wo 2021/035079 A1 |0 00000 KA 00 O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
25 February 2021 (25.02.2021)

(10) International Publication Number

WO 2021/035079 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 9/48 (2006.01) GO6N 3/063 (2006.01)

(21) International Application Number:
PCT/US2020/047254

(22) International Filing Date:
20 August 2020 (20.08.2020)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/890,351 22 August 2019 (22.08.2019) UsS

(71) Applicant: GOOGLE LLC [US/US]; 1600 Amphitheatre
Parkway, Mountain View, California 94043 (US).

(72) Inventors: POPE, Reiner; 1600 Amphitheatre Parkway,
Mountain View, CA 94043 (US). GUNTER, Michial
Allen; 1600 Amphitheatre Parkway, Mountain View, CA
94043 (US).

Agent: SHEPHERD, Michael P., FISH &
RICHARDSONP.C., P.O. BOX 1022, 3300 RBC PLAZA,
MINNEAPOLIS, MN 55440-1022 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

84

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 1IN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP, KR, KW,KZ, LA, LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: PROPAGATION LATENCY REDUCTION

(57) Abstract: Methods, systems, and apparatus, including computer programs
encoded on computer storage media, for scheduling operations to reduce prop-
agation latency between tiles of an accelerator. One of the methods includes
receiving a request to generate a schedule for a first layer of a program to be
executed by an accelerator configured to perform matrix operations at least par-
tially in parallel, wherein the program defines a plurality of layers including the
firstlayer, each layer of the program defining matrix operations to be performed
using a respective matrix of values. A plurality of initial blocks of the schedule

Vi
kT

First Layer
02
0 2
M1 M1
1o 1o
1 3

Second Schedule = 7 cytles
108

Second
Laver

First Schedule = 8 eydles
108

are assigned according to an initial assignment direction. The assignment direc-
tion is switched starting at a particular cycle so that blocks processed after the
selected particular cycle are processed along a different second dimension of
the first matrix. All remaining unassigned blocks are then assigned according
to the switched assignment direction.

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

PROPAGATION LATENCY REDUCTION

BACKGROUND

This specification relates to machine-learning accelerators.

A machine-learning accelerator is an application-specific integrated circuit (ASIC)
that is designed for performing highly parallel synchronous operations. The parallelism is
achieved by integrating many different independent processing elements that can execute
concurrently.

Such devices are well-suited for accelerating inference passes through neural
networks. Neural networks are machine learning models that employ multiple layers of
operations to predict one or more outputs from one or more inputs. Neural networks
typically include one or more hidden layers situated between an input layer and an output
layer. The output of each layer is used as input to another layer in the network, e.g., the
next hidden layer or the output layer.

Typically the computational operations required for each layer can be achieved by
performing matrix multiplications. Often one of the matrices is a vector, e.g., a matrix-
by-vector multiplication. Machine-learning accelerators thus allow the multiplies and
adds of a matrix multiplication to be performed with high parallelism.

However, there is inherent latency in these computational mechanisms due to the
dependencies between the layers of a neural network. The latency arises because the
output of one layer becomes input to the next layer. Therefore, the layers of a neural
network usually have to be executed sequentially rather than in parallel. In other words,
typically the last computational operation of one layer has to complete before the first
computation of the next layer can begin.

Two types of latency commonly occur in a machine-learning accelerator that uses
multiple tiles assigned to different respective layers. First, computational latency occurs
due to components of a chip waiting for input data when they are actually available to
perform computations. Second, propagation latency occurs due to the need to propagate
the output of one layer computed by one tile to be the input of another layer computed by
a second tile. The computational latency can be improved by making a larger device with
more compute elements. However, propagation latency tends to increase as devices get

larger because the distance the data needs to travel between tiles gets larger as well.

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

SUMMARY

This specification describes how a system can generate a schedule for a machine
learning accelerator that reduces computational latency as well as propagation latency
when the between tiles in a machine learning accelerator.

Particular embodiments of the subject matter described in this specification can be
implemented so as to realize one or more of the following advantages. The
computational latency and propagation latency for a machine learning accelerator can be
reduced by modifying the schedule of operations. This results in performance
improvements without requiring expensive or complex hardware changes. The
performance improvements of the scheduling techniques described below also provide
computational advantages when there is only one tile, in which case some schedules may
achieve a utilization near 100% despite the existence of inherent computational
dependencies.

The details of one or more embodiments of the subject matter of this specification
are set forth in the accompanying drawings and the description below. Other features,
aspects, and advantages of the subject matter will become apparent from the description,

the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates how changing the schedule can reduce latency between two
layers of a neural network.

FIG. 1B illustrates scheduling assignments for a single tile.

FIG. 2 is a flowchart of an example process for generating a schedule for reducing
latency between tiles of an accelerator.

FIG. 3A illustrates performing row-major order and then switching to column-
major order.

FIG. 3B illustrates performing row-major order with a row limit.

FIG. 4 illustrates diagonal scheduling.

FIG. 5 is a schematic that illustrates an example of special purpose logic circuitry.

FIG. 6 illustrates example of a tile for use in the ASIC chip.

Like reference numbers and designations in the various drawings indicate like

elements.

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

DETAILED DESCRIPTION

This specification describes techniques for scheduling tile operations to reduce the
propagation latency between tiles of a multi-tile accelerator, e.g., a machine-learning
accelerator.

In this specification, a tile refers to a device having a computational array of cells
that can perform computations on a portion of a matrix. Thus, a tile refers to any
appropriate accelerator that is configured to perform fixed-size blocks of matrix-vector
multiplies. Each cell can includes circuitry that allows the cell to perform mathematical
or other computations. In a typical scenario, a tile receives an input vector, uses the
computational array to multiply the input vector by a matrix of weights, and generates an
output vector.

In this specification, a schedule refers to a time-ordered sequence of portions of a
matrix over which a particular tile should operate. In this specification, such discrete
portions of a matrix will also be referred to as blocks. Thus, a schedule specifies an
ordering of blocks for a particular tile.

Each time the tile operates on a different block of the matrix can be referred to as
one iteration of the schedule. If a matrix fits completely within the computational array
of a tile, all the matrix operations could be performed without any scheduling. However,
when the matrix is larger than the computational array, the system can generate a
schedule that specifies in which order different blocks of a matrix should be processed.
For convenience, the operations of a schedule in this specification will be referred to as
being assigned to specifically identifiable clock cycles. However, these clock cycles need
not correspond to actual hardware clock cycles, and the same techniques can be used to
assign computations to time periods that include multiple hardware clock cycles.

FIG. 1A illustrates how changing the schedule can reduce latency between two
layers of a neural network. The left-hand side of FIG. 1 illustrates a straightforward
schedule in which two tiles are used to perform the operations of two neural network
layers. Nevertheless, the straightforward schedule has latency that can be reduced by
using an enhanced schedule on the right-hand side of FIG. 1.

A first layer 102 has a first weight matrix M1 110. The operations of the first
layer 102 include receiving an input vector V1 115 and multiplying the input vector 115
by the first weight matrix 110 to generate an output vector V2 117.

In this example, the first weight matrix 110 is larger than a computational array of

a first tile assigned to perform the operations of the first layer 102. The first weight

3

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

matrix 110 is twice the width and twice the height of the computational array of the first
tile. Therefore, the operations of the first layer have to be performed in multiple blocks
over multiple clock cycles according to a particular schedule.

In the example of FIG. 1, the first schedule 106 assigns a row-major schedule to
the operations of the first layer 102, meaning that the first tile assigned to the first layer
102 will operate on two iterations over the top half of the first matrix 110 and then
operate on two iterations over the bottom half of the first matrix 110. In FIG. 1, clock
cycle assignments are illustrated on the corresponding matrix blocks. Thus, for the first
matrix 110 according to the first schedule, the first tile will process the top half of the
matrix on Cycle 0 and Cycle 1, and the bottom half of the matrix on Cycle 2 and Cycle 3
in that order.

The output vector 117 for the first layer 102 is then generated by summing the
partial results of the individual iterations. Thus, a first half of the output vector 117
includes summing the partial results from clock cycles 0 and 2. A second half of the
output vector 117 includes summing the partial results from clock cycles 1 and 3.

The output vector 117 is then propagated over communications hardware to a
second tile assigned to perform the matrix operations of the second layer 104 having a
second weight matrix M2 120. In this example, the propagation latency of the accelerator
is assumed to be two clock cycles.

In this diagram, the second layer 104 also has a row-major schedule according to
the first schedule 106.

The first tile and the second tile assigned to the first layer 102 and the second
layer 104 respectively can perform operations concurrently. However, the computations
between layers naturally introduce certain data dependencies, and the propagation latency
introduces delays that affect when operations of the second layer 104 can begin.

In particular, the top-left block of the second matrix 120 cannot be executed until
both Cycle 0 and Cycle 2 have been executed by the first layer 102. Therefore, after
Cycle 2 of the first layer has been executed, Cycles 3 and 4 will be spent propagating the
left half of the output vector 117 to the second tile computing the second layer 104.
Therefore, the earliest point in time that results for the second layer can be computed is at
Cycle 5.

For the same reasons, the bottom-left block of the second matrix 120 of the
second layer 104 cannot be executed until both Cycle 1 and Cycle 3 have been executed

on the first layer 102 and until the data has been propagated, which incurs two cycles of

4

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

propagation delay. Because Cycle 6 has already been assigned to the top-right block, the
first schedule 106 assigns the bottom-left portion of the second matrix 120 to be
processed starting at Cycle 7.

Therefore, FIG. 1A illustrates how the first schedule 106 results in a total
execution time of 8§ cycles.

The second schedule 108 adjusts the execution order for the first layer 102.
Rather than having a row-major ordering, the second schedule 108 assigns a column-
major ordering to the first layer 102.

In other words, the first layer can operate first on the top-left portion of the first
matrix 110 on Cycle 0, followed by the bottom-left portion of the first matrix 110 on
Cycle 1.

Note that at this point, the operations of the second layer 104 can immediately
begin processing with the top-left block of the second matrix 120. Thus, after the two-
cycle propagation delay on Cycles 2 and 3, the top-left block of the second matrix 120
can already be processed on Cycle 4, and the top-right block of the second matrix 120 can
be processed on Cycle 5.

This rearrangement of the row/column ordering of the operations of the first layer
102 reduces the overall execution time of the two layers to 7 cycles. In effect, by
changing the row/column ordering in the first layer 102, the system was able to hide one
entire cycle of propagation latency between the two tiles assigned to operate on the first
and second layers. Although this is a simple example, the time savings was still 12.5%
for a single pass through the layers 102 and 104.

This technique can be generalized and refined into a problem of selecting two
values: (1) a particular cycle M on which to perform an assignment direction switch, and
(2) a particular cycle 7; on which to process the “bottom-left block™ of a matrix. In this
specification, the “bottom-left” block of the matrix means the last block of a matrix that
needs to be processed before the subsequent layer can begin processing outputs generated
by the layer. Thus, the “bottom-left” block can be any corner block of the matrix, or any
edge block that uses a last-arriving portion of a row or column from the previous layer,
depending on the particular arrangement in the schedule.

For an accelerator having N cycles of propagation latency between layer n-1 and
layer n, and C cycles of propagation latency between layer n and layer n+1, the system

can mitigate the propagation latency by scheduling the bottom-left block of the matrix of

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

layer n to be processed at least N cycles from the beginning of the layer and at least C
cycles from the end of the layer.

The enhanced schedule thus makes a switch in assignment direction after the
selected cycle M. In general, M specifies a cycle at or before the particular cycle 7. At
cycle M, the schedule can switch from assigning blocks in row-major order to column-
major order, or vice versa. This is because after the cycle 7, the tile continues receiving
data that is sufficient to generate further outputs for the next layer. The techniques
described below further describe how to change the row/column assignment direction of a
schedule in order to mitigate the latency for matrices of arbitrary size.

The same switch in assignment direction can also reduce latency in a machine
leaming accelerator having only one tile and little or no propagation latency. For
example, suppose that a device included only a single tile that was tasked with computing
results for both layers.

FIG. 1B illustrates scheduling assignments for a single tile having 9 computational
elements processing 4x4 matrices on each of two layers.

The first schedule 107 illustrates basic row-major ordering. One issue that can
arise is that some computational elements may have nothing to do because they are
waiting on the results of other computations to complete.

On cycle 0, all 9 computational elements are successfully put to work on the first
two rows of M1 111 and the first element of the third row of M1 111. But at Cycle 1 in
the first schedule 107, only 7 of 9 computational elements can be given work. This is
because when using the row-major schedule, the upper-left comer of the second layer
cannot be computed until the bottom-right corner of the first layer is processed.
Therefore, the first result for the second layer 104 cannot be computed until one cycle
later.

Consider instead a second schedule 109 that uses an assignment direction switch.
Namely, after assigning the first row of the matrix 111, the system can switch to column
major assignment. And thus, the bottom-left block of the matrix 111 is computed on
cycle 0 instead of cycle 1. Then, the operations of the second layer can begin
immediately on Cycle 1 because the bottom-left block has already been processed on
Cycle 0.

The result is that cycle 1 in the second schedule, which had the switch in
assignment direction, was able to achieve 100% utilization because some elements of the

computational array were able to begin working on the second layer operations without

6

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

waiting for operations of the first layer to complete. The same techniques can be used to
improve the utilization through the layers of a neural network.

FIG. 2 is a flowchart of an example process for generating a schedule for reducing
latency for an accelerator. For convenience, the process will be described as being
performed by a system of one or more computers, located in one or more locations, and
programmed appropriately in accordance with this specification.

The system receives a request to generate a schedule for a first layer having a first
matrix (210). The first layer can be one of multiple layers defined by an input program
that specifies the operations to be performed by each of the layers. In a device having
multiple tiles, each layer can be assigned to a respective tile of a device having a plurality
of tiles. Each layer can have a respective matrix. For example, the input program can
specify the operations of a neural network architecture.

The system assigns a plurality of initial blocks of the schedule according to an
initial assignment direction in a first dimension (220). The assignment direction specifies
a first dimension of the matrix along which iterations of the schedule should be
performed. For example, the assignment direction can initially specify row-major
ordering or column-major ordering.

The system selects a cycle for the bottom-left block (230). As described above, 7;
represents the cycle on which the bottom-left block of the matrix will be executed. Also
as described above, the selection of 7; along with a particular type of schedule can also
determine A, which is the cycle at which the assignment direction switches.

In general, no matter the choice of 73, 7i cycles of latency can be hidden between
layeri-1 and layer i, and W; x H; - Ti cycles of latency can be hidden between layer i and
layer i+1. In other words, the system can choose 7: to trade off between hiding latency at
the i-1 to i transition versus latency at the i to i+1 transition.

Some matrices may be sufficiently large that the propagation latencies can be
completely hidden. Suppose that L; represents the total end-layer latency, which includes
any ending computations or activation functions as well as propagation latency, at the end
of layeri. In order to hide all latency for layer i, the following inequality must hold:

Wix Hi =z Lt + L,
where Wiis the width of the matrix in blocks and H; is the height of the matrix in blocks.
The block sizes can be determined by the tile hardware.

When the condition holds, the system can select 7i to be Li-1.

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

In other words, the system can schedule the blocks so that the bottom-left block
executes as soon as possible after the previous layer has finished producing outputs
needed to process that block.

However, not all matrices are large enough to completely hide the latencies
between layers. In those cases, the schedule can introduce idle cycles in order to force
waiting for results to be ready. If alayer i is followed by S: idle cycles, the following
inequality holds for all valid schedules for layer i:

Wix Hi = max(Li-; — Si-1, 0) + max(L: — S;, 0).
If this inequality holds for a valid schedule, the system can assign 7; according to:
Ti=max(Li1 - Si-1, 0).

When using this arrangement with idle cycles, the system also programmatically
select the number of idle cycles through each layer in order to minimize the total delay
introduced by the idle cycles. To do so, the system can perform an optimization
procedure to select an integer number of idle cycles Sk for each layer k such that the
following inequalities hold:

Wix Hi-max(Li —Si;,0) =0
and
Sizr= L+ max(L: — S, 0) - Wi x H..

The system switches the assignment direction so that the blocks processed after
the particular block are processed sequentially along a second dimension (240). The
selection of M, the switching cycle, depends on the type of schedule being used.
Examples of selecting M are described in more detail below with reference to FIGS. 3A-
C.

The system assigns all remaining unassigned blocks according to the switched
assignment direction (250). In other words, the system can assign all unscheduled blocks
in an ordering according to the second dimension.

FIGS. 3A-4 illustrate example schedules using a switched assignment direction.
In FIGS. 3A-3C, the numbered arrows represent lines of blocks that are assigned to be
executed in a particular order.

FIG. 3A illustrates performing row-major order and then switching to column-
major order. In other words, the system assigns blocks along the top row to be processed

first, then blocks along the second row to be processed second, and so on.

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

In this example, the cycle M occurs somewhere midway along the fourth row of
blocks. The system thus makes a switch in assignment direction and begins assigning
blocks in column-major order. The system can do so in order to schedule the bottom-left
corner of the matrix to be executed on a selected cycle 7i. In other words, the system
computes row-major order until the number of untouched rows is equal to the difference
between the current cycle and 7.

The schedule illustrated in FIG. 3A results in most of the computation being spent
on the column-major phase. This tends to deliver outputs at a very uniform rate and
leaves some idle cycles at the end of each column. This can be advantageous for when
the outputs for each layer require additional processing, e.g., as is the case for LSTMs.

FIG. 3B illustrates performing row-major order with a row limit. In this example,
the row-major phase processes only a limited number of blocks before moving to the next
row. In this example schedule, the initial rows include more blocks than the latter rows.
In some implementations, the system computes the row limits by computing a value N =
(T: / Hi-1), where H; is the number of blocks in each column of the matrix. The system
can then use the ceiling of N for the initial rows, and the floor of N for the later rows.

The cycle of the bottom-left block 7; in this example is thus given by the two
values of N and the number of rows in the matrix. In other words, if there are 8 rows in
the matrix and floor(N) = 3, and ceiling(N)=4, then 7:=5x 4+ 3x3 - (3-1)=27. The
switching cycle M in this case is given by M = 5x4 + 3x3 = 29.

The schedule in FIG. 3B eliminates the delays when processing the first few
columns and reduces memory requirements. However, the schedule in FIG. 3B can be
more complicated to implement.

FIG. 4 illustrates diagonal scheduling. As shown, during the row-major order,
each row receives a decreasing number of blocks that is defined by the slope of a
diagonal. In this example, the system selects 7: by computing the number of blocks
needed to fill the upper-left diagonal, and the system can select M = 7.

The diagonal schedule has symmetry between the row-major and column-major
phases, but has disadvantages of both schedules mentioned above.

FIG. 5 is a schematic that illustrates an example of special purpose logic circuitry,
in particular, an ASIC 500. The ASIC 500 includes multiple synchronous processors that
for brevity will be referred to as tiles. For example, the ASIC 500 includes tiles 502, in
which one or more of the tiles 502 includes special purpose circuitry configured to

perform synchronous computations, such as e.g., multiplication and addition operations.

9

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

In particular, each tile 502 can include a computational array of cells, in which each cell
is configured to perform mathematical operations (see, e.g., the exemplary tile 200 shown
in FIG. 6, and described herein). In some implementations, the tiles 502 are arranged in a
grid pattern, with tiles 502 arranged along a first dimension 501 (e.g., rows) and along a
second dimension 503 (e.g., columns). For instance, in the example shown in FIG. 5, the
tiles 502 are divided into four different sections (510a, 510b, 510c, 510d), each section
containing 288 tiles arranged in a grid of 18 tiles down by 16 tiles across. In some
implementations, the ASIC 500 shown in FIG. 5 may be understood as including a single
systolic array of cells subdivided/arranged into separate tiles, in which each tile includes a
subset/sub-array of cells, local memory and bus lines (see, e.g., FIG. 6).

The ASIC 500 also includes a vector processing unit 504. The vector processing
unit 504 includes circuitry configured to receive outputs from the tiles 502 and compute
vector computation output values based on the outputs received from the tiles 502. For
example, in some implementations, the vector processing unit 504 includes circuitry (e.g.,
multiply circuitry, adder circuitry, shifters, and/or memory) configured to perform
accumulation operations on the outputs received from the tiles 502. Alternatively, or in
addition, the vector processing unit 504 includes circuitry configured to apply a non-
linear function to the outputs of the tiles 502. Alternatively, or in addition, the vector
processing unit 504 generates normalized values, pooled values, or both. The vector
computation outputs of the vector processing units can be stored in one or more tiles. For
example, the vector computation outputs can be stored in memory uniquely associated
with a tile 502. Alternatively, or in addition, the vector computation outputs of the vector
processing unit 504 can be transferred to a circuit external to the ASIC 500, e.g., as an
output of a computation. In some implementations, the vector processing unit 504 is
segmented, such that each segment includes circuitry configured to receive outputs from a
corresponding collection of tiles 502 and computes vector computation outputs based on
the received outputs. For instance, in the example shown in FIG. 5, the vector processing
unit 504 includes two rows spanning along the first dimension 501, each of the rows
including 32 segments 506 arranged in 32 columns. Each segment 506 includes circuitry
(e.g., multiply circuitry, adder circuitry, shifters, and/or memory) configured to perform a
vector computation, as explained herein, based on outputs (e.g., an accumulated sum)
from a corresponding column of tiles 502. The vector processing unit 504 can be
positioned in the middle of the grid of tiles 502 as shown in FIG. 5. Other positional

arrangements of the vector processing unit 504 are also possible.

10

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

The ASIC 500 also includes a communication interface 508 (e.g., interfaces 508a,
508b). The communication interface 508 includes one or more sets of
serializer/deserializer (SerDes) interfaces and a general purpose input/output (GPIO)
interface. The SerDes interface is configured to receive instructions (e.g., instructions for
operating controllable bus lines described below) and/or input data for the ASIC 500 and
to output data from the ASIC 500 to an external circuit. For example, the SerDes interface
can be configured to transmit instructions and/or input data at a rate of 32 Gbps, 56 Gbps,
or any suitable data rate over the set of SerDes interfaces included within the
communications interface 508. The GPIO interface is configured to provide an interface
for debugging and/or bootstrapping. For example, the ASIC 500 may run a boot program
when it is turned on. If the program fails, an administrator may use the GPIO interface to
debug the source of the failure.

The ASIC 500 further includes multiple controllable bus lines (see, e.g., FIG. 6)
configured to convey data among the communications interface 508, the vector
processing unit 504, and the multiple tiles 502. Controllable bus lines include, e.g., wires
that extend along both the first dimension 501 (e.g., rows) of the grid and the second
dimension 503 (e.g., columns) of the grid. A first subset of the controllable bus lines
extending along the first dimension 501 can be configured to transfer data in a first
direction (e.g., to the right of FIG. 5). A second subset of the controllable bus lines
extending along the first dimension 501 can be configured to transfer data in a second
direction (e.g., to the left of FIG. 5). A first subset of the controllable bus lines extending
along the second dimension 503 can be configured to transfer data in a third direction
(e.g. to the top of FIG. 5). A second subset of the controllable bus lines extending along
the second dimension 503 can be configured to transfer data in a fourth direction (e.g., to
the bottom of FIG. 5).

Each controllable bus line includes multiple conveyer elements, such as flip-flops,
that are used to convey data along the lines in accordance with a clock signal.
Transferring data over a controllable bus line can include shifting, at each clock cycle,
data from a first conveyer element of the controllable bus line to a second adjacent
conveyer element of the controllable bus line. In some implementations, data is conveyed
over the controllable bus lines upon the rising or falling edge of a clock cycle. For
example, data present, at a first clock cycle, on a first conveyer element (e.g., a flip-flop)
of a controllable bus line can be transferred to a second conveyer element (e.g., a flip-

flop) of the controllable bus line at a second clock cycle. In some implementations, the

11

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

conveyer elements can be periodically spaced apart at a fixed distance from one another.
For example, in some cases, each controllable bus line includes multiple conveyer
elements, with each conveyer element positioned within or proximate to a corresponding
tile 502.

Each controllable bus line also includes multiple multiplexers and/or
demultiplexers. A multiplexer/demultiplexer of a controllable bus line is configured to
transfer data between the bus line and a component of the ASIC chip 500. For example, a
multiplexer/demultiplexer of a controllable bus line can be configured to transfer data to
and/or from a tile 502, to and/or from the vector processing unit 504, or to and/or from
the communication interface 508. Transferring data among tiles 502, the vector
processing unit 504, and the communication interface can include sending control signals
to the multiplexers based on the desired data transfer to take place. The control signals
can be stored in registers coupled directly to the multiplexer and/or demultiplexers. The
value of the control signal then may determine, e.g., what data is transferred from a
source (e.g., memory within a tile 502 or a vector processing unit 504) to a controllable
bus line or, alternatively, what data is transferred from the controllable bus line to a sink
(e.g., memory within a tile 502 or a vector processing unit 504).

The controllable bus lines are configured to be controlled on a local level, such
that each tile, vector processing unit, and/or communication interface includes its own set
of control elements for manipulating the controllable bus lines passing through that tile,
vector processing unit, and/or communication interface. For example, each tile, 1D vector
processing unit, and communication interface may include a corresponding set of
conveyer elements, multiplexers and/or demultiplexers for controlling data transfer to and
from that tile, 1D vector processing unit, and communication interface.

To minimize latency associated with operations of the ASIC chip 500, the tiles
502 and vector processing unit 504 can be positioned to reduce the distance data travels
among the various components. In a particular implementation, both the tiles 502 and
communication interface 508 can be segregated into multiple sections, with both the tile
sections and the communication interface sections being arranged such that the maximum
distance data travels between a tile and a communication interface is reduced. For
instance, in some implementations, a first group of tiles 502 can be arranged in a first
section on a first side of the communications interface 508, and a second group of tiles
502 can be arranged in a second section on a second side of the communication interface.

As a result, the distance from a communication interface to the furthest tile may be cut in

12

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

half compared to a configuration in which all of the tiles 502 are arranged in a single
section on one side of the communication interface.

Alternatively, the tiles may be arranged in a different number of sections, such as
four sections. For instance, in the example shown in FIG. 5, the multiple tiles 502 of
ASIC 500 are arranged in multiple sections 510 (510a, 510b, 510¢, 510d). Each section
510 includes a similar number of tiles 502 arranged in a grid pattern (e.g., each section
510 can include 256 tiles arranged in 16 rows and 16 columns). The communication
interface 508 also is divided into multiple sections: a first communication interface 508a
and a second communication interface 508b arranged on either side of the sections 510 of
tiles 502. The first communication interface 508a can be coupled, through controllable
bus lines, to the two tile sections 510a, 510c¢ on the left side of the ASIC chip 500. The
second communication interface 508b can be coupled, through controllable bus lines, to
the two tile sections 510b, 510d on the right side of the ASIC chip 500. As a result, the
maximum distance data travels (and thus the latency associated with the data propagation)
to and/or from a communication interface 508 can be halved compared to an arrangement
in which only a single communication interface is available. Other coupling arrangements
of the tiles 502 and communication interfaces 508 are also possible to reduce data
latency. The coupling arrangement of the tiles 502 and communication interface 508 can
be programmed by providing control signals to the conveyer elements and multiplexers of
the controllable bus lines.

In some implementations, one or more tiles 502 are configured to initiate reading
and writing operations with respect to controllable bus lines and/or other tiles within the
ASIC 500 (referred to herein as “control tiles™). The remaining tiles within the ASIC 500
can be configured to perform computations based on the input data (e.g., to compute layer
inferences). In some implementations, the control tiles include the same components and
configuration as the other tiles within the ASIC 500. The control tiles can be added as an
extra tile or tiles, an extra row or rows, or an extra column or columns of the ASIC 500.
For example, for a symmetric grid of tiles 502, in which each tile 502 is configured to
perform a computation on input data, one or more additional rows of control tiles can be
included to handle reading and writing operations for the tiles 502 performing
computations on the input data. For instance, each section 510 includes 18 rows of tiles,
where the last two rows of tiles may include control tiles. Providing separate control tiles
increases, in some implementations, the amount of memory available in the other tiles

used to perform the computations. Separate tiles dedicated to providing control as

13

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

described herein are not necessary, however, and in some cases, no separate control tiles
are provided. Rather, each tile may store in its local memory instructions for initiating
reading and writing operations for that tile.

Furthermore, while each section 510 shown in FIG. 5 includes tiles arranged in 18
rows by 16 columns, the number of tiles 502 and their arrangement in a section can be
different. For example, in some cases, the sections 510 may include an equal number of
rows and columns.

Furthermore, although shown in FIG. 5 as divided into four sections, the tiles 502
can be divided into other different groupings. For example, in some implementations, the
tiles 502 are grouped into two different sections, such as a first section above the vector
processing unit 504 (e.g., nearer the top of the page shown in FIG. 5) and a second
section below the vector processing unit 504 (e.g., nearer to the bottom of the page shown
in FIG. 5). In such an arrangement, each section may contain, e.g., 576 tiles arranged in a
grid of 18 tiles down (along direction 503) by 32 tiles across (along direction 501).
Sections may contain other total numbers of tiles and may be arranged in different sized
arrays. In some cases, the divisions between sections are delineated by hardware features
of the ASIC 500. For example, as shown in FIG. 5, sections 510a, 510b may be separated
from sections 510c, 510d by the vector processing unit 504.

Latency also may be reduced by centrally locating the vector processing unit 504
relative to the tile sections 510. In some implementations, a first half of the tiles 502 are
arranged on a first side of the vector processing unit 504, and a second half of the tiles
502 are arranged on a second side of the vector processing unit 504.

For example, in the ASIC chip 500 shown in FIG. 5, the vector processing unit
504 includes two sections (e.g., two rows), each of which includes a number of segments
506 that matches the number of columns of tiles 502. Each segment 506 can be positioned
and configured to receive an output, such as an accumulated sum, from a corresponding
column of tiles 502 within a section 510 of tiles. In the example shown in FIG. 5, the tile
sections 510a, 510b positioned on a first side of the vector processing unit 504 (e.g.,
above the vector processing unit 504) can be coupled, through controllable bus lines, to
the top row of segments 506. The tile sections 510c, 510d positioned on a second side of
the vector processing unit 504 (e.g., below the vector processing unit 504) can be
coupled, through controllable bus lines, to the bottom row of segments 506. Furthermore,
each tile 502 within the first half above the processing unit 504 can be positioned at a

same distance from the vector processing unit 504 as a respective tile 502 within the

14

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

second half below the processing unit 504, such that there is no difference in overall
latency between the two halves. For instance, the tiles 502 in row i in the first section
510a (where the variable i corresponds to the row position) can be positioned at the same
distance away from vector processing unit 504 as the tiles 502 in row m-1-i in a second
section of tiles (e.g., the section 510¢) (where m represents the total number of rows in
each section, and assuming rows are incremented along the same direction in both
sections).

Configuring the tile sections 510 in this manner can halve the distance data travels
(and thus the latency associated with the data propagation) to and/or from the vector
processing unit 504 compared to an arrangement in which the vector processing unit 504
is positioned at a far end (e.g., the bottom) of all the tiles 502. For instance, the latency
associated with receiving an accumulated sum through a column of tiles 502 from section
510a can be half the latency associated with receiving an accumulated sum through a
column of tiles 502 from sections 510a and 510c. The coupling arrangements of the tiles
502 and the vector processing unit 504 can be programmed by providing control signals
to the conveyer elements and multiplexers of the controllable bus lines.

During operation of the ASIC chip 500, activation inputs may be shifted between
tiles. For example, activation inputs can be shifted along the first dimension 501. In
addition, outputs from computations performed by the tiles 502 (e.g., outputs of
computations performed by computational array within the tile 502) can be shifted along
the second dimension 503 between tiles.

In some implementations, the controllable bus lines can be physically hardwired
to cause data to skip tiles 502 to reduce latency associated with the operations of the
ASIC chip 500. For example, an output of a computation performed by a first tile 502 can
be shifted along the second dimension 503 of the grid to a second tile 502 positioned at
least one tile away from the first tile 502, thus skipping the tile in between. In another
example, an activation input from a first tile 502 can be shifted along the first dimension
501 of the grid to a second tile 502 positioned at least one tile away from the first tile 502,
thus skipping the tile in between. By skipping at least one tile when shifting the activation
input or the output data, the overall data path length can be reduced, such that the data is
transferred faster (e.g., there is no need to utilize a clock cycle to store data at the skipped
tile), and latency is reduced.

In an example implementation, each tile 502 within each column of section 510a

can be configured, through the controllable bus lines, to pass output data along the second

15

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

dimension 503 toward the vector processing unit 504. The tiles 502 within each column
can be further configured to pass the data toward the vector processing unit 504 by
skipping the next adjacent tile (e.g., through physical hardwiring of the controllable bus
lines between tiles). That is, a tile 502 at a position (i, j) = (0, 0) in the first section 510a
(where the variable i corresponds to the row position and the variable j corresponds to the
column position) can be hardwired to pass output data to a tile 502 at a position (G, /) = (2,
0); similarly, the tile 502 at a position (i, j) = (2, 0) in the first section 510a can be
hardwired to pass output data to a tile 502 at a position (i, j) = (4, 0), and so forth. The last
tile that is not skipped (e.g., the tile 502 located at position (i, /) = (16, 0)) passes output
data to the vector processing unit 504. For a section 510 having 18 rows of tiles, such as
the example shown in FIG. 5, the tile skipping ensure that all tiles within a section 510
are at most 9 “tile hops™ away from the vector processing unit 504, thus improving the
ASIC chip 500 performance by reducing the data path length and resulting data latency
by half.

In another example implementation, each tile 502 within each row of sections
510a, 510c¢ and within each row of sections 510b, 510d can be configured, through the
controllable bus lines, to pass activation inputs along the first dimension 501. For
example, some tiles within the sections 510a, 510b, 510c, 510d can be configured to pass
activation inputs toward a center of the grid 500 or toward the communication interfaces
508. The tiles 502 within each row can be further configured skip adjacent tiles, e.g., by
hardwiring the controllable bus lines between tiles. For example, a tile 502 at a position
(¢,) = (0, 0) in the first section 510a (where the variable i corresponds to the row position
and the variable j corresponds to the column position) can be configured to pass
activation inputs to a tile 502 at a position (i, j) = (0, 2); similarly, a tile 502 at a position
(i,) = (0, 2) in the first section 510a can be configured to pass activation inputs to a tile
502 at a position (i, /) = (0, 4), and so forth. In some cases, the last tile that is not skipped
(e.g., the tile 502 located at position (7, j) = (0, 14)) does not pass the activation input on
to another tile.

Similarly, tiles that are skipped may pass activation inputs in the opposite
direction. For example, a tile 502 at a position (7, /) = (0, 15) in the first section 510a
(where the variable i corresponds to the row position and the variable j corresponds to the
column position) can be configured to activation inputs to a tile 502 at a position (i, j) =
(0, 13); similarly, atile 502 at a position (7, /) = (0, 13) in the first section 510a can be

configured to pass activation inputs to a tile 502 at a position (i, j) = (0, 11), and so forth.

16

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

In some cases, the last tile that is not skipped (e.g., the tile 502 located at position (i, j) =
(0, 1)) does not pass the activation input on to another tile. By skipping tiles, it is
possible, in some implementations, to improve the ASIC chip 500 performance by
reducing the data path length and resulting data latency by half.

As explained herein, in some implementations, one or more of the tiles 502 are
dedicated to storing control information. That is, the tiles 502 dedicated to storing control
information do not take part in performing calculations on input data such as weight
inputs and activation inputs. Control information can include, e.g., control data for
configuring the controllable bus lines during operation of the ASIC chip 500 so that data
can be moved around the ASIC chip 500. The control data can be provided to the
controllable bus lines in the form of control signals for controlling the conveyer elements
and multiplexers of the controllable bus lines. The control data specifies whether
particular conveyer elements of the controllable bus lines pass data to a next conveyer
element of the controllable bus line so that data is transferred among the tiles according to
a predetermined schedule. The control data additionally specifies whether data is
transferred from or to a bus line. For example, the control data can include control signals
that direct a multiplexer to transfer data from a bus line to memory and/or other circuitry
within a tile. In another example, the control data can include control signals that direct a
multiplexer to transfer data from the memory and/or circuitry within the tile to the bus
line. In another example, the control data can include control signals that direct a
multiplexer to transfer data between a bus line and the communications interface 508
and/or between the bus line and the vector processing unit 504. Alternatively, as disclosed
herein, dedicated control tiles are not used. Rather, in such cases, the local memory of
each tile stores the control information for that particular tile.

FIG. 6 illustrates example of a tile 600 for use in the ASIC chip 500. Each tile
600 includes local memory 602 and a computational array 604 coupled to the memory
602. The local memory 602 includes physical memory positioned proximate to the
computational array 604. The computational array 604 includes multiple cells 606. Each
cell 606 of the computational array 604 includes circuitry configured to perform a
computation (e.g., a multiply and accumulate operation) based on data inputs, such as
activation inputs and weight inputs, to the cell 606. Each cell can perform the
computation (e.g., the multiply and accumulation operation) on a cycle of the clock
signal. The computational array 604 can have more rows than columns, more columns

than rows, or an equal number of columns and rows. For instance, in the example shown

17

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

in FIG. 6, the computational array 604 includes 64 cells arranged in 8 rows and 8
columns. Other computational array sizes are also possible, such as computational arrays
having 16 cells, 32 cells, 128 cells, or 256 cells, among others. Each tile can include the
same number of cells and/or the same size computational array. The total number of
operations that can be performed in parallel for the ASIC chip then depends on the total
number of tiles having the same size computational array within the chip. For example,
for the ASIC chip 500 shown in FIG. 5, which contains approximately 1150 tiles, this
means that approximately 72,000 computations can be performed in parallel every cycle.
Examples of clock speeds that may be used include, but are not limited to, 225 MHz, 500
MHz, 750 MHz, 1 GHz, 1.25 GHz, 1.5 GHz, 1.75 GHz, or 2 GHz. The computational
arrays 604 of each individual tile is a subset of the larger systolic array of tiles, as
illustrated in FIG. 1.

The memory 602 contained in the tile 600 can include, e.g., random-access
memory (RAM), such as SRAM. Each memory 602 can be configured to store (1/2)™ of
the total memory associated with 7 tiles 502 of the ASIC chip illustrated in FIG. 5. The
memory 602 can provided as a single chip or in multiple chips. For example, memory 602
shown in FIG. 6 is provided as four single-port SRAMs, each of which is coupled to the
computational array 604. Alternatively, the memory 602 can be provided as two single-
port SRAMs or eight single-port SRAMS, among other configurations. The joint capacity
of the memory can be, but is not limited to, e.g., 16 kB, 32 kB, 64kB, or 128 kB, after
error correction coding. By providing the physical memory 602 locally to the
computational arrays, the density of wiring for the ASIC 500 can be, in some
implementations, vastly reduced. In an alternate configuration in which memory is
centralized within the ASIC 500, as opposed to provided locally as described herein, may
require a wire for each bit of memory bandwidth. The total number of wires needed to
cover each tile of the ASIC 500 would far exceed the available space within the ASIC
100. In contrast, with dedicated memory provided for each tile, the total number of
required to span the area of the ASIC 500 can be substantially reduced.

The tile 600 also includes controllable bus lines. The controllable bus lines may be
categorized into multiple different groups. For example, the controllable bus lines can
include a first group of general purpose controllable bus lines 610 configured to transfer
data among tiles in each cardinal direction. That is, the first group of controllable bus
lines 610 can include: bus lines 610a configured to transfer data toward a first direction

along the first dimension 501 of the grid of tiles (referred to as “East” in FIG. 6); bus

18

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

lines 610b configured to transfer data toward a second direction along the first dimension
101 of the grid of tiles (referred to as “West” in FIG. 6), in which the second direction is
opposite to that of the first direction; bus lines 610¢ configured to transfer data toward a
third direction along the second dimension 103 of the grid of tiles (referred to as “North™
in FIG. 6); and bus lines 610d configured to transfer data toward a fourth direction along
the second dimension 103 of the grid of tiles (referred to as “South™ in FIG. 6), in which
the fourth direction is opposite to the third direction. General purpose bus lines 610 can
be configured to carry control data, activation input data, data from and/or to the
communications interface, data from and/or to the vector processing unit, and data to be
stored and/or used by the tile 600 (e.g., weight inputs). The tile 600 may include one or
more control elements 621 (e.g., flip-flops and multiplexers) for controlling the
controllable bus lines, and thus routing data to and/or from the tile 600 and/or from
memory 602.

The controllable bus lines also can include a second group of controllable bus
lines, referred to herein as computational array partial sum bus lines 620. The
computational array partial sum bus lines 620 can be configured to carry data output from
computations performed by the computational array 604. For example, the bus lines 620
can be configured to carry partial sum data obtained from the rows in the computational
array 604, as shown in FIG. 6. In such case, the number of bus lines 620 would match the
number of rows in the array 604. For instance, for a 8x8 computational array, there would
be 8 partial sum bus lines 620, each of which is coupled to the output of a corresponding
row in the computational array 604. The computational array output bus lines 620 can be
further configured to couple to another tile within the ASIC chip, e.g., as inputs to a
computational array of another tile within the ASIC chip. For example, the array partial
sum bus lines 620 of tile 600 can be configured to receive inputs (e.g., partial sums 620a)
of a computational array of a second tile that is located at least one tile away from the tile
600. The outputs of computational array 604 then are added to the partial sum lines 620 to
produce new partial sums 620b, which may be output from the tile 600. The partial sums
620b then may be passed to another tile or, alternatively, to the vector processing unit.
For example, each bus line 620 may be coupled to a corresponding segment (such as
segments 506 in FIG. 5) of the vector processing unit.

As explained with respect to FIG. 5, the controllable bus lines can include
circuitry such as conveyer elements (e.g., flip-flops) configured to allow data to be

conveyed along the bus lines. In some implementations, each controllable bus line

19

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

includes, for each tile, a corresponding conveyer element. As further explained with
respect to FIG. 5, the controllable bus lines can include circuitry such as multiplexers
configured to allow data to be transferred among the different tiles, the vector processing
unit and the communications interface of the ASIC chip. The multiplexers can be located
wherever there is a source or sink for data. For example, in some implementations, as
shown in FIG. 6, control circuitry 621, such as multiplexers, can be located at crossings
of controllable bus line (e.g., at the crossing of general purpose bus lines 610a and 610d,
at the crossing of general purpose bus lines 610a and 610c, at the crossing of general
purpose bus lines 610b and 610d, and/or at the crossing of general purpose bus lines 610b
and 610c¢). The multiplexers at the bus line crossings can be configured to transfer data
between the bus lines at the crossings. Accordingly, by proper operation of the
multiplexers, it can be possible to change the direction in which data travels over the
controllable bus lines. For example, data traveling along the first dimension 101 on
general purpose bus lines 610a can be transferred to general purpose bus lines 610d, such
that the data instead travels along the second dimension 103. In some implementations,
multiplexers can be located adjacent to the memory 602 of the tile 600 so that data can be
transferred to and/or from memory 602.

Embodiments of the subject matter and the functional operations described in this
specification can be implemented in digital electronic circuitry, in tangibly-embodied
computer software or firmware, in computer hardware, including the structures disclosed
in this specification and their structural equivalents, or in combinations of one or more of
them. Embodiments of the subject matter described in this specification can be
implemented as one or more computer programs, i.e., one or more modules of computer
program instructions encoded on a tangible non-transitory storage medium for execution
by, or to control the operation of, data processing apparatus. The computer storage
medium can be a machine-readable storage device, a machine-readable storage substrate,
a random or serial access memory device, or a combination of one or more of them.
Alternatively or in addition, the program instructions can be encoded on an artificially-
generated propagated signal, e.g., a machine-generated electrical, optical, or
electromagnetic signal, that is generated to encode information for transmission to
suitable receiver apparatus for execution by a data processing apparatus.

The term “data processing apparatus” refers to data processing hardware and
encompasses all kinds of apparatus, devices, and machines for processing data, including

by way of example a programmable processor, a computer, or multiple processors or

20

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

computers. The apparatus can also be, or further include, special purpose logic circuitry,
e.g., an FPGA (field programmable gate array) or an ASIC (application-specific
integrated circuit). The apparatus can optionally include, in addition to hardware, code
that creates an execution environment for computer programs, e.g., code that constitutes
processor firmware, a protocol stack, a database management system, an operating
system, or a combination of one or more of them.

A computer program which may also be referred to or described as a program,
software, a software application, an app, a module, a software module, a script, or code)
can be written in any form of programming language, including compiled or interpreted
languages, or declarative or procedural languages, and it can be deployed in any form,
including as a stand-alone program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A program may, but need not, correspond
to a file in a file system. A program can be stored in a portion of a file that holds other
programs or data, e.g., one or more scripts stored in a markup language document, in a
single file dedicated to the program in question, or in multiple coordinated files, e.g., files
that store one or more modules, sub-programs, or portions of code. A computer program
can be deployed to be executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and interconnected by a data
communication network.

For a system of one or more computers to be configured to perform particular
operations or actions means that the system has installed on it software, firmware,
hardware, or a combination of them that in operation cause the system to perform the
operations or actions. For one or more computer programs to be configured to perform
particular operations or actions means that the one or more programs include instructions
that, when executed by data processing apparatus, cause the apparatus to perform the
operations or actions.

As used in this specification, an “engine,” or “software engine,” refers to a
software implemented input/output system that provides an output that is different from
the input. An engine can be an encoded block of functionality, such as a library, a
platform, a software development kit (“SDK”), or an object. Each engine can be
implemented on any appropriate type of computing device, e.g., servers, mobile phones,
tablet computers, notebook computers, music players, e-book readers, laptop or desktop
computers, PDAs, smart phones, or other stationary or portable devices, that includes one

or more processors and computer readable media. Additionally, two or more of the

21

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

engines may be implemented on the same computing device, or on different computing
devices.

The processes and logic flows described in this specification can be performed by
one or more programmable computers executing one or more computer programs to
perform functions by operating on input data and generating output. The processes and
logic flows can also be performed by special purpose logic circuitry, e.g., an FPGA or an
ASIC, or by a combination of special purpose logic circuitry and one or more
programmed computers.

Computers suitable for the execution of a computer program can be based on
general or special purpose microprocessors or both, or any other kind of central
processing unit. Generally, a central processing unit will receive instructions and data
from a read-only memory or a random access memory or both. The essential elements of
a computer are a central processing unit for performing or executing instructions and one
or more memory devices for storing instructions and data. The central processing unit
and the memory can be supplemented by, or incorporated in, special purpose logic
circuitry. Generally, a computer will also include, or be operatively coupled to receive
data from or transfer data to, or both, one or more mass storage devices for storing data,
e.g., magnetic, magneto-optical disks, or optical disks. However, a computer need not
have such devices. Moreover, a computer can be embedded in another device, e.g., a
mobile telephone, a personal digital assistant (PDA), a mobile audio or video player, a
game console, a Global Positioning System (GPS) receiver, or a portable storage device,
e.g., auniversal serial bus (USB) flash drive, to name just a few.

Computer-readable media suitable for storing computer program instructions and
data include all forms of non-volatile memory, media and memory devices, including by
way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash
memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks.

To provide for interaction with a user, embodiments of the subject matter
described in this specification can be implemented on a computer having a display device,
e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying
information to the user and a keyboard and pointing device, e.g, a mouse, trackball, or a
presence sensitive display or other surface by which the user can provide input to the
computer. Other kinds of devices can be used to provide for interaction with a user as

well; for example, feedback provided to the user can be any form of sensory feedback,

22

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can
be received in any form, including acoustic, speech, or tactile input. In addition, a
computer can interact with a user by sending documents to and receiving documents from
a device that is used by the user; for example, by sending web pages to a web browser on
a user’s device in response to requests received from the web browser. Also, a computer
can interact with a user by sending text messages or other forms of message to a personal
device, e.g., a smartphone, running a messaging application, and receiving responsive
messages from the user in return.

Embodiments of the subject matter described in this specification can be
implemented in a computing system that includes a back-end component, e.g., as a data
server, or that includes a middleware component, e.g., an application server, or that
includes a front-end component, e.g., a client computer having a graphical user interface,
a web browser, or an app through which a user can interact with an implementation of the
subject matter described in this specification, or any combination of one or more such
back-end, middleware, or front-end components. The components of the system can be
interconnected by any form or medium of digital data communication, e.g., a
communication network. Examples of communication networks include a local area
network (LAN) and a wide area network (WAN), e.g., the Intemet.

The computing system can include clients and servers. A client and server are
generally remote from each other and typically interact through a communication
network. The relationship of client and server arises by virtue of computer programs
running on the respective computers and having a client-server relationship to each other.
In some embodiments, a server transmits data, e.g., an HTML page, to a user device, e.g.,
for purposes of displaying data to and receiving user input from a user interacting with
the device, which acts as a client. Data generated at the user device, e.g., a result of the
user interaction, can be received at the server from the device.

In addition to the embodiments described above, the following embodiments are
also innovative:

Embodiment 1 is a method comprising:
receiving a request to generate a schedule for a first layer of a program to be executed by
an accelerator configured to perform matrix operations at least partially in parallel,
wherein the program defines a plurality of layers including the first layer, each layer of
the program defining matrix operations to be performed using a respective matrix of

values;

23

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

assigning a plurality of initial blocks of the schedule according to an initial
assignment direction, wherein the initial assignment direction specifies a first dimension
of a first matrix for the first layer along which the plurality of initial blocks are to be
performed;

selecting a particular cycle to process a last block of a matrix needed before a
subsequent layer can begin processing;

switching the assignment direction so that blocks processed after the selected
particular cycle are processed along a different second dimension of the first matrix; and

assigning all remaining unassigned blocks according to the switched assignment
direction.

Embodiment 2 is the method of embodiment 1, wherein selecting the particular cycle
comprises:

computing the propagation latency of a previous layer; and
assigning the particular cycle based on the propagation latency of the previous
layer.

Embodiment 3 is the method of any one of embodiments 1-2, wherein selecting the
particular cycle comprises:

computing the propagation latency of a previous layer;

computing a number of idle cycles of the previous layer; and

selecting a maximum between the propagation latency of the previous layer and
the number of idle cycles of the previous layer.

Embodiment 4 is the method of any one of embodiments 1-3, wherein the schedule
assigns the plurality of initial blocks in row-major order, and wherein assigning all
remaining unassigned blocks assigns blocks in column-major order.

Embodiment 5 is the method of embodiment 4, further comprising selecting a cycle at
which to switch the assignment direction including selecting a cycle at which a number of
unscheduled rows is equal to a difference between a current cycle and the selected
particular cycle.

Embodiment 6 is the method of embodiment 4, wherein the schedule assigns the
plurality of initial blocks along only partial rows of the matrix.

Embodiment 7 is the method of embodiment 6, wherein the schedule assigns a
plurality of initial partial rows and a plurality of subsequent partial rows, wherein the

subsequent partial rows are smaller than the initial partial rows.

24

10

15

20

25

30

WO 2021/035079 PCT/US2020/047254

Embodiment 8 is the method of embodiment 7, wherein the initial partial rows have a
length given by ceiling(N), and the subsequent partial rows have a length given by
floor(N), where N is given by the selected cycle divided by the block height of a matrix
on a previous layer.

Embodiment 9 is the method of embodiment 4, wherein the schedule assigns the initial
blocks in the row-major order to fill a space defined by a diagonal in the matrix.

Embodiment 10 is the method of embodiment 9, wherein switching the assignment
direction occurs at the particular selected cycle.

Embodiment 11 is the method of any one of embodiments 1-10, wherein the
accelerator has multiple tiles and each layer is to be computed by a respective tile of the
multiple tiles.

Embodiment 12 is the method of any one of embodiments 1-10, wherein the
accelerator has a single tile to perform operations of both layers.

Embodiment 13 is a system comprising: one or more computers and one or more
storage devices storing instructions that are operable, when executed by the one or more
computers, to cause the one or more computers to perform the method of any one of
embodiments 1 to 64.

Embodiment 14 is a computer storage medium encoded with a computer program, the
program comprising instructions that are operable, when executed by data processing
apparatus, to cause the data processing apparatus to perform the method of any one of
embodiments 1 to 64.

While this specification contains many specific implementation details, these
should not be construed as limitations on the scope of any invention or on the scope of
what may be claimed, but rather as descriptions of features that may be specific to
particular embodiments of particular inventions. Certain features that are described in
this specification in the context of separate embodiments can also be implemented in
combination in a single embodiment. Conversely, various features that are described in
the context of a single embodiment can also be implemented in multiple embodiments
separately or in any suitable subcombination. Moreover, although features may be
described above as acting in certain combinations and even initially be claimed as such,
one or more features from a claimed combination can in some cases be excised from the
combination, and the claimed combination may be directed to a subcombination or

variation of a subcombination.

25

10

15

WO 2021/035079 PCT/US2020/047254

Similarly, while operations are depicted in the drawings in a particular order, this
should not be understood as requiring that such operations be performed in the particular
order shown or in sequential order, or that all illustrated operations be performed, to
achieve desirable results. In certain circumstances, multitasking and parallel processing
may be advantageous. Moreover, the separation of various system modules and
components in the embodiments described above should not be understood as requiring
such separation in all embodiments, and it should be understood that the described
program components and systems can generally be integrated together in a single
software product or packaged into multiple software products.

Particular embodiments of the subject matter have been described. Other
embodiments are within the scope of the following claims. For example, the actions
recited in the claims can be performed in a different order and still achieve desirable
results. As one example, the processes depicted in the accompanying figures do not
necessarily require the particular order shown, or sequential order, to achieve desirable

results. In certain some cases, multitasking and parallel processing may be advantageous.

26

WO 2021/035079 PCT/US2020/047254

WHATIS CLAIMED IS:

1. A computer-implemented method comprising:

receiving a request to generate a schedule for a first layer of a program to be
executed by an accelerator configured to perform matrix operations at least partially in
parallel, wherein the program defines a plurality of layers including the first layer, each
layer of the program defining matrix operations to be performed using a respective matrix
of values;

assigning a plurality of initial blocks of the schedule according to an initial
assignment direction, wherein the initial assignment direction specifies a first dimension
of a first matrix for the first layer along which the plurality of initial blocks are to be
performed;

selecting a particular cycle to process a last block of a matrix needed before a
subsequent layer can begin processing;

switching the assignment direction so that blocks processed after the selected
particular cycle are processed along a different second dimension of the first matrix; and

assigning all remaining unassigned blocks according to the switched assignment

direction.

2. The method of claim 1, wherein selecting the particular cycle comprises:
computing the propagation latency of a previous layer; and
assigning the particular cycle based on the propagation latency of the previous

layer.

3. The method of claim 1, wherein selecting the particular cycle comprises:
computing the propagation latency of a previous layer;
computing a number of idle cycles of the previous layer; and
selecting a maximum between the propagation latency of the previous layer and

the number of idle cycles of the previous layer.
4. The method of claim 1, wherein the schedule assigns the plurality of initial blocks

in row-major order, and wherein assigning all remaining unassigned blocks assigns

blocks in column-major order.

27

WO 2021/035079 PCT/US2020/047254

5. The method of claim 4, further comprising selecting a cycle at which to switch the
assignment direction including selecting a cycle at which a number of unscheduled rows

is equal to a difference between a current cycle and the selected particular cycle.

6. The method of claim 4, wherein the schedule assigns the plurality of initial blocks

along only partial rows of the matrix.

7. The method of claim 6, wherein the schedule assigns a plurality of initial partial
rows and a plurality of subsequent partial rows, wherein the subsequent partial rows are

smaller than the initial partial rows.
8. The method of claim 7, wherein the initial partial rows have a length given by
ceiling(N), and the subsequent partial rows have a length given by floor(N), where N is

given by the selected cycle divided by the block height of a matrix on a previous layer.

9. The method of claim 4, wherein the schedule assigns the initial blocks in the row-

major order to fill a space defined by a diagonal in the matrix.

10. The method of claim 9, wherein switching the assignment direction occurs at the

particular selected cycle.

11. The method of claim 1, wherein the accelerator has multiple tiles and each layer is

to be computed by a respective tile of the multiple tiles.

12. The method of claim 1, wherein the accelerator has a single tile to perform

operations of both layers.

28

1/7

WO 2021/035079 PCT/US2020/047254
_ First Layer _
3 102 3
0 1 0 2
9 9
Al > M1 Al M1
= 110 > 110
2 3 1 3
— J — J
[0+2 | 173 | Yé [o+1 | 273 | Yé
R D Propagation _ _ _ _(__ ____ _|{_______________
Latency:
‘ _ \ 2 cycles ‘ _
N ~
& 5 6 & 4 5
|| > M2 || M2
o 120 o 120
>+ 7 8 > {'\] 6 7
||) [|
V2 V2
117 @ 117 @
Second
| V3 119 | Layer | V3 119 |
104
First Schedule = 8 cycles Second Schedule = 7 cycles
108
100 FIG. 1A 10

217

WO 2021/035079 PCT/US2020/047254
3\ First Layer \
ojo0ojJo|oO 102 0jJ]0]J]0O]O
ojofo]o 0|01 1
M1 M1
YENERE }m ofof1]n >m
1 1 1 1 011 1 1
J J
3\ 3\
2121212 1 11212
2121212 21212])2
> M2 > M2
2131313 121 212123 121
313(13]3 3131313
J J
Second
Layer
First Schedule Utilization on 104

Second Schedule Utilization
. 0,
Cyc'e;ﬁ 78% on Cycle 1= 100%

- FIG. 1B 109

3/7
WO 2021/035079 PCT/US2020/047254

Receive a request to generate a schedule for
a first layer having a first matrix
210

\ 4

Assign a plurality of initial blocks of the
schedule according to an initial assignment
direction in a first dimension
220

Y

Select a particular cycle to process the
bottom-left block
230

) 4

Switch the assignment direction so that
blocks processed after the selected cycle are
processed along a second dimension
240

Assign all remaining unassigned blocks
according to the switched assignment

direction
250

FIG. 2

417
WO 2021/035079 PCT/US2020/047254

10 11 12

5/7

WO 2021/035079 PCT/US2020/047254

/
— — //
e /
—3—> /
4> ,
J—r y
—6> /

-|7> / 1 10
I8-/ ‘9' *

/

13 14 15

FIG. 4

WO 2021/035079

5@6\

6/7

PCT/US2020/047254

5102 5100
508a 502 é/ 502 502 V/ 502 508b
\ N Nl N /
Vo looooo O ooooo !
18x16 18x16
A Tiles Tiles
503 : P :
s @ s ® “_,_____504
0l 0o "
- Méwﬁca
Do~ 1DU 2x32 Segments - CH
v E’E}mﬁﬁ[} uuuuuuuuuuuuu {j mﬂﬁm[} uuuuuuuuuuuuu {;}
: 18x16 18x16
Tiles Tiles
[3\ ;}3 Y\j\ E;]\
502 A\ 502 502 \ 502
510c 510d
501
- / >

717
PCT/US2020/047254

WO 2021/035079

&

9" -
xm 2019
SEE T
, $09 G09 UINoS; | ULION
q0z9-" 8 7 7
s
&
0 L 6 A Ew Y Ew“ 1Y) ?p _m:ww YRy coL -
A] |
09— nyus| nves! lnvas| lnves
ﬂ ﬂ 129 !
| T i e
v X&HH www§ : i Bunnoy wmmg T
z09 Z09 |
- 158 =y
- ¢ 7 EET@E
- St L
SWING [eiled HEHISEHNIY
e0z9-" 8 707
EEREREE N !

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/047254

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/48 GO6N3/063
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F GO6N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WO 2019/078885 Al (GOOGLE LLC [US]) 1-12
25 April 2019 (2019-04-25)

abstract

page 3, line 20 - page 5, line 6
page 6, line 22 - page 8, line 24
page 10, Tine 22 - page 11, line 14
A MA YUFEI ET AL: "Performance Modeling for 1-12
CNN Inference Accelerators on FPGA",

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN
OF INTEGRATED CIRCUITS AND SYSTEMS, IEEE
SERVICE CENTER, PISCATAWAY, NJ, US,

vol. 39, no. 4,

5 February 2019 (2019-02-05), pages
843-856, XP011778567,

ISSN: 0278-0070, DOI:
10.1109/TCAD.2019.2897634

[retrieved on 2020-03-18]

the whole document

See patent family annex.

D Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

. e "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than

the priority date claimed

"&" document member of the same patent family

Date of the actual completion of the international search

5 November 2020

Date of mailing of the international search report

18/11/2020

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Renault, Sophie

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2020/047254
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2019078885 Al 25-04-2019 (N 111194451 A 22-05-2020
EP 3698287 Al 26-08-2020
WO 2019078885 Al 25-04-2019

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report

