public And
Package Members
First

Order Of Appearance
Of Modifiers

Put The Main
Function Last

reader of the source code get some information of how the
attribute is supposed to be used.

Local variables that never get their values changed must be
declared final. By explicitly declaring them in such a way, a
reader of the source code obtains information about how the
variable is supposed to be used.

Several variables (attributes and local variables) should not be
declared in the same statement.

This rule recommends making all instantiated classes final. It
checks classes which are present in the object model. Classes
from search/classpath are ignored.

Enforces a standard to improve readability. Methods/data in your
class should be ordered properly.

Checks for correct ordering of modifiers. For classes, this
includes visibility (public, protected or private), abstract, static,
final. For attributes, this includes visibility (public, protected or
private), static, final, transient, volatile. For operations, this
includes visibility (public, protected or private), abstract, static,
final, synchronized, native.

Tries to make the program comply with various coding standards
regarding the form of the class definitions.

Oct. 13,2011

TABLE 13 TABLE 14-continued
Documentation Audits Naming Style Audits
Documentation Naming Style Audits ~ Description
Audits Description Names Of Exception ~ Names of classes which inherit from Exception
. . . . Classes should end with Exception.
Bad Tag In JavaDoc This rule verifies code against accidental use of Use Conventional One-character local variable or parameter names
Comments improper JavaDoc tags.

Distinguish Between
JavaDoc And Ordinary
Comments

Variable Names
Checks whether the JavaDoc comments in your

program ends with
“#%/ and ordinary C-style ones with */.”

should be avoided, except for temporary and
looping variables, or where a variable holds an
undistinguished value of a type.

TABLE 15
TABLE 14
Performance Audits
Naming Style Audits
Performance Audits Description
Naming Style Audits ~ Description
Avoid Declaring This rule recommends declaring local variables

Class Name Must
Match Its File Name

Group Operations
With Same Name
Together

Naming Conventions

Checks whether top level classes or interfaces Variables Inside Loops
have the same name as the file in which they

reside. Append To String

Enforces standard to improve readability. Within A Loop
Takes a regular expression and item name and Complex Loop
reports all occurrences where the pattern does Expressions

outside the loops since declaring variables inside
the loop is less efficient.

Performance enhancements can be obtained by
replacing string operations with stringbuffer
operations if a string object is appended within
a loop.

Avoid using complex expressions as repeat
conditions within loops.

not match the declaration.

TABLE 16

Possible Error Audits

Possible Error Audits

Description

Avoid Public And
Package Attributes
Avoid Statements
With Empty Body

Declare the attributes either private or protected, and provide
operations to access or change them.
Avoid statements with empty body.



US 2011/0252401 Al
12

TABLE 16-continued

Possible Error Audits

Possible Error Audits ~ Description

Assignment To For- ‘For’-loop variables should not be assigned.
Loop Variables
Don’t Compare Avoid testing for equality of floating point numbers since

Floating Point Types  floating-point numbers that should be equal are not always equal
due to rounding problems.

Enclosing Body The statement of a loop must always be a block. The ‘then’ and

Within A Block ‘else’ parts of ‘if’-statements must always be blocks. This makes
it easier to add statements without accidentally introducing bugs
in case the developer forgets to add braces.

Explicitly Initialize All Explicitly initialize all variables. The only reason not to initialize

Variables a variable is where it’s declared is if the initial value depends on
some computation occurring first.

Method finalize( ) Calling of super.finalize( ) from finalize( ) is good practice of

Doesn’t Call programming, even if the base class doesn’t define the finalize( )

super.finalize( ) method, This makes class implementations less dependent on
each other.

Mixing Logical An expression containing multiple logical operators should be

Operators Without parenthesized properly.

Parentheses

No Assignments In Use of assignment within conditions makes the source code hard

Conditional to understand.

Expressions

Use ‘equals’ Instead The ‘==" operator used or strings checks if two string objects are

Of *==" two identical objects. In most situations, however, one likes to

simply check if two strings have the same value. In these cases,
the ‘equals’ method should be used.
Use ‘L’ Instead Of °I” It is better to use uppercase ‘L’ to distinguish the letter *I” from
At The End Of Integer  the number 1.

Constant
Use Of The The ‘synchronized” modifier on methods can sometimes cause
‘synchronized’ confusion during maintenance as well as during debugging. This
Modifier rule therefore recommends against using this modifier, and
instead recommends using ‘synchronized’ statements as
replacements.
TABLE 17

Superfluous Content Audits

Superfluous Content

Audits Description
Duplicates Import There should be at most one import declaration that imports a particular
Declarations class/package.

Don‘t Import the Package  No classes or interfaces need to be imported from the package to which
The Source File Belongs the source code file belongs. Everything in that package is available

To without explicit import statements.

Explicit Import Of The Explicit import of classes from the package ‘java.lang’ should not be
java.lang Classes performed.

Equality Operations On Avoid performing equality operations on Boolean operands. ‘True’ and
Boolean Arguments “false’ literals should not be used in conditional clauses.

Imported Items Must Be It is not legal to import a class or an interface and never use it. This rule
Used checks classes and interfaces that are explicitly imported with their

names - that is, not with import of a complete package, using an
asterisk. If unused class and interface imports are omitted, the amount
of meaningless source code is reduced - thus the amount of code to be
understood by a reader is minimized

Unnecessary Casts Checks for the use of type casts that are not necessary.
Unnecessary ‘instance of”  Verifies that the runtime type of the left-hand side expression is the
Evaluations same as the one specified on the right-hand side.

Unused Local Variables Local variables and formal parameter declarations must be used.

And Formal Parameters

Use Of Obsolete Interface  The modifier ‘abstract’ is considered obsolete and should not be used.
Modifier

Use Of Unnecessary All interface operations are implicitly public and abstract. All interface
Interface Member attributes are implicitly public, final and static.

Modifiers

Oct. 13,2011



US 2011/0252401 Al

TABLE 17-continued

Oct. 13,2011

Superfluous Content Audits

Superfluous Content

Audits Description

Unused Private Class

An unused class member might indicate a logical flaw in the program.

Member The class declaration has to be reconsidered in order to determine the
need of the unused member(s).
[0112] If the QA module determines that the source code

does not conform, an error message is provided to the devel-
oper. For example, as depicted in FIG. 8 A, the software devel-
opment tool checks for a variety of coding styles 800. If the
software development tool were to check for “Access Of
Static Members Through Objects” 802, it would verity
whether static members are referenced through class names
rather than through objects 804. Further, as depicted in FIG.
8B, ifthe software development tool were to check for “Com-
plex Assignment” 806, the software development tool would
check for the occurrence of multiple assignments and assign-
ments to variables within the same expression to avoid com-
plex assignments since these decrease program readability
808. An example of source code having a complex assign-
ment 810 and source code having a non-complex assignment
812 are depicted in FIGS. 8B and 8C, respectively. The QA
module of the software development tool scans the source
code for other syntax errors and/or other deviations from well
known rules, as described above, and provides an error mes-
sage if any such errors are detected.

[0113] The improved software development tool of the
present invention is used to develop source code in a project.
The project comprises a plurality of files and the source code
of a chosen one of the plurality of files is written in a given
language. The software development tool determines the lan-
guage of the source code of the chosen file, converts the
source code from the language into a language-neutral rep-
resentation, uses the language-neutral representation to tex-
tually display the source code of the chosen file in the lan-
guage, and uses the language-neutral representation to
display a graphical representation of at least a portion of the
project. As discussed above, in an alternative embodiment,
the textual display may be obtained directly from the source
code file. The source code and the graphical representation
are displayed simultaneously.

[0114] The improved software development tool of the
present invention is also used to develop source code. The
software development tool receives an indication of a selected
language for the source code, creates a file to store the source
code in the selected language, converts the source code from
the selected language into a language-neutral representation,
uses the language-neutral representation to display the source
code of the file, and uses the language-neutral representation
to display a graphical representation of the file. Again, the
source code and the graphical representation are displayed
simultaneously.

[0115] Moreover, if the source code in the file is modified,
the modified source code and a graphical representation of at
least a portion of the modified source code are displayed
simultaneously. The QA module of the software development
tool provides an error message if the modification does not
conform to pre-defined or user-defined styles, as described
above. The modification to the source code may be received

by the software development tool via the programmer editing
the source code in the textual pane or the graphical pane, or
via some other independent software tool that the program-
mer uses to modify the code. The graphical representation of
the project may be in Unified Modeling Language; however,
one skilled in the art will recognize that other graphical rep-
resentations of the source code may be displayed. Further,
although the present invention is described and shown using
the various views of the UML, one of ordinary skill in the art
will recognize that other views may be displayed.

[0116] FIG. 9 depicts aflow diagram of the steps performed
by the software development tool to develop a project in
accordance with methods consistent with the present inven-
tion. As previously stated, the project comprises a plurality of
files. The developer either uses the software development tool
to open a file that contains existing source code, or to create a
file in which the source code will be developed. If the soft-
ware development tool is used to open the file, determined in
step 900, the software development tool initially determines
the programming language in which the code is written (step
902). The language is identified by the extension of the file,
e.g., “.java” identifies source code written in the Java™ lan-
guage, while “.cpp” identifies source code written in C++.
The software development tool then obtains a template for the
current programming language, i.e., a collection of general-
ized definitions for the particular language that can be used to
build the data structure (step 904). For example, the templates
used to define a new Java™ class contains a default name,
e.g., “Class1,” and the default code, “public class Class1 { }.”
Such templates are well known in the art. For example, the
“Microsoft Foundation Class Library” and the “Microsoft
Word Template For Business Use Case Modeling” are
examples of standard template libraries from which program-
mers can choose individual template classes. The software
development tool uses the template to parse the source code
(step 906), and create the data structure (step 908). After
creating the data structure or if there is no existing code, the
software development tool awaits an event, i.e., a modifica-
tion or addition to the source code by the developer (step 910).
If an event is received and the event is to close the file (step
912), the file is saved (step 914) and closed (step 916). Oth-
erwise, the software development tool performs the event
(step 918), i.e., the tool makes the modification. The software
development tool then updates the TMM or model (step 920),
as discussed in detail below, and updates both the graphical
and the textual views (step 922).

[0117] FIGS. 10A and 10B depict a flow diagram illustrat-
ing the update model step of FIG. 9. The software develop-
ment tool selects a file from the project (step 1000), and
determines whether the file is new (step 1002), whether the
file has been updated (step 1004), or whether the file has been
deleted (step 1006). If the file is new, the software develop-
ment tool adds the additional symbols from the file to the



US 2011/0252401 Al

TMM (step 1008). To add the symbol to the TMM, the soft-
ware development tool uses the template to parse the symbol
to the TMM. Ifthe file has been updated, the software devel-
opment tool updates the symbols in the TMM (step 1010).
Similar to the addition of a symbol to the TMM, the software
development tool uses the template to parse the symbol to the
TMM. If the file has been deleted, the software development
tool deletes the symbols in the TMM (step 1012). The soft-
ware development tool continues this analysis for all files in
the project. After all files are analyzed (step 1014), any obso-
lete symbols in the TMM (step 1016) are deleted (step 1018).
[0118] FIG. 11 depicts a flow diagram illustrating the per-
formance of an event, specifically the creation of a class, in
accordance with methods consistent with the present inven-
tion. After identifying the programming language (step
1100), the software development tool obtains a template for
the language (step 1102), creates a source code file in the
project directory (step 1104), and pastes the template into the
file (step 1106). The project directory corresponds to the SCI
model 302 of FIG. 3. Additional events which a developer
may perform using the software development tool include the
creation, modification or deletion of packages, projects,
attributes, interfaces, links, operations, and the closing of a
file.

[0119] Applications to be developed using the software
development tool are collectively broken into three views of
the application: the static view, the dynamic view, and the
functional view. The static view is modeled using the use-case
and class diagrams. A use case diagram 1200, depicted in
FIG. 12, shows the relationship among actors 1202 and use
cases 1204 within the system 1206. A class diagram 1300,
depicted in FIG. 13 with its associated source code 1302, on
the other hand, includes classes 1304, interfaces, packages
and their relationships connected as a graph to each other and
to their contents.

[0120] The dynamic view is modeled using the sequence,
collaboration and statechart diagrams. As depicted in FIG. 14,
a sequence diagram 1400 represents an interaction, which is
a set of messages 1402 exchanged among objects 1404 within
a collaboration to effect a desired operation or result. In a
sequence diagram 1400, the vertical dimension represents
time and the horizontal dimension represents different
objects. A collaboration diagram 1500, depicted in FIG. 15, is
also an interaction with messages 1502 exchanged among
objects 1504, but it is also a collaboration, which is a set of
objects 1504 related in a particular context. Contrary to
sequence diagrams 1400 (FIG. 14), which emphasize the time
ordering of messages along the vertical axis, collaboration
diagrams 1500 (FIG. 15) emphasize the structural organiza-
tion of objects.

[0121] A statechart diagram 1600 is depicted in FIG. 16.
The statechart diagram 1600 includes the sequences of states
1602 that an object or interaction goes through during its life
in response to stimuli, together with its responses and actions.
It uses a graphic notation that shows states of an object, the
events that cause a transition from one state to another, and the
actions that result from the transition.

[0122] The functional view can be represented by activity
diagrams 1700 and more traditional descriptive narratives
such as pseudocode and minispecifications. An activity dia-
gram 1700 is depicted in FIG. 17, and is a special case of a
state diagram where most, if not all, of the states are action
states 1702 and where most, if not all, of the transitions are
triggered by completion of the actions in the source states.

Oct. 13,2011

Activity diagrams 1700 are used in situations where all or
most of the events represent the completion of internally
generated actions.

[0123] There is also a fourth view mingled with the static
view called the architectural view. This view is modeled using
package, component and deployment diagrams. Package dia-
grams show packages of classes and the dependencies among
them. Component diagrams 1800, depicted in FIG. 18, are
graphical representations of a system or its component parts.
Component diagrams 1800 show the dependencies among
software components, including source code components,
binary code components and executable components. As
depicted in FIG. 19, deployment diagrams 1900 are used to
show the distribution strategy for a distributed object system.
Deployment diagrams 1900 show the configuration of run-
time processing elements and the software components, pro-
cesses and objects that live on them.

[0124] Although discussed in terms of class diagrams, one
skilled in the art will recognize that the software development
tool of the present invention may support these and other
graphical views.

[0125] Supporting and Deploying a Distributed Computing
Component
[0126] Inaddition to the functionality described above, the

software development tool saves significant programming
development time as well as costs for conventional tools by
allowing a developer to generate, compile, assemble, deploy,
and debug a distributed computing component, such as an
EJB, without having to use multiple conventional tools. A
distributed computing component is a software component
that runs on a computer and is designed to perform business
logic for client application(s) requiring a solution to a busi-
ness problem (e.g., process a customer order or determine a
senior citizen discount for a customer). The solution to the
business problem typically requires access to corresponding
business data contained in an enterprise database. By using
the software development tool to support and deploy an EJB,
a developer produces error-free code in a shorter amount of
time as the risk of error is reduced by alleviating the need to
switch from tool to tool during the development and deploy-
ment process of the EJB. In general, a deployed EJB is hosted
in a special environment called an EJB container that resides
on an application server of an organization. The deployed
EJB provides remote services, such as access to business
logic data, to clients distributed throughout a network in
which the application server is connected. Business logic data
represents the specific details and information flow of the
organization or a particular industry. The software develop-
ment tool allows a developer to focus on developing code for
the EJB that utilizes the business logic data stored in the
database of the organization, rather than worrying about end-
less amounts of programming and coding needed to connect
all the working parts for accessing the database of the orga-
nization.

[0127] FIG. 20 depicts an overview of a three-tiered client/
server system 2000 that illustrates the architecture and opera-
tion of an EJB 2002 deployed by the software development
tool 610 in accordance with methods and systems consistent
with the present invention. The EJB 2002 that is deployed by
the software development tool may be an EJB EntityBean, an
EJB SessionBean, or other similar deployable entity, such as
a message Bean. An EJB EntityBean represents a real-world
object, such as a customer, a bank account, or a cruise ship,
which has persistent records (i.e., data structures) in a data-



US 2011/0252401 Al

base. An EJB SessionBean represents a set of processes or
tasks, which are performed on behalf of a client application,
such as 1st Tier Client Application 2004 described below. The
EJB SessionBean may use other beans to perform a task or
access a database directly. The EJB EntityBean and the EJB
SessionBean each include a bean implementation class, a
remote interface, and a home interface. The EJB EntityBean
also includes a Primary Key class that provides a pointer to a
data structure in a database for identifying the EJB Entity-
Bean with the data structure. The home interface of the EIB
EntityBean and the home interface of the EJB SessionBean
each include a group of life-cycle methods signatures con-
tained in the respective bean implementation class of the EJB
EntityBean and the EJB SessionBean. The life-cycle methods
contained in the EJB EntityBean or the EJB SessionBean may
include a method to create and initialize an instance of the
respective bean implementation class, a method to destroy an
instance of the respective bean implementation class when it
is no longer needed, and a method to find and identify the
respective bean implementation class an example of which is
an EJB. The remote interface of the EJB EntityBean and the
remote interface of the EJB SessionBean may each include a
signature of a business method of the respective bean imple-
mentation class. The methods associated with the home and
remote interface of the respective bean implementation class
are further discussed below.

[0128] Continuing with FIG. 20, the three-tiered client/
server system 2000 is comprised of the 1st tier Client Appli-
cation 2004, a 2nd tier EJB Application Server 2006, and a
3rd tier Database Management System (DBMS) Server 2008.
The Client Application 2004 may be any standalone applica-
tion, servlet, applet, or even other EIBs. As shown in FIG. 20,
the Client Application 2004 includes a browser 2012 that
invokes methods through a home interface 2014 that contains
signatures for the life cycle methods of the EJB 2002. The
browser 2012 also invokes methods through a remote inter-
face 2016 that includes signatures for the business methods of
the EJB 2002.

[0129] The EJB Application Server 2006 may be any
known application server, such as BEA Weblogic Server or
IBM Websphere Server that complies with Sun’s Java™ 2
Enterprise Edition (J2EE) specification which ensures a con-
sistent platform for deploying an EJB by requiring that a
specific set of communication protocols and standard ser-
vices be provided by the EIB Application Server 2006. The
EIB Application Server 2006 includes an EJB container 2018
that hosts and manages the deployed EJB 2002. The EJB
container 2018 implements the home interface 2014 and the
remote interface 2016 that contain the method signatures of
the EJB 2002. The EJB container 2018 isolates the EJB 2002
from direct access by the Client Application 2004. When the
Client Application 2004 invokes a life cycle method (i.e., a
create method) or a business method on the EJB 2002, home
interface 2014 or remote interface 2016, respectively, com-
municates the invocation to the EJB container 2018 through
known protocols on network 2010. When the Client Applica-
tion 2004 invokes a create method (i.e., a life cycle method),
the EJB container 2018 intercepts the invocation and instan-
tiates the EJB 2002 to form a distributed object of the EJB
2002 that is responsive to business method invocations via
remote interface 2016. When the Client Application 2004
invokes a business method, the EJB container 2018 intercepts
the invocation before passing it to the object of the EJB 2002
to ensure persistence, transactions, and security are applied

Oct. 13,2011

properly to every operation the Client Application performs
on the object of the EJB 2002. The EJB container 2018
manages security, transactions, and persistence automatically
for EJB 2002, so a developer doesn’t have to use the software
development tool to write this type of logic into the code
corresponding to EJB 2002.
[0130] The Database Management System (DBMS) Server
2008 may be any known DBMS, such as Oracle 7.3.times./
8.times. DBMS, ODBC/Access 97, Cloudscape, ODBC/MS
SQL Server, or IBM DB2 6.1. The DBMS Server 2008 man-
ages a known relational database 2020 that contains the busi-
ness data structures of the organization that an EJB Entity-
Bean represents (e.g., customers, bank accounts, or hotel
rooms) or that an EJB SessionBean may access to complete a
transaction (e.g., BankTeller SessionBean may perform Pro-
cessloan( ) method or HotelClerk SessionBean may perform
Reserveroom( ) method). Thus, the Client Application 2004
can invoke business methods remotely to access desired busi-
ness logic data in the database 2020 or perform a desired task
that uses business logic data in the database 2020 via EJB
2002. Enterprise JavaBeans™ are more clearly described in
the following references, which are incorporated herein by
reference:
[0131] (1) Richard Monson-Haefel, FEnterprise Java-
Beans™ 2nd Edition, O’Reilly & Associates (2000);
[0132] (2) David Flanagan, et al., Java Enterprise in a
Nutshell 2nd Edition, O’Reilly & Associates (1999);
[0133] (3) Ed Rowan, Mastering Enterprise JavaBeans
and the Java 2 Platform, Enterprise Edition, John Wiley &
Sons (1999); and
[0134] (4) Sun Microsystems’ Enterprise JavaBeans™
Specifications v1.0, v1.1, and v2.0, available at http://java.
sun.com/products/ejb/docs.html.
[0135] FIG. 21 depicts a data processing system suitable for
practicing methods and systems consistent with the present
invention, including supporting and deploying an EJB. Data
processing system 2100 includes a group of computers 2102,
2104, 2106, and 2108 that are connected via network 2110.
The network 2110 may be any known physical or wireless
network capable of supporting a data transmission between
two computer systems, such as a Local Area Network (LAN),
a Wide Area Network (WAN), Internet, or leased phone lines.
[0136] Each computer 2102, 2104, 2106, and 2108
includes a memory (2112, 2114, 2116 and 2118, respec-
tively), a secondary storage device (2120, 2122, 2124 and
2126, respectively), an I/O device (2128, 2130, 2132 and
2134, respectively), and a processor (2136, 2138, 2140 and
2142, respectively). Memory 2112 in computer 2102
includes 610 improved software development tool (SDT) that
is capable of supporting and deploying an EJB. Memory 2112
in computer 2102 also includes a compiler 2144, such as Java
Development Kit (JDK) v1.2 or later, which the software
development tool uses to compile an EJB in the development
and deployment processing described below. The Compiler
2144 may reside in secondary storage device 2120 in com-
puter 2102 until prompted by the software development tool
to compile the EJB as described below. In another implemen-
tation, the compiler 2144 may reside in secondary storage of
another computer, such as secondary storage device 2122,
2124, or 2126 on computers 2104, 2106, or 2108, respec-
tively. In this implementation, the software development tool
may access the compiler via network 2110.
[0137] Memory 2114 in computer 2104 includes an EIB
Application Server 2148 that generates the EJB container



US 2011/0252401 Al

2150 in memory 2114 when started by the software develop-
ment tool or when manually started by a developer. Memory
2116 in computer 2106 includes a Client Application 2152
and a browser 2154 that are used to test an EJB deployed by
the software development tool. Memory 2118 in computer
2108 includes a Database Management System 2156. Sec-
ondary storage device 2126 includes a database 2158 that is
managed by the Database Management System Server 2156.
Database 2158 stores business logic data that is accessible by
an EJB deployed by the software development tool. As known
to one skilled in the art, EJB Application Server 2148, Client
Application 2152, and Database Management System Server
2156 may be hosted locally with the software development
tool on memory 2112 in computer 2102 so that the software
development tool may deploy and test an EJB from the same
computer. When the software development tool deploys and
tests an EJB, the data processing system 2100 may function as
described above for a three-tiered client/server system 2000.

[0138]

[0139] The software development tool provides the pro-
grammer with a segregated grouping and view of methods
that define the behavior of an EJB, where the programmer is
able to easily identify a method in an EJB implementation
class to a respective method signature in either an EJB Home
Interface or an EJB Remote Interface that corresponds to the
EJB implementation class as explained below. FIGS. 22A and
22B depict a flowchart illustrating an exemplary process per-
formed by the software development tool 610 for generating
an EJB. The software development tool initially receives a
request to generate a type of EJB (step 2202). The type of EIB
may be an EntityBean, a SessionBean, or any other similar
distributed computing component. As shown in FIG. 23, the
request is received by the software development tool via the
actuation of'a button 2302 that corresponds to the type of EIB.
In the implementation shown in FIG. 23, the actuation of
button 2302 indicates the request to generate a SessionBean,
and the actuation of button 2304 indicates the request to
generate an EntityBean. A developer, however, may use any
known data input technique, such as a pull-down menu selec-
tion or akeyboard input, to indicate the request to the software
development tool.

[0140] Next, the software development tool generates
source code for the requested type of EIB (step 2204). To
generate source code for the requested type of EJB, the soft-
ware development tool performs the process in FIG. 9 to
create a group of EJB source code files in the project for the
requested type of EJB. If the requested type of EJB is an EJB
EntityBean, the software development tool generates an EJB
EntityBean Implementation Class 2401 like the one graphi-
cally depicted in FIG. 24 as 2402 by parsing an EntityBean
Implementation Class template to add EJB EntityBean code
to an EJB source code file. The EJB EntityBean code added
by the software development tool includes state-management
callback methods (depicted graphically as 2404) that are
invoked by the container 2150 to notify the EJB EntityBean
when certain events are to occur on the EJB Application
Server 2148. For example, setEntityContext( ) (depicted
graphically as 2406) provides the EJB EntityBean with an
interface to the EJB Application Server 2148 so the EIB
EntityBean is able to get information about itself or its sur-
rounding environment. State-management callback methods
are described in the Sun Microsystems’ EJB Specification
previously incorporated herein by reference.

Generating an Enterprise JavaBean™

Oct. 13,2011

[0141] If the requested type of EJB is an EJB EntityBean,
the software development tool also generates an EJB Entity-
Bean Primary Key class (graphically depicted as 2408) by
parsing an EntityBean Primary Key Class template to add
EJB Primary Key code to another EJB source code file. The
EJB Primary Key code contains method constructs, such as
“Entity1PK( )” “equal( )” and “hashcode( )” (graphically
depicted as 2410, 2414, and 2412, respectively) to identify the
EJB EntityBean with a pointer to a table in the database 2158.
The software development tool also adds a Primary Key
attribute, “field1” (graphically depicted as 2416), to both the
EJB EntityBean Implementation class 2602 and the EJB Enti-
tyBean Primary Key class 2408 to be used as a primary key
index into the table in the database 2158.

[0142] In addition, if the requested type of EJB is an EIB
EntityBean, the software development tool also generates an
EJB Home Interface (graphically depicted as 2418) and an
EJB Remote Interface (graphically depicted as 2420) for the
EJB EntityBean Implementation Class 2402. To generate the
EJB Home Interface and the EJB Remote Interface, the soft-
ware development tool parses a Home Interface template to
add Home Interface code to another source code file, and
parses a Remote Interface template to add Remote Interface
code to another source code file. The software development
tool also adds signatures for life cycle methods contained in
the EJB EntityBean Implementation Class 2402 to the code
corresponding to the EJB Home Interface 2418, such as sig-
natures for create or find methods. The software development
tool also adds signatures for business methods contained in
the EJB EntityBean Implementation Class 2402 to the code
corresponding to the EJB Remote Interface 2420.

[0143] Iftherequested type of EIB is an EJB SessionBean,
the software development tool generates an EJB SessionBean
Implementation Class (graphically depicted as 2430), a cor-
responding EJB Home Interface (graphically depicted as
2432), and a corresponding EJB Remote Interface (2434) by
parsing one of a group of associated templates in the same
manner as described for the EJB EntityBean Implementation
Class 2402 above. The software development tool also adds
signatures for life cycle methods contained in the EJB Ses-
sionBean Implementation Class 2430 to the code correspond-
ing to the EJB Home Interface 2432, such as a signature for
create method. The software development tool also adds sig-
natures for business methods contained in the EJB Session-
Bean Implementation Class 2430 to the code corresponding
to the EJB Remote Interface 2434.

[0144] As shown in FIG. 22A, the software development
tool then displays a graphical representation of the source
code for the EJB with a separately delineated display area for
a method type and a separately delineated display area for
reference types (step 2206). In one implementation shown in
FIG. 24, to display a graphical representation of the source
code for the EJB, the software development tool displays a
graphical representation of code corresponding to EJB Enti-
tyBean 2401 (depicted in diagram 2402), a graphical repre-
sentation of code corresponding to EJB Primary Key Class
(depicted in diagram 2408), a graphical representation of
code corresponding to EJB Home Interface (depicted in dia-
gram 2418), and a graphical representation of code corre-
sponding to EJB Remote Interface (depicted in diagram
2420). The EntityBean diagram 2402 has a first display area
2405 for create method types, a second display 2407 for
finder method types, and a third display area 2409 for busi-
ness method types. Because there are no business methods in



US 2011/0252401 Al

the code corresponding to EJB EntityBean 2401, the software
development tool displays nothing in the third display area
2409 in this example. In addition, the software development
tool displays a separately delineated area 2411 for reference
types, such as an EJB Environment Reference, an EJB Ref-
erence, an EJB Security Role Reference, or an EJB Resource
Reference, which are described below. The Home Interface
diagram 2418 has a create method display area 2419 for
signatures of the create method types displayed in the first
display area. The Home Interface diagram 2418 also has a
finder method display area 2421 for signatures of the finder
method types displayed in the second display area. Remote
Interface diagram 2420 has a business method display area
2423 for signatures of the business method types displayed in
the third display area. In another implementation, the soft-
ware development tool receives an EJB display filter indica-
tion (e.g., a system display filter previously defined by a
developer) and in response displays the graphical represen-
tation of code corresponding to EJB EntityBean 2402 without
displaying the second, third, or graphical representations of
code corresponding to EJB Primary Key class, EJB Home
Interface, and EJB Remote Interface, respectively.

[0145] In another implementation shown in FIG. 24, to
display a graphical representation of the source code for the
EJB, the software development tool displays a graphical rep-
resentation of code corresponding to EJB SessionBean (de-
picted in diagram 2430), and a graphical representation of
code corresponding to EJB Home Interface (depicted in dia-
gram 2432), and a graphical representation of code corre-
sponding to EJB Remote Interface (depicted in diagram
2434). The SessionBean diagram 2430 that has a first display
area for create method types 2435, a second display area 2437
for business method types, and a separately delineated dis-
play area for reference types 2439. The Home Interface dia-
gram 2432 has a create method display area 2441 for signa-
tures of the create method types displayed in the first display
area 2435, and has a finder method display area 2443 for
signatures of the finder method types displayed in the second
display area 2437. Remote Interface diagram 2434 has a
business method display area 2445 for signatures of the busi-
ness method types displayed in the third display area 2439.

[0146] The software development tool displays a symbol
with a display area to identify the corresponding method type
or reference type displayed therein (step 2208). For example,
as shown in FIG. 24, the software development tool displays
a create method symbol 2446 as one of the group of symbols
to identify that create method types are displayed in the
respective display area, such as the first display area 2405 of
the EJB EntityBean 2402 and the create method display area
2419 of the EIB Home Interface 2418. The software devel-
opment tool also displays a finder method symbol 2448 as a
second of the group of symbols to identify that finder method
types are displayed in the respective display area, such as the
second display area 2407 of the EJB EntityBean 2402 and the
finder method display area 2421 of the EJB Home Interface
2418. The software development tool also displays a business
method symbol 2448 as a third of the group of symbols to
identify that business method types are displayed in the
respective display area, such as the third display area 2409 of
the EJB EntityBean 2402 and the business method display
area 2423 of the EJB Remote Interface 2420. Finally, the
software development tool also displays a references symbol
2452 to identify that reference types needed by the EJB are

Oct. 13,2011

displayed in the respective display area, such as the fourth
display area 2411 of the EJB EntityBean 2402.

[0147] After software development displays the symbol
with the display area, the software development tool receives
arequest to add a code element to code then next correspond-
ing to the EJB (step 2210). The programmer may request to
add a business method to the EJB so that other business logic
code can be written by the programmer for the newly added
business method. FI1G. 25 depicts an exemplary user interface
2500 displayed by the software development tool, where the
user interface 2500 displays a list of code element types 2502
that the software development tool may generate for the
selected EJB EntityBean 2402. Similarly, FIG. 26 depicts an
exemplary user interface 2600 displayed by the software
development tool, where the user interface 2600 displays a
list of code element types 2602 that the software development
tool may generate for die selected EJB SessionBean 2430. As
shown in FIGS. 25 & 26, the software development tool may
receive the request to add a code element to either the EJB
EntityBean 2402 or the EJB SessionBean 2430 via a pro-
grammer selecting an option from the list of code element
types displayed by the software development tool in a speed
menu or pull down menu on user interface 2500 or 2600,
respectively. As known to one skilled in the art, the program-
mer may indicate the request to the software development
tool using any known data input technique associated with the
1/O device 606.

[0148] When either the EJB EntityBean 2402 or the EIB
SessionBean 2430 is selected, the list of code element types
includes a business method type (e.g., 2508 or 2604), an EJB
Environment Reference type (e.g., 2514 or 2606), an EIB
Reference type (e.g., 2516 or 2608), an EJB Security Role
Reference type (e.g., 2518 or 2610), or an EJB Resource
Reference type (e.g., 2520 or 2612), which are described
below. In addition, when the EJB EntityBean 2402 is
selected, the list of code element types also includes a create
method type 2504, a find method type 2506, a persistent field
type 2510 that is to be mapped to a database table correspond-
ing to the EJB EntityBean 2402, and another primary key field
type 2512 that is to be used in combination with the primary
key field (e.g., 2416) already in the code of the EJB Entity-
Bean to uniquely identify the EJB EntityBean to a database
table. For example, assuming that the EJB EntityBean repre-
sents a senior citizen, the name of the citizen and the age of the
citizen may be two primary fields needed in combination to
identify the EJB EntityBean to a corresponding table in the
database.

[0149] After receiving the request, the software develop-
ment tool adds the requested code element to the implemen-
tation class of the EJB (step 2212). For example, as shown in
FIG. 27, when the software development tool receives the
request to add a code element corresponding to business
method type 2508 in step 2210, the software development
tool adds a business method construct (graphically depicted
as 2702) as the requested code element to code corresponding
to EIB EntityBean 2402 in the first of the group of source
code files of the EJB. As explained below, the software devel-
opment tool saves development time by automatically adding
a signature of the business method construct 2702 to the EJB
Remote Interface 2420. FIG. 28 depicts an exemplary user
interface 2800 displayed by the software development tool in
response to receiving the request to add a code element cor-
responding to a create method type 2504 to the EJB Entity-
Bean 2402. In this instance, the software development tool



US 2011/0252401 Al

adds an ejbCreate method construct 2804 and an ejbPostCre-
ate method construct 2806 to the code corresponding to EJB
EntityBean 2402 in the first of the group of source code files
of the EJB. As explained below, the software development
tool also automatically adds signatures of the ejbCreate
method construct 2804 and ejbPostCreate method construct
2806 to the EJB Home Interface 2418 to save a developer
programming time. By invoking the added ejbCreate method
construct 2804 or the added ejbPostCreate method construct
2806 via the EJB Home Interface 2418, a client may indicate
to the EJB EntityBean 2402 to add a new record to an asso-
ciated database table and initialize the new record. FIG. 29
depicts an exemplary user interface 2900 displayed by the
software development tool in response to receiving the
request to add a code element corresponding to a find method
type 2506 to the EJB EntityBean 2402. In this instance, the
software development tool adds an ejbFindMethod construct
2902 to the code corresponding to EJB EntityBean 2402 in
the first of the group of source code files of the EJB. The
software development tool, as explained below, also auto-
matically adds a signature of the ejbFindMethod construct
2902 to the EJB Home Interface 2418 to save a developer
programming time. By invoking die added ejbFindMethod
construct 2902 via the EJB Home Interface 2418, a client may
indicate to the EJB EntityBean 2402 to Find record(s) in the
database that match the ejbFindMethod request.

[0150] FIG. 30 depicts an exemplary user interface 3000
displayed by the software development tool in response to
receiving the request to add a code element corresponding to
a persistent field type 2510 to the EJB EntityBean 2402. In
this instance, the software development tool adds a persistent
field attribute 3002 to the code corresponding to EJB Entity-
Bean 2402 in the first of the group of source code files of the
EJB. A developer may use the persistent field attribute within
business logic code of the added business method construct
2702 in order to refer to a business data value stored in a
corresponding field in a table of the database.

[0151] FIG. 31 depicts an exemplary user interface 3100
displayed by the software development tool in response to
receiving the request to add a code element corresponding to
aprimary key field type 2512 to the EJB EntityBean 2402. In
this instance, the software development tool adds a primary
key field attribute 3102 to the code corresponding to EJB
EntityBean 2402 in the first of the group of source code files
of the EJB. As further explained below, the software devel-
opment tool also automatically adds the same primary key
field attribute 3102 as a primary key field attribute in code
corresponding to the EJIB Primary Key Class 2408 to save a
developer programming time and prevent a mistake in mis-
matching the two attributes. As discussed above, the primary
key field (e.g., 2416) and the additional primary key field
3102 may be used in combination to uniquely identify the
EJB EntityBean to a database table.

[0152] FIGS. 32, 33, 34, and 35 depict exemplary user
interfaces displayed by the software development tool in
response to receiving the request to add a code element cor-
responding to an EJB Environment Reference type 2514 in
FIG. 25, an EJB Reference type 2516 in FIG. 25, an EIB
Security Role Reference type 2518 in FIG. 25, and an EJB
Resource Reference type 2520 in FIG. 25 to the EJB Entity-
Bean 2402, respectively. In each instance, the software devel-
opment tool adds a persistent resource attribute correspond-
ing to the respective type (i.e., 3202, 3302, 3402, and 3502
shown in FIGS. 32, 33, 34, and 35) to the code corresponding

Oct. 13,2011

to EIB EntityBean 2402 in the first of the group of source
code files of the EJB. These references may be correlated to
references specified in a deployment descriptor file that is sent
to the container 2150 via the EJB Application Server 2148
when the EJB EntityBean 2402 is deployed to the EIB Appli-
cation Server 2148. The container 2150 identifies these ref-
erences to the EJB EntityBean 2402 upon request from the
EJB EntityBean 2402. The EJB Environment Reference 3202
is a property that the EJB EntityBean 2402 may reference
when it is running (i.e., an instance of the EJB EntityBean
2402 has been created) to ascertain where the EJB EntityBean
2402 is deployed so that the EJB EntityBean 2402 is able to
customize its behavior accordingly. The EJB Reference 3302
is a property that the EJB EntityBean 2402 may reference
when running in order to call another EJB for information to
complete processing of business logic within the EJB Entity-
Bean 2402. The EJB Security Role Reference 3402 is a prop-
erty that the EJB EntityBean 2402 may reference when
executing in order to identify a security role (e.g., a user or
group) with access to the EJB EntityBean 2402. The EIB
Resource 3502 is a property that the EJB EntityBean 2402
may reference when executing to identity an external
resource, such as “javax.sql.DataSource” which is used to
obtain a connection to a database. In addition to saving the
developer programming time, the software development tool
correlates these resources to a deployment descriptor file
when the EJB EntityBean 2402 is deployed as further dis-
cussed below. After adding the requested code element to the
first of the group of source code files of the EIB, the software
development tool also updates the TMM 200 to the first of the
group of source code files of the EJB so that the TMM 200 has
alanguage neutral representation of the EJB EntityBean 2402
that includes the requested code element.

[0153] Returning to FIG. 22A, the software development
tool modifies the graphical representation of code corre-
sponding to the EIB (step 2214). As shown in FIGS. 27
through 35, the software development tool modifies the
graphical representation of code corresponding to the EJB by
modifying the graphical representation of code correspond-
ing to the EJB EntityBean 2402 to reflect the addition of the
requested code element. In addition, the software develop-
ment tool displays the addition of the requested code element
in the display area that corresponds to the type of the
requested code element. For example, as shown in FIG. 28,
the software development tool displays the addition of ejb-
Create and ejbPostCreate methods within the first display
area 2405 of the EJB EntityBean 2402 that corresponds to
create method types.

[0154] Next, the software development tool determines
whether the requested code element is a method to be added
to the EJB (step 2216 in FIG. 22B). If the requested code
element is a method, the software development tool deter-
mines whether the requested code element is a business
method (step 2218). If the requested code element is a busi-
ness method, the software development tool adds a business
method signature to the EJB Remote Interface that corre-
sponds to the business method added to the EJB implemen-
tation class (step 2220). The software development tool then
modifies the graphical representation of code corresponding
to the EJB Remote Interface (step 2228). As shown in FIG.
27, the software development tool adds a business method
signature (graphically depicted as 2704) to the EJB Remote
Interface that corresponds to the business method 2702 added
to the EJB EntityBean 2402. As previously discussed, by



US 2011/0252401 Al

adding the business method signature to the EJB Remote
Interface, the software development tool saves the developer
programming time and ensures that the method signature in
the EJB Remote Interface matches the method added to the
related EJB EntityBean Implementation Class 2402.

[0155] If the requested code element is a not a business
method as previously determined in step 2218, the software
development tool adds a method signature corresponding to
code element to the EJB Home Interface (step 2222). If the
requested code element is not a business method, the software
development tool recognizes that the method to be added is a
create or finder method whose signature is to be added to code
corresponding to the EJB Home Interface 2418. The software
development tool then modifies the graphical representation
of the code corresponding to the EJB Home Interface (step
2230). Depending on the requested code element, the soft-
ware development tool modifies the graphical representation
of the code corresponding to the EJB Home Interface by
displaying the signature of a create method or a finder element
(e.g., signature 3604 for the finder element) in the create
method display area 2419, in FIG. 24, or in the finder method
display area 2421, in FIG. 24. FIG. 36 depicts an exemplary
user interface displayed by the software development tool in
FIG. 2, where the user interface displays a find method sig-
nature for the code element added to the EJB Home Interface
by the software development tool. As shown, user interface
3600 displays a find method signature 3604 for the code
element added to the EJB Home Interface 2418. The software
development tool automatically adds a signature 3604 of the
ejbFindMethod construct 3602 to the EJB Home Interface
2418 to save a developer programming time. By invoking the
added ejbFindMethod construct 3602 via the EJB Home
Interface 2418, a client may indicate to the EJB EntityBean
2402 to Find record(s) in the database that match the ejbFind-
Method request 2904.

[0156] If the requested code element is not a method as
previously determined in step 2216, the software develop-
ment tool determines whether the requested code element is a
primary key field (step 2224). If the requested code element is
the primary key field, the software development tool adds a
primary key field to the EJB Primary Key Class (step 2226).
The software development tool then modifies the graphical
representation of code corresponding to the EJB primary
class (step 2232). FIG. 37 depicts an exemplary user interface
3700 displayed by the software development tool, where the
user interface 3700 displays the primary key field 3702 added
to the Primary Key Class 2408 by the software development
tool. The primary key field 3702 corresponds to the primary
key field 3702 added by the software development tool to the
code corresponding to the EJB EntityBean 2402. If the
requested code element is not a primary key field as previ-
ously described in step 2216, the software development tool
has no further steps to perform and ends processing for the
generation of the EJB.

[0157] Compiling, Deploying and Debugging an Enter-
prise JavaBean™

[0158] As previously described, the project comprises a
group of object-oriented elements. An object-oriented ele-
ment may be a class or an interface. The project may also
include a group of packages. Each package corresponds to a
directory in the project where a respective portion of the
object-oriented elements is stored. An EJB in the project may
be an EntityBean that is comprised of four object-oriented
elements: two classes (i.e., an implementation class and a

Oct. 13,2011

primary key class) and two interfaces (i.e., a home interface
and a remote interface). An EJB may also be a SessionBean
that is comprised of three object-oriented elements: one class
(i.e., an implementation class) and two interfaces (i.e., ahome
interface and a remote interface).

[0159] After generating an EJB or after an EJB developed
using another tool is provided to the software development
tool by a programmer, the software development tool allows
the programmer to deploy and test the EJB. FIGS. 38A
through 38F depict a flowchart illustrating an exemplary pro-
cess performed by the software development tool to compile,
deploy, and debug an EJB. In general, an EJB deployed by the
software development tool accesses business logic data
stored in a database (i.e., database 2158 on computer 2108) in
response to a Client Application 2152 invoking a business
method associated with the EJB. Initially, the software devel-
opment tool receives an indication of an EJB that is to be
deployed (step 3802). As shown in FIG. 39, the software
development tool receives the indication of the EIB (i.e.,
depicted as diagram 3902) via amouse click by a programmer
while the mouse cursor is over the diagram 3902 that graphi-
cally represents code corresponding to the EJB. As known to
one skilled in the art, the programmer may indicate the EJB to
the software development tool using any known data input
technique associated with the I/O device 606. Note for clarity,
the identified EJB is referenced as EJB 3902 in the following
discussion.

[0160] In another implementation, the software develop-
ment tool may receive die indication of an EJB to be deployed
as all EJBs in the project. In still another implementation, the
software development tool may receive the indication of an
EJB to be deployed as a portion of EJBs in the project that are
displayed graphically on pane 3904. The portion of EJBs in
the project that is displayed graphically on pane 3904 may be
among the respective portions of object-oriented elements
stored in a package of the project. In this implementation, the
software development tool may invoke TMM 200 for the
portion of EJBs in the project that are displayed graphically
on pane 3904, as TMM 200 tracks a display status for each
object-oriented element in the project. Note that the software
development tool stores in a graphical view file in the project,
the name and display coordinates of each symbol or diagram
that may be displayed in the graphical pane 3904. When the
project is opened, the software development tool parses the
graphical view file into TMM 200, which then correlates the
name and display coordinates of each symbol to a respective
file corresponding to each object-oriented element in the
project as discussed in reference to FIGS. 10A and 10B
above. Thus. TMM 200 may subsequently track the display
status for each object-oriented element in the project.

[0161] Next, the software development tool also receives a
request to deploy the EIB (step 3804). As shown in FIG. 39,
the software development tool may receive the request to
deploy the EJB via a programmer selecting a deployment
option 3906 from a pull-down menu on user interface 3900.
The software development tool, however, may receive the
request to deploy the EJB via any known data input technique,
such as an actuation button on the user interface 3900 or via a
keyboard input.

[0162] After receiving the request to deploy the EJB, the
software development tool receives an indication of an EJB
target application server (step 3806). As illustrated in FIG. 40,
the programmer may indicate the EJB target application
server 4002 to the software development tool from a list of



US 2011/0252401 Al

application servers 4004 that are retrieved from a configura-
tion file and displayed by the software development tool in
response to the request to deploy the EJB or in response to the
programmer selecting a pull-down menu on a user interface
4000. The identified EJB target application server may be any
known application server that complies with JAVA 2 Enter-
prise Edition (J2EE) specification, such as generic 1.1 or 1.0,
Weblogic Server, or IBM WebSphere Server. For the discus-
sion to follow, it is assumed that the EJB target application
server 4002 corresponds to EJB Application Server 2148 that
resides on computer 2104.

[0163] The software development tool then determines
whether to hot deploy the EJB (step 3808). The software
development tool may hot deploy EJB 3902 by starting the
EJB target application server 4002 on the computer 2104
before deploying EJB 3902. By hot deploying EJB 3902, the
software development tool saves development time as the
programmer no longer has to manually start the EJB target
application server 4002 to test or debug the EIB 3902. In
addition, by hot deploying the software development tool is
able to re-deploy the EJB without having to re-start the EJB
target application server 4002, saving the programmer sig-
nificant time and effort. The manual effort to start the EIB
target application server 4002 on computer 2104 is significant
where computer 2104 is remotely located. As discussed
below, the software development tool is able to “cold deploy™
to facilitate testing of the EJB. In this situation, the software
development tool deploys the EIB to the EJB target applica-
tion server and then starts restarts the EJB target application
server so that the EJB target application server will recognize
and support the deployed EJB. Each time the software devel-
opment tool “cold deploys” the EIB (e.g., re-deploys the EJB
after a modification of the EJB is made and the EJB is recom-
piled), the software development tool restarts the EJB target
application server.

[0164] In one implementation, the software development
tool may hot deploy by first sending a known ping message
via network 2110 to the EJB target application server 4002 on
computer 2104 to identify if the EJB target application server
4002 is already started. Thus, even if the EJB target applica-
tion server 4002 is an application server that cannot be
remotely started by the software development tool, the soft-
ware development tool still may save the programmer devel-
opment time by pinging the EJB target application server
4002 to determine ifa hot deployment is possible. A program-
mer may indicate to hot deploy EJB 3902 via actuation of a
button on user interface 4000 or any other known program-
ming data input technique. In one implementation shown in
FIG. 41, a programmer may indicate to the software devel-
opment tool to hot deploy EJB 3902 by selecting an applica-
tion server from the list of application servers 4004 that is
pre-defined to be started by the software development tool.
For example, the selection for EJB target application server
4102 has a prefix of “Start” to visually indicate that this server
is to be started by the software development tool in prepara-
tion for a hot deployment of EJB 3902.

[0165] If the EJB 3902 is to be hot deployed, the software
development tool receives an operation mode for starting the
EJB target application server (step 3810). The operation
mode may be normal mode 4104 for testing EJB 3902 after
deployment with the Client Application 2152, or the opera-
tion mode may be debug mode 4106 for debugging EJB 3902
after deployment to the EJB target application server 4002. In
addition, the software development tool receives access infor-

Oct. 13,2011

mation to start EJB target application server (step 3812). FI1G.
42 depicts an exemplary user interface 4200 showing access
information 4202 received by the software development tool
for the EJB target application server 4002. The access infor-
mation 4202 may be default access information the software
development tool retrieves from a configuration file (not
shown) associated with identified EJB target application
server 4002, or may be entered by the programmer. As illus-
trated in FIG. 42, in one implementation in which the EJB
Application Server 2148 (which corresponds to EJB target
application server 4002 as previously indicated) is stored
locally with the software development tool on computer
2102, access information may include a location 4202 that
identifies the local directory on computer 2102 where the EJB
target application server 4002 is stored. In another implemen-
tation (not shown in figures) in which the EJB Application
Server 2148 is located remotely on computer 2104, access
information may include: the identification of the computer
2104; the location of the EJB Application Server 2148 on the
computer 2104; and access privileges, such as a username and
password for the programmer, which are authorized by the
computer 2104 before the software development tool is able
to proceed with the hot deployment of EJB 3902. As shown in
FIG. 43, the access information received by the software
development tool may also include a port address 4302 that is
assigned to the EJB Application Server 2148 via any known
network protocol application, such as WinSock™, for com-
municating with the software development tool on computer
2102 via network 2110. The port address 4302 of the EIB
Application Server 2148 allows the software development
tool to transmit a communication, such as a start command,
via amessage packet (i.e., TCP/IP message) to the EIB Appli-
cation Server 2148 on network 2110.

[0166] Having received the access information for the EJB
target application server 4002, the software development tool
starts target application server (step 3814). To start the EJB
target application server 4002, the software development tool
sends a start command created from a known application
program interface (API) for the EJB target application server
4002. In another implementation, the software development
tool sends a pre-defined batch file that contains instructions
recognizable by the EJB target application server 4002 for
starting the EJB target application server 4002. The pre-
defined batch file (not shown in figures) may be stored in
secondary storage device 2120.

[0167] The software development tool also receives an
address port to listen for communications between the EJB
target application server and the Client Application (step
3816). FIG. 44 depicts an exemplary response 4400 received
by the software development tool from the EJB target appli-
cation server 4002 in response to the software development
tool sending a command to start EJB target application server
4002. As part of the response 4400, the software development
tool receives a listening port address 4402 assigned to the EJB
Application Server 2148 via any known network protocol
application, such as WinSock™, for communicating with the
Client Application 2152 via network 2110. As described
below, the software development tool uses the listening port
address 4402 to listen for communications between the Client
Application 2152 and the EJB Application Server 2148 (i.e.,
the EJB target application server 4002). By listening for com-
munications between these two servers 2152 and 2148, the
software development tool is able to test and debug the opera-
tion of EIB 3902 after it is deployed as further explained



US 2011/0252401 Al

below. In addition, as shown in FIG. 44, the software devel-
opment tool receives a confirmation 4404 that the EJB target
application server 4002 has been started. As discussed above,
in one implementation, the software development tool may
receive the confirmation 4404 that the EJB target application
server 4002 has been started in response to the software
development tool sending a known ping message to the EJB
target application server 4002 on port address 4302, in FIG.
43. Thus, the software development tool has readied the EJB
target application server 4002 for a hot deployment of EJB
3902.

[0168] If the EJB 3902 is not to be hot deployed or if the
software development tool has readied the EJB target appli-
cation server 4002 for a hot deployment of the EJB 3902, the
software development tool receives deployment options (step
3818 in FIG. 38B). FIG. 45 depicts an exemplary user inter-
face 4500 displayed by the software development tool, where
the user interface 4500 displays a list of deployment options
4502 that a programmer may select to be performed by the
software development tool in conjunction with deploying the
EJIB 3902. The list of deployment options is discussed below
in reference to further processing performed by the software
development tool.

[0169] The software development tool also determines
whether a verify and correct compliance option from among
the list of deployment options is selected (step 3820). If the
verify and correct compliance option 4504 in FIG. 45 is
selected, the software development tool determines whether
code corresponding to the EJB complies with an EJB speci-
fication (step 3822). To determine or verify that code corre-
sponding to the EJB is compliant, the software development
tool parses a configuration file (not shown in figures) associ-
ated with the EJB target application server 4002 for an iden-
tification of the EJB specification that the EJB target appli-
cation server 4002 supports. For example, a configuration file
associated with Weblogic Server V5.1 may include a compli-
ance specification identification that identifies EJB specifica-
tion v1.1 as the latest specification that the Weblogic Server
V5.1 supports. In one implementation, the software develop-
ment tool may use the identification to parse a file containing
a corresponding known EJB specification v1.1 to obtain a
group of compliant method constructs and compliant trans-
action attributes that the software development tool may com-
pare to the code corresponding to EIB 3902. For example, the
software development tool may use Sun Microsystems’ EJB
specification v1.1 previously incorporated by reference to
search for and identify that the compliant method construct
for an “ejbCreate( )” method has a return type of “primary
key” as opposed to having a “void” return type as specified in
the Sun Microsystems’ EJB specification v1.0. Thus, if code
corresponding to EJB 3902 has a “ejbCreate( )” construct
defined according to EJB specification v1.0, the software
development tool may isolate this portion of the code corre-
sponding to EJB 3902 as being non-compliant. In another
implementation, the configuration file associated with the
EJB target application server 4002 may identify a group of
compliant verification/correction steps that the software
development tool may take to verify and correct code corre-
sponding to EJB 3902 rather than parsing a known EJB speci-
fication. The compliant verification/correction steps may be
written in a script language that the software development
tool can read to identify the group of compliant constructs
(i.e., “ejbCreate( )” with return type of primary key) to search
for in the code corresponding to EJB 3902.

Oct. 13,2011

[0170] Asshown in FIG. 46, the software development tool
in performing step 3826 may display verify/correct compli-
ance options 4602 and 4604 that a programmer may select for
the software development tool to perform. Verify/correct
compliance option 4602 may indicate to the software devel-
opment tool to stop if verification fails. Verify/correct com-
pliance option 4604 may indicate to proceed to correct code
corresponding to EJB 3902 if the code does not comply with
the identified specification.

[0171] If the software development tool determines that
code corresponding to the EJB is not compliant with the EJB
specification, the software development tool corrects the code
corresponding to the EJB to comply with the EJB specifica-
tion (step 3824). To correct the code, the software develop-
ment tool replaces a non-compliant portion of the code cor-
responding to EJB 3902 in a respective file in the project with
a compliant portion identified by the EJB specification. For
example, if the software development tool found that a por-
tion of code corresponding to EJB 3902 contained an “ejb-
Create( )” with a “void” return type, the software develop-
ment tool would identify, that portion as non-compliant and
will replace the non-compliant portion with the compliant
portion. In this example, the software development tool
replaces the non-compliant “void” with the compliant return
type of primary key. Note that the software development tool
may identify the primary key type as an attribute in the imple-
mentation class of EJB 3902 based on “PK” being in the name
of the primary key type.

[0172] After correcting the non-compliant portion, the soft-
ware development tool also refactors code corresponding to
the EJB (step 3826). The software development tool may
refactor code corresponding to EJB 3902 by searching for
code corresponding to each object-oriented element in the
project for a reference to the non-compliant portion of EJB
3902. For example, when the non-compliant portion is “void
ejbCreate( )” for EJB 3902, then the software development
tool searches for any other class in the project that implements
the home interface of EJB 3902 and references the method
“void ejbCreate” for EJB 3902. The class may be a client test
class for debugging EJB 3902. Assuming another class in the
project that references the method “void ejbCreate” for EJB
3902 is identified, the software development tool replaces the
identified reference with a reference that matches the com-
pliant portion, such as replacing “void” with “a return type of
primary key.” As one skilled in the art may appreciate, the
software development tool continues refactoring code corre-
sponding to each object-oriented element in the project until
the software development tool does not identify a reference to
the non-compliant portion or any other reference to code
corrected in the process of refactoring for the non-compliant
portion.

[0173] As shown in FIG. 38B, the software development
tool determines whether a compile option from among the list
of' deployment options is selected (step 3828). If the compile
option is selected, the software development tool receives
compiler access information (step 3829). As illustrated in
FIG. 47, the compiler access information 4702 includes a
location where the compiler resides on the network 2110 and
aname of the compiler. As described above, the compiler may
be located in secondary storage device 2120, 2122, 2124, or
2126 of computers 2102, 2104, 2106, or 2108, respectively.
For example, as shown in FIG. 47, compiler access informa-
tion 4702 identifies the location as secondary storage 2120
(e.g., a local drive “e:\”) on the local computer 2102, and



US 2011/0252401 Al

identifies the name of the compiler as “jdk1.2.2” In another
implementation, when the software development tool
accesses the compiler remotely via the network 2110, the
compiler access information 4702 may include an identifica-
tion of a remote computer (i.e., 2122, 2121, 2126,2104, 2106
or 2108) where the compiler is located. In this implementa-
tion, the compiler access information 4702 may also include
access privileges for communicating with the compiler on the
identified computer. In performing the step of receiving com-
piler access information, the software development tool may
determine whether the named compiler is compatible with the
EJB target application server 4002 where the compiled EIB is
to be deployed and run. If the software development tool
determines that the named compiler is not compatible, the
software development tool may display a compiler incompat-
ibility error (not shown in figures), rather than attempt to use
the named compiler to compile EJB 3902.

[0174] Next, the software development tool sends a com-
mand to the compiler to compile the EJB (step 3830). In one
implementation, the software development tool may use a
known script or batch file command that is recognizable to the
compiler identified in compiler access information 4702. The
script or batch file command sent by the software develop-
menttool also identifies the location of code corresponding to
the EJB to be compiled. The software development tool then
receives the compiled EJB (step 3831). Using the compiler
access information 4702, the software development may
receive the compiled EJB by monitoring for a compilation
complete response from the compiler or by monitoring a
directory that the compiler is to store the compiled EJB when
compilation is complete, such as the directory that contains
the source code corresponding to the EJB.

[0175] The software development tool also receives access
information for a platform hosting the EJB target application
server (step 3832 in FIG. 38C). In one implementation, the
platform hosting the EJB target application server 4002 may
be the local computer 2102 where the software development
tool also resides. In another implementation, the platform
hosting the EJB target application server 4002 may be the
remote computer 2104. As shown in FIG. 48, the access
information 4802 for the platform hosting the EJB target
application server 4002 may include a system password 4804,
a server port 4806, and a server host identification 4808. The
system password 4804 may be provided to the software devel-
opment tool to authorize the deployment of EJB 3902 to the
EJB target application server 4002 hosted on the platform.
The server port 4806 may correspond to the listening address
port 4402, in FIG. 44, obtained in response to starting the EJB
target application server 4002 for a hot deployment ofthe EJB
3902. The server host identification 4808 may correspond to
the local computer 2102 or the remote computer 2104. Note
that the system password 4804 may not be needed by the
software development tool to start the EJB target application
server 4002, but may be needed to deploy EJB 3902 to the
EJB target application server 4002.

[0176] The software development tool also determines
whether a Java Server Page (ISP) test client option from
among the list of deployment options is selected (step 3834).
A JSP is an extension of Sun Microsystems’ Java servlet (i.e.,
an applet executed on a server) technology. A JSP allows the
software development tool to incorporate code corresponding
to method calls or signatures associated with the home and
remote interfaces of EJB 3902 directly into an HTML page as
a scripting language. JSPs are defined in Sun Microsystems’

Oct. 13,2011

J2EE specification and are more clearly described in the
following references, which are incorporated herein by ref-
erence: (1) Marty Hall, Core Serviets and Java Server Pages
(JSP), Prentice Hall PTR/Sun Microsystems Press (2000),
and (2) Duane K. Fields and Mark A. Kolb, Web Development
With Java Server Pages, Manning Publication Company
(2000).

[0177] Asillustrated in FIG. 49, if the JSP test client option
is selected, the software development tool receives a public
location 4902 for storing a JSP document definition file, such
as an HTML file. The JSP document definition file to be
stored at the public location 4902 identifies the data structure
for a group of JSP files generated by the software develop-
ment tool for use in testing EJB 3902 once it is deployed. Any
application, such as the browser 2154 on the Client Applica-
tion 2152, may access the JSP document definition file to
interpret the group of JSP files. The public location 4902 may
be any location on computer 2104 that is accessible to any
application server remotely located to EJB Application
Server 2148. The software development tool may also receive
a private location 4904 to store the JSP files generated by the
software development tool (step 3836). To avoid-disorder in
public location 4902, the software development tool gener-
ates a subdirectory of the public location 4902 that corre-
sponds to the private location 4904. The private location 4904
may not be accessible to the public without access privileges
such as system password 4804 for computer 2104. The soft-
ware development tool also receives a network address for
browsing the JSP files (step 3838). As shown in FIG. 49, the
network address 4906 includes the server port 4806, in F1G.
48. The server port 4806 corresponds to the listening address
port 4402, in FIG. 44, which the software development tool
uses to listen to communication between the Client Applica-
tion 2152 and the EJB Application Server 2148. As discussed
below, the software development tool provides the network
address 4906 to the browser 2154 on the Client Application
2152 to facilitate testing EJB 3902.

[0178] Next, the software development tool generates the
JSP files that may be used to test the EJB (step 3842). To
generate the JSP files for testing the EJB, the software devel-
opment parses a group of JSP templates stored on secondary
storage device 2120 of computer 2102. Each group of JSP
templates may contain HTML type tags that the software
development tool parses to identify instructions for generat-
ing the group of ISP files. As shown in FIG. 50, one of the
group of JSP templates includes a Navigation Page template
5002 that indicates to the software development tool that each
EJB EntityBean and each EJB SessionBean in the projectis to
be identified and that the name of each EJB EntityBean and
the name of each EJB SessionBean is to be shown in a JSP
Navigation Page that is a first of the group of JSP files gen-
erated by the software development tool. The JSP Navigation
Page is also the first of the group of JSP files that the Client
Application 2152 may browse via browser 2154 when access-
ing the network address 4906 (i.e., the URL for browsing the
JSP files). To identify each EJB EntityBean and each EJB
SessionBean, the software development tool invokes TMM
200 for the respective name of each EJB EntityBean and each
EJB SessionBean that is currently in TMM 200, and adds the
respective names as indicated by the Navigation Page tem-
plate to the JSP Navigation Page. The Navigation Page tem-
plate 5002 also indicates to the software development tool to
identify each ejbCreate ( ) method associated with each EJB
EntityBean and each EJB SessionBean in the project and



US 2011/0252401 Al

provide an ejbCreate hyperlink in the JSP Navigation Page to
allow a programmer to invoke each ejbCreate( ) method. As
discussed below, when testing an EJB (i.e., EIB 3902)
deployed by the software development tool, the programmer
may actuate each ejbCreate hyperlink to invoke each ejbCre-
ate( ) method to verify that an instance of the respective EJB
is created.

[0179] Inone implementation where the software develop-
ment tool identifies a parameter for the ejbCreate( ) method
(e.g., ejbCreate(String CustomerName)) in code correspond-
ing to the EJB, the software development tool provides a
default value in the respective JSP file to initialize the param-
eter when it is invoked via the JSP Navigation Page. The
parameter (e.g., “CustomerName”) corresponds to a field in
the respective EJB EntityBean or EJB SessionBean that is
mapped to an attribute field in a database (i.e., 2158 in FIG.
21). The field in the respective EJB (and thus the attribute field
in the database table) is initialized to the default value when
the instance of the EJIB is created.

[0180] Inanother implementation, if the software develop-
ment tool identifies that the ejbCreate( ) method has a param-
eter, the software development tool provides in the respective
JSP file that the hyperlink for each ejbCreate( ) method in the
JSP Navigation Page launch a JSP Creator Run Page. The ISP
Creator Run Page is a second of the JSP files generated by the
software development tool. The JSP Creator Run Page pro-
vides the programmer with the capability to provide an initial
value for the parameter before the respective ejbCreate( )
method is invoked and run. To generate the JSP Creator Run
Page, the software development tool parses a Creator Page
template (not shown) that is a second of the group of JSP
templates. The Creator Page template indicates to the soft-
ware development tool to provide an entry box on the JSP
Creator Page for accepting an initial value for the parameter,
and to provide another hyperlink to invoke and run the respec-
tive ejbCreate( ) method with the parameter set to the initial
value. In one implementation in which the Client Application
2152 is hosted with the software development tool on the
local computer 2102, the software development tool may
verify that an instance of the respective EJB was created and
that the field of the respective EJB was initialized to the
parameter by accessing and displaying the attribute field in
the database (i.e., 2158).

[0181] The Navigation Page template 5002 also indicates
to the software development tool to identify each finder
method (e.g., a findByPrimaryKey( ) and ejbfind( ) methods)
associated with each EJB EntityBean in the project. If the
software development tool identifies a finder method, the
software development tool provides a hyperlink in the JSP
Navigation Page to launch a JSP Run Finder Page. The JSP
Run Finder Page is a third of the group of JSP files generated
by the software development tool. To generate the JSP Run
Finder Page, the software development tool parses a Run
Finder template (not shown) that is the third of the group of
JSP templates. The software development tool provides a
finder hyperlink in the JSP Run Finder Page for each finder
method that is identified so that a programmer may invoke
each finder method. The software development tool provides
a finder entry box next to a respective finder hyperlink in the
JSP Run Finder Page so that the programmer may enter a
known value to pass as a parameter when the respective finder
method is invoked.

[0182] In addition, the software development tool launches
a JSP Bean Page, a fourth of the JSP files, when a return is

Oct. 13,2011

received in response to completing the respective ejbCreate(
) method or in response to completing the respective finder
method on the EJB deployed by the software development
tool. Thus, the return from the respective method and the
resulting launch of the JSP may confirm that an instance of the
respective EJB was created by the ejbCreate( ) method or that
the correct field was found for the finder method. The soft-
ware development tool creates the JSP Bean Page in response
to parsing a Bean Page template (not shown) that is the fourth
of'the JSP templates. The Bean Page template indicates to the
software development tool to provide a business method
hyperlink on the JSP Bean Page for invoking each business
method that is identified in each EJB EntityBean or EJB
SessionBean in the project. The programmer may invoke
each business method hyperlink to test the operation of the
respective business method. The software development tool
also generates a JSP Operation Call Result Page that is the
fifth of the JSP files. The software development tool provides
a window on the JSP Operation Result Page for displaying an
operation call result that corresponds to the return type of the
respective business method that is invoked. Thus, the pro-
grammer is able to visually confirm the operation of the
respective business method as further described below.

[0183] Turning to FIG. 38D, after generating the JSP files
that may be used to test the EJB, the software development
tool determines whether a generate deployment descriptor
option from among the list of deployment options is selected
(step 3844). If the deployment descriptor option is selected,
the software development tool retrieves deployment informa-
tion for the EJB (step 3845). As discussed below, deployment
information may include a group of EJB properties needed to
describe the EJB to the EJB Application Server 2148 where
the EJB is to be deployed and run. The group of EJB proper-
ties may include a group of EJB specific properties and an
EIB global assembly property. The group of EIB specific
properties is associated with the respective EJB. The EJB
global assembly property may apply to multiple elements
(i.e., multiple methods for a respective EJB or multiple meth-
ods for multiple EJBs) that are described by the software
development tool in a deployment descriptor file. As previ-
ously explained, a deployment descriptor file is a known file
type for describing an EJB (i.e., the remote interface, the
home interface, and the implementation class for EJB 3902)
and any runtime properties for the EJB to the EJB Application
Server 2148 where the EJB is to be deployed and run. The EJB
group of properties is described below.

[0184] In one implementation, the software development
tool may retrieve the EJB group of properties from a comment
in code corresponding to the EJB. In this implementation, the
group of EJB properties contained in the comment may ini-
tially have been received by the software development tool
via an EJB property configuration file (not shown in figures)
or via a programmer during the generation of the respective
EJB. For instance, as shown in FIG. 39, when EJB 3902 is
selected on the graphical pane 3904, the programmer may use
a pull-down menu (not shown in FIG. 41) to request that the
software development tool display the group of EJB proper-
ties for the implementation class of EJB 3902. Upon receiv-
ing the request, the software development tool recognizes that
the implementation class of EIB 3902 is an EJB SessionBean
and then displays a session-type as one of the group of EIB
properties for EJB 3902. The software development tool may
allow the programmer to specify that the session-type have
one of two values, stateful or stateless. An EJB SessionBean



US 2011/0252401 Al

implementation class that has a stateful property maintains a
conversational state. The conversational state is kept as long
as a client is using the respective EJB SessionBean, allowing
the client to carry on a “conversation” or continuing transac-
tion with the respective EJB SessionBean. An EJB Session-
Bean implementation class that has a stateless property does
not maintain any conversational state, but uses data passed in
parameters of an associated method call from a client to
conduct a transaction for the client. Assuming the program-
mer has selected that EJB 3902 have a stateful property, the
software development tool may store the following group of
EIB properties as exemplary deployment information in a
comment of code JAVA[] corresponding to the implementa-
tion class of EJB 3902 (shown here as Java™ code):

/**

* @ejbHome <{hello.HelloHome }>
* @ejbRemote <{hello.Hello}>

* (@ejbStateful Stateful
*/
public class HelloBean implements javax.ejb.SessionBean

[0185] By storing the group of EJB properties in acomment
of code corresponding to the EJB, the software development
tool may later retrieve the group of EJB properties as deploy-
ment information for the respective EJB in step 3845. Thus,
by storing deployment information for the respective EJB
within a comment of code corresponding to the EJB, the
software development tool allows one programmer to
develop one EJB while a second programmer independently
develops another EJB. Later, using the software development
tool, the deployment information for the respective one EJB
may be combined with the deployment information for the
respective other EJB to generate a deployment descriptor file
that jointly describes both EJBs for deployment to an EJB
Application Server (e.g., 2148). In a traditional approach to
development and deployment of EJBs, a respective EJB does
not contain its own deployment information so all program-
mers must coordinate their development to produce EJBs
using a single deployment descriptor file. Typically, just a
single programmer at a time may access the single deploy-
ment descriptor file produced under the traditional approach.

[0186] After deployment information for the EIB is
retrieved, the software development tool generates a deploy-
ment descriptor file (step 3846). FIG. 51 depicts an exemplary
deployment descriptor file 5100 generated by the software
development tool for deploying EJB 3902. As shown in FIG.
51, the software development tool specifies a language type
5102 as “xml version="1.0"" for the deployment descriptor
file 5100 so that the EJB Application Server 2148 is able to
recognize the language type in which the deployment
descriptor is written. In one implementation, the software
development tool parses a deployment descriptor configura-
tion file (not shown) associated with the EJB target applica-
tion server 4002 to identify the language type 5102 for gen-
erating the deployment descriptor file 5100.

[0187] The software development tool also specifies within
the deployment descriptor file 5100 a Document Type Defi-
nition (DTD) file 5104 and a URL 5106 for locating the DTD
5104. The DTD 5104 is used by the EJB target application
server 4002 to ensure that the deployment descriptor file 5100
adheres to the correct convention for describing EJB 3902. To
adhere to the correct convention implies that a deployment

Oct. 13,2011

descriptor file is organized with the right tags defined in the
DTD 5104 for identifying a SessionBean or an EntityBean. In
one implementation, as shown in FIG. 51, the software devel-
opment tool may parse the deployment descriptor configura-
tion file to identify DTD 5104 and URL 5106 for the EJB
target application server 4002.

[0188] Adhering to the convention identified in DTD 5104
to describe EJB 3902, the software development tool inserts a
beginning and ending root element tag (e.g., <ejb-jar> 5108
and </ejb-jar> 5110) within the deployment descriptor file
5100 so that the EJB target application server 4002 is able to
find the respective data that describes EJB 3902. The software
development tool also inserts a beginning and ending enter-
prise-beans tag (e.g., 5112 and 5114) within the deployment
descriptor file 5100 so that the EJB target application server
4002 is able to find the description of EJB 3902 from amongst
all EJBs that are to be deployed to the EJB target application
server. In addition, to describe EJB 3902, the software devel-
opment tool inserts a beginning and ending session tag (e.g.,
5116 and 5118) within the deployment descriptor file 5100. If
EJB 3902 were an EntityBean, then the software develop-
ment tool would instead insert a beginning and ending entity
tag. In one implementation, the software development tool
may recognize that EJB 3902 is to be described as a Session-
Bean by invoking TMM 200 for an indication that EJB 3902
is a SessionBean as opposed to an EntityBean. In another
implementation, the software development tool may recog-
nize that EJB 3902 is a SessionBean by determining that EJB
3902 does not have an associated EJB Primary Key Class,
which is required for an EntityBean to be deployed. In yet
another implementation, the software development tool may
recognize that EJB 3902 is a SessionBean via the deployment
information written in the comment of the remote interface,
home interface, or implementation class for EJB 3902. To
describe EJB 3902, the software development tool also iden-
tifies specific properties from the retrieved group of EJB
properties for EJB 3902 and then inserts the specific proper-
ties between respective beginning and ending tags as defined
in DTD 5104. For example, EJB name 5120, a home interface
name 5122, a remote interface name 5124, and an implemen-
tation class name 5126 are each a specific property within the
group of EJB properties for EIB 3902 that the software devel-
opment tool has retrieved from a respective comment of code
corresponding to the home interface, the remote interface, or
the implementation class for EJB 3902. To fully describe an
EntityBean, the software development tool may also insert a
primary key class name (not shown) as one of the specific
properties for the respective EJB. As shown in FIG. 51, the
software development tool may also identify and insert a
session-type 5126 and transaction-type 5128 as specific prop-
erties of the EJB 3902.

[0189] To identify an EJB global property from the
retrieved group of EJB properties, the software development
tool may also insert an assembly-descriptor identification
5130 that identifies to the EJB Application Server the EJB
global property, such as a security role required by a client in
order to access a method(s) of EJB 3902 (no security role
shown in FIG. 51). In addition, the assembly-descriptor iden-
tification 5130 generated by the software development tool
within the deployment descriptor file 5100 may also specify a
business system transaction attribute 5132 as an EJB global
property to be associated with a group of methods at runtime.
For example, a programmer may use the software develop-
ment tool to develop and deploy an EJB with business logic to



US 2011/0252401 Al

represent data within the database 2158 as an automatic teller
machine (ATM) to a client application. This ATM EJB (not
shown in figures) may have a withdrawal method allowing the
client to make a withdrawal from a client’s account on the
database 2158. The ATM EJB may also have an overdrawn
method that is run with the withdrawal method to ensure that
the client’s account has sufficient funds for the withdrawal
transaction. Thus, the programmer may indicate to the soft-
ware development tool that the withdrawal method and the
overdrawn method are to have a business system transaction
attribute that indicates that these transactions are to be moni-
tored so that they are completed together.

[0190] While the example shown in FIG. 51 indicates that
EJB 3902 is not being deployed with any other EJBs, one
skilled in the art will appreciate that the software develop-
ment tool is able to describe multiple EJBs in a deployment
descriptor file when multiple EJBs are to be deployed. Simi-
larly, one skilled in the art will also appreciate that the soft-
ware development tool is capable of identifying other EJB
specific property tags of the group of EJB specific property
tags to insert within a beginning and ending session (i.e.,
between session tags 5116 and 5118 for EIB 3902) or entity
tags to fully describe a respective EJB. Finally, one skilled in
the art will also appreciate that the software development tool
is capable of identifying other EJB global properties within
an assembly-descriptor identification to fully describe a
respective EJB.

[0191] As depicted in FIG. 38D, the software development
tool also generates a deployment archive (step 3848). In one
implementation, the deployment archive includes a directory
structure that is used by the software development tool to
store a deployment descriptor file as well as compiled code
(e.g., java executable code with “.class” extension) for all
EJBs identified within the deployment descriptor file that are
to be deployed to the EIB Application Server 2148. In this
implementation, the deployment archive may be compressed
by the software development tool, using a known compres-
sion tool such as the “Java™ Archive (JAR)” tool or the
“WinZip” tool, to form a compressed archive file (e.g., Java™
archive (JAR) file). In this implementation, the software
development tool, as described below, deploys or transfers the
compressed archive file to EJB Application Server 2148. In
another implementation, the software development tool may
transfer a path to the deployment archive so that the EJB
Application Server 2148 is able to retrieve the files with the
directory archive after creating a corresponding directory
structure in memory or secondary storage of the EJB Appli-
cation Server 2148. Thus, the deployment archive for deploy-
ing EJB 3902 includes the deployment descriptor 5100 and
code compiled for file EJB 3902.

[0192] Next, the software development tool provides an
XML editor for viewing and modifying the generated deploy-
ment descriptor (step 3850). As shown in FIG. 52, the soft-
ware development tool provides an XML editor 5200 that the
programmer may use to indicate a deployment descriptor
modification to the software development tool. When provid-
ing the XML editor in step 3850, the software development
tool also automatically displays the structure of the deploy-
ment descriptor file 5100 as stored in the directory archive
(graphically depicted as 5202). The software development
tool provides an edit cue 5204, such as an asterisk (i.e., “*”),
next to an element within the deployment descriptor file 5100
that the programmer may modify and have a change stored
back in the source code of EJB 3902 as discussed below. For

Oct. 13,2011

example, as shown in FIG. 52, the programmer may select
ejb-name 5206, session-type 5208, or transaction-type 5210
to indicate a change to the respective value that the software
development tool is to store in the deployment descriptor file
5100. As shown in FIG. 52, after selecting ejb-name 5206, the
software development tool allows the programmer to view
and change EJB name 5120, one of the specific properties of
EJB 3902. Thus, the software development tool provides the
programmer with an opportunity to inspect and modify ele-
ments of the deployment descriptor file 5100 before the
deployment archive is transferred to the EJB Application
Server 2148 and before EJB 3902 is subsequently deployed
and run.

[0193] Having provided the XML editor for modifying the
generated deployment descriptor, the software development
tool determines whether a change to the EJB deployment
descriptor file 5100 has been received (step 3852). If the
software development tool has received a change, the soft-
ware development tool modifies the EJB deployment descrip-
tor file 5100 to reflect the change (step 3854). Assuming that
the software development tool identifies a description prop-
erty as one of the retrieved group of EJB properties retrieved
in step 3845, the software development tool displays, in FIG.
53, the description property 5304 as one of the elements in the
deployment descriptor file (graphically depicted as 5302) that
may be modified by the programmer. The description prop-
erty 5304 may be used to convey the description and behavior
of the respective EJB to a programmer or administrator that
may be using a tool other than the software development tool
to view the deployment descriptor. As shown in FIG. 53, the
software development tool allows the programmer to indicate
that the description property 5304 be changed to the value
5306, “This is a bean description.” In one implementation, the
software development tool searches the deployment descrip-
tor file after the beginning session tag 5116 for defined
description tags, such as <description> . . . </description>,
and replaces the description property between those tags with
the changed value 5306, “This is a bean description.”

[0194] The software development tool also stores the
change to the deployment descriptor file as deployment infor-
mation in a comment of code corresponding to the EIB (step
3856). Thus, the software development tool is able to associ-
ate a change to a deployment descriptor file with a change to
the deployment information for a respective EJB. For
example, as shown in FIG. 53, die software development tool
allows the programmer to change the description property
5304 in the deployment descriptor file (graphically depicted
as 5302) to reflect the value 5306, “This is a bean description.”
As shown in FIG. 54, the software development that recog-
nizes that the description property 5304 is also one of the
group of EJB properties (graphically depicted as 5308) for
EJB 3902, and stores the change to the description property
5304 as deployment information 5402 in a comment of code
corresponding to the implementation class 5404 of EJB 3902.
Thus, the software development tool is able to reflect achange
to the deployment descriptor file as a change to the deploy-
ment information for a respective EJB to maintain accurate
deployment information in the likely event that the software
development tool is used to re-deploy the EJB.

[0195] If the software development tool does not receive a
change to the EJB deployment descriptor file (step 3858), the
software development tool determines whether to exit the
XML editor. As shown in FIG. 53, the programmer may



US 2011/0252401 Al

indicate to the software development tool to exit the XML
editor by actuating a button 5310 on the XML editor screen
5300.

[0196] The software development tool deploys the EJB in
the deployment archive to the EJB target application server
(step 3860 in FIG. 38E). In one implementation for deploying
the EJB in the deployment archive, the software development
tool transfers the deployment archive to the EJB Application
Server 2148 via a pre-defined message on network 2110. If
the EJB is to be hot deployed, the pre-defined message may be
transferred by the software development tool to the address
port 4302 of the EJB Application Server 2148. If the EJB is
not to be hot deployed or the server host identification 4808
indicates that the EJB Application Server 2148 is on a remote
computer requiring access authorization, the software devel-
opment tool may use access information 4802, in FIG. 48, to
transfer a system password 4804 with the pre-defined mes-
sage to a pre-authorized address port (not shown in figures)
that the programmer has identified to the software develop-
ment tool. The pre-authorized port is one where a privilege
has been granted by the remote computer for the software
development to write and store the deployment archive. In
this implementation, the EJB Application Server 2148 or
another application is attached to the pre-authorized port and
is configured to respond to the pre-defined message. Once the
pre-defined message is received, the EJB Application Server
2148 may decompress the deployment archive and access the
deployment descriptor file 5100 packaged within the deploy-
ment archive.

[0197] In another implementation where the server host
identification 4808 indicates that the EJB Application Server
2148 is hosted locally with the software development tool, the
software development tool may indicate to the EJB Applica-
tion Server 2148 where the deployment archive is located on
the local computer without using a system password 4804. In
this implementation, the EJB Application Server 2148 may
then access the deployment descriptor file 5100 contained
within the deployment archive.

[0198] The EJB Application Server 2148, when accessing
the deployment descriptor file 5100, identifies that the DTD
5104 located at the URL 5106 is to be used to interpret the
deployment descriptor file 5100. By using the DTD 5104 to
interpret the deployment descriptor file 5100, the EJB Appli-
cation Server 2148 learns about EJB 3902 (e.g., EJB 3902 is
a SessionBean with properties as shown in FIG. 51) and how
it is to be managed at runtime (e.g., session-type indicates
EJB 3902 has stateful transaction state). The EJB Application
Server 2148 finds within the deployment archive compiled
code that correlates to the home interface, the remote inter-
face, and the implementation class of the EJB 3902 identified
in the deployment descriptor file 5100. In addition, the EJB
Application Server 2148 has the container 2150 implement
the home interface and the remote interface for EJB 3902 so
that the container 2150 may respond to invocation of a
method from the Client Application 2152. Next, the software
development tool provides the browser on the Client Appli-
cation with a hyperlink to test a create method for the EJB
3902 (step 3864). In one implementation where the browser
resides locally with the software development tool on com-
puter 2102, the software development tool provides the
browser (i.e., browser 2154 in FIG. 21) with the hyperlink to
test the create method by informing the browser of the net-
work address 4906 (or URL) for browsing the JSP files gen-
erated by the software development tool in performing step

Oct. 13,2011

3842 of the process shown in FIG. 38C. In this implementa-
tion, the software development tool may inform the browser
2154 of the network address 4906 by writing the network
address 4906 in a script within a browser startup configura-
tion file. The script is written by the software development
tool in a form that is consistent with the application program
interface (API) of the browser, such as the known API for
Netscape Navigator™ browser.

[0199] In another implementation where browser 2154
resides on remote computer 2106, the software development
tool may inform the browser 2154 of the network address
4906 for browsing the JSP files by sending a pre-defined
message containing the network address 4906 to a pre-de-
fined e-mail address on remote computer 2106. Adhering to
standard e-mail protocols, another programmer or a customer
using the remote computer 2106 may then be informed of the
network address 4906 in response to the pre-defined message
being delivered to the pre-defined e-mail address on remote
computer 2106. Thus, the other programmer or the customer
is then able to manually enter the network address 4906 into
the browser 2154 in order to remotely test EJB 3902 or click
on the address in typical e-mail clients to automatically
invoke the JSP page.

[0200] Forexample, as shown in FIG. 55, when the browser
2154 accesses the network address 4906, the browser 2154 is
provided with the JSP Navigation Page 5502 as identified in
the first of the group of ISP files (“the JSP Navigation file”)
generated by the software development tool to test EJB 3902.
The JSP Navigation Page 5502 has a hyperlink 5504 that
invokes the create method for the EJB 3902. In response to a
programmer selecting the create method hyperlink 5504, the
browser sends a message via network 2110 to the network
address 4906 to invoke the respective create method for EJB
3902. In this situation, code within the JSP Navigation file
that corresponds to the create method is executed, causing the
EJB Application Server 2148 to create an instance of EJB
3902 in container 2150. In one implementation, the software
development tool may provide that the browser 2154 is to be
linked to the next file in the group of ISP files if a response is
received by the JSP Navigation file that indicates that the EJB
Application Server 2148 has completed the create method. In
this implementation, the programmer is able to confirm that
the instance of EJB 3902 has been created in container 2150.
[0201] As shown in FIG. 38E, software development tool
provides the browser on the Client Application 2152 with a
hyperlink to test a business method in the EJB (step 3866).
FIG. 56 depicts a JSP bean page (i.e., Session bean page
5602) that is displayed on screen 5600 by the browser 2154 in
response to a programmer invoking the create method hyper-
link 5504 in FIG. 55. The Session bean page 5602 is associ-
ated with another of the group of ISP files (“the JSP Session
bean file”) generated by the software development tool to test
EJB 3902. The Session bean page 5602 has a hyperlink 5604
that invokes the business method “String hello ( )” in EJB
3902. In response to a programmer selecting the business
method hyperlink 5604, the browser 2154 sends a message
via network 2110 to the network address 4906 to invoke the
respective business method for EJB 3902. In this situation,
code within the JSP Session bean file that corresponds to the
business method is executed, causing the EJB Application
Server 2148 via container 2150 to invoke the respective busi-
ness method in the EJB 3902.

[0202] As shown in FIG. 38E, software development tool
provides the browser 2154 on the Client Application 2152



US 2011/0252401 Al

with an Operation call result page to receive a response from
the invoked business method (step 3868). FIG. 57 depicts an
Operation call result page 5702 that is displayed on screen
5700 by the browser 2154 in response to a programmer invok-
ing the business method hyperlink 5604 in FIG. 56. The
Operation call result page 5902 is associated with another of
the group of JSP files (“the JSP result File”) generated by the
software development tool to test EJB 3902. The Operation
call result page 5702 has a window 6004 where the response
from the invoked business method hyperlink 5604 (i.e.,
“String hello ( )”) in EJB 3902 may be displayed. In the
example depicted in FIG. 57, the programmer is able to con-
firm that the instance of EJB 3902 has correctly performed the
invoked business method hyperlink 5604 as the response
“Hello World” 5706 is displayed in the window 5704 as
expected.

[0203] Turning to FIG. 38F, the software development tool
also determines whether to run the EJB in debug mode (step
3870). In one implementation, the software development tool
determines that the EJB is to be run in debug mode when the
EJB has been hot deployed and when the EJB Application
Server 2148 operational mode is set to debug mode 4106 as
illustrated in FIG. 41. In another implementation, the soft-
ware development tool may determine that the EJB is to be
run in debug mode in response to receiving a debug request
(not shown in figures). For example, once EIB 3902 is
deployed by the software development tool, the programmer
may indicate the debug request to the software development
tool by making arespective selection from a pull-down menu,
actuating a pre-defined button on a user interface displayed by
the software development tool, or by any other known data
input technique.

[0204] Ifthe EJB is to be run in debug mode, the software
development tool attaches a debugger module to the com-
mand port of EJB target application server (step 3872). The
debugger module (“debugger”) is one of the modules 704 in
FIG. 7 thatare included in the software development tool. The
debugger of the software development tool allows a program-
mer to set breakpoints in source code corresponding to the
deployed EJB as well as set breakpoints in a client test pro-
gram that resides with the software development tool in
memory 2112 of computer 2102. By setting breakpoints, the
software development tool enables the programmer to stop
the execution of the deployed EJIB or the client program at any
line of source code corresponding to the deployed EJB or the
client program, respectively. In addition, the programmer, by
using the debugger of the software development tool, may
execute one of a group of commands that control the execu-
tion of the deployed EJB or the client program. The group of
execution control commands includes “Run,” “Pause,” “Con-
tinue,” or “Stop.” The debugger may automatically complete
an execution control command (e.g., “Stop”) to support trap-
ping on a breakpoint specified by the programmer. In one
implementation, the debugger of the software development
tool may implement the Java™ Platform Debugger Architec-
ture (JPDA) to enable the debugger to support the function-
ality described above and to run portably across platforms and
across different implementations of the JAVA™ Virtual
Machine. The software development tool attaches the debug-
ger to the command port of the EJB target application server
4002 to enable the debugger to complete an execution control
command to “Run,” “Pause,” “Continue,” or “Stop” the
deployed EJB. As shown in FIG. 58, to attach the debugger to
the command port of the EJB Application Server 2148, the

Oct. 13,2011

software development tool receives attachment information
5802 that includes a host identification 5804, a transport
protocol 5806, and a remote process port address 5808. The
host identification 5804 indicates to the software develop-
ment tool if the process that is to be attached to the debugger
(e.g., the EJB Application Server 2148) resides locally with
the software development tool on computer 2102 or remotely
oil computer 2104, 2106, or 2108. The transport protocol
5806 identifies to the software development tool which stan-
dard communication transport protocol the debugger is to use
to format and send an execution control command to the EIB
Application Server 2148. The remote process address port
5808 indicates to the software development tool the com-
mand port address to send an execution control command. In
one implementation in which EJB 3902 is hot deployed, the
software development tool receives the address port 4302, in
FIG. 45, as a default for the remote process address port 5808.
As previously described, the address port 4302 is the com-
mand port for the EJB Application Server 2148 specified by
the programmer.

[0205] Returning to FIG. 38F, the software development
tool receives an identification of a main client class (step
3874). FIG. 59 depicts an exemplary user interface 5900
displayed by the software development tool for receiving the
identification of the main client class 5902. As shown in FIG.
59, the software development tool may also receive via user
interface 5900 a client test program argument 5904 and a
JAVA™ Virtual Machine option 5906. The identification of
the main client class indicates to the software development
tool the starting point for a client test program to be used by
the debugger for testing the deployed EJB (i.e., EIB 3902).
The client test program argument 5904 indicates to the soft-
ware development tool a parameter, such as “username,” that
is required to run the main client class 5902. The JAVA™
Virtual Machine option 5906 indicates to the software devel-
opment tool a configuration parameter to be passed to the
JAVA™ Virtual Machine to support executing the client test
program. For example, the configuration parameter may indi-
cate a size of memory that the JAVA™ Virtual Machine
should allocate to support executing the client test program.
[0206] Inoneimplementation, the main client class 5902 is
identified to the software development tool via a client test
program default. The software development tool may receive
the client test program default by searching each source code
file in the project for a class that implements the home inter-
face and the remote interface for the deployed EIB (i.e., EIB
3902). In addition, if a class is found that implements the
home interface and the remote interface for the deployed EJB
(i.e., EJB 3902), the software development tool searches the
class for a method called “main.” In another implementation,
the programmer may indicate to the software development
tool the identification of the main test class 5902.

[0207] Inone implementation, the client test program cor-
responding to the main test class 5902, “client.weblogic.
HelloClient,” implements the home interface and the remote
interface for EJB 3902 so that the client test program may test
amethod in EJB 3902 by invoking the respective signature for
the method.

[0208] Next, the software development tool runs the main
client class in a debugger session (step 3876). The debugger
of the software development tool may support multiple
debugger sessions. In general, a debugger session corre-
sponds to the debugger controlling the execution of one pro-
gram independently from another program that may be



US 2011/0252401 Al

executing under the control of the debugger in another ses-
sion. As explained below, one program executing in one
debugger session may impact another program executing in
another debugger session. The impact may or may not be
expected by the programmer. Thus, to assess the impact of the
one program on the other program, the software development
tool allows the programmer to set one or more breakpoints in
the one program associated with the one debugger session and
to set one or more different breakpoints in the other program
associated with the other debugger session. By providing
simultaneous debugging of program logic that spans from the
Client Application code (1st tier) to the EJB code on the EJB
Application Server, the software development tool saves the
programmer the time and effort of testing the same code using
conventional, manual techniques. For example, FIG. 60
depicts an exemplary user interface 6000 displayed by the
software development tool in response to receiving the iden-
tification of the main client class 5902, where the user inter-
face 6000 displays the client test program under the control of
the debugger in one debugger session. As shown in FIG. 60,
the software development tool identifies that the one debug-
ger session displayed is associated with the main client class
via a first debugger session indicator 6002. In this example,
the client test program contains just the main client class
(graphically depicted as 6004). Source code corresponding to
the main client class 6004 is displayed by the software devel-
opment tool in the textual pane 6006. Using any known data
input technique, the programmer may indicate to the debug-
ger that a breakpoint (e.g., 6008) be set on a respective line of
source code (e.g., 6010) corresponding to the main client
class 6004. In the example shown in FIG. 60, the line of
source code 6010 corresponds to a create method invocation
for the EJB 3902 that the software development tool has
deployed to EJB Application Server 2148. The programmer
may then indicate to the debugger to execute a command to
run the main client class in the one debugger session to test the
operation of the client application program.

[0209] After initiating execution of the client test program
in one debugger session, the software development tool also
runs the EJB in another debugger session (step 3878). FIG. 61
depicts an exemplary user interface 6100 displayed by the
software development tool, where the user interface 6100
displays source code 6102 corresponding to EJB 3902 in the
textual pane 6104. As shown in FIG. 61, the software devel-
opment tool identifies that the other debugger session dis-
played in user interface 6100 is associated with EJB 3902 via
a second debugger session indicator 6106. In this example,
the programmer may indicate to the debugger that a break-
point (e.g., 6108) be set on a respective line of source code
(e.g., 6110) corresponding to EIB 3902. In the example
shown in FIG. 61, the line of source code 6110 corresponds to
a business method “String hello ( )” 6112 in EJB 3902. The
programmer may then indicate to the debugger to execute a
command to run EJB 3902 in the other debugger session to
test the operation of EJB 3902. The software development
tool via the debugger allows the programmer to transfer
between the one debugger session associated with the main
client class and the other debugger session associated with
EJB 2104. Thus, the software development tool allows the
programmer to independently control the operation of the
main test client and EJB 3902 in order to assess the impact of
one on the operation of the other and, ultimately, to confirm
the operation of both programs.

Oct. 13,2011

[0210] Ifthe EJB is not to run in debug mode, the software
development tool initiates execution of the EJB in normal
mode (step 3880). The software development tool may ini-
tiate execution of the EJB in normal mode by sending a start
command to the EJB Target Application Server at a pre-
defined network address, such as network address 4302 in
FIG. 43. As one skilled in the art will appreciate, the software
development tool is able to store, retrieve, and send a start
command that is recognizable by the EJB Target Application
Server specified by the programmer. Thus, in this situation,
the programmer is able to test code for a client application
against one or more deployed EJBs without running the EJB
Target Application Server in debug mode. The EJBs may have
previously been developed and tested by the programmer
using the software development tool or may have been pro-
vided by a known vendor so additional debugging of the EJBs
may not be required.

[0211] Whilevarious embodiments of the present invention
have been described, it will be apparent to those of ordinary
skill in the art that many more embodiments and implemen-
tations are possible that are within the scope of this invention.
Accordingly, the invention is not to be restricted except in
light of the attached claims and their equivalents.

What is claimed:

1. A method, comprising:

receiving an indication to determine whether source code

associated with a distributed computing component
complies with a specification associated with the distrib-
uted computing component;

parsing a configuration file, the configuration file compris-

ing an identification of the specification;

identifying a non-compliant portion of source code,

wherein the non-compliant portion does not comply
with the specification;

modifying the non-compliant portion after determining

that the source code has the non-compliant portion.

2. The method of claim 1, wherein the configuration file is
further associated with a target application server.

3. The method of claim 1, wherein the distributed comput-
ing component is an Enterprise JavaBean™.

4. The method of claim 1, wherein the specification is an
Enterprise JavaBean™ specification.

5. The method of claim 1, wherein the configuration file
includes a verification instruction and a correction instruc-
tion.

6. A method, comprising:

receiving an indication to determine whether source code

associated with a distributed computing component
complies with a specification associated with the distrib-
uted computing component;

identifying a non-compliant portion of source code,

wherein the non-compliant portion does not comply
with the specification;

modifying the non-compliant portion after determining

that the source code has the non-compliant portion.

7. The method of claim 6, wherein the specification
includes one or more method constructs and one or more
transaction attributes.

8. The method of claim 7, wherein the identifying the
non-compliant portion of source code comprises comparing
the source code to the one or more method constructs.

9. The method of claim 7, wherein the identifying the
non-compliant portion of source code comprises comparing
the source code to the one or more transaction attributes.



US 2011/0252401 Al

10. The method of claim 6, wherein the modifying the
non-compliant portion comprises replacing the non-compli-
ant portion with a compliant portion in the source code.

11. The method of claim 6, wherein the distributed com-
puting component is an Enterprise JavaBean™.

12. The method of claim 11, wherein the specification is an
Enterprise JavaBean™ specification.

13. The method of claim 6, wherein the source code com-
plies with another specification.

14. The method of claim 6, further comprising refactoring
the source code after modifying the non-compliant portion.

15. The method of claim 14, wherein the refactoring the
source code comprises:

locating a reference associated with the non-compliant

portion; and

Oct. 13,2011

replacing the reference with another reference associated

with the compliant portion.

16. A computer-readable medium including instructions
for a software development tool to perform a method, the
method comprising:

receiving an indication to determine whether source code

associated with a distributed computing component
complies with a specification associated with the distrib-
uted computing component;

identifying a non-compliant portion of source code,

wherein the non-compliant portion does not comply
with the specification;

modifying the non-compliant portion after determining

that the source code has the non-compliant portion.

sk sk sk sk sk



