
US 20140223 052A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0223052 A1

Chavali et al. (43) Pub. Date: Aug. 7, 2014

(54) SYSTEMAND METHOD FOR SLAVE-BASED Publication Classification
MEMORY PROTECTION

(51) Int. Cl.
(71) Applicant: TEXAS INSTRUMENTS G06F 3/16 (2006.01)

INCORPORATED, Dallas, TX (US) (52) U.S. Cl.
CPC G06F 13/1605 (2013.01)

(72) Inventors: Balatripura Sodemma Chavali, Sugar USPC .. 710/110
Land, TX (US); Karl Fredrich Greb,
Sugarland, TX (US); Rajeev Suvarna,
Bangalore (IN) (57) ABSTRACT

(73) Assignee: TEXAS INSTRUMENTS
INCORPORATED, Dallas, TX (US) A system includes a bus slave coupled to a plurality of bus

masters via one or more interconnects. The system also
(21) Appl. No.: 14/015,690 includes a memory protection unit (MPU) associated with the

bus slave, the MPU having a set of access permissions that
(22) Filed: Aug. 30, 2013 grants access to the bus slave from a first bus master and

denies access to the bus slave from a second bus master. The
MPU generates an error response as result of a transaction

(60) Provisional application No. 61/762,212, filed on Feb. generated by a task on the second bus master attempting to
7, 2013. access the bus slave.

Related U.S. Application Data

100

102 104 106

INTERCONNECT 108

114

116a 116n

Patent Application Publication Aug. 7, 2014 Sheet 1 of 3 US 2014/0223052 A1

100

102 104 106

CPU DMA USB

INTERCONNECT 108

114

FIG. 1 116a 116n

106

Patent Application Publication Aug. 7, 2014 Sheet 2 of 3 US 2014/0223052 A1

FIG. 4

DMA 104

402

102 FIG. 5

VIRTUAL CPU VIRTUAL CPU

506

INSTRUCTION DATA

Patent Application Publication Aug. 7, 2014 Sheet 3 of 3 US 2014/0223052 A1

108 INTERCONNECT
606

MEMORY

700

RECEIVING, BY A MEMORY PROTECTION UNIT (MPU)
ASSOCIATED WITH ABUS SLAVE, ATRANSACTION
FROMA BUS MASTERDIRECTED TO THE BUS SLAVE

702

DETERMINING, BY THEMPU, WHETHER TOGRANT OR
704 DENY THE TRANSACTION ACCESS TO THE BUS SLAVE

GENERATING ANERROR RESPONSE ASA RESULT OF
706 DETERMINING TO DENYACCESS TO THE TRANSACTION

FIG. 7

US 2014/0223052 A1

SYSTEMAND METHOD FOR SLAVE-BASED
MEMORY PROTECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application claims priority to U.S. Pro
visional Patent Application No. 61/762.212, filed on Feb. 7,
2013 (Attorney Docket No. TI-73288PS); which is hereby
incorporated herein by reference. The present application is
also related to co-pending U.S. patent application Ser. No.
14/015,561 (Attorney Docket No. 1962-854.00, Titled “Sys
tem. And Method For Per-Task Memory Protection For A
Non-Programmable Bus Master), which is hereby incorpo
rated herein by reference in its entirety.

BACKGROUND

0002 Various processes are governed by international
standards relating to safety and risk reduction. For example,
IEC 61508 addresses functional safety of electrical, elec
tronic, and programmable electronic devices, such as micro
controllers or other computers used to control industrial or
other safety critical processes. IEC 61508 defines Safety
Integrity Levels (SIL) based on a probabilistic analysis of a
particular application. To achieve a given SIL, the applica
tion, including constituent components, must meet targets for
the maximum probability of “dangerous failure' and a mini
mum “safe failure fraction.” The concept of “dangerous fail
ure' is defined on an application-specific basis, but is based
on requirement constraints that are verified for their integrity
during the development of the safety critical application. The
“safe failure fraction determines capability of the system to
manage dangerous failures and compares the likelihood of
safe and detected failures with the likelihood of dangerous,
undetected failures. Ultimately, an electronic device's certi
fication to a particular SIL requires that the electronic device
provide a certain level of detection of and resilience to failures
as well as enable the safety critical application to transition to
a safe state after a failure.
0003. Another functional safety standard is ISO 26262,
which addresses the functional safety of road vehicles such as
automobiles. ISO 26262 aims to address possible hazards
caused by malfunctioning behavior of automotive electronic
and electrical systems. Similar to SILs defined by IEC 61508,
ISO 26262 provides an automotive-specific risk-based
approach to determine risk classes referred to as Automotive
Safety Integrity Levels (ASIL). ASILs are used to specify a
particular product’s ability to achieve acceptable safety goals.
0004 An electronic device that controls a process indus

trial, automotive, or otherwise—may be used to perform mul
tiple functions, some of which are “safety functions” while
others are “non-safety functions.” A safety function is a func
tion whose operation impacts the safety of the process; for
example, a closed-loop control system that drives an electric
motor used for power steering is a safety function. A non
safety function is a function whose operation does not impact
the safety of the process; for example, debug functionality
built into the electronic device that is used to develop software
for the control functions, but is not used when the electronic
device is integrated into a vehicle, is a non-safety function.

SUMMARY

0005. The problems noted above are solved in large part by
a system including a bus slave coupled to a plurality of bus

Aug. 7, 2014

masters via one or more interconnects. The system also
includes a memory protection unit (MPU) associated with the
bus slave, the MPU having a set of access permissions that
grants access to the bus slave from a first bus master and
denies access to the bus slave from a second bus master. The
MPU generates an error response as result of a transaction
generated by a task on the second bus master attempting to
access the bus slave.
0006. Other embodiments of the present disclosure are
directed to a method including receiving a transaction from a
bus master directed at a bus slave, determining whether to
grant or deny the transaction access to the bus slave, and
generating an error response as a result of determining to deny
access to the transaction.
0007 Still other embodiments of the present disclosure
are directed to an electronic device including a bus slave that
is memory or a peripheral and first and second bus masters to
execute one or more tasks. Each task generates transactions
directed at the bus slave. The device also includes an inter
connect to couple the bus slave to the bus master and a
memory protection unit (MPU) associated with the bus slave.
The MPU has a set of access permissions that grants access to
the bus slave from the first bus master and denies access to the
bus slave from the second bus master. The MPU generates an
error response as result of a transaction generated by a task on
the second bus master attempting to access the bus slave.

BRIEF DESCRIPTION OF THE DRAWINGS

0008 For a detailed description of exemplary embodi
ments of the invention, reference will now be made to the
accompanying drawings in which:
0009 FIG. 1 shows a block diagram of an exemplary
system on a chip (SOC) architecture in accordance with vari
ous embodiments;
0010 FIG. 2 shows a block diagram of an exemplary
memory protection unit (MPU) in conjunction with a mul
tiple-task bus master in accordance with various embodi
ments;
0011 FIG.3 shows a block diagram of an exemplary MPU
in conjunction with a single-task bus master in accordance
with various embodiments;
0012 FIG. 4 shows a block diagram of an exemplary
direct memory access (DMA) controller in conjunction with
a multiple-task bus master in accordance with various
embodiments;
(0013 FIG.5 shows a block diagramofan exemplary MPU
in conjunction with a multiple-task bus master with a virtu
alized hardware scheme in accordance with various embodi
ments;
0014 FIG. 6 shows a block diagram of multiple exemplary
MPUs for slave-based memory protection in accordance with
various embodiments; and
0015 FIG.7 shows a flow chart of a method in accordance
with various embodiments.

NOTATION AND NOMENCLATURE

0016 Certain terms are used throughout the following
description and claims to refer to particular system compo
nents. As one skilled in the art will appreciate, companies may
refer to a component by different names. This document does
not intend to distinguish between components that differ in
name but not function. In the following discussion and in the
claims, the terms “including and “comprising are used in an

US 2014/0223052 A1

open-ended fashion, and thus should be interpreted to mean
“including, but not limited to” Also, the term “couple' or
“couples’ is intended to mean either an indirect or direct
electrical connection. Thus, if a first device couples to a
second device, that connection may be through a direct elec
trical connection, or through an indirect electrical connection
via other devices and connections.
0017. As used herein, the term “transaction” refers to a
request to read from/write to memory or read from/write to
another piece of logic or register.
0.018. As used herein, the term “bus master” refers to a
piece of logic that initiates a transaction.
0019. As used herein, the term “bus slave' refers to a
component that receives a transaction; for example, a
memory region or a peripheral may be a bus slave.
0020. As used herein, the term “interconnect” refers to a
component that distributes a transaction, for example
between bus masters and bus slaves.

DETAILED DESCRIPTION

0021. The following discussion is directed to various
embodiments of the invention. Although one or more of these
embodiments may be preferred, the embodiments disclosed
should not be interpreted, or otherwise used, as limiting the
Scope of the disclosure, including the claims. In addition, one
skilled in the art will understand that the following descrip
tion has broad application, and the discussion of any embodi
ment is meant only to be exemplary of that embodiment, and
not intended to intimate that the scope of the disclosure,
including the claims, is limited to that embodiment.
0022. Safety and non-safety function may be imple
mented, for example, on a system on a chip (SOC) with one or
more processor cores and a memory, which may be shared
among processor cores. In theory, a highest level of safety is
achieved when a separate SOC carries out each of the various
functions of the electronic device. In this way, the operation of
a particular function cannot be impaired or corrupted by other
functions since a bus master that implements a particular
function cannot access any bus slave(s) other than its own.
However, such an approach is cost-prohibitive.
0023 To reduce the cost of such electronic devices, safety
functions may be implemented alongside non-safety func
tions, for example with multiple functions carried out by a
single SOC. However, to maintain an appropriate SIL, certain
functions should be prevented from interfering with other
functions (e.g., a function should be prevented from access
ing an address region memory that is not allocated to that
function or by sending a transaction to a peripheral that is not
allocated to that function).
0024 Safety functions may be associated with one of a
plurality of SILs. For example, a safety function with a SIL of
3 may require a high level of safety assurance while a function
with a SIL of 2 or lower requires a lower level of safety
assurance, while still requiring more safety assurance than a
non-safety function. That is, the function with a SIL of 3
presents a greater degree of risk relative to the function with
a SIL of 2 (or lower) and as Such requires greater risk reduc
tion measures. As a result, multiple safety functions may have
SILs that are independent of each other. Various standards
require that functions having different SIL ratings should not
interfere with one another. Similarly a non-safety critical task
must not interfere with a safety critical task. Thus, while a
non-safety function should be separated Such that the non
safety function does not corrupt the safety function(s), a

Aug. 7, 2014

higher-SIL safety function (i.e., numerically greater) should
also be separated such that the lower-SIL safety function does
not corrupt the higher-SIL safety function.
0025 FIG. 1 shows a system comprising SOC architecture
100 having multiple functions (also referred to as tasks)
implemented by a number of bus masters. As explained
above, the SOC architecture 100 may be part of an electronic
device that controls a process and performs multiple func
tions. Certain of the tasks may be safety functions, in some
cases having varying SILS, and other of the tasks may be
non-safety functions. The SOC architecture 100 comprises a
CPU 102 implementing tasks A and B, a direct memory
access (DMA) engine 104 implementing tasks C and D, and
a Universal Serial Bus (USB) controller 106 implementing
task E. The CPU 102, DMA engine 104, and USB controller
106 are examples of bus masters.
0026. The SOC architecture 100 also comprises an inter
connect 108 that couples the bus masters 102, 104, 106 to
exemplary bus slaves, such as random access memory (RAM)
110 and read-only memory (ROM) 112. Additionally, the
interconnect 108 may couple the bus masters 102,104,106 to
peripherals 116a-116n (e.g., a serial port, a general purpose
input/output port, or a timer). In some cases, a peripheral
interconnect 114 is inserted between the interconnect 108 and
the peripherals 116a-116n to further facilitate routing of
transactions to the appropriate peripheral 116a-116n.
(0027. The SOC architecture 100 is exemplary, and it
should be appreciated that multiple instances of various bus
masters 102, 104, 106 may exist within an application-spe
cific SOC. Regardless of the particular implementation,
maintaining freedom from interference between various tasks
at the bus slave level is important to assure that the device that
carries out the various tasks achieves an acceptable level of
risk. Additionally, as shown in FIG. 1, certain bus masters
102,104,106 implement multiple tasks, some of which may
be safety functions and others of which may be non-safety
functions, and so maintaining freedom of interference
between tasks operating on a single bus master 102,104,106
is important as well. Further, preventing a bus master 102,
104. 106 from improperly accessing a certain bus slave (e.g.,
a bus slave for which the bus master is not entitled to access)
may provide further security from interference between tasks
executing within the SOC architecture 100.
(0028 Turning to FIG. 2, the CPU 102 is shown with a local
memory protection unit (MPU) 202. The MPU202 comprises
hardware logic (not shown) that determines whether to grant
or deny access to a bus slave on a per transaction basis. The
hardware logic may comprise various comparators, encoders,
decoders and the like that utilize information contained in a
transaction to determine whether to grant or deny access to a
bus slave. For example, a transaction may be an instruction
fetch or data access request. The MPU 202 may transmit an
instruction fetch to an instruction bus, transmit a data access
request to a data bus, or transmit either to a mixed instruction
and data bus, along with a control signal to identify whether
the transaction is an instruction fetch or a data access request.
This is shown in FIG. 2 by way of the MPU 202 transmitting
the instruction fetch and data access requests separately. The
interconnect 108 represents the various bus implementations.
0029 Information contained in the instruction fetch and/
or data access request may be used to determine whether to
grant or deny access to a bus slave. Additionally, the determi

US 2014/0223052 A1

nation by the MPU 202 of whether to grant or deny access to
a bus slave may be based on one or a combination of a number
of factors.

0030. In some cases, transactions may be isolated based on
the address of memory to which the transaction is directed.
For example, certain addresses may be protected while other
addresses are non-protected. A transaction originating from a
safety function may be granted access by the MPU 202 to an
address that is either protected or non-protected, while a
transaction originating from a non-safety function is granted
access to an address that is non-protected and denied access to
an address that is protected. Additionally, in certain embodi
ments there may be multiple levels of address protection and
a higher-level safety function is granted access to any address,
while a lower-level safety function is only granted access to
certain levels of protected addresses and a non-safety func
tion is only granted access to non-protected addresses.
0031. In other cases, transactions may be isolated based on
a privilege level associated with the function or task that
generates the transaction. For example, certain functions may
be “privileged' and other functions may be “non-privileged.”
Transactions originating from a privileged function may be
granted access by the MPU 202 to bus slaves that require a
privileged leveland transactions originating from a non-privi
leged function may be denied access to bus slaves that require
a privileged level. Similarly, transactions may be isolated
based on a security level where some functions comprise
trusted code while other functions comprise non-trusted
code. Transactions originating from trusted code are granted
access by the MPU 202 to secure bus slaves and transactions
originating from non-trusted code are denied access to secure
bus slaves.

0032. Additionally, transactions may be isolated based on
a task identification (ID) associated with the function or task
that generates the transaction. For example, the bus master or
a CPU 102 may assign a task ID to each task that is running,
which can be used by the MPU 202 to discriminate permis
sions on a per task basis. Alternately, transactions may be
isolated based on whether the transaction originated from a
function or task executed by a bus master that is a “functional
unit' or executed by a bus master that is a “debug unit.” The
MPU 202 may grant access to certain bus slaves for tasks
originating from a functional unit and deny access to those
bus slaves for tasks originating from a debug unit.
0033 Referring to FIGS. 1 and 2, address regions of the
RAM 110 and/or ROM 112 have associated permissions. If
various attributes of a particular function or task satisfy the
permission level of the address region, the MPU 202 grants
access to a transaction originating from that function or task.
If the attributes do not satisfy the permission level of the
address region, access is denied. For certain components that
support the execution of more than one task (e.g., CPU 102),
the associated MPU 202 is reconfigured when the task being
executed changes to Support task-based isolation. Configura
tion of the MPU 202 refers to the access permissions that are
applied to the currently-executing task. For example, a
memory buffer may belong to a first task. When the CPU 102
is executing the first task, the MPU 202 is configured to grant
access to the memory buffer; however, when the CPU 102
switches to a second task, the MPU 202 is reconfigured to
prevent access to the memory buffer. The MPU 202 may have
many stored configurations corresponding to different tasks
executed by the CPU 102. In some embodiments, the MPU
202 may switch configurations based on a different received

Aug. 7, 2014

task ID for a transaction. In other embodiments, such as
where the bus master is the CPU 102, software executing on
the CPU 102 that changes the task also reconfigures the MPU
202.

0034. In the event of an attempted violation of access rules
implemented by the MPU 202, various actions may be taken.
For example, the MPU 202 may report the attempted access
violation to a system-level monitoring task executing on the
CPU 102. In some cases, the MPU202 blocks the transaction
from occurring, while in other cases the MPU 202 tags the
transaction as having an error. Further, in security-sensitive
applications where a transaction tagged as having an error
may provide useful information to a malicious entity attempt
ing to gain access to secure memory, a response may be
generated that mimics a normal response, but which contains
false data.

0035 FIG. 3 shows the USB controller 106, which is an
example of a single-task bus master. In the case of a single
task bus master, a MPU 302 similar to the MPU 202 is
implemented, although on a simplified basis. For example,
the USB controller 106 typically accesses only two
regions—a transmit buffer and a receive buffer. Additionally,
it is not necessary that the MPU 302 implement task-based
discrimination since only one task is implemented by the
USB controller 106.
0036. In the above examples, a MPU 202, 302 facilitates
protection of certain regions of memory and/or certain
peripherals by limiting access by lower-level or non-safety
functions where appropriate. As a result, an acceptable level
of safety is achieved by the overall device on which the SOC
architecture 100 is implemented while reducing the cost of
the device by implementing many functions on a single SOC.
0037. In the event of an attempted violation of access rules
implemented by the MPU 202, various actions may be taken.
For example, the MPU 202 may report the attempted access
violation to a system-level monitoring task executing on the
CPU 102. In some cases, the MPU202 blocks the transaction
from occurring, while in other cases the MPU 202 tags the
transaction as having an error. Further, in security-sensitive
applications where a transaction tagged as having an error
may provide useful information to a malicious entity attempt
ing to gain access to secure memory, a response may be
generated that mimics a normal response, but which contains
false data.

0038. In accordance with various embodiments, a non
programmable bus master, such as the DMA controller 104,
may implement multiple tasks to perform various functions.
Unlike a bus master such as the CPU 102, which may recon
figure its MPU 202 with software executing tasks on the CPU
102, the DMA controller 104 does not execute software to
optimize its performance during DMA operations, and thus is
non-programmable.
0039 Turning to FIG. 4, the DMA controller 104 com
prises an integrated MPU 402. The DMA controller 104 is
shown as able to implement multiple tasks, namely task Cand
task D. Each task generates various transactions to access
memory 110, 112 or peripherals 116a-116n. In accordance
with various embodiments, the DMA controller 104 includes
hardware logic that Switches between tasks as needed to
perform the required functionality of the DMA controller
104. The MPU-402 is integrated to the DMA controller 104
Such that, upon Switching from one task to another, the DMA
controller 104 causes a configuration of the MPU 402 to
switch as well. For example, when the DMA controller 104 is

US 2014/0223052 A1

executing task C, the DMA controller 104 causes the MPU
402 to operate in a first configuration, while when the DMA
controller 104 is executing task D, the DMA controller 104
causes the MPU-402 to operate in a second configuration. As
explained above, the MPU-402 regulates access to certain bus
slaves in each configuration. The MPU 402 may have a dif
ferent configuration for each task implemented by the DMA
controller 104.
0040. In some embodiments, the DMA controller 104
implements automated task-switching by automatically
changing the configuration of the integrated MPU-402 when
the DMA controller 104 Switches tasks. However, in other
embodiments, the DMA controller 104 may provide task
identification (ID) to the MPU-402 and, as a result of receiv
ing a different task ID, the MPU 402 changes its configura
tion. This allows the MPU-402 to be less closely integrated to
the DMA controller 104.
0041 As explained above, for a transaction generated by
one of the tasks implemented by the DMA controller 104, the
MPU 402 determines whether to grant or deny access to abus
slave for that transaction. This determination may be based on
the address of memory to which the transaction is directed, a
privilege level of the transaction or the task that generates the
transaction, or a security level of the task that generates the
transaction.
0042. Thus, the DMA controller 104 enables automated
task-switching for the MPU-402 configurations to apply dif
ferent access permissions to each task executed by the DMA
controller 104. As such, memory protection is enabled,
achieving an acceptable level of risk, even in Systems where a
non-programmable bus master such as the DMA controller
104 implements multiple tasks, which include safety and
non-safety functions.
0043. In accordance with various other embodiments, a
bus master, such as the CPU 102, may implement multiple
instances of virtualized hardware to perform various func
tions. Turning to FIG. 5, the CPU 102 may contain a first
virtual CPU 502 that implements a safety function and a
second virtual CPU 504 that implements a non-safety func
tion. However, since both the safety function and the non
safety function are implemented by the same physical CPU
(i.e., the CPU 102), the CPUID for a transaction generated by
either function would be the same. Additionally, in some
cases a task ID for a transaction generated by either function
may be the same. Thus, the MPU 202 described above would
not be able to differentiate the transactions and a lower-level
or non-safety function may be inappropriately granted access
to a particular bus slave.
0044. In accordance with various embodiments, a virtual
CPUID is associated with each virtual CPU 502,504 simu
lated on the physical CPU 102. Additionally, a virtual task ID
may be associated with each virtual task running on the Vir
tual CPUs 502, 504. An MPU 506 associated with a bus
master that implements virtualized hardware (e.g., the physi
cal CPU 102 implementing one or more virtual CPUs 502,
504) grants or denies access to a peripheral, memory region,
or other bus slave based on the virtual CPUID and/or the
virtual task ID. As such, memory protection is enabled,
achieving an acceptable level of risk, even in Systems where
safety and non-safety functions are implemented in virtual
ized hardware.
0045. Further, the physical CPU 102 may execute tasks
(e.g., task E) independently of tasks (e.g., tasks A-D)
executed by the virtual CPUs 502, 504. In such cases, the

Aug. 7, 2014

MPU 506 does not only grant or deny access based on virtual
CPUID or virtual taskID, but rather grants and denies access
generally based on virtual CPUID and CPUID or virtual task
ID and task ID. In this way, the MPU 506 applies an equal
permission scheme to CPUs, regardless of whether they are
virtual CPUs 502,504 or a physical CPU 102. Similarly, the
MPU 506 applies an equal permission scheme to tasks,
regardless of whether they are tasks implemented by virtual
hardware (i.e., tasks A-D implemented by virtual CPUs 502,
504) or tasks implemented by physical hardware (i.e., task E
implemented by CPU 102).
0046 Turning now to FIG. 6, multiple examples of a slave
based memory protection Scheme are shown in accordance
with various embodiments. In a first example, a MPU 604 is
positioned in the datapath between a bus slave (e.g., memory
602) and an interconnect 108 that transmits data to and from
the bus slave 602. This is simple but limited because, in some
cases, the introduction of a MPU not tightly integrated into
the datapath may be physically larger, consume more power,
and introduce transaction latency as compared to Solutions
that are optimized for the particular datapath and coupling
between the interconnect 108 and the bus slave 602.
0047. In a second example, a MPU 606 is integrated into
the interconnect 108. In this context, being integrated refers to
an interconnect 108 design in which the MPU 606 is included
directly into the datapath at the time of design of the inter
connect 108 rather than added to the datapath design after the
interconnect 108 has been designed. As a result, the MPU 606
may provide additional capability relative to the MPU 604,
Such as reduced latency (i.e., improved overall performance),
reduced power consumption, reduced physical size, and
improved response time.
0048. In a third example, a MPU 608 is integrated into the
bus slave 602 itself. Similar to being integrated into the inter
connect 108, in this context, integrated refers to the fact that
the MPU 608 is part of the base design of the bus slave 602
itself. Thus, the MPU 608 may be optimized for the behavior
of the particular bus slave 602. As a result, the MPU 608 may
be optimized in particular for the bus slave 602 to which it is
integrated. For example, optimization Such as reduced
latency, reduced power consumption, reduced physical size,
and improved response time are possible.
0049 Regardless of the particular location and implemen
tation of the slave-based MPU 604, 606, 608, the MPU 604,
606, 608 includes a set of access permissions that grants
access to the bus slave 602 when certain conditions are met
and denies access to the bus slave 602 when at least one of
those conditions are not met. More particularly, granting and
denying access is often determined on a transaction by trans
action basis, where the transaction is generated by a task
executing on a bus master. For example, the MPU 604. 606,
608 may deny access to the bus slave 602 based on an address
to which the transaction is directed, a privilege level associ
ated with the task that generated the transaction, a security
level associated with the task that generated the transaction,
or whether the transaction was generated by a functional unit
of the bus master or a debug unit of the bus master.
0050. In some embodiments, the MPU 604, 606, 608
grants or denies access to the bus slave 602 based on the bus
master that generated the transaction. For example, transac
tions generated by tasks on a firstbus master may be generally
granted to access the bus slave 602 while transactions gener
ated by tasks on a second bus master are denied access to the
bus slave 602. In this way, while MPUs associated with bus

US 2014/0223052 A1

masters (e.g., as shown in FIGS. 4 and 5) differentiate access
permissions largely on a task-by-task basis from a single bus
master while MPUs 604, 606, 608 associated with bus slaves
may differentiate access permissions on a bus master-by-bus
master basis.
0051. In the event of an attempted violation of access rules
implemented by the MPU 604, 606, 608, various actions may
be taken. For example, the MPU 604,606, 608 may report the
attempted access violation to a system-level monitoring task
executing on the CPU 102. In some cases, the MPU 604,606,
608 blocks the transaction from occurring, while in other
cases the MPU 604,606, 608 tags the transaction as having an
error and generates a bus error response via the interconnect
108. Further, in security-sensitive applications where a trans
action tagged as having an error may provide useful informa
tion to a malicious entity attempting to gain access to secure
memory (e.g., bus slave 602), a response may be generated
that mimics a normal response, but which contains false data.
0052. Thus, in some embodiments a system-wide memory
protection scheme is disclosed, in which MPUs are imple
mented at both the bus master leveland the bus slave level. As
a result, an acceptable level of safety is achieved by the overall
device on which the system-wide memory protection scheme
(e.g., including SOC architecture 100) is implemented while
reducing the cost of the device by implementing many func
tions on a single SOC.
0053 FIG. 7 shows a method 700 for bus slave-based
memory protection, for example where a MPU is positioned
in the data stream between a bus slave and an interconnect,
integrated to the interconnect, or integrated to the bus slave, in
accordance with various embodiments. The method 700 con
tains various steps, which may be performed in an order other
than that shown in FIG. 7. The method 700 begins in block
702 with receiving, by a MPU associated with a bus slave, a
transaction from a bus master directed at the bus slave. For
example, the transaction may be generated by a task execut
ing on the bus master, and may be related to a safety function
of varying levels or a non-safety function.
0054. The method 700 continues in block 704 with the
MPU determining whether to grant or deny the transaction
access to the bus slave. If it is determined to deny the trans
action access to the bus slave in block 704, the method 700
continues in block 706 with generating an error response. The
error response may include a bus error response (e.g., an error
message is transmitted via the interconnect), transmission of
false information intended to appear as a normal response, or
blocking the transaction from accessing the bus slave. Denial
of a transaction, and thus Subsequent generation of an error
response, may occur as a result of an identification of the bus
master that generated the transaction, an address to which the
transaction is directed, a privilege or security level associated
with the task that generated the transaction, or whether the
transaction was generated by a functional unit of the bus
master or a debug unit of the bus master.
0055 As explained above, in some embodiments a sys
tem-wide memory protection scheme is disclosed, in which
MPUs are implemented at both the bus master level and the
bus slave level. In such embodiments, the method 700 may
comprise additional steps not shown in FIG. 7 for concise
ness. For example, the method 700 may further comprise a
non-programmable bus master (e.g., a DMA controller)
executing first and second tasks, each generating transac
tions, where hardware logic of the non-programmable bus
master Switches between executing the first and second tasks.

Aug. 7, 2014

The non-programmable bus master may cause a MPU asso
ciated with the non-programmable bus master to operate in a
first configuration with a first set of access permissions when
the hardware logic executes the first task. Correspondingly,
the non-programmable bus master may cause the MPU asso
ciated with the non-programmable bus master to operate in a
second configuration with a second set of access permissions
when the hardware logic executes the second task.
0056. As another example, the method 700 may further
comprise a MPU associated with a virtual CPU (implemented
on a physical CPU) receiving a transaction from the virtual
CPU directed at a bus slave. The transaction may be associ
ated with a virtual CPU ID or a virtual task ID. The MPU
determines whether to grant or deny access to the bus slave
based on the virtual CPUID or the virtual task ID. In either
case, the virtual CPUID or virtual task ID is different than an
ID of the physical CPU on which the virtual CPU is imple
mented or an ID of a task executed on the physical CPU,
respectively.
0057. As a result, the method 700 enables bus slave-based
memory protection, where access to a bus slave is determined
at least party based on the bus master from which a transac
tion originates. Additionally, the method 700 facilitates a
system-wide memory protection scheme, in which MPUs are
implemented at both the bus master level and the bus slave
level. As a result, an acceptable level of safety is achieved by
the overall device on which the system-wide memory protec
tion scheme (e.g., including SOC architecture 100) is imple
mented while reducing the cost of the device by implement
ing many functions on a single SOC.
0058. The above discussion is meant to be illustrative of
the principles and various embodiments of the present inven
tion. Numerous variations and modifications will become
apparent to those skilled in the art once the above disclosure
is fully appreciated. It is intended that the following claims be
interpreted to embrace all Such variations and modifications.
What is claimed is:
1. A system, comprising:
a bus slave coupled to a plurality of bus masters via one or
more interconnects; and

a memory protection unit (MPU) associated with the bus
slave, the MPU having a set of access permissions that
grants access to the bus slave from a first bus master and
denies access to the bus slave from a second bus master;

wherein the MPU generates an error response as result of a
transaction generated by a task on the second bus master
attempting to access the bus slave.

2. The system of claim 1 wherein the error response com
prises a bus error response.

3. The system of claim 1 wherein the error response com
prises false information.

4. The system of claim 1 wherein the error response com
prises blocking the transaction from accessing the bus slave.

5. The system of claim 1 wherein the MPU comprises
hardware logic that generates an error response based on one
selected from the group consisting of:

an address to which the transaction is directed;
a privilege level associated with the task that generated the

transaction;
a security level associated with the task that generated the

transaction; and
whether the transaction was generated by a functional unit

of the bus master or a debug unit of the bus master.

US 2014/0223052 A1

6. The system of claim 1 further comprising:
a non-programmable bus master, and
a MPU associated with the non-programmable bus master,

the MPU to operate in a first configuration with a first set
of access permissions and a second configuration with a
second set of access permissions;

wherein the non-programmable bus master further com
prises hardware logic to:
execute a first task and a second task, wherein the tasks

generate transactions and wherein the hardware logic
Switches between executing the first and second tasks;

cause the MPU to operate in the first configuration when
the hardware logic executes the first task; and

cause the MPU to operate in the second configuration
when the hardware logic executes the second task.

7. The system of claim 1 further comprising:
a virtual central processing unit (CPU); and
a MPU associated with the virtual CPU comprising hard
ware logic to:
receive a transaction from the virtual CPU directed at the

bus slave, the transaction being associated with a vir
tual CPU identification (ID), wherein the virtual CPU
is implemented on a physical CPU; and

determine whether to grant or deny access to the bus
slave based on the virtual CPU ID:

wherein the virtual CPUID is different than an ID of the
physical CPU on which the virtual CPU is imple
mented.

8. The system of claim 1 further comprising:
a virtual central processing unit (CPU); and
a MPU associated with the CPU comprising hardware

logic to:
receive a transaction from a virtual central processing

unit (CPU) directed at the bus slave, the transaction
being associated with a virtual task identification
(ID), wherein the virtual CPU is implemented on a
physical CPU; and

determine whether to grant or deny access to the bus
slave based on the virtual task ID:

wherein the virtual task ID is different than an ID of a
task executed on the physical CPU on which the vir
tual CPU is implemented.

9. A method, comprising:
receiving, by a memory protection unit (MPU) associated

with a bus slave, a transaction from a bus master directed
at the bus slave;

determining, by the MPU, whether to grant or deny the
transaction access to the bus slave; and

generating an error response as a result of determining to
deny access to the transaction.

10. The method of claim 9 wherein the error response
comprises a bus error response.

11. The method of claim 9 wherein the error response
comprises false information.

12. The method of claim 9 wherein the error response
comprises blocking the transaction from accessing the bus
slave.

13. The method of claim 9 wherein generating an error
response occurs based on one selected from the group con
sisting of:

an identification of the bus master that generated the trans
action;

an address to which the transaction is directed;

Aug. 7, 2014

a privilege level associated with the task that generated the
transaction;

a security level associated with the task that generated the
transaction; and

whether the transaction was generated by a functional unit
of the bus master or a debug unit of the bus master.

14. The method of claim 9 further comprising:
executing, by a non-programmable bus master comprising

hardware logic, a first task and a second task, wherein
the tasks generate transactions and wherein the hard
ware logic Switches between executing the first and sec
ond tasks;

causing, by the non-programmable bus master, a MPU
associated with the non-programmable bus master to
operate in a first configuration with a first set of access
permissions when the hardware logic executes the first
task; and

causing, by the non-programmable bus master, the MPU
associated with the non-programmable bus master to
operate a the second configuration with a second set of
access permissions when the hardware logic executes
the second task.

15. The method of claim 9 further comprising:
receiving, by a MPU associated with a virtual central pro

cessing unit (CPU), a transaction from the virtual CPU
directed at the bus slave, the transaction being associated
with a virtual CPU identification (ID), wherein the Vir
tual CPU is implemented on a physical CPU; and

determining, by the MPU associated with the virtual CPU,
whether to grant or deny access to the bus slave based on
the virtual CPU ID:

wherein the virtual CPU ID is different than an ID of a
physical CPU on which the virtual CPU is implemented.

16. The method of claim 9 further comprising:
receiving, by a MPU associated with a virtual central pro

cessing unit (CPU), a transaction from the virtual CPU
directed at the bus slave, the transaction being associated
with a virtual task identification (ID), wherein the virtual
CPU is implemented on a physical CPU; and

determining, by the MPU associated with the virtual CPU,
whether to grant or deny access to the bus slave based on
the virtual task ID:

wherein the virtual task ID is different than an ID of a task
executed on a physical CPU on which the virtual CPU is
implemented.

17. An electronic device to control a process, comprising:
a bus slave comprising memory or a peripheral;
first and second bus masters to execute one or more tasks,

each task to generate transactions directed at the bus
slave;

an interconnect to couple the bus slave to the bus master;
and

a memory protection unit (MPU) associated with the bus
slave, the MPU having a set of access permissions that
grants access to the bus slave from the first bus master
and denies access to the bus slave from the second bus
master,

wherein the MPU generates an error response as result of a
transaction generated by a task on the second bus master
attempting to access the bus slave.

18. The electronic device of claim 17 wherein the error
response comprises a bus error response.

19. The electronic device of claim 17 wherein the error
response comprises false information.

US 2014/0223052 A1

20. The electronic device of claim 17 wherein the error
response comprises blocking the transaction from accessing
the bus slave.

21. The electronic device of claim 17 wherein the MPU
comprises hardware logic that generates an error response
based on one selected from the group consisting of:

an address to which the transaction is directed;
a privilege level associated with the task that generated the

transaction;
a security level associated with the task that generated the

transaction; and
whether the transaction was generated by a functional unit

of the bus master or a debug unit of the bus master.
k k k k k

Aug. 7, 2014

