«» UK Patent Application .,GB .,2521722

(13)A

(43)Date of A Publication 01.07.2015
(21) Application No: 1418629.0 (51) INT CL:
GO6F 21/53 (2013.01) GO6F 21/56 (2013.01)
(22) Date of Filing: 20.10.2014
(56) Documents Cited:
(30) Priority Data: US 7797727 B1 US 20070050369 A1
(31) 1318723 (32) 23.10.2013 (33) GB US 20050149726 A1 US 20040006706 A1
(31) 1320212 (32) 15.11.2013 (33) GB

(71) Applicant(s):
Avecto Limited
Hobart House, 3 Oakwater Avenue,
Cheadle Royal Business Park, CHEADLE, Cheshire,
SK8 3SR, United Kingdom

(72) Inventor(s):
Mark Austin
John Goodridge

(74) Agent and/or Address for Service:

Appleyard Lees
15 Clare Road, HALIFAX, West Yorkshire, HX1 2HY,
United Kingdom

(58) Field of Search:
INT CL GO6F
Other: ONLINE: EPODOC & WPI; TXTE

(54) Title of the Invention: Computer device and method for isolating untrusted content
Abstract Title: Selectively executing an untrusted task in a secondary user account with folder mapping and

redirection of file access request

(57) User process (120, fig. 2) in primary user account 121 requests operating system 202 to action a task. Agent 300,
executing in cooperation with the OS comprises a task interceptor (320, fig. 2), a task policy unit (330, fig. 2), an
isolation environment provisioner (340, fig. 2) and a controller (310, fig. 2). The interceptor intercepts and provides
metadata relevant to the task before it is actioned by the OS. The task policy unit examines the metadata and
selectively outputs a result identifying the task as untrusted, e.g. due to the nature of the task or because it
accesses untrusted content. The provisioner provisions task isolation environment 350 by programmatically
creating secondary user account 121b and the controller causes the untrusted task to be executed as an isolated
process in the task isolation environment. The primary and secondary user accounts comprise respective first and
second folders for files that are accessible under the respective user accounts. The agent maps second folder 126b
to first folder 126a and redirects a file access request by the isolated process to subject file 125b in the second

folder in relation to target file 125d in the first folder.

121

Agent
300

Native User
Process 120

Native Content

Isolated Process
120b

File 125a

Trusted Content

File 125¢

lUntrusted Content)

Isolated Content
File 125b

File 125d

Fig. 7

200

V ¢¢licqe 99

1/10

YY)

)
121
< 5
| | 122
R
=
ACL USRP
116 - 120
“ ‘\‘.“‘ o ‘E
SECO 210 F/
\ J
RTE 203
0OS 202
H/W201

Fig. 1

200

210

3 i Provisioner 340
i
e mm e s mm s e mmm————————— 1
1 1
i ! Controller 310
i — 5
User : Task | 3
Interface ! Interceptors ! | Task Policy Unit 330 E
204 A D 20 AN)
y
(O]
202
200

Fig. 2

3/10

Browser

y

20A

Browser
Task
Interceptor
Unit

20C

Email Client Application
_320B
Email Application
Task Task
Interceptor Interceptor
Unit Unit

File Requestor

32

File
Task
Interceptor
Unit

A

Controller 310

Fig. 3

300

4/10

. \
[z —[z) [z 25
|
@ | I
N | |
USRP SECO Isolated |
120 210 Process I
I 120b
I 1\350
_ y. |)

t
1
E‘H i | Provisioner 340 300
i
1
1
1

1

i

Interceptors <_|—>. i
1 Controller 310 !

’ i

oS J ! | Task Policy Unit 330 i
202 : :

User Task
Interface
204
y 320

Fig. 4

5/10

Fig. 5

bﬁj 121b)
USRP
120
(Isolated Process
L 120b
OoBJ 3
] {123b \350
\. J
124 Object Task
Interceptor [N320E
124
Os Agent
202 300
200

6/10

4 < N
122 | 122b 121b
4 —
USRP Isolated Process
L 120) 120b
4 ™\
OBJ oBJ oBJ 350
k123a 123b) 123¢c
|\ _ A Y,
Object Task |
Interceptor [N320E
\ 4
Os Agent
202 300
Ny N J
200

Fig. 6

7/10

122 122b
| e | 121/ agent) 1220 | 121b)
300
. h \
Native User (Isolated Process
Process 120 > < L 120b
J
Native Content |, .| Isolated Content
File 125a File 125b
e
/ -~
Trusted Content ¢
File 125¢ |

|

|

[

|

Untrusted Content |
H ‘-_____ _________ ___.__|__

m7 File 125d :

\1 26a

335 \350

0s
202

200

Fig. 7

8/10

Il

P 127
125e

410

00

20
|1_22/_ 120) /_—Iﬁ |1_22_ 121b)

/
1 Agent E—
300
r——~_ [Isolated Process]
| T 120b
I K: |
| Network drive F———+——1———— | ==~ &

——1 | | |
-\420 I ok :
_____ .——————-P: Network drive |

_———————

- J - \ J
335 \350
0s
202
o N
\
200

Fig. 8

9/10

[=]
]
]

—

440
H\ﬁo

\500b

/_Atlgeﬁ -
--------- L o

[Isolated Process]

|122b

121b)

‘ Print Ticket |

335
N N
\S 2N AN / v J

' (~\350

CSRPP [———————————- ! CSRPP
A
202 [::f:i:] .
XPS Print GDI Print
MXDW

\ 4

Print Task Interceptor
N320P
v
[Print Spooler API]

10/10

INTERCEPT
TASK

5101

PROVISION
ISOLATION
ENVIRONMENT

5102

EXECUTE TASKIN
ISOLATION

ENVIRONMENT
5103

Fig. 10

COMPUTER DEVICE AND METHOD FOR
ISOLATING UNTRUSTED CONTENT

BACKGROUND

Technical Field

[01] The present invention relates generally to the field of computers and computer devices.
More particularly, the present invention relates to a computer device and a method for isolating

untrusted content.

Description of Related Art

[02] There is an on-going need to protect computer devices from malicious content, as is well
recognised in the field of computer security. In particular, it is desired to protect computer
devices from malicious content which may be introduced by actions of the user, such as
downloading a file or executing an application. In the related ar, it is known to isolate untrusted
content by limiting the resources of the computer device which are accessible by the untrusted
content. As one example, it is known to perform content isolation by using virtual machines,

which emulate a physical host computer.

[03] A difficulty arises in that many of the current mechanisms for content isolation are
relatively insecure, in that they still allow malicious content to reach important resources of the
computer device. Also, many known implementations of content isolation are relatively
resource intensive, such as by needing a relatively large amount of memory, disc space or

computer processing power.

[04] As a further difficulty, content isolation often requires a relatively skilled and
knowledgeable user of the computer device. Therefore, it is quite difficult for an ordinary user to
implement content isolation in a way which is safe, effective and reliable, yet also simple and
intuitive. In some cases, content may need to be adapted in advance for the purposes of
isolation, by being specifically prepared in a manner capable of being isolated, which increases

costs and makes content isolation less likely to be implemented in practice.

[05] The example embodiments have been provided with a view to addressing at least some
of the difficulties that are encountered in current computer devices and computer networks,
whether those difficulties have been specifically mentioned above or will otherwise be

appreciated from the discussion herein.

SUMMARY OF THE INVENTION

[06] According to the present invention there is provided a computer system, a method and a
computer-readable storage medium as set forth in the appended claims. Other, optional,
features of the invention will be apparent from the dependent claims, and the description which

follows.

[07] There now follows a summary of various aspects and advantages according to
embodiments of the invention. This summary is provided as an introduction to assist those
skilled in the art to more rapidly assimilate the detailed discussion herein and is not intended in
any way to limit the scope of the claims that are appended hereto.

[08] A computer system and method are described which are arranged to intercept a task
from a primary user account prior to execution of the task by the computer device, where the
task relates to an untrusted content. A task isolation environment is provisioned for executing
the task, including programmatically creating a secondary user account on the computer device.
The task is executed in the task isolation environment in relation to the untrusted content. A
second folder in the secondary user account is mapped to a first folder in the primary user
account and file access requests for the second folder are intercepted by an agent and are
redirected to the first folder.

[09] In one example there is described a computer device, comprising: a hardware layer
including at least a processor and a memory; an operating system which performs tasks using
the hardware layer; a user process operating in a primary user account controlled by the
operating system and configured to request a task to be actioned by the operating system,
wherein the primary user account comprises a first folder for containing files which are
accessible under the primary user account; an agent configured to execute in cooperation with
the operating system, and wherein the agent comprises: a task interceptor unit arranged to
intercept the task before being actioned by the operating system and provide task metadata
relevant to the intercepted task; a task policy unit arranged to examine the task metadata and
selectively output a policy result identifying the task as being an untrusted task; an isolation
environment provisioner unit configured to provision a task isolation environment by
programmatically creating a secondary user account on the computer device, wherein the
secondary user account comprises a second folder for containing files which are accessible
under the secondary user account; and a controller configured to cause the untrusted task to be
executed as an isolated process in the task isolation environment provided by the secondary
user account; wherein the agent is further configured to map the second folder of the secondary
user account to the first folder of the primary user account, and to redirect a file access request
by the isolated process to a subject file in the second folder to be performed by the operating

system in relation to a target file in the first folder of the primary user account.

[10] In one example there is described a method for isolating untrusted content on a computer
device, the method comprising: intercepting a task from a primary user account prior to
execution of the task by the computer device, wherein the task relates to an untrusted content;
providing a task isolation environment for executing the task, including provisioning the task
isolation environment by programmatically creating a secondary user account on the computer
device; executing the task in the task isolation environment in relation to the untrusted content;
and redirecting a folder from the task isolation environment to a folder of the primary user

account.

[11] In one example, a tangible non-transient computer-readable storage medium is provided
having recorded thereon instructions which, when implemented by a computer device, cause
the computer device to be arranged as set forth herein and/or which cause the computer device

to perform any of the methods as set forth herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[12] For a better understanding of the invention, and to show how example embodiments may

be carried into effect, reference will now be made to the accompanying drawings in which:

[13] Figure 1is a schematic view of an example computer device;

[14] Figure 2 is a more detailed schematic view of the example computer device;

[15] Figure 3 is a further schematic view of the example computer device;

[16] Figure 4 is a further schematic view of the example computer device while in operation;

[17] Figure 5 is a further schematic view of the example computer device while in operation;

[18] Figure 6 is a further schematic view of the example computer device while in operation;

[19] Figure 7 is a further schematic view of the example computer device while in operation;

[20] Figure 8 is a further schematic view of the example computer device while in operation;

[21] Figure 9 is a further schematic view of the example computer device while in operation;

and

[22] Figure 10 is a schematic flowchart of an example method of operating the computer

device.

DETAILED DESCRIPTION OF THE EXAMPLE EMBODIMENTS

[23] At least some of the following example embodiments provide an improved mechanism for
isolating untrusted content in a computer device. Advantageously, the example embodiments
leverage inherent security of an existing operating system to provide a new mechanism for
content isolation. In one example, content isolation can be implemented multiple times
simultaneously on the same computer device, i.e. multiple items of untrusted content may each
be given their own isolation environment simultaneously. The example mechanism is simple
and convenient for the user, and is lightweight to implement. Further, the example
embodiments are more secure than many other practical implementations. Many other

advantages and improvements will be discussed in more detail herein.

[24] Many operating systems apply a security model wherein access privileges are based on a
user account. The operating system may define privilege levels appropriate to different classes,
or groups, of users, and then apply the privileges of the relevant class or group to the particular
logged-in user (e.g. ordinary user, super-user, local administrator, system administrator and so
on). The user is authenticated by logging in to the computer device, and the user, via their
previously prepared security account, acts as a security principal in the security model. The
operating system of the computer device then grants appropriate privileges to processes which

execute in that user’s security context.

[25] In practice, there is a widespread tendency to grant additional privilege rights, such as a
local administrator level, or a system administrator level, to all members of the relevant user
group, and thus allow access to almost all of the resources of the computer device. This level of
access may be greater than is desirable or appropriate from a security viewpoint. For example,
there is the possibility of accidental tampering with the computer device, leading to errors or
corruption within the device. Further, a particular process (e.g. an infection or malware) may
maliciously access key resources of the computer device with the deliberate intention of

subverting security or causing damage.

[26] Figure 1 is a schematic overview of the computer device 200. The computer device 200 is
configured to authenticate a user by an appropriate login procedure. For example, the user may
log in to the computer device 200 with a user identity and password, and their user credentials
may be validated locally or via a remote service such as a domain controller (e.g. an Active

Directory domain controller).

[27] Generally, the computer device 200 includes physical hardware (HW) 201 such as
memory, processors (CPUs), I/O interfaces, backbone, power supply and so on. An operating
system (OS) 202 provides a multitude of components, modules and units that coordinate to

provide a runtime environment (RTE) 203 which supports execution of a plurality of processes

(USRP) 120. The computer device 200 further includes a plurality of resources 115, 125. These
resources 115, 125 are the components of the computer device that the processes 120 may rely
upon in order to carry out their execution. For example, the resources 115, 125 may include

installed software, system services, drivers, files and/or registry settings.

[28] The example embodiments of the present invention will be discussed in detail in relation
to computers and computer devices using the Windows™ family of operating systems provided
by Microsoft™. However, the teachings, principles and techniques of the present invention are
also applicable in other example embodiments. For example, the example embodiments are
also applicable to other operating systems, such as UNIX, Linux, and iOS, and in particular

those having a discretionary access control security model.

[29] As shown in Figure 1, the operating system 202 may include a security module (SECO)
210 which is provided to enforce security within the computer device 200. As one example, the
security module 210 is provided by the Windows™ operating system as supplied by
Microsoft Corp of Redmond, Washington, USA, under the trade marks Windows NT, Windows
2000, Windows XP, Windows Vista, Windows Server 2003, Windows Server 2008, and
Windows 7, amongst others. The security module 210, also termed a security sub-system or
security manager, suitably enacts the Windows security model as described, for example, in
“Windows Security Overview” published 10 June 2011 by Microsoft Corporation.

[30] Each process 120 initiated by a user will be run in a security context 121 that derives
access rights and permissions from the user’s security account. To this end, each process 120
is provided with an access token (AT) 122. The access token 122 typically carries the security
identity (SID) of the user and SIDs of any other security groups to which the user belongs. The
access token 122 thus defines the privileges as held on this computer 200 by the user and their

relevant security groups.

[31] In the example embodiment, the security module 210 is arranged to perform an access
check when a process 120 requests access to any of the resource 115, 125. The security
module 210 performs the access check by comparing the access token 122 of the process 120
against a security descriptor, such as an access control list (ACL) 116, 126, associated with the
relevant resource 115, 125. Here, the access control list 116, 126 is suitably a Discretionary
Access Control List (DACL) which identifies SIDs of users and groups that are allowed, or

denied, various types of access (read, write, etc.) as appropriate for that resource.

[32] In Figure 1, the security module (SECO) 210 in the operating system 202 is arranged to
control access by the process 120 to the resources 115, 125, according to the respective
access control list 116, 126. For example, a particular process 120 is able to read from, but not

write to, a file of the first resource 115. Typically, the defined access types will depend upon the

type of resource being accessed. For example, storage is typically defined by read and write
access rights, while a process may have terminate access rights which determine whether or
not a request to terminate that process will be actioned by the operating system 202. As noted
above, a user-level security context 121 is based on the user as the security principal and the
access token 122 is set accordingly. Suitably, in a system which adopts the least-privilege
access model, the user-level security context 121 is deliberately restricted to a minimal set of

access rights as a default, original privilege level.

[33] Figure 2 is a further schematic view of the computer device, including an example
mechanism for isolating untrusted content. In one example, the mechanism applies task

isolation functions in the computer device.

[34] Figure 2 shows one or more user processes 120 that are currently executing in a
corresponding user security context 121. The operating system 202 provides a user interface
component 204 which provides physical interactions with the user, including providing outputs to
the user (e.g. by providing a graphical user interface on the display screen) and receiving inputs
from the user (e.g. via keyboard, mouse or other input devices). The user inputs received
through the user interface 204 cause the user processes 120 to perform tasks. Typically, each
task requires the user processes 120 to interact with relevant components of the operating
system 202, most often via the operating system security module 210 described before. In a
windowed operating system (such as Microsoft WindowsTM), the user interface 204 may interact
with the user via one or more window station objects. In the operating system, the window
station object is responsible for displaying the user interface and receiving the user inputs. This
window station object contains, amongst other things, one or more desktop objects, as will be

familiar to the skilled person, which control the user’s desktop as a graphical user interface.

[35] These user interactions may cause the computer device 200 to perform tasks, at least
some of which may be defined in advance as being ‘untrusted’ tasks. For example, untrusted
tasks may include certain forms of Web browsing, viewing email attachments, starting an
untrusted application program, or accessing a particular file in a storage medium. Generally,
the untrusted tasks may involve non-executable content (data) and/or may include executable
content (code) which, at least initially, is not trusted. In the example embodiments, there is a
need to isolate these untrusted tasks, so that these tasks are inhibited from interfering with other
tasks or components of the computer device. Isolation is advantageous to inhibit interference,
whether caused intentionally or unintentionally. Notably, ‘untrusted’ does not mean that the
respective task is necessarily malicious. Instead, the untrusted task simply has the possibility of
introducing undesired effects and, at least initially, it is desired to isolate the untrusted task away

from most of the other resources or components of the computer device.

[36] Often, as a practical example, there may be a need to open untrusted content within an
already trusted application. For instance, an untrusted PDF document can be opened and
viewed in a trusted document reader application (e.g. Adobe Acrobat Reader). A trusted Web
browser (e.g. Internet Explorer) may be instructed by the user to view an untrusted website.
Hence, there is an advantage in being able to isolate the trusted applications, at least

temporarily, while untrusted content is being manipulated.

[37] As shown in Figure 2, a content isolation agent 300 is provided to protect the computer
device 200 from malicious attacks by untrusted content. The example content isolation agent
300 is shown installed on the computer device 200, and suitably operates in close association
with the native operating system 202. In this example, the content isolation agent 300 includes
a controller unit 310, one or more task interceptor units 320, a task policy unit 330 and a

provisioner unit 340.

[38] The task interceptor units 320 are each arranged to intercept one or more respective
tasks, when those tasks are instructed by the user processes 120. In one example, each task
interceptor unit 320 is arranged to intercept certain tasks prior to implementation of those tasks
by the operating system 202. Further, the interceptor units 320 may obtain task metadata
concerning the intercepted task, and communicate that task metadata to the controller 310.

[39] The policy unit 330 is configured to store policies relating to the intercepted tasks, suitably
in a policy database 335 (e.g. recorded on a non-transient storage medium). The policy unit
330 interrogates the policy database 335 based on the provided task metadata and returns a

policy result to the controller 310.

[40] The controller 310 is configured to intervene selectively in relation to an intercepted task.
The controller 310 may, for example, decide to block (deny) the requested task, allow the
requested task to continue natively to reach an intended target in the operating system, or to
isolate an untrusted task using an isolation environment.

[41] In practice, many of the tasks which are instructed by the user processes 120 may
proceed normally with minimal intervention, because these tasks do not relate to untrusted
content. That is, the task interceptor units 320 will not intercept a task which, e.g. by its type or
nature, is not of interest to the agent 300, and may allow those tasks to proceed directly to the
operating system. However, where a task is identified as potentially relating to untrusted
content, then the task is intercepted and the controller 310 now has the opportunity to review
the task using the policy unit 330 and to selectively intervene based on the obtained policy
result. Suitably, the policies set with respect to the respective devices are capable of being
adapted with any desired level of granularity. The policies within the policy unit 330 may be

tailored appropriate to individual devices or individual users, if desired.

[42] Figure 3 is a schematic view of the task interceptor units 320 in more detail.

[43] In one example embodiment, the task interceptors 320 may include at least a browser
task interceptor unit 320A, an email task interceptor unit 320B, an application task interceptor

unit 320C, and a data file task interceptor unit 320D, amongst others.

[44] The browser task interceptor unit 320A may include registering a plugin with a browser
application. In one example, the plugin may be a browser helper object (BHO) plugin. This
plugin notifies the respective task interceptor unit 320 of each web page that is requested by the
user using the browser, prior to the web page being fetched by the browser application. The
interceptor unit thus obtains task metadata about the respective task, in this case metadata
about the requested web page about to be fetched, and passes this task metadata to the

controller 310.

[45] The email task interceptor unit 320B may be implemented as an add-on or plugin to an
email client application, such as Outlook. In particular, the add-on or plugin may receive ‘save
to disc’ notifications whenever the email client attempts to access data files on the disc. The
task interceptor unit 320 may receive task metadata, which in this example concerns the data
file to be accessed, the email which requested the access, and so on. The interceptor unit thus
obtains task metadata about the respective task, in this case being metadata about the

requested file access, and passes this task metadata to the controller 310.

[46] The application task interceptor unit 320C may hook certain process and thread
generation functions within the operating system, such as a ‘CreateProcessinternal’ function
which creates a new process and its primary thread. This process creation function is called
when starting a new application program. The interceptor unit thus obtains appropriate task
metadata, in this case information about the intended application to be opened, and passes this

metadata to the controller 310.

[47] The file interceptor unit 320D may intercept tasks relevant to opening a stored file (i.e.
tasks performed by the computer device in response to double-clicking a file in a file explorer
process). The interceptor unit thus obtains the task metadata, in this case information about the

intended data file to be opened, and passes this metadata to the controller 310.

[48] Notably, a particular first example of the computer device 200 may have one particular
first set of task interceptor units 320. Meanwhile, a second example computer device 200 may
have a differing set of the task interceptors 320. Thus, the nature and type of the task

interceptors 320 installed on the computer device may vary.

[49] Figure 4 is a schematic view of the computer device 200 with the content isolation agent

300 in operation.

[50] Where the controller 310 determines that the task in question relates to untrusted content,
i.e. is determined to be an untrusted task, then the controller 310 causes the untrusted task to
be opened in a task isolation environment 350. The controller 310 may cause a task isolation
environment 350 to be provisioned. The isolation environment 350 may be configured based on
configuration settings provided by the policy unit 330. Suitably, the policy unit 330 stores
policies relevant to each identifiable task which is capable of being intercepted by the task
interceptor units 320. Thus, the system is capable of implementing different types of task

isolation environments, each having different configurations, based on the policy settings.

[51] Where a new task isolation environment is required, then such a task isolation
environment 350 is provisioned by the controller 310, suitably by instructing the provisioner unit
340. The provisioner unit 340 provisions the new task isolation environment 350 by
programmatically creating user credentials for a new user account 121b on the computer device
200, and presenting those created user credentials to the operating system 202. Suitably, the
new user account 121b is a temporary user account with a programmatically created password
set by the provisioner 340. For example, the provisioner 340 may generate the password as a
random or pseudo-random character string. The content isolation agent 300 automatically
provides these user credentials to generate the temporary user account 121b. Thus, the
computer device 200 now contains the original user account 121 of the original logged in user,
as a first user account. The device also now contains a second user account 121b, namely the
temporary user account, which has been programmatically created by the provisioner 340. The
temporary user account 121b has a corresponding access token 122b, created by logging on
with the credentials with the temporary user account 121b as just created. The temporary user
account 121b thus forms the task isolation environment 350 in which tasks may be executed
safely and in isolation from protected resources of the computer system 200, as will be

discussed in more detail below.

[52] In one example, the access token 122b of the temporary user account 121b is granted
rights to the desktop user interface 204 of the logged in user account 121, enabling untrusted
tasks running under the temporary user account 121b to be displayed on the same desktop of
the current user 121. The isolated tasks 120b in the task isolation environment 350 may be
displayed simultaneously with trusted tasks 120 which are already being executed, or which are

to be executed later, by this logged on user account 121.

[53] In one example, the controller 310 launches the intercepted task now inside the task
isolation environment 350 provided by the temporary user account 121b. Thus, the untrusted
task launches processes 120b which are associated with the access token 122b of the
temporary user account 121b. Notably, the security module 210 of the operating system 202,
which is conveniently native to the computer system 200, now is leveraged to isolate this

untrusted task away from content of the main user account 121.

10

[54] By default, the isolation environment 121b provided by the temporary user account 121b
will not enjoy access to the profile and data of the logged in user account 121, and vice versa.
Further, the temporary user account 121b is suitably given minimal standard privileges, i.e.

without administrative access, and is isolated from resources of the operating system 202.

[55] The untrusted task now runs in this temporary user account 121b and accesses the
profile of the temporary user for both data access and registry access. Any malicious activity
only affects the temporary user account 121b and does not affect the primary user account 121.

[56] In one example embodiment, the temporary user account 121b is non-persistent. The
temporary user account 121b may be completely deleted after use. That is, the controller 310
may determine that the temporary user account 121b is no longer needed, and may delete the
temporary user account 121b from the computer device 200, thus removing all traces of the
untrusted task and untrusted content. When the user wishes to repeat the untrusted task again,
associated with the untrusted content, again a new task isolation environment is provisioned as

discussed herein and the task is run within that new task isolation environment.

[57] In another example embodiment, task isolation environments 350 may be persistent
between sessions. That is, the controller 310 may choose to maintain a particular isolation
environment 350 over one or more sessions, thus providing continuity for the user for the
relevant task. In one example, a session is started by the real user logging in to the computer

device, and concluded by the user logging out.

[58] Figure 5 is a further schematic view of the computer device. As shown in Figure 5, the
primary user account 121 may be associated with one or more named objects 123a, 123b. In
this example, a difficulty arises in that an application executing in the isolation environment 350
is unable to access the named objects 123a, 123b which are associated instead with the

primary user account 121.

[59] In many operating systems, such as Windows™, named objects are used for
inter-process communication and synchronization. Typical objects include events, semaphores,
mutexes, waitable timers and file-mapping (sections). Each process in a particular user session
(i.,e. with the same Terminal Service session id) creates or opens named objects in a
namespace of the user session. This user session namespace is secured with the user’s logon
SID. As described above, a process 120b running in an isolation environment 350 shares the
session id of the primary user account 121, but will have a different logon SID, and therefore by
default does not have access to the namespace of the primary user account 121.

[60] To provide access for the isolated processes 120b to the user session namespace, each
operation to open or create a named object (i.e. an object create or an object open operation) is

intercepted, by an appropriate task interceptor 320E, and an access request message is sent to

11

the agent 300. Notably, the task interceptor 320E is provided in relation to the isolation
environment 350, but otherwise may be similar to the task interceptors 320A-D discussed
above. The agent 300 checks the policy rules (for example via the policy unit 330 discussed
herein) to ensure that access to the requested object 123a is allowed and, if granted, the agent
300 replies to the requesting process 120b with an impersonation token 124 that has access to
the relevant namespace. The thread of this isolated process 120b then calls the respective
‘create’ or ‘open’ operation using the security context now provided by the impersonation token
124. In this example, the impersonation token 124 is discarded after the create/open operation
and the thread reverts back to its original security context 121b. As a consequence, only the
resultant handle has access to the object, therefore preventing escalated access by that

process 120b to other objects within the session namespace of the primary user.

[61] Figure 6 is a further schematic view of the computer device in operation. In this example,
the process 120b in the isolation environment 350 desires to create a named object 123c, which
will then exist within the isolation environment. In this situation, the name of the object 123c is
virtualized by the agent 300, to ensure that the name of this object does not conflict with a
named object 123a in the session of the primary user having the same original object name. In
more detail, a ‘create object’ request made by the isolated process 120b is intercepted by the
agent 300 (e.g. by providing an appropriate task interceptor 320E in the isolation environment
350). The name of the requested object is amended by the agent 300 and the agent 300 replies
to the requesting process 120b with the modified name for the object 123c¢. For example, the
name of the object is modified by prepending or appending additional elements, such as the SID
of the isolation environment 350. The thread of this isolated process 120b then continues with
the call to the operating system 202 to create the object with the modified name provided by the

agent 300, thus creating the desired named object 123c¢ in the isolation environment 350.

[62] When the isolated process 120b opens a desired object, the ‘open’ operation is
intercepted by the task interceptor 320E and the modified name is inserted by the agent 300.
The open object operation then continues to the operating system 202 using the modified name,
thus leading to the object 123¢ within the isolation environment 350. Conversely, it is possible
that the open operation will fail, because the desired object 123c does not exist within the
isolation environment 350. Here, it is possible for the agent 300 to instead open the original
named object, e.g. object 123a, where the permissions in the policy unit 330 are favourable,
using the impersonation token mechanism discussed above in Figure 5. This open operation
thus now reaches the original object 123a, such as a system-wide object owned by the
operating system 202, for example. Hence, by selectively opening objects using the original
name, or the modified name, as appropriate, controlled by the agent 300, access is provided for
the isolated process 120b either to the local object 123¢ having the modified object name, or,

when expressly permitted, to the original named object 123a.

12

[63] This virtualization, using modified names, is significant in ensuring that a particular
application (e.g. Adobe Acrobat Reader) is isolated from other instances of the same application
within the same session (e.g. other instances of Adobe Acrobat Reader in another isolation
environment or in the primary user’s context). Notably, many applications use named objects to
communicate with one another, or to restrict the number of instances of an application. Hence,
controlling access to named objects allows the system to function on a practical level, and

achieve the functions desired by the user, while maintaining effective isolation.

[64] Figure 7 is a further schematic view of the computer device while in operation. In this
example, the agent 300 is configured to perform a folder redirection function by mapping certain
folders in the isolation environment 350 to respective folders in the primary user context 121.
The folder redirection function allows content (e.g. data files) to flow into or out of the isolation
environment 350 under the strict control of the agent 300. Notably, the computer device 200 can
now provide a more satisfactory user experience in terms of storing and accessing data files
which are of interest to the user, while also achieving security by using the task isolation

environment 350.

[65] As discussed above, each isolation environment 350 typically persists for only a relatively
brief time period. VWhen the relevant temporary user account 121b is deleted, any content within
that account is likewise deleted. If a file is downloaded by a user into the set of folders
associated with the isolation environment 350, then that file will be lost when the temporary user
account 121b is deleted. The default behaviour of the security mechanism enforced by the
operating system 202 further means that the processes 120b in the isolation environment 350

cannot save files into any folder outside of that temporary user account, and vice versa.

[66] In one embodiment, the task isolation environment 350 can optionally be configured to
redirect one or more folders from the data portion of the temporary user account 121b to the
profile of the real logged on user. For instance, a “downloads” directory in the isolation
environment 350 can be redirected to an “untrusted downloads” folder in the profile of the real
logged in user. This folder redirection is suitably handled by the controller 310 within the agent
300. Conveniently, the controller 310 runs in a system security context, i.e. has advanced
higher level privileges, which allow the controller 310 to redirect file open requests from one

user profile to another, when performing the following steps.

[67] File access operations, including creating and opening files, typically use application
programming interfaces (APIs) within the operating system 202. Conveniently, the agent 300
hooks these APIs by a hooking module, suitably implemented as a DLL which is loaded into
every process. Thus, all file creation and file open requests directed toward the operating
system 202 are redirected instead to the agent 300. The controller 310 may then examine the

relevant file open or file creation task against the policy unit 330 to determine the policy result.

13

[68] In one example, the computer device 200 may be controlled to open a native content file
125a stored in any of the folders of the logged-in user profile 121, such as by the user double-
clicking an icon in a file explorer process. The agent 300 intercepts the file access request and
in this case allows the file access request to proceed as normal toward the operating system
202. The requested file 125a is accessed as intended by the relevant native user process 120.
Thus, the computer device 200 with the agent 300 installed therein allows the user to continue

accessing their own trusted content without any negative interference.

[69] Meanwhile, a first folder 126a of the primary user account 121 is mapped to a second
folder 126b of the temporary user account 121b. A file access request toward a subject file in
the second folder 126b of the subject user account is redirected by the agent 300 to instead be
performed in relation to a target file 125d in the first folder 126a of the primary user account 121.
In this example, the mapping may be a one to one mapping between the first and second
folders. In other examples, the agent 300 may hold a many to one mapping between folders in
the respective user accounts such that a plurality of folders in the secondary user account 121b
are redirected to a certain folder 126a in the primary user account 121, for simplicity and

convenience of operation.

[70] Where an untrusted task 120b attempts to open a file 125b held locally in a folder within
the isolation environment 350, then the agent 300 returns control to the hooking module (e.g.
the data file task interceptor unit 320), and the relevant file continues to be created or opened

natively by the operating system 202 in the temporary profile 121b.

[71] Meanwhile, where the untrusted task 120b is attempting to open a file that should be
redirected, then the agent 300 performs impersonation to impersonate the real logged in user.

That is, the agent 300 creates an impersonation token of the real user account 121.

[72] Where the file access in question would overwrite a trusted file (i.e. a file in the user
profile which is currently untagged) then an ‘access denied’ error is returned by the agent 300.
Otherwise, assuming that it is safe to proceed, the impersonation token is duplicated into the
process hosting the untrusted task in the isolation environment 350. The handle is returned to
the task interceptor unit 320 via the hooking module in the untrusted task. The task interceptor
unit 320 impersonates the real logged on user using the impersonation token handle and
creates or opens the redirected file. The impersonation token is then removed and the token
handle is closed. If the file access was successful, in that the relevant file was successfully
created or opened, the agent 300 tags the relevant file (described further below). Now, when the
untrusted task in the isolation environment 350 attempts to read or write data using this handle,

that read or write will automatically target the redirected file.

14

[73] In one example, the isolated process 120b may request a file access to open or create a
file 125b which is stored in one of the relevant folders associated with the temporary profile
121b. The file access request is intercepted by the agent 300 and, in this case, is permitted. The
logged-in user may then continue to access the isolated file 125b under the secondary user

account 121b for as long as the isolation environment 350 persists on the computer device 200.

[74] In another example, the isolated process 120b may make a file access request to open or
create a file in a folder 126b of the isolation environment 350 which has been mapped by the
agent 300 into a respective folder 126a in the set of folders of the primary user context 121. The
agent 300 strictly controls which, if any, of the files 125c¢, 125d, within the target folder 126a may
be accessed by the isolated process 120b, and determines the level of access which is
permitted in each instance (e.g. no access, read-only, full access including read, write and
delete privileges). These access privileges may be configured in advance and stored by the
agent 300. For example, the access privileges may be stored in the policy database 335 of the
policy unit 330. The access privileges are then consulted in response to a relevant file access

request.

[75] In one example, a mapped folder 126a in the primary user account 121 contains only
untrusted files 125d. That is, the “untrusted downloads” folder contains only files which have
been downloaded via one of the task isolation environments. In this example, access may be

controlled at the level of the folder, or individually for each file within the folder.

[76] In another example, the mapped folder 126a in the primary user account 121 may contain
a mixture of trusted files 125¢ and untrusted files 125d. This is more convenient for the user, in
that they may now store files obtained from various sources together in one folder. As an
example, a single “downloads” or “desktop” folder in the primary user account 121 may contain
a plurality of files from a mixture of sources. One or more of the files in this folder may be
created or opened by processes 120 operating under the primary user account 121, while one
or more other files in the same folder were created or opened by processes 120b operating

under one of the secondary user accounts 121b.

[77] Thus, this folder redirection mechanism enables tasks within the isolation environment
350 to reach selected data files within the profile of the logged-on user under the strict control of
the agent 300.

[78] In one example embodiment, an untrusted file 125d is provided with a tag 127. Should
the tagged file 125d later be accessed by the logged on user, such as by the user manually
requesting opening of the file using a file explorer program, then the tag set earlier causes the
controller 310 of the agent 300 to intervene. Specifically, the controller 310 causes this

untrusted (tagged) file 125d to be opened instead in the isolation environment 350 from where

15

that file was created, as identified by the tag. If the original isolation environment 350 has
meanwhile been deleted, then a new isolation environment 350 may be provisioned and the file
opened from the new isolation environment as appropriate, along with a consequential updating

of the tag.

[79] In summary, the isolation environment 350 can optionally be configured to allow data files
to be redirected from the isolation environment instead to the profile of the real logged on user.
For instance, it is desirable to redirect a downloads folder which receives downloaded files
during web browsing into a “untrusted downloads” folder within the user’s profile, in order to
allow the downloaded data files to persist within the users profile, even if the temporary user
account of the isolation environment 350 has been deleted by the agent 300. Further, the
example embodiments allow the redirected folder to target an existing folder in the real user’s
profile that contains a mixture of both trusted and untrusted data files, by the tagging

mechanism described herein.

[80] Where an application in the user account of the logged on user attempts to open an
untrusted (tagged) data file then, optionally, an access denied error is returned to the user
application. Thus, a user application is prevented from directly accessing untrusted data files.
Meanwhile, the agent 300 may receive notification of the data file access request via the task
interceptor units discussed above, and may optionally cause the requested data file to be

opened instead within an isolation environment 350.

[81] Itis possible to implement file tagging in a number of ways. In a first example, a tag 127
may be placed in an alternate data stream, which has the advantage of leaving contents of the
original data file unaltered. This non-intrusive tagging method allows the tagged data files to be
viewed or edited even when the agent 300 is removed from the computer device. In one
example, the alternate data stream is a feature of NTFS in the Windows™ family of operating

systems.

[82] As another option, the tag 127 may be incorporated within the contents of the file, such as
by means of a header. Further, the file may be encrypted, so as to prevent opening natively by
the ordinary user account. Thus, the file is now only capable of being opened by the agent 300

as described herein.

[83] Suitably, the tag 127 applied to the untrusted data file 125d includes a task isolation
environment identifier which identifies the task isolation environment 350 from which that data
file originated (e.g. an environment name and identifier). The tag may include a URL from
where the file was downloaded. The tag may include an email sender identity, such as where
the file was saved from an Internet attachment. These and other specific implementations will

now be apparent to the skilled person from the discussion herein.

16

[84] Figure 8 is a further schematic view of the computer device while in operation. In this
example, the agent 300 is configured to perform a mapping function for certain network drives.

[85] It is common for users in a business environment to store data files in a centralised,
managed network drive. As will be familiar to those skilled in the art, a mapped network drive

may be implemented by a shared folder.

[86] A host server device 400 may be coupled to the computer device 200 over a suitable
network 30. The server 400 provides access to a shared folder 410 on a suitable physical
storage medium. The shared folder 410 is typically mapped to a network drive letter on the
computer device 200, such as the drive “K:” being mapped to a network folder location
“//serveri/folders/sharedfolder123”. Conveniently, the mapped network drive 420 is readily
accessed when operating the computer device 200. The mapping is typically configured as part
of the primary user account 121, e.g. via a script at logon. The mapped network drive 420
improves resilience and security for the stored data, by allowing the stored data to be backed up
from the server 400 and preventing loss due to theft or damage of the computer device 200. In
one example, a mapped network drive is useful for sharing data files amongst a plurality of
users who are each granted access to the same shared folder as a mapped network drive in
their respective primary user account.

[87] There is a desire to take advantage of the isolation environment 350 discussed above
while also providing access to a mapped network drive 420 on the computer device 200.
However, the least-access security principle means that the isolation environment deliberately

cannot access important resources such as a mapped network drive.

[88] In one example, provisioning the isolation environment 350 further includes the step of
mapping one or more network drives of the temporary user account 121b according to
respective network drives which are already mapped in the primary user account 121. This
process may include discovering one or more network drives which are already mapped within
the primary user account 121. In a Windows™ operating system the function QueryDosDevice
may be used to obtain information regarding the current set of device names and their relevant
mappings in relation to the primary user account 121. The process may then include recreating
the relevant network drive mappings in the context of the temporary user account 121b. In a
Windows operating system, the function DefineDosDevice may be used to define a network
drive mapping. The agent 300 is thus configured to provision the new temporary user account
121b with one or more network drive mappings 420b which match one or more of the mapped
network drives 420 of the primary user account 121. The agent 300 may be configured, e.g. via
an administration interface, to determine the set of network drives which are to be provisioned in

each secondary user account 121b, and the respective level of acces which is to be permitted.

17

[89] When the user now operates the computer device via the temporary user account 121b,
these automatically provisioned network drive mappings 420b may be presented through the
user interface 204. A substantially equivalent operating experience may be achieved, whether
the user operates the computer device natively through the primary user account 121 or via a
process or application in the secure isolation environment 350. Notably, the user interface may
present equivalent information in terms of views of the network drives, so that network drives
seen from an explorer window when in the insolation environment 350 are equivalent to a native
explorer window. The user interface may consistently present relevant metadata such as
information about the network location 410 and the server 400 where the drive is hosted, and

information about a current connection state of the network drive.

[90] In one example, access to the mapped network drive 420 or 420b is controlled by the
agent 300 is a similar manner to that described above for a locally hosted file or folder. Access
permissions may be defined in advance and enforced by the agent 300 upon each intercepted
file access request. When an isolated task 120b is permitted to access a file 125e on a mapped
drive 420b, an impersonation token 124 of the primary user account 121 is created and used to
impersonate the security rights of the primary user account 121 to allow access to the requested
file 125e. When permitted, files may be stored onto the mapped network drive 420 as untrusted
files in the manner described above. The tags 127 may be used to control subsequent access to
the untrusted files 125e, as previously described herein.

[91] In a corporate environment, multiple users may be given access to the same mapped
network drive 420. Suitably, each client device 200 comprises the agent 300 which operates in
the manner described herein and thus allows safe access to the untrusted files 125e which may
have been stored onto the mapped network drive 420 by another user. Each untrusted file 125e
may have a tag 127 as described above. The agent 300 detects the tag 127 and, where shared
access to the untrusted file 125e is to be permitted, may cause the untrusted file 125e to be
opened using an appropriate task isolation environment 350 on the client device 200 of the

current user.

[92] Figure 9 is a further schematic view of the computer device 200 in operation. In this
example, the agent 300 controls access from the isolation environment 350 to one or more

printers 500.

[93] Printing is an essential function in most business environments. In one example, the
printer 500a is a local printer which is directly coupled to the computer device 200. In another
example, the printer 500b is a network printer which is made available over the network 30,
such as via a print server 440. The computer device 200 may have available a plurality of
printers 500, which may include a mixture of local and network printers 500a, 500b, as will be

familiar to those skilled in the art. Therefore, there is a need now to provide printing functions

18

while also taking advantage of the security enhancements provided by the isolation
environments 350 and the agent 300. However, the default isolation mechanisms of the security
manager 210 in the operating system 202 will not allow access to printers which are associated

with a different user account.

[94] In one example, provisioning the isolation environment 350 may further include
provisioning access to one or more printers 500. In one example, one or more of the printers
which are already available with the context of the primary user account 121 and likewise made

available in the context of the temporary user account 121b.

[95] In more detail, the primary user account 121 is assumed to have established a
connection to one or more printers 500a, 500b with corresponding printer user preference
settings held in the registry 127 of that context. In a Windows™ type environment, the operating
system 202 holds further printer-related user settings such as in a Client Side Rendering Print
Provider (CSRPP). The agent 300, via the provisioner unit 340, may provision the isolation
environment 350 including copying and populating user preference settings of one or more
printers from the primary user account 121 into the secondary user account 122. It will be
appreciated that such discovery and population functions are in no way trivial. In particular,
settings from the registry 127 of the primary user account 121 are discovered and populated
into the registry 127b of the temporary user account 121b. The agent 300 may further cause
printer settings held elsewhere in the operating system 202, e.g. in the CSRPP, to be populated
in relation to the temporary user account 121b, wherein those settings are derived from the
existing settings in the primary user account 121. In one example, calling a printer enumeration
function of the operating system from the context of the secondary user account 121b causes

the relevant settings to be populated by the operating system 202.

[96] In a second stage, the application or process 120b in the isolation environment 350 may
attempt a printing related function, such as displaying a list of connected printers. The printer list
may be compiled and displayed based upon the provisioned and populated information placed
previously by the agent 300 into the context of the secondary user account 121b, including
elements such as the registry 127b and other printer related components of the operating
system 202 (e.g. CSRPP).

[97] The application or process 120b may then proceed with the printing function, such as
commanding a new print job. Here, there is a need to support the interaction of the application
120b with the print services of the computer device 200. In the example environment, the
application 120b uses one or more application programming interfaces (API) such as Print
Ticket, XPS Print, GDI Print or MXDW (Microsoft XPS Document Writer) to reach a common
print spooler API. The print spooler then sends a call to a print spooler service (e.g. spoolss)

such as by using a remote procedure call (RPC). Typically, the print spooler service obtains

19

credentials of the originating client process and then presents those credentials in an onward
path of the print service. For example, the spooler service routes the RPC and the appropriate
parameters to the appropriate print provider, where the security module 210 performs security
checks to ensure that the client process in question has rights to access the printer. However,
the isolated process 120b in the temporary user account 121b deliberately does not have those

privileges and ordinarily the print request would fail (be denied) by the operating system 202.

[98] In the example embodiments, the agent 300 is configured to intercept a printer service
requests, i.e. calls to the printer services within the operating system 202. In particular, the
agent 300 may be configured to hook a subset of the functions of the Print Spooler API, using
an appropriate printer function task interception module 320P similar to the other task
interception modules 320 described above. For example, the functions OpenPrinter,
EnumPrinters, DocumentProperties, GetPrinter and StartDoc may be intercepted. The agent
300 may now impersonate the primary user context 121 and provide the credentials of the
logged-on user account in place of the temporary user account in relation to the currently called
printer function. The agent 300 may thus act as the originator client of a system call to the Print
Spooler API, by presenting parameters gained from the intercepted call made by the isolated
process 120b in the secondary user account 121b, and providing credentials appropriate to the

primary user account 121.

[929] In this example, the agent 300 impersonates the primary user account 121 on behalf of
the isolated process 121b which then allows the application (e.g. Adobe Acrobat Reader)
running in the task isolation environment 350 to connect to a relevant printer 500a, 500b and
complete the desired printing task. The user thus enjoys a continuous and seamless transition
between native and isolated operation states, even for complex procedures such as local or
network printing. As discussed above, the agent 300 may strictly control which, if any, of the
printers are made available to the task isolation environment 350. For the one or more printers
which are provisioned to the temporary user account 121b, the agent 300 may then implement a
strict control policy to selectively allow or deny each print service request made by any process

operating in that context.

[100] Figure 10 is a schematic flowchart of an example method. In this case, as described in
more detail above, the method includes step S101 of intercepting a task from a primary user
account prior to execution of the task by the computer device, wherein the task relates to an
untrusted content. Step S102 includes providing a task isolation environment for executing the
task, including provisioning the task isolation environment by programmatically creating a
secondary user account on the computer device. Step S103 includes executing the task in the
task isolation environment in relation to the untrusted content. The step S103 may further

include any of the steps discussed herein. In particular, the step 103 may include any of the

20

steps discussed herein in relation to the task isolation environment 350 under control of the
agent 300.

[101] In summary, the example embodiments have described an improved mechanism to
isolate untrusted content in a computer device. The industrial application of the example

embodiments will be clear from the discussion herein.

[102] In one example there is described a computer device, comprising: a hardware layer
including at least a processor and a memory; an operating system which performs tasks using
the hardware layer; a user process operating in a primary user account and configured to
request a task to be actioned by the operating system; a content isolation agent configured to
execute in cooperation with the operating system; wherein the content isolation agent
comprises: a task interceptor unit arranged to intercept the task before being actioned by the
operating system; a task policy unit arranged to selectively output a policy result identifying the
task according as an untrusted task concerning untrusted content; an isolation environment
provisioner unit configured to provision a task isolation environment by programmatically
creating a secondary user account on the computer device; a controller configured to cause the

untrusted task to be executed in the task isolation environment.

[103] In one example, the task interceptor unit is configured to obtain task metadata relating to
the task, and the task policy unit is configured to provide the policy result considering the task
metadata.

[104] In one example, the controller is configured to selecting amongst actions including:
denying the intercepted task, passing the intercepted task through for execution in the primary

user account, and causing execution of the untrusted task in the task isolation environment.

[105] In one example, the one or more task interceptor units include at least one of. a browser
task interceptor unit configured to intercept the task of loading a web page prior by a browser;
an email task interceptor unit configured to intercept the task of accessing a file on a storage
medium by an email client application; a file task interceptor unit configured to intercept the task
of accessing a file on a storage medium by a file explorer application; and an application task
interceptor unit configured to intercept the task of starting execution of an application by the

computer device.

[106] In one example, the isolation environment provisioner unit is configured for
programmatically creating the secondary user account on the computer device by
programmatically creating user credentials, and programmatically presenting the created user

credentials to obtain the secondary user account.

21

[107] In one example, the primary user account provides a first security context which is
enforced by a security module of an operating system of the computer device, and the
secondary user account provides a second security context which is enforced and isolated from

the first security context by the security module.

[108] In one example, the primary user account is associated with a first access token, and the
secondary user account is associated with a second access token which is distinct from the first
access token.

[109] In one example, access rights are granted to the second token to access a user interface
component of the primary user account, thereby allowing the task executing in the task isolation
environment to interact with the user via the user interface component of the primary user

account.

[110] In one example, the agent is arranged to delete the secondary user account at
completion of a session or after allowing the secondary user account to persist across a plurality

of sessions.

[111] In one example, the agent is configured for simultaneously provisioning a plurality of the
secondary user accounts, each said secondary user account being the task isolation
environment for a respective one or more of the tasks.

[112] In one example, the agent is configured to redirect a folder from the task isolation

environment to a folder of the primary user account.

[113] In one example, the agent is arranged to cause the steps of: hooking a file create or file
open request by a process executing in the task isolation environment; where the request
concerns a file locally within the isolation environment, then allowing the file to be created or
opened natively by the operating system in the secondary user account; and where the request
concerns a file redirected within the primary user account, then creating an impersonation token
of the primary user account to access the requested file.

[114] In one example, the agent is configured to cause the steps of: tagging the accessed file,
and intercepting a task in the primary user account which subsequently attempts to access the

tagged file.

[115] In one example, the primary user account is associated with one or more named objects,
and the agent is arranged to intercept an object create operation or an object open operation in
relation to one of the named objects by a process in the task isolation environment, check a
policy result in relation to the named object and, if access is granted, to provide to the process

22

an impersonation token having access to the named object, thereby allowing the process to
access the named object using the impersonation token.

[116] In one example, a process in the isolation environment is arranged to make a request for
creation of a named object within the isolation environment; and the agent is arranged to
intercept the request; provide a modified name of the object to the process, such as by
prepending or appending additional naming elements to the name of the object. The agent may
then cause the process to create the named object using the modified name.

[117] In one example there is described a method for isolating untrusted content on a computer
device, comprising: intercepting a task from a primary user account prior to execution of the task
by the computer device, wherein the task relates to an untrusted content; providing a task
isolation environment for executing the task, including provisioning the task isolation
environment by programmatically creating a secondary user account on the computer device;

and executing the task in the task isolation environment in relation to the untrusted content.

[118] In one example further steps include executing a user process in the primary user
account; obtaining user inputs by a user interface component of the computer device; and
requesting the task by the user process in response to the user inputs obtained by the user

interface component.

[119] In one example further steps include examining the intercepted task and in response
selecting amongst the steps of: denying the intercepted task, passing the intercepted task
through for execution in the primary user account, and executing the task in the task isolation

environment.

[120] In one example further steps include consulting a stored task policy concerning the
intercepted task to provide a policy result and selectively executing the task in the task
execution environment according to the policy result.

[121] In one example further steps include obtaining task metadata conceming the intercepted
task, and consulting the stored task policy according to the task metadata to obtain the policy

result.

[122] In one example further steps include defining a configuration of the task isolation

environment according to the policy result.

[123] In one example the intercepting comprises selectively intercepting only certain tasks by

one or more task interceptor units.

23

[124] In one example further steps include selecting and installing a set of the task interceptor
units on the computer device according to a type and nature of the tasks which are to be

isolated on that computer device.

[125] In one example programmatically creating the secondary user account on the computer
device includes programmatically creating user credentials, and programmatically presenting

the created user credentials to obtain the secondary user account.
[126] In one example the created user credentials include a user identity and a password.

[127] In one example the primary user account provides a first security context which is
enforced by a security module of an operating system of the computer device, and the
secondary user account provides a second security context which is enforced and isolated from

the first security context by the security module.

[128] In one example the primary user account is associated with a first access token, and the
secondary user account is associated with a second access token which is distinct from the first

access token.

[129] In one example further steps include granting access rights to the second token to access
a user interface component of the primary user account, thereby allowing the task executing in
the task isolation environment to interact with the user via the user interface component of the

primary user account.

[130] In one example further steps include allowing the task executing in the task isolation
environment to interact with the user via a desktop graphical user interface of the primary user

account.

[131] In one example executing the task in the task isolation environment includes launching
one or more processes in a security context of the secondary user account which are isolated
from the primary user account by a security module of the operating system of the computer

device.

[132] In one example further steps include deleting the secondary user account at completion

of a session.

[133] In one example further steps include allowing the secondary user account to persist

across a plurality of sessions.

[134] In one example further steps include simultaneously provisioning a plurality of the
secondary user accounts, each said secondary user account being the task isolation

environment for a respective one or more of the tasks.

24

[135] In one example further steps include directing certain of the tasks to one said task

isolation environment and other of the tasks to another said task isolation environment.

[136] In one example further steps include configuring the task isolation environment to redirect

a folder from the task isolation environment to a folder of the primary user account.

[137] In one example further steps include hooking a file create or file open request by a
process executing in the task isolation environment; where the request concerns a file locally
within the isolation environment, then allowing the file to be created or opened natively by the
operating system in the secondary user account; and where the request concerns a file
redirected within the primary user account, then creating an impersonation token of the primary

user account to access the requested file.

[138] In one example further steps include tagging the accessed file, and intercepting a task in

the primary user account which subsequently attempts to access the tagged file.

[139] At least some of the example embodiments described herein may be constructed,
partially or wholly, using dedicated special-purpose hardware. Terms such as ‘component’,
‘module’ or ‘unit’ used herein may include, but are not limited to, a hardware device, such as
circuitry in the form of discrete or integrated components, a Field Programmable Gate Array
(FPGA) or Application Specific Integrated Circuit (ASIC), which performs certain tasks or
provides the associated functionality. In some embodiments, the described elements may be
configured to reside on a tangible, persistent, addressable storage medium and may be
configured to execute on one or more processors. These functional elements may in some
embodiments include, by way of example, components, such as software components, object-
oriented software components, class components and task components, processes, functions,
attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode,

circuitry, data, databases, data structures, tables, arrays, and variables.

[140] Although the example embodiments have been described with reference to the
components, modules and units discussed herein, such functional elements may be combined
into fewer elements or separated into additional elements. Various combinations of optional
features have been described herein, and it will be appreciated that described features may be
combined in any suitable combination. In particular, the features of any one example
embodiment may be combined with features of any other embodiment, as appropriate, except
where such combinations are mutually exclusive. Throughout this specification, the term
“‘comprising” or “comprises” may mean including the component(s) specified but is not intended

to exclude the presence of other components.

25

[141] Although a few example embodiments have been shown and described, it will be
appreciated by those skilled in the art that various changes and modifications might be made

without departing from the scope of the invention, as defined in the appended claims.

26

CLAIMS

1. A computer device, comprising:
a hardware layer including at least a processor and a memory;
an operating system which performs tasks using the hardware layer;

a user process operating in a primary user account controlled by the operating system
and configured to request a task to be actioned by the operating system, wherein the primary
user account comprises a first folder for containing files which are accessible under the primary

user account;

an agent configured to execute in cooperation with the operating system, and wherein the

agent comprises:

a task interceptor unit arranged to intercept the task before being actioned by the

operating system and provide task metadata relevant to the intercepted task;

a task policy unit arranged to examine the task metadata and selectively output a policy
result identifying the task as being an untrusted task;

an isolation environment provisioner unit configured to provision a task isolation
environment by programmatically creating a secondary user account on the computer device,
wherein the secondary user account comprises a second folder for containing files which are

accessible under the secondary user account; and

a controller configured to cause the untrusted task to be executed as an isolated process
in the task isolation environment provided by the secondary user account;

wherein the agent is further configured to map the second folder of the secondary user
account to the first folder of the primary user account, and to redirect a file access request by
the isolated process to a subject file in the second folder to be performed by the operating

system in relation to a target file in the first folder of the primary user account.

2. The computer device of claim 1, wherein the agent is further configured to intercept
a file access request by the user process to the target file in the first folder of the primary user
account, and to selectively deny the file access request to prevent the file access request being
performed by the operating system where the target file has previously been accessed by the

isolated process of the secondary user account.

27

3. The computer device of claim 1 or 2, wherein the agent is further arranged to:

hook a file access request by the isolated process executing in the task isolation
environment of the secondary user account, wherein the file access request concerns a local file

held locally within the secondary user account; and

allow the file access request to be performed by the operating system on the local file in

the secondary user account.

4, The computer device of claim 1, 2 or 3, wherein the agent is further arranged to:

hook a file access request by the isolated process executing in the task isolation
environment of the secondary user account, wherein the file access request concerns the target

file; and

create an impersonation token of the primary user account to access the target file when
the file access request is redirected to be performed by the operating system on the target file in

the first folder within the primary user account.

5. The computer device of any preceding claim, wherein the agent is configured to
deny the file access request made by the isolated process in the secondary user account
concerning the target file where the file access request would cause an existing file to be

overwritten in the first folder of the primary user account.

6. The computer device of any preceding claim, wherein the agent is configured to:

tag the target file in the primary user account when the file is accessed in response to the

file access request of the isolated process in the secondary user account, and

intercept a file access request by the user process in the primary user account which

subsequently attempts to access the target file having the tag.

7. The computer device of claim 6, wherein the agent is configured to:

cause the subsequent file access request to be satisfied by accessing the target file int he

first folder of the primary user account by the isolated process of the secondary user account.

28

8. The computer device of any preceding claim, wherein the first folder in the primary
user account comprises a plurality of files including at least one trusted file and at least one
untrusted file and the agent is configured to selectively allow the at least one trusted file to be
accessed only by the user process of the primary user account and to allow the at least one

untrusted file to be accessed only by the isolated process of the secondary user account.

9. The computer device of any preceding claim, wherein the agent is configured to
determine a permitted level of access of the isolated process to the target file and to selectively
allow or deny the file access request compared with the determined permitted level of access.

10. The computer device of any preceding claim, wherein:
the primary user account is associated with a named object, and

the agent is arranged to intercept an object create operation or an object open operation
in relation to the named object by a process in the task isolation environment, check a policy
result in relation to the named object and, if access is granted, to provide to the process an
impersonation token having access to the named object, thereby allowing the process to access

the named object using the impersonation token.

11. The computer device of any preceding claim, wherein:

a process in the task isolation environment is arranged to make a request for creation of a

named object within the task isolation environment; and

the agent is arranged to intercept the request, provide a modified name of the object by
modifying an original name of the object, and cause the process to create the named object
using the modified name.

29

12. A method for isolating untrusted content on a computer device, the method

comprising:

intercepting a task from a primary user account prior to execution of the task by the

computer device, wherein the task relates to an untrusted content;

providing a task isolation environment for executing the task, including provisioning the
task isolation environment by programmatically creating a secondary user account on the

computer device;

executing the task in the task isolation environment in relation to the untrusted content;
and

redirecting a folder from the task isolation environment to a folder of the primary user

account.

13. The method of claim 12, further comprising:

hooking a file access request to create or open a file by a process executing in the task

isolation environment;

where the file access request concerns a file locally within the task isolation environment,
then allowing the file to be created or opened natively by the operating system in the secondary

user account; and

where the file access request concerns a target file in the folder redirected within the
primary user account, then creating an impersonation token of the primary user account to

access the target file.

14. The method of claim 13, further comprising tagging the target file, and intercepting
a task in the primary user account which subsequently attempts to access the tagged target file.

15. The method of claim 14, further comprising:

causing a subsequent file access request to the tagged target file in the folder of the
primary user account originated by a user process operating in the primary user account to be
satisfied by accessing the tagged target file by the task in the task isolation environment of the

secondary user account.

30

16. The method of any of claims 12 to 15, wherein the folder in the primary user
account comprises a plurality of files including at least one trusted file and at least one untrusted

file and the method further comprises:

selectively allowing the at least one trusted file to be accessed only by a user process of

the primary user account, and

selectively allowing the at least one untrusted file to be accessed only by the task in the

task isolation environment of the secondary user account.

17. The method of any of claims 12 to 16, further comprising:

intercepting a file access request by the task in the task isolation environment to a local

file in a local folder of the secondary user account, and

selectively allowing the file access request to proceed to be performed by the operating

system on the local file in the local folder of the secondary user account.

18. The method of any of claims 12 to 17, further comprising:

intercepting a file access request by a user process in the primary user account to a

requested file in a folder of the primary user account, and

selectively allowing the file access request to proceed to be performed by the operating

system on the requested file in the folder of the primary user account.

19. The method of any of claims 12 to 18, further comprising:
providing a named object associated with the primary user account;

intercepting an object create operation or an object open operation in relation to the

named object by a process in the task isolation environment;
checking a policy result in relation to the named object; and

providing to the process, if access is granted, an impersonation token having access to
the named object, thereby allowing the process to access the named object using the

impersonation token.

31

20. The method of any of claims 12 to 19, further comprising:

making a request for creation of a named object within the task isolation environment by a

process therein;
intercepting the request;

passing a modified name of the object to the process by modifying a name of the object;

and

creating the named object using the modified name.

21. A computer readable storage medium having recorded thereon instructions which,
when implemented by a computer device, cause the computer device to perform the method of
any of claims 12 to 20 and/or which cause the computer device to be arranged as set forth in

any of claims 1 to 11.

Intellectual

Property 32

Office
Application No: GB1418629.0 Examiner: Mr Jonathan Golding
Claims searched: 1-21 Date of search: 21 April 2015

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
X 1-21 US 2007/0050369 Al
(STIEGLER ET AL)
Particularly paragraphs 21, 25, 29, 33, 35, 39, 40, 46, 53, 57 and the
figures.
X 1-21 US 2004/0006706 A1l
(ERLINGSSON)
Particularly paragraphs 89 - 99, 125 - 147 and figures 7, 10 and 11.
X 1-21 US 7797727 B1
(MILLER ET AL)
Particularly column 2 line 10 through column 10 line 39 and the figures.
X 1-21 US 2005/0149726 Al
(JOSHI ET AL)
Particularly paragraphs 27, 45, 67-71, 99-101, 114-118, figures 2, 3 and
claims 21 and 52.
Categories:
X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step it P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent tamily E Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

Worldwide search of patent documents classified in the following areas of the IPC
[GOGF |
The following online and other databases have been used in the preparation of this search report

| EPODOC & WPI, TXTE |

International Classification:

Subclass Subgroup Valid From
GO6F 0021/53 01/01/2013
GO6F 0021/56 01/01/2013

Intellectual Property Office is an operating name of the Patent Office www.gov.uk /ipo

	Front Page
	Drawings
	Description
	Claims
	Search Report

